

Z80
ASSEmBLY LAOGUAGE

PROGRAmmmG

Z80
ASSEmBLY LAnGUAGE

PROGRAmm1nG

lance A. Leventhal

Osborne/McGraw-Hill
Berkeley, California

Published by
OSBORNE/McGraw-Hill
630 Bancroft Way
Berkeley, California 94 710
U.S.A

For information on translations and book distributors outside of the U. S. A. ,
please contact the publisher at the above address.

5 6 7 8 9 DODO 8 7 6 5 4 3 2

ISBN 0-931 988-21-7

Copyright © 1979 by McGraw-Hill. Inc.

All rights reserved. Printed in the United States of America. No part of this
publication may be reproduced, stored in any retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior written permission of the publishers.

Cover design by K. L. T. van Genderen.

This book is dedicated to my colleagues at the Society for Computer Simula­
tion - Romeo Favreau. Natalie Fowler. Alexander McKenna. John Mcleod.
Stanley Rogers. and Chip Stockton.

ACKNOWLEDGMENTS

The author would like to acknowledge the following people:

Mr. Curt Ingraham. Ms. Mary Borchers, and Ms. Janice Enger of Osborne/
McGraw-Hill, who made many corrections and suggestions; Mr. Winthrop
Saville of Sorrento Valley Associates. who provided assistance and exam­
ples; Mr. Tom Littlefield of Littlefield/Smith Associates, who provided
reference material; Ms. Marielle Carter of Sorrento Valley Associates. who
typed some of the material; Mr. Stanley Rogers of the Society for Computer
Simulation, who has continued to suggest improvements in the author's writ­
ing style; and his wife Donna. for her patience and understanding throughout
the writing of this book.

Others who provided assistance and suggestions were Mr. Colin Walsh. Mr.
Gary Hankins, Mr. Romeo Favreau. Mr. David Bulman. Ms. Kati Bulman. Mr.
Robert Turner, Mr. Irv Stafford, Mr. John Burgar, Mr. Ferenc Montvai-Lako,
and Mr. Warren McKenna. Other students and colleagues also helped to keep
the author on the right track.

The author. of course, bears responsibility for any remaining errors. miscon­
ceptions, and misinterpretations.

v

Contents

Chapter Page

Introduction to Assembly Language Programming 1-1
How This Book Has Been Printed 1-1

The Meaning of Instructions 1-1
A Computer Program 1-1
The Programming Problem 1-2
Using Octal or Hexadecimal 1-3
Instruction Code Mnemonics 1-4
The Assembler Program 1-5
Additional Features of Assemblers 1-6
Disadvantages of Assembly Language 1-6
High-level Languages 1-7
Advantages of High-level Languages 1-7
Disadvantages of High-level Languages 1-8
High-level Languages for Microprocessors 1-9
Which Level Should You Use 7 1-10
How About the Future? 1-11
Why This Book? 1-11

References 1-12

2 Assemblers 2-1
Features of Assemblers 2-1

Assembler Instructions 2-1
Labels 2-2
Assembler Operation Codes (Mnemonics) 2-4
Pseudo-operations 2-4
The Data Pseudo-operation 2-5
The Equate (or Define) Pseudo-operation 2-6
The Origin Pseudo-operation 2-7
The Reserve Pseudo-operation 2-7
Linking Pseudo-operations 2-8
Housekeeping Pseudo-operations 2-8
Labels with Pseudo-operations 2-9

Addresses and the Operand Field 2-9
Conditional Assembly 2-11
Macros 2-11
Comments 2-13
Types of Assemblers 2-14
Errors 2-14
Loaders 2-15
References 2-15

vii

Chapter

3

Contents (Continued)

The ZBO Assembly Language Instruction Set
CPU Registers and Status Flags
Z80 Memory Addressing Modes

Implied
Implied Block Transfer with Auto-Jncrement/Decrement
Implied Stack
Indexed
Direct
Program Relative
Base Page
Register Direct
Immediate

Abbrev1at1ons
Instruction Mnemonics
Instruction Obiect Codes
Instruction Execution Times
Status
Instruction Descriptions
8080A/Z80 Compatibility

Zilog Z80 Assembler Conventions
Assembler Field Structure
Labels
Reserved Names
Pseudo-operations

Examples
Labels with Pseudo-operations
Addresses
Conditional Assembly
Macros

Page

3-1
3-2
3-4
3-5
3-7
3-8
3-10
3-11
3-12
3-13
3-14
3-15
3-18
3-21
3-21
3-21
3-21
3-43
3-164
3-170
3-170
3-170
3-170
3-170
3-171
3-172
3-172
3-174
3-174

Contents (Continued)

Chapter Page

4 Simple Programs 4-1
General Format of Examples 4-1
Guidelines for Problems 4-2
Program Examples 4-3

Ones Complement 4-3
8-Bit Addition 4-4
Shift Left One Bit 4-6
Mask Off Most Significant Four Bits 4-6
Clear a Memory Location 4-7
Word Disassembly 4-7
Find Larger of Two Numbers 4-9
16-Bit .Addition 4-11
Table of Squares 4-12
16-Bit Ones Complement 4-14

Problems 4-15
Twos Complement 4-15
8-Bit Su btract1on 4-15
Shift Left Two Bits 4-16
Mask Off Least Significant Four Bits 4-16
Set a Memory Location to All Ones 4-16
Word Assembly 4-16
Find Smaller of Two Numbers 4-16
24-Bit .Addition 4-16
Sum of Squares 4-17
16-Bit Twos Complement 4-18

5 Simple Program Loops 5-1
Examples 5-3

Sum of Data 5-3
16-Bit Sum of Data 5-6
Number of Negative Elements 5-9
Find Maximum 5-11
Justify a Binary Fraction 5-14

Problems 5-17
Checksum of Data 5-17
Sum of 16-Bit Data 5-17
Number of Zero. Pos1t1ve. and

Negative Numbers 5-18
Find Minimum 5-18
Count 1 Bits 5-18

IX

Contents (Continued)

Chapter Page

6 Character-coded Data 6-1

Examples 6-2
Length of a Stnng of Characters 6-2
Find First Non-blank Character 6-8
Replace Leading Zeros with Blanks 6-11
Add Even Panty to ASCII Characters 6-13
Pattern Match 6-16

Problems 6-19
Length of a Teletypewnter Message 6-19
Find Last Non-blank Character 6-19

Truncate Decimal Stnng to Integer Form 6-20
Check Even Parity in ASCII Characters 6-20

String Comparison 6-21

7 Code Conversion 7-1
Examples 7-1

Hex to ASCII 7-1
Decimal to Seven-Segment 7-3
ASCII to Decimal 7-8
BCD to Binary 7-10
Convert Binary Number to ASCII Stnng 7-11

Problems 7-13
ASCII to Hex 7-13
Seven-Segment to Decimal 7-13
Decimal to ASCII 7-14
Binary to BCD 7-14
ASCII String to Binary Number 7-14

References 7-15

8 Anthmet1c Problems 8-1
Examples 8-1

Mult1ple-Prec1s1on Addition 8-1
Block Move 8-4
Decimal Addition 8-5
8-Bit Binarv Mult1plicat1on 8-8
8-Bit Binary Div1s1on 8-12
Self-Checking Numbers Double and

Double MOD 10 8-17
Problems 8-25

Mult1ple-Prec1s1on Subtraction 8-25
Decimal Subtraction 8-25
8-Bit by 16-Bit Binary Mult1plicat1on 8-26
Signed Binary Div1s1on 8-26
Self-Checking Numbers Aligned 1. 3. 7 MOD 10 8-27

References 8-28

x

Contents (Continued)

Chapter Page
9 Tables and Lists 9-1

Examples 9-1
Add Entry to List 9-1
Check an Ordered List 9-5
Remove Element from Queue 9-8
8-8it Sort 9-10
Using an Ordered Jump Table 9-14

Problems 9-16
Remove an Entry from a List 9-16
Add an Entry to an Ordered List 9-17
Add an Element to a Queue 9-17
16-Bit Sort 9-18
Using a Jump Table with a Kev 9-18

References 9-19

10 Subroutines 10-1
Subroutine Documentation 10-2
Examples 10-2

Hex to ASCII 10-3
Length of a String of Characters 10-6
Add Even Parity to ASCII Characters 10-9
Pattern Match 10-12
Mult1ple-Prec1s1on Addition 10-16

Problems 10-19
ASCII to Hex 10-19
Length of an ASCII Message 10-19
Check Even Parity in ASCII Characters 10-19
String Comparison 10-20
Decimal Subtraction 10-20

References 10-22

11 Input/Output 11-1
Timing Intervals (Delays) 11-8

Delav Routines 11-8
Example 11-9

Delay Program Using Accumulators 11-9
Simple 1/0 Devices 11-11

The Z80 Parallel Input/Output Circuit (PIO) 11-11
PIO Mode Control 11-15
Configuring the PIO 11-17
Z80 Input/Output Instructions 11-18
Examples 11-22

A Pushbutton Switch 11-22
A Toggle Switch 11-28
A Mult1ple-Pos1t1on (Rotarv. Selector. or

Thumbwheell Switch 11-33
A Single LED 11-40
Seven-Segment LED Displav 11-43

xi

Chapter

11 (Cont.I

12

Contents (Continued)

Problems
An on-off Pushbutton
Debouncing a Switch in Software
Control for a Rotary Switch
Record Switch Positions on Lights
Count on a Seven-Segment Display

More Complex 1/0 Devices
Examples

An Unencoded Kevboard
An Encoded Kevboard
A Digital-to-Analog Converter
Analog-to-Digital Converter
A Teletypewriter (TIY)

The Z80 Senal Input/Output Device (SIO)
Examples

Teletypewnter 1/0 via a USART
Standard Interfaces
Problems

Separating Closures from an Unencoded
Kevboard

Read a Sentence from an Encoded Kevboard
A Variable Amplitude Square Wave Generator
Averaging Analog Readings
A 30 Character-per-Second Terminal

References

Interrupts
Z80 Interrupt Svstem

Non-Maskable Interrupt
Z80 Interrupt Modes

Z80/8080 Interrupt Compatibilitv
PIO Interrupts

Examples
SIO Interrupts
Interrupt Examples

A Startup Interrupt
A Kevboard Interrupt
A Printer Interrupt
A Real-Time Clock Interrupt
A Teletypewnter Interrupt

More General Service Routines
Problems

A Test Interrupt
A Kevboard Interrupt
A Printer Interrupt
A Real-Time Clock Interrupt
A Teletypewnter Interrupt

References

xii

Page

11-55
11-55
11-55
11-55
11-56
11-56
11-57
11-60
11-60
11-69
11-72
11-76
11-81
11-89
11-98
11-98
11-103
11-103

11-103
11-103
11-104
11-104
11-104
11-105

12-1
12-2
12-3
12-4
12-5
12-6
12-8
12-10
12-12
12-12
12-14
12-17
12-20
12-26
12-30
12-31
12-31
12-31
12-31
12-31
12-31
12-32

Chapter

13

Contents (Continued)

Problem Definition and Program Design
The Tasks of Software Development
Definition of the Stages
Problem Definition
Defining the Inputs
Defining the Outputs
Processing Section
Error Handling
Human Factors
Examples

Response to a Switch
A Switch-Based Memorv Loader
A Verification Terminal

Review of Problem Defin1t1on
Program Design

Flowcharting
Examples

Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Terminal

Modular Programming
Examples

Response to a Switch
The Switch-Based Memory Loader
The Verification Terminal

Review of Modular Programming
Structured Programming
Examples

Response to a Switch
The Switch-Based Memorv Loader
The Credit-Verification Terminal

Review of Structured Programming
Top-Down Design
Examples

Response to a Switch
The Switch-Based Memorv Loader
The Transaction Terminal

Review of Top-Down Design
Review of Problem Definition and Program Design

References

xiii

Page

13-1
13-1
13-3
13-3
13-4
13-4
13-5
13-5
13-6
13-6
13-6
13-8
13-11
13-15
13-16
13-17
13-19
13-19
13-20
13-22
13-26
13-28
13-28
13-28
13-28
13-30
13-30
13-36
13-36
13-36
13-38
13-43
13-44
13-45
13-45
13-46
13-47
13-49
13-49
13-50

Chapter

14

15

16

Contents (Continued)

Debugging and Testing
Simple Debugging Tools
More Advanced Debugging Tools
Debugging with Checklists
Looking for Errors

Debugging Example 1 Decimal to Seven-Segment
Conversion

Debugging Example 2: Sort into Decreasing

Introduction to Testing
Selecting Test Data

Order

Testing Example 1 Sort Program
Testing Example 2: Self-Checking Numbers

Testing Precautions
Conclusions

References

Documentation and Redesign
Self-Documenting Programs
Comments

Commenting Example 1 Mult1ple-Prec1s1on
Addition

Commenting Example 2: Teletypewriter Output
Flowcharts as Documentation
Structured Programming Languages as

Documentation
Memory Maps
Parameter and Definition Lists
Library Routines
Library Examples

Library Example 1 Sum of Data
Library Example 2: Decimal-to-Seven-Segment

Conversion
Library Example 3: Decimal Sum

Total Documentation
Redesign
Reorganizing to Use Less Memory
Ma1or Reorganizations

References

Sample Projects
Proiect #1: A Digital Stopwatch
Pro1ect #2: A Digital Thermometer

References

Index of Instruction Descriptions
Index

xiv

Page

14-1
14-1
14-8
14-10
14-11

14-16

14-21
14-27
14-28
14-29
14-29
14-29
14-30
14-31

15-1
15-1
15-2

15-4
15-5
15-7

15-7
15-7
15-8
15-10
15-10
15-10

15-11
15-12
15-13
15-14
15-15
15-16
15-18

16-1
16-1
16-15
16-29

xv
xvii

Chapter 1
INTRODUCTION TO ASSEMBLY

LANGUAGE PROGRAMMING

This book describes assembly language programming. It assumes that you are
familiar with An Introduction To MicrocomP-uters: Volume 1 - Basic ConceP-tS
(particularly Chapters 6 and 7). This book does not discuss the general features of
computers. microcomputers. addressing methods, or instruction sets: you should
refer to An Introduction To Microcomputers: Volume 1 for that information.

HOW THIS BOOK HAS BEEN PRINTED
Notice that text in this book has been printed in boldface type and lightface type.
This has been done to help you skip those parts of the book that cover subject
matter with which you are familiar. You can be sure that lightface type only ex­
pands on information presented in the previous boldface type. Therefore. only read
boldface type until you reach a subiect about which you want to know more. at which
prnnt start reading the lightface type.

THE MEANING Of INSTRUCTIONS

The instruction set of a microprocessor is the set of binary inputs which produce
defined actions during an instruction cycle. An instruction set is to a microprocessor
what a function table is to a logic device such as a gate. adder. or shift register. Of
course. the actions that the microprocessor performs in response to the instruction in­
puts are far more complex than the actions that combinatorial logic devices perform 1n
response to their inputs.

An instruction is simply a binary bit pattern - it must be BINARY
available at the data inputs to the microprocessor at the INSTRUCTIONS
proper time in order to be interpreted as an instruction. For ex-
ample. when the ZSO microprocessor receives the 8-bit binary pattern 10000000 as the
input during an instruction fetch operation. the pattern means:

"Add the contents of Register B to the contents of the Accumulator"

Similarly, the pattern 00111110 means:

"Load the Accumulator with the contents of the next word of program memory"

The microprocessor (like any other computer) recognizes only binary patterns as in­
structions or data; 1t does not recognize words or octal. decimal. or hexadecimal num­
bers.

A COMPUTER PROGRAM
A program is a series of instructions that cause a computer to perform a particular
task.

Actually, a computer program includes more than instructions; 1t
also contains the data and memory addresses that the
microprocessor needs to accomplish the task defined by the in-

1-1

COMPUTER
PROGRAM

structions. Clearly. if the microprocessor is to perform an addition. it must have two
numbers to add and a destination for the result. The computer program must determine
the sources of the data and the destination of the result as well as specifying the opera­
tion to be performed.

All microprocessors execute instructions sequentially unless one of the instructions
changes the execution sequence or halts the computer (i.e .. the processor gets the next
instruction from the next consecutive memory address unless the current instruction
specifically directs 1t to do otherwise).

Ultimately every program becomes translated into a set of binary numbers. For
example, this is the ZSO program that adds the contents of memory locations
6016 and 6116 and places the result in memory location 6216:

00111010
01100000
00000000
01000111
00111010
01100001
00000000
10000000
00110010
01100010
00000000

This is a machine language, or object, program. If this program
were entered into the memory of a ZBO-based microcomputer. the
microcomputer would be able to execute it directly.

THE PROGRAMMING PROBLEM
There are many difficulties associated with creating programs
as object, or binary machine language, programs. These are
some of the problems:

OBJECT
PROGRAM

MACHINE
LANGUAGE
PROGRAM

1) The programs are difficult to understand or debug (binary numbers all look the
same. part1cu larly after you have looked at them for a few hours).

2) The programs are slow to enter since you must enter each bit 1ndiv1dually.

3) The programs do not describe the task which you want the computer to perform in
anything resembling a human readable format.

4) The programs are long and tiresome to write.

5) The programmer often makes careless errors that are very difficult to find.

For example. the following version of the addition object program contains a single
bit error. Try to find it:

00111010
01100000
00000000
01000111
01110010
01100001
00000000
10000000
00110010
01100010
00000000

1-2

Although the computer handles binary numbers with ease. people do not. People find
binary programs long. tiresome. confusing. and meaningless. Eventually, a programmer
may start remembering some of the binary codes. but such effort should be spent more
productively.

USING OCTAL OR HEXADECIMAL
We can improve the situation somewhat by writing instruc- OCTAL OR
tions using octal or hexadecimal. rather than binary, numbers. HEXADECIMAL
We will use hexadecimal numbers in this book because they are
shorter. and because they are the standard for the microprocessor industry. Table 1-1
defines the hexadecimal digits and their binary equivalents. The ZSO program to add
two numbers now becomes:

3A
60
00
47
3A
61
00
80
32
62
00

At the very least. the hexadecimal version 1s shorter to write and not quite so t1nng to
examine.

Errors are somewhat easier to find in a sequence of hexadecimal digits. The er­
roneous version of the addition program, in hexadecimal form, becomes:

The mistake is easier to spot.

3A
60
00
47
72
61
00
80
32
62
00

What do we do with this hexadecimal program? The microprocessor understands
only binary instruction codes. The answer 1s that we must convert the hexadecimal
numbers to binary numbers. This conversion 1s a repet1t1ve. tiresome task. People who
attempt 1t make all sorts of petty mistakes. such as looking at the wrong line. dropping a
bit. or transposing a bit or a digit.

This repet1t1ve. grueling task 1s. however. a perfect JOb for a com- HEXADECIMAL
puter. The computer never gets tired or bored and never makes LOADER
silly mistakes. The idea then is to write a program which takes
hexadecimal numbers and converts them into binary numbers. This is a standard
program provided with many microprocessors; it is called a "hexadecimal loader."

Is a hexadecimal loader worth having? If you are willing to wnte a program using binary
numbers. and you are prepared to enter the program in its binary form into the com­
puter. then you will not need the hexadecimal loader.

1-3

If you choose the hexadecimal loader. you will have to pay a price for 1t. The hex­
adecimal loader is itself a program which you must load into memory. Furthermore. the
hexadecimal loader will occupy memorv- memory that you may want to use in some
other way.

The basic tradeoff. therefore. 1s the cost and memorv requirements of the hexadecimal
loader versus the savings in programmer time.

A hexadecimal loader 1s well worth its small cost.

A hexadecimal loader certainly does not solve everv programming problem. The hex­
adecimal version of the program is still difficult to read or understand; for example. 1t
does not distinguish instructions from data or addresses. nor does the program listing
provide any suggestion as to what the program does. What does 32 or 47 or 3A mean?
Memorizing a card full of codes is hardly an appetizing proposition. Furthermore. the
codes will be entirely different for a different microprocessor. and the program will re­
quire a large amount of documentation.

Table 1-1. Hexadecimal Conversion Table

Hexadecimal Binary Decimal
Digit Equivalent Equivalent

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
c 1100 12
D 1101 13
E 1110 14
F 1111 15

INSTRUCTION CODE MNEMONICS
An obvious programming improvement is to assign a name to each instruction
code. The instruction code name is called a "mnemonic", or memory jogger. The
instruction mnemonic should describe in some way what the instruction does.

In fact. every microprocessor manufacturer (they can't remember
hexadecimal codes either) provides a set of mnemonics for the
microprocessor instruction set. You do not have to abide by the
manufacturer's mnemonics; there 1s nothing sacred about them.

PROBLEM
WITH
MNEMONICS

However. they are standard for a given microprocessor and therefore understood by all
users. These are the instruction names that you will find in manuals. cards. books, arti­
cles. and programs. The problem with selecting instruction mnemonics is that not all in­
structions have "obvious" names. Some instructions do have obvious names (e.g ..
ADD. AND. OR). others have obvious contractions (e.g .. SUB for subtraction. XOR for
exclusive OR), while still others have neither. The result is such mnemonics as WMP.
PCHL. and even SOB (trv and guess what that means!). Most manufacturers come up
with mostly reasonable names and a few hopeless ones. However. users who devise
their own mnemonics rarely seem to do much better than the manufacturer.

1-4

Along with the instruction mnemonics. the manufacturer will usually assign names to
the CPU registers. As with the instruction names. some register names are obvious (e.g ..
A for Accumulator) while others may have only historical significance. Again. we will
use the manufacturer"s suggestions simply to promote standardization .

If we use standard Z80 instruction and register mnemonics. as
defined by Zilog, our Z80 addition program becomes:

LO A.(60Hl
LO B.A
LD A.(61Hl
ADD A.B
LO (62H).A

.-----.....
ASSEMBLY
LANGUAGE
PROGRAM

The program is still far from obvious. but at least some parts are comprehensible.
ADD A.B is a considerable improvement over 80: LD does suggest loading data into a
register or memory location. Such a program is an assembly language program.

THE ASSEMBLER PROGRAM
How do we get the assembly language program into the com­
puter? We have to translate 1t. either into hexadecimal or into bin­
ary numbers. You can translate an assembly language program
by hand, instruction by instruction. This 1s called hand assembly.

HAND
ASSEMBLY

Hand assembly of the addition program's instruction codes may be illustrated as
follows:

Instruction Name Hexadecimal Equivalent

LD A.(NN) 3A
LO B.A 47
ADD A.B 80
LO (NN).A ! 32

As in the case of hexadecimal to binary conversion. hand assembly 1s a rote task which
is uninteresting. repet1t1ve. and sub1ect to numerous minor errors. Picking the wrong
line. transposing digits. om1tt1ng instructions. and misreading the codes are only a few
of the mistakes that you may make. Most microprocessors complicate the task even
further by having instructions with different word lengths. Some instructions are one
word long while others are two or three words long. Some instructions require data 1n
the second and third words; others require memory addresses. register numbers. or
who knows what?

Assembly is another rote task that we can assign to the
microcomputer. The microcomputer never makes any
mistakes when translating codes; it always knows how many
words and what format each instruction requires. The program
that does this job is called an "assembler". The assembler
program translates a user program, or "source" program writ­
ten with mnemonics, into a machine language program, or
"object" program, which the microcomputer can execute. The

ASSEMBLER

SOURCE
PROGRAM

OBJECT
PROGRAM

assembler's input is a source program and its output is an object program.

The tradeoffs we discussed in connection with the hexadecimal loader are mag­
nified in the case of the assembler. Assemblers are more expensive. occupy more
memory. and require more peripherals and execution time than do hexadecimal
loaders. While users may (and often do) write their own loaders. few care to write their
own assemblers.

1-5

\·

Assemblers have their own rules that you must learn to abide by. These include the
use of certain markers (such as spaces. commas. semicolons. or colons) in appropriate

places. correct spelling. the proper control 1nformat1on. and perhaps even the correct

placement of names and numbers. These rules typically are a minor hindrance that can

be quickly overcome.

ADDITIONAL FEATURES OF ASSEMBLERS
Earlv assembler programs did little more than translate the mnemonic names of instruc­

tions and registers into their binary equivalents. However. most assemblers now pro­

vide such additional features as:

1) Allowing the user to assign names to memory locations. input and output devices.

and even sequences of instructions.

2) Converting data or addresses from various number systems (e.g .. decimal or hex­

adecimal) to binary and converting characters into their ASCII or EBCDIC binary

codes.

3) Performing some arithmetic as part _of the assembly process.

4) Telling the loader program where in memory parts of the program or data should be

placed.

5) Allowing the user to assign areas of memory as temporary data storage and to

place fixed data in areas of program memory.

6) Providing the information required to include standard programs from program li­

braries. or programs written at some other time. in the current program.

7) Allowing the user to control the format of the program listing and the input and

output devices employed.

All of these features. of course. involve additional cost and memo­

ry. Microcomputers generally have much simpler assemblers than

do larger computers. but the tendency always is for the size of as­

semblers to increase. You will often have a choice of assemblers.

CHOOSING
AN
ASSEMBLER

The important criterion 1s not how many offbeat features the assembler has. but rather

how convenient it is to work with in normal practice.

DISADVANTAGES OF ASSEMBLY LANGUAGE
The assembler. like the hexadecimal loader, does not solve all the problems of

programming. One problem is the tremendous gap between the microcomputer in­

struction set and the tasks which the microcomputer is to perform. Computer in­

structions tend to do things like add the contents of two registers. shift the contents of

the Accumulator one bit. or place a new value into the Program Counter. On the other

hand. a user generally wants a microcomputer to do something like check if an analog

reading has exceeded a threshold. look for and react to a particular command from a

teletypewriter. or activate a relay at the proper time. An assembly language program­

mer must translate such tasks into a sequence of simple computer 1nstruct1ons. The

translation can be a difficult. time-consuming Job.

Furthermore. if you are programming in assembly language. you must have detailed

knowledge of the particular microcomputer that you are using. You must know

what registers and 1nstruct1ons the microcomputer has. preciselv how the instructions

affect the venous registers. what addressing methods the computer uses. and a myriad

of other information. None of this information 1s relevant to the task which the

microcomputer must ultimately perform.

In addition. assembly language programs are not portable. I PORTABILITY I
Each microcomputer has its own assembly language. which
reflects its own architecture. An assembly language program written for the Z80 will

1-6

not run on the Motorola 6800. the Fairchild F8. or the National Semiconductor PACE.
For example. the addition program written for the Motorola 6800 would be:

LDAA $60
ADDA $61
STAA $62

The lack of portability not only means that you won't be able to use vour assembly
language program on another microcomputer. but 1t also means that vou won't be able
to use any programs that weren't specifically written for the microcomputer you are
using. This 1s a particular drawback for microcomputers. since these devices are new
and few assembly language programs exist for them. The result. too frequently. 1s that
you are on your own. If you need a program to perform a particular task. you are not
likely to find it in the small program libraries that most manufacturers provide. Nor are
you likely to find 1t in an archive. journal article. or someone's old program file. You will
probably have to write it yourself.

HIGH-LEVEL LANGUAGES
The solution to many of the difficulties associated with as­ I COMPILER I
sembly language programs is to use, instead, "high-level" or
"procedure-oriented" languages. Such languages allow you to describe tasks in
forms that are problem oriented rather than computer oriented. Each statement in
a high-level language performs a recognizable function; it will generally corres­
pond to many assembly language instructions. A program called a compiler transl­
ates the high-level language source program into object code or machine language
instructions.

Many different high-level languages exist for different types of
tasks. If. for example. vou can express what you want the com­

I FORTRAN I
puter to do 1n algebraic notation. vou can write your program 1n FORTRAN (Formula
Translation Language). the oldest and one of the most w1delv used of the high-level
languages. Now. if vou want to add two numbers. you iust tell the computer:

SUM= NUMB1+NUMB2

That 1s a lot simpler (and a lot shorter) than either the equivalent machine language pro­
gram or the equivalent assembly language program. Other high-level languages in­
clude COBOL (for business applications). PASCAL (another algebraic language). PL/1 (a
combination. of FORTRAN. ALGOL. and COBOL). and APL and BASIC (languages that
are popular for time-sharing systems).

ADVANTAGES OF HIGH-LEVEL LANGUAGES
Clearly, high-level languages make programs easier and faster to write. A common
estimate is that a programmer can write a program about ten times as fast in a
high-level language as compared to assembly language. That 1s iust writing the pro­
gram: it does not include problem definition. program design. debugging. testing. or
documentation. all of which become simpler and faster. The high-level language pro­
gram is. tor instance. partly self-documenting. Even if you do not know FORTRAN. vou
probably could tell what the statement illustrated above does.

High-level languages solve many other problems associ­
ated with assembly language programming. The high-level
language has its own syntax (usually defined by a national or
international standard). The language does not mention the in­
struction set. registers. or other features of a particular com­

MACHINE
INDEPENDENCE
OF HIGH-LEVEL
LANGUAGES

puter. The compiler takes care of all such details. Programmers can concentrate on their
own tasks: they do not need a detailed understanding of the underlying CPU architec­
ture -for that matter. thev do not need to know anything about the computer they are
programming.

1-7

Programs written in a high-level language are portable -
at least, in theory. They will run on any computer or
microcomputer that has a standard compiler for that language.

At the same time. all previous programs written in a high-level

PORTABILITY
OF HIGH-LEVEL
LANGUAGES

language for prior computers are available to you when programming a new computer.

This can mean thousands of programs in the case of a common language like FORTRAN

or BASIC.

DISADVANTAGES OF HIGH-LEVEL LANGUAGES
Well, if all the good things we have said about high-level languages are true, if you
can write programs faster and make them portable besides, why bother with as­
sembly languages? Who wants to worry about registers, instruction codes,

mnemonics, and all that garbage! As usual, there are disadvantages that balance
the advantages.

One obvious problem 1s that you have to learn the "rules" or
"syntax" of any high-level language you want to use. A h1gh­
level language has a fairly complicated set of rules. You will find
that it takes a lot of time 1ust to get a program that 1s syntactically

SYNTAX OF
HIGH-LEVEL
LANGUAGES

correct (and even then 1t probably will not do what you want). A high-level computer

language 1s like a foreign language. If you have a little talent. you will get used to the

rules and be able to turn out programs that the compiler will accept Still. learning the

rules and trying to get the program accepted by the compiler doesn't contribute

directly to doing your 1ob.

Here. for example. are some FORTRAN rules:

• Labels must be numbers placed 1n the first five card columns

• Statements must start in column seven

• Integer variables must start with the letters I. J. K. L. M. or N

Another obvious problem 1s that you need a compiler to transl­
ate programs written in a high-level language. Compilers are
expensive and use a large amount of memory. While most assem­

COST OF
COMPILERS

blers occupy 2K to 16K bytes of memory (1 K = 1024). compilers occupy 4K to 64K
bvtes. So the amount of overhead involved in using the compiler 1s rather large.

Furthermore. only some compilers will make the implementa­
tion of your task simpler. FORTRAN. for example. 1s well-suited
to problems that can be expressed as algebraic formulas. If.

ALGEBRAIC
NOTATION

however. your problem 1s controlling a printer. editing a string of characters. or monitor­

ing an alarm system. your problem cannot be easily expressed in algebraic notation. In

fact. formulating the solution in algebraic notation may be more awkward and more

difficult than formulating 1t in assembly language. One answer 1s to use a more suitable

high-level language. Some such languages exist. but they are far less widely used and

standardized than FORTRAN. You will not get many of the advantages of high-level

languages if you use these so-called system 1mplementat1on languages . ..,;.------
High - I eve I languages do not produce very efficient INEFFICIENCY
machine language programs. The basic reason for this 1s that OF HIGH-LEVEL
compilation 1s an automatic process which 1s riddled with com- LANGUAGES
promises to allow for many ranges of possibilities. The com-
piler works much like a computerized language translator - sometimes the words are

right but the sounds and sentence structures are awkward. A simple compiler cannot

know when a variable 1s no longer being used and can be discarded. or when a register

should be used rather than a memory location. or when variables have simple relat1on­

sh1ps. The experienced programmer can take advantage of shortcuts to shorten execu-

1-8

t1on time or reduce memory usage. A few compilers (known as opt1m1zing compilers)
can also do this. but such compilers are much larger and slower than regular compilers.

The general advantages and disadvantages of high-level languages are:

Advantages:

• More convenient descriptions of tasks
• More efficient program coding
• Easier documentation
• Standard syntax
• Independence of the structure of a particular computer
• Portability
• Availability of library and other programs

Disadvantages:

• S pec1al rules
• Extensive hardware and software support required
• Orientation of common languages to algebraic or business

problems

• Inefficient programs

ADVANTAGES
OF
HIGH-LEVEL
LANGUAGES

DISADVANTAGES
OF
HIGH-LEVEL
LANGUAGES

• Difficulty of optimizing code to meet time and memory requirements
• Inability to use special features of a computer conveniently

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS
Microprocessor users will encounter several special difficulties when using high­
level languages. Among these are:

• Few high-level languages exist for microprocessors
• No standard languages are widely available
• Few compilers actually run on microcomputers. Those that do often require very large

amounts of memory.
• Most microprocessor applications are not well-suited to high-level languages.
• Memory costs are often critical in microprocessor applications.

The lack of high-level languages is partly a result of the fact that microprocessors are
quite new and are the products of semiconductor manufacturers rather than computer
manufacturers.

Very few high-level languages·ex1st for microprocessors. The most common are the
PL/1 type languages (such as Intel's PL/M. Motorola's MPL. and Signet1cs· PLµS).
BASIC. and PASCAL.

Even the few high-level languages that exist do not conform to recognized standards.
so the microprocessor user cannot expect to gain much program portability, access to
program libraries, or use of previous experience or programs. The main advantages re­
maining are the reduction 1n programming effort and the smaller amount of detailed
understanding of the computer architecture that is necessary.

The overhead involved 1n using a high-level language with
microprocessors 1s considerable. Microprocessors themselves are
better suited to control and slow interactive applications than they
are to the character manipulation and language analysis involved
in compilation. Therefore. most compilers for microprocessors will

OVERHEAD
FOR
HIGH-LEVEL
LANGUAGES

not run on a microprocessor-based system. Instead. they require a much larger com­
puter. i.e .. they are cross-compilers rather than self-compilers. A user must nof only

1-9

bear the expense of the larger computer but must also physically transfer the program

from the larger computer to the micro.

A few self-compilers are available. These compilers run on the microcomputer for

which they produce obiect code. Unfortunately, they require large amounts of memory
(16K or more). plus special supporting hardware and software.

High-level languages also are not generally well-suited to
microprocessor applications. Most of the common languages
were devised either to help solve scientific problems or to han-
dle large-scale business data processing. Few microprocessor

UNSUITABILITY
OF HIGH-LEVEL
LANGUAGES

applications fall in either of these areas. Most microprocessor applications involve send­

ing data and control information to output devices and rece1v1ng data and status infor­

mation from input devices. Often the control and status information consists of a few
binary digits with very precise hardware-related mearnngs. If you try to write a typical

control program in a high-level language, you often feel like someone who is trving to

eat soup with chopsticks. For tasks in such areas as test equipment. terminals, nav1ga­

t1on systems, signal processing, and business equipment. the high-level languages

work much better than they do in instrumentation, commurncat1ons, peripherals, and

automotive applications.

Applications better suited to high-level languages are those which
require large memories. If. as in a valve controller. electrornc game,
appliance controller. or small instrument. the cost of a single
memory chip 1s important. then the inefficiency of high-level
languages 1s intolerable. If. on the other hand, as 1n a terminal or

APPLICATION
AREAS FOR
LANGUAGE
LEVELS

test equipment. the system has many thousands of bytes of memory anyway. the 1neffi­

c1encv of high-level languages 1s not as important. Clearly the size of the program and
the volume of the product are important factors as well. A large program will greatly in­

crease the advantages of high-level languages. On the other hand, a high-volume ap­

plication will mean that fixed software development costs are not as important as
memory costs that are part of each system.

WHICH LEVEL SHOULD YOU USE?
That depends on your particular application. Let us briefly note some of the factors
which may favor particular levels:

Machine Language:

• Virtually no one programs in machine language. Its use can­
not be justified considering the low cost of an assembler and
the increase in programming speed an assembler provides.

Assembly Language:

• Short to moderate sized programs

• Applications where memory cost is a factor

• Real-time control applications

• Limited data processing

• High-volume applications

• More input/output or control than computation

High-Level Languages:

• Long programs

• Low-volume applications requiring long programs

• Applications requiring large memories

1-10

APPLICATIONS
FOR MACHINE
LANGUAGE

APPLICATIONS
FOR ASSEMBLY
LANGUAGE

APPLICATIONS
FOR HIGH-LEVEL
LANGUAGE

· More computation than input/output or control
• Compatibility with similar applications using larger computers
• Availability of specific programs in a high-level language which can be used in

the application

Many other factors are also important. such as the availability of a larger computer for
use in development. experience with particular languages. and compatibility with other
applications.

If hardware will ultimately be the largest cost in your application. or if speed 1s critical
vou should favor assembly language. But be prepared to spend extra time in software
development in exchange for lower memory costs and higher execution speeds. If soft­
ware will be the largest cost 1n your application. vou should favor a high-level language.
But be prepared to spend the extra money required for the supporting hardware and
software.

Of course. no one except some theorists will object if vou use both assembly and h1gh­
level languages. You can write the program originally in a high-level language and then
patch some sections in assembly language. However. most users prefer not to do this
because of the havoc 1t creates 1n debugging. testing. and documentation.

HOW ABOUT THE FUTURE?
We expect that the future will tend to favor high-level languages for the following
reasons:

• Programs always seem to add extra features and grow larger
• Hardware and memory are becoming less expensive
• Software and programmers are becoming more expensive
• Memory chips are becoming available in larger sizes. at lower

"per bit" cost. so actual savings in chips are less likely
·More compilers are becoming available

FUTURE TRENDS
IN LANGUAGE
LEVELS

• More suitable and more efficient high-level languages are being developed
• More standardization of high-level languages will occur

Assembly language programming of microprocessors will not be a dying art any more
than it 1s now for large computers. But longer programs. cheaper memory, and more ex­
pensive programmers will make software costs a larger part of most applications. The
edge in many applications will therefore go to high-level languages.

WHY THIS BOOK?
If the future would seem to favor high-level languages, why have a book on as­
sembly language programming? The reasons are:

1) Most current microcomputer users program in assembly language (almost two­
th1rds. according to one recent survey).

2) Many microcomputer users will continue to program in assembly language since
they need the detailed control that 1t provides.

3) No suitable high-level language has vet become widely available or standardized.
4) Many applications require the efficiency of assembly language.
5) An understanding of assembly language can help in evaluating high-level

languages.

The rest of this book will deal exclusively with assemblers and assembly language pro­
gramming. However. we do want readers to know that assembly language is not the
only alternative. You should watch for new developments that may significantly reduce
programming costs if such costs are a major factor in vour application.

1-11

REFERENCES

Some overall comparisons of the time required to wnte various types of programs at

different language levels are m M.H. Halstead. Elements of Software Science. American

Elsevier. New York. 1977 and 1n V. Schneider. "Prediction of Software Effort and Proiect

Duration - Four New Formulas" SIGPLAN Notices. June 1978. pp. 49-55.

1-12

Chapter 2
ASSEMBLERS

This chapter discusses the functions performed by assemblers. beg1nn1ng with features
common to most assemblers. and proceeding through more elaborate capabilities such
as macros and conditional assembly. You may wish to skim this chapter for the present
and return to 1t when you feel more comfortable with the material.

FEATURES OF ASSEMBLERS

As we mentioned previously, today's assemblers do much more than translate as­
sembly language mnemonics into binary codes. But we will first describe how an
assembler handles the translation of mnemonics before describing additional as­
sembler features. Finally, we will explain how assemblers are used.

ASSEMBLER INSTRUCTIONS
Assembly language instructions (or "statements") are divided
into a number of fields, as shown in Table 2-1.

ASSEMBLY
LANGUAGE
FIELDS The operation code field is the only field which can never be

empty; it always contains either an instruction mnemonic or a
directive to the assembler, called a pseudo-instruction, pseudo-operation, or
pseudo-op.

The address field may contain an address or data, or it may be blank.

Table 2-1. The Fields of an Assembly Language Instruction

Operation Operand
Label Code or or

Comment Field Field Mnemonic Address
Field Field

START LD A.(VAL1) :LOAD FIRST NUMBER INTO A
LD B.A :SAVE IN B
LD A.(VAL2) :LOAD SECOND NUMBER INTO A
ADD A.B :ADD FIRST NUMBER TO A
LD (SUM).A :STORE SUM

NEXT ?) :NEXT INSTRUCTION

VALJ· DEFS 1
VAL2: DEFS 1
SUM: DEFS 1

The comment and label fields are optional. A programmer will assign a label to a
statement or add a comment as a personal convenience, e.g., to make the program
easier to code and read.

2-1

Of course, the assembler must have some way of telling

where one field ends and another begins. Assemblers that use
I FORMAT I

punched card input often require that each field start in a specific card column. This 1s

a fixed format. However. fixed formats may be inconvenient when the input medium 1s

paper tape; fixed formats are also a nuisance to programmers. The alternative is a free

format. where the fields may appear anvwhere on the line.

If the assembler cannot use the position in the line to tell the fields

apart. 1t must use something else. Most assemblers use a
I DELIMITERS I

special symbol or delimiter at the beginning or end of each field. The most obvious

delimiter 1s the space character. Commas. periods. semicolons. colons. slashes. ques­

tion marks and other characters that would not otherwise be used in assembly

language programs also may serve as delimiters. Table 2-2 lists standard Zilog ZSO as­

sembler delimiters.

Table 2-2. Standard ZSO Assembler Delimiters

after a label
'space' between operation code and address

between operands in the address field
before a comment

You will have to exercise a little care with delimiters. Some assemblers are fussy

about extra spaces or the appearance of delimiters in comments or labels. A well­

written assembler will handle these minor problems, but many assemblers are not

well-written. Our recommendation is simple: avoid potential problems if you can.

The following rules will help:

1 I Do not use extra spaces. particularly alter commas that separate operands.

21 Do not use delimiter characters in names or labels.

31 Include standard delimiters even if your assembler does not require them. Your pro­

grams will then be assembled by any assembler.

LABELS
The label field is the first field in an assembly language in­

struction: 1t may be blank. If a label 1s present. the assembler

assigns to the label the value of the address for the memory loca­

LABEL
FIELD

tion into which the first ob1ect program byte for that instruction 1s loaded. You may

subsequently use the label as data or as an address in another instruction·s operand

field. The assembler will replace the label with the assigned value when creating an ob-

1ect program.

Labels are most frequently used in Jump, Call or Branch in­

structions. These 1nstruct1ons place a new value in the Program

Counter and so alter the normal sequential execution of instruc­

tions. JUMP 15015 means "place the value 15015 into the Pro­

LABELS
IN JUMP
INSTRUCTIONS

gram Counter" The next instruction to be executed will be the one in memory location

15015. The 1nstruct1on JUMP START means "place the value assigned to .the label

START into the Program Counter" The next instruction to be executed will be the one

in the memory location to which the label START has been assigned. Table 2-3 contains

an example.

2-2

Table 2-3. Assigning and Using a Label

ASSEMBLY LANGUAGE PROGRAM

START LOAD ACCUMULATOR 100

• (MAIN PROGRAM)

JUMP START

When the machine language version of this program 1s executed. the instruction JUMP
START causes the address of the instruction labeled START to be placed into the Pro­
gram Counter. The instruction with the label START will be executed next.

Why use a label? Here are some reasons:

1) A label makes a program location easier to find and remember.
2) The label can be moved to change or correct a program. You do not have to change

any subsequent instructions that use the label; the assembler will make all the
necessary changes.

3) The assembler or loader can relocate the whole program by
adding a constant (a relocation constant) to each address in
which a label was used. Thus w~ove the program to

RELOCATION
CONSTANT

allow for the insertion of other programs or simply to rearrange memory.
4) The program is easier to use as a library program. i.e .. 1t 1s easier for someone else to

take your program and add it to some totally different program.
5) You do not have to figure out memory addresses. Figuring out memory addresses 1s

particularly difficult with microprocessors which have instructions that vary 1n
length.

It makes sense to assign a label to any instruction that you might want to use as a
destination or otherwise identify.

The next question is what label to use. The assembler often
places some restrictions on the number of characters (usually 5
or 6). the leading character (often must be a letter). and the trailing

CHOOSING
LABELS

characters (often must be letters. numbers. or one of a few special characters). Beyond
these restrictions. the choice is up to you.

Our own preference 1s to use labels that suggest their purpose, 1.e .. mnemonic labels.
Typical examples are ADDW in a routine that adds one word into a sum. SRETX in a
routine that searches for the ASCII character ETX. or NKEYS for a location in data
memory that contains the number of key entries. Meaningful labels are easier to
remember and contribute to program documentation. Some programmers prefer to use
a standard format for labels. such as starting with LOOOO. These labels are self-sequenc­
ing {you can skip a few numbers to permit insertions). but they do not help document
the program.

Some label selection rules will keep you out of trouble. We
recommend the following:

1) Do not use labels that are the same as operation codes or

RULES OF
LABELING

other mnemonics. Most assemblers will not allow this usage; others will. but 1t 1s
very confusing.

2-3

2) Do not use labels that are longer than the assembler permits. Assemblers have

various truncation rules.

3) Avoid special characters (non-alphabetic and non-nu mend and lower-case letters.

Some assemblers will not permit them: others allow only certain ones. The simplest

practice 1s to stick to capital letters and numbers.

4) Start each label with a letter. Such labels are always acceptable.

5) Do not use labels that could be confused with each other. Avoid the letters I. 0 and

Zand the numbers 0. 1 and 2. Also avoid things like XXXX and XXXXX. There's no

sense tempting fate and Murphy's laws.

6) When you are not sure if a label 1s legal. do not use 1t. You will not get any real

benefit from discovering exactly what the assembler will accept.

These are recommendations. not rules. You do not have to follow them. but don't blame

us if you waste time on silly problems.

ASSEMBLER OPERATION CODES (MNEMONICS)
The main task of the assembler is the translation of mnemonic operation codes

into their binary equivalents. The assembler performs this task using a fixed table

much as you would if you were doing the assembly by hand.

The assembler must. however. do more than 1ust translate the operation codes. It must

also somehow determine how many operands the instruction requires and what

type they are. This may be rather complex -some 1nstruct1ons (like a Halt) have no

operands. others {like an Addition or a Jump 1nstruct1on) have one. while still others

(like a transfer between registers or a multiple-bit shift) require two. Some 1nstruct1ons

may even allow alternatives. e.g .. some computers have 1nstruct1ons (like Shift or Clear)

that can apply either to the Accumulator or to a memory location. We will not discuss

how the assembler makes these distinctions: we will 1ust note that 1t must do so.

PSEUDO-OPERATIONS
Some a,ssembly language instructions are not directly transl­
ated into machine language instructions. These instructions
are directives to the assembler; they assign the program to cer­

tain areas 1n memory, define symbols. designate areas of RAM for

temporary data storage. place tables or other fixed data in memo­

ry, allow references to other programs. and perform minor house-

keeping fu nct1ons.

PSEUDO­
OPERATIONS

ASSEMBLER
DIRECTIVE

To use these assembler directives. or pseudo-operations. a programmer places the

pseudo-operation's mnemonic in the operation code field and. if the specified pseudo­

operat1on requires 1t. an address or data in the address field.

The most common pseudo-operations are:

Linking pseudo-operations are:

DATA
EQUATE or DEFINE
ORIGIN
RESERVE

ENTRY
EXTERNAL

2-4

Different assemblers use different names for these operations. but the purposes are the
same. Housekeeping pseudo-operations include:

END
LIST
NAME
PAGE
SPACE
TITLE

We will discuss these pseudo-operations briefly. although their functions are usually
obvious.

THE DAT A PSEUDO-OPERATION
The DATA pseudo-operation allows the programmer to enter fixed data into
memory. This data may include:

• Lookup tables
• Code conversion tables
·Messages
• Synchronization patterns
• Thresholds
·Names
• C oeffic1ents for equations
·Commands
• Conversion factors
• Weighting factors
• Charactenst1c times or frequencies
• Subroutine addresses
• Key 1dentificat1ons
• Test patterns
• Character generation patterns
• Identification patterns
•Tax tables
• Standard forms
• Masking patterns
• State trans1t1on tables

The DATA pseudo-operation treats the data as a permanent part of the program.

The format of a DATA pseudo-operation is usually quite simple. An instruction
like:

DZCON DATA 12

will place the number 12 in the next available memory location and assign that
location the name DZCON. Usually every DATA pseudo-operation has a label. unless 1t
1s one of a series of DATA pseudo-operations. The data and label may take any form
that the assembler permits.

Most assemblers allow more elaborate DATA instructions that handle a large amount of
data at one time. e.g ..

EMESS
SORS

DATA
DATA

2-5

'ERROR'
1,4,9.16.25

A single 1nstruct1on may fill many words of program memory. limited only by the length

of a line. Note that if you cannot get all the data on one line. you can always follow one

DATA instruction with another. e.g ..

MESSG DATA
DATA
DATA
DATA
DATA
DATA

'NOW IS THE.
'TIME FOR ALL .
'GOOD MEN.
'TO COME TO THE .
'AID OF THEIR .
'COUNTRY'

Microprocessor assemblers typically have some variations of standard DATA

pseudo-operations. DEFINE BYTE or FORM CONSTANT BYTE handles 8-b1t numbers;

DEFINE WORD or FORM CONSTANT WORD handles 16-bit numbers or addresses.

Other special pseudo-operations may handle character-coded data.

THE EQUATE (or DEFINE) PSEUDO-OPERATION
The EQUATE pseudo-operation allows the programmer to
equate labels and names with addresses or data. This pseudo­
operation is almost always given the mnemonic EQU. The

DEFINING
NAMES

names may refer to device addresses. numeric data. starting addresses. fixed ad­

dresses. etc.

The EQUATE pseudo-operation assigns the numeric value in its operand field to

the label in its label field. Here are two examples:

TTY EOU 5
LAST EOU 5000

Most assemblers will allow you to define one label in terms of another. e.g ..

LAST
STl

EOU
EOU

FINAL
START+1

The label 1n the operand field must. of course. have been previously defined. Often. the

operand field may contain more complex expressions. as we shall see later. Double

name assignments (two names for the same data or address) may be useful in patching

together programs which use different names for the same variable (or different spell­

ings of what was supposed to be the same name).

Note that an EQU pseudo-operation does not cause the as­
sembler to place anything into memory. The assembler simply
enters an additional name into a table (called a symbol table)

SYMBOL
TABLE

which the assembler maintains. This table. unlike the mnemonic table. must be in

RAM since 1t vanes with each program. The assembler program will always need some

RAM to hold the symbol table; the more RAM it has. the more symbols it can accept.

This RAM is in addition to any which the assembler needs as temporary storage.

When do you use a name? The answer 1s: whenever you have a

parameter that has some meaning besides its ordinary numeric

value. or the numeric value of the parameter might be changed.

USE OF
NAMES

We typically assign names to time constants. device addresses. masking patterns. con­

version factors. and the like. A name like DELAY. TTY. KBD. NROW. or OPEN not only

makes the parameter easier to change. but 1t also adds to program documentation. We

also assign names to memory locations that have special purposes; they may hold data.

mark the start of the program. or be available for intermediate storage.

What name do you use? The best rules are much the same as
in the case of labels, except that here meaningful names really

count. Why not call the teletypewriter TTY instead of X15. a bit

time delay BTIME or BTDL Y rather than WW. the number of the

2-6

CHOICE
OF
NAMES

"GO" key on a kevboard GOKEY rather than HORSE? This advice seems straightfor­
ward. but a surprising number of programmers do not follow 1t.

Where do you place the EQUATE pseudo-operations? The
best place is at the start of the program, under appropriate
comment headings such as 1/0 ADDRESSES. TEMPORARY
STORAGE. TIME CONSTANTS. or PROGRAM LOCATIONS. This

PLACEMENT
OF
DEFINITIONS

makes the definitions easy to find if you want to change them. Furthermore. another
user will be able to look up all the definitions in one centralized place. Clearly this prac­
tice improves documentation and makes the program easier to use.

Defin1t1ons used only in a specific subroutine should appear at the start of the
subroutine.

THE ORIGIN PSEUDO-OPERATION
The ORIGIN pseudo-operation (almost always abbreviated ORGI allows the pro­
grammer to locate programs, subroutines, or data anywhere in memory. Programs
and data may be located in different areas of memorv depending on the memory con­
figuration. Startup routines. interrupt service routines. and other required programs
mav be scattered around memory at fixed or convenient addresses.
The assembler maintains a Location Counter (comparable to
the computer's Program Counter) which contains the location
in memory at which the next byte of object code generated by

LOCATION
COUNTER

the assembler will reside when the program is loaded. An ORG pseudo-operation
causes the assembler to place a new value into the Location Counter. much as a Jump
instruction causes the CPU to place a new value into the Program Counter. The output
from the assembler must not only contain 1nstruct1ons and data. but must also indicate
to the loader program where in memory 1t should place the instructions and data.
Microprocessor programs often contain several ORIGIN statements for the following
purposes:

Main program
Subroutines

Reset (startup) address
Interrupt service addresses
Trap addresses
RAM storage
Memory stack

Memory addresses for
input/output devices
or special functions

Still other ORIGIN statements mav allow room for later insertions. place tables or data in
memorv. or assign vacant RAM space for data buffers. Program and data memory in
microcomputers may occupy widely scattered addresses to simplify the hardware.
Typical ORIGIN statements are:

ORG RESET
ORG 1000
ORG INT3

Some assemblers assume an origin of zero if the programmer does not put an ORG
statement at the start of the program. The convenience 1s slight: we recommend the in­
clusion of an ORG statement to avoid confusion.

THE RESERVE PSEUDO-OPERATION
The RESERVE pseudo-operation allows the programmer to
allocate RAM for various purposes such as data tables, tem­
porary storage, indirect addresses, a Stack, etc.

2-7

ALLOCATING
RAM

Using the RESERVE pseudo-operation, you assign a name to the memory area and

declare the number of locations to be assigned. Here are some examples:

NO KEY
TEMP
VOLTG
BUFR

RESERVE
RESERVE
RESERVE
RESERVE

1
50
80
100

You can use the RESERVE pseudo-operation to reserve memory locations in program

memory or in data memory: however the nature of the RESERVE pseudo-operation 1s

more meaningful when applied to data memory.

In reality, all the RESERVE pseudo-operation does 1s increase the assembler· s Location

Counter bv the amount declared 1n the operand field. The assembler does not actually

produce anv ob1ect code.

Note the following features of RESERVE:

11 The label of the RESERVE pseudo-operation 1s assigned the value of the first ad­

dress reserved. For example, the sequence:

BUF1
BUF2
VOLTS

ORG
RESERVE
RESERVE
RESERVE

3000
100
50
5

assigns to the label BUF1 the value 3000, to BUF2 3100, and to VOLTS 3150.

2) You must specify the number of locations to be reserved. There 1s no default case.

31 No data 1s placed into the reserved locations. Any data that by chance, may be in

these locations will be left there.

Some assemblers allow the programmer to place initial
values in RAM. We strongly recommend that you do not
use this feature - 1t assumes that the program (along with

INITIALIZING
RAM

the 1nit1al values) will be loaded from an external device (e.g .. paper tape or floppy disk)

each time 1t 1s run. Most microprocessor programs, on the other hand, reside 1n non­

volatile ROM and start when power comes on. The RAM in such situations does not re­

tain its contents, nor 1s 1t reloaded. Always include instructions to initialize the RAM in

your program.

LINKING PSEUDO-OPERATIONS

We often want statements in one program or subroutine to

use names that are defined elsewhere. Such names are called

external references; a special linker program 1s necessary to ac-

EXTERNAL
REFERENCES

tually fill in the external values and determine if any names are undefined or doubly

defined.

The pseudo-operation EXTERNAL, usually abbreviated EXT, signifies that the

name is defined elsewhere.

The pseudo-operation ENTRY, usually abbreviated ENT, signifies that the name is

available for use elsewhere, 1.e .. 1t 1s defined in this program.

The precise way in which linking pseudo-operations are implemented vanes greatly

from assembler to assembler. We will not refer to such pseudo-operations again, but

they are very useful in actual applications.

HOUSEKEEPING PSEUDO-OPERATIONS

There are various housekeeping pseudo-operations, which affect the operation of

2-8

the assembler and its program listing rather than the output program itself. Com­
mon housekeeping pseudo-operations include:

1) END. which marks the end of the assembly language source program.
2) LIST. which tells the assembler to print the source program. Some assemblers allow

such variations as NO LIST or LIST SYMBOL TABLE to avoid long. repet1t1ve list­
ings.

3) NAME or TITLE. which prints a name at the top of each page of the listing.
4) P.AGE or SPACE. which skips to the next page or next line. respectively, and im­

proves the appearance of the listing. making 1t easier to read.
5) PUNCH. which transfers subsequent obiect code to the paper tape punch. This

pseudo-operation may 1n some cases be the default option and therefore unnecess­
ary.

LABELS WITH PSEUDO-OPERATIONS
Users often wonder if or when they can assign a label to a pseudo-operation.
These are our recommendations:

1) All EQUATE pseudo-operations must have labels; they do not make any sense
otherwise. since their purpose 1s to define the meaning of the labels.

2) DATA and RESERVE pseudo-operations usually have labels. The label identifies the
first memory location used or assigned.

3) Other pseudo-operations should not have labels. Some assemblers allow other
pseudo-operations to have labels. but the meaning of the labels vanes. We recom­
mend that you avoid this practice.

ADDRESSES AND THE OPERAND FIELD

Most assemblers allow the programmer a lot of freedom in describing the con­
tents of the Operand Address field. But remember, the assembler has built-in
names for registers and instructions and may have other built-in ,.n_am_e_s_. __ _
Some common options for the operand field are:
1 I Decimal numbers

Most assemblers assume all numbers to be decimal unless they
are marked otherwise. So:

ADD 100

DECIMAL
DATA OR
ADDRESSES

means "add the contents of memory location 100 decimal to the contents of the Ac­
cumulator"

2) Other number systems

Most assemblers will also accept binary. octal. or hexadecimal en­
tries. But you must identify these number systems in some way.
e.g .. by preceding or following the number with an identifying
character or letter. Here are some common identifiers:

B or % for binary

OTHER
NUMBER
SYSTEMS

0. 0. C or@ for octal (we avoid 0 because of the confusion with zero).
H or $ for hexadecimal
D for decimal. D may be omitted: 1t 1s the default case.

2-9

Assemblers generally require hexadecimal numbers to start with a decimal digit (e.g ..

0A36 instead of A36) 1n order to distinguish between numbers and names or labels. It is

good practice to enter numbers in the base in which their meaning is the clearest -

1.e .. decimal constants in decimal; addresses and BCD numbers in hexadecimal; mask­

ing patterns or bit outputs in b1narv if they are short and in hexadecimal if they are long.

3) Symbolic names

Names can appear in the operand field; they will be treated as the data that they repre­

sent. But remember. there is a difference between data and addresses. The se­

quence:

FIVE EQU
ADD

5
FIVE

will add the contents of memory location 5 (not necessarily the number 5) to the con­

tents of the Accumulator.

41 The current value of the location counter (usually referred to as • or$).

This 1s usefu I mainly in Jump instructions; for example:

JUMP $+6

causes a Jump to the memorv location six words beyond the word that contains the

first byte of the JUMP instruction:

Memorv

----} JUMP $ + 6 code stored here

6 jocat1ons

Jump here

Most microprocessors have many two and three-word instructions. Thus. you will have

difficulty determining exactly how far apart two assembly language statements are.

Therefore. using offsets from the Location Counter frequently results in errors that you

can avoid if you use labels.

51 Character codes

Most assemblers allow text to be entered as ASCII strings. Such

strings may be surrounded either with single or double quotation

marks; strings may also use a beginning or ending symbol such as

A or C. A few assemblers also permit EBCDIC strings.

ASCII
CHARACTERS

We recommend that you use character strings for all text. It improves the clarity and

readabilitv of the program.

6) Combinations of 1 I through 5) with arithmetic, logical, or special operators.

Almost all assemblers allow simple arithmetic combinations such

as START+1. Some assemblers also permit multiplication. divi­

sion. logical functions. shifts. etc. These are referred to as expres­

sions. Note that the assembler evaluates expressions at assembly

ARITHMETIC
AND LOGICAL
EXPRESSIONS

time. Even though an expression in the operand field may involve mult1plicat1on. you

2-10

may not be able to use mult1plicat1on in the logic of your own program - unless you
write a subroutine for that specific purpose.

Assemblers varv in what expressions they accept and how they interpret them. Com­
plex expressions make a program difficult to read and understand.

We have made some recommendations during this section but will repeat them and
add others here. In general. the user should emphasize clarity and simplicity. There
1s no payoff for being an expert in the intricacies of assemblers or in having the most
complex expression on the block. We suggest the following approach:

1) Use the clearest number system or character code for data. Masks and BCD num­
bers 1n decimal. ASCII characters in octal. or ordinary numerical constants in hex­
adecimal serve no purpose and therefore should not be used.

2) Remember to distinguish data and addresses.
3) Don't use offsets from the Location Counter.
4) Keep expressions simple and obvious. Don't rely on obscure features of the assem­

bler.

CONDITIONAL ASSEMBLY

Some assemblers allow you to include or exclude parts of the source program. de­
pending on conditions existing at assembly time. This is called conditional assem­
bly; 1t gives the assembler some of the flexibility of a compiler. Most microcomputer
assemblers have limited capabilities for conditional assembly. A usual form is:

IF COND

.CONDITIONAL PROGRAM

ENDIF

If the expression COND 1s true at assembly time. the instructions between IF and ENDIF
(two pseudo-operations) are included in the program.

Typical uses of condit_ional assembly are:

1) To include or exclude extra variables.
2) To place diagnostics or special conditions 1n test runs.
3) To allow data of various bit lengths.
4) To create specialized versions of a common program.

Unfortunately, conditional assembly tends to clutter programs and make them difficult
to read. Use conditional assembly only if 1t 1s necessary.

MACROS

You will often find that particular sequences of 1nstruct1ons oc­
cur many times in a source program. Repeated 1nstruct1on se­
quences may reflect the needs of your program logic. or they
mav be compensating for deficiencies in your microprocessor's

DEFINING A
SEQUENCE OF
INSTRUCTIONS

instruction set. You can avoid repeatedly writing out the same instruction sequence by
using a macro.

Macros allow you to assign a name to an instruction sequence. You then use the
macro name in your source program instead of the repeated instruction sequence.

2-11

The assembler will replace the macro name with the.appropriate sequence of in­

structions. This may be illustrated as follows:

Source Program Ob1ect Program

MAC1 MACRO (macro definition!

mstruct1on M 1 } mstructton M2

mstruct1on M3

ENOM (end of macro definit1onl

mstruction P 1 (ma•n program) }

mstructmn P2

mstruct1on P3
{ instruction P1

mstruct1on P2

mstruct1on P3

1nstruct1on M 1

MAC1 mstruct1on M2

I mstruct1on M3

mstruct1on P4

} mstructmn P5

mstruct1on P6

mstructton P7

{ mstruct1on P4

mstruct1on PS

mstruct1on P6

mstruct1on P7

MAC1 {
mstruct1on M 1

mstructton M2

mstruct1on M3

mstructmn PB

mstruct1on P9
{ mstruct1on PS

mstruct1on P9

MAC1 {
mstructton M 1

mstruct1on M2

1nstruct1on M3

mstructmn PlO }

mstruction P 11
{ mstruct1on PlO

mstructton Pl l

• • .. •
• •

Macros are not the same as subroutines. A subroutine occurs once 1n a program. and

program execution branches to the subroutine. A macro is expanded to an actual in­

struction sequence each time the macro occurs; thus a macro does not cause any

branching.

Macros have the following advantages:

Shorter source programs.

Better program documentation.

ADVANTAGES
OF MACROS

1)

2l
3)

4)

Use of debugged 1nstruct1on sequences - once the macro has been debugged.

you are sure of an error-free instruction sequence every time you use the macro.

Easier changes. Change the macro definition and the assembler makes the change

for you every time the macro 1s used.

5) lnclus1on of commands. keywords. or other computer instructions in the basic 1n­

struct1on set. You use the macro as an extension of your instruction set.

The disadvantages of macros are:

1) Repet1t1on of the same instruction sequences since the

macro 1s expanded every time 1t 1s used.

2-12

DISADVANTAGES

OF MACROS

2) A single macro may create a lot of instructions.
3) Lack of standardization that may make the program difficult to read and unders­

tand.

4) Possible effects on registers and flags that may not be clearly stated.

One problem 1s that variables used in a macro are known only
within it (i.e .. they are local rather than global). This can often
create a great deal of confusion without any gain in return. You
should be aware of this problem when using macros.

COMMENTS

------LOCAL OR
GLOBAL
VARIABLES

All assemblers allow you to place comments in a source program. Comments have
no effect on the object code. but they help you to read, understand, and document
the program. Good commenting is an essential part of writing assembly language
programs; without comments, programs are very difficult to understand.

We will discuss commenting along with documentation in a
later chapter, but here are some guidelines:

COMMENTING
TECHNIQUES

1) Use comments to tell what the program 1s doing. not what instructions do.
Comments should say things like "IS TEMPERATURE ABOVE LIMIT?", "LINE FEED
TO TTY". or "EXAMINE LOAD SWITCH"
Comments should not say things like "ADD 1 TO ACCUMULATOR" "JUMP TO
START". or "LOOK AT CARRY" You should describe how the program 1s affecting
the system: internal effects on the CPU are seldom of any interest.

2) Keep comments brief and to the point. Details should be available elsewhere in the
documentation.

3) Comment all key points.

4) Do not comment standard instructions or sequences that change counters and
pointers: pay special attention to instructions that may not have an obvious mean­
ing.

5) Do not use obscure abbreviations.

6) Make the comments neat and readable.

7) Comment all definitions. describing their purposes. Also mark all tables and data
storage areas.

8) Comment sections of the program as well as individual instructions.

9) Be consistent in your terminology. You can (should) be repet1t1ve: you do not need
to consult a thesaurus.

10) Leave yourself notes at points which you find confusing. e.g .. "REMEMBER CAR­
RY WAS SET BY LAST INSTRUCTION" You may drop these in the final documen­
tation.

A well-commented program 1s easy to work with. You will recover the time spent 1n
commenting many times over. We will try to show good commenting style in the pro­
gramming examples. although we often over-comment for instructional purposes.

2-13

TYPES Of ASSEMBLERS

Although all assemblers perform the same tasks, their implementations vary

greatly. We will not try to describe all the existing types of assemblers; we will

merely define the terms and indicate some of the choices.

A cross-assembler is an assembler that runs on a computer

other than the one for which it assembles object programs.

The computer on which the cross-assembler runs 1s typically a

CROSS­
ASSEMBLER

large computer with extensive software support and fast peripherals - such as an IBM

360 or 370. a Univac 1108. or a Burroughs 6700. The computer for which the cross-as­

sembler assembles programs 1s typically a microcomputer like the ZBO or MC6800.

Most cross-assemblers are written in FORTRAN so that they are porta,.b_le_. ____ ..

A self-assembler or resident assembler 1s an assembler that runs

on the computer for which 1t assembles programs. The self-assem­

bler will require some memorv and peripherals. and it may run

quite slowly.

A macroassembler is an assembler that allows you to define

sequences of instructions as macros.

A microassembler is an assembler used to write the

microprograms that define the instruction set of a computer.

Microprogramming has nothing specifically to do with

microcomputers.

A meta-assembler is an assembler that can handle many

different instruction sets. The user must define the particular in­

struction set being used.

A one-pass assembler is an assembler that goes through the

assembly language program only once. Such an assembler must

have some way of resolving forward references. e.g .. Jump in­

RESIDENT
ASSEMBLER

MACRO­
ASSEMBLER

MICRO­
ASSEMBLER

META­
ASSEMBLER

ONE-PASS
ASSEMBLER

structions which use labels that appear later in the source program. 1.e .. that have not

yet been defined.

A two-pass assembler is an assembler that goes through the

assembly language source program twice. The first time the

assembler simply collects and defines all the symbols; the

TWO-PASS
ASSEMBLER

second time it replaces the references with the actual definitions. A two-pass as­

sembler solves most of the forward reference problems. However, macro expan­

sion and conditional assembly can cause problems. On some large machines seven

or more passes are needed to insure that all forward references are resolvable. A

two-pass assembler may be quite slow if no backup storage !like a floppy disk) is

available; then the assembler must physically read the program twice from a slow

input medium (like a teletypewriter paper tape reader). Most microprocessor­

based assemblers require two passes.

ERRORS

Assemblers normally provide error messages, often consisting of a single coded

letter. Some typical errors are:

1) Undefined name (often a misspelling or an omitted defin1t1on).

2) Illegal character (e.g .. a 2 in a binary numbed.

2-14

3) Illegal format (wrong delimiter or incorrect operands).
4) Invalid expression (e.g .. two operators in a row).
5) Illegal value (usually too large).
6) Missing operand.
?) Double definition (i.e .. two different values assigned to one name!.
8) Illegal label (e.g .. a label on a pseudo-operation that cannot have one).
9) Missing label.

10) Undefined operation code.

In interpreting assembler errors. you must remember that the assembler may get off on
the wrong track if 1t finds a stray letter. an extra space. or incorrect punctuation. Many
assemblers will then proceed to misinterpret the succeeding 1nstruct1ons and produce
meaningless error messages. Always look at the first error very carefully; subsequent
ones may depend on it. Caution and consistent adherence to standard formats will
eliminate many annoying mistakes.

LOADERS

The loader 1s the program which actually takes the output (ob1ect code) from the as­
sembler and places it in memory. Loaders range from the very simple to the very com­
plex. We will describe a few different types.

A bootstrap loader is a program that uses its own first few in­
structions to load the rest of itself or another loader program
into memory. The bootstrap loader may be 1n ROM. or you may

BOOTSTRAP
LOADER

have to enter it into the computer memory using front panel switches. The assembler
may place a bootstrap loader at the start of the ob1ect program that 1t produces.

A relocating loader can load programs anywhere in memory. It RELOCATING
typically loads each program into the memory space immediately LOADER
following that used by the previous program. The programs.
however. must themselves be capable of being moved around in this way. 1.e .. they
must be relocatable. An absolute loader. in contrast. will always place the programs in
the same area of memory.

A linking loader loads programs and subroutines that have
been separately assembled; it resolves external references -
that is. an instruction 1n one module that refers to a label 1n

LINKING
LOADERS

another module. Obiect programs loaded by a linking loader must be created by an as­
sembler that permits and marks external references.

An alternative approach 1s to separate the linking and loading
functions and have the linking performed bv a program called a
link editor.

2-15

LINK
EDITOR

REFERENCES

A complete monograph on macros 1s M. Campbell-Kelly, An Introduction to Macros.

American Elsevier. New York. 1973.

Microprogramming 1s described conceptually in An Introduction to Microcom­

puters: Volume 1 - Basic Concepts. Chapter 4. A more technical description 1s in A.K.

Agrawala and T.G. Rauscher. Foundations of Microprogramming. Academic Press. New

York. 1976.

You can find more detailed descriptions of assemblers and loaders 1n D.W. Barron. "As­

semblers and Loaders". American Elsevier. New York. 1972 and m C.W. Gear. Com­

puter Organization and Programming. McGraw-Hill. New York. 1974.

2-16

Chapter 3
THE ZSO ASSEMBLY LANGUAGE

INSTRUCTION SET

We are now ready to start writing assembly language programs. We begin in this
chapter by defining the individual instructions of the ZSO assembly language in­
struction set, plus the syntax rules of the Zilog assembler.

We do not discuss any aspects of microcomputer hardware, signals. interfaces. or
CPU architecture in this book. This information 1s described in detail in An Introduction
to Microcomputers: Volume 2-Some Real Microprocessors and Volume 3-Some
Real Support Devices. while Z80 Programming for Logic Design discusses assembly
language as an extension of digital logic. Jn this book. we look at programming tech­
niques from the assembly language programmer's viewpoint, where pins and sig­
nals are irrelevant and there are no important differences between a minicom­
puter and a microcomputer.

Interrupts. direct memory access. and the Stack architecture for the Z80 will be de­
scribed in later chapters of this book. in con1unct1on with assembly language program­
ming discussions of the same subiects.

This chapter contains a detailed definition of each assemblv language instruction.
These defin1t1ons are 1dent1cal to those found in Chapter 6 of Z80 Programming for
Logic Design.

The detailed description of individual instructions 1s preceded bv a general discussion
of the Z80 1nstruct1on set that divides instructions into those which are commonly
used. infrequentlv used. and rarely used. If you are an experienced assembly language
programmer. this categorization 1s not particularly important - and. depending on your
own programming preiudices. 1t may not even be accurate. If you are a novice assembly
language programmer. we recommend that you begin by writing programs using only
instructions in the "commonly used" category. Once you have mastered the concepts
of assembly language programming. you may examine other instructions and use them
where appropriate.

3-1

CPU REGISTERS AND STATUS FLAGS
The CPU registers and status flags for the ZSO may be illustrated as follows:

Secondarv {
Accumulators

Alternate {
Secondarv

Accumulators .

B

D

H

B'

D'

H'

.. '
s I z I

s· 1 z· I

SP

PC

IX

IY

~

~

I '' , ,f
IAcl 1%1Nlc

A

c

E

L

!Ad 1%·1 N' I C'

A'

c·
E'

L'

I

R

Sign

Zero
Auxiliary Carrv

Pantv I Overflow

Subtract

Carry

Flags

Accumulator

} Secondarv Data Counters

Primary Data Counter

Alternate Flags

Alternate Accumulator

}

Alternate Secondarv
Data Counters

Alternate Prtmarv Data Counter

Stack Pointer

Program Counter

Index Register

Index Register

Interrupt Vector Register

Refresh Register

The Accumulator is the primary source and destination for one-operand and two­
operand instructions. For example. the shortest and fastest data transfers between the
CPU and 1/0 devices are performed through the Accumulator. In addition. more Memo­
ry Reference instructions move data between the Accumulator and memory than bet­
ween any other register and memory. All 8-b1t arithmetic and Boolean instructions take
one of the operands from the Accumulator and return the result to the Accumulator. An
instruction must therefore load the Accumulator before the ZSO can perform any 8-
bit arithmetic or Boolean operations.

The B, C. D, E, H, and L registers are all secondary registers. Data stored in any of
these six registers may be accessed with equal ease; such data can be moved to any
other register or can be used as the second operand in two-operand instructions.

There are. however. some important differences in the functions of Registers B. C. D. E.
H. and L.

Registers H and L are the primary Data Pointer for the ZSO. That 1s to say. you will
normally use these two registers to hold the 16-bit memorv address of data being ac­
cessed. Data may be transferred between any registers and the memory location ad­
dressed by H and L. Since HL 1s the primary Data Pointer. 1t often takes fewer bytes of
ob1ect code and less instruction cycles to perform operations with 1t. The Z80 program­
mer should trv to address data memory via Registers H and L whenever possible.

Within your program logic, always reserve Registers H and L to hold a data memo­
ry address.

3-2

Registers B, C, D, and E provide secondary data storage; frequentlv. the second
operand for two-operand instructions is stored in one of these four registers. (The first
operand is stored in the Accumulator. which is also the destination for the result.)

There are a limited number of instructions that treat Registers B and C, or D and E,
as 16-bit Data Pointers. But these instructions move data between memorv and the
Accumulator only.

In your program logic you should normally use Registers B, C, D, and E as tempor­
ary storage for data or addresses.

Registers IX and IY are index registers. Thev provide a limited indexing capability of
the type described in An Introduction to Microcomputers: Volume 1 for short instruc­
tions.

The alternate registers F', A', B', C'. 0', E', H', and L' provide a duplicate set of
general purpose registers. Just two single-byte Exchange instructions select and
deselect all alternate registers; one instruction exchanges AF and the alternate AF'
as a register pair. and one instruction exchanges BC. DE. and HL with the alternate BC'.
DE'. and HL' Once selected. all subsequent register operations are performed on the ac­
tive set until the next exchange selects the inactive set. The alternate registers can be
reserved for use when a fast interrupt response is required. Or. they may be used in
any desired way by the programmer.

There are a number of instructions that handle 16 bits of data at a time. These in­
structions refer to pairs of CPU registers as follows:

F and A
B and c
D and E
H and L
F' and A'
B' and C'
D' and E'
H' and L' ._,,_., ._,,_.,

High- Low-
order order
byte byte

The combination of the Accumulator and flags. treated as a 16-bit unit. 1s used onlv for
Stack operations and alternate register switches. Arithmetic operations access B and C.
D and E. or H and L as 16-bit data units.

The Carry status flag holds carries out of the most significant bit in any arithmetic
operation. The Carrv flag 1s also included in Shift instructions: 1t 1s reset by Boolean in­
structions.

The Subtract flag is designed for internal use during decimal adjust operations. This
flag is set to 1 for all Subtract instructions and reset to 0 for all Add instructions.

The Parity/Overflow flag is a multiple use flag, depending on the operation being
performed. For arithmetic operations, it is an overflow flag. For input, rotate, and
Boolean operations, it is a parity flag, with 1 =even parity and 0 =odd parity. Dur­
ing block transfer and search operations. 1t remains set until the bvte counter decre­
ments to zero: then 1t 1s reset to zero. It 1s also set to the current state of the interrupt
enable flip-flop (IFF2) when a LD A.I or LD A,R instruction 1s executed.

The Zero flag is set to 1 when any arithmetic or Boolean operation generates a
zero result. The Zero status is set to 0 when such an operation generates a non­
zero result.

3-3

The Sign status flag acquires the value of the most significant bit of the result
following the execution of any arithmetic or Boolean instruction.

The Auxiliary Carry status flag holds any carry from bit 3 to 4 resulting from the
execution of an arithmetic instruction. The purpose of this status flag 1s to simplify
Binary-Coded-Decimal (BCD) operations; this 1s the standard use of an Auxiliary Carry
status flag as described in An Introduction to Microcomputers: Volume 1. Chapter 3.

All of the above status flags keep their current value until an instruction that modifies
them 1s executed. Merely changing the value of the Accumulator will not necessarily
change the value of the status flags. For example. if the Zero flag 1s set and a load im­
mediate to the Accumulator is executed. that causes the Accumulator to acquire a non­
zero value; the value of the Zero flag remains unchanged.

The 16-bit Stack Pointer allows you to implement a Stack anywhere in addressa­
ble memory. The size of the Stack 1s limited only by the amount of addressable memory
present. In reality you will rarely use more than 256 bytes of memory for your Stack.
You should use the Stack for accessing subroutines and processing interrupts. Do not
use the Stack to pass parameters to subroutines. This 1s not very efficient within the
lim1tat1ons of the ZSO instruction set. The ZSO Stack 1s started at its highest address. A
Push decrements the Stack Pointer contents; a Pop increments the Stack Pointer con­
tents.

The Interrupt Vector register and the Refresh register are special-purpose
registers not normally used by the programmer.

The Interrupt Vector register 1s used to store the page address of an interrupt response
routine; the location on the page 1s provided by the interrupting device. This scheme
allows the address of the interrupt response routine to be changed while still providing
a very fast response time for the interrupting device.

The Refresh register contains a memory refresh counter 1n the low-order seven bits.
This counter 1s incremented automatically after each instruction fetch and provides the
next refresh address for dynamic memories. The high-order bit of the Refresh register
will remain set or reset depending on how 1t was loaded at the last LD R.A instruction.

ZSO MEMORY ADDRESSING MODES
The Z80 provides extensive addressing modes. These include:

·Implied
• Implied Block Transfer with Auto-Increment/Decrement

· Implied Stack
·Indexed
•Direct
• Program Relative

·Base Page
• Register Indirect
•Immediate

3-4

Implied
In implied memory addressing, the H and L registers hold the address of the
memory location being accessed. Data mav be moved between the identified memo­
ry location and any one of the seven CPU registers A. B. C. D. E. H. or L. For example. the
instruction

LD C.(HL)

loads the C register with the contents of the memorv location currently pointed to by
HL. This 1s illustrated as follows:

F

A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

S ZAcP/ON C

I I I I I I I

pp

mm mm

I
I

LD C. (HLI

~
76543210

TIT

qq

-

- ,r ~ t- - -11 mmmm + 1 -_

Load Implied via HL

C Register

3-5

r

Data
Memory

VY

Program
Memory

4E

pt
q

mm mm
mm+1

mmmm+2
mmmm+3

mm

A limited number of instructions use Registers B and C or D and E as the Data

Pointer. These instructions move data between the Accumulator and the memory loca­

tion addressed by Registers B and C or Registers D and E. The instruction

LD (BC).A

stores the contents of A into the memory location currently addressed by Register Pair

BC. This is illustrated as follows:

A

B.C
D.E
H.L

SP
PC
IX

IY
I

A

I
SZAcPONC

I I I I f I

PP

mm mm

LD (BCl.A ---
I

I

.............................
.l":,5543210'

jofolojolo!oj1 jof

VY
qql

- ,.
___ 1. mmmm + 1

-

T .. _-___ ,/----Store Implied from A via BC

3-6

Data
Memory

-

l
Program
Memory

02

pp qq

j

m
m

mmm
mmm+l

mmmm+2
mmmm+3

Implied Block Transfer With Auto-Increment/Decrement
Block Transfer and Search instructions operate on a block of data whose size is
set by the programmer as the contents of the BC register pair. In this form of ad­
dressing, a byte of data is moved from the memory location addressed by HL to
the memory location addressed by DE: then HL and DE are incremented and BC is
decremented. Data transfer continues until BC reaches zero, at which point the in­
struction is terminated. Variations include allowing other instructions to follow
each data transfer. with the programmer supplying the loopback: auto-decrement­
ing HL and DE instead of auto-incrementing; and a complementary set of Block
Search instructions that compare the memory byte addressed by HL with the con­
tents of the A register, setting a flag if a match is found.

The Load. Increment. and Repeat 1nstruct1on

1s illustrated as follows:

Set if BC- 1 • ,,& 0 "eset otherwise

s z AcPYoN c
Fl I 0 Ix I 0 I I
A

B.C
O.E

.L
SP
PC
IX
IV
I
R

tt
rr
pp

mmmm

LDIR

!Qs::A
/}5543210'

LDIR

uu
SS

qq

1
O

1
O ~ } Load, Increment, and Repeat mstruct1on

1 0 0 0

Program

mmmm
mmmm+1
mmmm+2
mmmrri+3

A similar group of Input/Output instructions is provided, allowing a block of data
to be input or output between memory and an 1/0 device. The 1/0 port number 1s
taken as the contents of the C register. with the single B register used as the byte
counter. Memory is addressed by HL.

3-7

Implied Stack
Since the Stack 1s part of Read/Write memory, we must consider Stack instructions as

Memory Reference instructions. Push and Pop instructions move two bytes of data

between a register pair and the addressed Stack Pointer location, 1.e .. current top­

of-stack. The ZBO Stack address 1s decremented with each Push and incremented with

each Pop. The instruction

is illustrated as follows:

A

B.C
O.E
H.L
SP
PC
IX
IY
I
R

S ZA(;PION C

I I I I I I I

PP

ssss
mm mm

I
I

PUSH DE

LZ_
76543210

TIX'

qq

PUSH DE

-UA=2 _)-

~~ -
~-.Jl.mmmm+1

-

PUSH instruction

Register Pair DE

3-8

Data
Memory

' qq

I PP

Program
Memory

OS

ssss - 2

ssss - 1

ssss

mmmm
mmmm+1
mmmm+2
mmmm+3

The ZBO also has instructions that exchange the two top-of-stack bytes with a
16-bit register- HL or one of the two index registers. The instruction

1s illustrated as follows:

F

A

B.C
D.E
H.L
SP
PC
IX
IY

I

R

I
S Z Ac P/0 N C

I I I I I I

"' xx
ssss

mm mm

I
I

EX (SPl.HL

, ,,
VY -- ~ --1. mmmm+ 1

-

3-9

Data
Memorv

- qq - pp

Program
Memorv

E3

ssss
ssss + 1
ssss + 2

mmmm
mmmm+ 1
mmmm+2
mmmm+3

Indexed
The ZSO has two 16-bit index registers, called IX and IV. They may be used in­

terchangeably. All memory reference operations for which (HU can be specified can

alternatively be specified as an indexed operation. The difference between implied ad­

dressing using HL and indexed addressing using IX and IY is that the index operand
includes a displacement value that is added to the index address. In the instruction

ADD A.0X+40H)

the memory address 1s the sum of the contents of the IX register and 4016. This may be

illustrated as follows:

S ZAc;P/ON C

Fix!x!x!x! o!xl
Data

~
~ppqq

A xx
B.C .-----t--~'----f"'I~'-.:..:.:;_.,,, . ' • •
D.E~-----~~-------f
H,L ~-------''---------« SP
PC11-------m~m~m.,.,..,,m~-------i.-....a,,,.,..

IX 11----------...:;,PPQ:;,;:,;Q:._ _______ -lr
IY , ~~~~~--..---------1
R

Program
Memorv

()D mm mm
86 mmmm+ 1

J"...,._,.__40;;:..--1 mmmm + 2
._ __ _. mmmm + 3

.

r
::!t+ 40)

' 1 6 5 4 3 2 1 0

ll-o!-
1
..;..

0
_,.-

1
.,._-lo_._o-l-

1-1} Add to A Indexed by IX instruction
0000110

O O 1 0 1 0 0 0 Displacement

3-10

Direct
Direct addressing can be used to load the Accumulator with any 8-bit value from
memory, load BC. DE, HL, SP, IX, or IV with any 16-bitmemory value, and jump or
call subroutines direct at any memory location. The 16-bit direct address is stored in
the last two bytes of the instruction. in low-byte high-byte order (this 1s the reverse of
the standard high-low scheme).

The instruction

LD A.(NETX)

loads the A register with the contents of the memorv location addressed by the label
NETX. The instruction

LD HL.(1FFHl

loads the L register with the contents of memory location 01FF16 and the H register
with the contents of memory location 020016. This may be illustrated as follows:

F

A

B.C
D,E
H,L
SP
PC
IX
IV
I
R

I
S Z A(;P/O N C

I I I I I I

~
xx

mm mm

I
I

LO HL,(1 FFH)

7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1

..
VY -

- --• mmmm + 3) - --

Load HL Direct mstruction

Direct address - low byte

Direct address - High byte

Data
Memory

VY
xx

Program
Memory

2A

OlFF

0200

mmmm
FF j mmmm+ 1

l 01 mmmm+2
1-----1 mmmm + 3

The direct Jump instructions provide jumps and jumps-to-subroutines, both un­
conditional and conditional. These are all 3-byte instructions. with the direct address
stored in the second and third bytes of the instruction. as shown above for Load Direct.

There are three additional addressing modes used by Z80 Branch instruc­
tions: program relative. base page. and register indirect. In general. they are shorter
and/or faster than direct iumps but may have more limited addressing capabilities.

3-11

Program Relative
Jump Relative instructions provide program relative addressing in the range -126,

+129 bytes from the first byte of the Program Relative instruction. These instructions

are all 2-bYte instructions. with the signed displacement value stored in the second

byte of the instruction. There are unconditional and conditional relative jumps, as
well as a Decrement and Jump If Not Zero instruction (DJNZ) that facilitates loop

control.

Given the instruction

JR SRCH

assume that SRCH 1s a label addressing a location 5A 16 bytes up 1n memory from the

JR op-code byte. The operation may be illustrated as follows:

S ZAcP/ON C

FB I I I I I I

A

B.C
D.E
H.L
SP
PC
IX

IY

R

JR

mm mm

R
I

' _,_
SRCH

- ,,.mmmm+ - _,, - 5A

l

11-0-i-o __ o..._1 ___ 0 __ 0..._o_, Jump Relative mstructton

0 1 0 1 0 1 0 Displacement

3-12

Data

~
Program
Memorv

18
5A

mm mm
mmmm+1
mmmm+2
mmmm+3

Base Page
The Z80 has a modified base page addressing mode for the Restart instruction. This 1s
a special Call instruction that allows a single-byte instruction to jump to one of
eight subroutines located at specific points in lower core. The effective address 1s
calculated from a 3-bit code stored in the instruction. as follows:

Lower Core Address 3-Bit Code

OOH
08H
10H
18H
20H
28H
30H
38H

000
001
010
011
100
101
110
111

The decoded address value 1s loaded into the low-order bvte of the Program Counter;
the high-order byte of the Program Counter 1s set to zero. For example. the instruction

1s illustrated as follows:

S ZA(:P/QN C

Fl I I I I I I
A

B.C
D.E
H,l
SP ssss
PC mm mm
IX
IY
I
R

AST OOH

~
76543210

I 1I1IaIalaI1I1 I ii

L[T

RST OOH

Restart mstruction

Address code

3-13

Data
Memory

mm+1
mm

Program
Memory

C7

ssss - 2

ssss - 1

ssss

mm mm
mmmm+1
mmmm+2
mmmm+3

Register Indirect
In standard indirect addressing. a memory location contains the effective address. and

the instruction specifies the address of the memory location containing the effective

address. In register indirect addressing. a register contains the effective address. and

the instruction specifies which of the registers contains the effective address. Note that

for a Load. for instance. this 1s iust another way of describing implied addressing.

However. the Z80 has Jump instructions that allow a jump to the memory location

whose address is contained in the specified register. This 1s a form of indirect ad­

dressing. and is described separately because. while most microcomputers have im­

plied addressing. very few have register indirect 1umps.

The instruction
JP (HL)

directs that a 1ump 1s to be taken to the memory location whose address 1s contained 1n

HL. This may be illustrated as follows:

S Z AcP/O N C

FI I I I I I I
A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

pp

mm mm

I
I

JP IHLl

-:x-
,r.~7--6 ... ZL-•s 4 ~;•-Z2•2 ... 1....,ii'

qq

I 1 I 1 I 1 I 0 i 1 I 0 I 0 I 1 I Jump via HL

~

3-14

Data

~
Program

mm mm
mmmm+1
mmmm+2
mmmm+3

Immediate
Some texts identify Immediate instructions as Memory Reference instructions. An Im­
mediate instruction 1s a 2-. 3-. or 4-byte instruction in which the last one or two bytes
hold fixed data that is loaded into a register or memory location. The Z80 provides Im­
mediate instructions to:

load 8-bit data into any of the 8-bit registers,
load 16-bit data into any of the register pairs or 16-bit registers,
store 8-bit data into any memory location using implied or indexed addressing,
perform arithmetic and logical operations using the Accumulator and 8-bit im­
mediate data.

The instruction

LO BC.OBCH

loads the immediate data value BC15 into Register Pair BC. This may be illustrated as
follows:

S ZAc;P/ON C

Fl I I I I I

A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

.._

mm mm

I
I

LO BC, OBCH

76543210

-

__ -. mmmm+3 - ,r 9
-

Tf T ~,-... ~
Register Pair BC

76543210

1 0 1 1 0 0 Immediate data - low-order byte

0 0 0 0 0 0 0 0 Immediate data - high-order byte

3-15

... -

Data

~
Program
Memorv

01

BC

00

mm mm
mmmm+1
mmmm+2
mmmm+3

Table 3-1. Frequently Used Instructions of the ZSO

Instruction Code Meaning

ADC A Add with Carry to Accumulator
ADD Add
AND Logical AND
CALL addr Call Subroutine
CALL cond.addr Call Conditional
CP Compare
DEC Decrement
DJNZ Decrement and Jump If Not Zero
IN Input
INC Increment
JR Jump Relative
JR cond.addr Jump Relative Conditional
LD reg.(HL) Load Register
LD A,(addr) Load Accumulator Direct
LD data Load Immediate
LD (HU.reg Store Register
LD (addr).A Store Accumulator Direct
LD dst.src Move Register-to-Register
OUT Output
POP Pop from Stack
PUSH Push to Stack
RET Return from Subroutine
RET cond Return Conditional
RLA Rotate Accumulator Left Through Carry
RRA Rotate Accumulator Right Through Carry
SLA Shift Left Arithmetic
SRL Shift Right Logical
SUB Subtract

3-16

Table 3-2. Occasionally Used Instructions of the Z80

Instruction Code Meaning

BIT Test Bit
CPD.CPDR Compare. Decrement. (Repeat)
CPI. CPIR Compare. Increment. (Repeat)
CPL Complement Accumulator
DAA Decimal Adjust Accumulator
DI Disable Interrupts
El Enable Interrupts
EX Exchange
HALT Halt
IND. INDR Input. Decrement. (Repeat)
INI. INIR Input. Increment. (Repeat)
JP addr Jump
JP cond.addr Jump Conditional
LO A, (BC) or (DE) Load Accumulator Secondary
LO HL,(addr) Load HL Direct
LO reg. (xy+d isp) Load Register Indexed
LO rp.(addrl Load Register Pair Direct
LO xy,(addrl Load Index Register Direct
LO (BC) or (DE).A Store Accumulator Secondary
LO (addr).HL Store HL Direct
LO (xy+disp).reg Store Register Indexed
LO (addr).rp Store Register Pair Direct
LO (addr),xy Store Index Register Direct
LO (HU.data Store Immediate to Memory
LO (xy+displ.data Store Immediate to Memory Indexed
LOO. LDDR Load. Decrement. (Repeat)
LOI. LDIR Load. Increment. (Repeat)
NEG Negate (Twos Complement) Accumulator
NOP No Operation
OR Logical OR
OUTD.OTDR Output. Decrement. (Repeat)
OUTI. OTIR Output. Increment. (Repeat)
RES Reset Bit
RETI Return from Interrupt
RL Rotate Left Through Carry
RLC Rotate Left Circular
RLCA Rotate Accumulator Left Circular
RR Rotate Right Through Carry
RRC Rotate Right Circular
RRCA Rotate Accumulator Right Circular
SET Set Bit
SRA Shift Right Arithmetic

~ XOR Logical Exclusive OR
i

3-17

Table 3-3. Seldom Used Instructions of the Z80

Instruction Code Meaning

ADC HL.rp Add Register Pair with Carry to HL
CCF Complement Carry Flag
EXX Exchange Register Pairs and Alternatives
IM n Set Interrupt Mode
RETN Return from Non-Maskable Interrupt
RLD Rotate Accumulator and Memory Left Decimal

RRD Rotate Accumulator and Memory Right Decimal
RST Restart
SBC Subtract with Carry (Borrow)
SCF Set Carry Flag
LD A.I Load Accumulator from Interrupt Vector Register
LD A.R Load Accumulator from Refresh Register
LD I.A Store Accumulator to Interrupt Vector Register
LD R.A Store Accumulator to Refresh Register
LD SP.HL Move HL to Stack Pointer
LD SP.xv Move Index Register to Stack Pointer

ABBREVIATIONS
These are the abbreviations used in this chapter:

A.F.B.C.D.E.H.L

AF'.BC'.DE'.HL'

addr

x(b)

cond

data

data16

disp

xx(HI)

IX IY

label

xx(LO)

LSB

MSB

PC

port

The 8-bit registers. A is the Accumulator and F 1s the Flag Word.

The alternate register pairs

A 16-bit memory address

Bit b of 8-b1t register or memory location x

Condition for program branching. Conditions are:
NZ - Non-Zero (Z = 0)
Z - Zero (Z = 1)
NC - Non-carry (C = 0)
C - Carrv (C = 1)
PO - Parity Odd (P = 0)

PE - Parity Even (P = 1)
P - Positive Sign (S = 0)
M - Negative Sign (S = 1)

An 8-b1t binary data unit

A 16-bit binary data unit

An 8-b1t signed binary address displacement

The high-order 8 bits of a 16-bit quantity xx

Interrupt Vector register (8 bits)

The Index registers (16 bits each)

A 16-bit instruction memory address

The low-order 8 bits of a 16-bit quantity xx

Least Significant Bit (Bit 0)

Most Significant Bit (Bit 7)

Program Counter

An 8-b1t 1/0 port address

3-18

pr

R

reg

rp

SP

xy

Object Code

Anv of the following register pairs:
BC
DE
HL
AF

The Refresh register (B bits)

Any of the following registers:
A
B
c
D
E
H
L

Any of the following register pairs:
BC
DE
HL
SP

Stack Pointer (16 bits)

Either one of the Index registers (IX or IYl

bbb Bit number 000 (LSB) to 111 (MSB)

ccc Condition code 000 = non-zero
001 =zero
010 =no carry
011 =carry
100 = pantv odd
101 =parity even
110 = positive sign
111 = negative sign

ddd Dest1nat1on register - same coding as rrr

ppqq A 16-bit memory address

rrr Register 111 = A
000 = B
001 =C
010 = D
011 = E
100 =H
101 = L

sss Source register - same coding as rrr

x Index register 0 =IX
1 =IY

xx Register pair 00 = BC
01 =DE
10 = HL
11 = SP (rp) or AF (pr)

xxx Restart code (000 to 111)

vv An 8-b1t binary data unit

vvvv A 16-bit binary data unit

3-19

Statuses

[[]]

[J

A

v
J./-

The Z80 has the following status flags:

C - Carry status

Z - Zero status
S - Sign status

PIO - Parity/Overflow status
Ac - Auxiliary Carrv status
N - Subtract status

The following symbols are used in the status columns:

X - flag 1s affected by operation
(blank) - flag 1s not affected by operation

1 - flag is set by operation
0 - flag 1s reset by operation
U - flag 1s unknown after operation

P - flag shows parity status
O - flag shows overflow status

I - flag shows interrupt enabled/disabled status

Memory addressing: 1 l the contents of the memory location

whose address 1s contained 1n the designated register. 2) an

110 port whose address 1s contained in the designated register.

The contents of a register or memory location.

For example:

([HL]] - [[HL]] + 1

indicates that the contents of the memory location addressed by

the contents of HL are incremented. whereas:

(HL] - [HL] + 1

indicates that the contents of the HL register itself are incre­

mented.

Logical AND

Logical OR

Logical Exclusive-OR

Data 1s transferred in the direction of the arrow

Data 1s exchanged between the two locations designated on either

side of the arrows.

3-20

INSTRUCTION MNEMONICS
Table 3-4 summarizes the ZSO instruction set. The MNEMONIC column shows the
instruction mnemonic (IN, OUT, LD). The OPERAND column shows the operands,
if any. used with the instruction mnemonic.

The fixed part of an assembly language instruction is shown in UPPER CASE. The
variable part (immediate data, 1/0 device number, register name, label or address)
is shown in lower case.

For closely related operands. each type 1s listed separately
mnemonic. For instance. examples of the format entry

without repeating the

LD rp.(addr)
xy,(addr)

are: LD BC.(DAT2)
LD IX.(MEM)

INSTRUCTION OBJECT CODES

The object code al1d instruction length in bytes are shown in Table 3-4 for each
instruction variation. Table 3-5 lists the object codes in numerical order.
For instruction bytes without variations. object codes are represented as two
hexadecimal digits {e.g .. 3F).

For instruction bytes with variations in one of the two digits. the object code is
shown as one 4-bit binary digit and one hexadecimal digit {e.g .. 11 x 1 DI in Table
3-5. For other instruction bytes with variations, the object code is shown as eight
binary digits (e.g .. 01sss001).

INSTRUCTION EXECUTION TIMES
Table 3-4 lists the instruction execution times in clock periods. Real time can be
obtained by dividing the given number of clock periods by the clock frequencv. For
example. for an instruction that requires 7 clock periods. a 4 MHz clock will result m a
1.75 microsecond execution time.

When two possible execution times are shown (i.e .. 5/11), it indicates that the
number of clock periods depends on condition flags. The first time is for "condi­
tion not met," whereas the second is for "condition met."

STATUS
The six status flags are stored 1n the Flag register (F) as follows:

'--+---l-+-t--- These bits are not used
Carrv status {carry out of bit 7)

(1 after subtract operation, 0 otherwise)

'------- Parity/Overflow
(for logical operations. 1 for even. 0 for odd pantv.
For arithmetic, 1 for overflow)

---------- Auxiliary Carrv status {carrv out of bit 3)
------------- Zero status (1 for zero, 0 for nonzero)

"--------------Sign status (value of bit 7)

3-21

In the individual instruction descriptions. the effect of instruction execution on

status is illustrated as follows:

S Z Ac P/O N C

'--+----- Modified to reflect resujts of execution

'------- Unconditionally reset to 0

'---------Uncondit1onallv set to 1

'-----------Unchanged

'------------Unknown

An X identifies a status that 1s set or reset. A 0 identifies a status

that 1s always cleared. A 1 identifies a status that 1s always set. A

blank means the status does not change. A question mark (?)

means the status 1s not known.

3-22

STATUS
CHANGES
WITH
INSTRUCTION
EXECUTION

w
I

N
w

••Address Bus: AO-A7: [C]
AB-A15: [B]

Type Mnemonic

IN

IN

INIR

g INOR

INI

Operand Object Code

A,(portl DB yy

reg.(C) EO 01ddd000

ED B2

ED BA

ED A2

Taole 3-4 A Summary of the Z80 Instruction Set

Clock Status
Bytes

Cycles
Operation Performed:

c z s P/0 Ac N

2 10 [AJ-[portJ
Input to Accumulator from directly addressed 1/0 port
Address Bus: AO-A 7: port

A8-A15: [Al
2 11 x x p x 0 [regJ-[[CJJ

Input to register from 1/0 port addressed by the cont0nts of C ••

2 20/15'' 1 ? I ? 1
If second byte is 70

16
only the flags will be affected

Repeat until [BJ = 0:
[[HLll [[CJJ
[BJ-[BJ-1
[HLJ - [HLJ + 1

Transfer a block of data from 110 port addressed by contents of C
to memory location addressed by cont8nts of HL. going from low
addresses to high Contents of B serve as a count of bytes remain-
ing to be transferred ••

2 20/15" 1 ? ? ' 1 Repeat until [BJ = 0:
[[HL]J - [[CJJ
[BJ-[BJ -1
[HLJ - [HLJ - 1

Transfer a block of data from 1/0 port addressed by contents of C
to memory location addressed by contents of HL, going from high
addresses to low Contents of B serve.as a count of bytes reniaining
to be transferred ••

2 15 x ? ? ? 1 [[HL] -[[Cll
[BJ-[BJ • 1
[HLJ - [HLI + 1

Transfer a byte of data from 110 port addressed by contents of C to
memory location addressed by contents of Hl Decrement byte
count and increment destination address ••

(.,)

~

••Address Bus: A0-A7: [Cl

AB-A15: [BJ

Type Mnemonic

IND

OUT

OUT

OTIR

'ii
" ~
·S
c
0
g
g

OTDR

Operand

(portl,A

(C),reg

Table 3-4 A Summary of the Z80 Instruction Set (Continued)

Clock Status
Object Code Bytes Operation Performed

Cycles
c z s P/0 Ac N

EDAA 2 15 x ? ? ? 1 [[HLJl-[[CJI

(Bl-!BI -1

(HLI - (HLI - 1
Transfer a byte of data from 1/0 port addressed by contents of C to

memory location addressed by contents of HL Decrement both

byte count and destination address ••

D3 yy 2 11 [portl-!Al

Output from Accumulator to directly addressed 1/0 port

Address Bus: AO-A 7: port

A8-A15: (Al

ED 01 sss001 2 12 [[C]]-(regl

Output from register to 1/0 port addressed by the contents of C ••

ED B3 2 20115·· 1 ? 7 7 1 Repeat until (Bl = 0:

((CJl-[[HLJI

!Bl-!Bl-1

(HLI - [HL] + 1

Transfer a block of data from memory location addressed by con~

tents of HL to 1/0 port addressed by contents of C, going from low

memory to high Contents of B serve as a count of bytes remaining

to be transferred • •

ED BB 2 20115·· 1 ? ? 7 1 Repeat until [Bl = 0:

[[CJl-[[HLll

[Bl-[Bl-1

[HLI - [HLI - 1
Transfer a block of data from memory location addressed by con~

tents of HL to 1/0 port addressed by contents of C, going from high

memory to low Contents of B serve as a count of bytes remaining

to be transferred **

w
I

N
(.71

"Address Bus: AO-A7: [CJ
A8-A15: [BJ

Type Mnemonic Operand

OUTI

'ii
" ~
·E
c
0 OUTD
2
g

LO A.(addrl

LD HL(addrl

LD rp.(addr)

" xy,(addrl u
c
f
~

" a:
LD [addrl.A 1:-

0
E

LD (addrl.HL " ::;
>
Iii LD (addrl.rp
.5 [addr),xy a:

LD A,(BC)

A.IDEI

Table 3-4 A Summary of the Z80 Instruction Set (Continued)

Clocl< Status
Object Code Bytes

Cycles
Operation Performed

c z s P/0 Ac N

ED A3 2 15 x ? ? ' 1 [[CJ] [[HLll
[B)-[B) - 1

[HLI [HLI + 1
Transfer a byte of data from memory location addressed by con-
tents of HL to 110 port addressed by contents of C Decrement byte
count and increment source address ••

ED AB 2 15 x ' ' ' 1 [[C)J -[[HLll
[Bl I Bl 1

I HL) - [HLI - 1
Transfer a byte of data from memory location addressed by con-
tents of HL to 1/0 port addressed by contents of C Decrement both
byte count and source address • •

3A ppqq 3 13 IA) I addrl
Load Accumulator from directly addressed memory location

2A ppqq 3 16 [HI - I addr + 11. I LI - I addrl
load HL from directly addressed memory

ED 01xx1011 ppqq 4 20 I rp(Hlll I addr + 11. [rp(LO)J - [addr) or
11x11101 2A ppqq 4 20 [xy(HI)) - [addr + 1 I. [xy(LOI) - [addr)

Load register pair or Index register from directly addressed memo-
ry

32 ppqq 3 13 [addr) -! Al

Store Accumulator contents in directly addressed memory location
22 ppqq 3 16 I addr + 11 - I HI. I addrl - [LI

Store contents of HL to directly addressed memory location
ED 01xx0011 ppqq 4 20 [addr + 1 I - I rp[Hlll. [addr) - [rp[LO)) or
11x11101 22 ppqq 4 20 [addr + 1 I - [xylHlll. [addr) - I xy(LO))

Store contents of register pair or Index register to directly ad-
dressed memory

OA 1 7 I Al - II BC)) or I Al - II DEii
1A 1 7 Load Accumulator from memory locati9n addressed by the con-

tents of the specified register pair

Table 3-4 A Summary of the Z80 Instruction Set (Continued)

Clock Status
Type Mnemonic Operand Object Code Bytes Operation Performed

Cycles c z s P/0 Ac N

LD reg,(HL) 01ddd110 1 7 (reg]-([HLJ]

"
Load register from memory location addressed by contents of Hl

" LD (BC),A 02 1 7 ([BCJ] - (Al or ((DE]] - (Al c
E (DEi.A 12 1 7 Store Accumulator to memory location addressed by the contents
.I!
"- of the specified register pair
a: "
~ .~ LD (HU.reg 011 lOsss 1 7 ([Hlll -I reg]

E ~ Store register contents to memory location addressed by the con~

" c tents of HL :!lg
i:' LD reg,(xy+disp) 1lxl1101 Oldddl 10 3 19 (reg] - ((xy] + disp] .. disp Load register from memory location using base relative addressing
.5
it LD lxy+displ,reg 11x11101 01110sss 3 19 ((xy] + disp] - (reg]

disp Store register to memory location addressed relative to contents of

CA>
Index register

N LOIA ED BO 2 20115•• 0 0 0 Repeat until (BC] = 0:
O> ((DEJ]-((HLJJ

(DE] - (DE] + 1

(HLI - (HL] + 1

J: (BC] - (BC] - 1

" :. Transfer a block of data from the memory location addressed by

" "' the contents of HL to the memory location addressed by the con~

" c tents of DE, going from low addresses to high Contents of BC ..
~

serve as a count of bytes to be transferred

c LDDR ED BB 2 20115•• 0 0 0 Repeat until (BC] = 0:

~ ((DE]] - ((HLll

.... (DE) - { DE] - 1

" 0 (HL] - (HLI ~ 1
iii (BC] - (BC] - 1

Transfer a block of data from the memory location addressed by

the contents of HL to the memory location addresSed by the con~
tents of DE. going from high addresses to low Contents of BC

serve as a count of bytes to be transferred

Table 3-4 A Summary of the Z80 Instruction Set (Continued)

Clock
Status

Type Mnemonic Operand Object Code Bytes Operation Performed
Cycles c z s P/O Ac N

LOI ED AO 2 16 x 0 0 [[DEil -ii Hlll
IDEJ-IDE) + 1
I HL) - I HLI + 1
I BC) - I BC) - 1

Transfer one byte of data from the memory location addressed by
the contents of HL to the memory location addressed by the con-
tents of DE Increment source and destination addresses and decre-
ment byte count

LDD ED A8 2 16 x 0 0 [[DEii -[[HLI!
;; I DE! - I DE) - 1 ..
:I I HL] - I Hll - 1
~ I BC] - I BC] - 1 c

c.>
~
""'

0
Transfer one byte of data from the memory location addressed by g

"' ttie contents of HL to the memory location addressed by the con~
~

"' tents of DE Decrement source and destination addresses and byte ..
(/) count ,,

CPIR 20/16 .. x x Repeat until I Al = II HLI! or I BC] = 0: c ED Bl 2 x x 1
"' .il I Al - [[HLIJ (only flags are affected)

" I HL! - I HLI + 1 c

~ I BC) - I BC] - 1

"" Compare contents of Accumulator with those of memory block ad~

" dressed by contents of HL, going from low addresses to high. Stop 0

iii when a match is found or when the byte count becomes zero
CPDR ED 89 2 20/16 •• x x x x 1 Repeat until I Al = [[HLll or I BC] = 0:

I Al - [[HL]J (only flags are affected)
I Hll - I Hll - 1
I BC] - I BC] - 1

Compare contents of Accumulator with those of memory block ad~
dressed by contents of HL, going from high addresses to low Stop
when a match is found or when the byte count becomes zero

w
I

"' a>

Type

] -;:; . ~
" c .! ·:;::;
• c
c 0
~9
I- J:

" " " " 0 ..
- m .. (/)

m

" c
m

.!
m
cc
>
l;
E
m
::;
i::
iii c
0

" m
(/)

Mnemonic Operand

CPI

CPD

ADD A,(HU

A.(xy +disp}

ADC A,(HU

A.(xy+disp}

SUB (HU

(xy + disp}

SBC A.(HLI

A. (xy + disp}

AND (HU
(xy + disp}

OR (HU

(xy + disp}

Table 3-4 A Summary of the ZBO Instruction Set (Continued)

Clock
Status

Object Code Bytes Operation Performed
Cycles c z s P/0 Ac N

ED A1 2 16 x x x x 1 [Al - [[HL]] (only flags are affected}

[HLl - [HL] + 1

[BC] - [BC] - 1

Compare contents of Accumulator with those of memory location

addressed by contents of HL Increment address and decrement

byte count

ED A9 2 16 x x x x 1 [Al - [[HLll (only flags are affected}

[HLI - [HL] - 1

[BC] - [BC] - 1

Compare contents of Accumulator with those of memory location

addressed by contents of HL Decrement address and byte count

86 1 7 x x x 0 x 0 [Al - [A] + [[HL]] or [A] - [A] + [[xy] + disp]

11x11101 86 disp 3 19 Add to Accumulator using implied addressing or base relative ad-

dressing

SE 1 7 x x x 0 x 0 [A] - [A] + [[Hlll + C or [A] - [A] + [[xy] + disp] + C

11x11101 8Edisp 3 19 Add with Carry using implied addressing or base relative address-

ing

96 1 7 x x x 0 x 1 [A] - [A] - [[HL]] or [A] - [Al - [[xy] + disp]

11x1110196disp 3 19 Subtract from Accumulator using implied addressing or base rela-

tive addressing

9E 1 7 x x x 0 x 1 [A] - [A] • [[HL]] - C or [A] - [A] - [[xy] + disp] • C

11x11101 9Edisp 3 19 Subtract with Carry using implied addressing or base relative ad-

dressing

A6 1 7 0 x x p 1 0 [Al - [A] A [[HLll or [A] - [A] A [[xy] + disp]

11x11101 A6disp 3 19 ANO with Accumulator using implied addressing or base relative

addressing

B6 1 7 0 x x ~ 1 0 [A] - [A] V [[HL]] or [A] - [A] V [[xy] + disp]

11x11101 B6disp 3 19 OR with Accumulator using implied addressing or base relative ad-

dressing

Table 3-4. A Summary of the Z80 Instruction Set (Continued)

Clock Status
Type Mnemonic Operand Object Code Bytes

Cycles Operation Performed
c z s P/0 Ac N

XOR (HU AE 1 7 0 x x p 1 0 [Al - (A]JJ.[[HL]] or [A]-! Al JJ.[[xy] + disp]

~~ lxy + disp) 1lxl1101 AE disp 3 19 Exclusive~OR with Accumulator using implied addressing or base
0 ::i relative addressing E .!: .. ~ CP (HL) BE 1 7 x x x 0 x 1 [A] - [[HLJJ or [Al - [[xy] + disp] ::!! a lxy + disp) 11x11101 BE disp 3 19 Compare with Accumulator using implied addressing or base rela->g
la .. tive addressing Only the flags are affected .,, u
c c INC IHLI 34 1 11 x x 0 x 0 [[HLJJ - [(HLJJ + 1 or [[xy] + disp] - [[xy] + disp] + 1 0 .. u ~

(xy + disp) 11x11101 34disp 3 23 Increment using implied addressing or base relative addressing .. .!
Cl) 8!. DEC (HL) 35 1 11 x x 0 x 1 [[HLJ] - [[HLJJ - 1 or [(xy] + disp] - [[xy] + disp] - 1

lxy + disp) 1lxl1101 35 disp 3 23 Decrement using implied addressing or base relative addressing
-

c.>
I ,..,,

CD
EJ--1 11...--ot-J RLC (HU CB 06 2 15 x x x p 0 0

(xy + disp) 1lxl1101 CB disp 4 23 [[HLJ] or [[xy] + disp]
06 Rotate contents of memory location {implied or base relative address-

ing) left with branch Carry

i ~7 .-oiJ a: AL IHLI CB 16 2 15 x x x p 0 0 .,,
c
"' (xy + disp) 11x11101 CBdisp 4 23 [[HLJ] or [[xv] + disp] :::: :c 16 Rotate contents of memory location left through Carry Cl)

i!' l{ 7 L ... EJ 0

____... 0 I E
ARC (HL) CB OE 2 15 x x x p 0 0 ..

::!l
(xy + disp) 11xl1101 CBdisp 4 23 [[HLJJ or [[xy] + disp]

OE Rotate contents of memory location right with branch Carry

w
I
w
0

Type

" m =
·~
c
0
g

!
0
cc .,,
c
m
::
:;:
fl)

> :;
E m ::.

Mnemonic Operand

RR IHLI
(xy + disp)

SLA IHLI
(xy + disp)

SRA IHLI
(xy + disp)

SRL IHLI
lxy + disp)

Table 3-4. A Summary of the ZSO Instruction Set (Continued)

Clock
Status

Object Code Bytes
Cycles

Operation Performed

c z s P/O Ac N

:[i}J ~1---.ol CB lE 2 15 x x x p 0 0

11x11101 CBdisp 4 23
II Hlll or II xy] + disp]

lE Rotate contents of memory location right through Carry

CB 26 2 15 x x x p 0 0 ~o
11x11101 CBdisp 4 23 [[HL]J or [[xy] + disp]

26
1

Shift contents of memory location left and clear LSB (Arithmetic

Shift)

CB 2E 2 15 x x x p 0 0 7 ____..,. 0: c
1lxl1101 CB disp 4 23

[[HLJJ or [[xy] + disp]

2E

j Shift contents of memory location right and preserve MSB

' (Arithmetic Shift)

CB 3E 2 15 x x x p 0 0 o-..j1-...of ..-EJ
1lxl1101 CB disp 4 23

[[HLll or [[xy] + disp]
3E Shift contents of memory location right and clear MSB (Logical Shift)

Table 3-4 A Summary of the Z80 Instruction Set (Continued)

Clock Status
Type Mnemonic Operand Object Code Bytes

Cycles
Operation Performed

c z s P/0 Ac N

LO reg.data 00ddd110 yy 2 7 [reg] -data
Load immediate into register ..

.i LO rp data16 OOxxOOO 1 YYYY 3 10 [rp) - data16 or [xvi -data16 ..,
xy.data16 11x11101 21 YYYY 4 14 Load 16 bits of immediate data into register pair or Index register ..

E LO (HU.data 36 yy 2 10 [[HLIJ - data or [[xyJ + disp) - data E - (xy'+ displ. 11x11101 36dispyy 4 19 Load immediate into memory location using implied or base relative
data addressing

JP label C3 ppqq 3 10 [PC! -label
Jump to instruction at ~ddress represented by label c.

E JR disp 18 (disp-21 2 12 [PC] - [PC) + 2 + (disp-2)
" Jump relative to piesent contents of Program Counter
..,

JP (HLI E9 1 4 [PC) - [HLI or [PC) - [xy)
c..>
I

(xy) 11x11101 E9 2 8 Jump to address contained in HL or Index register
c..>

CALL label CD ppqq 3 17 [[SP] - 1 I - [PC[Hl)J
[[SP) - 21 - [PC(LO)J
[SP! - [SP! - 2
[PC] -label c

ii Jump to subroutine starting at address represented by label .. CALL cond,label 11ccc100 ppqq 3 10/17 Jump to subroutine if condition is satisfied; otherwise. continue in a: ..,
sequence c ..

RET C9 1 10 I PC(LO)J - [[SPJI ;;
[PC[HI)) -[[SP)+ 1) (.) .,
I SP! - I SP! + 2 :S Return from subroutine " e RET cond 11 cccOOO 1 5/11 Return from subroutine if condition is satisfied; otherwise. continue .c

" in sequence (/J

Table 3-4. A Summary of the Z80 Instruction Set (Continued)

Clock
Status

Type Mnemonic Operand Object Code Bytes Operation Performed
Cycles c z s P/0 Ac N

ADD A.data C6 yy 2 7 x x x 0 x 0 I Al - I Al + data
Add immediate to Accumulator

ADC A.data CE VV 2 7 x x x 0 x 0 I Al - I Al + data + C
Add immediate with Carry

SUB data D6 vv 2 7 x x x 0 x 1 I Al - I Al - data

~ Subtract immediate from Accumulator .. SBC A.data DE VV 2 7 x x x 0 x 1 I Al - [Al - data - C
c.
0 Subtract immediate with Carry AND data E6 vv 2 7 0 x x p 1 0 [Al - I Al A data

'6 ANO immediate with Accumulator ..
E OR data F6 VV 2 7 0 x x p 1 0 I Al - [Al V data
E - OR immediate with Accumulator

XOR data EE VV 2 7 0 x x p 1 0 [Al -I AJ-\l-data

c:.>
(,,
I')

Exclusive-OR immediate with Accumulator

CP data FE VV 2 7 x x x 0 x 1 [Al - data
Compare immediate data with Accumulator contents; only the

flags ara affected

JP cond.label 11ccc010 ppqq 3 10 If cond, then [PC] - label
Jump to instruction at address represented by label if the condition

is true

JR C,disp 38 (disp-2) 2 7/12 If C = 1, then I PC! - [PC! + 2 + (disp - 2)

c Jump relative to contents of Program Counter if Carry flag is set

~
'6 JR NC.disp 30 (disp-2) 2 7/12 If C = 0. then [PC! - [PC! + 2 + (disp -2)

c Jump relative to contents of Program Counter if Carry flag is reset
0

(,)
JR Z.disp 28 (disp-2) 2 7/12 If Z = 1, then I PC] - [PC] + 2 + (disp -21

" 0 Jump relative to contents of Program Counter if Zero flag is set
c.
E JR NZ.disp 20 (disp-2) 2 7/12 If Z = 0, then [PC! - I PC! + 2 + (disp -2)

" .., Jump relative to contents of Program Counter if Zero flag is reset

DJNZ disp 10 (disp-2) 2 8/13 !Bl-IBl-1
If [Bl ,PO, then I PC] + 2 + (disp ~·2)

Decrement contents of B and Jump relative to contents of Program

Counter if result is not 0.

w
' w w

Type

"' >
0

::;;

~
'il>

"' 'f
~ ·;;.

"' a:

Mnemonic

LD

LD

LD

LD

LO

LD

LD

EX

EX

EXX

Operand

dst.src

A.I

A,R

I.A

RA

SP.HL

SP,xy

DE.HL

AF.AF'

Table 3-4 A Summary of the Z80 Instruction Set (Continued)

Clock Status
Object Code Bytes Operation Performed Cycles c z s P/0 Ac N

01dddsss 1 4 [dst] - [srcl
Move contents of source register to destination register Register
designations src and dst may each be A, B, C, D, E, H or L

ED 57 2 9 x x I 0 0 [AJ-[I]

Move contents of Interrupt Vector register to Accumulator
ED 5F 2 9 x x I 0 0 [AJ-[R]

Move contents of Refresh register to Accumulator
ED 47 2 9 111-IAI

Load Interrupt Vector register from Accumulator
ED 4F 2 9 [RJ-[AJ

Load Refresh register from Accumulator
F9 1 6 [SPl-IHL]

Move contents of HL to Stack Pointer
11x11101 F9 2 10 [SP] -[xyl

Move contents of Index register to Stack Pointer
EB 1 4 [DEl--IHLI

Exchange contents of DE and HL
08 1 4 [AF] --[AF']

Exchange program status and alternate program status
09 1 4

CBC) CBC') [DEi -- [OE'I
[HL] [HL']

Exchange register pairs and alternate register pairs

Table 3-4 A Summary of the ZBO Instruction Set (Continued)

Clock
Status

Type Mnemonic Operand Object Code Bytes Operation Performed
Cycles c z s P/0 Ac N

ADD A.reg 10000m 1 4 x x x 0 x 0 l A] - [Al + [reg]
Add contents of register to Accumulator

ADC A.reg 10001rrr 1 4 x x x 0 x 0 [Al - [Al + [reg] + C
Add contents of register and Carry to Accumulator

SUB reg 10010rrr 1 4 x x x 0 x 1 [Al - [Al - [reg]
Subtract contents of register from Accumulator

SBC A.reg 10011m 1 4 x x x 0 x 1 [Al - [Al - [reg] - C
Subtract contents of register and Carry from Accumulator

AND reg 10000m 1 4 0 x x p 1 0 [Al - [Al /\ [reg]
ANO contents of register with contents of Accumulator

OR reg 101 lOrrr 1 4 0 x x p 1 0 [A] - [A] V [reg]
OR contents of register with contents of Accumulator

(.,)

w
"""

! e XOR reg 10101rrr 1 4 0 x x p 1 0 [A]-[A]¥[reg]

" Exclusive-OR contents of register with contents of Accumulator
a.
0 CP reg 101 llrrr 1 4 x x x 0 x 1 [A] - [reg]

; Compare contents of register with contents of Accumulator Only

·;;, the flags are affected

" ~ ADD HL,rp 00xx1001 1 11 x 7 0 [HL] - [HLI + [rp]

~ 16-bit add register pair contents to contents of HL

·;;, ADC HL.rp ED 01xx1010 2 15 x x x 0 ? 0 [HLI - [HL] + [rp] + C

" 16-bit add with Carry register pair contents to contents of Hl 0:

SBC HL,rp ED 01xx0010 2 15 x x x 0 ? 1 [HL] - [HLl - [rp] - C
16-bit subtract with Carry register pair contents from contents of

HL

ADD IX.pp DD 00xx1001 2 15 x ? 0 [IX] - [IX] + [pp]
16-bit add register pair contents to contents of Index register IX

(pp = BC, DE. IX. SP)

ADD IY,rr FD OOxxl 001 2 15 x ? 0 [IY]-[IY] + [rr]
16-bit add register pair contents to contents of Index register IY

Irr = BC, DE. IY. SP)

w
' w

<.11

Type

~ .,
Q.

0

~ ·c;, .,
a:

i a: ..,
c

"' .:::
:;:
"'
~ ·c;, .,
a:

Mnemonic Operand

DAA

CPL

NEG

INC reg

INC rp

xv
DEC reg

DEC rp

xv

RLCA

RLA

ARCA

Table 3-4. A Summary of the Z80 Instruction Set (Continued)

Clock
Status

Object Code Bytes Operation Performed
Cycles c z s P/0 Ac N

27 1 4 x x x p x Decimal adjust Accumulator, assuming that Accumulator contents are
the sum or difference of BCD operands

2F 1 4 1 1 !Al-IA]
Complement Accumulator (ones complement)

ED 44 2 8 x x x 0 x 1 !Al-IAI + 1
Negate Accumulator (twos complement)

00rrr100 1 4 x x 0 x 0 [reg] - [reg] + 1
Increment register contents

00xx0011 1 6 [rp] - [rp] + 1 or [xvi - [xvi + 1
11x11101 23 2 10 Increment contents of register or Index register

00rrr101 1 4 x x 0 x 1 [reg] - [reg] - 1
Decrement register contents

00xx1011 1 6 [rp] - [rp] - 1 or [xvi - [xvi • 1
11x11101 28 2 10 Decrement contents of register pair or Index register

07 1 4 x 0 0 EJ..al 17 .. 0 j:l
[Al

Rotate Accumulator left with branch Carry

17 1 4 x 0 0 LE] .. I 7 .-o j:l
[A]

Rotate Accumulator left through Carry

OF 1 4 x 0 0 1 ... 17 ____. 0 I l .. EJ
[A]

Rotate Accumulator right with branch Carry

Table 3-4. A Summary of the ZBO Instruction Set (Continued)

Clock
Status

Type Mnemonic Operand Object Code Bytes
Cycles

Operation Performed
c z s P/0 Ac N

RRA 1F 1 4 x 0 0 1lbl7 ____. o I ~[i}J
(A]

Rotate Accumulator right through Carry

RLC reg CB OOOOOrrr 2 8 x x x p 0 0 0~1 11...-orJ
~ [reg] ..
~ Rotate contents of register left with branch Carry c

w w
0)

;;
c

LEJ~ l1~of:J 0

2
! Rl reg CB 00010rrr 2 8 x x x p 0 0 ..
0 [reg] a:

" Rotate contents of register left through Carry
c ..

~7___.01 l~EJ .::
:;:

RRC CB ODOOlrrr 2 8 x x x p 0 0 tJ) reg

~ [reg]

°' Rotate contents of register right with branch Carry ..
a:

RR reg CB 0001 lrrr 2 8 x x x p 0 0 l17 ___... 0 I ~[j}J
[reg]

Rotate contents of register right through Carry

SLA reg CB 00100rrr 2 8 x x x p 0 0 ~o
[reg]

Shift contents of register left and clear LSB (Arithmetic Shift)

Table 3-4. A Summary of the ZSO Instruction Set (Continued)

Cl k Status
Type I Mnemonic I Operand I Object Code I Bytes I C

0

1
c Operation Performed

ye es C Z s 'P/0 Ac N
-+...-ti--~~~~~~~~~~~-

5 RA I reg I CB00101rrr I 2 I 8 I XIX IX I PI 0 0 ~

Shift contents of register right and preserve MSB (Arithmetic Shift)

SRL I reg I CB00111m I 2 I 8 IXIXIXIPIOIOI o~
[reg) 1 Shift contents of register right and clear MSB (Logical Shift)

c

~ I ! RLD ED 6F 2 18 x x p 0 0 7 4 3 0 <Jl
~ [Al .,,
c ..
::: Rotate one BCD digit left between the Accumulator and memory loca-
iij lion (implied addressing) Contents of the upper half of the Accumula-
15 tor are not affected

I
RRD ED 67 2 18 x x p 0 0 7 4 3 0 0 I

[A) [[HLJI

Rotate one BCD digit right between the Accumulator and memory
location (implied addressing) Contents of the upper half of the Ac­
cumulator are not affected.

(A)
I

(A)
(ii)

Type

" 0

~
:I
0. c .,
:;;

iii

"' " ~

Mnemonic

BIT

BIT

SET

SET

RES

RES

PUSH

POP

EX

Operand

b,reg

b,(HLI

b. (xy -I disp}

b,reg

b,(HL}

b,(xy + disp}

b,reg

b,(HL}

b. (xy + disp}

pr
xy

pr
xy

(SP},HL

(SPl.xv

Table 3-4 .. A Summary of the ZBO Instruction Set (Continued)

Clock
Status

Object Code Bytes Operation Performed
Cycles c z s P/0 Ac N

CB 01bbbrrr 2 8 x ? ? 1 0 Z -reg(b}

Zero flag contains complement of the selected register bit

CB 01bbb110 2 12 x ? ? 1 0 Z - [[HLJJ(b} or Z - [[xy] + disp](b}

11x11101 CB disp 4 20 Zero flag contains complement of selected bit of the memory loca-

01bbb110 tion (implied addressing or base relative addressing)

CB 11 bbbrrr 2 8 reg(b}-1

Set indicated register bit

CB 11bbb110 2 15 [[HL]](b} - 1 or [[xy] + disp](b} - 1

11x11101 CB disp 4 23 Set indicated bit of memory location (implied addressing or

11bbb110 base relative addressing/

CB 10bbbrrr 2 8 reg(b} -o
Reset indicated register bit

CB 10bbb110 2 15 [[HLJJ(b} - 0 or [[xy] + disp](b} - 0

11x11101 CBdisp 4 23 Reset indicated bit in memory location (implied addressing or base

10bbb110 relative addressing)

11xx0101 1 11 [[SP]-1] - [pr(HI}]

11x11101 E5 2 15 [[SP]-2] - [pr(LO}]

[SP] - [SP]-2
Put contents of register pair or Index register on top of Stack and

decrement Stack Pointer

11xx0001 1 10 [pr(LO}] - [[SP]]

11x11101 E1 2 14 [pr(HI}] -[[SP]+ 1]

[SP] - [SP] + 2
Put contents of top of Stack in register pair or Index register and

increment Stack Pointer

E3 1 19 [HJ--[[SP]+1]

11x11101 E3 2 23 [LJ-- [[SP]]
Exchange contents of HL or Index register and top of Stack

Table 3-4 .. A Summary of the Z80 Instruction Set (Continued)

Status
Type Mnemonic Operand Object Code Bytes

Clock
Operation Performed

Cycles c z s P/0 Ac N

DI F3 1 4 Disable interrupts

El FB 1 4 Enable interrupts

RST n 1lxxxl11 1 11 [[SP]-1 I - [PCIHlll
[[SP]-2] - [PC(LO)J

[SP] - [SP]-2
1i. I PCJ -18·ni 16 E
!!l Restart at designated location
s RETI ED 4D 2 14 Return from interrupt

RETN ED 45 2 14 Return from nonmaskable interrupt

IM 0 ED 46 2 8 Set interrupt mode 0. 1, or 2

1 ED 56 2 8
2 ED SE 2 8

SCF 37 1 4 1 0 0 c-1 .. Set Carry flag a
!!! CCF 3F 1 4 x ? 0 c-c

w w
(l)

"' Complement Carry flag

NOP 00 1 4 No operation -volatile memories are refreshed

HALT 76 1 4 CPU halts. executes NOPs to refresh volatile memories

••Execution time shown is for one iteration

Table 3-5. Instruction Ob1ect Codes in Numerical Order

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION

00 NOP 39 ADD HL,SP

01 yyyy LD BC,data16 3A ppqq LO A,(addrl

02 LO (BC).A 3B DEC SP

03 INC BC 3C INC A

04 INC B 30 DEC A

05 DEC B 3E yy LD A.data

06 yy LO B.data 3F CCF

07 RLCA 4 Osss LO B.reg

08 EX AF.AF 46 LD B.(HLl

09 ADD HL,BC 4 1sss LO C,rag

OA LO A,(BC) 4E LO C,(HL)

OB DEC BC 5 Osss LO 0,reg

QC INC c 56 LO D,(HU

OD DEC c 5 1sss LD E,reg

OE yy LD C,data 5E LO E,(HLl

OF ARCA 6 Osss LO H.reg

10 disp-2 DJNZ disp 66 LO H,(HL)

11 yyyy LD DE,data16 6 1sss LD L,reg

12 LO (DE),A 6E LO L,(HL)

13 INC DE 7 Osss LO (HL),reg

14 INC D 76 HALT

15 DEC D 7 1sss LO A, reg

16 yy LO D,data 7E LD A,(HL)

17 RLA BOm ADD A.reg

18 disp-2 JR disp 86 ADD A,(HLl

19 ADD HL,DE 8 lrrr ADC A.reg

lA LO A,(DE) SE ADC A,(HU

18 DEC DE 90m SUB reg

lC INC E 96 SUB (HL)

10 DEC E 9 lm SBC A,reg

lE yy LO E,data 9E SBC A.!HU

lF RRA AOrrr AND reg

20 disp-2 JR NZ,disp A6 AND (HLl

21 yyyy LD HL,datalf Alm XOR reg

22 ppqq LO (addr).HL AE XOR (HLl

23 INC HL BOm OR reg

24 INC H B6 OR (HL)

25 DEC H B lrrr CP reg

26 yy LO H.data BE CP (HU

27 DAA co RET NZ

28 disp-2 JR Z,disp Cl POP BC

29 ADD HL,HL C2 ppqq JP NZ.add1

2A ppqq LD HL.(addrl C3 ppqq JP addr

28 DEC HL C4 ppqq CALL NZ,addr

2C INC L C5 PUSH BC

20 DEC L C6 yy ADD A, data

2E LO L,data C7 RST OOH

2F CPL ca RET z
30 disp-2 JR NC,disp C9 RET
31 yyyy LO SP.data16 CA ppqq JP Z,addr

32 ppqq LD (addr),A CB OOm RLC reg

33 INC SP CB 06 RLC (HL)

34 INC (HL) CB 0 lm ARC reg

35 DEC (HU CB OE ARC (HU

36 yy LO (HL),data CB 1 Om AL reg

37 SCF CB 16 AL (HLl

38 JR C.disp CB 1 lrrr RR reg

3-40

Table 3-5. Instruction Obiect Codes in Numerical Order (Continued)

OBJECT COOE INSTRUCTION OBJECT CODE INSTRUCTION

CB lE RR IHLI DD CB disp 10bbb110 RES b,llX +displ
CB 2 Orrr SLA reg DD CB disp 11bbb110 SET b,(IX +displ
CB 26 SLA IHLI DD El POP IX
CB 2 lrrr SRA reg DD E3 EX (SPl,IX
CB 2E SRA IHLl DD ES PUSH IX
CB 3 lrrr SAL reg DD E9 JP (IX)
CB 3E I SAL IHU DD F9 LO SP.IX
CB Olbbbrrr BIT b,reg DE yy SBC A, data
CB 01bbb110 BIT b.IHLl OF AST 1SH
CB 10bbbrrr RES b,reg EO AET PO
CB 10bbb110 RES b.IHU El POP HL
CB 11bbbm SET b,reg E2 ppqq JP PO,addr
CB 11bbb110 SET b.IHU E3 EX (SP),HL
cc ppqq CALL Z.addr E4 ppqq CALL PO,addr
CD ppqq CALL addr ES PUSH HL
CE yy ADC A.da1a E6 VY AND data
CF AST OSH E7 AST 20H
DO AET NC ES RET PE
01 POP DE E9 JP (HLI
02 ppqq JP NC.addr EA ppqq JP PE.addr
03 yy OUT (portl.A EB EX DE,HL
04 ppqq CALL NC.addr EC ppqq CALL PE,addr
DS PUSH DE ED 01ddd000 IN reg,(Cl
06 yy SUB data ED 01sss001 OUT I Cl.reg
07 AST 10H ED Olxx 2 SBC HL,rp
08 AET c ED Olxx 3 ppqq LO (addr),rp
09 EXX ED 44 NEG
DA ppqq JP C.addr ED 4S AETN
DB yy IN A.I port) ED 010nn110 IM m
DC ppqq CALL C.addr ED 47 LO I.A
DD OOxx 9 ADD IX.pp ED Olxx A ADC HL,rp
DD 21 yyyy LO IX.data16 ED Olxx B ppqq LO rp,(addrl
DD 22 ppqq LO (addrl.IX ED 40 RETI
DD 23 INC IX ED 4F LO A.A
DD 2A ppqq LO IX.(addr) ED S7 LO A,1
DD 2B DEC IX ED SF LD A.A
DD 34 disp INC (IX+displ ED 67 ARD
DD 3S disp DEC llX+displ ED 6F ALO
DD 36 disp yy LD OX+ displ.data ED AO LOI
DD Oldddl 10 disc LO reg.OX+ disp) ED Al CPI

DD ' Osss diso LO llX + displ,reg ED A2 INI
DD S6 disp ADD A.llX+disoi ED A3 oun
DD SE disp ADC A.llX+disp) ED AS LDD
DD 96 disp SUB llX+displ ED A9 CPD
DD 9E disp SBC A,(IX+disp) ED AA iND
DD A6 disp AND (IX+displ ED AB OUTD
DD AE disp XOR (IX+displ ED BO LOIA
DD B6 disp OR (IX+ displ ED Bl CPIR
DD BE disp CP (IX+disp) ED B2 INIR
DD CB disp 06 RLC (IX+ displ ED B3 OTIR
DD CB disp OE ARC llX + displ ED BS LODA
DD CB disp 16 AL llX+displ ED B9 CPDR
DD CB disp 1E RR (IX +displ ED BA INDR

DD CB disp 26 SLA (IX+displ ED BB OTDR
DD CB disp 2E SRA (IX+displ EE yy XOR data
DD CB disp 3E SAL llX+displ EF AST 28H
DD CB disp 01bbb110 BIT b,llX+displ

3-41

Table 3-5. Instruction Obiect Codes in Numerical Order (Continued)

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION

FO RET p FD SE disp ADC A,(IY+dispi

Fl POP AF FD 96 disp SUB (IY+disp}

F2 ppqq JP P.addr FD 9E disp SBC A,(IY+disp)

F3 DI FD A6 disp AND llY+dispi

F4 ppqq CALL P.addr FD AE disp XOR (IY+disp)

F5 PUSH AF FD B6 disp OR (IY+disp)

F6 VY OR data FD BE disp CP (IY+displ

F7 RST JOH FD CB disp 06 RLC (IY+dispi

FS RET M FD CB disp OE RRC llY+displ

F9 LO SP.HL FD CB disp 16 RL (IY+displ

FA ppqq JP M.addr FD CB disp 1E RR llY +dispi

F8 El FD CB disp 26 SLA llY+dispi

FC ppqq CALL M,addr FD CB disp 2E SRA (IY+dispJ

FD OOxx 9 ADD IY.rr FD CB disp 3E SRL llY+displ

FD 21 yyyy LO IY.data16 FD CB disp 01bbb110 BIT b,(IY+dispi

FD 22 ppqq LO (addrJ,IY FD CB disp 10bbb110 RES b,(IY+dispi

FD 23 INC IY FD CB disp 11bbb110 SET b,(IY+disp)

FD 2A ppqq LO IY,(addrl FD El POP IY

FD 2B DEC IY FD E3 EX ISPl,IY

FD 34 disp INC (IY+disp) FD ES PUSH IY

FD 35 disp DEC (IY+dispi FD E9 JP llYI

FD 36 disp VY LO (IY + dispJ,data FD F9 LO SP.IY

FD Olddd 110 disp LO reg,(IY + dispJ FE VY CP data

FD 7 Osss disp LO llY + displ.reg FF RST 38H

FD 86 disp ADD A.llY+dispi

3-42

ADC A.data-ADD IMMEDIATE WITH CARRY TO
ACCUMULATOR

s ZAcP/ON l Data

A

B.C
D.E
H.L
SP
PC
IX
IV
I

lx!x!x!x!o!xl
xx

r

~ -- ~ - - 1 .c+xx+yy
~

-- Program mm mm -- --· mmmm + 2 - Memory

I CE
R I - yy

ADC A. data -- -.-CE VY

mm mm
mmmm+ 1
mmmm+2
mmmm+3

Add the contents of the next program memory byte and the Carry status to the Ac­
cumulator.

Suppose xx=3A15. vv=7C15. and Carry=O. After the instruction

ADC A.7CH

has executed. the Accumulator will contain 8615:

3A 0 0 11 101 0
7C 0 1 11 1 100

Carry 0

1011 0110

1 sets S to 1

No carry. set C to 0

fl LNoo-"ro rn<0lt oot Z to 0

..__-----Carry. set Ac to 1

0.lf 1 =1. set PIO to 1 Addition instruction. set N to 0

The ADC instruction 1s frequently used in multibyte addition for the second and subse­
quent bytes.

3-43

ADC A.reg -ADD REGISTER WITH CARRY TO
ACCUMULATOR

S ZAcP/ON C

Flx!x!x!x!o!xl

A xx } contents of
B.C 11-------i~-------I __...,A,B,C,D,E.H
O.E or Lis yy
H.l
5pll"---------''---------1
PCg--------=m~m=-=m~m:-------t-.-..r_

IX
IYll---------------t

I
R

ADC A.
'-.,,.-'

10001

reg

xxx
OOo for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data

~
Program
Memory

10001xxx mmmm
____ mmmm+l

1-----11mmmm + 2
1----mmmm + 3

Add the contents of Register A. B. C. D. E. Hor Land the Carry status to the Accumula-
tor.

Suppose xx=E315, Register E contains A015. and Carry= 1. After the 1nstruct1on

ADC A.E

has executed. the Accumulator will contain 8415:

E3 1 1 1 0 0 0 1 1
AO 101 0 0 0 0 0

Carry 1
1000 0100

1 sets s to 1 fu LNrn-mo ~'"" "' z to 0

Carry, set C to 1 - No carry, set Ac to 0

1 ¥-1 =0, set PIO to O Addition instruction. set N to 0

The ADC instruction is most frequently used in multibyte addition for the second and
subsequent bytes.

3-44

ADC A,(HL) -ADD MEMORY AND CARRY TO
ADC A,(IX+disp) ACCUMULATOR
ADC A, (IV +disp)

F

A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

S ZAcP/ON C

IXIXIXIXIO IXI'

pp

mm mm

I
I

-- __L

~x -- ~ .-...= i _xx.+ VY+ C

-
qq

L......oia :- _1 mmmm + 1)

The illustration shows execution of ADC A.(HL):

ADC A.(HL) --.-
SE

Data
Memorv

VY

Program
Memory

BE

ppqq

'
mmm
mmm

m
m+1

mmmm+2
mmmm+3

Add the contents of memory location (specified by the contents of the HL register pair)
and the Carry status to the Accumulator.

Suppose xx=E315. yy=A015. and Carry=1. After the instruction

ADC A.(HL)

has executed. the Accumulator will contain S415:

E3
AO

Carry

1 sets S to 1

Carry. set C to 1

1 "V-1 =O. set PIO to 0

1 1 1 0 0 0 1 1
1010 0000

1
1000 0100

[-J L"'"-"'' "'"" .. , z "',
-----No carry. set Ac to O

Addition instruction. set N to 0

ADC A.(IX+disp) --..-.- -.-

DD SE d

Add the contents of memory location (specified by the sum of the contents of the IX
register and the displacement digit d) and the Carry to the Accumulator.

ADC A.(IY+disp) --..-.- -.-
FD SE d

This instruction is identical to ADC A,(IX+displ. except that 1t uses the IY register in­
stead of the IX register.

The ADC instruction is most frequently used in multibyte addition for the second and
subsequent bytes.

3-45

ADC Hl,rp -ADD REGISTER PAIR WITH CARRY TO H AND l

S ZAcP/ON C

Flx!x!x!x!o!xl
Data

A

B.C
D.E
H.l xx
SP
PC mmrnm

IX
IY
I

R

BC. DE. HL or SP

xx

Program

Memorv

ED mm mm
01xx1010 mmmm + 1

mmmm+2
11----mmmm + 3

E_
ED01xx1010 -.-

00 for rp 1s register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp 1s Stack Pointer

Add the 16-bit value from either the BC. DE. HL register pair or the Stack Pointer. and

the Carry status. to the HL register pair.

Suppose HL contains A53615, BC contains 104415. and Carry=1. After execution of

ADC HL.BC

the HL register pair will co_nta1n:

A536 1010 0101 0011 0110
1044 000100000100 0100
Carry 1

1011 0101 01111011

V lNoo-rero re'"lt "' Z <o O

--------No carry. set Ac to O

1 sets S to 1

No carry, set C to 0

0¥0=0. set PIO to 0 Add it1on instruction. set N to O

The ADC instruction 1s most frequently used 1n multibyte addition for the second and

subsequent bvtes.

3-46

ADD A,data -ADD IMMEDIATE TO ACCUMULATOR
S ZA(;P/ON C

Flxlx!x!xiofxi
A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

mm mm

I
I

xx

--
_,r J. ~-. xx+yy

- ,r ~ ~~ mmmm+2
- --

ADD A. data ..._._,_. -.--
C6 VY

Data

~
Program
Memory

C6 - yy

Add the contents of the next program memory bvte to the Accumulator.

Suppose xx=3A15. yy=7C15. and Carry=O. After the instruction

ADD A.7CH

has executed. the Accumulator will contain 8615:

3A 0 0 1 1 101 0
7C = 0 1 1 1 1 1 0 0

101 1 0 1 1 0

mmmm
mmmm+1
mmmm+2
mmmm+3

1 sets S to 1

No carry. set C to 0

r LNoo-"rn '"""- "' z '° 0

-------Carrv. set Ac to 1

0.Y.1=1. set PIO to 1 Addition instruction. set N to 0

This is a routine data manipulation instruction.

3-47

ADD A,reg - ADD CONTENTS OF REGISTER TO
ACCUMULATOR

A

B.C
D.E
H.L
SP
PC
IX

IY
I

R

S Z Ac P/0 N C

I x I x I x I x I o I xi

mm mm

I
I

xx

-
......_ xx+yy J

f •

} l contents of
__.A.B,C,D,E.

Horl1syy

- ,
~ --• mrnmm + 1 - -

ADD reg _,,,_,
10000 xxx -.-

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data

~
Program
Memorv

10000xxx mmmm
mmmm+l

1----mmmm+2
mmmm+3 ----

Add the contents of Register A. B. C. D. E. H or L to the Accumulator.

Suppose xx=E315, Register E contains A015. After execution of

ADD A.E

the Accumulator will contain 8315:

E3 1 11 0
AO = 101 0

0 0 11
0000

1000 0011

1 sets S to 1

Carry, set C to 1

r LNoo-"'o ra'Olt, "' z '° a
----- No carrv. set Ac to O

1¥1 =0. set PIO to 0 Addition instruction. set N to 0

This 1s a routine data manipulation instruction

3-48

ADD A,(Hll-ADD MEMORY TO ACCUMULATOR
ADD A, (IX +disp)
ADD A,(IY+disp)

A

B.C
D.E
H,l
SP
PC
IX
IY

I
R

1x1x1x1x101xl

mm mm
ppqq

I

I

xx -- ~ -- "........_ xx+vv

-L-._ -:i mmmm + 3_

L.(ppqq+d "):::;;

The illustration shows execution of ADD A.(IX+disp).

ADD A.OX+disp) ._,,_. _,,....,

DD 86 d

Data
Memory

VY

Program
Memory

DD
86
d

ppqq + d

t
mmm
mmm
mmm
mmm

m
m+ 1
m+2
m+3

Add the contents of memory location (specified by the sum of the contents of the IX
register and the displacement digit d) to the contents of the Accumulator.

Suppose ppqq=400015. xx=1A15, and memory location 400F15 contains 5015. After
the instruction

ADD A.OX+OFH)

has executed. the Accumulator will contain 6A15.

lA 0001
50 = 0 101

101 0
0000 ------

0 1 1 0 101 0

0 sets S to 0

No carry. set C to 0

r LNoo·mo '"""· "" "0

'------No carry, set Ac to 0

O"fO=O: set PIO to 0 Addition 1nstruct1on. set N to 0

~+~
FD 86 d

This instruction 1s 1dent1cal to ADD A. (IX+disp). except that 1t uses the IY register in
stead of the IX register.

ADD A.(HL) ._,,_.
86

This version of the instruction adds the contents of memory location. specified by the
contents of the HL register pair. to the Accumulator.

The ADD 1nstruct1on 1s a routine data manipulation instruction.

3-49

ADD HL,rp -ADD REGISTER PAIR TO H AND L

S Z AcP'O N C

Fl I Ix I lo Ix I
A

BC. DE, HL or SP

B.C --------11~-------t!I

D.E
H.L 11----xx----t---"""""'.x~x---t~...,.,-

SP PC11-------m-m __ m_m _______ --t"--

IX
IYl------------------t

I

R

N_
00 xx 1001

Data

Program
Memorv

00xx1001. mmmm
mmmm+1

11------1 mmmm + 2

mmmm+3
11-----11

GO for rp 1s register pair BC
01 for rp 1s register pair DE
10 for rp is register pair HL
11 for rp 1s Stack Pointer

Add the 16-bit value from either the BC. DE. HL register pair or the Stack Pointer to the

HL register pair.

Suppose HL contains 034A15 and BC contains 214C15. After the instruction

ADD HL.BC

has executed. the HL register pair will contain 249615.

034A 0000 001101001010
214C = 0010 000101001100

0010010010010110

No carry. set C to o.J lJ...,..,.,__ _____ No carry. set Ac to O

Addition instruction. set N to O

The ADD HL.HL instruction 1s equivalent to a 16-bit left shift

3-50

ADD xy,rp-ADD REGISTER PAIR TO INDEX REGISTER
S Z Ac PION C

Data
Fl I !xi !olxl

A

B.C
D.E
H.l
SP
PC
IX
IY
I
R

rr

mmmm
ppqq

SS

Program
Memorv

11v11101 mmmm
00xx1001 mmmm + 1

..._ __ __. mmmm + 2

..._ __ __. mmmm + 3

The illustration shows execution of ADD IX.DE.

/R
114 1101 oo.i:y..1001

,/$ ___ __,_ '

0 for Index register=IX 00 for rp 1s register pair BC
1 for Index reg1ster=IY 01 for rp is register pair DE

10 for rp 1s specified Index register
11 for rp is Stack Pointer

Add the contents of the specified register pair to the contents of the specified Index
register.

Suppose IY contains 4FF015 and BC contains OOOF15. After the instruction

ADD IY.BC

has executed. Index Register IY will contain 4FFF16·

3-51

AND data-AND IMMEDIATE WITH ACCUMULATOR

S Z Ac P/0 N C

Flx!xl 1 !x!o !ol
A

B,C
D,E
H,L
SP
PC
IX
IY

I
R

mm mm

I

xx -~ r. --:= - ll xx ·yy

1_:mmmm+2) ~ -

AND data -.- -.-
E6 VY

I

Data

Program
Memory

E6 mm mm
1---yy---a mmmm + 1

mmmm+2
1------4 mmmm + 3

AND the contents of the next program memory byte to the Accumulator.

Suppose xx=3A15. After the instruction

AND 7CH

has executed, the Accumulator will contain 3815.

3A 0 0 1 1 101 0
7C 0 1 1 1 1 100

0011 1000

0 sets S to o.-J Lrhree 1 bits, set PIO to 0

LNon-zero result set Z to 0

This is a routine logical instruction: 1t 1s often used to turn bits "off" For example, the

1nstruct1on

AND 7FH

will unconditionally set the high order Accumulator bit to 0.

3-52

AND reg-AND REGISTER WITH ACCUMULATOR

S Z Ac P/0 N C

Fix!x!1 !x!o!o!
A xx

B.C-------1!--------1

D.E t--------tl--------1 H.L
SPa--------''"---------1
PC mmmm
1xt----------------1"""'-""-.._~_..~

IY
I --~~----.,......-------1

R

AND reg -..-
10100 xxx

-,-
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data

~
Program
Memorv

10100xxx mmmm
a-----tmmmm + 1

mmmm+2
a-----tmmmm + 3

AND the Accumulator with the contents of Register A. B. C. D. E. H or L. Save the resu It
in the Accumulator.

Suppose xx=E315. and Register E contains A015. After the instruction

AND E

has executed. the Accumulator will contain A015.

E3 1 1 1 0 0 0 1 1
AO = 1 0 1 0 0 0 0 0

101 0

1 sets S to 1,._j

AND is a frequently used logical 1nstruct1on.

0000

L rwo 1 bits. set PIO to 1

LNon-zero result. set Z to 0

3-53

AND (HU-AND MEMORY WITH ACCUMULATOR
AND (IX+disp)
AND (IV +disp)

F

A
B,C
D,E
H.L
SP
PC
IX
IY
I
R

S Z Ac P/O N C

lxlx!1 lxlo!ol

mm mm
ppqq

I

I

xx - ,,- ~ .-..-....1. xx•yy

-
~mmmm+0

-
-

ppqq+dJ-

The illustration shows execution of AND (IY+disp).

AND (IY+disp)
~~

FD A6 d

Data
Memorv

VY ppqq +d

Program
Memorv

FD mm
A6 mm

mm
mm+1

mmmm+2
r------11 mmmm + 3

d

AND the contents of memory location (specified by the sum of the contents of the IY

register and.the displacement digit d) with the Accumulator.

Suppose xx=E315, ppqq=400015. and memory location 400F15 contains A015. After

the 1nstruct1on

AND (IY+OFH)

has executed. the Accumulator will contain A015.

E3 1 1 1 0 0 1 1 1
AO = 1 0 1 0 0 0 0 0

-,-0-,-0--0.,..-0-0-0

1 sets S to 1..J LTwo 1 bits. set P/O to 1

LNon-zero result. set Z to 0

AND (IX+disp)
~~

DD A6 d

This instruction 1s 1dent1cal to AND (IY+disp), except that 1t uses the IX register instead
of the IY register.

AND (HL)
~

A6

AND the contents of the memory location (specified by the contents of the HL register
pair) with the Accumulator.

AND 1s a frequently used logical instruction.

3-54

BIT b,reg - TEST BIT b IN REGISTER reg

F

A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

+ s Z AcP/0 N

lu!b!1!u!o!
c

I

mm mm

I

l
I

yyy'Oyyyy

BIT

CB 01

Bit Tested
0
1
2
3
4
5
6
7

1
_r

b -

-~ v -- - 1.~mmm+2

b. reg -.-
~ ~

Register
000 000 --B-

001 001 c
010 010 D
011 011 E
100 100 H
101 101 L
110 111 A
111

Data

Program
Memory

CB mmmm
01bbbxxx mmmm + 1

mmmm+2
1-----mmmm+J

Place complement of indicated registers specified bit in Z flag of F register.
Suppose Register C contains 1110 1111. The 1nstruct1on BIT 4.C will then set the Z flag
to 1. while bit 4 in Register C remains 0. Bit 0 1s the least significant bit.

3-55

BIT b,(Hl) -TEST BIT b OF INDICATED MEMORY POSITION
BIT b,(IX+disp)
BIT b,(IV+disp)

S ZAcP/ON C

Flu!t'!1!u!o! I

A

B.C
D.E
H.L
SP
PC
IX
IY
I

R

pp

mm mm

n
I

(b

qq -- ,-
'- - ..JL mmmm + 2 - -

-

Data
Memory

yyy'Oyyyy

Program
Memorv

p+ q

CB mm
01bbb110 mm

mm
mm+1

mmmm+2
n-----, mmmm + 3

The illustration shows execution of BIT 4.(HL). Bit 0 1s the least significant bit.

BIT b, (HU -.-
CB 01 bbb 110

Bit Tested bbb
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Test indicated bit within memory pos1t1on specified by the contents of Register HL. and

place bit's complement in Z flag of the F register.

Suppose HL contains 4000H and bit 3 1n memory location 4000H contains 1. The in­

struction

BIT 3,(HL)

will then set the Z flag to 0, while bit 3 in memory location 4000H remains 1.

BIT b.(IX+disp)

2K_
DD CB d 01 bbb 110

bbb 1s the same as in BIT b, (HU

Examine specified bit w1th1n memory location indicated by the sum of Index Register IX

and disp. Place the complement in the Z flag of the F register.

3-56

Suppose Index Reg1ste.- IX contains 4000H and bit 4 of memory location 4004H 1s 0.
The instruction

BIT 4, (IX +4H)

will then set the Z flag to 1. while bit 4 of memory location 4004H remains 0.

JR_
FD CB d 01 bbb 110

bbb 1s the same as in BIT b. (HU

This 1nstruct1on is 1dent1cal to BIT b.OX+displ. except that 1t uses the IY register instead
of the IX register.

CALL label - CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND

A

B.C
D.E
H.L
SP
PC
IX
IY

Ii
R

I
S Z Ac P/0 N C

I I I I I I

xx xx
mm mm

I
I

.£ xxxx-2)
~.;,-- -

,
~mmm+3

CALL .._,,,_..
CD

label -.-
ppqq

--

Data
Memorv

mm+3
mm

Program
Memorv

co

xxxx-2
xxxx-1
xx xx

mm mm
pp

{
mmmm+ 1

qq mmmm+2
1-------1mmmm+3

Store the address of the instruction following the CALL on the top of the stack: the top
of the stack 1s a data memory byte addressed by the Stack Pointer. Then subtract 2
from the Stack Pointer in order to address the new top of stack. Move the 16-bit address
contained in the second and third CALL instruction object program bytes to the Pro­
gram Counter. The second byte of the CALL instruction 1s the low-order half of the ad­
dress. and the third byte is the high-order byte.

Consider the 1nstruct1on sequence:

CALL SUBR
AND 7CH

SUBR

After the instruction has executed. the address of the AND instruction 1s saved at the
top of the stack. The Stack Pointer 1s decremented by 2. The instruction labeled SUBR
will be executed next.

3-57

CALL condition.label - CALL THE SUBROUTINE IDENTIFIED IN
THE OPERAND IF CONDITION IS
SATISFIED

CALL condition. label

1~I
11 xxx 100 pp qq

T Condition Relevant Flag _,_
000 NZ Non-Zero z
001 z Zero z
010 NC Non-Carry c
011 c Carry c
100 PO Parity Odd PIO
101 PE Parity Even PIO
110 p Sign Positive s
111 M Sign Negative s

This mstruction 1s 1dent1cal to the CALL instruction. except that the identified

subroutine will be called onlv if the condition is satisfied: otherwise. the instruction se­

quentially followmg the CALL condition instruction will be executed.

Consider the instruction sequence:

CALL 1 COND.SUBR
-------1 condition not satisfied

condition
satisfied

SUBR

AND 7CH

If the condition 1s not satisfied. the AND instruction will be executed after the CALL
COND.SUBR instruction has executed. If the condition 1s satisfied. the address of the

AND instruction 1s saved at the top of the stack. and the Stack Pointer 1s decremented
by 2. The instruction labeled SUBR will be executed next.

3-58

CCF - COMPLEMENT CARRY FLAG
S ZAcP/ON C

F~l...,jiL...~j...l~L...•j~xJ!~ ... 11t-~~~~~~~--.,-'~
A

B.C
D,E
H.L
SP
PC
IX
IY
I

R

mm mm

I
I

-- ,, 1) __ .._ mmmm+ 1

CCF

3F

Data

~
Program

Complement the Carrv flag. No other status or register contents are affected.

3-59

mmmm
mmmm+1
mmmm+2
mmmm+3

CP data-COMPARE IMMEDIATE DATA WITH
ACCUMULATOR

t
/ s z Ac P/0 N C'

lxlx!x!x! i!xl
A

B,C

D,E
H,L
SP
PC
IX
IY
I
R

mm mm

I
I

xx -..(xx-vv r---

-- --• mmmm + 2 - ,- 2)

CP data

FE VY

Data

~
Program
Memorv

FE - VY

mm mm
mmmm+1
mmmm+2

mmmm+3

Subtract the contents of the second ob1ect code bvte from the contents of the Ac­

cumulator. treating both numbers as simple binary data. Discard the result 1.e .. leave

the Accumulator alone. but modify the status flags to reflect the result of the subtrac­

tion.

Suppose xx=E315 and the second bvte of the CP 1nstruct1on obiect code contains

A015. After the instruction

CP OAOH

has executed, the Accumulator will still contain E315. but statuses will be modified as

follows:

E3
AO

0 sets S to 0

No borrow. set C to 0

1"V-1 =0. set P/O to 0

1 1 1 0
101 0

0 0 1 1
0000

0100 0011 r LNoo-Mo re'""·"' z" a
-------No borrow. set Ac to O

Subtract instruction. set N to 1

Notice that the resulting carry 1s complemented.

3-60

CP reg-COMPARE REGISTER WITH ACCUMULATOR

S Z Ac PION C
Data Fix Ix Ix Ix i 1 Ix I

~ A
B,C
D.E
H,l
SP
PC
IX
IY
I
R

}

Contents of
--------ti-------- ~A.B.C.D,E.H
1--------1~------1 or Lis yy ______ __.,__ _____ _

xx

mm mm

CP reg
-.- -.-

10111 xxx -,-
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Program
Memory

10111xxx mmmm

-----11 mmmm + 1
mmmm+2

t-----mmmm+3

Subtract the contents of Register A. B. C. D. E. H or L from the contents of the Ac­
cumulator. treating both numbers as simple binarv data. Discard the result: i.e .. leave
the Accumulator alone. but modify status flags to reflect the result of the subtraction.
Suppose xx=E315 and Register B contains A015. After the instruction

CP B

has executed. the Accumulator will still contain E315. but statuses will be modified as
follows:

E3 = 1 1 1 0
AO = 101 0

0 0 1 1
0000 ------

0 sets S to 0

No borrow. set C to 0

lo 1 o o o o 1 1 r LNoo-mo """"- ,., z to 0

'"'-----No borrow. set Ac to 0

1 ¥1=0. set PIO to O Subtract instruction. set N to 1
Notice that the resulting carry 1s complemented.

3-61

CP (Hl) - COMPARE MEMORY WITH ACCUMULATOR
CP (IX+disp)
CP (IV +disp)

A

B.C
D.E

H.L

SP
PC
IX

IV

I
R

s z Ac pro N c

lx!x!x!x!1 !xi

pp

mm mm

I
I

xx ~ xx-yy ~
-·

qq -
- ,r 9 ~- ..1. mmmm+ 1

The illustration shows execution of CP (HU:

CP (HL)
~

BE

Data
Memory

VY

Program

Memory

BE

PP qq

t
m
m

mmm
mmm+1

mmmm+2
mmmm+3

Subtract the contents of memory location (specified by the contents of the HL register

pair) from the contents of the Accumulator. treating both numbers as simple binary

data. Discard the result 1.e .. leave the Accumulator alone. but modify status flags to

reflect the resu It of the subtraction.

Suppose xx=E315 and yy=A015. After execution of

CP (HU

the Accumulator will still contain E315. but statuses will be modified as follows:

E3
AO =

0 sets S to 0

No borrow. set C to 0

1 ¥ 1 =0. set P /0 to 0

1 1 1 0 0 0 1 1
0110 0000

0100 0011 r LNoo-wo "'"'' "' z IO 0

~------No borrow. set Ac to-0

Subtract 1nstruct1on. set N to 1

Notice that the resulting carry 1s complemented.

CP (IX+disp) .._,..-- _,_

DD BE d

3-62

Subtract the contents of memory location (specified by the sum of the contents of the
IX register and the displacement valued) from the contents of the Accumulator. treat­
ing both numbers as simple binary data. Discard the result 1.e .. leave the Accumulator
alone. but modify status flags to reflect the result of the subtraction.

CP (IY+disp)
~-.-

FD BE d

This instruction 1s 1dent1cal to CP (IX +dis pl. except that 1t uses the IY register instead of
the IX register.

CPD- COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT ADDRESS AND BYTE COUNTER

S Z AcP/ON C
FI X l X l X j JiD Set if BC-1 ;!. O.

.. .. • . ~reset otherwise

A ~
B.C tt uu
D.E

Data
Memory

VY ppqq • t-~--:::::--~-t~~~,--~-+-;;:::::::-\ H.L 1---.:;,P:;,.P __ --l..__ __ ,;:qq;;:,._ __ -r-
SP 1---------------'
PCt------m~m~m_m _____ --1~~
IX
IYt---------------11
I
R

CPD
'-.,..-'

ED A9

Program
Memory

ED mm mm
1---=A::.9--ll mmmm + 1

1---~ mmmm + 2
.,_ __ __.mmmm+3

Compare the contents of the Accumulator with the contents of memory location
(specified by the HL register paid. If A 1s equal to memory, set Z flag. Decrement the HL
and BC register pairs. (BC 1s used as the Byte Counter.}

3-63

Suppose xx=E315. ppqq=400015. BC contains 000115. and yy=A015. After the in­

struction

CPD

has executed. the Accumulator will still contain E315. but statuses will be modified as

follows:

E3 1 1 1 0 0 0 1 1
AO 101 0 0 0 0 0

0100 0011

0 "" s to o_J r LNoo~"" """ "'' z to 0

...... ----No borrow. set Ac to 0

The HL register pair will contain 3FFF15. and BC=O.

The P /0 flag will be reset
because BC-1 =0

Subtract instruction involved.
set N to 1

Carry not affected.

CPDR-COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT ADDRESS AND BYTE COUNTER.
CONTINUE UNTIL MATCH IS FOUND OR BYTE
COUNTER IS ZERO

CPDR .._,_..,
ED B9

This instruction 1s 1dent1cal to CPD. except that it 1s repeated until a match 1s found or

the byte counter 1s zero. After each data transfer. interrupts will be recognized and two

refresh cycles will be executed.

Suppose the HL register pair contains 500015. the BC register pair contains OOFF15.

the Accumulator contains F915. and memory has contents as follows:

After execution of

Location

500015
4FFF15
4FFE15
4FFD15
4FFC15
4FFB15

Contents

AA15
BC15
1915
7A15
F915
DD15

CPDR

the P/0 flag will be 1. the Z flag will be 1. the HL register pair will contain 4FFB15. and

the BC register pair will contain OOFA15.

3-64

CPI-COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT BYTE COUNTER.
INCREMENT ADDRESS

S Z AcP/ON C

Fl X j X j X j Jill ;et if BC-1 T' 0.
•-..................... ·~~..__, reset otherwise

A xx
B.C tt uu
D.E
H.L pp qq
SP
PC mm mm
IX
IY

R

CPI -..--­
ED A1

xx-yy

Data
Memorv

vv ppqq

Program
Memorv

ED mmmm
A1 mmmm+ 1

11-----t mmmm + 2
11------1 mmmm + 3

Compare the contents of the Accumulator with the contents of memory location
(specified by the HL register pair). If A 1s equal to memory. set the Z flag. Increment the
HL register pair and decrement the BC register pair (BC 1s used as Byte Counted.
Suppose xx=E315. ppqq=400015. BC contains 003215. and yy=E315. After the in­
struction

CPI

has executed. the Accumulator will still contain E315. but statuses will be modified as
follows:

E3 1 1 1 1 00 1 1
-E3 0 0 0 0 1 1 0 1

0000 0000

o "" s,, ,_J r L,,,," "o "",,,
~------No borrow. set Ac to 0

The P/O flag will be set
because BC-1 # 0.

Subtract instruction involved.
set N to 1.

Carry not affected.

The HL register pair will contain 400115. and BC will contain 003115.

3-65

CPIR-COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT BYT.t: COUNTER.
INCREMENT ADDRESS.
CONTINUE UNTIL MATCH IS FOUND
OR BYTE COUNTER IS ZERO

CPIR
..._,-
ED B1

This instruction 1s identical to CPI. except that it 1s repeated until a match 1s found or

the byte counter is zero. After each data transfer interrupts will be recognized and two

refresh cycles will be executed.

Suppose the HL register pair contains 450015. the BC register pair contains OOFF15.

the Accumulator contains F915. and memory has contents as follows:

After execution of

Location

450015
450115
450215

Contents ---

CPIR

AA15
1515
F915

the P /0 flag will be 1. and the Z flag will be 1. The HL register pair will contain 450315.

and the BC register pair will contain OOFC16·

3-66

CPL- COMPLEMENT THE ACCUMULATOR
S Z AcP/0 N C

Fi I 11' 11' I
A

B,C
D,E
H.L
SP
PC
IX
IY
I
R

mmmm

I

xx
- .) -=""" xx -

----:::::;.,,~mmm + ~

CPL

2F

-

Data

~
Program

mmmm
mmmm+ 1
mmmm+2
mmmm+3

Complement the contents of the Accumulator. No other register's contents are
affected.

Suppose the .Accumulator contains 3A15. After the instruction

CPL

has executed. the Accumulator will contain C515.

3A = 0 0 1 1 1 0 1 0
Complement = 1 1 0 0 0 1 0 1

This 1s a routine logical 1nstruct1on. You need not use 1t for binary subtraction; there are
special subtract instructions (SUB, SBC).

3-67

DAA- DECIMAL ADJUST ACCUMULATOR

S ZAcP/ON C

Flx!x!x(x! (xi

A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

mm mm

I
I

xx
- _,..Convert to)

~ _1. 'decimal

~

DAA

27

,,.
I mmmm + 1 -- -

Data

Program
M

mmmm
mmmm+1

mmmm+2
mmmm+3

Convert the contents of the Accumulator to binary-coded decimal form. This instruc­

tion should only be used after adding or subtracting two BCD numbers; 1.e .. look upon

ADD DAA or ADC DAA or INC DAA or SUB DAA or SBC DAA or DEC DAA or NEG DAA

as compound. decimal arithmetic instructions which operate on BCD sources to gener­

ate BCD answers.

Suppose the Accumulator contains 3915 and the B register contains 4 715. After the in­

structions

ADD B
DAA

have executed. the Accumulator will contain 8615. not 8015.

Z80 CPU logic uses the values in the Carry and Auxiliary Carry. as we\\ as the Ac­

cumulator contents. in the Decimal Adjust operation.

3-68

DEC reg - DECREMENT REGISTER CONTENTS

S Z Ac PION C

qxjxjx(x(q I
A

B.C
D.E
H.l
SP
PC
IX
IV

I
R

mmmm

I
I

yy-1

f ,_"""'' B. C, D, E, H,
orl1svv

,,-
-- - 1 mmmm + 1

R
00 xxx 101

000 for reg=B
001 for reg=C
010 forreg=D
011 for reg=E
100 for reg=H
101 forreg=L
111 for reg=A

Subtract 1 from the contents of the specified register.

Suppose Register A contains 5015. After execution of

DEC A

Register A will contain 4F16·

3-69

Data

~
Program
Memorv

00xxx101 mmmm
1-----tmmmm + 1 ____ mmmm+2

mmmm+3 ----

DEC rp - DECREMENT CONTENTS OF SPECIFIED REGISTER
DEC IX PAIR
DECIY

S Z AcP/ON C Data

FI I I I I

A

B.C
D.E
H.L
SP
PC
IX
IY

yyyy-1

~ ''"""" ,, " DE. HL or SP
IS YYY!__ ~ ,,

mm mm __ - ~ mmmm + 1

-
Program
Memorv

I

R I

00xx1011 mmmm
mmmm+1

-----1mmmm+2

-----1mmmm+3

The illustration shows execution of DEC rp:

1l
00xx1011 -.-

00 for rp is register pair BC
01 for rp 1s register pair DE
10 for rp 1s register pair HL
11 for rp 1s Stack Pointer

Subtract 1 from the 16-bit value contained in the specified register pair. No status flags

are affected.

Suppose the H and L registers contain 2F0015. After the instruction

DEC HL

has executed. the H and L registers will contain 2EFF16'

DEC IX ..-..-
DD 2B

Subtract 1 from the l 6-b1t value contained in the IX register.

DEC IY
..-..­
FD 2B

Subtract 1 from the 16-bit value contained in the IY register.

Neither DEC rp. DEC IX nor DEC IY affects any of the status flags. This 1s a defect in the

Z80 instruction set. inherited from the 8080. Whereas the DEC reg 1nstruct1on 1s used in

iterative instruction loops that use a counter with a value of 256 or less. the DEC rp

(DEC IX or DEC IY) instruction must be used if the counter value is more than 256. Since

the DEC rp instruction sets no status flags. other 1nstruct1ons must be added to simply

3-70

test for a zero resu It. This 1s a typical loop form:

LO
LOOP

DE.DATA :LOAD INITIAL 16-BIT COUNTER VALUE
:FIRST INSTRUCTION OF LOOP

DEC
LO
OR
JP

DE
A.D
E
NZ.LOOP

:DECREMENT COUNTER
TO TEST FOR ZERO. MOVE D TO A
:THEN OR A WITH E
:RETURN IF NOT ZERO

DEC (HL) - DECREMENT MEMORY CONTENTS
DEC (IX +disp)
DEC (IY+disp)

S Z Ac PION C

Ftx!x!x!x!1! I
A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

pp

mm mm

I
I

(yy-1 I:::'....-
~

qq
-

-~ ~ --.....1.·mmmm+l

The illustration shows execution of DEC (HU:

DEC (HU
'-v-"

35

Data
Memory

VY

Program
Memorv

35

ppq q

t
m
m

mmm
mmm+l

mmmm+2
mmmm+3

Subtract 1 from the contents of memory location (specified by the contents of the HL
register pair).

Suppose ppqq=450015. yy=5F15. After execution of

DEC (HU

memory location 450015 will contain 5E15.

5F = 0 1 0 1 1 1 1 1
-01 = 1111 1111

10 101 1 1 1 0

,,. , "",to ,.JJ f-l L"°"."" "'""·'",to,
1 ¥ 1 =0. set P /0 to 0 - No borrow. set Ac to 0

Subtract 1nstruct1on. set N to 1

3-71

DEC (IX+disp)
~ -.-

DD 35 d

Subtract 1 from the contents of memorv location (specified by the sum of the contents
of the IX register and the displacement value d).

DEC (IY+disp)_,,,,_., -,..-

FD 35 d

This instruction 1s 1dent1cal to DEC (IX+displ. except that 1t uses the IY register instead
of the IX register.

DI - DISABLE INTERRUPTS

S Z Ac P/0 N C

Fl I I I I I I
A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

mm mm

I
I

-'-- -~· mmmm+ l -
-

DI

F3

Data

~
Program

mmmm
mmmm+1
mmmm+2
mmmm+3

When this instruction 1s executed. the maskable interrupt request 1s disabled and the
INT input to the CPU will be ignored. Remember that when an interrupt is
acknowledged. the maskable interrupt 1s automatically disabled.

The maskable interrupt request remains disabled until 1t 1s subsequently enabled by an
El instruction.

No registers or flags are affected by this instruction.

3-72

DJNZ disp - JUMP RELATIVE TO PRESENT
CONTENTS OF PROGRAM COUNTER IF
REG B IS NOT ZERO

A

RC
D.E
H.L
SP
PC
IX

IY
I
R

I
s
I
ZAcPiQN

I I I

xx

c c I I

-
mmmm

I
I

xx-1 Data

~
l1l
I

-

-- "mmmm+ Program ~ '-.{dd-2)+2.
Memory

1 10
dd-2

OJNZ disp --...-
10 dd-2

mmmm
mmmm+ 1
mmmm+2
mmmm+3

Decrement Register B. If remaining contents are not zero. add the contents of the OJNZ
instruction obiect code second byte and 2 to the Program Counter. The rump 1s
measured from the address of the instruction operation code. and has a range of -126 to
+ 129 bytes. The Assembler automatically adjusts for the tw1ce-1ncremented PC.

If the contents of B are zero after decrementing. the next sequential instruction 1s ex­
ecuted.

The OJNZ 1nstruct1on 1s extremely useful for any program loop operation. since the one
instruction replaces the typical "decrement-then-branch on condition" instruction se­
quence.

El - ENABLE INTERRUPTS
S Z Ac P/O N C

Fi I I I I
A

B.C
D.E
H.l
SP
PC
IX
IY
I
R

mm mm

I
I

-
- ~

-- --1 mmmm + 1
~ "-. -

3-73

Data

Program

mm mm
mmmm+ 1
mmmm+2
mmmm+3

El

FB

Execution of this instruction causes interrupts to be enabled. but not until one more in­

struction executes.

Most interrupt service routines end with the two instructions:

El
RET

:ENABLE INTERRUPTS
:RETURN TO INTERRUPTED PROGRAM

If interrupts are processed serially, then for the entire duration of the interrupt service

routine all maskable interrupts are disabled -which means that m a multi-interrupt

application there 1s a significant possibility for one or more interrupts to be pending

when any interrupt service routine completes execution.

If interrupts were acknowledged as soon as the El instructions had executed, then the

Return instruction would not be executed. Under these circumstances. returns would

stack up one on top of the other - and unnecessarily consume stack memory space.

This may be illustrated as follows:

Interrupt

Interrupt service routine

By inhibiting interrupts for one more 1nstruct1on following execution of El, the Z80 CPU

ensures that the RET 1nstruct1on gets executed in the sequence:

El
RET

:ENABLE INTERRUPTS
:RETURN FROM INTERRUPT

It 1s not uncommon for interrupts to be kept disabled while an interrupt service routine

1s executing. Interrupts are processed serially:

7'""~\. 7'""'S ·
Interrupt service routine Interrupt service routine

3-74

EX AF,AF' -EXCHANGE PROGRAM STATUS AND ALTERNATE
PROGRAM STATUS

A

B.C
D.E
H.l
SP
PC
IX
IY
I
R

I

S Z AcP/ON C

I I I I I .

mm mm

I
I

-
--

_,
__ -----. mm mm + 1

EX AF.AF
~

08

-

4
Alternate

Program

mm mm
mmmm+ 1
mmmm+2
mmmm+3

The two-byte contents of register pairs AF and A'F are exchanged.
Suppose AF contains 4F9915 and A'F contains 10AA15. After execution of

EX AF.AF

AF will contain 10AA15 and AF will contain 4F9915.

3-75

EX DE,HL - EXCHANGE DE AND HL CONTENTS

SZAcP/ONC

Fl I I I I I
A

B,C
O,E
H,L

SP
PC
IX

IY

I
R

pp

xx

mm mm

I
I

qq

VY
-) --

- - _0 --•~mmm+ 1

EX DE.HL
~

EB

Data

~
Program
M

mm mm
mmmm+1
mmmm+2
mmmm+3

The D and E registers' contents are swapped with the H and L registers' contents,

Suppose pp=0315. qq=2A15. xx=4115 and yy=FC15, After the instruction

EX DE.HL

has executed. H will contain 0315, L will contain 2A15. D will contain 4115 and E will

contain FC 15,

The two instructions:

are equivalent to:

EX DE,HL
LO A.(HL)

LD A.(DE)

but if you want to load data addressed by the D and E register into the B register.

has no single instruction equivalent

EX DE.HL
LO B.(HL)

3-76

EX (SP) ,HL - EXCHANGE CONTENTS OF REGISTER AND
EX (SP),IX TOP OF STACK
EX (SP),IY

S ZAcP/ON C

F I I I I I I I

,
L • xx yy

ssss
~

A

B.C
D.E
H.L
SP
PC
IX
IY

mm mm --• mmmm+ 1 -
I

R I

The illustration shows execution of EX (SP).HL.

EX (SPl.HL ..._,,_,
E3

Data
Memorv

- qq - PP

Program
Memorv

E3

ssss
ssss + 1
ssss + 2

mm mm
mmmm+l
mmmm+2
mmmm+3

Exchange the contents of the L register with the top stack byte. Exchange the contents
of the H register with the byte below the stack top.

Suppose xx=2115. yv=FA15. pp=3A15. qq=E215. After the 1nstruct1on

EX (SP).HL

has executed. H will contain 3A 15. L will contain E215 and the two top stack bytes will
contain FA15 and 2115 respectively.

The EX (SP).HL instruction is used to access and manipulate data at the top of the stack.

EX (SP).IX ..._,,_,
DD E3

Exchange the contents of the IX register's low-order bvte with the top stack byte. Ex­
change the IX register's high-order byte with the bvte below the stack top.

EX (SP).IY ..._,.._..
FD E3

This instruction 1s identical to EX (SPl.IX. but uses the IY register instead of the IX
register.

3-77

EXX- EXCHANGE REGISTER PAIRS AND ALTERNATE

REGISTER PAIRS

S Z Ac P/0 N C

Fl I I I I I I
Alternate

Register Set

A

B.C
D.E
H.L
SP
PC
IX
IY
I

}- ...
- ffi

F'

{
~·'.c·
D'.E'
H'.L'

mm mm

I

R I

- ,
-----t. mmmm + 1

EXX

D9

-
Program

mmmm
mmmm+l
mmmm+2
mmmm+3

The contents of register pairs BC. DE and HL are swapped with the contents of register

pairs B'C', D'E'. and H'L'

Suppose register pairs BC. DE and HL contain 490115. 5F0015 and 725115 respec­

tively, and register pairs B'C'. D'E'. H'L' contain 000015. 10FF15 and 333315 respec­

tively. After the execution of

EXX

the registers will have the following contents:

BC: 000015; DE. 10FF15: HL: 333315;

B'C' 490115; D'E' 5F0015; H'L 725115

This instruction can be used to exchange register banks to provide very fast interrupt

response times.

3-78

HALT
S ZAcP/ONC

Ff I I
A

B.C
D.E
H,L
SP
PC
IX
IY
I

mm mm

I
R I

--- --• mmmm+ l
~

HALT

76

....._
-

Data

Program

mmmm
mmmm+ 1
mmmm+2
mmmm+3

When the HALT instruction 1s executed. program execution ceases. The CPU requires
an interrupt or a reset to restart execution. No registers or statuses are affected;
however. memory refresh logic continues to operate.

3-79

IM 0 - INTERRUPT MODE 0

S Z AcPION C

FI I I I I I I

A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

mm mm

I
I

--

- -~ - 1 mmmm + 2 -

IMO
-_,,-'

ED46

- -

Data

~
Program
Memory

11-~E""D~-1 mmmm
11--4~6--I mmmm + 1
11-----1 mmmm + 2
11-----llmmmm + 3

This instruction places the CPU in interrupt mode 0. In this mode. the interrupting

device will place an instruction on the Data Bus and the CPU will then execute that in­

struction. No registers or statuses are affected.

tM 1 - INTERRUPT MODE 1

IM1
-.,-'

ED 56

This 1nstruct1on places the CPU in interrupt mode 1 In this mode. the CPU responds to

an interrupt bv executing a restart (RST) to location 003815.

IM 2 - INTERRUPT MODE 2

IM 2
.._,-
ED 5E

This instruction places the CPU in interrupt mode 2. In this mode. the CPU performs an

indirect call to anv specified location in memory. A 16-bit address 1s formed using the

contents of the Interrupt Vector (I) register for the upper eight bits. while the lower

eight bits are supplied by the interrupting device. Refer to Chapter 12 for a full descnp­

t1on of interrupt modes. No registers or statuses are affected bv this instruction.

3-80

IN A,(port) -INPUT TO ACCUMULATOR

A

B.C
D.E
H.l
SP
PC
IX
IY
I
R

I
s

I
Z AcP/0 N

I I I
c

I I

mm mm

I

I

+
I 1/0 port yy 14-

- l -

-- ~
-- - 1. mmmm + 2

IN A. (port) --- --..--DB VY

Data

~
Program
Memory

DB
VY

mm mm
mmmm+ 1
mmmm+2
mmmm+3

Load a bvte of data into the Accumulator from the 1/0 port (identified by the second IN
instruct1~n obiect code byte).

Suppose 3615 is held 1n the buffer of 1/0 port 1A15. After the instruction

IN A.(1AH)

has executed. the Accumulator will contain 3615.

The IN 1nstruct1on does not affect any statuses.

Use of the IN 1nstruct1on 1s very hardware dependent. Valid 1/0 port addresses are
determined by the way in which 1/0 logic has been implemented. It 1s also possible to
design a microcomputer system that accesses external logic using memory reference
instructions with specific memory addresses.

3-81

INC reg - INCREMENT REGISTER CONTENTS

S Z Ac PIO N C

Flx!x!x!xlo! I
A

B.C
DE
H.l

SP
PC
IX

IY

I
R

mm mm

I
I

y:~•o<A B. C. D. E, H or
LIS yy

___ 1. mmmm+ 1 - ~ 1)

jl_
00 xxx 100

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg =H
101 for reg=L
111 for reg=A

Add 1 to the contents of the specified register.

Suppose Register E contains A815. After execution of

INC E

Register E will contain A915.

3-82

Data

Program
Memorv

OOxxx 100 mmmm
mmmm+1

11----1 mmmm + 2
mmmm+3 ----

INC rp - INCREMENT CONTENTS OF SPECIFIED REGISTER PAIR
INC IX
INC IV

S Z Ac PIO N C

Fi I I I I I
A

B.C
D.E
H.L
SP
PC
IX

IY
I
R

mm mm

I

} o~moc. DE. Hl or SP
_.,s YYYY

- ,, 0 -- -~1 mmmm + 1 -_

Data

~
Program
Memory

00xx0011 mmmm
t-----tmmmm + 1
.__ __ __,mmmm+2

mmmm+3 ----
The illustration shows execution of INC rp:

lk
00 xx 0011

00 for rp 1s register pair BC
01 for rp 1s register pair DE
10 for rp 1s register pair HL
11 for rp 1s Stack Pointer

Add 1 to the 16-bit value contained in the specified register pair. No status flags are
affected.

Suppose the D and E registers contain 2F7A15. After the instruction

INC DE

has executed. the D and E registers will contain 2F7815.

INC IX -­DD 23

Add 1 to the 16-bit value contained in the IX register.

INC IY -­FD 23

Add 1 to the 16-bit value contained in the IY register.

Just like the DEC rp. DEC IX and DEC IY, neither INC rp. INC IX nor INC IY affects any
status flags. This 1s a defect in the Z80 instruction set inherited from the 8080.

3-83

INC (HL) - INCREMENT MEMORY CONTENTS
INC (IX +disp)
INC (IY+disp)

S Z Ac PION C

Flxlx!x!x!o!

A
B.C ------...... 1--------t

D.E11------__,1---------11
H.L
SP!t-------~---------1

PC mmmm

yy+ 1

1xs------1p~p~qqq------;:-::-~.....,.._~-'

IY
l ~-~-~~..--------1

R

Data
Memory

Program
Memory

DD mmmm
i---::3-:-4--iimmmm + 1

-p ... p-qq_+ _d ./-r---....-.:::.d---11 ~~~~ : ;

The illustration shows execution of INC (\X+d):

INC (IX+disp)
'-v-' -.-

DD 34 d

Add 1 to the contents of memory location (specified by the sum of the contents of

Register IX and the displacement value d).

Suppose ppqq=400015 and memory location 400F15 contains 3615. After execution

of the instruction

INC (IX+OFH)

memory location 400F15 will contain 3715.

36 = 0 0 1 1 0 1 1 0

0 sets S to 0

010 1 1 0 1 1 1 r LNoo-rnm re>elt "" <oO

Carry status not affected J No carry. set Ac to 0

...d~a-------~

0 .>f 0=0. set P /0 to 0 Addition 1nstruct1on. set N to 0

INC (IY+disp) ------ -.-
FD 34 d

This instruction 1s 1dent1cal to INC (\X+disp), except that 1t uses the IY register instead

of the IX register

INC (HU
~

34

Add 1 to the contents of memory location (specified by the contents of the HL register

pair).

3-84

IND - INPUT TO MEMORY AND DECREMENT POINTER

S Z Ac P/O N C

Flu!x!u!u!i!
xx-1

IND -..­
ED AA

Data
Memory

Program
Memory

ppqq

1----=E:::De---~ mmmm
11-_:..A;:..A;...__. mmmm + 1
11------11 mmmm + 2

mmmm+3 ----
Input from 1/0 port (addressed by Register Cl to memory location (specified by HU.
Decrement Registers B and HL.

Suppose xx=0515. yy=1515. ppqq=240015. and 1915 1s held in the buffer of 1/0 port
1515. After the instruction

IND

has executed. memory location 240015 will contain 1915. The B register will contain
0415 and the HL register pair 23FF15.

INDR - INPUT TO MEMORY AND DECREMENT POINTER
UNTIL BYTE COUNTER IS ZERO

INDR ..._,.._..
ED BA

!NOR 1s 1dent1cal to IND. but 1s repeated until Register B=O.
Suppose Register B contains 0315. Register C contains 1515. and HL contains 240015.
The following sequence of bvtes 1s available at 110 port 1515:

1715. 5915 and AE15
After the execution of

INDR

the HL register pair will contain 23F015 and Register B will contain zero. and memory
locations will have contents as follows:

Location
2400
23FF
23FE

Contents

1715
5915
AE15

This instruction is extremely useful for loading blocks of data from an input device into
memory.

3-85

INI - INPUT TO MEMORY AND INCREMENT POINTER

S Z Ac PIO N C

FI I I I I I

A

B.C xx

D.E
H,L pp

SP
PC mm mm
IX
IV
I,

R

xx-1

qq

VY

INI
'-v-'
ED A2

Data
Memory

Program
Memory

ppqq

ED mm mm
A2 mmmm+ 1

.._ ___ mmmm+2

mmmm+3 ----
Input from 1/0 port (addressed by Register Cl to memory location (specified by HU.

Decrement Register B: increment register pair HL

Suppose xx=0515. yy= 1515. ppqq=240015. and 1915 1s held 1n the buffer oi 1/0 port

1515.

After the instruction

INI

has executed. memory location 240015 will contain 191 fr The B register will contain

0415 and the HL register pair 240115.

INIR - INPUT TO MEMORY AND INCREMENT POINTER

UNTIL BYTE COUNTER IS ZERO

INIR
'-v-'
ED 82

INIR 1s 1dent1cal to INI. but 1s repeated until Register B=O.

Suppose Register B contains 0315. Register C contains 1515. and HL contains 240015.

The following sequence of bytes 1s available at 1/0 port 1515:

1715. 5915 and AE15

After the execution of

INIR

the HL register pair will contain 240315 and Register B will contain zero. and memory

locations will have contents as follows:

Location

2400
2401
2402

Contents

1715
5915
AE15

This 1nstruct1on 1s extremely useful for loading blocks of data from a device into memo­

ry.

3-86

IN reg,(C) -INPUT TO REGISTER

S Z Ac P/O N C

Flx!x!o!x!o! I

A

B.C
D.E
H.L
SP
PC mm mm
IX
IY
I
R

K
ED 01 xxx 000

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 forreg=L
111 for reg=A

Data

Program
Memorv

ED mm mm
01xxx000 mmmm + 1

1------1mmmm + 2
1------lmmmm + 3

110 for setting of status flags without
changing registers

Load a byte of data into the specified register (reg) from the 1/0 port (identified by the
contents of the C reg1sterl.

Suppose 4215 1s held in the buffer of 1/0 port 3615. and Register C contains 3615.
After the instruction

IN D.(C)

has executed. the D register will contain 4215.

During the execution of the instruction. the contents of Register Bare placed on the top
half of the Address Bus. making 1t possible to extend the number of addressable 1/0
ports.

3-87

JP label - JUMP TO THE INSTRUCTION IDENTIFIED
IN THE OPERAND

A

B.C
D.E
H.L
SP
PC
IX
IY

I
R

S Z Ac P/O N C

mm mm

I
B

r---c

JP label -.- '-.,,-'

C3 ppqq

Data

-
ppqq) Program

Memory

1 C3
qq

I pp

mmmm
mmmm+ 1
mmmm+2
mmmm+3

Load the contents of the Jump instruction ob1ect code second and third bytes into the

Program Counter: this becomes the memory address for the next instruction to be ex­

ecuted. The previous Program Counter contents are lost.

In the following sequence:

JP NEXT
AND 7FH

NEXT CPL

The CPL instruction will be executed after the JP instruction. The AND instruction will

never be executed. unless a Jump instruction somewhere else in the instruction se­

quence 1umps to this instruction.

3-88

JP condition, label - JUMP TO ADDRESS IDENTIFIED IN THE
OPERAND IF CONDITION IS
SA TIS I FED

JP cond. label

1Kl
11 cc 010 ppqq

I Conditron
000 NZ Non-Zero
001 Z Zero
010 NC No Carry
011 C Carry
100 PO Parrty Odd
101 PE Parrty Even
110 P Sign Posrtrve
111 M Sign Negatrve

Relevant Flag

z
z
c
c

PIO
PIO
s
s

Thrs rnstructron rs rdentrcal to the JP rnstructron. except that the 1ump will be per­
formed only if the conditron rs satrsfied: otherwrse. the rnstructron sequentrally follow­
rng the JP conditron rnstructron will be executed.

Consrder the rnstructron sequence

JP COND.LABEL
,--------.-;1 condition not satisfied

condition
satisfied

LABEL

AND f 7CH

OR B

After the JP cond.label rnstructron has executed. if the condition rs satrsfied then the
OR 1nstruct1on will be executed. If the conditron is not satisfied. the AND 1nstructron.
berng the next sequential rnstructron. rs executed.

3-89

JP (Hl) - JUMP TO ADDRESS SPECIFIED BY CONTENTS
JP (IX) OF 16-BIT REGISTER
JP (IV)

S Z AcP/ON C

Fl I I I I I I
A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

pp

mm mm

u
I

qq

()

The 1llustrat1on shows execution of JP (HU:

JP (HU .._,,_..,
E9

Data

Program

mm mm
mmmm+1
mmmm+2
mmmm+3

The contents of the HL register pair are moved to the Program Counter. therefore. an

implied addressing 1ump 1s performed.

The instruction sequence

LD H.ADDR
JP (HU

has exactly the same net effect as the single instruction

JP ADDR

Both specify that the instruction with label ADDR 1s to be executed next.

The JP (HU instruction 1s usefu I when you want to increment a return address for a

subroutine that has multiple returns.

Consider the following call to subroutine SUB:

CALL
JP

SUB
ERR

:CALL SUBROUTINE
:ERROR RETURN
:GOOD RETURN

Using RET to return from SUB would return execution of JP ERR: therefore. if SUB ex­

ecutes without detecting error conditions. return as follows:

POP HL :POP RETURN ADDRESS TO HL

INC HL :ADD 3 TO RETURN ADDRESS

INC HL
INC HL
JP (HU :RETURN

JP (IX) _,_,.
DD £9

This instruction 1s 1dent1cal to the JP (HU instruction. except that 1t uses the IX register

3-90

instead of the HL register pair.

JP (IY) .._,_,
FD E9

This 1nstruct1on 1s 1dent1cal to the JP (HU instruction. except that 1t uses the IY register
instead of the HL register pair.

JR C,disp-JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF CARRY IS SET

JR C. disp --..--.-
38 dd-2

This instruction 1s 1dent1cal to the JR disp 1nstruct1on. except that the 1ump 1s only ex­
ecuted if the Carry status equals 1. otherwise. the next 1nstruct1on 1s executed.
In the following instruction sequence:

I

'
4000 JR

I
C.$+8 I

C=O
4002 AND

+
7FH

C=l

4008 OR B

After the JR C.$+8 instruction. the OR instruction 1s executed if the Carry status equals
1. The AND instruction 1s executed if the Carry status equals 0.

3-91

JR disp- JUMP RELATIVE TO PRESENT CONTENTS OF
PROGRAM COUNTER

S Z AcP/ON C

FI I I I I I

A

B.C
O,E
H.l
SP
PC
IX
IY
I

R

mm mm

I
I

Data

~
- Fmmmm+ Program -- . (dd-2)+ 2 - Memorv

t 18
dd-2

JR disp _.,_._,_

18 dd-2

mmmm
mmmm+ 1
mmmm+2

mmmm+3

Add the contents of the JR instruction ob1ect code second byte. the contents of the Pro­

gram Counter, and 2. Load the sum into the Program Counter. The 1ump 1s measured

from the address of the instruction operation code. and has a range of -126 to + 129

bytes. The Assembler automatically adjusts for the twice-incremented PC.

The following assembly language statement is used to 1ump four steps forward from ad­

dress 400015.

JR $+4

Result of this 1nstruct1on 1s shown below:

Location I nstruct1on

4000
4001
4002
4003
4004

3-92

18
02

.... 111--- new PC value

JR NC,disp-JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF CARRY FLAG IS RESET

JR NC.disp .._,,--.-
30 dd-2

This instruction 1s 1dent1cal to the JR disp instruction. except that the iump 1s only ex­
ecuted if the Carry status equals 0: otherwise. the next instruction 1s executed.
In the following instruction sequence:

,.---4000

C=O
4001
4002
4003

ADD i A.7FH
I

: C=1

JR I NC.$-3 '------------:
OR t B 4005

After the JR NC.$-3 instruction. the OR 1nstruct1on 1s executed if the Carry status equals
1. The ADD instruction 1s executed if the Carry status equals 0.

JR NZ,disp-JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF ZERO FLAG IS RESET

JR NZ.disp __,-.-
20 dd-2

This instruction 1s 1dent1cal to the JR disp instruction. except that the iump 1s only ex­
ecuted if the Zero status equals 0: otherwise. the next 1nstruct1on 1s executed.
In the following instruction sequence:

I ____ 4_0_oo ___ JR _ __,• NZ.$+6

Z=O :~~~ AND 'Z=~FH
4005

'---4006 OR B

After the JR NZ.$+6 instruction. the OR instruction 1s executed if the Zero status equals
0. The AND instruction 1s executed if the Zero status equals 1.

3-93

JR Z,disp - JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF ZERO FLAG IS SET

JR Z.disp --.,..---,-
28 dd-2

This 1nstruct1on ts 1dent1cal to the JR disp instruction. except that the 1ump is only ex­

ecuted if the Zero status equals 1 otherwise. the next 1nstruct1on is executed.

In the following instruction sequence:
I

4000 JR ' Z.$+6

4002 AND : 7FH

Z=l 4004 t Z=O
4005
4006 OR B

After the JR Z.$+6 1nstruct1on. the OR instruction ts executed if the Zero status equals

1. The AND 1nstruct1on ts executed if the Zero status equals 0.

LO A,1- MOVE CONTENTS OF INTERRUPT VECTOR OR
LO A,R REFRESH REGISTER TO ACCUMULATOR

S Z Ac P/0 N C

Flx!x!o!x!o!

A

B.C
D.E
H.l
SP
PC
IX
IY
I

mm mm

I
R I

xx --

- ,,, v
.- - 1. mmmm+2

- --
xx

The illustration shows execution of LO A.I:

LO A.I
~

ED 57

Data

Program

Memory

-__;;;E;;::,D_-i mmmm
57 mmmm+ 1 ----mmmm+2

t-----t mmmm + 3

Move the contents of the Interrupt Vector register to the Accumulator. and reflect inter­

rupt enable status 1n Panty/Overflow flag.

Suppose the Interrupt Vector register contains 7F15. and interrupts are disabled. After

execu t1on of

LO A.I

Register A will contain 7F15. and PIO will be 0.

LO A.R
~

ED 5F

Move the contents of the Refresh register to the Accumulator. The value of the interrupt

flip-flop will appear in the Parity/Overflow flag.

3-94

LO A,(addr)-LOAD ACCUMULATOR FROM MEMORY USING
DIRECT ADDRESSING

F

A

B.C
D.E
H,L
SP
PC
IX
IY
I
R

(
S Z Ac P/O N C

I I I I I I
YV

mm mm

I
I

--

- ~
-- ----, mmmm + 3 -_

LO A. (addrl -.---.--
3A ppqq

Data
Memorv

YV

Program
Memory

3A
qq

ppqq

mm mm
mmmm+ 1

pp mmmm+2
't---'-'----i mmmm + 3

Load the contents of the memory bvte (addressed directly by the second and third
bvtes of the LO A. (addrl 1nstruct1on object code) into the Accumulator. Suppose memo­
ry byte 084A15 contains 2015. After the 1nstruct1on

label EOU 084AH

LO A.(label)

has executed. the Accumulator will contain 2015.

Remember that EOU 1s an assembler directive rather than an instruction: 1t tells the As­
sembler to use the 16-bit value 084A15 wherever the label appears.
The instruction

LO A.(label)

1s equivalent to the two instructions

LO HL.label
LO A(HL)

When vou are loading a single value from memorv. the LO A,(label) 1nstruct1on 1s prefer­
red: 1t uses one 1nstruct1on and three ob1ect program bytes to do what the LO HUabel.
LO A.(HL) comb1nat1on does 1n two instructions and four object program bytes. Also.
the LO HUabel. LO A,(HLI combination uses the Hand L registers. which LO A(label)
does not.

3-95

LO A,(rp)-LOAD ACCUMULATOR FROM MEMORY LOCATION
ADDRESSED BY REGISTER PAIR

A

B.C
D.E
H.l
SP
PC
IX

IY
I
R

I
S Z AcPION C

I I I I I I
yy

mm mm

B

I

Data

I Memorv I
I I - . - ppqq yy _j •

}-;..sc or DE contain ppqq c§J
- ,, 0 L....111. - _.. mmmm + 1

LD A.(rp)

]L
.......
0 if register pa1r=BC
1 if register pa1r=DE

Program
Memorv

000x1010 mm mm
mmmm+1
mmmm+2

t----tmmmm + 3

Load the contents of the memory byte (addressed by the BC or DE register pa1rl into the

Accumulator.

Suppose the B register contains 0815. the C register contains 4A15. and memory byte

084A15 contains 3A1 fr After the instruction

LO A.(BC)

has executed. the Accumulator will contain 3A15.

Normally, the LO A.(rp) and LO rp.data will be used together. since the LO rp,data in­

struction loads a 16-bit address into the BC or DE registers as follows:

LO BC.084AH
LO A.(BC)

3-96

LD dst,src- MOVE CONTENTS OF SOURCE REGISTER TO
DESTINATION REGISTER

S Z Ac PIO N C

FI I I I I I I
A

B.C
D.E
H.l
SP
PC
IX
IY

R

mmmm

I

Register A. B. C.

~'"''~'A. '· C D. E. H. l

!.D. E. Hf l

- --- --1 mmmm + 1 -
-

ill
01 ddd SSS
~

000 for dst or src=B
001 for dst or src=C
010 for dst or src=D
011 for dst or src=E
100 for dst or src=H
101 for dst or src=L
111 for dst or src=A

Data

~
Program
Memorv

01dddsss mmmm
-----tmmmm + 1

mmmm+2
-----tmmmm + 3

The contents of any designated register are loaded into any other register.
For example:

LO A.B

loads the contents of Register B into Register A.

LO L.D

loads the contents of Register 0 into Register L.

LO C.C

does nothing. since the C register has been specified as both the source and the
destination.

3-97

LO HL,(addr)- LOAD REGISTER PAIR OR INDEX REGISTER
LO rp, (addr) FROM MEMORY USING DIRECT ADDRESSING
LO IX,(addr)
LO IV,(addr)

S Z Ac P/0 N C

F

A

B.C
D.E
H.L
SP
PC

IX
IY
I
R

I I I I

&
yy

I I I

mm mm

B

I

,,
xx

~-~1. mmmm+9

-

The illustration shows execution of LO HL(ppqq):

LO HL.addr .._,---.,--
2A ppqq

Data
Memorv

xx
yy

Program
Mernorv

2.A
qq

ppqq

ppqq + 1

mm mm
mmmm+ 1

·11--P.._P_-11mmmm + 2
----;immmm + 3

Load the HL register pair from directly addressed memorv location.

Suppose memorv location 400416 contains AD16 and memorv location 400516 con­

tains 1216' After the instruction

LO HL. (4004H)

has executed. the HL register pair will contain 12AD16·

!&
ED 01 dd 1011 ppqq

00 for rp is register pair BC
01 for rp 1s register pair DE
10 for rp 1s register pair HL
11 for rp 1s Stack Pointer

Load register pair from directly addressed memorv.

Suppose memory location 49FF16 contains BE16 and memorv location 4A0016 con­

tains 3316. After the instruction

LO DE.(49FFH)

has executed. the DE register pair will contain 33BE16.

LO IX.(addr)
---..-"---..-"
DO 2A ppqq

Load IX register from directly addressed memory.

3-98

Suppose memorv location 011115 contains FF15 and memory location 011215 con­
tains 5615. After the instruction

LO IX,(0111 H)
has executed. the IX register will contain 56FF15.

LO IY.(addrl .._,,_.._,,_
FD 2A ppqq

Load IY register from directly addressed memory.
Affects IY register instead of IX. Otherwise 1dent1cal to LO IX(addrl.

LD l,A - LOAD INTERRUPT VECTOR OR REFRESH
LD R,A REGISTER FROM ACCUMULATOR

S Z Ac P/O N C

FI I I I I I I
A

8,C
D.E
H.L
SP
PC
IX
IY
IV
R

mm mm

D
I

xx

-~" -
...

The illustration shows execution of LO R.A.

LOR.A
~

ED 4F
Load Refresh register from Accumulator.

--mmmm +2
~ -

Suppose the Accumulator contains 7F15. After the instruction

LO R.A
has executed. the Refresh register will contain 7F15.

LO I.A
~

ED 47

Load Interrupt Vector register from Accumulator.

3-99

Data

Program
Memorv

11-__.E,.,D_-1 mmmm
11--4"-F--1 mmmm + !

11---- ~~~~:; ----

LO reg.data - LOAD IMMEDIATE INTO REGISTER
S Z Ac P/O N C

FI I I I I I I

A

B.C
D.E
H.l
SP
PC
IX
IY
I
R

mm mm

I

I

}-""""""'" " Register A. B. C.
D. E, Hor L

,-
L--.. - _1 mmmm+2 -_

00 xxx 110 VY

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

-

Data

Program
Memory

OOxxxl 10 mmmm
VY mmmm+ 1

11-----mmmm + 2
11-----mmmm + 3

Load the contents of the second object code byte into one of the registers.

When the instruction

LD A.2AH

has executed. 2A15 1s loaded into the Accumulator.

3-100

LO rp,data-LOAD 16 BITS OF DATA IMMEDIATE INTO
LO IX.data REGISTER
LO IV.data

S Z AcP/ON C

n I I I I I I
A

B.C
D.E
H.l
SP
PC
IX
IY
I
R

mm mm

I
I

~'"'"""°'

Data

HL or
SP. Load ppqq i nto
selected destina tlon

-- --r~mmm + 3) Program
Memory

00xx0001

,_J qq
pp

The illustration shows execution of LD rp,data:

JK1
00 xx 0001 ppqq

-,.-..

00 for rp 1s register pair BC
01 for rp is register pair DE
10 for rp 1s register pair HL
11 for rp is Stack Pointer

mmmm
mmmm+1
mmmm+2
mmmm+3

Load the contents of the second and third obiect code bvtes into the selected register
pair. After the instruction

LD SP.217AH

has executed. the Stack Pointer will contain 217A15.

LD IX. data
'-v-' -,.-..

DD 21 ppqq

Load the contents of the second and third obiect code bytes into the Index register IX.

LD IY. data --.- -,.-..

FD 21 ppqq

Load the contents of the second and third ob1ect code bytes into the Index Register IY

Notice that the LD rp,data instruction 1s equivalent to two LD reg.data instructions.

For example:

LD HL.032AH

1s equivalent to

LD H.03H
LD L.2AH

3-101

LO reg,(HL) - LOAD REGISTER FROM MEMORY
LO reg, (IX +disp)
LO reg, (IV +disp)

S Z Ac P/O N C Data

Fi I I I I I I
A

8.C
D.E
H.L
SP

}--,.,;,w A, '· C,
D. E, Hor L ~ VY

PC
IX
IY
I
R

mm mm
ppqq

I
I

- -- - • mmmm+3
-_

~pqq + d ""\--:;
~ -

The illustration shows execution of LO reg.(IX+disp):

~I
DD01xxx110d

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg =H
101 for reg=L
111 for reg=A

Program
Memory

DD
Olxxxl 10·

d

+d
pp qt

mmm
mmm
mmm
mmm

m
m+ 1
m+2
m+3

Load specified register from memory location (specified by the sum of the contents of

the IX register and the displacement digit d).

Suppose ppqq=400415 and memory location 401015 contains FF16· After the 1nstruc­

t1on

LO B(lx+OCH)

has executed. Register B will contain FF15.

~T'
FD 01 xxx 110 d

T liloo same as for LO reg.(IX+disp)

This instruction 1s 1dent1cal to LO reg,(IX+displ. except that 1t uses the IY register in­

stead of the IX register.

3-102

m
01xxx110 -.-

l -. same as for LD reg,(IX+disp)

Load specified register from memory location (specified by the contents of the HL
register paid.

LD SP,HL - MOVE CONTENTS OF HL OR INDEX REGISTER
LD SP.IX TO STACK POINTER
LD SP.IV

S Z Ac P/O N C

Fl I I I I I I

A

B.C
D,E
H.L
SP
PC
IX
IY
I

R

pp

mm mm

I
I

qq

~-,. ~
--- ·1.. mmmm+ 1

The illustration shows execution of LD SP.HL.

LD SP.HL .._,,_,.
F9

Load contents of HL into Stack Pointer.

Suppose pp=0815 and qq=3F15. After the instruction

LD SP.HL

has executed. the Stack Pointer will contain 083F15.

LD SP.IX .._,,_,.
DD F9

Load contents of Index Register IX into Stack Pointer.

LD SP,IY
~

FD F9

Load contents of Index Register IY into Stack Pointer.

3-103

Data

Program

mm mm
mmmm+ 1
mmmm+2
mmmm+3

LD (addr),A - STORE ACCUMULATOR IN MEMORY USING
DIRECT ADDRESSING

A

B.C
D.E
H,L
SP
PC
IX
IY
I
R

I
S Z Ac P/O N C

I I I I I I
VY

mm mm

D

I

-
- ~..('"mmmm+:)
- -

kr
32 ppqq

Data
Memorv

VY

Program
Memorv

32
qq
pp

ppqq

mm mm
mmmm+1
mmmm+2

11------11 mmmm + 3

Store the Accumulator contents in the memory byte addressed directly by the second

and third bytes of the LD (addr).A 1nstruct1on object code.

Suppose the Accumulator contains 3A15. After the instruction

label EOU 084AH

LD (labell.A

has executed, memory byte 084A15 will contain 3A15.

Remember that EOU 1s an assembler directive rather than an 1nstruct1011. 1t tells the As­
sembler to use the 16-bit value 084AH whenever the word "label" appears.

The instruction

1s equivalent to the two instructions

LD (addrl.A

LD H.label
LD (HU.A

When you are storing a single data value in memory, the LD (labell.A instruction 1s

preferred because 1t uses one 1nstruct1on and three object program bytes to do what the
LD H(labell. LD (HU.A combination does in two instructions and four ob1ect program

bytes. Also. the LD H(labell. LD (HU.A combination uses the Hand L registers. while the
LD (labell.A instruction does not.

3-104

LO (addr),HL-STORE REGISTER PAIR OR INDEX
LO (addrl.rp REGISTER IN MEMORY USING DIRECT
LO (addr) ,xy ADDRESSING

F

A

B,C
D.E
H,L
SP
PC
IX
IY
I
R

I
S Z AcP/ON C

I I I I I I

/
xx

mmmm

I
I

- -r

I
yy

-- -~ - _1 mmmm+4 - """- -

The illustration shows execution of LO (ppqql.DE:

]!}!;_
ED 01 xx 0011 ppqq

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp 1s register pair HL
11 for rp 1s Stack Pointer

Data
Memorv

VY
xx

Program
Memory

ED
01010011

qq
pp

ppqq
ppqq + 1

mmmm
mmmm+1
mmmm+2
mmmm+3

Store the contents of the specified register pair 1n memory. The third and fourth ob1ect
code bvtes give the address of the memory location where the low-order byte 1s to be
written. The high-order byte 1s written into the next sequential memory location.

Suppose the BC register pair contains 3C2A15. After the instruction

label EOU 084AH

LO (labell.BC

has executed. memory byte 084A16 will contain 2A16' Memory byte 084B16 will con­
tain 3C15.

Remember that EOU 1s an assembler directive rather than an instruction: 1t tells the As­
sembler to use the 16-bit value 084A15 whenever the word "label" appears.

~
22 ppqq

This is a three-byte version of LO (addrl.rp which directly specifies HL as the source
register pair.

3-105

1K
DD 22 ppqq

Store the contents of Index register IX in memory. The third and fourth object code
bytes give the address of the memory location where the low-order bvte 1s to be writ­
ten. The high-order byte 1s written into the next sequential memory location.

rr
FD 22 ppqq

This instruction 1s identical to the LO (addr).IX instruction. except that 1t uses the IY
register instead of the IX register.

3-106

LO (HL),data-LOAD IMMEDIATE INTO MEMORY
LO (IX+disp),data
LO (IV +disp) ,data

F

A

B.C
D.E
H.L
SP
PC
IX
IV
I
R

I
S Z AcP/ON C

I I I I I I

mm mm
ppqq

,...

--~ - mmmm+4 - -

-
-.c:ppqq + d ~ ---

The illustration shows execution of LO (IX+d).xx:

LO (IX +disp).data --.,-..- -.- -..-
DD 36 d xx

Data
Memorv

xx

Program
Memorv

DD
36
d
xx

+d

~l

mmm
mmm
mmm

m
m+ 1
m+2
m+3 mmm

Load Immediate into the Memory location designated by base relative addressing.
Suppose ppqq=540015. After the instruction

LD (IX+9l.FAH

has executed. memory location 540915 will contain FA15.

LD (IY+disp).data --.,-..- -.- -.-
FD 36 d xx

This instruction 1s 1dent1cal to LO (IX +disp).data. but uses the IY register instead of the
IX register.

LO (HU.data
---....-" -.-

36 xx

Load Immediate into the Memorv location (specified by the contents of the HL register
pa1rl.

The Load Immediate into Memory instructions are used much less than the Load Im­
mediate into Register 1nstruct1ons.

3-107

LD (Hl),reg - LOAD MEMORY FROM REGISTER
LD (IX +disp) ,reg
LD (IY+disp),reg

S ZAcP/ON C

FI I I I I I I

A

B.C
D.E
H,L
SP
PC
IX
IV
I
R

PP

mmmm

I
I

Contents of A, B,
C. D, E, Hor L

~isyy

qq -
- r 0 L-!' - ..s. mmmm + 1

The illustration shows execution of LO (HU.reg:

Tl
01110xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg =H
101 for reg=L
111 for reg=A

Data

VY ppq

t
Program
Memorv

01110xxx m
m

mmm
mmm+1

mmmm+2
r-----, mmmm + 3

Load memory location (specified by the contents of the HL register pair) from specified

register.

Suppose ppqq=450015 and Register C contains F915. After the 1nstruct1on

LD (HU.C

has executed. memory location 450015 will contain F915.

J:Y
DD 01110 xxx a

T .., same as for LO (HU.reg

Load memory location (specified by the sum of the contents of the IX register and the

3-108

displacement value d) from specified register.

LD (IY+disp).reg

:Li
FD01110xxxa

T'------1i.•same as for LD (HU.reg

This instruction 1s identical to LD OX+disp).reg. except that 1t uses the IY register in­
stead of the IX register.

LO (rp},A- LOAD ACCUMULATOR INTO THE MEMORY
LOCATION ADDRESSED BY REGISTER PAIR

A

B.C
D.E
H.l
SP
PC
IX

IY

I
R

I
S Z AcPiQN C

I I I I I I
yy

mm mm

I

I

Data
Memory

- yy

} BC or DE
.... contain ppqq

- l I -,- v Program,- ..Ir. mmmm+ 1
Memorv -

000x0010

I

ppqq

!
mm mm
mmmm+ 1
mmmm+2

-----tmmmm+3

LD (rpl.A

~
0 if register pa1r=BC
1 if register pair=DE

Store the Accumulator in the memory byte addressed by the BC or DE register pair.

Suppose the BC register pair contains 084A15 and the Accumulator contains 3A15.
After the instruction

LD (BC).A

has executed. memorv byte 084A15 will contain 3A15.

The LD (rp).A and LD rp.data will normally be used together. since the LD rp.data 1n­
struct1on loads a 16-bit address into the BC or DE registers as follows:

LD BC.084AH
LD (BC).A

3-109

LDD -TRANSFER DATA BETWEEN MEMORY LOCATIONS,
DECREMENT DESTINATION AND SOURCE ADDRESSES

Set if BC-1 ¢ 0, reset otherwise

+ S Z AcP/O N C

Fl I I 0 I I 0 I I
A

8,C tt LIU

D.E rr SS

.L PP qq

SP
PC mmmm
IX
IY
I

R

LDD --.,--
ED AS

Data I Me:o~ I
I •

B
Program
Memorv

ED
AB

ppqq-1
ppqq

rrss-1
rrss

mm mm
mmmm+1
mmmm+2
mmmm+3

Transfer a byte of data from memory location addressed by the HL register pair to

memory location addressed by the DE register pair. Decrement contents of register

pairs BC .. DE. and HL.

Suppose register pair BC contains 004F15. DE contains 454515. HL contains 201215.

and memory location 201215 contains 1815. After the instruction

LDD

has executed. memory location 454515 will contain 1815. register pair BC will contain

004E15. DE will contain 454415. and HL will contain 201115.

3-110

LDDR-TRANSFER DATA BETWEEN MEMORY
LOCATIONS UNTIL BYTE COUNTER IS
ZERO.DECREMENT DESTINATION AND
SOURCE ADDRESSES

LDDR
'-v-'
ED B8

This 1nstruct1on 1s 1dent1cal to LOO. except that 1t 1s repeated until the BC register pair
contains zero. After each data transfer. interrupts will be recognized and two refresh cy­
cles will be executed.

Suppose we have the following contents in memory and register pairs:

Register/Contents Location/Contents
HL 201215 201215 1815
DE 454515 201115 AA15
BC 000315 201015 2515

After execution of

LDDR

register pairs and memory locations will have the following contents:

Register/Contents Location/Contents Location/Contents
HL 200915 201215 1815 454515 1815
DE 454215 201115 AA15 454415 AA15
BC 000015 201015 2515 454315 2515

This instruction 1s extremely useful for transferring blocks of data from one area of
memory to another.

3-111

LOI -TRANSFER DATA BETWEEN MEMORY
LOCATIONS.INCREMENT DESTINATION AND
SOURCE ADDRESSES

Set if BC-1 ,P 0. reset otherwise

S Z AcP,ON C

Fl I I 0 I I 0 I I
A

B,C tt
D.E rr

.L PP
SP
PC mm mm
IX
IY
I
R

uu
SS

qq

Data

ED mm mm
AO mmmm+1

mmmm+2
-----1mmmm+3

LOI -...­
ED AO

Transfer a byte of data from memory location addressed by the HL register pair to

memory location addressed by the DE register pair. Increment contents of register pairs

HL and DE. Decrement contents of the BC register pair.

Suppose register pair BC contains 004F15, DE contains 454515. HL contains 201215,
and memory location 201215 contains 1815. After the instruction

LOI

has executed. memory location 454515 will contain 1815, register pair BC will contain

004E15, DE will contain 454615. and HL will contain 201315.

3-112

LDIR-TRANSFER DATA BETWEEN MEMORY
LOCATIONS UNTIL BYTE COUNTER IS
ZERO.INCREMENT DESTINATION AND
SOURCE ADDRESSES

LDIR -..­
ED BO

This instruction 1s 1dent1cal to LOI. except that 1t 1s repeated until the BC register pair
contains zero. After each data transfer. interrupts will be recognized and two refresh cy­
cles will be executed.

Suppose we have the following contents in memory and register pairs:

Register/Contents Location/Contents
HL 201215 201215 1815
DE 454515 201315 CD15
BC 000315 201416 F015

After execution of

LDIR

register pairs and memory will have the following contents:

Register/Contents Location/Contents Location/Contents
HL 201515 201215 1815 454515 1815
DE 454815 201315 CD15 454615 CD15
BC 000015 201415 F015 454715 F015

This instruction is extremely useful for transferring blocks of data from one area of
memory to another.

NEG- NEGATE CONTENTS OF ACCUMULATOR
S ZAcP/ON C

Fix!x!xix! 1 !xi
A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

mm mm

I

I

xx - -) ~-. Xx'+ 1 -_

-

- - 2) -- - 1 mmmm + 2 - -

Data

Program
Memory

1---"'=ED'---t mmmm
1---4""-4'---f mmmm + 1
1-----t mmmm + 2
1-----t mmmm + 3

Negate contents of Accumulator. This 1s the same as subtracting contents of the Ac­
cumulator from zero. The result 1s the two's complement. 80H will be left unchanged.

Suppose xx=5A 16· After the 1nstruct1on

NEG

has executed. the Accumulator will contain A615.

5A 0101 101 0
Two's complement = 1 0 1 0 0 1 1 0

3-113

NOP - NO OPERATION
S Z Ac P/0 N C

Fi I I I I I
A

B,C
D,E
H.L
SP
PC
IX

IY
I
R

mmmm

I

- - ~ -- .-~mmm+ 1

NOP --..-
00

Data

~
Program
M

mm mm
mmmm+1
mmmm+2

mmmm+3

This 1s a one-byte 1nstruct1on which performs no operation. except that the Program

Counter 1s incremented and memory refresh continues. This 1nstruct1on is present for

several reasons:

1) A program error that fetches an ob1ect code from non-existent memory will fetch

00. It is a good idea to ensure that the most common program error will do nothing.

2) The NOP instruction allows you to give a label to an object program byte:

HERE NOP

3) To fine-tune delay times. Each NOP instruction adds four clock cycles to a delay.

NOP is not a very useful or frequently used instruction.

3-114

OR data-OR IMMEDIATE WITH ACCUMULATOR
S ZAcP/ON C

Flx!x!1 lxlolol
A

B,C
D,E
H.L
SP
PC
IX
IY
I
R

mmmm

I
I

xx - -).-- - ~ xx OR VY.

-- ,, 2)
-- -"•"'--mmmm + 2

OR data

F6 VY

Data

Program
Memorv

F6
VY

mm mm
mmmm+ 1
mmmm+2
mmmm+3

OR the Accumulator with the contents of the second instruction object code bvte.
Suppose xx=3A 15. After the instruction

OR 7CH

has executed. the Accumulator will contain 7E16'

3A 0011 101 0
7C 0 1 1 1 1 100

111 0 0 11 1

0 sets s to o.....J Lsix 1 bits. set PIO to 1

LNon-zero result set Z to 0
This 1s a routine logical instruction: 1t 1s often used to tum bits "on" For example, the
instruction

OR 80H

will unconditionally set the high-order Accumulator bit to 1.

3-115

OR reg - OR REGISTER WITH ACCUMULATOR

A

B.C
D.E
H.L
SP
PC
IX

IY

I
R

s ZAcP/ON c

lxlxl 1 1xl 0 1°1
xx

mm mm

I
I

- -
I+

~xx OR yy

+
} °"""°"°'A _..,.C, D. E. H or L

IS VY

B,

. ,, I)
-.:;- "mmmm+ \

OR reg -..--
10110 xxx

OOo for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg =H
101 for reg=L
111 for reg=A

Data

Program
Memory

10110xxx mmmm

11-----ll mmmm + 1
11----..a mmmm + 2
11----..a mmmm + 3

Logically OR the contents of the Accumulator with the contents of Register A. B. C. D.

E. H or L. Store the result in the Accumulator.

Suppose xx=E315 and Register E contains .A815. After the instruction

OR E

has executed, the Accumulator will contain EB15.

E3 1 1 1 0 0 0 1 1
AB= 1010 1000

1 11 0

1 sets S to 1..J

101 1

3-116

L Six 1 bits. set P /0 to 1

LNon-zero result. set Z to 0

OR (HL}-OR MEMORY WITH ACCUMULATOR
OR (IX +disp)
OR (IV +disp)

F

A

B.C
D.E
H.L
SP
PC
IX
IY
I
R

S ZAcP/ON C

ix!x!i!x!o!ol

pp

mm mm

I

-
xx - -- ;y.._ ~ --. xx OR yy

qq
-- -- ~ ~ ..1........_mmmm+l

The illustration shows execution of OR (HU:

OR (HU
~

86

Data
Memory

YV

Program
Memory

86

ppq q

f

m
m

mmm
mmm+1

mmmm+2
mmmm+3

OR contents of memory location (specified by the contents of the HL register pair) with
the Accumulator.

Suppose xx=E315. ppqq=400015. and memory location 400015 contains A815. After
the instruction

OR (HU

has executed. the Accumulator will contain E815.

E3 1 1 1 0 0 0 1 1
AS= 1010 1000 ------

11 1 0 1011

1 sets S to 1.....J Lsix 1 bits. set PIO to 1

LNon-zero result. set Z to 0

OR (IX+disp) --- -DD 86 d

OR contents of memory location (specified bv the sum of the contents of the IX register
and the displacement value d) with the Accumulator.

OR (IY+disp) -,.- ~
FD 86 d

This 1nstruct1on 1s identical to OR (IX +disp), except that 1t uses the IY register instead of
the IX register.

3-117

OUT (C) ,reg - OUTPUT FROM REGISTER

A
B.C
D.E
H.L
SP
PC
IX
IY
I
R

s

I I
Z Ac P/O N C

I I I I I I
I

yy

mm mm

I

t - 110 port vv I - .
}--,.,,.J A ' c

D. E, Hor L

- ,-
- _ -- 1. mm mm + 2

-

li
ED 01xxx001

000 for reg=B
001 for reg =C
010 for reg=D
011 for reg=E
100 for reg=H
101 forreg=L
111 for reg=A

Data

~
Program
Memorv

ED mm mm
01xxx001 mmmm + 1

mmmm+2
-----.mmmm+3

Suppose yy=1 F15 and the contents of Hare AA15. After the execution of

OUT (C).H

AA15 will be 1n the buffer of 1/0 port 1F15.

3-118

OUTD - OUTPUT FROM MEMORY. DECREMENT ADDRESS

S Z Ac P/O N C

Fiulx!ulu!1' I
A

B.C xx
D.E
H.L pp
SP
PC mm mm
IX
IY
I
R

xx-1

VY

qq

OUTD _,_.,.
ED AB

Data
Memorv

Program
Memorv

ED mm mm
AB mmmm+ 1

mmmm+2
1-----1 mmmm + 3

Output from memory location specified by HL to 1/0 port addressed by Register C.
Registers B and HL are decremented.

Suppose xx=OA15. yy=FF15. ppqq=500015. and memory location 500015 contains
7715. After the instruction

OUTD

has executed. 7715 will be held in the buffer of 1/0 port FF15. The B register will con­
tain 0915. and the HL register pair 4FFF15.

OTDR- OUTPUT FROM MEMORY. DECREMENT ADDRESS,
CONTINUE UNTIL REGISTER B=O

OTDR
'-.,,.-'

ED BB

OTDR 1s identical to OUTD. but is repeated until Register B contains 0.
Suppose Register B contains 0315. Register C contains FF15. and HL contains 500015.
Memory locations 4FFE16 through 500015 contain:

After execution of

Location/Contents

4FFE15 CA15
4FFF15 1B15
500015 F115

OTDR

register pair HL will contain 4FFD15. Register B will contain zero. and the sequence
F115. 1B15. CA 16 will have been written to 1/0 port FF16·
This instruction 1s very useful for transferring blocks of data from memory to output
devices.

3-119

OUTI - OUTPUT FROM MEMORY. INCREMENT ADDRESS

S Z Ac P/O N C

Flu!x!u!u!i! I

xx-1

A

B,C c==~xxc==~~~;t~vv:Lj

Data
Memorv

-------i. __ _. ppqq

D.E ll--------+------+-:~A.
H.L t---'P..:.P __ __. __ ___;q..:.q __ -f::__::::::.: __ ..:.._ __ _'.'_J
SP
Pct------,,,m~m~m~m,,..------t-~

IX
IYll--------------t

1' ---------------11
R

OUTI
_,-

ED A3

Program
M

mm mm
mmmm+1
mmmm+2
mmmm+3

Output from memorv location specified bv HL to 1/0 port addressed by Register C.

Register 8 1s decremented and the HL register pair 1s incremented.

Suppose xx=OA15. yy=FF15. ppqq=500015. and memorv location 500015 contains

7715. After the instruction

OUTI

has executed, 7715 will be held in the buffer of 1/0 port FF15. The 8 register will con­

tain 0915 and the HL register pair will contain 500115.

OTIR - OUTPUT FROM MEMORY. INCREMENT ADDRESS,
CONTINUE UNTIL REGISTER B=O

OTIR
-.,-
ED 83

OTIR 1s 1dent1cal to OUT!. except that 1t 1s repeated until Register 8 contains 0.

Suppose Register 8 contains 0415, Register C contains FF15. and HL contains 500015.

Memorv locations 500015 through 500315 contain:

After execution of

Location/Contents

500015 CA15
500115 1815
500215 8115
500315 AD15

OTIR

register pair HL will contain 500415. Register 8 will contain zero and the sequence

CA15. 1815. 8115 and AD15 will have been written to 1/0 port FF15.

This instruction 1s very useful for transferring blocks of data from memory to an output

device.

3-120

OUT (port),A- OUTPUT FROM ACCUMULATOR

F

A

B.C
D.E
H.l
SP
PC
IX
IY
I
R

s

I I
Z Ac P/O N C

I I I I I

mm mm

I
I

+
I 1/0 port yy ~

+

-- ,- 2) - - a........_mmmm+2
-

OUT (port).A u
03 VY

Data

~
Program
Memory

03
yy

mmmm
mmmm+1
mmmm+2
mmmm+3

Output the contents of the Accumulator to the 1/0 port identified by the second OUT in­struction ob1ect code byte.

Suppose 3615 1s held in the Accumulator. After the instruction

OUT (1AH).A
has executed. 3615 will be in the buffer of 110 port 1A15.
The OUT 1nstruct1on does not affect any statuses. Use of the OUT instruction 1s very hardware-dependent. Valid 1/0 port addresses are determined by the way in which 1/0 logic has been implemented. It 1s also possible to design a microcomputer system that accesses external logic using memory reference instructions with specific memory ad­dresses. OUT instructions are frequently used in special ways to control microcomputer logic external to the CPU.

3-121

POP rp- READ FROM THE TOP OF THE STACI<

POPIX
POPIY

S Z AcP/ON C

A

B.C
D.E
H.L
SP
PC
IX

IY
I
R

I I I I I I I

ssss
mm mm

I
I

~ -A ssss+2

.// -

All> - ,- -
.....,,a.~ ..ll mmmm+1

- -

Data
Memory

I qq

I pp

Program
Memory

11000001

ssss
ssss + 1
ssss + 2

mm mm
mmmm+1
mmmm+2

-----11mmmm+3

The illustration shows execution of POP BC.

POP rp

~
11 xx 0001

00 for rp is register pair BC

01 for rp 1s register pair DE

10 for rp 1s register pair HL
11 for rp is register pair A and F

POP the two top stack bytes into the designated register pair.

Suppose qq=0115 and pp=2A1fr Execution of

POP HL

loads 0115 into the L register and 2A15 into the H register. Execution of the instruction

POP AF

loads 01 into the status flags and 2A15 into the Accumulator. Thus. the Carry status

will be set to 1 and other statuses will be cleared.

POP IX
~

DD E1

POP the two top stack bytes into the IX reg1:>ter.

POP IY
~

FD E1

POP the two top stack bytes into the IY register.

The POP instruction 1s most frequently used to restore register and status contents

which have been saved on the stack; for example. while servicing an interrupt.

3-122

PUSH rp-WRITE TO THE TOP OF THE STACK
PUSH IX
PUSHIY

S Z Ac P/O N C

F

A

B.C
D.E
H,L
SP
PC
IX
IY
I
R

I I I I I I I

ssss
mm mm

ppqq

l
I

~
ssss-2)

-

141' - 7)
1 -- .. 1. mmmm + 2 -_ -

Data
Memory

qq
pp

Program
Memory

FD
E5

ssss-2
ssss-1
ssss

mm mm
mmmm+ 1
mmmm+2

11------lmmmm + 3

The illustration shows execution of PUSH IY.

PUSH IY
~

FD E5

PUSH the contents of the IY register onto the top of the stack.

Suppose the IY register contains 45FF15. Execution of the instruction

PUSH IY

loads 4515, then FF15 onto the top of the stack.

PUSH IX
~

DD E5

PUSH the contents of the IX register onto the top of the stack.

IX
11 xx 0101

00 for rp 1s register pair BC
01 for rp 1s register pair DE
10 for rp is register pair HL
11 for rp 1s register pair A and F

PUSH contents of designated register pair onto the top of the stack.

Execution of the 1nstruct1on

PUSH AF

loads the Accumulator and then the status flags onto the top of the stack.
The PUSH instruction 1s most frequently used to save register and status contents; for
example. before servicing an interrupt

3-123

----------- -----

RES b,reg-RESET INDICATED REGISTER BIT

S Z Ac P/O N C

FI I I I I I I
YYYYYYYV 0

i

-

A

B.C
D.E
H.L
SP
PC
IX
IY

mm mm - ,- 2)
~-___.. mmmm+2

I
R

I
I

_Il\
CB 10

Bit

0
1
2
3
4
5
6
7

Reset indicated bit within specified register.

After the 1nstruct1on

bbb xxx -.- -.-
bbb ~

000 000
001 001
010 010
011 011
100 100
101 101
110 111
111

RES 6.H

Register

B
c
D
E
H
L
A

Data

Program
Memory

CB mmmm
10bbbxxx mmmm + 1

mmmm+2
1----mmmm+3

has executed. bit 6 in Register H will be reset. (Bit 0 is the least significant bit.)

3-124

RES b,(HL)-RESET BIT b OF INDICATED MEMORY POSITION
RES b,(IX+disp)
RES b, (IY +disp)

S ZAcP/ON C

Fl I I I I I I
A

B.C
D.E
H.L
SP
PC mmmm
IX ppqq
IY
I I

Data

YvYYYYYV ppqq + d I ~mo• I
• ll

Program
Memorv

DD mmm m
R I

ppqq + d"l:::::'_.,,. ·, _ _.::._ ___ -- - CB mmm m+1
d mmm m+2

m+J 10bbb110 mmm
mmm m+4

The illustration shows execution of SET b.OX+disp). Bit 0 1s execution of SET
b,(IX+disp). Bit 0 1s the least significant bit.

~
DDCB d 10 bbb 110

bbb Bit Reset
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Reset indicated bit within memory location indicated by the sum of Index Register IX
and d.

Suppose IX contains 411015. After the instruction

RES 0.0X+7l

has executed. bit 0 in memory location 411715 will be 0.

~
FDCB d 10 bbb 110

-,_.
bbb 1s the same as in RES b.OX+disp)

This 1nstruct1on 1s identical to RES b. (IX +dis pl. except that 1t uses the IY register instead

3-125

of the IX register.

RES b.(HL)

111
CB 10bbb110

bbb 1s the same as in RES b.OX+disp)

Reset indicated bit within memory location indicated by HL.

Suppose HL contains 444415. After execution of

RES 7.(HU

bit 7 in memory location 444415 will be 0.

RET - RETURN FROM SUBROUTINE

S Z Ac; PION C

FI I I I I I I
A

B.C------...it-----------4

D.E._ ______ -+--------1
H.L
splt--------,x~xx~x:--------t--...,.r

pct------rrm~m~m;m;;;-------t:t:--....._.;;:::_;_.-

1x IY1---------------1
I
R

RET

C9

Data

Program
M

mm mm
mmmm+1
mmmm+2
mmmm+3

Move the contents of the top two stack bytes to the Program Counter: these two bytes

provide the address of the next 1nstruct1on to be executed. Previous Program Counter

contents are lost. Increment the Stack Pointer by 2. to address the new top of stack.

Every subroutine must contain at least one Return (or conditional Return) 1nstruct1on:

this 1s the last instruction executed within the subroutine. and causes execution to

return to the calling program.

3-126

RET cond - RETURN FROM SUBROUTINE IF CONDITION
IS SATISFIED

~
11 xxx 000

000
001
010
011
100
101
110
111

Condition

NZ Non-Zero
Z Zero
NC Non-Carry
C Carry
PO Parity Odd
PE Parity Even
P Sign Pos1t1ve
M Sign Negative

Relevant Flag

z
z
c
c

PIO
PIO
s
s

This instruction 1s 1dent1cal to the RET instruction. except that the return 1s not ex­
ecuted unless the condition 1s satisfied: otherwise. the instruction sequentially follow­
ing the RET cond 1nstruct1on will be executed.

Consider the 1nstruct1on sequence:

CALL
AND

s 11"t'lr---....

SUBR
7CH.-.

1
I
I
I
I
I

:First subroutine instruction

: condition satisfied

cond 1
----------'

condition not
satisfied

80H

After the RET cond 1s executed. if the condition 1s satisfied then execution returns to the
AND instruction which follows the CALL. If the condition 1s not satisfied. the OR in­
struction. being the next sequential instruction. 1s executed.

3-127

RETI - RETURN FROM INTERRUPT

A

B.C
D.E
H.l
SP
PC
IX
IY
I
R

I
S Z AcPION C

I I I I I I

xx xx
mm mm

B

I

-
~

RETI .._,,_..
ED 4D

--
I xxxx+ 2 - -

-
ppqq _)..
-

Data
Memorv

qq
pp

Program
Memorv

ED
4D

xxxx
xxxx +,
xxxx + 2

mm mm
mmmm+1
mmmm+2
mmmm+3

Move the contents of the top two stack bytes to the Program Counter: these two bytes

provide the address of the next instruction to be executed. Previous Program Counter

contents are lost. Increment the Stack Pointer by 2. and address the new top of stack.

This instruction 1s used at the end of an interrupt service routine. and. in addition to

returning control to the interrupted program. it 1s used to signal an 1/0 device that the

interrupt (outine has been completed. The 1/0 device must provide the logic necessarv

to sense the instruction operation code: refer to An Introduction to Microcom­

puters: Volume 2 for a descnpt1on of how the RETI instruction operates with the Z80

familv of devices.

3-128

RETN - RETURN FROM NON-MASKABLE INTERRUPT

A
8,C

D.E
H,L
SP
PC
IX
IY
I
R

I I I I I I I

xx xx
mmmm

I
I

- ~
--l xxxx+ 2

~:;_r-

RETN ..__
ED 45

Data
Memory

qq
pp

Program
Memory

ED
45

mmmm
mmmm+l
mmmm+2

mmmm
mmmm+ 1
mmmm+2

r-----i mmmm + 3

Move the contents of the top two stack bytes to the Program Counter: these two bvtes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer bv 2 to address the new top of stack.
Restore the interrupt enable logic to the state 1t had prior to the occurrence of the non­
maskable interrupt.

This instruction 1s used at the end of a service routine for a non-maskable interrupt. and
causes execution to return to the program that was interrupted.

3-129

Rl reg-ROTATE CONTENTS OF REGISTER LEFT
THROUGH CARRY

s Z Ac P/O N i
FHXIXIOIXIO,I v.

t 'a A

-·- ,_
D.E
H.L
SP --,- ~ PC mm mm - - _1, mmmm + 2
IX

IY
I H
R I

The illustratton shows execution of RL C.

_t\
CB 00010 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H

101 for reg=L
111 for reg=A

Rotate contents of specified register left one bit through Carry.

Suppose D contains A915 and Carry=O. After the instruction

RL D

has executed. D will contain 5215 and Carry will be 1

Before After

Data

Program
Memorv

CB mm mm
0001uuv1 mmmm + 1

mmmm+2 11---- mmmm + 3

Register D Carry Register D Carry

1101010011 IQ! ...re: [i]

0 sets S to 0 ~-zero result set Z to 0

3 ones. set P /0 to 0

3-130

RL (Hl) - ROT A TE CONTENTS OF MEMORY LOCATION
RL (IX+disp) LEFT THROUGH CARRY
RL (IV +disp)

F X X 0 X 0.

A

B.C
D.E
H.L
SP
PC
IX

IY

I

R

mmrnm
ppqq

I
I

- ,,-__ , mmmm+4 - -

-

Data
Memory

OD
CB
d
16

ppqq + d .,rllll""--;1-_.:;,.....--1

The illustration shows execution of RL (IX+disp):

RL (IX+disp) -.-,,._., ~

~

mm mm
mmmm+ 1
mmmm+2
mmmm+3
mmmm+4

Rotate contents of memory location (specified by the sum of the contents of Index
Register IX and displacement integer d) left one bit through Carry.

Suppose the IX register contains 400015. memory location 400715 contains 2F, 5. and
Carry 1s set to 1. After execution of the instruction

RL (IX+7)

memory location 400715 will contain 5F15, and Carry 1s 0:

Memory Carry Memory Carry

1001011111 OJ ~ [QJ

0 sets S to O~ L....Non-zero result. set Z to 0
6 ones. set P /0 to 1

R
FD CB d 16

This instruction 1s 1dent1cal to RL (IX +dis pl. but uses the IY register instead of the IX
register.

3-131

RL {HU
~

CB 16

Rotate contents of memory location {specified by the contents of the HL register pair)

left one bit through Carry.

RLA- ROTATE ACCUMULATOR LEFT THROUGH CARRY

' SZAcP/ON'

I~ Fl I lol lol""I
~

B.C
D.E
H.L
SP
PC mm mm -- -• mmmm + _0
IX

-
IY

I I
R I

RLA

17

Rotate Accumulator contents left one bit through Carry status.

Data

~
Program
M

mm mm
mmmm+ 1
mmmm+2
mmmm+3

Suppose the Accumulator contains 2A16 and the Carry status 1s set to 1. After the in­

struction

RL.A

has executed. the Accumulator will contain F515 and the Carry status will be reset to 0:

Before After

Accumulator Carry Accumulator Carry

lo 1 1 1 1 o 1 o I DJ 11111 01011 @]

3-132

RLC reg - ROTATE CONTENTS OF REGISTER LEFT CIRCULAR

- -
Z Ac P/0 N C)

-
s

FIXIXIOIXIOI .,..-
'r

A

B.C

-·- ~

H.L
SP - ~ 2) PC mm mm - --1 mmmm +2
IX - -- -IY
I I
Fi

The illustration shows execution of RLC E.

n
CB 000 00 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Data

Program
Memory

CB mm mm
00000011 mmmm + 1

mmmm+2
-----tmmmm+3

Rotate contents of specified register left one bit. copying bit 7 into Carry.

Suppose Register D contains A915 and Carry 1s 1. After execution of

RLC D

Register D will contain 5315 and Carry will be 1 ·

Before

Register D Carry

1101 0 100 1 I IJJ

0 sets S to 0
4 ones. set P /0 to 1

3-133

After

Register D Carry

IJJ

RLC (HL)­
RLC (IX +disp)
RLC (IV +disp)

ROT ATE CONTENTS OF MEMORY LOCATION
LEFT CIRCULAR

A

B.C
D.E
H.L
SP
PC
IX

IY
I
A

pp

mmrnm

I

I

qq

- ,, :)
.-_ - _I\ mmmrn + 2 -

The illustration shows execution of RLC (HU:

RLC (HU
'-v-'

CB 06

Data
Memory

Program
Memory

t
CB mmm
06 mmm

m
m+1

mmmm+2
1----~ mmmm + 3

Rotate contents of memory location (specified by the contents of the HL register paid

left one bit. copying bit 7 into Carry.

Suppose register pair HL contains 54FF15. Memory location 54FF15 contains A515.
and Carry 1s 0. After execution of

RLC (HU

memory location 54FF15 will contain 4B15. and Carry will be 1

Before After

Memory Carry

1101001011 @]

0 sets S to 0
4 ones. set P /0 to 1

RLC (IX+disp)
'-v-'-

~

Memory Carry

[j]

Rotate memory location (specified by the sum of the contents of Index register IX and
displacement integer d) left one bit. copying bit 7 into Carry.

Suppose the IX register contains 400015. Carry 1s 1. and memory location 400715 con­
tains 2F15. After the instruction

RLC (IX+7)

3-134

has executed. memory location 400715 will contain 5E15. and Carry will be 0:

Before After

Memory Carry Memory Carry

1001011111 III ~ @J

0 sets S to 0 ._j L.Non-zero result. set Z to 0
5 ones. set P /0 to 0

RLC (IY+disp)
"-.,.-.' -.-

J;;&
This instruction is 1dent1cal to RLC (IX +disp). but uses the IY register instead of the IX
register.

j

RLCA-ROTATE ACCUMULATOR LEFT CIRCULAR

S Z AcP/ON 0
Fl I IO I Io I

B.C
D.E
H.L
SP
PC mm mm
IX

IY
I I
R I

--
'r

-
- --r mmmm+ 1 - ~ 1)
~

RLCA ..__..
07

-

Rotate Accumulator contents left one bit. copying bit 7 into Carry.

Data

Program ':

mm mm
mmmm+ 1
mmmm+2
mmmm+3

Suppose the Accumulator contains 7A16 and the Carry status 1s set to 1. After the in­
struction

RLCA

has executed. the Accumulator will contain F415 and the Carry status will be reset to 0:

Before After

Accumulator Carry Accumulator Carry

1011110101 OJ 1111101001 @]
RLCA should be used as a logical instruction.

3-135

RLD - ROT ATE ONE BCD DIGIT LEFT BETWEEN
THE ACCUMULATOR AND MEMORY LOCATION

S Z Ac PIO N C

Flx!x!o!x!o! I
Data

~~~l ~~Memorv 
A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IY 
I 
R 

pp 

x I 

qq 

mmmm 

I -

y 

-- ~ 
- - • mmmm + 2 -

RLD .._,,_., 
ED 6F 

-

; s 

Program 
Memory 

ED 
6F 

ppqq 

t 

mmm 
mmm 

m 
m+ 1 

t-----«mmmm+2 ____ mmmm+3 

The four low-order bits of a memory location (specified by the contents of register pair 

HU are copied into the four high-order bits of the same memory location. The previous 

contents of the four high-order bits of that memory location are copied into the four 

low-order bits of the Accumulator. The previous four low-order bits of the Accumulator 

are copied into the four low-order bits of the specified memorv location. 

Suppose the Accumulator contains 7F15. HL register pair contains 400015. and memo­

ry location 400015 contains 1215. After execution of the instruction 

RLD 

the Accumulator will contain 7115 and memory location 400016 will contain 2F15: 

Before After 

Accumulator Memorv Accumulator Memory 

1 F J o:J]J:_rr1 ml 
\ \._.,/lf~ ..... _, 

high-order b1t=O~::t-~~~-O Non-zero result. set Z to 0 

4 ones. set P /0 to 1 

3-136 



RR reg - ROT ATE CONTENTS OF REGISTER RIGHT THROUGH 
CARRY 

, s Z Ac PION c 

FIXIXIOIXIOI ~ 

f A 
·- --·-
D.E 
H.L 
SP 

- -··1~mmm+9 PC mmmm 
IX 
IY 
I I 
R 

The illustration shows execution of RR C. 

n 
CB 00011 xxx 

000 for reg=B 
001 for reg=C 
010 for reg=D 
011 for reg=E 
100 for reg=H 
101 forreg=L 
111 for reg=A 

Rotate contents of specified register nght one bit through Carrv. 

Data 

Program 
Memorv 

CB mm mm 
00011001 mmmm + 1 

mmmm+2 
It-----« mmmm + 3 

Suppose Register H contains OF 16 and Carrv 1s set to 1. After the instruction 

RR H 

has executed. Register H will contain 8715. and Carry will be 1 

Before After 

Register H Carry Register H Carry 

loo oo 111 11 OJ OJ 

1 sets S to 1 
4 ones. set P /0 to 1 

LNon-zero result. set Z to 0 

3-137 



RR (Hl) - ROTATE CONTENTS OF MEMORY LOCATION 
RIGHT THROUGH CARRY 

RR (IX +disp) 
RR (IV +disp) 

s Z AcP'ON q 

A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IY 

I 

R 

IXIXIOIXIOIWI 
' 

mm mm 

ppqq 

I 

I 

-

-

~~ _;---mmmm+4 
-

1 
(ppqq+d ")::;-

. 

The illustration shows execution of RR (IY+disp): 

RR (IY+~) 
~ 

J;;h 

Data 
Memory 

Program 
Memory 

FD 
CB 
d 
1E 

t 
ppq q+d 

'~ 

mmm 
mmm 
mmm 

m 
m+1 
m+2 
m+3 mmm 

mmm m+4 

Rotate contents of memory location (specified by the sum of the contents of the IY 

register and the displacement value d) right one bit through Carry. 

Suppose the IY register contains 450015. memory location 450F16 contains 1D15. and 

Carry 1s set to 0. After execution of the instruction 

RR (IY+OFH) 

memory location 450F15 will contain OE15. and Carry will be 1 

Before After 

Memory Carry Memory Carry 

1000111011@] [j] 

0 sets S to 0 Non-zero resu It. set Z to 0 

3 ones. set P /0 to 0 

RR (IX+disp) 
~-.-

~ 
This instruction 1s 1dent1cal to RR (IY +disp). but uses the IX register instead of the IY 

register. 

3-138 



RR (HU 
~ 

CB 1E 
Rotate contents of memory location (specified by the contents of the HL register pair) 
right one bit through Carry. 

RRA-ROTATE ACCUMULATOR RIGHT THROUGH CARRY 

s 
Ir Fl I 

M 

B.C 
D.E 
H.l 
SP 
PC 
IX 
IY 

I· 

R 

-
z ,\;PION I 

Io I Io I ~ 

-

mm mm 

I 
I 

l 

-~~mmm+_) 

RRA 

1F 

-

Rotate Accumulator contents right one bit through Carry status. 

Data 

~ 
Program 
M 

mm mm 
mmmm+ 1 
mmmm+2 
mmmm+3 

Suppose the Accumulator contains 7 A15 and the Carry status 1s set to 1. After the in­
struction 

RRA 

has executed. the Accumulator will contain BD15 and the Carry status will be reset to 
0: 

Before After 
Accumulator Carry Accumulator Carry 

1011110101 OJ 11011 11011 @] 

3-139 



RRC reg- ROTATE CONTENTS OF REGISTER RIGHT CIRCULAR 

--
s Z Ac P/O N c Data 

FIXIXIOIXIOI ~ . , 
A 

B.C 

D.E 
·-

SP 
PC 
IX 
IY 
I 

R 

'~ 

mm mm _._ --~mmm + 0 

I 

l 

Program 
Memory 

CB mmmm 
00001101 mmmm + 1 

mmmm+2 
i------i mmmm + 3 

The illustration shows execution of RRC L: 

RRC reg 

l1-
CB 00001 xxx 

000 for reg=B 
001 for reg=C 
010 for reg=D 
011 for reg=E 
100 for reg=H 
101 for reg=L 
111 for reg=A 

Rotate contents of specified register right one bit c1rcularry. copying bit 0 into the Carry 

status. 

Suppose Register D contains A915 and Carry is 0. After execution of 

RRC D 

Register D will contain 0415. and Carry will be 1 

Before 

Register D Carrv 

After 

Register D Carry 

!101010011 [Q] 1110101001 DJ 

1 "" s 10 1 re:.,,,, "'""· "' z 10 0 
4 ones. set P /0 to 1 

3-140 



RRC (HL)­
RRC OX +disp) 
RRC (IV +disp) 

ROTATE CONTENTS OF MEMORY LOCATION 
RIGHT CIRCULAR 

S Z Ac PION C 

FXXOXO 

A 

B.C 
O,E 
H,L 
SP 
PC 
IX 
IY 

11 
R 

pp 

mm mm 

I 

I 

qq 
-

........_ - _1 mmmm + 2) - -

The illustration shows execution of RRC (HU: 

RRC (HU 
~ 

CB OE 

Data 
Memory 

. 

Program 
Memory 

CB 
OE 

p pqq 

+ 

mmm 
mmm 

m 
m+ 1 

mmmm+2 
mmmm+3 

Rotate contents of memory location (specified by the contents of the HL register pair! 
right one bit circularly, copying bit 0 into the Carry status. 
Suppose the HL register pair contains 450015. memory location 450015 contains 
3415. and Carry is set to 1. After execution of 

RRC (HU 

memory location 450015 will contain 1A15. and Carry will be 0: 

Before 

Memory Carry 

1001101001 OJ 

After 

Memory Carry 

0 sets S to 0 
3 ones. set PIO to 0 

L.Non-zero result. set Z to 0 

RRC (IX+disp) 

~ 
Rotate contents of memory location (specified by the sum of the contents of the IX 

3-141 



register and the displacement valued) right one bit circularly, copying bit 0 into the Ca­

rry status. 

RRC (IY+disp) 

~ 
This instruction 1s 1dent1car to the RRC (IX+disp) instruction. but uses the IY register in­

stead of the IX register. 

RRCA- ROTATE ACCUMULATOR RIGHT CIRCULAR 

--
s Z Ac PION c 

u Fl I Io I lo I ~ 

B.C 
D.E 
H.L 
SP 
PC mmmm 

IX 

IY 
I I 
R I 

• 

- ~ 
- --... mrnmm + 1 -

RRCA --­OF 

........ 

Data 

~ 
Program 

mm mm 
mmmm+1 
mmmm+2 
mmmm+3 

Rotate Accumulator contents right one bit circularly, copying bit 0 into the Carry status. 

Suppose the Accumulator contains 7A16 and the Carry status 1s set to 1. After the in­

struction 

RRCA 

has executed. the Accumulator will contain 3015 and the Carry status will be reset to 

0: 

Before After 

Accumulator Carry Accumulator Carry 

1011110101 OJ 1001111011 [[] 

RRCA should be used as a logical instruction. 

3-142 



RRD - ROTATE ONE BCD DIGIT RIGHT BETWEEN THE 
ACCUMULATOR AND MEMORY LOCATION 

A 
B.C 
D.E 
H.L 
SP 
PC 
IX 

IY 

I 
R 

S Z Ac P/O N C 

lx!x!o!x!o! I 
x 

pp 

mm mm 

I 
I 

r 
I v .. 
qq 

~ 

----, mmmm+2 

RRD -­ED 67 

- -

Data 
Memorv 
~ 

.J._ ~ 

r I s ppq q -. t J 

Program 
Memory 

ED mm 
67 mm 

mm 
mm+1 

mmmm+2 
t----mmmm+3 

The four high-order bits of a memory location (specified bv the contents of register pair HL) are copied into the four low-order bits of the same memory location. The previous contents of the four low-order bits are copied into the four low-order bits of the Ac­cumulator. The previous four low-order bits of the Accumulator are copied into the four high-order bits of the specified memory location. 
Suppose the Accumulator contains ?F15. HL register pair contains 400015. and memo­ry location 400015 contains 1215. After execution of the instruction 

RRD 
the Accumulator will contain 7215 and memory location 400015 will contain F115: 

Before After 
Accumulator Memory Accumulator Memory 

F J rp.jjl2 SE2 IIDJ \ ~ \ I 

', '" /I L 
High-order b1t=:.-s:t :-: 0 Non-zero result. 

4 ones. set P/O to 1 set Z to 0 

3-143 



RST n - RESTART 
S Z Ac PION C 

F 

A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IY 
I 
R 

I I I I I I I 

ppqq 
mm mm 

I 

I 

-
-..c. ppqq-2 

~.,....., 

~ 

~mmm+!)-
I ~ 

OOOOOOOOOOxxxOOO 

]A_ 
11 xxx 111 

Data 
Memory 

I mm+1 
mm 

Program 
Memory -11xxx111 

ppqq-2 

ppqq-1 

ppqq 

mmmm 
mmmm+1 
mmmm+2 
mmmm+3 

Call the subroutine origined at the low memory address specified by n. 

When the instruction 

RST 18H 

has executed. the subroutine origined at memory location 001815 is called. The pre­

vious Program Counter contents are pushed to the top of the stack. 

Usually, the RST instruction is used in coniunction with interrupt processing. as de­

scribed in Chapter 12. 

If your application does not use all RST instruction codes to service 

interrupts. do not overlook the possibility of calling subroutines 

using RST instructions. Origin frequently used subroutines at ap­

propriate RST addresses. and these subroutines can be called with 

SUBROUTINE 
CALL USING 
RST 

a single-byte RST instruction instead of a three-byte CALL instruction. 

3-144 



SBC A.data-SUBTRACT IMMEDIATE DATA FROM 
ACCUMULATOR WITH BORROW 

F 

A 

B.C 
D.E 
H.L 
SP 
PC 
IX 

IY 

R 

( 
s Z Ac P/O N c 

Ix Ix Ix Ix! 1 'ix I 

xx 

mmmm 

I 

+ 
ft 

- ,,. J.. •""- xx-yy-C 

-

-- , 
_-. mmmm+2 -

SBC A. data -- -.-DE VY 

Data 

~ 
Program 
Memory 

DE 
~ VY 

mm mm 
mmmm+ 1 
mmmm+2 
mmmm+3 

Subtract the contents of the second obiect code bvte and the Carry status from the Ac­
cumulator. 

Suppose xx=3A 16 and Carrv= 1. After the instruction 

SBC A.?CH 
has executed. the Accumulator will contain BD15. 

3A 00 1 1 101 0 
Twos comp of 7C 1 0 0 0 0 1 0 0 

Twos comp of Carry 1 1 1 1 1 1 1 1 
101 1 1101 

1 sets S to 1 

Borrow. set C to 1 

fJ LNoo-wo rnwlt ret Z to 0 

'-----Borrow. set Ac to 1 

1"f1 =O. set P/O to 0 Subtract instruction. set N to 1 

The Carry flag 1s set to 1 for a borrow and reset to 0 if there 1s no borrow. 

3-145 



SBC A,reg - SUBTRACT REGISTER WITH BORROW 
FROM ACCUMULATOR 

A 

B.C 
O.E 
H.L 
SP 
PC 

IX 
IY 
I 

R 

I 
s Z AcP 10 N C 

lxlxlxlxl1lxl 

rnmmm 

H 

I 

xx 

i 
xx-yy-C ~ 

' ~ ,,,,,J., A ' 
C, D, E. Hor L 
is yy 

__ .. 1. mmmm+ 1 - ,, 0 

SBC A. reg _,_., 
10011 xxx 

000 for reg=B 
001 for reg=C 
010 for reg=D 
011 for reg=E 
100 for reg=H 
101 for reg=L 
111 for reg=A 

Data 

Program 
Memorv 

10011xxx mmmm 
mmmm+ 1 

t----11mmmm+2 
mmmm+3 

Subtract the contents of the specified register and the Carrv status from the Accumula­

tor. 

Suppose xx=E315. Register E contains A015. and Carrv=1. After the instruction 

SBC A.E 

has executed. the Accumulator will contain 4215. 

E3 1 1 1 0 0 0 1 1 
Two's comp of AO 0 1 1 0 0 0 0 0 

Two's comp of 1 1 1 1 1 1 1 1 1 

0100 0010 

0 sets S to 0 

No borrow. set C to 0 

r LNoo-"'o re.olt "' z to 0 

~------No borrow. set Ac to 0 

1-'\1-1 =O. set P/O to O Subtract instruction. set N to 1 

The Carry flag is set to 1 for a borrow and reset to 0 if there 1s no borrow. 

3-146 



SBC A,(HL}­
SBC A, (IX +disp) 
SBC A,(IY+disp) 

SUBTRACT MEMORY AND CARRY FROM 
ACCUMULATOR 

F 

A 

B.C 
D.E 
H,l 
SP 
PC 
IX 
IY 
I 

R 

S ZAcP/ON C 

IXIXIXIXI 1 IX. 

pp 

mm mm 

I 
I 

-1.. - ,, )..-xx ~ - ...1. xx-yy-C 
- -

qq -- i~mmm+,0 
...... 

The illustration shows execution of SBC A.(HU: 

SBC A.(HL) 
~ 

9E 

Data 
Memorv 

yy 

Program 
Memorv 

9E 

pp; 

mmm 
mm 

m 
mm+1 

mmmm+2 
mmmm+3 

Subtract the contents of memory location (specified by the contents of the HL register 
pair) and the Carry from the Accumulator. 

Suppose Carry=O. ppqq=400015, xx=3A15, and memory location 400015 contains 
7C 15. After execution of the instruction 

SBC A.(HU 

the Accumulator will contain BE15. 

3A 0011 
Two's comp of 7C 1 0 0 0 

Two's comp of Carry 

101 0 
0100 

0 
101 1 1 1 1 0 

1 sets S to 1 

Borrow. set C to 1 

( LNoo-wo re'""· ~t Z to 0 

~------Borrow. set Ac to 1 

0¥0=0. set PIO to 0 Subtract instruction. set N to 1 
The Carry flag 1s set to 1 for a borrow and reset to 0 if there 1s no borrow. 

SBC A,(IX+displ 
~ -,.-

DD 9E d 

Subtract the contents of memory location (specified by the sum of the contents of the 
IX register and the displacement valued) and the Carry from the Accumulator. 

SBC A,(IY+disp) 
~-.-

FD 9E d 
This instruction 1s identical to the SBC A.(IX+disp) instruction. except that 1t uses the IY 
register instead of the IX register. 

3-147 



SBC Hl,rp - SUBTRACT REGISTER PAIR WITH CARRY 
FROM HAND l 

S Z Ac P '0 N C 

Flx!x!x!x! 1 !xi 

A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IY 
I 
R 

xx 

mmmm 

I 

I 

xx 

I 
BC. DE. HL or SP 
contains yyyy 

--
- •:mmm+0 - -

Data 

Program 
Memorv 

ED mmmm 
01xx0010 mmmm + 1 

mmmm+2 
t----tmmmm+3 

IX 
01 xx 0010 

00 for rp 1s register pair BC 
01 for rp 1s register pair DE 
10 for rp 1s register pair HL 
11 for rp 1s Stack Pointer 

Subtract the contents of the designated register pair and the Carry status from the HL 

register pair. 

Suppose HL contains F4A215. BC contains A03415. and Carry=O. After the instruction 

SBC HL.BC 

has executed. the HL register pair will contain 546E15: 

Two's comp of F4A2 
Twos comp of A034 
Two's comp of Carry 

0 sets S to 0 

No borrow. set C to 0 

1¥1 =0. set PIO to 0 

1111 0100 1010 0010 
01 01 1111 1100 11 00 

0 

0101 0100 0110 1110 

~ LNon-zero result, set Z to 0 

'---------- No borrow. 

Subtract instruction. set N to 1 

The Carry flag 1s set to 1 for a borrow and reset to 0 if there 1s no borrow. 

3-148 



SCF - SET CARRY FLAG 

F 

A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IY 
I 
R 

I 

S Z Ac P/O N C --
I I I I I 1 

mm mm 

I 

J 

____ .;.,. ""I mmmm + _0 - """'-

SCF 

37 

-

Data 

Program 
Mm 

mmmm 
mmmm+l 
mmmm+2 
mmmm+3 

When the SCF instruction 1s executed. the Carry status 1s set to 1 regardless of its pre­vious value. No other statuses or register contents are affected. 

3-149 



SET b,reg - SET INDICATED REGISTER BIT 

S Z Ac P/0 N C 

FI I I I I 

A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IY 
I 
R 

mm mm 

I 
I 

r ) 1 

'f 
....... 

yyyy yyyy 

- - _0 !-- ----. mmrnm + 2 - ...... 

11\ 
CB 11 bbb xxx 

Bit bbb xxx 

0 000 000 
1 001 001 
2 010 010 
3 011 011 
4 100 100 
5 101 101 
6 110 111 
7 111 

Register 

B 
c 
D 
E 
H 
L 
A 

SET indicated bit within specified register. After the instruction 

SET 2.L 

Data 

Program 

Memory 

CB mm mm 

1 lbbbxxx mmmm + 1 

mmmm+2 

11---- mmmm + 3 

has executed. bit 2 in Register L will be set. (Bit 0 1s the least significant bit.) 

3-150 



SET b, (HL) - SET BIT b OF INDICATED MEMORY POSITION 
SET b,(IX+disp) 
SET b, (IY +disp) 

S Z Ac P/O N C 

FI I I I I I I 
Cata 

Memory 

A 

B.C 
D.E 
H.l 
SP 
PC 
IX 
IY 

I 

YYYV YYYY p; q 

pp 
qq 

- - 2) mm mm - - 1 mmmm +2 - ...._ 

I 
R 

Program 
Memory 

CB mm mm 
1lbbbl10 mm mm+1 

..._ __ ..,ammmm+2 

..._ __ ..,ammmm+3 

The illustration shows execution of SET b.(HU. Bit 0 1s the least significant bit. 

1[\_ 
CB 11 bbb 110 

Bit Set bbb 
0 000 
1 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 111 

Set indicated bit within memory location indicated by HL 
Suppose HL contains 400015. After the instruction 

SET 5.(HL) 

has executed. bit 5 in memory pos1t1on 400015 will be 1. 

~ DD CB d 11 bbb 110 

bbb 1s the same as in SET b.(HL) 

Set indicated bit within memory location indicated bv the sum of Index Register IX and 
displacement. 

3-151 



Suppose Index Register IX contains 400015. After execution of 

SET 6.(IX+5Hl 

bit 6 in memory location 400515 will be 1. 

~ 
FD CB d 11 bbb 110 

bbb is the same as in SET b. (HL) 

This 1nstruct1on 1s 1dent1cal to SET b.(IX+disp). except that 1t uses the IY register instead 

of the IX register. 

SLA reg - SHIFT CONTENTS OF REGISTER LEFT ARITHMETIC 

s ZAcP/ON g_ 
FIXIXIOIXIOIYI 

n 

A 
-

r 0 ~ u,u - "-
D.E -
H.L 
SP -~ 
PC mm mm .-... -:I mmmm + 2 

IX 
- ..... 

IY 
I I 

R 

The illustration shows execution of SLA C. 

SLA reg 

I\_ 
CB 00100 xxx 

-.-
000 for reg=B 
001 for reg=C 
010 for reg=D 
011 for reg=E 
100 for reg=H 
101 for reg=L 
111 for reg=A 

Data 

Program 
Memory 

CB mm mm 
00100001 mmmm + 1 

-----11 mmmm + 2 
mmmm+3 -----11 

Shift contents of specified register left one bit. resetting the least significant bit to 0. 

Suppose Register B contains 1 F15. and Carry=1. After execution of 

SLA B 

Register B will contain 3E15 and Carry will be zero. 

3-152 



Before 

Register B 

10 0 0 1 1 1 111 

Carry 

m 

After 

Register B Carry 

0 sets S to 0 
5 ones. set P/O to 0 

~Non-zero result. set Z to 0 

SLA (HL)- SHIFT CONTENTS OF MEMORY LOCATION SLA (IX+disp) LEFT ARITHMETIC 
SLA (IV +disp) 

S Z Ac P/O N C 

F I x I x I 0 I x I 0 I 14111 

A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IY 
I 
R 

pp 

mm mm 

I 
I 

0 

l 

qq 

- ,,. 0 -- --_1 mmmm + 2 - -- -

The illustration shows execution of SLA (HU: 

SLA (HU 
~ 

CB 26 

Data 
Memory 

Program 
Memory 

-
ppq q 

• 
CB mmm 
26 mmm 

m 
m+l 

mmmm+2 
1-----11 mmmm + 3 

Shift contents of memory location (specified by the contents of the HL register pair) left 
one bit. resetting the least significant bit to 0. 
Suppose the HL register pair contains 450015. memory location 450015 contains 
8415. and Carry=O. After execution of 

SLA (HU 

memory location 450015 will contain 0815. and Carry will be 1. 

Before After 
Memory Carry Memory Carry 

1100001001 iJJ ~ iJJ 

O sets S to o....J lNon-zero result. set Z to 0 
1 one. set PIO to 0 

3-153 



SLA (IX+disp) 

n 
Shift contents of memory location (specified by the sum of the contents of the IX 

register and the displacement value d) left one bit arithmetically, resetting least signifi­

cant bit to 0. 

SLA {IY+disp) 

N 
This instruction 1s 1dent1cal to SLA {IX +disp). but uses the IY register instead of the IX 

register. 

SRA reg - ARITHMETIC SHIFT RIGHT CONTENTS Of 
REGISTER 

A 

B.C 
D.E 
H.L 

SP 
PC 
IX 
IY 
I 
R 

S Z Ac P/0 N C 

I X I X I 0 I X 1. O I -. -
( • '---

mm mm 

I 
I 

-· 

- --- -11 ...-mmmm + 2) - ..... -

The illustration shows execution of SRA A: 

_l\ 
CB 00101 xxx 

000 for reg=B 
001 for reg=C 
010 for reg=D 
011 for reg=E 
100 for reg=H 
101 for reg=L 
111 for reg=A 

Data 

~ 
Program 
Memory 

CB mmmm 
00101111 mmmm + 1 

11-----ll mmmm + 2 
11-----ll mmmm + 3 

Shift specified register right one bit. Most significant bit is unchanged. 

Suppose Register H contains 5915. and Carry=O. After the instruction 

SRA H 

has executed. Register H will contain 2C15 and Carry will be 1. 

3-154 



Before 

Register H c 
lo 1 o 1 1 o o 1 j @] 

After 

Register H c 

III 

0 sets S to 0 
3 ones. set P /0 to 0 

l.Non-zero result. set Z to 0 

SRA (HL)­
SRA (IX+disp) 
SRA (IV +disp) 

S Z Ac P '0 N 

FXXOXO 

A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IY 

I 

R 

ARITHMETIC SHIFT RIGHT CONTENTS OF 
MEMORY POSITION 

c_·· 
- ~ mm mm --- "mmmm+4 -ppqq -

I 
I -

4a..( ppqq + d t 
~~ 

Data 
Memory 

Program 
Memorv 

DD 
CB 
d 
2E 

The illustration shows execution of SRA (IX+disp): 

SRA (IX+disp) 
~-.-

~ 

+d 
ppqt 

mmm 
mmm 

m 
m+1 
m+2 
m+3 
m+4 

mmm 
mmm 
mmm 

Shift contents of memory location (specified by the sum of the contents of Register IX 
and the displacement value d) right. Most significant bit 1s unchanged. 
Suppose Register IX contains 340015. memory location 34AA15 contains 2715. and Carrv=1. After execution of 

SRA (IX+OAAH) 

memory location 34AA15 will contain 1315. and Carry will be 1. 
Before After 

Memory Carry Memorv Carry 

loo 1oo1111 ill OJ 

0 sets S to 0 
3 ones. set P /0 to 0 

LNon-zero result. set Z to 0 

3-155 



SRA (IY+displ 

N 
This 1nstruct1on 1s 1dent1cal to SRA OX+disp). but uses the IY register instead of the IX 

register. 

SRA (HU ..._._,,_.. 
CB 2E 

Shift contents of memory location (specified by the contents of the HL register pair) 

right one bit. Most significant bit 1s unchanged. 

SRL reg - SHIFT CONTENTS OF REGISTER RIGHT 
LOGICAL 

-
- r 0 ~ - " s Z Ac PION c -

" 
F101x101x101 . 
A 'p 

B.C 

-·- -
H.L -
SP .r 0 
PC mrnmm 

__ ., mmmm+2 

IX 
IY 
I I 

R B 

The illustration shows execution of SRL E: 

l\ 
CB 00111 xxx 

000 for reg=B 
001 for reg=C 
010 for reg=D 
011 for reg=E 
100 for reg=H 
101 for reg=L 
111 for reg=A 

Data 

Program 

Memorv 

CB mm mm 
00111011 mmmm + 1 

mmmm+2 
11---- mmmm + 3 

Shift contents of specified register right one bit. Most significant bit 1s reset to 0. 

Suppose Register D contains 1F15, and Carrv=O. After execution of 

SRL D 

Register D will contain OF15, and Carry will be 1. 

3-156 



Before After 
Register D Carry Register D Carrv 

100011111' @] loooo 11111 IJ] 
~ 

4 ones. set P /0 to 1 L....Non-zero result. set Z to 0 

SRL (HL)­
SRL (IX +disp) 
SRL (IV +disp) 

SHIFT CONTENTS OF MEMORY LOCATION 
RIGHT LOGICAL 

S Z Ac P/O N C 

F I 0 I x I 0 I x I 0 I ·~ 
A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IY 
I 
R 

pp 

mm mm 

I 
I 

0 l C0 
qq 

--·· mmmm+2) - ....._ 

The illustration shows execution of SRL (HL): 

SRL (HU ...._,,,_.,. 
CB 3E 

Data 

1111111 r1 
q 

Program 
Memory 

CB mmm 
3E mmm 

m 
m+1 

___ _.mmmm+2 
___ _.mmmm+3 

Shift contents of memory location (specified bv the contents of the HL register paid 
right one bit. Most significant bit is reset to 0. 

Suppose the HL register pair contains 200015. memory location 200015 contains 8F15. 
and Carry=O. After execution of 

SRL (HU 

memory location 200015 will contain 4715. and Carry will be 1. 

Before 

Memory Carry 

After 

Memory Carry 

1100011111 [[] 1010001111 OJ ..__,_. 
4 ones. set P /0 to 1 L. Non-zero result. set Z to 0 

SRL (IX+disp) 

~ 
Shift contents of memory location (specified by the sum of the contents of the IX 
register and the displacement value d) right one bit. Most significant bit 1s reset to 0. 

3-157 



SRL (IY+disp) 

J::h 
This instruction is identical to SRL (IX+disp), but uses the IY register instead of the IX 

register. 

SUB data-SUBTRACT IMMEDIATE FROM ACCUMULATOR 

S ZAcP/ON C 

Fix!x!xix!1 !xi 
A 

B,C 
D.E 
H.L 
SP 
PC 
IX 
IY 

R 

mm mm 

I 

I 

xx 

-

- - r. - . xx-yy -
~ -1 -- - -. mmmm + 2 ..... -

SUB data 

D6 VY 

Data 

Program 
Memorv 

D6 .... VY 

Subtract the contents of the second ob1ect code byte from the Accumulator. 

Suppose xx=3A15. After the instruction 

SUB 7CH 

has executed. the Accumulator will contain BE15. 

3A 0 0 1 1 101 0 
Two's comp of 7C = 1 0 0 0 0 1 0 0 

mm mm 
mmmm+1 
mmmm+2 

mmmm+3 

1 sets S to 1 "l-.J LNon-zero result. set Z to 0 
110 1 tl1 J 1 1 0 

Borrow. set C to 1 Borrow. set Ac to 1 

0 ¥ QdO, set P /0 to 0 Subtract instruction. set N to 1 

Notice that the resulting carry is complemented. 

3-158 



SUB reg- SUBTRACT REGISTER FROM ACCUMULATOR 
SZAcP/ONC 

F(x!x!x!xj1 !xi 
A xx 

B.C 
D.E 
H.l 
SP 
PC mm mm 
IX 
IY 
I 

R 

SUB 
"-,,.-' 

10010 

reg 

xxx -.-
000 
001 
010 
011 
100 
101 
111 

for reg=B 
for reg=C 
for reg=D 
for reg=E 
for reg=H 
for reg=L 
for reg=A 

Data 

~ 
Program 
Memory 

10010xxx mmmm 
___ .-mmmm+1 

-----1mmmm+2 
-----1mmmm+3 

Subtract the contents of the specified register from the Accumulator. 
Suppose xx=E3 and Register H contains A015. After execution of 

SUB H 
the Accumulator will contain 4315. 

E3 1 1 1 0 0 0 1 1 
Two's comp of AO = 011 0 0000 

0100 0011 

0 sets S to 0 

No borrow. set C to 0 

r LNoN•m reoott "' z to 0 

-------No borrow. set Ac to 0 

1 'f 1 =0. set PIO to 0 Subtract instruction. set N to 1 
Notice that the resulting carry 1s complemented. 

3-159 



SUB (HL) - SUBTRACT MEMORY FROM ACCUMULATOR 
SUB (IX+disp) 
SUB (IV+disp) 

S Z Ac P/0 N C Data 

lx!x!xlx!1 !xi Memorv 

- -A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IV 
I 
R 

xx - - . xx-yy J.- VY ppqq +d - - -

mm mm -- - I mmmm +3) 
ppqq - ......_ -

I 
I -

.....('ppqq+d~ 
-

The illustration shows execution of SUB (IX+d): 

SUB (IX+disp) 
~-.-

DD 96 d 

Program 
Memorv 

DD 
96 
d 

'I 

mmm 
mmm 

mmm 
mmm 

m 
m+ 1 

m+2 
m+3 

Subtract contents of memory location (specified by the sum of the contents of the IX 
register and the displacement value d) from the Accumulator. 

Suppose ppqq=400015. xx=FF15. and memorv location 40FF15 contains 5015. After 
execution of 

SUB (IX+OFFH) 

the Accumulator will contain AF15. 

FF 1 1 1 1 1 1 1 1 
Two's comp of 50 = 1 0 1 1 0 0 0 0 

101 0 1 1 1 1 

1 sets S to 1 

No borrow. set C to 0 

fJ LNoo-"ro re'""·"' Z to 0 

.,__-----No borrow. set Ac to 0 

1 V-1 =0. set P/O to 0 

Notice that the resulting carrv 1s complemented. 

SUB (IY+disp) ---..,_..-.-
FD 96 d 

Subtract instruction, set N to 1 

This instruction 1s 1dent1cal to SUB (IX +disp). except that 1t uses the IY register instead 
of the IX register. 

SUB (HU 
~ 

96 

Subtract contents of memory location (specified bv the contents of the HL register pair) 
from the Accumulator. 

3-160 



XOR data - EXCLUSIVE-OR IMMEDIATE WITH ACCUMULATOR 
S Z AcP/0 N C 

qx!x!1 !x!o(ol 
A 

B.C 
D.E 
H.l 
SP 
PC 
IX 
IY 
I 
R 

mmmm 

I 

xx 

-
-~ r. ~ • xx¥yy 

-
~ 

- -1 mmmm+2 ...... 
-

XOR data 

EE VY 

Data 

~ 
Program 
Memory 

EE 
~ VY 

mm mm 
mmmm+ 1 
mmmm+2 
mmmm+3 

Exclusive-OR the contents of the second ob1ect code byte with the Accumulator. 
Suppose xx=3A15. After the instruction 

XOR 7CH 

has executed. the Accumulator will contain 4615. 

3A 0 0 1 1 101 0 
7C = 0 1 1 1 1 1 0 0 

0100 0110 

0 sets S to o..J LNon-zero result. set Z to 0 

LThree 1 bits. set P/O to 0 
The Exclusive-OR instruction 1s used to test for changes in bit status. 

3-161 



XOR reg - EXCLUSIVE-OR REGISTER WITH ACCUMULATOR 

S Z Ac P/0 N C 

Flx!xl1 lx!o!oi 

A 

B,C 
D.E 
H.L 
SP 
PC mm mm 
IX 
IY 

I 

R 

XOR reg 
...._,.--
10101 xxx 

OOo for reg=B 
001 for reg=C 
010 for reg=D 
011 for reg=E 
100 for reg=H 
101 for reg=L 
111 for reg=A 

Data 

~ 
Program 
Memory 

10101xxx mmmm 

1----mmmm+l 
mmmm+2 

1----mmmm+3 

Exclusive-OR the contents of the specified register with the Accumulator. 

Suppose xx=E315 and Register E contains A015. After the instruction 

XOR E 

has executed, the Accumulator will contain 4316' 

E3 1 1 1 0 0 0 1 1 
AO = 1 0 1 0 0 0 0 0 

0011 0100 

0 sets s to o....J LNon-zero result. set Z to 0 

LThree 1 bits. set PIO to 0 

The Exclusive-OR 1nstruct1on 1s used to test for changes 1n bit status. 

3-162 



XOR (Hl)-EXCLUSIVE-OR MEMORY WITH ACCUMULATOR 
XOR (IX +disp) 
XOR (IV +disp) 

A 

B.C 
D.E 
H.L 
SP 
PC 
IX 
IY 
I 
R 

S Z Ac P/O N C 

lx!xl1 !xlo!ol 

mm mm 
ppqq 

I 

xx - - r.---:: _1. ......_ xx:+ VY 

-

- - ~ ,__.... - I mrnmm + 3 
- --,__ 

4is.( ppqq + d~ 
-

The illustration shows execution of XOR (IX+disp): 

XOR (IX+disp) 
'-v--.-

DD AE d 

Data 
Memory 

VY 

Program 
Memory 

DD 
AE 
d 

ppqq +d 

I~ 

mm 
mm 
mm 
mm 

mm 
mm+1 
mm+2 
mm+3 

Exclusive-OR contents of memory location (specified bv the sum of the contents of the 
IX register and the displacement valued) with the Accumulator. 

Suppose xx=E315. ppqq=450015. and memorv location 45FF15 contains A015. After 
the instruction 

XOR (IX+OFFH) 

has executed. the Accumulator will contain 4315. 

E3 1 1 1 0 0 0 1 1 
AO = 1 0 1 0 0 0 0 0 

0100 

0 sets s to o.....J 
001 1 

XOR (IY+disp) 
~---

FD AE d 

LNon-zero result set Z to 0 

LThree 1 bits. set P/O to 0 

This instruction is 1dent1cal to XOR (IX+disp). except that 1t uses the IY register instead 
of the IX register. 

XOR (HU 
-._-' 

AE 

Exclusive-OR contents of memory location (specified by the contents of the HL register 
paid with the Accumulator. 

3-163 



8080A/Z80 COMPATIBILITY 
Although the ZSO microprocessor can certainly be used on 

its own merits, one of its important characteristics is its 

compatibility with the 8080A microprocessor. This com­

patibility has the following features: 

8080A/Z80 
COMPATIBILITY 
FEATURES 

11 All 8080A machine language instructions are also Z80 machine language instruc-

t1ons. 

21 All 8080A registers are also ZSO registers (see Table 3-61. 

31 Almost all 8080A programs will run on a ZSO. with some minor differences to be 

noted later. 

41 The Z80 has instructions. registers. and other features not present on the 8080A. 

so ZSO programs will not generally run on 8080A processors. 

Note that this compatibility does not extend to assembly 

language source statements since ZSO assemblers and 8080A 

assemblers use different operation code mnemonics. Table 3-7 

contains a list of the 8080A mnemonic codes and the corres­

ponding ZSO codes, while Table 3-8 is the same list organized 

by ZSO codes. 

Readers should note the binary coding limitations that this com­

patibility places on the extra features of the ZSO microprocessor. 

The 8080A has some unused operation codes (see Table 3-9) that 

are used for some of the ZSO' s extra instructions. But there are 

simply not enough such codes to cover the large number of 

features in a simple form. 

Thus. many of the added ZSO instructions require a 2-byte opera­

tion code. The first byte 1s CB. DD. ED. or FD. Note the following 

meanings of these codes from Table 3-9: 

CB - a register or bit operation 

DD - an operation involving register IX 

8080A/Z80 
ASSEMBLY 
LEVEL 
CONVERSION 

8080A 
UNUSED 
OPERATION 
CODES 

2-BYTE 
OPERATION 
CODES 

ED - a miscellaneous non-8080A 1nstruct1on not covered elsewhere 

FD - an operation involving register IY 

The second byte of the operation code describes the actual operation to be performed. 

The end result 1s that these multi-byte 1nstruct1ons execute rather 

slowly (and use more memory) because an additional memory 

access is required. The reader should be aware of this variation in 

execution times and try to use faster executing instructions when 

possible. This warning particularly applies to the extra shift 

FASTER AND 
SLOWER 
EXECUTING 
INSTRUCTIONS 

instructions (RLC. RRC. RL. RR. SRA. SRU and to instructions involving the 

registers IX and IY. 
index 

There are a few minor incompatibilities between the 
8080A and the ZSO. These are: 

1) The ZSO uses the P (or P/0) flag to indicate twos com-

8080A/Z80 
INCOMPATIBILITIES 

plement overflow after arithmetic operations. The 8080A always uses this flag for 

parity. 

2) The ZSO and 8080A execute the DAA instruction differently. On the Z80. this in­

struction will correct decimal subtraction as well as decimal addition. On the 

8080A. 1t will correct only decimal addition. 

3) The ZSO rotate instructions clear the Ac flag. The 8080A rotate instructions do 

not affect the Ac flag. 

3-164 



Table 3-6. Register and Flag Correspondence between 
Z80 and 8080A 

ZSO Register 8080A Register 

A A 
A" None 
B B 
B" None 
c c 
c· None 
D D 
o· None 
E 
E' None 

Least Significant Half of PSW 
F None 
H H 
H' None 

None 
IX None 
IY None 

L' None 
R None 
PC PC 
SP SP 

Z80 Register Pairs 8080A Register Pairs 

BC B 
DE D 
HL H 
AF PSW 

zeo Flags 8080A Flags 

C (Carry) c (Carryi 
H (Half-Carry) AC (Auxiliarv Carryi 
N (Subtract! 

P /0 (Parity/ Overflow I 

S(Signi 

Z (Zero) 

The Z80 is not compatible with the extra features of 
the 8086 microprocessor. The codes used for RIM and 
SIM on the 8085 are used for relative iumps (NZ and NC) on 
the Z80. 

Instruction timings on the 8080A, 8085, and Z80 all 
differ. Programs that depend on precise instruction tim­
ings will therefore execute properly only on the pro­
cessor for which they were written. 

None 

P (Paritvl 

S(Signl 

Z (Zero) 

8085/Z80 
INCOMPATIBILITIES 

TIMING 
INCOMPATIBILITIES 

The N flag on the Z80 occupies bit 2 of the F register; the corresponding bit in the 
Processor Status Word of the 8080A is always a logic '1'. 

3-165 



Table 3-7 Correspondence between 8080A and ZSO Mnemonics 

8080A Mnemonic ZSO Mnemonic 8080A Mnemonic Z80 Mnemonic 

ACI data ADC A, data LHLD addr LO HL,(addr) 

ADC reg or M ADC A.reg or (HLI LXI rp,data16 LO rp,data16 

ADD reg or M ADD A.reg or (HL) MOV reg.reg or M LD reg.reg or (HLI 

ADI data ADD A.data MOV reg or M,reg LD reg or (HL),reg 

ANA reg or M AND reg or (HL) MVI reg or M.data LO reg or (HLl,data 

ANI data AND data NOP NOP 

CALL addr CALL addr ORA reg or M OR reg or (HLI 

cc addr CALL C.addr ORI data OR data 

CM addr CALL M,addr OITT port OUT (portl.A 

CMA CPL PCHL JP (HL) 

CMC CCF POP pr POP pr 

CMP reg or M CP reg or (HLI PUSH pr PUSH pr 

CNC addr CALL NC,addr RAL ALA 

CNZ addr CALL NZ,addr RAR RRA 

CP addr CALL P,addr RC RET c 
CPE addr CALL PE,addr RET RET 

CPI data CP data RLC RLCA 

CPO addr CALL PO,addr RM RET M 

CZ addr CALL Z,addr RNC RET NC 

DAA DAA RNZ RET NZ 

DAD rp ADD HL,rp RP RET p 

OCR reg or M DEC reg or (HLI RPE RET PE 

DCX rp DEC rp RPO RET PO 

DI DI RRC RRCA 

El El RST n RST n 

HLT HALT RZ RET z 
IN port IN A,(portl SBB reg or M SBC A.reg or (HLI 

INR reg or M INC reg or(HLI SB! data SBC A.data 

INX rp INC rp SHLD addr LD (addr),HL 

JC addr JP C.addr SPHL LD SP,HL 

JM addr JP M.addr STA addr LO laddr),A 

JMP addr JP addr STAX 8 or D LD (BC) or IDE),A 

JNC addr JP NC,addr STC SCF 

JP addr JP P,addr SUB reg or M SUB reg or IHLI 

JNZ addr JP NZ,addr SUI data SUB data 

JPE addr JP PE.addr XCHG EX DE,HL 

JPO addr JP PO.addr XRA reg or M XOR reg or (HL) 

JZ addr JP Z,addr XRI data XOR data 

LOA addr LD A,(addr) XTHL EX (SPl,HL 

LDAX B or D LO A,(BCI or (DEi 

3-166 



Table 3-8. Correspondence between Z80 and 8080A Mnemonic~ 

ZSO Mnemonic 8080A Mnemonic Z80 Mnemonic BOBOA Mnemonic 

ADC A,data ACI data INC rp INX rp 
ADC A.(HL) ADC M INC xv -
ADC A.reg ADC reg INC (xv + disp) 
ADC A.{xv + dispJ - IND -
ADC HL,rp - INDR -
ADD A.data ADI data INI -
ADD A,(HL) ADD M INIR -
ADD A.reg ADD reg JP addr JMP addr 
ADD A,(xv + disp} - JP C,addr JC addr 
ADD HL,rp DAD rp JP (HL) PCHL 
ADD IX, pp - JP M.addr JM addr 
ADD IY.rr - JP NC.addr JNC addr 
AND data ANI data JP NZ,addr JNZ addr 
AND (HL) ANA M JP P,addr JP addr 
AND reg ANA reg JP PE.addr JPE addr 
AND (xv + disp) - JP PO,addr JPO addr 
BIT b,(HL) JP Z.addr JZ addr 
BIT b,reg - JP xy -
BIT b,{xy + dispi - JR C.disp -
CALL addr CALL addr JR disp -
CALL C.addr cc addr JR NC,disp -
CALL M.addr CM addr JR NZ.disp -
CALL NC,addr CNC addr JR Z.disp -
CALL NZ.addr CNZ addr LD A.(addrl LDA addr 
CALL P.addr CP addr LO A.(BC) or (DE) LDAX 8 or D 
CALL PE,addr CPE addr LD A.I 
CALL PO,addr CPO addr LD A,R -
CALL Z,addr CZ addr LD laddr),A STA addr 
CCF CMC LD {addr),BC or DE -
CP data CPI data LD (addrl.HL SHLD addr 
CP (HL) CMP M LD laddr),SP -
CP reg CMP reg LD {addr),xv -
CP (xy + dispi - LD {BC) or {DE).A STAX 8 or 0 
CPD - LD BC or DE,{addr) -
CPDR - LD HL,(addr) LHLD addr 
CPI - LD IHL),data MVI M,data 
CPIR - LD IHLl,reg MOV M,reg 
CPL CMA LD I.A -
DAA DAA 

DEC (HL) DCR M 

DEC reg DCR reg 
DEC rp DCX rp 

LD R,A 

I 
-

LD reg.data MVI reg, data 
LD reg.(HL) MOV reg,M 
LD reg.reg MOV reg.reg 

DEC xv - LD reg,(xv + dispi -
DEC {xy + disp) - LD rp,data16 LXI rp,data16 
DI DI LD SP,laddrl -
DJNZ disp - LD SP,HL SPHL 
El El LD SP.xv -
EX AF.AF - LD xy,data16 -
EX DE,HL XCHG LD xy.(addrl -
EX (SPl,HL XTHL LD (xv + disp),data -
EX (SPl,xv - LD (xy + dispi,reg -
EXX - LDD -
HALT HLT LDDR -
IM m - LDI -
IN A.{porti IN port LDIR -
IN reg,(C) NEG -
INC (HL) INR M NOP NOP 
INC reg INR reg OR data ORI data 

- indicates that there 1s no corresponding instruction. 

3-167 



Table 3-8. Correspondence between Z80 and 8080A Mnemonics (Continued) 

ZBO Mnemonic BOBOA Mnemonic ZBO Mnemonic BOBOA Mnemonic 

OR IHLI ORA M RR IHLI -
OR reg ORA reg RR reg -

OR {xv + displ - RR (xy + disp) -
OTDR - RRA RAR 

OTIR - ARC IHLJ -
OUT I Cl.reg - RRC reg -
OUT (portJ,A OUT port RRC (xv + disp} -
OUTD - ARCA RRC 

OUTI - RRD -
POP pr POP pr RST n RST n 

POP xv - SBC A,data SBI data 

PUSH pr PUSH pr SBC A,IHLJ SBB M 

PUSH xv - SBC A.reg SBB reg 

RES b,(HLJ - SBC A,(xv + dispi -
RES b.reg - SBC HL,rp -

RES b,lxv + dispJ - SCF STC 

RET RET SET b,(HLI -
RET c RC SET b,reg -

RET M RM SET b,(xv + disp) -
R'IT NC RNC SLA IHLl -
RET NZ RNZ SLA reg -
RET p RP SLA (xv + displ -

RET PE RPE SRA IHLI -
RET PO RPO SRA reg -

RET z RZ SRA (xv + displ -
RETI - SAL (HL) -
RETN - SAL reg -
RL IHLJ - SAL (xv + displ -
AL reg - SUB data SUI data 

RL (xv + disp) - SUB IHLl SUB M 

RLA RAL SUB reg SUB reg 

RLC IHLI - SUB (xy + displ -
RLC reg - XOR data XRI data 

RLC (xv + disp) - XOR IHLl XRA M 

RLCA RLC XOR reg XRA reg 

RLD - XOR (xv + disp) -
indicates that there ts no corresponding mstruct1on 

3-168 



Table 3-9. Unused 8080A Operation Codes and Their Z80 Meanings 

8080A Operation Code zao Use 

08 EX AF.AF' 
10 DJN7 disp 
18 JR disp 
20 (RIM on 80851 JR NZ,disp 
28 JR Z,disp 
30 (SIM on 8085) JR NC,disp 
38 JR C,disp 
CB BIT. RES, RL. RLC. RR. RRC. SET. SLA, SRA, SRL 
D9 EXX 
DD All mstructtons involving Register IX. 
ED ADC HL,rp LU A.I NEG 

CPD LD A,R OTDR 
CPDR LD laddr).rp OTIR 
CPI LD I.A OUT I Cl.reg 
CPIR LD R.A OUTD 
IM m LD rp,(addrl OUT! 
IN reg.IC) LDD RETI 
IND LDDR RETN 
INDR LOI RLD 
!NI LDIR RRD 
INIR SBC HL.rp 

FD All 1nstruct1ons mvolvmg Register IY. 

3-169 



ZILOG Z80 ASSEMBLER CONVENTIONS 

The standard ZSO assembler is available from ZSO manufacturers and on the major 

time-sharing networks; it is also part of most development systems. Cross assem­

bler versions are available for most large computers and many minicomputers. 

ASSEMBLER FIELD STRUCTURE 

The assembly language instructions have the standard field structure (see Table 

2-1). The required delimiters are: 

1) A colon after a label, except for the pseudo-operations EQU, DEFL, and 

MACRO, which require a space. 

2) A space after the operation code. 

3) A comma between operands in the operand field. (Remember this one!) 

41 A semicolon before a comment. 

5) Parentheses around memory references. 

Typical Z80 assembly language instructions are: 

START LD A.(1000) :GET LENGTH 

ADD HL.DE 
HALT 

LABELS 
The assembler allows six characters in labels; the first character must be a letter, 

while subsequent characters must be letters, numbers, ? , or the underbar 

character (_). We will use only capital letters or numbers, although some versions 

of the assembler allow lower-case letters and other symbols. 

RESERVED NAMES 
Some names are reserved as keywords and should not be used by the program­

mer. These are the register names (A, B. C. D. E. H. L, I, RI. the double register 

names (IX, IV, SP}. the register names (AF, BC. DE, HL, AF'. BC'. DE', HL'l. and 

the states of the four testable flags (C, NC, Z, NZ, M, P, PE, PO}. 

PSEUDO-OPERATIONS 

The assembler has the following basic pseudo-operations: 

DEFB 
DEFL 
DEFM 
DEFS 
DEFW 
END 
EQU 
ORG 

DEFINE BYTE 
DEFINE LABEL 
DEFINE STRING 
DEFINE STORAGE 
DEFINE WORD 
END 
EQUATE 
ORIGIN 

DEFB. DEFM. and DEFW are the Data pseudo-operations used to 

place data 1n ROM. DEFB 1s used for 8-b1t data. DEFW for 16-bit 

data. and DEFM for ASCII strings (63 or less characters long). The 

only unusual feature to remember 1s that DEFW stores the eight 

least significant bits of data in the first word and the eight most 

DEFB,DEFM, 
DEFW 
PSEUDO­
OPERATIONS 

significant bits in the second word. This 1s the standard 8080A/8085/Z80 procedure for 

stonng addresses 1n memory, but 1s contrary to normal practice. You must be aware of 

the order when stonng 16-bit data. 

3-170 



Note that DEFB and DEFW define the value of only a single byte or single word. respec­
tively. Establishing a table of values requires a series of DEFB or DEFW pseudo-opera­
tions. one for each byte or word of data. 

Examples: 
ADDR: DEFW 3165H 
results in (ADDR) = 65. and (ADDR+1l = 31 (hexadecimal). 

TCONV· DEFB 32 
This pseudo-operation places the number 32 1n the next byte of ROM and assigns the 
name TCONV to the address of that byte. 

ERROR: DEFM 'ERROR' 
This pseudo-operation places the 7-bit ASCII characters E. R.R. 0. and R in the next five 
bytes of ROM and assigns the name ERROR to the address of the first byte. 

OPERS: DEFW 
DEFW 
DEFW 
DEFW 

FADD 
FSUB 
FMUL 
FDIV 

This senes of pseudo-operations places the addresses FADD. FSUB. FMUL. and FDIV in 
the next eight bytes of memory and assigns the name OPERS to the address of the first 
byte. Note that the first byte contains the least significant bits of address FADD. 
DEFS 1s the Reserve pseudo-operation used to assign locations 1n 
RAM: 1t allocates a specified number of bytes. 

EOU 1s the Equate or Define pseudo-operation used to assign 
values to names. 

DEFL 1s similar to EOU. except that DEFL allows the name to be 
redefined later. DEFL 1s much like the SET directive in other as­
semblers. It should only be used to define assembly time vanables 
(i.e .. those variables used in conditional assembly or conditional 
macro expansion statements). 

ORG 1s the standard Ongin pseudo-operation. 

Z80 programs usually have several ongins: the ongins are used as 
follows: 

1) To specify the RESET address (usually zero). 

DEFS 
PSEUDO-
OPERATION 
EQU 
PSEUDO-
OPERATION 
DEFL 
PSEUDO-
OPERATION 

ORG 
PSEUDO­
OPERATION 

2) To specify interrupt entry points (usually 0 to 6615 but may be anywhere in memo-
ry. 

3) To specify the starting address of the main program. 
4) To specify the starting addresses of subroutines. 
5) To define areas for RAM storage. 
6) To define an area for the RAM Stack. 
7) To specify addresses used for 1/0 ports and special functions. 

3-171 



Examples: 

RESET EOU 
ORG 

0 
RESET 

This sequence places the RESET 1nstruct1on sequence in memory beginning at address 

0. 

INT1 EOU 
ORG 

38H 
INT1 

The instruction sequence that follows 1s stored 1n memory beginning at location 3816' 

END simply marks the end of the assembly language program. 

The special purpose pseudo-operations COND. MACRO. ENDC. 

and ENDM are described later in this chapter. 

LABELS WITH PSEUDO-OPERATIONS 

END 
PSEUDO­
OPERATION 

The rules and recommendations for labels with ZSO pseudo-operations are as 

follows: 

11 EOU. DEFL. and MACRO require labels. since the function of these pseudo-opera­

tions 1s to define the meaning of that label. 

2) DEF8. DEFM. DEFW. and DEFS usually have labels. 

3) ORG. COND. ENDC. ENDM. and END should not have labels. since the meaning of 

such labels 1s unclear. 

ADDRESSES 
The Zilog Z80 assembler allows entries 1n the address field in any 

of the following forms: 

1) Decimal (the default case) 
Example: 1247 

2) Hexadecimal (must start with a digit and end with an H) 

Examples: 142CH. OE7H 

3) Octal (must end with 0 or 0. but 0 1s far less confusing) 

Example: 12470 or 12470 

4) Binary (must end with B) 
Example: 1001001000111B 

5) ASCII (enclosed in single quotation marks) 

Example: 'HERE' 

6) As an offset from the Program Counter ($) 

Example: $+237H 

All arithmetic and logic operations within an address field assume 

all arguments are 16-bit data; they produce 16-bit results. These 

operations are allowed as part of expressions 1n the address field. 

When defining address constants. hexadecimal notation should 

be used. Binary constants of 16 bits are unwieldy and hence error-

NUMBERS AND 
CHARACTERS 
IN ADDRESS 
FIELD 

ASSEMBLER 
ARITHMETIC 
AND LOGICAL 
OPERATIONS 

prone. Octal constants are inconvenient due to the fact that addresses are stored in 

low-order byte high-order byte format. This div1s1on occurs in the middle of an octal 

digit. which causes you to have to split a digit. For example. to express the address 

9D7FH or 1165770 in low-high format you get 7F9DH or 772360. As you can see. in 

hexadecimal notation the digits are simply transposed. while no such simple relat1on­

sh1p exists for octal notation. 

3-172 



OPERATOR FUNCTION PRIORITY 
+ UNARY PLUS 1 - UNARY MINUS 1 .NOT. or\ LOGICAL NOT 1 
.RES. RESULT 1 .. 

EXPONENTIATION 2 . 
MULTIPLICATION 3 I DIVISION 3 .MOD. MODULO 3 .SHR. LOGICAL SHIFT RIGHT 3 .SHL. LOGICAL SHIFT LEFT 3 + ADDITION 4 - SUBTRACTION 4 

.AND. or & LOGICAL AND 5 

.OR. or f LOGICAL OR 6 .XOR. LOGICAL XOR 6 .EO. or= EQUALS 7 
.GT. or> GREATER THAN 7 
.LT. or< LESS THAN 7 
.UGT. UNSIGNED GREATER THAN 7 
.ULT. UNSIGNED LESS THAN 7 

In address expressions with more than one operator. the order of evaluation 1s defined by the pnont1es given in the list above. Operators having the same pnont1es are evalu­ated from left to right. Expressions in parentheses are evaluated first. Remember that enclosing an expression entirely in parentheses indicates a memory address. 
Note the following: 

1) The Result operator (.RES.) causes overflow to be suppressed: 1.e .. a change in sign caused by overflow into the sign bit does not result in an assembler error. 
2) The shifts have the form: 

.SHR. op 1.op2 

.SHL. op 1. op2 
where op1 1s the number to be shifted and op2 1s the number of shifts. The shifts are logical. 1.e .. zeros are shifted into the high-order or low-order bits. respectively. 

3) The comparison operators produce a result of either logical True (all ones) or logical False (zero). 
4) The operators .GT. and .LT. assume signed twos complement numbers. whereas .UGT. and .ULT. assume unsigned operands. This means that. for .GT. and .l T .. positive twos complement numbers are larger than negative twos complement numbers. while the opposite 1s the case for .UGT. and .ULT. 

3-173 



CONDITIONAL ASSEMBLY 

The ZSO assembler has a simple conditional assembly 

capability based on the pseudo-operations COND and ENDC. 

COND 1s followed by an expression. for example: 

COND BASE - 1000H 
or 

COND BASE - OPER1 

COND AND 
ENDC 
PSEUDO­
OPERATIONS 

If the expression 1s not zero. the assembler includes all of the instructions up to the 

ENDC pseudo-operation in the program; if the expression 1s zero. the assembler ignores 

all 1nstruct1ons between COND and ENDC. 

We will not use conditional assemblies or refer to this capability again: 1t 1s sometimes 

handy for adding or eliminating debugging instructions. or configuring unique versions 

of a common program. 

MACROS 
The standard ZSO assembler has a macro capability that 

assigns names to instruction sequences. Use the pseudo-opera­

tion MACRO to begin the defin1t1on and ENDM to end 1t. The 

macro may have parameters and may include any assembly 

language 1nstruct1ops except the defin1t1ons of other macros. 

MACRO AND 
ENDM 
PSEUDO­
OPERATIONS 

The macro capability 1s often a convenient programming shorthand. but we will not use 

It. 

Note that instruction sequences defined by macros are generally quite short they 

should not exceed ten or fifteen instructions. longer sequences should be made into 

subroutines to conserve memory space. 

Every MACRO pseudo-operation must have a label; the label 1s the name with which 

you identify the macro. For a discussion of this sub1ect. see Chapter 2. 

3-174 



Chapter 4 
SIMPLE PROGRAMS 

The only way to learn assembly language programming is to write assembly language programs. That is what we will do for the next six chapters. which con­tain examples of typical microprocessor tasks. Problems at the end of each chapter contain variations on the examples given in the text of the chapter. You should try to run the examples on a Z80-based microcomputer system to ensure that you understand the material covered in the chapter. 
In this chapter we begin with some very simple programs. 
GENERAL FORMAT OF EXAMPLES 
Each program example contains the following parts: 
1) A title that describes the general problem. 
2) A statement of purpose which describes the specific task that 

the program performs. plus the memory locations that it uses. 
3) A sample problem showing input data and results. 
4) A flowchart if the program logic 1s complex. 

EXAMPLE 
FORMAT 

5) The source program or assemblv language listing of the program. 
6) The object program or hexadecimal machine lang_uage listing of the program. 
7) Explanatory notes that discuss the instructions and methods used in the program. 
The problems at the end of the chapter are similar to the examples: problems should be programmed on a Z80-based microcomputer system using the examples as guidelines. 

The source programs in the examples have been constructed as follows: .-----..... 1) Standard Zilog ZSO assembler notation 1s used. as sum- GUIDELINES marized in Chapter 3. FOR 
2) The forms in which data and addresses appear are selected for 

clarity rather than for consistency. We use hexadecimal num-

EXAMPLES 

bers for memory addresses. instruction codes. and BCD data: decimal for numeric constants: binary for logical masks; and ASCII for characters. 
3) Frequently used instructions and programming techniques are emphasized. 
4) Examples illustrate tasks that microprocessors perform 1n communications. instru­mentation. computer. business equipment. industrial. and military applications. 
5) Detailed comments are included. 
6) Simple and clear structures are emphasized. but programs are as efficient as possi­ble within this guideline. The notes often describe more efficient procedures. 
7) Programs use consistent memory allocations. Each program starts in memory loca­tion 0000 (the RESET location) and ends with the HALT instruction. If your 

4-1 



microcomputer has no monitor and no interrupts. you may prefer to end programs 

with an endless loop instruction. e.g.: 

HERE: JR HERE 

The hexadecimal version 1s 18 followed by FE. You may replace the HALT or JR 

HERE instruction with a RESTART or JP instruction that transfers control back to 

the monitor in some Z80-based microcomputers. 

Consult the user's manual for your microcomputer to determine the required memory 

allocations and terminating instruction for your particular system. 

GUIDELINES FOR PROBLEMS 

When tackling the problems at the end of each chapter, try 

to work within the following guidelines: 

1) Comment each program so that others can understand it. 

The comments can be bnef and ungrammatical: thev 

PROGRAMMING 
GUIDELINES 

should explain the purpose of a section or instruction in the program. Comments 

should not describe the operation of instructions: that description is available in 

manuals. You do not have to comment each statement or explain the obvious. You 

may follow the format of the examples but provide less detail. 

2) Emphasize clantY. simplicity. and good structure in programs. While programs 

should be reasonably efficient. do not worry about saving a single byte of program 

memory or a few microseconds. 

3) Make programs reasonably general. Do not confuse parameters (such as the num­

ber of elements 1n an array) with fixed constants (such as 7T or ASCII Cl. 

4) Never assume fixed initial values for parameters. i.e .. use an instruction to load an 

initial value into a parameter. 

5) Use assembler notation as shown in the examples and defined 1n Chapter 3. 

6) Use hexadecimal notation for addresses. Use the clearest possible form for data. 

7) If your microcomputer allows it. start all programs in memory location 0000 and 

use memory locations starting with 004016 for data and temporary storage. Other­

wise. establish equivalent addresses for your microcomputer and use them consis­

tently. Again. consult the user's manual. 

8) Use meaningful names for labels and vanables. e.g .. SUM or CHECK rather than X. 

Y. or z. 
9) Execute each program on your microcomputer. There is no other way of ensunng 

that your program is correct. We have provided sample data with each problem. Be 

sure that the program works for special cases. 

We now summarize some useful information that you should keep in mind when 

writing programs. 

Almost all processing instructions (e.g.. ADD. SUBTRACT. 

AND. OR) use the Accumulator. In most cases you will load 

data into the Accumulator with LO. using either LO A.(addr) to 

load data from any memory location or using LO A.(HL) to load 

USING THE 
ACCUMULATOR 

data from the address specified in Registers H and L. Remember that the parentheses 

indicate a memory address rather than data. 

The preferred method of accessing memory is using implied ad­

dressing via Registers Hand L. that 1s. using (HL). This code causes 

the Z80 to perform a memory access using the address stored in 

Registers H and L. You can use LO HL. data 16 to load a fixed num-

4-2 

USING 
REGISTER 
PAIR HL 



ber into Registers Hand Lor LO HL,(addr) to load the contents of two successive memo­
ry locations into H and L. You can use INC HL or DEC HL to increment or decrement (by 
1) the address in Registers H and L. 
The 8-b1t arithmetic and logical operations all use the data in the Accumulator as one of 
their operands and place their result into the Accumulator. 
Some of the 8-bit arithmetic and logical operations have special 
uses. for example: 

SPECIAL 
INSTRUCTIONS 

SUB A (or XOR A) clears the Accumulator. 

ADD A.A shifts the Accumulator left one bit logically. This instruction also multiplies 
the contents of the Accumulator by 2. AND A (or OR A) clears the Carry flag while 
preserving the contents of the Accumulator. 

A logical AND can mask off parts of a word. The required mask has '1' bits in the pos1-
t1ons that you want to reserve and 'O' bits in the pos1t1ons that you want to clear. 

PROGRAM EXAMPLES 
Ones Complement 
Purpose: Logically complement the contents of memory location 0040 and place thA 

result into memory location 0041. 

Sample Problem: 

(0040) 6A 

Result: (0041) 95 

Source Program: 

LO A.(40H) :GET DATA 
CPL ;COMPLEMENT 
LO (41H).A ;STORE RESULT 
HALT 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 
0000 3A LO A,(40H) 
0001 40 
0002 00 
0003 2F CPL 
0004 32 LO (41H).A 
0005 41 
0006 00 
0007 76 HALT 

The LO A. (addr) and LO (addr).A instructions contain addresses to determine the source 
or destination of the data. The addresses are 16 bits long, with the eight least signifi­
cant bits in the word immediately following the instruction code and the eight most sig­
nificant bits in the next word (this order 1s contrary to normal computer practice). CPL 1s 
a one-word instruction that inverts each bit of the Accumulator. It replaces each ·o· 
with a '1' and each '1' with a 'O', JUSt like a set of inverter gates. 
HALT 1s used to end all the examples. 

Note that we could also place an address into Registers H and L and then use that ad­
dress throughout the program. This is shown in the following program. 

4-3 



Source Program: 

LD 
LD 
CPL 
INC 
LO 
HALT 

Object Program: 

HL.40H 
A.(HL) 

HL 
(HL).A 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 

;POINT TO OPERAND 
:GET DATA 
:COMPLEMENT 
:POINT TO DESTINATION 
;STORE RESULT 

Memory Contents 
(Hex) 

21 
40 
00 
7E 
2F 
23 
77 
76 

Which version do you think is better 7 

Instruction 
(Mnemonic) 

LD HL.40H 

LD A,(HL) 
CPL 
INC HL 
LD (HU.A 
HALT 

The two versions require the same number of bytes of memory even though the second 

version is two instructions longer. This is because the second version uses fewer ex­

plicit addresses. 

8-Bit Addition 
Purpose: Add the contents of memory locations 0040 and 0041. and place the result 

into memory location 0042. 

Sample Problem: 

(0040) 38 
(0041) 28 

Result: (0042) 63 

Source Program: 

LD 
LO 
LO 
ADD 
LD 
HALT 

A.(40H) 
B.A 
A.(41H) 
A.B 
(42H).A 

;GET FIRST OPERAND 
:SAVE FIRST OPERAND 
:GET SECOND OPERAND 
;ADD OPERANDS 
;STORE SUM 

4-4 



Object Program: 

Memory Address Memory Contents I nstruct1on 
(Hex) (Hex} (Mnemonic} 
0000 3A LD A.(40H) 
0001 40 
0002 00 
0003 47 LD B.A 
0004 3A LD A.(41H) 
0005 41 
0006 40 
0007 80 ADD A.B 
0008 32 LD (42H).A 
0009 42 
OOOA 00 
0008 76 HALT 

Here again. we could alternatively use Registers H and Las the source for all addresses. 
Source Program: 

LD 
LD 
INC 
ADD 
INC 
LD 
HALT 

Object Program: 

HL.40H 
A.(HU 
HL 
A.(HU 
HL 
(HU.A 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 

:GET FIRST OPERAND 

;ADD SECOND OPERAND 

:STORE RESULT 

Memory Contents 
(Hex) 

21 
40 
00 
7E 
23 
86 
23 
77 
76 

I nstruct1on 
(Mnemonic) 

LD HL.40H 

LD A.(HU 
INC HL 
ADD A.(HU 
INC HL 
LD (HU.A 
HALT 

In this case. the program using Registers H and L 1s shorter than the one using direct addressing. Why? 

LD HL.40H loads the contents of the following two words of program memorv into Register Pair HL. The first word goes into Register L. the second into Register H. 
The code (HU means that data 1s obtained from or sent to the memory location ad­
dressed by Registers Hand L. Thus. LD A.(HU loads the Accumulator with the contents 
of the addressed memory location; LD (HU.A loads the addressed memory location with 
the contents of the Accumulator. ADD A.(HU adds the contents of the location ad­
dressed by HL to the contents of the Accumulator. Remember that H and L contain a 
16-bit address. but the memory location with that address contains eight bits of data. 
Note the difference between ADD A.(HU and ADD A.H or ADD A.L. 
INC HL performs a 16-bit increment in one instruction cycle. The CPU doesn't use the 
8-bit arithmetic unit for the increment: 1t uses the incrementer that 1t normally uses to increment the 16-bit Program Counter. 

4-5 



LD A.(HU and LO (HU.A are preferable to LD A,(addr) and LO (addrJ.A whenever you 

use the same memory location repeatedly or use adjacent locations. because LD A(HU 

and LO (HU.A require less program memory and time. Note. however. that you must 

load Registers H and L before you can use (HU. 

Shift Left One Bit 
Purpose: Shift the contents of memory location 0040 left one bit and place the result 

into memory location 0041. Clear the empty bit position. This type of shift 1s 

known as a logical shift. In a logical shift. a value of zero is always shifted in. 

Sample Problem: 

(0040) 6F 

Result: (0041) DE 

Source Program: 

LD A,(40H) :GET DATA 

ADD A.A :SHIFT LEFT 

LD (41H).A :STORE RESULT 

HALT 

Object Program: 

Memory Address Memory Contents I nstruct1on 

(Hex) (Hex) (Mnemonic) 

0000 3A LD A.(40H) 

0001 40 
0002 00 
0003 87 ADD A.A 

0004 32 LD (41H).A 

0005 41 
0006 00 
0007 76 HALT 

ADD A.A simply adds the contents of the Accumulator to itself. The result. of course. is 

twice the original data. which 1s the same result that a logical left shift would produce. 

The least significant bit of the result 1s zero. since O+O = 1+1 = O: 1+1 also produces a 

Carry to the next bit. 

Alternatively, we could replace ADD A.A with SLA A. certainly the more obvious 

choice. However. SL.A .A requires two words of program memory and eight clock cycles. 

while ADD A.A requires one word of program memory and four clock cycles. The 

difference 1s caused by the fact that SLA A is one of the extra instructions added to the 

original 8080A set (re;,,ember the comparison presented earlier). 

Mask Off Most Significant Four Bits 

Purpose: Place the least significant four bits of memory location 0040 into the least 

significant four bits of memory location 0041. Clear the most significant four 

bits of memory location 0041. 

Sample Problem: 

(0040) 30 

Resu It: (0041) OD 

4-6 



Source Program: 

LD 
AND 
LD 
HALT 

A.(40H) 
00001111B 
(41H).A 

:GET DATA 
:MASK 4 LSB'S 
:STORE RESULT 

Note: B means binary in standard Z80 assembler notation. 
Object Program: 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 

Memory Contents 
(Hex) 

3A 
40 
00 
E6 
OF 
32 
41 
00 
76 

I nstruct1on 
(Mnemonic) 

LD A.(40H) 

AND 00001111 B 

LD (41 Hl.A 

HALT 
The mask (00001111) 1s written in binary to make its function clearer to the reader. Bin­
ary notation for masks 1s generally much clearer than hexadecimal notation. although 
the resu Its are the same. Hexadecimal notation shou Id be used for masks longer than 
four bits. The comments should explain the masking operation. 
When the argument in the address field 1s a number. AND logically ANDs the contents 
of the Accumulator with the contents of the word of program memory immediately 
following the instruction. AND may be used to clear bits that are not in use. The four 
least significant bits could be an input from a switch or an output to a numeric display. 
Clear a Memory Location 
Purpose: Clear memory location 0040. 

Source Program: 

SUB 
LD 
HALT 

Object Program: 

A 
(40HJ.A 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 

:CLEAR LOCATION 40 

Memory Contents 
(Hex) 

97 
32 
40 
00 
76 

Instruction 
(Mnemonic) 

SUB A 
LD (40H).A 

HALT 
SUB A subtracts the number in the Accumulator from itself. The result 1s to clear the 
Accumulator. SUB A. XOR A. or LD A.O can all clear the Accumulator. LD A.O takes 
more time and memory but doesn't affect the status flags. 

Word Disassembly 
Purpose: Divide the contents of memory location 0040 into two 4-bit sections and 

store them in memory locations 0041 and 0042. Place the four most signifi­
cant bits of memory location 0040 into the four least significant bit positions 

4-7 



of memory location 0041; place the four least significant bits of memory 

location 0040 into the four least significant bit positions of memory location 

0042. Clear the four most significant bit positions of memory locations 0041 

and 0042. 

Sample Problem: 

(0040) 3F 

Resu It: {0041) 03 

Source Program: 

LO 
LO 
LO 
RRA 
RRA 
RRA 
RRA 
AND 
INC 
LO 
LO 
AND 
INC 
LO 
HALT 

Object Program: 

{0042) OF 

HL.40H 
A,(HL) 
8.A 

000011118 
HL 
(HU.A 
A.8 
000011118 
HL 
(HU.A 

;GET DATA 

:SHIFT DATA RIGHT 4 TIMES 

:MASK OFF MS8'S 

:STORE MS8'S 
;RESTORE ORIGINAL DATA 
:MASK OFF LS8'S 

:STORE LS8'S 

Memory Address Memorv Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 21 LO HL.40H 

0001 40 
0002 00 
0003 7E LO A,(HU 

0004 47 LO 8.A 

0005 1F RRA 

0006 1F RRA 

0007 1F RRA 

0008 1F RRA 

0009 E6 AND 000011118 

OOOA OF 
0008 23 INC HL 

oooc 77 LO (HU.A 

0000 78 LO A.B 

OOOE E6 AND 000011118 

OOOF OF 
0010 23 INC HL 

0011 77 LO (HU.A 

0012 76 HALT 

Instructions using the address in Registers H and L occupy only one word of program 

memory. However. HL must be loaded before the address can be used. Thus. implied 

memorv addressing saves time and memory, as compared to direct memory addressing. 

only when the program repeatedly uses the same address or consecutive addresses. 

4-8 



RRC shifts the Accumulator right one bit circular. with the least significant bit going to 
the most significant bit pos1t1on and to the Carry. Shifting the Accumulator right four 
times requires four RRCs. We could use SRL A to provide a logical shift directly (no final 
AND would then be necessary). However. SRL A requires twice as much time and 
memory as RRC. Try substituting SRL A for RRC and see the difference. Another alter­
native would be to use the RLD instruction to replace both the mask and the store. 
However. this solution 1s not optimal in terms of either storage or execution speed due 
to the constraint that the high-order nibble of each result must equal zero. 

Many ZSO instructions affect a pair of S-b1t registers. The pairs are HL (H and U. DE (0 
and E). and SC (Band C). Registers B. D. and H are the most significant eight bits of the 
pairs: Registers C. E. and Lare the least significant eight bits. The common instructions 
that use pairs of registers are LO rp (Load Register Pair). INC rp (Increment Register 
Paid. DEC rp (Decrement Register Paid. and .ADD HL.rp (Add Register Pair to H and U. 

Find Larger of Two Numbers 
Purpose: Place the larger of the contents of memory locations 0040 and 0041 into 

memory location 0042. Assume that the contents of memory locations 0040 
and 0041 are unsigned binary numbers. 

Sample Problems: 

a. (0040) 3F 
(0041) 28 

Result: (0042) 3F 

b. (0040) 75 
(0041) AS 

Result: (0042) AS 

Source Program: 

LO HL.40H 
LO A.(HU :GET FIRST OPERAND 
INC HL 
CP (HU :IS SECOND OPERAND LARGER? 
JR C.DONE 
LO A.(HU 

DONE. INC HL 
LO (HU.A 
HALT 

Object Program: 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
ooos 
0009 
OOOA 
0008 

;YES. GET SECOND OPERAND INSTEAD 

:STORE LARGER OPERAND 

Memory Contents 
(Hex) 

21 
40 
00 
?E 
23 
BE 
30 
01 
7E 
23 
77 
76 

4-9 

DONE: 

Instruction 
(Mnemon~c) 

LO HL.40H 

LO A.(HU 
INC HL 
CP (HU 
JR NC.DONE 

LO A.(HU 
INC HL 
LO (HU.A 
HALT 



-------------

CP (HL) sets the flags as if the contents of the memory location addressed by H and L 

had been subtracted from the contents of the Accumulator. However. the contents of 

the Accumulator are left unchanged for later comparisons or other processing. 

If A is the contents of-the Accumulator and X is the second operand for a CP instruc­

tion. then the flags are set as follows: 

1 l Zero = 1 if A = X 
Zero = 0 if A f:. X 

2) Carry = 1 if A < X 
Carry = 0 if A :?;; X 
(A, X are unsigned binary numbers) 

CP sets the Carry to 1 if a borrow would be necessary to actually perform the subtrac­

tion. 1.e .. if the number being subtracted from the contents of the Accumulator 1s 

greater than those contents. Thus. the sequence CP. JR NC.DONE causes a iump to 

DONE if the contents of the Accumulator are greater than or equal to the other number. 

JR NC.DONE causes a iump to memory location DONE if the Carry flag= 0. Otherwise 

(if Carry = 1). the computer continues with the next sequential memory location after 

the JR instruction. 

DONE 1s a label. a name which vou assign to a location in memory so that it 1s easier to 

remember. Note that labels are followed by a colon on the line where they are defined. 

The label makes the destination of the branch clearer. particularly when relative ad­

dressing 1s being used. The assembler calculates the required offset [caution: some ZSO 

assemblers will not do this). Using a label is preferable to JUSt specifying the offset (i.e .. 

JR NC.$+3) since the ZSO's instructions vary in length. You could therefore easily make 

an error in determining an offset. 

If the branch conditions are not satisfied. the processor simply proceeds to the next se­

quential location 1n program memory (i.e .. it executes the instruction LO A.(HL)}. 

The ZSO assemblers allow six characters in labels - the first must be a letter. while the 

others may be letters or numbers (some special characters are allowed but we will not 

use theml. 

The JR instruction uses relative addressing in which the second word of the instruction 

1s an 8-b1t twos complement number that the CPU adds to the address of the next in­

struction to find the target address. In the example. the relative offset is 0009 (target 

address) minus 0008 (address immediately following the branch) or 01. 

We should note that some ZSO assemblers will not calculate the offset in the form 

shown. These assemblers require an offset in the address field. rather than the label of 

the target instruction. If you have such an assembler. use the form JR NC.DONE-$. 

Remember that $ means "the address of the current instruction" 

The ZSO has two sets of iump instructions, JP Uump) and JR (Jump Relative). The JP 

instructions require a complete memory address; they occupy three bytes of memory 

and execute in ten clock cycles. The JR 1nstruct1ons require only a one-word offset: 

they occupy two bytes of memory and execute in 12 cycles if a iump is actually per­

formed and in 7 if not. So the JR instructions use less memory than JP instructions but 

may require a little extra time if a iump 1s performed hhe extra time 1s used to execute 

the required 16-bit addition of program counter and offset). 

4-10 



16-Bit Addition 
Purpose: Add the 16-bit number in memory locations 0040 and 0041 to the 16-bit 

number in memory locations 0042 and 0043. The most significant eight bits 
are in memory locations 0041 and 0043. Store the result in memory loca­
tions 0044 and 0045. with the most significant bits in 0045. 

Sample Problem: 

(0040) 2A 
(0041) 67 
(0042) F8 
(0043) 14 

Result: 672A + 14F8 = 7C22 
(0044) 22 

Source Program : 

LD 
LD 
ADD 
LD 
HALT 

Object Program : 

(0045) = 7C 

HL.(40Hl 
DE.(42H) 
HL.DE 
(44H).HL 

:GET FIRST 16-BIT NUMBER 
:GET SECOND 16-BIT NUMBER 
: 16-BIT ADDITION 
;STORE 16-BIT RESULT 

Memorv Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 
0000 2A LD HL.(40H) 
0001 40 
0002 00 
0003 ED LD DE.(42H) 
0004 58 
0005 42 
0006 00 
0007 19 ADD HL.DE 
0008 22 LD (44Hl.HL 
0009 44 
OOOA 00 
OOOB 76 HALT 

LD HL.(addr) loads Registers Hand L from two memory locations. the one specified in 
the instruction and the next consecutive one. The contents of the first addressed loca­
tion go to Register L. The contents of the next location go to Register H. Thus. LD 
HL.(40H) means l = (40). H = (41). The actual transfer proceeds one byte at a time and 
takes 16 clock cycles. The advantage of the 16-bit Load instruction over two 8-bit Load 
instructions is that the CPU has to fetch only one instruction from memory. 
Note the difference between LD HL.(addr). which loads the contents of the two RAM 
locations at addr and addr+ 1 into H and L. and LD HL.data16. which loads the contents 
of the next two bytes pointed to by the instruction counter into H and L. Since these 
two bytes immediately follow the op-code. loads of this type are referred to as load im­
mediate instructions. 

LD DE.(addrl is similar to LD HL.(addr) except that it takes one extra word of memory 
and four more clock cycles. This is one of the instructions that is present in the Z80 set 
but not in the 8080/8085 sets. An alternative approach is: 

EX DE.HL :SAVE FIRST 16-BIT NUMBER IN DE 
LO HL.(42H) :GET SECOND 16-BIT NUMBER 

4-11 



EX DE.HL exchanges the contents of Registers D and E with H and L. No numbers are 

changed or destroyed. The advantage of EX DE.HL will become obvious if you try to 

replace it with a series of LD instructions. 

ADD HL.DE adds the 16-bit number in Registers D and E to the 16-bit number in 

Registers Hand L. The result 1s placed into Registers Hand L. ADD HL.DE actually adds 

one byte at a time. It executes in 11 clock cycles. 

LO (addrl.HL stores the contents of Registers H and L into two memory locations. the 

one specified in the instruction and the next consecutive one. The contents of L go into 

the specified location and the contents of H go into the next location. Thus. LD (44H).HL 

means (44) = L. (45) = H. As with LD HL.(addr). the actual transfer proceeds one byte at 

a lime and requires 16 clock cycles. 

Although the Z80 1s an 8-b1t processor. 1t has instructions that handle 16-bit numbers. 

These instructions are intended primarily for handling addresses. but you can also use 

them for 16-bit data. The most common ones and their uses are: 

1) ADD HL,rp -16-Bit Add 
Used to access tables and to add 16-bit data units 

2) DEC rp - 16-Bit Decrement 
Used to subtract one from the contents of a register pair 

3) INC rp - 16-Bit Increment 
Used to add one to the contents of a register pair 

4) LD rp.data16 -16-Bit Load Immediate 
Used to 1n1t1alize a register pair with a fixed value. e.g .. the starting address of an ar­

ray or table 

5) LO HL. (addr) - 16-Bit Load HL Direct 
Used to place variable addresses into the main address register (H and L) 

6) LD (addr).HL - 16-Bit Store HL Direct 
Used to store addresses to memory from the main address register (H and U. 

Table of Squares 
Purpose: Calculate the square of the contents of memory location 0040 from a table 

and place 1t into memory location 0041. Assume that memory location 0040 

contains a number between 0 and 7 inclusive (0 ~ (0041) ~ 7). 

The table occupies memory locations 0050 to 0057 

Memory Address 

(Hex) 

0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 

Sample Problems: 

a. (0041) 03 

b. 

Result: (0042) 09 

(0041) 

Result: (0042) 

06 

24 

Entry 

(Hex) 

00 
01 
04 
09 
10 
19 
24 
31 

4-12 

(Decimal) 

0 (02) 
1 (12) 
4 (22) 
9 (32) 

16 (42) 
25 (52) 
36 (62) 
49 (72) 



Source Program: 

LO 
LO 
LO 
LO 
ADD 
LO 
LO 
HALT 

ORG 
SQTAB: DEFB 

DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 

Object Program: 

A.(40H) 
L.A 
H.O 
DE.SOT AB 
HL.DE 
A.(HL) 
(41H).A 

50H 
0 
1 
4 
9 
16 
25 
36 
49 

:GET DATA 
;MAKE DATA INTO 16-BIT INDEX 

:GET STARTING ADDRESS OF TABLE 
:INDEX TABLE WITH DATA 
:GET SQUARE OF DATA 

;SQUARE TABLE 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 3A LO A.(40H) 
0001 40 
0002 00 
0003 6F LO L.A 
0004 26 LO H.O 
0005 00 
0006 11 LO DE.SOT AB 
0007 50 
0008 00 
0009 19 ADD Hl.DE 
OOOA 7E LO A.(HU 
OOOB 32 LO (41H).A 
oooc 41 
0000 00 
OOOE 76 

0050 00 SQTAB: DEFB 0 
0051 01 DEFB 1 
0052 04 DEFB 4 
0053 09 DEFB 9 
0054 10 DEFB 16 
0055 19 DEFB 25 
0056 24 DEFB 36 
0057 31 DEFB 49 

Note that you must also enter the table of squares into memory (the assembler pseudo­
operat1on DEFB will handle this). The table of squares 1s constant data. not parameters 
that may change; that is why you can initialize the table using the DEFB pseudo-opera­
tion. rather than by executing instructions to load values into the table. Remember that 
the table is part of the program memory (ROM in most systems). 

LO L.A moves the data in the Accumulator to Register L. The data 1s the eight least sig­
nificant bits of the index. You cannot always assume that the data presented to your 

4-13 



program is in the proper range. It 1s always a good practice to range check all critical 

values. Range checking consists of testing a value to ensure that 1t 1s within the proper 

lower and upper limits. Any byte can have a value in the range 0 to 255. If the value 

stored in the byte at location 0040H is greater than seven. the program will reference 

an undefined byte beyond the end of the square table. causing the program to generate 

erroneous results Range checking will prevent this error from occurring. 

LO H.0 clears Register H so that 1t does not interfere with the 16-bit addition of starting 

address and index. Never assume that a register contains zero at the start of a program. 

LO DE.SOT AB loads the starting address of the table into Registers D and E. We use D 

and E for the starting address since the ADD HL instruction does not change D and E. 

Thus, the starting address of the table will still be in D and E after the addition. in the 

event that we want another element from the table. 

ADD HL.DE adds the starting address and the index: the result in Hand Lis thus the ad­

dress of the correct entry. LO A.(HL) then moves that entry to the Accumulator. 

Anthmetic that a microprocessor cannot do directly in a few instructions is often best 

performed with lookup tables. Lookup tables simply contain all the possible answers to 

the problem: they are organized so that the answer to a particular problem can be 

found easily. The arithmetic problem now becomes an accessing problem - how do 

we get the correct answer from the table? We must know two things: the position of 

the answer in the table (called the index) and the base. or starting, address of the table. 

The address of the answer is then the base address plus the index. 

The base address. of course. is a fixed number for a particular table. How can we deter­

mine the index? In simple cases. where a single piece of data is involved. we can organ­

ize the table so that the data is the index. In the table of squares, the 0th entry in the ta­

ble contains zero squared. the first entry one squared. etc. In more complex cases. 

where the spread of input values is very large or there are several data items involved 

(e.g .. roots of a quadratic or number of permutations). we must use more complicated 

methods to determine indexes. 

The basic tradeoff in using a table is time vs. memory. Tables are faster. since no com­

putations are required. and simpler. since no mathematical methods must be devised 

and tested. However, tables can occupy a large amount of memory if the range of the 

input data is large. We can often reduce the size of a table by limiting the accuracy of 

the results. scaling the input data. or organizing the table cleverly. Tables are often 

used to compute transcendental and trigonometnc functions. lineanze inputs. convert 

codes. and perform other mathematical tasks. 

16-Bit Ones Complement 
Purpose: Place the ones complement of the 16-bit number in memory locations 0040 

and 0041 into memory locations 0042 and 0043. The most significant bytes 

are in locations 0041 and 0043. 

Sample Problem: 

(0040) 67 
(0041) E2 

Result: (0042) 98 
(0043) 10 

The ones complement inverts each bit of the original number: the sum of the original 

number and its ones complement will always be all 1 bits. 

4-14 



Source Program : 

LD 
LD 
CPL 
LD 
LD 
CPL 
LD 
LD 
HALT 

Object Program: 

HL,{40H) 
A,L 

LA 
A.H 

H.A 
{40H),HL 

:GET DATA 
:COMPLEMENT 8 LSB'S 

:COMPLEMENT 8 MSB'S 

:STORE ONES COMPLEMENT 

Memory Address Memory Contents Instruction 
(Hex) (Hex) {Mnemonic) 

0000 2A LD HL.(40H) 
0001 40 
0002 00 
0003 7D LD A,L 
0004 2F CPL 
0005 6F LD L.A 
0006 7C LD A.H 
0007 2F CPL 
0008 67 LD H.A 
0009 22 LD (42Hl.HL 
OOOA 42 
0008 00 
oooc 76 HALT 

Despite the Z80' s 16-bit instructions. you must use 8-bit instructions to perform most 
arithmetic and logical operations. The 16-bit instructions can. however. be used to load 
and store data and occasionally to do a few 16-bit arithmetic operations. such as addi­
tion. subtraction. incrementing. and decrementing. You will soon learn that the 16-bit 
instructions are far from a complete set and you mav often run into awkward problems 
if using them to manipulate 16-bit data. 

PROBLEMS 
1) Twos Complement 
Purpose: Place the twos complement of the contents of memory location 0040 into 

memory location 0041. The twos complement is the ones complement plus 
one. 

Sample Problem: 

(0040) = 3E 

Result: (0041) = CZ 

The sum of the original number and its twos complement is zero (try the sample case). 

2) 8-Bit Subtraction 
Purpose: Subtract the contents of memory location 0041 from the contents of memory 

location 0040. Place the result into memory location 0042. 

Sample Problem: 

(0040) 77 
(00411 39 

Result: (0042) 3E 

4-15 



~---·----

3) Shift Left Two Bits 
Purpose: Shift the contents of memory location 0040 left two bits and place the result 

into memory location 0041. Clear the two least significant bit positions. 

Sample Problem: 

(0040) = 50 

Result: (0041) = 74 

4) Mask Off least Significant Four Bits 
Purpose: Place the four most significant bits of the contents of memory location 0040 

into memory location 0041. Clear the four least significant bits of memory 

location 0041. 

Sample Problem: 

(0040) C4 

Resu It: (0041) CO 

5) Set a Memory location to All Ones 
Purpose: Memory location 0040 1s set to all ones (FF hex). 

61 Word Assembly 
Purpose: Combine the four least significant bits of memory locations 0040 and 0041 

into a word and store them in memory location 0042. Place the four least sig­

nificant bits of memory location 0040 into the four most significant bit posi­

tions of memory location 0042; place the four least significant bits of memo­

ry location 0041 into the four least significant bit positions of memory loca­

tion 0042. 

Sample Problem: 

(0040) 6A 
(0041) 83 

Result: (0042) A3 

7) Find Smaller of Two Numbers 
Purpose: Place the smaller of the contents of memory locations 0040 and 0041 into 

memory location 0042. Assume that 0040 and 0041 contain unsigned bin­

ary numbers. 

Sample Problems: 

a. (0040) 3F 
(0041) 2B 

Result: (0042) 28 

b. (0040) 75 
(0041) AB 

Result: (0042) 75 

8) 24-Bit Addition 
Purpose: Add the 24-bit number in memory locations 0040. 0041. and 0042 to the 24-

bit number in memory locations 0043. 0044. and 0045. The most significant 

eight bits are in memory locations 0042 and 0045: the least significant eight 

bits are in memory locations 0040 and 0043. Store the result in memory 

locations 0046, 0047. and 0048 with the most significant bits in 0048 and 

the least significant bits in 0046. 

4-16 



Sample Problem: 

(0040) 2A 
(0041) 67 
(0042) 35 
(0043) FB 
(0044) A4 
(0045) 51 

Result: (0046) 22 
(0047) oc 
(004B) B7 

that IS, 35672A 
+51A4FB 

B70C22 

9) Sum of Squares 
Purpose: Calculate the squares of the contents ot memory locations 0040 and 0041 

and add them together. Place the result into memory location 0042. Assume 
that memory locations 0040 and 0041 both contain numbers between 0 and 
7 inclusive (0 ::;; (0040) ::;; 7 and 0 ::;; (0041) ::;; 7). Use the table of squares 
from the example entitled Table of Squares. 

Sample Problem: 

(0040) 03 
(0041) 06 

Result: (0042) 20 

that 1s. 32 + 52 = 9 + 36 = 45 (decimal) 
2D (hex) 

10) 16-Bit Twos Complement 
Purpose: Place the twos complement of the 16-bit number 1n memory locations 0040 

and 0041 (most significant bits in 0041) into memory locations 0042 and 
0043 (most significant bits in 0043). 

Sample Problems: 

a. (0040) 00 
(0041) 5B 

Result: (0042) 00 
(0043) AB 

b. (0040) 72 
(0041) 00 

Result: (0042) BE 
(0043) FF 

4-17 



---·~------



Chapter 5 
SIMPLE PROGRAM LOOPS 

The program loop 1s the basic structure that forces the CPU to repeat a sequence of in­
structions. Loops have four sections: 

1) The initialization section. which establishes the starting values of counters. address 
registers (pointers). and other variables. 

2) The processing section. where the actual data manipulation occurs. This 1s the sec­
tion that does the work. 

3) The loop control section. which updates counters and pointers for the next 1tera-
t1on. 

4) The concluding section. which analyzes and stores the results. 

Note that the computer performs Sections 1 and 4 once. while it mav perform Sections 
2 and 3 many times. Thus. the execution time of the loop will mainly depend on the ex­
ecution time of Sections 2 and 3. You will want Sections 2 and 3 to execute as quickly 
as possible; do not worry about the execution time of Sections 1 and 4. A typical pro­
gram loop can be flowcharted as shown in Figure 5-1. or the pos1t1ons of the processing 
and loop control sections may be reversed as shown in Figure 5-2. The processing sec­
tion in Figure 5-1 1s always executed at least once. while the processing section in 
Figure 5-2 may not be executed at all. Figure 5-1 seems more natural. but Figure 5-2 1s 
often more efficient and avoids the problem of what to do when there 1s no data (a 
bugaboo for computers, and the frequent cause of silly s1tuat1ons like the computer 
dunning someone for a bill of $0.00). 

The loop structure can be used to process entire blocks of data. To accomplish this. the 
program must increment an address register (usually register pair HU after each itera­
tion so that the address register points to the next element in the data block. The next 
1terat1on will then perform the same operations on the data in the next memory loca­
tion. The computer can handle blocks of any length with the same set of instructions. 

Implied addressing through register pairs (particularly HU 1s the key to processing a 
block of data With the Z80. Since it allows YOU to vary the actual memory address by 
changing the contents of registers. Indexed addressing. while longer and slower on the 
zao than implied addressing, may be handy when processing more than one block of 
data. Note that in the immediate and direct addressing modes. the addresses that are 
used are completely determined by the instruction (and thus fixed if the program 
memory 1s read-only). · 

5-1 



Start 

lnit1alizat1on 
Section 

Processing 

Section 

Loop Control 

Section 

Concluding 

Section 

End 

Figure 5-1. Flowchart of a Program Loop 

5-2 



Start 

lnit1alizat1on 

Section 

Processing 

Section 

Yes 

Concluding 

Section 

End 

Figure 5-2. A Program Loop that Allows Zero Iterations 

EXAMPLES 
Sum of Data 
Purpose: Calculate the sum of a senes of numbers. The length of 

the series 1s in memory location 0041. and the senes 
begins in memory location 0042. Store the sum in 
memory location 0040. Assume that the sum 1s an 8-b1t 
number so that you can ignore carries. 

Sample Problem: 

(0041) 
(0042) 
(0043) 
(0044) 

Result: (0040) 

03 
28 
55 
26 

(0042) + (0043) + (0044) 
28+55+26 
A3 

There are three entries in the sum, since (0041 )=03. 

5-3 

8-BIT 
SUMMATION 



Flowchart: 
Start 

Pointer = 41 
Count = (Pointer! 

Sum= 0 

Pointer : Pointer + 1 
Sum =Sum 

+ (Pointer! 

Count Count - 1 

1401 Sum 

End 

Note: (Pointed 1s the contents of the memory location addressed by Pointer. Remember 
that on the ZSO. Pointer is a 16-bit address. while (Pointed 1s an 8-b1t byte of 
data. 

Source Program : 

LO 
LO 
SUB 

SUMO: INC 
ADD 
DEC 
JR 
LD 
HALT 

HL41H 
B.(HU 
A 
HL 
A.(HL) 
B 
NZ.SUMO 
(40H).A 

:COUNT LENGTH OF SERIES 
:SUM= ZERO 

:SUM= SUM+ DATA 

:STORE SUM 

5-4 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 21 LO HL.41 H 
0001 41 
0002 00 
0003 46 LO B.(HU 
0004 97 SUB A 
0005 23 SUMO: INC HL 
0006 86 ADD A.(HU 
0007 05 DEC B 
0008 20 JR NZ.SUMO 
0009 FB 
OOOA 32 LO (40H).A ' 
0008 40 
oooc 00 
0000 76 HALT 

The 1nit1alization section of the program 1s the first three instructions which set the sum. 
counter. and data pointer to their starting values. 

Note that you can use LO to transfer data between memorv and any of the primary 
general purpose registers (i.e .. A. B. C. D. E. H. U using the address in Registers H and L. 
However. the only transfers allowed using direct addressing are those that move data to 
or from the Accumulator (i.e .. LO A.(addrl and LO (addd.A- there 1s no instruction LO 
E.(addr). for example). 

The processing section of the program is the single instruction ADD A.(HL) which adds 
the contents of the memory location being addressed by Registers H and L to the con­
tents of the Accumulator. and stores the result in the Accumulator. This instruction 
does the real work of the program. 

The loop control section of the program consists of the instructions INC HL and DEC B. 
INC HL updates the pointer so that the next 1terat1on adds the next number to the sum. 
DEC B decrements the counter that keeps track of how many iterations are left. 

The instruction JR NZ causes a branch if the Zero flag is zero. The offset 1s a twos com­
plement number. and the count begins from the memory location immediately follow­
ing the JR instruction. In this case. the required 1ump is from memory location OOOA to 
memory location 0005. So the offset 1s: 

0005 05 
-OOOA +F6 

Fi3 
If the Zero flag 1s one. the CPU executes the next instruction 1n sequence (i.e .. LO 
(40H).A). Since DEC B was the last instruction before JR to affect the Zero flag. JR 
NZ.SUMO causes a 1ump to SUMO if DEC B does not produce a zero result. 1.e .. 

{

SUMO if 8 f:.O 
PC = 

PC+2 if B =0 

(The 2 1s caused by the two-word JR instruction!. 

5-5 



The loop control sequence DEC followed by JR NZ 1s so common that the ZSO has a 

special instruction that both decrements the counter and performs the iump. This 1n­
struct1on 1s DJNZ. Decrement and Jump on Not Zero. which decrements Register B and 

then 1umps by the specified relative offset if the remainder 1s not zero. So we could 

change the end of the example to: 

DJNZ 
LD 
HALT 

SUMO 
(40H).A 

Which has the object form: 

07 
08 
09 
OA 
OB 
oc 

10 
FC 
32 
40 
00 
76 

DJNZ SUMO 

LD (40H).A 

HALT 

This change saves one byte of memorv and three clock cycles. Note. however. that you 

must use Register B as the counter since this 1s the register that DJNZ decrements. 

Since the offset in ZSO relative 1umps 1s onlv one byte long. such 1umps can go no 
further than 127 locations forward or 128 locations backward (actually 129 forward or 

126 backward. since the count starts at the end of the 2-word instruction). Longer 
1umps must use the JP instructions. 

Most computer loops count down rather than up so that the Zero flag can serve as an 

exit condition. Remember that the Zero flag 1s 1 if the result was zero and 0 if the result 

was not zero. Trv rewriting the program so that it counts up rather than down; which 
method 1s more efficient? 

The order of instructions 1s often very important. DEC B must come nght before JR 
NZ.SUMO. since otherwise the Zero result set by DEC B could be changed by another 
instruction. INC HL must come before ADD A.(HL) or else the first number added to the 

sum will be the contents of memory location 0041 instead of the contents of memory 
location 0042. 

16-Bit Sum of Data 
Purpose: Calculate the sum of a series of numbers. The length of the series 1s in 

memory location 0042 and the series itself begins 1n memory location 0043. 
Store the sum in memory locations 0040 and 0041 (eight least significant 
bits 1n 0040). 

Sample Problem: 

(0042) 03 
(0043) cs 
(0044) FA 
(0045) 96 

Result: CB + FA + 96 = 0258 
(0040) 58 
(0041) = 02 

5-6 



Flowchart: 

Source Program: 

LD 
LD 
SUB 
LD 

DSUMD: INC 
ADD 
JR 
INC 

CHCNT DJNZ 
LD 
LD 
INC 
LD 
HALT 

HL.42H 
B.(HL) 
A 
C.A 
HL 
A.(HL) 
NC.CHCNT 
c 
DSUMD 
HL.40H 
(HU.A 
HL 
(HU.C 

No 

Start 

Pomter = 42 
Count = (Pomterl 
Sumi = 0 
Sumu = 0 

Pmnter "" Pomter + 1 

Sumi =Sumi 

+(Pointer! 

Sumu = Sumu + 1 

Count Count - 1 

(40) = Sumi 

(411 = Sumu 

End 

:COUNT= LENGTH OF SERIES 
:LSB'S OF SUM= 0 
:MSB'S OF SUM= 0 

:SUM= SUM+ DATA 

:ADD CARRY TO MSB'S OF SUM 

:STORE LSB'S OF SUM 

;STORE MSB'S OF SUM 

5-7 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 21 LD HL.42H 
0001 42 
0002 00 
0003 46 LD B.(HL) 
0004 97 SUB A 
0005 4F LD C.A 
0006 23 DSUMD: INC HL 
0007 86 ADD A.(HL) 
0008 30 JR NC.CHCNT 
0009 01 
OOOA oc INC c 
OOOB 10 CHCNT· DJNZ DSUMD 
oooc F9 
OOOD 21 LO HL.40H 
OOOE 40 
OOOF 00 
0010 77 LO (HU.A 
0011 23 INC HL 
0012 71 LO (HL).C 
0013 76 HALT 

The structure of this program 1s the same as the structure of the last one. The most sig­
nificant bits of the sum now must be initialized and stored. The processing section con­
sists of three 1nstruct1ons (ADD A.(HL); JR NC.CHCNT. and INC C). including a Condi­
tional Jump. 

JR NC.CHCNT causes a 1ump to memory location CHCNT if the Carry = 0. Thus. if there 
1s no carry from the 8-b1t addition. the program Jumps around the statement that incre­
ments the most significant bits of the sum. The relative offset 1s: 

0008 
-OOOA 
--01-

The relative offset for DJNZ DSUMD 1s: 

0006 06 
-OOOD +F3 

F9 
INC C adds 1 to the contents of Register C. Note that INC BC 1s a 16-bit increment that 
adds 1 to Register C and adds the resulting carry to Register B: INC C 1s an 8-bit incre­
ment that does not account for the carry. 

5-8 



Number of Negative Elements 
Purpose: Determine the number of negative elements (most significant bit 1) in a 

block. The length of the block is in memory location 0041 and the block itself 
starts in memory location 0042. Place the number of negative elements in 
memory location 0040. 

Sample Problem: 

(0041) 
(0042) 
(0043) 
(0044) 
(0045) 
(0046) 
(0047) 

Result: (0040) 

Flowchart: 

06 
68 
F2 
87 
30 
59 
2A 

02. since 0043 and 0044 contain 
numbers with an MSB of 1. 

No 

Start 

Pointer = 41 
Count = (Pointer! 
Nneg = 0 

Pointer = Pointer + 1 

Nneg = Nneg + 1 

Count = Count - 1 

(401 = Nneg 

End 

5-9 



Source Program : 

LD 
LD 
LD 

SRNEG: INC 
LD 
AND 
JP 
INC 

CHCNT DJNZ 
LD 
LD 
HALT 

Object Program : 

HL.41H 
B.(HL) 
c.o 
HL 
A.(HL) 
A 
P.CHCNT 
c 
SR NEG 
A.C 
(40H).A 

:COUNT= NUMBER OF ELEMENTS 
:NUMBER OF NEGATIVES= ZERO 

:GET NEXT ELEMENT 
;JS MSB ZERO? 

:NO. ADD 1 TO NUMBER OF NEGATIVES 

:STORE NUMBER OF NEGATIVES 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 21 LD HL.41H 

0001 41 
0002 00 
0003 46 LD B.(HL) 

0004 OE LD c.o 
0005 00 
0006 23 SRNEG: INC HL 
0007 7E LD A.(HL) 

OOOB A7 AND A 

0009 F2 JP P.CHCNT 

OOOA OD 
OOOB 00 
oooc oc INC c 
OOOD 10 CHCNT: DJNZ SR NEG 

OOOE F7 
OOOF 79 LD A.C 
0010 32 LD (40H).A 

0011 40 
0012 00 
0013 76 HALT 

AND A simply sets the flag bits according to the contents of the Accumulator without 

affecting those contents; OR A has the same effect. This 1s necessary since merely load­

ing the Accu mu la tor does not affect the flags. 

JP P.CHCNT requires a full 16-bit address. There 1s no relative iump on the Sign flag like 

there 1s on the Carry and Zero flags. 

Note that all we really want to do 1s test the value of bit 7 of the memorv location ad­
dressed by Registers H and L. The Z80 has a special bit testing 1nstruct1on. BIT. that 1s 

designed specifically for this purpose. BIT sets the Z flag to the complement of the indi­

cated bit w1th1n the indicated register or memory location. For example. BIT 5.D will set 

Z to 1 if bit 5 of Register D 1s zero. and to 0 if bit 5 of Register D 1s one. An 1mplementa­
tlon of this alternative 1s as follows. 

5-10 



Source Program: 

LD 
LD 
LD 

SRNEG: INC 
BIT 
JR 
INC 

CHCNT DJNZ 
LD 
LD 
HALT 

Object Program: 

HL.41 H 
B.(HU 
c.o 
HL 
7,(HL) 
Z.CHCNT 
c 
SR NEG 
A.C 
(40Hl.A 

;COUNT= NUMBER OF ELEMENTS 
:NUMBER OF NEGATIVES= ZERO 

:IS NEXT ELEMENT NEGATIVE? 

;YES. ADD 1 TO NUMBER OF NEGATIVES 

:STORE NUMBER OF NEGATIVES 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 21 LD HL.41 H 
0001 41 
0002 00 
0003 46 LD B.(HU 
0004 OE LD c.o 
0005 00 
0006 23 SRNEG. INC HL 
0007 CB BIT 7.(HU 
0008 7E 
0009 28 JR Z.CHCNT 
OOOA 01 
OOOB oc INC c 
oooc 10 CHCNT DJNZ SR NEG 
0000 F8 
OOOE 79 LD A.C 
OOOF 32 LD (40Hl.A 
0010 40 
0011 00 
0012 76 HALT 

BIT 7. (HU sets the Z bit if bit 7 of the memory location addressed by Registers H and L 1s 
zero. and clears the Z bit if bit 7 of that location 1s one. BIT does not affect any registers 
or memory locations. 

This program uses JR Z.CHCNT since no incrementing 1s necessary if the addressed bit 
1s zero. 

Still another approach would be to use the 1nstruct1on RLC (HU to shift the sign bit of 
the data in memory to the Carry. The required 1ump would then be JR NC.CHCNT 
However. this approach uses extra time (RLC (HL) takes 15 cycles as compared to the 
12 needed by BIT 7. (HL)) and also changes the data in memory which may be needed 
for other purposes. Note that these disadvantages are related: the extra time 1s needed 
to return the result to the memorv location. 

Find Maximum 
Purpose: Find the largest element in a block of data. The length of the block 1s 1n 

memorv location 0041 and the block itself begins in memory location 0042. 
Store the maximum in memory location 0040. Assume that the numbers 1n 
the block are all 8-b1t unsigned binary numbers. 

5-11 



Sample Problem: 

(0041) 
(0042) 
(0043) 
(0044) 
(0045) 
(0046) 

Result: (0040) 

Flowchart: 

05 
67 
79 
15 
E3 
72 

E3. since this 1s the largest of 
the five unsigned numbers. 

Start 

Pointer = 41 

Count = !Pointer} 

Max= 0 

Pointer = Pointer + 1 

Max =(Pointer} 

Count = Count - 1 

(401 =Max 

End 

5-12 



Source Program: 

LD 
LD 
SUB 

NEXTE: INC 
CP 
JR 
LD 

DECNT: DJNZ 
LD 
HALT 

Object Program: 

HL.41 H 
B.(HU 
A 
HL 
(HU 
NC.DECNT 
A.(HU 
NEXTE 
(40H).A 

:POINT TO COUNT 
:COUNT= NUMBER OF ELEMENTS 
:MAXIMUM= MINIMUM POSSIBLE VALUE (ZERO) 

:IS NEXT ELEMENT ABOVE MAXIMUM? 

:YES. REPLACE MAXIMUM WITH ELEMENT 

:SAVE MAXIMUM 

Memory Address Memory Contents Instruction 
(Hex) (Hex) 

0000 21 
0001 41 
0002 00 
0003 46 
0004 97 
0005 23 NEXTE: 
0006 BE 
0007 30 
0008 01 
0009 7E 
OOOA 10 DEC NT· 
OOOB F9 
oooc 32 
0000 40 
OOOE 00 
OOOF 76 

The relative offset for JR NC.DECNT 1s: 

OOOA 
-0009 
--0-1 

The relative offset for DJNZ NEXTE 1s: 

0005 05 
-OOOC +F4 

F9 

(Mnemonic) 

LD HL.41H 

LD B.(HU 
SUB A 
INC HL 
GP (HU 
JR NC.DECNT 

LD A.(HU 
DJNZ NEXTE 

LD (40H).A 

HALT 

The first three instructions of this program form the 1n1t1alizat1on section. 
This program takes advantage of the fact that zero 1s the smallest 8-b1t unsigned binary 
number. When you set the register that contains the maximum value - in this case the 
Accumulator - to the minimum possible value before you enter the loop. then the pro­
gram will set the Accumulator to a larger value unless all the elements in the array are 
zeros. 

5-13 



The program works properly if there are two elements. but not if there are one or none 

at all Why I How could you solve this problem? 

The instruction CP (HU sets the Carry flag as follows (ELEMENT 1s the contents of the 

address in Registers H and L and MAX 1s the contents of the Accumulator): 

CARRY = 1 if ELEMENT > MAX 
CARRY = 0 if ELEMENT ~ MAX 

If CARRY = 0. the program proceeds to DECNT and does not change the maximum. If 

CARRY= 1. the program replaces the old maximum with the current element by ex­

ecuting the instruction LO A.(HU. 

The program does not work if the numbers are signed because negative numbers will 

appear to be larger than pos1t1ve numbers. The problem 1s somewhat tncky because 

overflow could make the result appear to have the wrong sign. 

Remember that overflow occurs when the magnitude of a result affects its sign bit. The 

Z80 has a Parity/Overflow flag that indicates when twos complement overflow has oc­

curred. Anthmet1c operations that result in overflow set this flag. You can then test its 

value with the instructions JP PE.AD DR (Jump on Parity Even - or Jump on Overflow) 

or JP PO.ADDA (Jump on Panty Odd - or Jump on No Overflow). One thing you may 

have to watch is that this Z80 usage 1s inconsistent with the 8080A or 8085 

microprocessors. which always use the P flag to indicate panty. The 8080A and 8085 

microprocessors have no overflow indicator. 

Justify a Binary Fraction 
Purpose: Shift the contents of memory location 0040 left until the most significant bit 

of the number 1s 1. Store the result in memory location 0041 and the number 

of left shifts required in memory location 0042. If the contents of memory 

location 0040 are zero. clear both 0041 and 0042. 

Note: The process 1s 1ust like converting a number to a scientific notation:·· fb;-example: 

0.0057 = 5.7 x 10-3 

Sample Problems: 

a. (0040) 22 

Result: (0041) 88 
(0042) 02 

b (0040) 01 

Result: (0041) 80 
(0042) 07 

c. (0040) CB 

Result: (0041) CB 
(0042) 00 

d. (0040) 00 

Result: (0041) 00 
(0042) 00 

5-14 



Flowchart: 

Source Program: 

LO 
LO 
LO 
AND 
JR 

CHKMS JP 
INC 
ADD 
JP 

DONE. INC 
LO 
INC 
LO 
HALT 

B.O 
HL.40H 
A.(HU 
A 

Start 

Nshft " 0 
Numb 1401 

Shift Numb 

left 1 bit 

Nshft = Nsht + 1 

Yes 

Yes 

1411 
1421 

Numb 
Nshft 

End 

:NUMBER OF SHIFTS =ZERO 

:GET DATA 
:IS DATA ZERO'? 

Z.DONE YES. DONE 
M.DONE ;DONE IF SIGN BIT IS ONE 
B ;ADD 1 TO NUMBER OF SHIFTS 
A.A ;SHIFT LEFT ONE BIT 
CHKMS 
HL 
(HU.A :SAVE JUSTIFIED DATA 
HL 
(HU.B :SAVE NUMBER OF SHIFTS 

5-15 



Object Program: 

Memory Address Memory Contents Instruction 

(Hex) (Hex) (Mnemonic! 

0000 06 LD B.0 

0001 00 

0002 21 LD HL.40H 

0003 40 

0004 00 

0005 7E LD A.(HL) 

0006 A7 AND A 

0007 28 JR Z.DONE 

0008 08 

0009 FA CHKMS. JP M.DONE 

OOOA 11 

OOOB 00 

oooc 04 INC B 

OOOD 87 ADD A.A 

OOOE C3 JP CHKMS 

OOOF 09 

0010 00 

0011 23 DONE: INC HL 

0012 77 LD (HU.A 

0013 23 INC HL 

0014 70 LD (HU.B 

0015 76 HALT 

JP M.DONE causes a iump to location DONE if the Sign bit 1s 1. This condition may 

mean that the last result was a negative number or may iust mean that its most signifi­

cant bit was 1 - the computer supplies only the results; the programmer must provide 

the interpretation. 

ADD A.A adds the number in the Accumulator to itself. The program uses this instruc­

tion. rather than RLA or RLCA. because ADD A affects the Sign bit while RLA and RLCA 

do not. 

We could reorganize this program so as to eliminate an extraneous JP and use relative 

rather than absolute 1umps. One reorganized version would be: 

LD B.O :NUMBER OF SHIFTS= ZERO 

LD HL.40H 
LD A.(HU :GET DATA 

AND A :IS DATA ZERO? 

JR Z.DONE ;YES. DONE 

DEC B :ADJUST NUMBER OF SHIFTS BACK ONE 

CHKMS. INC B :ADD 1 TO NUMBER OF SHIFTS 

RLA :SHIFT LEFT ONE BIT 

JR NC.CHKMS :CONTINUE IF MSB NOT ONE 

RRA :ADJUST DAT A BACK 

DONE: INC HL 
LD (HU.A :SAVE JUSTIFIED DATA 

INC HL 
LD (HU.D :SAVE NUMBER OF SHIFTS 

HALT 

Show that this version also works. What are its advantages and disadvantages as com­

pared to the previous program? 

5-16 



PROBLEMS 
1) Checksum of Data 
Purpose: Calculate the checksum of a series of numbers. The length of the senes 1s in 

memory location 0041 and the series itself begins in memory location 0042. 
Store the checksum in memory location 0040. The checksum is formed by 
Exclusive-ORing all the numbers in the series together. 

Note: Such checksums are often used in paper tape and cassette systems to ensure 
that the data has been read correctly. The calculated checksum 1s compared to 
the one stored with the data - if the two checksums do not agree. the system 
will usually either indicate an error to the operator or automatically read the data 
again. 

Sample Problem: 

(0041) 03 
(0042) 28 
(0043) 55 
(0044) 26 

Result: (0040) (0042) EB (0043) EB (0044) 
28EB55EB26 
00101000 

EB01010101 
0 1 1 11101 

EB00100110 
01011011 
5B 

2) Sum of 16-Bit Data 
Purpose: Calculate the sum of a senes of 16-bit numbers. The length of the series 1s in 

memory location 0042 and the series itself begins 1n memory location 0043. 
Store the sum in memory locations 0040 and 0041 (eight most significant 
bits in 0041). Each 16-bit number occupies two memory locations. with the 
eight most significant bits 1n the higher address. Assume that the sum can 
be contained in 16 bits. 

Sample Problem: 

(0042) 03 
(0043) F1 
(0044) 28 
(0045) 1A 
(0046) 30 
(0047) 89 
(0048) 4B 

Result 28F1 + 301A + 4B89 =A494 
(0040) 94 
(0041) = A4 

5-17 



3) Number of Zero, Positive, and Negative Numbers 
Purpose: Determine the number of zero. positive (most significant bit zero but entire 

number not zero). and negative (most significant bit 1) elements in a block. 

The length of the block 1s in memory location 0043 and the block itself starts 

in memory location 0044. Place the number of negative elements in memory 

location 0040. the number of zero elements in memory location 0041. and 

the number of pos1t1ve elements in memory location 0042. 

Sample Problem: 

(0043) 06 
(0044) 68 
(0045) F2 
(0046) 87 
(0047) 00 
(0048) 59 
(0049) 2A 

Resu It: 2 negative. 1 zero. and 3 pos1t1ve. so 
(0040) 02 
(0041) 01 
(0042) 03 

4) Find Minimum 
Purpose: Find the smallest element in a block of data. The length of the block 1s in 

memory location 0041 and the block itself begins in memorv location 0042. 

Store the m1n1mum in memory location 0040. Assume that the numbers 1n 

the block are 8-b1t unsigned binary numbers. 

Sample Problem: 

(0041) 05 
(0042) 67 
(0043) 79 
(0044) 15 
(0045) E3 
(0046) 72 

Resu It: (0040) 15. since this 1s the smallest of the 
five unsigned numbers. 

5) Count 1 Bits 
Purpose: Determine how many bits in memorv location 0040 are one and place the 

result in memory location 0041. 

Sample Problem: 

(0040) 

Result: (0041) 

38=00111011 

05 

5-18 



Chapter 6 
CHARACTER-CODED DATA 

Microprocessors often handle character-coded data. Not only do keyboards, 
teletypewriters. communications devices. displays, and computer terminals expect or 
provide character-coded data: many instruments. test systems. and controllers also re­
quire data in this form. The most commonly used code 1s ASCII. Baudot and EBCDIC are 
found less frequently. We will assume all of our character-coded data to be 7-bit ASCII 
with the most significant bit zero (see Table 6-1). 

Some principles to remember in handling ASCII-coded data are: 

1) The codes for the numbers and letters form ordered sub-se­
quences. The codes for the decimal numbers are hex 30 
through 39. so that you can convert between decimal and 

HANDLING 
DATA IN 
ASCII 

ASCII with a simple additive factor. The codes for the upper-case letters are hex 41 
through 5A. so that you can do alphabetic ordering by sorting the data 1n increas­
ing numerical order. 

2) The computer draws no distinction between printing and non-printing characters. 
This distinction 1s made only by 1/0 devices. 

3) An ASCII device will handle only ASCII data. To print a 7 on an ASCII printer. the 
microprocessor must send hex 37 to the printer: hex 07 1s the 'bell' character. 
Similarly, the microprocessor will receive the character 9 from an ASCII keyboard 
as hex 39: hex 09 1s the 'tab' character. 

4) Some ASCII devices do not use the full character set. For example. control charac­
ters and lower-case letters may be ignored or printed as spaces or question marks. 

5) Some widely used ASCII characters are: 

OA
16 

- line feed (LF) 

OD
16 

- carnage return (CR) 

20 16 - space 

3F 16 - ? (question mark) 

7F 16 - rubout or delete character 

6) Each ASCII character occupies seven bits. This allows a large character set but 1s 
wasteful when the data 1s limited to a small subset such as the decimal numbers. 
An 8-bit byte. for example. can hold only one ASCII-coded decimal digit. while 1' 
can hold two BCD-coded digits. 

6-1 



Table 6-1. Hex-ASCII Table 

~ 0 1 2 3 4 6 6 7 
D 

0 NUL DLE SP 0 @ p p 

1 SOH DC1 I 1 A Q a q 

2 STX DC2 " 2 B R b r 

3 ETX DC3 # 3 c s c s 

4 EOT DC4 $ 4 D T d t 

6 ENO NAK % 5 E u e u 

6 ACK SYN & 6 F v f v 

7 BEL ETB 7 G w g w 
8 BS CAN ( 8 H x h x 

9 HT EM l 9 I y I y 

A LF SUB . : J z I z 
B VT ESC + K [ k I 
c FF FS < L \ I I 
D CR GS - = M l m I 
E so RS > N A n -
F SI us I ? 0 0 DEL -

EXAMPLES 
length of a String of Characters 
Purpose: Determine the length of a string of ASCII characters (seven bits with most 

significant bit zero). The string starts in memory location 0041. the end of 

the string 1s marked bv a carnage return character ('CR'. hex OD). Place the 

length of the string (excluding the carnage return) into memory location 
0040. 

Sample Problems: 

a. (0041) OD 

Result: (0040) 00 since the first character 1s a carriage return. 

b (0041) 52 'R' 
(0042) 41 'A' 
(0043) 54 T 
(0044) 48 'H' 
(0045) 45 'E' 
(0046) 52 'R' 
(0047) OD CR 

Result: (0040) 06 

6-2 



Flowchart: 

Source Program: 

LO 
LO 
LO 

CHKCR: CP 
JR 
INC 
INC 
JR 

DONE: LO 
LO 
HALT 

Start 

Pomter 41 
Length 0 

Yes 

Length = Length + 1 
Pointer = Pointer + 1 (40) Length 

HL.41 H 
B.0 
A.OOH 
(HL) 
Z.DONE 
B 
HL 
CHKCR 
A.B 
(40H).A 

End 

:POINTER= START OF STRING 
;STRING LENGTH= ZERO 
:GET ASCII CARRIAGE RETURN TO COMPARE 
;IS CHARACTER A CARRIAGE RETURN? 
:YES. DONE 
:NO. ADD 1 TO STRING LENGTH 

;TRY NEXT CHARACTER 
;SAVE STRING LENGTH 

6-3 



Object Program: 

Memory Address Memory Contents I nstruct1on 

(Hex) (Hex) (Mnemonic) 

0000 21 LD HL.41 H 

0001 41 
0002 00 
0003 06 LD B.O 

0004 00 
0005 3E LD A.OOH 

0006 OD 
0007 BE CHKCR: CP (HU 

0008 28 JR Z.DONE 

0009 04 
OOOA 04 INC B 

OOOB 23 INC HL 

oooc 18 JR CHKCR 

OOOD F9 

OOOE 78 DONE: LD A.B 
OOOF 32 LD (40Hl.A 

0010 40 
0011 00 
0012 76 HALT 

The carnage return (CR) 1s 1ust another ASCII character (hex OD) as far as the computer 

1s concerned. The fact that the output device treats the carnage return as a control 

character rather than as a pnnt1ng character does not affect the computer. 

The Compare instruction. CP. sets the flags as if a subtraction had been performed. but 

leaves the carnage return character in the Accumulator for later comparisons. The Zero 

(Z) flag 1s affected as follows: 

Z = 1 if the character in the String 1s a carnage return 

Z = 0 if 1t 1s not a carnage return 

The instruction INC B adds 1 to the string length counter in Register B. LD B.O initializes 

this counter to zero before the loop begins. Remember to 1n1t1alize variables before 

using them in a loop. 

This loop does not terminate because a counter 1s decremented to zero. The computer 

will simply continue examining characters until it finds a carnage return. You may have 

to place a maximum count in a loop like this to avoid problems with erroneous strings 

that do not contain a carriage return. What would happen if the example program were 

used with such a string? 

Note that. by rearranging the logic and changing the in1t1al conditions. you can shorten 

the program and decrease its execution time. If we adjust the flowchart so that the pro­

gram increments the counter and pointer before 1t looks for the carnage return. only one 

Jump instruction is necessary instead of two. The new flowchart and program are as 

follows: 

6-4 



Flowchart: 

Source Program: 

LD 
LD 
LD 

CHKCR: INC 
INC 
CP 
JR 
LD 
LD 
HALT 

HL.40H 
B.OFFH 
A.OOH 
HL 
B 
(HU 
NZ.CHKCR 
A.B 
(40H).A 

Start 

Pointer 40 
Length -1 

length = Length + 1 
Pa1nter = Pointer + 1 

(40) Length 

End 

:POINTER =BYTE BEFORE STRING 
:LENGTH= -1 
:GET ASCII CARRIAGE RETURN TO COMPARE 

:ADD 1 TO STRING LENGTH 
:IS CHARACTER A CARRIAGE RETURN? 
:NO. CHECK NEXT CHARACTER 
:YES. SAVE STRING LENGTH 

6-5 



Object Program: 

Memory Address Memory Contents I nstruct1on 

(Hex) (Hex) (Mnemonic! 

0000 21 LD HL.40H 

0001 40 

0002 00 

0003 06 LD B.OFFH 

0004 FF 

0005 3E LO A.OOH 

0006 OD 
0007 23 CHKCR: INC HL 

0008 04 INC 8 

0009 BE CP (HU 

OOOA 20 JR NZ.CHKCR 

OOOB FB 

oooc 78 LO A.B 

OOOD 32 LD (40H).A 

OOOE 40 

OOOF 00 

0010 76 HALT 

The task of looking for a particular value in a list. table. or string 1s a common one. The 

ZBO microprocessor has. in fact. special 1nstruct1ons that simplify this task. -------
These special instructions are called Block Search Instructions; BLOCK 

they operate as follows: SEARCH 
INSTRUCTIONS 

CPI compares the contents of the memory location addressed by -------

HL with the contents of the Accumulator (just like CP (HL)l. It then 

increments HL and decrements the byte counter (register pair BC). The Paritv/Overflow 

bit 1s reset if the byte counter 1s decremented to zero and set otherwise. CPD 1s the 

same instruction except that 1t decrements HL instead of incrementing it. 

CPIR and CPDR are the repeated forms of the Block Search instructions. These instruc­

tions repeat the basic Search instruction until either BC 1s decremented to zero or a true 

comparison occurs (i.e .. A= (HL)). Remember that decrementing BC to zero resets the 

Parity/Overflow bit. while finding a match sets the Zero bit. 

Note that BC contains a 16-bit counter. Thus. the Block Search Instructions can handle 

strings of any length. 

A version of the previous program using CPI 1s shown below. 

Source Program: 

LD 
LD 
LD 

CHKCR: CPI 
JR 
LD 
SUB 
LO 
HALT 

HL.41 H 
BC.O 
A.ODH 

NZ.CHKCR 
A.OFFH 
c 
(40H).A 

;POINTER= START OF STRING 
: BYTE COUNTER = ZERO 

:GET ASCII CARRIAGE RETURN TO COMPARE 

:IS CHARACTER A CARRIAGE RETURN? 

:NO. CHECK NEXT CHARACTER 

:YES. CALCULATE STRING LENGTH 

:SAVE STRING LENGTH 

6-6 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 21 LO HL.41 H 
0001 41 
0002 00 
0003 01 LO BC.0 
0004 00 
0005 00 
0006 3E LO A.OOH 
0007 OD 
0008 ED CHKCR: CPI 
0009 Al 
OOOA 20 JR NZ.CHKCR 
OOOB FC 
oooc 3E LO A.OFFH 
0000 FF 
OOOE 91 SUB c 
OOOF 32 LO (40H).A 
0010 40 
0011 00 
0012 76 HALT 

A little manipulation is necessary to calculate the string length. since CPI decrements 
the byte counter (BC) instead of incrementing 1t as we did with INC B 1n the earlier pro­
gram. Also. the byte counter 1s decremented one extra time when the carnage return 1s 
found. How cou Id you adjust the 1nit1al conditions to handle this problem? 

In fact. we can 1morove the program even further by using CPIR to remove the need for 
the relative 1ump JR. CPIR does everything that CPI does. but it also automaucally 
repeats the comparison procedure unless A= (HU or BC has been decremented to zero. 
The program using CPIR is shown below. 

Source Program: 

LO 
LO 
LO 
CPIR 
LO 
SUB 
LD 
HALT 

HL.41 H 
BC.O 
A.OOH 

A.OFFH 
c 
(40H).A 

:POINTER= START OF STRING 
:BYTE COUNTER= ZERO 
:GET ASCII CARRIAGE RETURN TO COMPARE 
;SEARCH FOR CARRIAGE RETURN 
:CALCULATE STRING LENGTH FROM COUNTER 

:SAVE STRING LENGTH 

6-7 



Object Program: 

Memorv Address Memory Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 21 LO HL.41 H 

0001 41 
0002 00 
0003 01 LO BC,0 

0004 00 
0005 00 
0006 3E LO A.OOH 

0007 OD 
0008 ED CPIR 

0009 81 
OOOA 3E LO A.OFFH 

0008 FF 
oooc 91 SUB c 
0000 32 LO (40Hl.A 

OOOE 40 
OOOF 00 
0010 76 HALT 

The multiple operation 1nstruct1ons like CPI and CPIR have the same effect as the se­

quences they replace. The savings in execution time and memory come about because 

the processor needs fewer 1nstruct1ons for each pass through the loop. Thus, the real 

savings 1s in loop execu1on. 

All these programs assume that the string is less than 256 bvtes long. How would vou 

change them to handle longer strings? 

Find First Non-Blank Character 

Purpose: Search a string of ASCII characters (seven bits with most significant bit zero) 

for a non-blank character. The string starts in memory location 0042. Place 

the address of the first non-blank character into memory locations 0040 and 

0041 (most significant bits in 0041). A blank character is hex 20 in ASCII. 

Sample Problems: 

a. (0042) 

Result: (0040) 

(0041) 

b. (0042) 
(0043) 
(0044) 
(0045) 
(0046) 

Result: (0040) 

(0041) 

37 '7' 

42. since memorv location 0042 contains a non-blank 

character. 
00 

20 SP 
20 SP 
20 SP 
46 F 
20 SP 

45, since the three previous memory locations all 

contain blanks. 
00 

6-8 



Flowchart: 

Source Program: 

LD 
LD 

CHBLK: CP 
JR 
INC 
JR 

DONE. LD 

HALT 

Object Program: 

Start 

Pointer 42 

No 

Pointer = Pointer + 1 (40 and 41) =Pointer 

HL.42H 
A.20H 
(HU 
NZ.DONE 
HL 
CHBLK 
(40H).HL 

End 

:POINTER= START OF STRING 
:GET ASCII SPACE FOR COMP4RISON 
:IS CHARACTER AN ASCII SPACE? 
:NO. THROUGH 

:YES. EXAMINE NEXT CHARACTER 
:NO. SAVE ADDRESS OF FIRST NON-BLANK 

CHARACTER 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 21 LD HL.42H 
0001 42 
0002 00 
0003 3E LD A.20H 
0004 20 
0005 BE CHBLK. CP (HU 
0006 20 JR NZ.DONE 
0007 03 
0008 23 INC HL 
0009 18 JR CHBLK 
OOOA FA 
OOOB 22 DONE. LD (40H).HL 
oooc 40 
OOOD 00 
OOOE 76 HALT 

6-9 



Looking for spaces in strings 1s a common task. Spaces often are eliminated from 

strings when they are used simply to increase readability or to fit part1cu lar formats. It is 

obviously wasteful to store and transmit beginning. ending or extra spaces. particularly 

if vou are paying for the communications capability and memory required. Data and 

program entry. however. are much simpler if extra spaces are tolerated. Microcom­

puters are often used in situations like this to convert data between forms that are easy 

for humans to use and forms that are efficiently handled on computers and com­

munications lines. 

The instruction LD (addr).HL 1s convenient for storing addresses in the ZSO format (least 

significant byte first). LD (40Hl.HL stores the contents of Register L in memory location 

0040 and the contents of Register Hin memory location 0041. 

Again. if we alter the 1n1t1al conditions so that the loop control section precedes the pro­

cessing section. we can reduce the number of bytes 1n the program and decrease the 

loop's execution time. The rearranged flowchart 1s: 

Source Program: 

LD 
LD 

CHSLK: INC 
CP 
JR 
LD 

HALT 

HL.41 H 
A.20H 
HL 
(HL) 
Z.CHBLK 
(40Hl.HL 

Start 

Pointer 41 

Pointer = Pointer + 1 

{40 and 41) =Pointer 

End 

:POINT TO BYTE BEFORE STRING 

:GET ASCII SPACE FOR COMPARISON 

:IS CHARACTER .AN ASCII SPACE? 

:YES. KEEP EXAMINING CHARACTERS 

:NO. SAVE ADDRESS OF FIRST NON-BLANK 

CHARACTER 

6-10 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 
0000 21 LD HL.41H 
0001 41 
0002 00 
0003 3E LD A.20H 
0004 20 
0005 23 CHBLK: INC HL 
0006 BE CP (HU 
0007 28 JR Z.CHBLK 
0008 FC 
0009 22 LD (40H).HL 
OOOA 40 
OOOB 00 
oooc 76 HALT 

As in the previous example. we could replace the sequence INC HL. CP (HU with the 
single instruction CPI. However. since we do not need the byte counter 1n this program. 
CPI takes iust as much memory (two bytes) and more time (16 clock cvcles instead of 13) than the instructions 1t replaces. We could not use CPIR here since we want the pro­
gram to terminate when the characters are not the same. 

Replace Leading Zeros with Blanks 
Purpose: Edit a string of ASCII decimal characters by replacing all leading zeros with 

blanks. The string starts in memory location 0041: assume that 1t consists 
entirely of ASCII-coded decimal digits. The length of the string 1s in memory 
location 0040. 

Sample Problems: 

a. (0040) = 02 
(0041) = 36 ·5· 

The program leaves the string unchanged. since the leading digit 1s not zero. 
b. (0040) 08 

(0041) 30 ·o· 
(0042) 30 'O' 
(0043) 38 '8' 

Result: (0041) 20 SP 
(0042) 20 SP 

6-11 



Flowchart: 

Source Program: 

LO 
LO 
LO 

CHKZ: INC 
CP 
JR 
LO 
DJNZ 

DONE: HALT 

HL.40H 
B.(HL) 
A.'O' 
HL 
(HL) 
NZ.DONE 
(HL).20H 
CHKZ 

Start 

Count (40) 

Pointer 41 

!Pointer) = ASCII SP 
= 20 (Hex) 

Pointer = Pointer + 1 
Count = Count - 1 

End 

:COUNT= STRING LENGTH 

:GET ASCII ZERO FOR COMPARISON 

:IS LEADING DIGIT ZERO? 

:NO. THROUGH 
:REPLACE LEADING ZERO WITH BLANK 

;EXAMINE NEXT DIGIT IF ANY 

Single quotation marks around characters indicate ASCII. 

6-12 



Object Program: 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
OOOB 
0009 
OOOA 
0008 
oooc 
OOOD 
OOOE 

Memory Contents 
(Hex) 

21 
40 
00 
46 
3E 
30 
23 
BE 
20 
04 
36 
20 
10 
FB 
76 

CHKZ: 

DONE: 

Instruction 
(Mnemonic) 

LD HL.40H 

LD B.(HU 
LD A.'0' 

INC HL 
CP (HU 
JR NZ.DONE 

LD (HU.20H 

DJNZ CHKZ 

HALT 
You will frequently want to edit decimal strings before they are printed or displayed to 
improve their appearance. Common editing tasks include eliminating leading zeros. 
iustifying numbers. adding signs or other identifying markers. and rounding. Clearlv. 
printed numbers like 0006 or $27.34382 can be confusing and annoying. 
Here the loop has two exits - one if the processor finds a non-zero digit and the other if 
it has examined the entire string. 

The instruction LD (HU.20H places 20 (hex) into the memory location addressed by 
Registers Hand L. You could also initialize Register C to 20 hex (i.e .. LD C.20H) and use 
LD (HU.C to replace the leading zero with a blank. Note the tradeoffs involved 1n this ex­
ample. LD (HU.C executes faster than LD (HU.20H and would thus decrease the inner 
loop's execution time. The overhead required. however. 1s an LD C.20H instruction in 
the init1alizat1on section of the routine. If this example were to be used in a cash register 
application. which sequence would you choose and why? 
All digits in the string are assumed to be ASCII: that 1s. the digits are hex 30 through 39 
rather than the ordinary decimal 0 to 9. The conversion from decimal to ASCII 1s simply 
a matter of adding hex 30 to the decimal digit. 
You may have to be careful. when blanking leading zeros. to leave one zero in the event 
that all the digits are zero. How would you do this? 
Note that each ASCII digit requires eight bits. as compared to four for a BCD digit. 
Therefore. ASCII 1s an expensive format in which to store or transmit numerical data. 
Add Even Parity to ASCII Characters 
Purpose: Add even parity to a string of 7-bit ASCII characters. The length of the string 

1s in memory location 0040 and the string itself begins in memory location 
0041. Place even parity in the most significant bit of each character by set­
ting the most significant bit to 1 if that makes the total number of 1 bits in 
the word an even number. 

6-13 



Sample Problem; 

(0040) 06 
(0041) 3,1 
(0042) 32 
(0043) 33 
(0044) 34 
(0045) 35 
(0046) 36 

Resu It: (0041) 81 
(0042) 82 
(0043) 33 
(0044) 84 
(0045) 35 
(0046) 36 

Flowchart: 

Start 

Pointer 41 
Count (40) 

(Pointer) =(Pointer) 

OR 100000006 

(set panty bit) 

Pointer = Pointer + 1 

Count = Count - 1 

6-14 



Source Program: 

SETPR: 

CHCNT 

LD 
LD 
LD 
INC 
LD 
OR 
JP 
LD 
DJNZ 
HALT 

Object Program: 

HL.40H 
B.(HU 
c. 1 OOOOOOOB 
HL 
A.(HL) 
c 
PO.CHCNT 
(HU.A 
SETPR 

:GET STRING LENGTH 
:GET PARITY BIT OF 1 

:GET A CHARACTER 
:SET PARITY BIT TO 1 AND TEST PARITY 
:IS PARITY NOW EVEN? 
:YES. SAVE CHARACTER WITH EVEN PARITY 

Memory Address Memory Contents I nstruct1on 
(Hex) (Hex) (Mnemonic) 

0000 21 LD HL.40H 
0001 40 
0002 00 
0003 46 LD B.(HU 
0004 OE LD C.10000000H 
0005 80 
0006 23 SETPR: INC HL 
0007 7E LD A.(HU 
0008 B1 OR " "' 0009 E2 JP PO,CHCNT 
OOOA OD 
OOOB 00 
oooc 77 LD (HU.A 
OOOD 10 CHCNT DJNZ SETPR 
OOOE F7 
OOOF 76 HALT 

Parity is often added to ASCII characters before they are transmitted on noisy com­
munication lines. to provide a simple error-checking facility. ParitY detects all single-bit 
errors but does not allow error correction (i.e .. you know that an error has occurred 
when the received parity 1s wrong, but you cannot tell which bit was changed). 
LD C, 1 OOOOOOOB saves a parity bit of 1 1n Register C. (Note the use of the binarv mask: 
the purpose of the mask 1s clearer when 1t is specified in this manner rather than as 80H 
or 128 decimal.) 

The instruction OR C sets the parity (most significant) bit to 1 while retaining all the 
other bits as they were. as well as setting the Z80 Parity flag. 

The following procedure 1s used to determine if the parity of the byte in memory 1s odd 
or even. We OR a paritv bit into the byte loaded from memory and then test to see if the 
parity is odd. If the parity 1s odd, then the byte in memory has even parity, and we iump 
down to decrement the count of remaining bytes. If the parity is even. then we know 
that the byte in memory has odd pantY. and therfore we store the byte in the Ac­
cumulator into that memory location. 

The conditional iumps JP PO (Jump on Parity Odd) and JP PE (Jump on Parity Even) are 
seldom used except in parity generation and checking. Note that there are no relative 
iumps conditional on the value of the Parity bit. iust as there are none conditional on 
the value of the Sign bit. 

6-15 



Do not confuse the Parity bit 1m;luded in each character and the ZSO's Parity flag. 

which 1s set to 1 if the last arithmetic or Boolean result had even parity. 

An alternative approach uses the ZSO SET instruction. This version takes a little longer 

but does not require a temporary register for the parity bit. 

Source Program: 

LO 
LO 

SETPR: INC 
LO 
OR 
JP 
SET 

CHCNT DJNZ 
HALT 

Object Program: 

HL.40H 
B.(HL) 
HL 
A.(HL) 
A 
PE.CHCNT 
7,(HL) 
SETPR 

:GET STRING LENGTH 

:GET A CHARACTER 
;DOES CHARACTER HAVE EVEN PARITY? 

:NO. SET PARITY BIT TO 1 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 21 LO HL.40H 

0001 40 
0002 00 
0003 46 LO 8.(HL) 

0004 23 SETPR: INC HL 

0005 7E LO A.(HL) 

0006 B7 OR A 

0007 EA JP PE.CHCNT 

0008 QC 
0009 00 
OOOA CB SET 7,(HL) 

OOOB FE 
oooc 10 CHCNT DJNZ SETPR 
0000 F6 
OOOE 76 HALT 

Pattern Match 
Purpose: Compare two strings of ASCII characters to see if they are the same. The 

length of the strings 1s in memory location 0041. one string starts 1n memory 

location 0042 and the other in memory location 0052. If the two strings 

match. clear memory location 0040: otherwise. set memorv location 0040 to 
FF hex (all ones). 

Sample Problems: 

a. (0041) 

(0042) 
(0043) 
(0044) 

(0052) 
(0053) 
(0054) 

Result: (0040) 

03 

43 'C' 
41 'A' 
54 T 

43 ·c· 
41 'A' 
54 T 

00. since the two strings are the same. 

6-16 



b. (0041) 03 

(0042) 52 'R' 
(0043) 41 'A' 
(0044) 54 T 

(0052) 43 'C' 
(0053) 41 'A' 
(0054) 54 'T' 

Result: (0040) FF. since the first characters in the 
strings differ. 

Note: The matching process ends as soon as the CPU finds a difference - the rest of 
the strings need not be examined. 

Flowchart: 

Start 

Mark 0 

(40) Mark 

End 

6-17 



Source Program: 

LO 
LO 
INC 
LO 
LO 

CHCAR: LO 
CP 
JR 
INC 
INC 
DJNZ 
LO 

DONE: LO 
LO 
HALT 

Object Program: 

HL.41H 
B.(Hll 
HL 
DE.52H 
C.OFFH 
A.(DE) 
(HU 
NZ.DONE 
DE 
HL 
CH CAR 
c.o 
A.C 
(40H).A 

:COUNT= LENGTH OF STRINGS 
;POINTER 1 =START OF STRING 1 
:POINTER 2 =START OF STRING 2 
:MARK = FF (HEX) 
:GET CHARACTER FROM STRING 2 
:IS THERE A MATCH? 
NO.DONE 

:CHECK NEXT PAIR IF ANY LEFT 
;MARK= 0 IF ALL CHARACTERS MATCH 

:SAVE MARK 

Memorv Address Memory Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 21 LD HL.41 H 

0001 41 
0002 00 
0003 46 LO B.(HL) 

0004 23 INC HL 

0005 11 LO DE.52H 

0006 52 
0007 00 
0008 OE LO C.OFFH 

0009 FF 
OOOA 1A CHCAR: LO A.(DE) 

0008 BE CP (HL) 

oooc 20 JR NZ.DONE 

0000 06 
OOOE 13 INC DE 

OOOF 23 INC HL 

0010 10 DJNZ CHCAR 

0011 F8 
0012 OE LD c.o 
0013 00 
0014 79 DONE: LO A.C 

0015 32 LO (40H).A 

0016 40 
0017 00 
0018 76 HALT 

Matching strings of ASCII characters 1s an essential part of looking for commands. 

recognizing names. identifying variables or operation codes in assemblers and com­

pilers. finding files. and many other tasks. 

The program uses two pointers. one 1n Register Pair HL and the other in Register Pair 

DE. The onlv instructions that use the address in DE are LD A.(DE) (Load Accumulator 

From Memory Location Addressed by DE) and LO (DE).A (Store Accumulator in Memory 

Location Addressed by DE). Arithmetic and logical operations with memorv and 

transfers to or from other registers (e.g .. ADD A.(HL); AND (HL); LO B. (HL); LO (HL),E) 

can only be performed using the address in Register Pair HL. or using an index register. 

6-18 



The order of operations 1s very important because of the small number of instructions 
that use the address in Register Pair DE. You must move a character from the string 
pointed to by DE to the Accumulator and compare 1t to a character in the string pointed 
to by HL. This order of operations 1s necessary because the Z80 has no instruction 
which allows a comparison to a character in a string pointed to by DE. 

For example. if you replaced LO A.{DE) with LO A.(HU. what would the next instruction 
be? This asymmetry 1s peculiar to the Z80 and can cause programming nightmares. 

Note that each 1terat1on updates both pointers. 

This program could take advantage of the fact that a register 1s known to contain zero 
after a particular conditional iump is executed. When the DJNZ CHCAR instruction is 
executed. if the branch 1s not performed. then we know that Register B contains zero. 
Therefore. we can move Register B to Register C. our flag register. to indicate that a 
match has been found. 

We could also use the Z80's SET and RESET instructions to handle the flag if we 
needed to conserve bits for other purposes. 

PROBLEMS 
1) Length of a Teletypewriter Message 
Purpose: Determine the length of an ASCII message. All characters are 7-bit ,l)SCll 

with MSB = 0. The string of characters in which the message 1s embedded 
starts in memory location 0041. The message itself starts with an ASCII STX 
character (hex 02) and ends with ETX {hex 03). Place the length of the 
message (the number of characters between the STX and the ETX but in­
cluding neither) into memory location 0040. 

Sample Problem: 

(0041) 
{0042) 
(0043) 
{0044) 
{0045) 

Result: {0040) 

40 
02 STX 
47 'G' 
4F 'O' 
03 ETX 

02. since there are two characters between 
the STX in location 0042 and ETX in 
location 0045. 

2) Find Last Non-Blank Character 
Purpose: Search a string of ASCII characters for the last non-blank character. The 

string starts in memory location 0042 and ends with a carnage return 
character {hex ODJ. Place the address of the last non-blank character into 
memory locations 0040 and 0041 {most significant bits in 0041 l. 

Sample Problems: 

a. {0042) 
{0043) 

Result: {0040) 

(0041) 

37 7' 
OD CR 

42. since the last {and only) non-blank character 
1s 1n memory location 0042. 
00 

6-19 



b. (0042) 41 'A' 
(0043) 20 SP 
(0044) 48 'H' 
(0045) 41 'A' 
(0046) 54 T 
(0047) 20 SP 
(0048) 20 SP 
(0049) ob CR 

Result: (0040) 46 
(0041) 00 

3) Truncate Decimal String to Integer Form 
Purpose: Edit a string of ASCII decimal characters by replacing all digits to the right of 

the decimal point with ASCII blanks (hex 20). The string starts in memorv 
location 0041 and is assumed to consist entirely of ASCII-coded decimal 

digits and a possible decimal point (hex 2E). The length of the string is in 
memory location 0040. If no decimal point appears in the string. assume that 
the decimal point 1s implicitly at the far right. 

Sample Problems: 

a. (0040) 04 

(0041) 37 '7' 
(0042) 2E 

,. 

(0043) 38 ·9· 
(0044) 31 '1' 

Result: (0041) 37 '7' 
(0042) 2E 

,. 

(0043) 20 SP 
(0044) 20 SP 

b. (0040) 03 

(0041) 26 '6' 
(0042) 37 '7' 

(0043) 31 '1' 
Result: Unchanged. as number 1s assumed to be 671. 

4) Check Even Parity in ASCII Characters 
Purpose: Check even parity in a string of ASCII characters. The length of the string 1s 

in memory location 0041. and the string itself begins in memorv location 
0042. If the parity of all the characters in the string 1s correct. clear memorv 
location 0040: otherwise. place FF hex (all ones) into memory location 0040. 

6-20 



Sample Problems: 

a. (0041) 03 

(0042) B1 
(0043) B2 
(0044) 33 

Result: (0040) 

b. (0041) 

(0042) 
(0043) 
(0044) 

00. since all the characters have even parity. 

03 

B1 
B6 
33 

Result: (0040) FF since the character in memory 
location 0042 does not have even parity. 

5) String Comparison 
Purpose: Compare two strings of ASCII characters to see which 1s larger (i.e .. which 

follows the other 1n 'alphabetical' ordering). The length of the strings 1s 1n 
memorv location 0041. one string starts in memory location 0042 and the 
other in memory location 0052. If the string starting in memory location 
0042 1s greater than or equal to the other string. clear memory location 
0040: otherwise. set memory location 0040 to FF hex (all ones). 

Sample Problems: 

a. (0041) 03 

(0042) 43 ·c· 
(0043) 41 'A' 
(0044) 54 T 

(0052) 42 'B' 
(0053) 41 'A' 
(0054) 54 'T' 

Result: (0040) 00. since CAT 1s 'larger th<tn BAT 

b. (0041) 03 

(0042) 43 'C' 
(0043) 41 'A' 
(0044) 54 T 

(0052) 43 'C' 
(0053) 41 'A' 
(0054) 54 T 

Result: (0040) 00, since the two strings are equal. 

c. (0041) 03 

(0042) 43 ·c· 
(0043) 41 'A' 
(0044) 54 'T' 

(0052) 43 'C' 
(0053) 55 ·u· 
(0054) 54 T 

Result: (0040) FF. since CUT 1s 'larger' than CAT 

6-21 





Chapter 7 
CODE CONVERSION 

Code conversion 1s a continual problem in most microcomputer applications. Periph­
erals provide data 1n ASCII. BCD. or various special codes. The system must convert the 
data into some standard form for processing. Output devices may require data in ASCII. 
BCD. seven-segment. or other codes. Therefore. the system must convert the results to 
a suitable form after the processing 1s completed. 

There are several ways to approach code conversion: 

1) Some conversions can easily be handled by algorithms involving arithmetic or logi­
cal functions. The program may, however. have to handle some special cases sepa­
rately. 

2) More complex conversions can be handled with lookup tables. The lookup table 
method requires little programming and 1s easy to apply. However. the table may 
occupy a large amount of memory if the range of input values 1s large. 

3) Hardware 1s readily available for some conversion tasks. Typical examples are 
decoders for BCD to seven-segment conversion and Universal Asynchronous 
Rece1ver/Transm1tters (UARTs) for conversion between parallel (ASCII) and serial 
(teletypewriter) formats. 

In most applications. the program should do as much as possible of the code conversion 
work. This results 1n a savings in parts and board space as well as in increased 
reliability. Furthermore. most code conversions are easy to program and require little 
execution time. 

EXAMPLES 
Hex to ASCII 
Purpose: Convert the contents of memory location 0040 to an ASCII character. 

Memory location 0040 contains a single hexadecimal digit (the four most 
significant bits are zero). Store the ASCII character in memory location 
0041. 

Sample Problems: 

a. (0040) oc 
Result: (0041) 43 ·c· 

b. (0040) 06 

Result: (0041) 36 '6' 

7-1 



Flowchart: 

Source Program: 

LD 
CP 
JR 
ADD 

ASCZ: ADD 
LD 
HALT 

Object Program: 

Start 

Data =(401 

Yes 

Result= 

Data= Data 
+ASCII A 
-ASCII 9 - 1 

Data + ASCII Zero 

(41) =Result 

End 

A,(40H) 
10 
C.ASCZ 
A.'A'-'9'-1 
A.'0' 
(41Hl.A 

:GET DATA 
:IS DATA 10 OR MORE? 

:YES. ADD OFFSET FOR LETTERS 
:ADD OFFSET FOR ASCII 
:STORE ASCII RESULT 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic! 

0000 3A LD A.(40H) 
0001 40 
0002 00 
0003 FE CP 10 
0004 OA 
0005 38 JR C.ASCZ 
0006 02 
0007 C6 ADD A.'A'-'9'-1 
0008 07 
0009 C6 ASCZ: ADD A.'0' 
OOOA 30 
0008 32 LD (41H).A 
oooc 41 
OOOD 00 
OOOE 76 HALT 

7-2 



In this program. the basic idea 1s to add ASCII 0 to all the hexadecimal digits. This addi­
tion converts the decimal digits correctly; however. there 1s a break between ASCII 9 
(39 hex) and ASCII A (41 hex) which must be considered. This break must be added to 
the nondec1mal digits A. B. C. D. E. and F This 1s accomplished by the ADD A instruc­
tion which adds the offset 'A'-'9'-1 to the contents of the Accumulator. Can you explain 
why the offset 1s ·A' _·9· -1' 

Note that the addition terms are placed in the assembly language program in ASCII 
form (apostrophes surround an ASCII character or string of characters). The offset for 
the letters is left as an arithmetic expression. The effort 1s to make the purpose of the 
terms as clear as possible in the assembly language listing. The extra assembly time 1s a 
very small price to pay for a large increase in clarity. 

This routine could be used 1n a variety of programs; for example. monitor programs 
must convert hexadecimal digits to ASCII 1n order to display the contents of memory 
locations in hexadecimal on an ASCII printer or video display. 

Another (quicker) conversion method that requires no conditional 1umps at all is the 
following program. described by Allison in Computer magazine.1 

LO 
ADD 
DA.A 
ADC 
DAA 
LO 
HALT 

A.(40HI 
A.90H 

A.40H 

(41H).A 

:GET HEX LJIGIT 
:DEVELOP EXTRA 6 AND CARRY 

:ADD IN CARRY. ASCII OFFSET 

;STORE ASCII DIGIT 

Try this program on some digits. Can you explain why 1t works? 

Decimal to Seven-Segment 
Purpose: Convert the contents of memory location 0040 to a seven-segment code 1n 

memory location 0042. If memory location 0040 does not contain a single 
decimal digit. clear memory location 0042. 

Seven-segment table: The following table can be used to convert decimal numbers to 
seven-segment code. The seven-segment code 1s organized with the most significant 
bit always zero followed by the code (1 =on. 0 =off) for segments g. f. e. d. c. b. and a 
(see Figure 7-1). 

Digit Code 

0 3F 
1 06 
2 5B 
3 4F 
4 66 
5 6D 
6 7D 
7 07 
8 7F 
9 6F 

Figure 7-1. Seven-segment Arrangement 

7-3 



Note that the table uses 70 for 6 rather than the alternative 7C (top bar offl to avoid 

confusion with lower case b. and 6F for 9 rather than 67 (bottom bar off), for no particu­

lar reason. 

Sample Problems: 

a. (0040) 

Result: (0042) 

b. (0040) 

Result: (0042) 

Flowchart: 

03 

4F 

28 

00 

Start 

Data = (40) 

Result= 

(SSEG + Data! 

(421 = Result 

End 

Yes 

Result =O 

Note that the addition of base address SSEG and index (DA TA) produces the address 
that contains the answer. 

7-4 



Source Program: 

LO 
LO 
CP 
JR 
LO 
LO 
LO 
ADD 
LO 

DONE. LO 
LO 
HALT 
ORG 

SSEG: DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 

B.O 
A.(40H) 
10 
NC.DONE 
L.A 
H.0 
DE.SSEG 
HL.DE 
B.(HU 
A.B 
(42H).A 

20H 
3FH 
06H 
5BH 
4FH 
66H 
6DH 
7DH 
07H 
7FH 
6FH 

;GET ERROR CODE TO BLANK DISPLAY 
;GET DATA 
:IS DATA A DECIMAL DIGIT? 
:NO. KEEP ERROR CODE 
:YES. MAKE DATA INTO A 16-BIT INDEX 

:GET BASE ADDRESS OF 7-SEGMENT TABLE 
:FIND ELEMENT BY INDEXING 
:GET 7-SEGMENT CODE FROM TABLE 
:SAVE 7-SEGMENT CODE OR ERROR CODE 

:SEVEN-SEGMENT CODE TABLE 

7-5 



Object Program: 

Memory Address Memory Contents I nstruct1on 

(Hex) (Hex) (Mnemonic! 

0000 06 LO 8.0 

0001 00 
0002 3A LO A.(40HI 

0003 40 
0004 00 
0005 FE CP 10 

0006 OA 
0007 30 JR NC.DONE 

0008 08 
0009 6F LO L.A 

OOOA 26 LO H.0 

0008 00 
oooc 11 LO DE.SSEG 

0000 20 
OOOE 00 
OOOF 19 ADD HL.DE 

0010 46 LO B.(HU 

0011 78 DONE: LO A.B 

0012 32 LO (42Hl.A 

0013 42 
0014 00 

0015 76 HALT 

0020 3F SSEG: DEFB 3FH 

0021 06 DEFB 06H 

0022 58 DEFB 5BH 

0023 4F DEFB 4FH 

0024 66 DEFB 66H 

0025 60 DEFB 6DH 

0026 70 DEFB 7DH 

0027 07 DEFB 07H 

0028 7F DEFB 7FH 

0029 6F DEFB 6FH 

The program calculates the memory address of the desired code by adding the index 

(i.e .. the digit to be displayed) to the base address of the seven-segment code table. 

This procedure 1s known as a table lookup. 

The assembly language pseudo-operation DEFB (Define Bvte) places constant data into 

program memory. Such data may include tables. headings, error messages. priming 

messages. format characters. thresholds. etc. The label attached to a DEFB pseudo­

operat1on 1s assigned the value of the address into which the byte of data is placed. 

Tables are often used to perform code conversions that are more complex than the pre­

vious example. Such tables typically contain all the results organized according to the 

input data. e.g .. the first entry 1s the code corresponding to the number zero. 

Seven-segment displays provide recognizable forms of the decimal digits and a few let­

ters and other characters. Calculator-type seven-segment displays are inexpensive. 

easy to combine. and use little power. However. the seven-segment coded digits are 

somewhat difficult to read. 

The assembler simply places the data for the table into memory. Note that one DEFB 

pseudo-operation fills one byte of memory. We have left some memory space between 

the program and the table to allow for later additions or corrections. 

7-6 



An alternative approach would be to use one of the Z80's index 
registers, sav IX. The programmer must be aware of the following 
features of the Z80's index registers: 

USE OF ZSO 
INDEX 
REGISTERS 

1) The fixed offset in program memory 1s only eight bits long and 
so cannot hold a complete memory address. It must be used either as a short dis­
placement or to hold the eight least significant bits of a memory address. 

2) The index registers are 16 bits long. Either IX or IY can be loaded from memory 1ust 
like a register pair - from two consecutive memory addresses with the least sig­
nificant eight bits at the lower address. 

3) All operations involving the index registers take extra time and memory because 
one word of the operation code simply declares that an index register 1s to be used. 

The following program uses Register IX to perform the table lookup: 

Source Program: 
LO 
LD 
CP 
JR 
LD 
LO 
LO 
LO 

DONE. LO 
LO 
HALT 

Object Program: 

B.O 
A.(40H) 
10 
NC.DONE 
HL.41 H 
(HU.O 
IX.(40H) 
B.(IX+SSEG) 
A,B 
(42Hl.A 

:GET ERROR CODE TO BLANK DISPLAY 
:GET DATA 
:IS DATA A DECIMAL DIGIT? 
:NO, KEEP ERROR CODE 
:SAVE TABLE PAGE NUMBER IN MEMORY 

:GET TABLE OFFSET 
:GET 7-SEGMENT CODE FROM TABLE 
:SAVE 7-SEGMENT CODE OR ERROR CODE 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 06 LD B.O 
0001 00 
0002 3A LO A.(40H) 
0003 40 
0004 00 
0005 FE CP 10 
0006 OA 
0007 30 JR NC.DONE 
0008 oc 
0009 21 LD HL.41 H 
OOOA 41 
OOOB 00 
oooc 36 LD (HU.O 
0000 00 
OOOE DD LO IX.(40H) 
OOOF 2A 
0010 40 
0011 00 
0012 DD LO B.(IX+SSEG) 
0013 46 
0014 20 
0015 78 DONE. LD A.B 
0016 32 LO (42H).A 
0017 42 
0018 00 
0019 76 HALT 

7-7 



The indexed load instruction LO B.(IX + SSEG) adds the index (i.e .. the digit to be dis­

played) to the base of the seven-segment table to get the address of the desired code. 

Note that the 16-bit index register contains the data as its eight least significant bits 

and the most significant bits of the starting address of the table as its eight most signifi­
cant bits. This odd arrangement is necessary because the offset included with the in­
dexed instruction is onlv eight bits long and can therefore hold onlv the eight least sig­

nificant bits of the starting address of the table. 

A more general program would allow the table to be placed anvwhere in memory. If the 

table starting address is SSEGM (eight MSBs) and SSEGL (eight LSBs). the instruction 

LO (HU.O must be replaced by LO (HU.SSEGM. Why is this change necessary? 

Note that all operations involving Index Register IX have a 2-word operation code in 

which the first word is DD. 

Clearly this 1s not a very efficient use of the index registers. These 
registers really become useful when You must access several data 
in a block. The block might contain the characteristics of a 
message. the parameters of an equation. the current state of a pro­

MOVING DATA 
WITHIN 
A BLOCK 

cess or machine. or the data for a video display. You could. for example. take the con­
tents of the twelfth location in the block and move them to the twentieth location with 
either of the following programs. assuming that the starting address of the block 1s 
stored in memory locations PTR and PTR+1. 

1) Using DE and HL. 

LO DE.(PTR) 
LO HL.12 
ADD HL.DE 
LD A.(HU 
LD HL.20 
ADD HL.DE 
LD (HU.A 

2) Using IX. 

LO 
LD 
LO 

IX.(PTR) 
A.(IX+12) 
(IX+20).A 

:GET STARTING ADDRESS 
:CALCULATE SOURCE ADDRESS 

:GET DATA FROM SOURCE 
:CALCULATE DESTINATION ADDRESS 

:MOVE DATA TO DESTINATION 

:GET STARTING ADDRESS 
:GET DATA FROM SOURCE 
:MOVE DATA TO DESTINATION 

The program using the index registers 1s far shorter and clearer. Its only limitation 1s 
that the offsets must be small enough to fit into an 8-b1t byte. 

ASCII to Decimal 
Purpose: Convert the contents of memory location 0040 from an ASCII character to a 

decimal digit and store the result in memorv location 0041. If the contents of 
memory location 0040 are not the ASCII representation of a decimal digit. 
set the contents of memory location 0041 to FF (hex). 

Sample Problems: 

a. 

b. 

(0040) 

Resu It: (0041) 

(0040) 

37 '7' 

07 

55 

Result: (0041) FF 

7-8 



Flowchart: 

Source Program: 

LO 
LD 
SUB 
JR 
CP 
JR 
LO 

DONE: LO 
LD 
HALT 

Start 

Data =(401 

Result= 

Data -ASCII 0 
Result = FF (Hexl 

(411 =Result 

B.OFFH 
A.(40H) 
·o· 
C.DONE 
'9'+1 
NC.DONE 
B.A 
A.B 
(41H).A 

End 

;GET ERROR MARKER 
;GET DATA 
:IS DATA BELOW ASCII ZER07 
; YES. NOT A DIGIT 
:IS DATA ABOVE ASCII NINE 
:YES. NOT A DIGIT 
;SAVE DIGIT IF VALID 
;SAVE DIGIT OR ERROR MARKER 

7-9 



Object Program: 

Memory Address Memory Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 06 LD B,OFFH 

0001 FF 
0002 3A LD A,(40H) 

0003 40 
0004 00 
0005 D6 SUB ·o· 
0006 30 
0007 38 JR C.DONE 

0008 05 
0009 FE CP '9'+1 

OOOA 3A 
OOOB 30 JR NC.DONE 

oooc 01 
OOOD 47 LD B.A 

OOOE 78 DONE: LD AB 

OOOF 32 LD (41H).A 

0010 41 
0011 00 
0012 76 HALT 

This program handles ASCII-coded characters 1ust like ordinary numbers. Note that the 

decimal digits and the letters form groups of consecutive codes. Strings of letters (like 

names) can be alphabetized by placing their ASCII representations in increasing 

numerical order (ASCII B = ASCII A+ 1 for example). 

Subtracting ASCII zero (30 hex) from any ASCII decimal digit gives the BCD represen­

tation of that digit 

ASCII to decimal conversion 1s necessary when decimal numbers are being entered 

from an ASCII device like a teletypewriter or video terminal. 

The basic idea of the program 1s to determine if the character 1s between ASCII 0 and 

ASCII 9. inclusive. If the character 1s. it's an ASCII decimal digit. since the digits form a 

sequence. It may then be converted to decimal simply by subtracting hex 30 (ASCII O), 

e.g .. ASCII 7 - ASCII 0 = 37-30 = 7 

Note that one comparison 1s done with an actual subtraction (SUB 'O'l since the subrac­

t1on is necessary to convert ASCII to decimal. The other comparison 1s done with an im­

plied subtraction (CP '9'+1) since the final result 1s now m the Accumulator if the origi­

nal number was valid. 

BCD to Binary 
Purpose: Convert two BCD digits in memory locations 0040 and 0041 to a binary 

number m memory location 0042. The most significant BCD digit 1s in 

memory location 0040. 

Sample Problems: 

a. (0040) 02 
(0041) 09 

Result: (0042) 1 D (hex) = 29 (decimal) 

b. (0040) 
(0041) 

Result: (0042) 

07 
01 

47 (hex) = 71 (decimal) 

7-10 



Note: No flowchart 1s included since the program multiplies the most significant digit 
by 10 simply by using the formula 10x = 8x + 2x. Multiplying by 2 requires one 
arithmetic left shift and multiplying by 8 requires three such shifts. 

Source Program: 

LD 
LD 
ADD 
LD 
ADD 
ADD 
ADD 
INC 
ADD 
INC 
LD 
HALT 

Object Program: 

HL.40H 
A.(HU 
A.A 
B.A 
A.A 
A.A 
A.B 
HL 
A.(HU 
HL 
(HU.A 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
oooc 
OOOD 

:GET MOST SIGNIFICANT DIGIT (MSD) 

:MSD TIMES TWO 
:SAVE MSD TIMES TWO 
:MSD TIMES FOUR 
:MSD TIMES EIGHT 
:MSD TIMES TEN 
:POINT TO LEAST SIGNIFICANT DIGIT 
:ADD TO FORM BINARY EQUIVALENT 

:STORE BINARY EQUIVALENT 

Memory Contents Instruction 
(Hex) (Mnemonic) 

21 LD HL.40H 
40 
00 
7E LD A.(HU 
87 ADD A.A 
47 LD B.A 
87 ADD A.A 
87 ADD A.A 
80 ADD A.B 
23 INC HL 
86 ADD A.(HU 
23 INC HL 
77 LD (HU.A 
76 HALT 

BCD entries are converted to binary in order to save on storage and to simplify calcula­
tions. However. the conversion may offset some of the advantages of binary storage 
and arithmetic. 

This program multiplies the BCD digit in memory location 0040 by ten using repeated 
additions.2 Note that ADD A.A multiplies the contents of the Accumulator by 2. This 
allows you to multiply the contents of the Accumulator by small decimal numbers in a 
few instructions. How would you use this procedure to multiply by 16? by 12? by 7? 

BCD numbers require about 20% more storage than do binary numbers. Representing 0 
to 999 requires 12 bits 1n BCD form but only 10 bits 1n binary (since 
210 = 1024::::: 1000). 

Convert Binary Number to ASCII String 
Purpose: Convert the 8-bit binary number in memory location 0041 to eight ASCII 

characters (either ASCII 0 or ASCII 1) in memory locations 0042 through 
0049 (the most significant bit is in 0042). 

7-11 



Sample Problem: 

Result: 

Flowchart: 

Source Program: 

CONV: 

COUNT 

LD 
LO 
LD 
LO 
INC 
LO 
RLA 
JR 
INC 
DJNZ 
HALT 

(0041) 02 = 11010010 

(0042) 31 '1' 
(0043) 31 '1' 
(0044) 30 ·o· 
(0045) 31 '1' 
(0046) 30 ·o· 
(0047) 30 ·o· 
(0048) 31 '1' 
(0049) 30 ·o· 

Start 

Pointer = 41 
Data = (Pointer) 

Counter = 8 

Pointer = Pointer H 

!Pointer! = ASCII 0 

Shift Data left one bit 

Counter = Counter -1 

End 

No 

:GET DATA 

(Pointer) = 

ASCII 1, 1.e .. 
(Pointed + 1 

HL.41 H 
A.(HL) 
B.8 
c:o· 
HL 
(HU.C 

:COUNTER= NUMBER OF BITS IN WORD 
:GET ASCII ZERO TO STORE IN STRING 

NC.COUNT 
(HU 
CONV 

:PUT ASCII ZERO IN STRING 
:IS NEXT BIT OF DATA 1? 
:YES. MAKE STRING ELEMENT ASCII ONE 

7-12 



Object Program: 

Memory Address Memory Contents I nstruct1on 
(Hex) (Hex) (Mnemonicl 

0000 21 LD HL.41 H 
0001 41 
0002 00 
0003 7E LD A.(HL) 
0004 06 LD B.8 
0005 08 
0006 OE LD c:o· 
0007 30 
0008 23 ·coNv: INC HL 
0009 71 LD (HU.C 
OOOA 17 RLA 
OOOB 30 JR NC.COUNT 
oooc 01 
OOOD 34 INC (HL) 
OOOE 10 COUNT DJNZ CONV 
OOOF F8 
0010 76 HALT 

The ASCII digits form a sequence so ASCII 1 =ASCII 0+ 1. Remember that the Z80 
registers have special uses. You should place the loop counter into Register B so that 
you can use the DJNZ instruction. 

Be careful of the difference between INC HL. which adds one to the 16-bit contents of 
Register Pair HL. and INC (HU. which adds one to the 8-b1t contents of the memory 
location addressed by Register Pair HL. 

Binary-to-ASCII conversion is necessary when numbers are printed in binary form on an 
ASCII device. 

The conversion to ASCII simply involves adding ASCII 0 (hex 30). 

PROBLEMS 
1) ASCII to Hex 
Purpose: Convert the contents of memory location 0040 to a hexadecimal digit and 

store the result in memory location 0041. Assume that memory location 
0040 contains the ASCII representation of a hexadecimal digit (7 bits with 
MSB 0) 

Sample Problems: 

a. (0040) 43 ·c· 
Result: (0041) oc 

b. (0040) 36 '6' 

Result: (0041) 06 

2) Seven-Segment to Decimal 
Purpose: Convert the contents of memory location 0040 from a seven-segment code 

to a decimal number in memory location 0041. If memory location 0040 does 
not contain a valid seven-segment code. set memory location 0041 to FF 
(hexl. Use the seven-segment table given under the Decimal to Seven-Seg­
ment example and try to match codes. 

7-13 



Sample Problems: 

a. (0040) 4F 

Result: (0041) 03 

b. (0040) 28 

Result: (0041) FF 

3) Decimal to ASCII 
Purpose: Convert the contents of memorv location 0040 from a decimal digit to an 

ASCII character and store the resu It in memorv location 0041. If the number 

in memorv location 0040 is not a decimal digit. set the contents of memorv 

location 0041 to an ASCII blank character (20 hex!. 

Sample Problems: 

a. (0040) 07 

Result: (0041) 37 'T 

b. • (0040) 55 

Result: (0041) 20 SP 

4) Binary to BCD 
Purpose: Convert the contents of memorv location 0040 to two BCD digits in memory 

locations 0041 and 0042 (most significant digit in 0041 ). The number in 

memory location 0040 1s unsigned and less than 100. 

Sample Problems: 

a (0040) 

Result: (0041) 
(0042) 

1 D (29 decimal) 

02 
09 

b. (0040) 47 (71 decimal) 

Resu It: (0041) 07 
(0042) 01 

5) ASCII String to Binary Number 

Purpose: Convert the eight ASCII characters in memorv locations 0042 through 0049 

to an 8-b1t bmarv number in memorv location 0041 (the most significant bit 

1s in 0042). Clear memorv location 0040 if all the ASCII characters are either 

ASCII 1 or ASCII 0 and set 1t to FF otherwise. 

Sample Problems: 

a. (0042) 31 '1' 
(0043) 31 '1' 
(0044) 30 'O' 
(0045) 31 '1' 
(0046) 30 'O' 
(0047) 30 ·o· 
(0048) 31 '1' 
(0049) 30 'O' 

Result: (0041) 02 
(0040) 00 

b. same as ·a· except: 
(0045) 37 '7' 

Result: (0040) FF 

7-14 



REFERENCES 

1. Allison. D.R .. "A Design Philosophy for Microcomputer Architectures." Computer. 
February 1977. pp. 35-41. This 1s an excellent article which we recommend highly. 

2. Other BCD-to-binarv conversion methods are discussed in J.A. Tabb and M.L. 
Roginskv. "Microprocessor Algorithms Make BCD-Binary Conversions Super-fast," 
EON. January 5. 1977. pp. 46-50 and in J.B. Peatman, Microcomputer-based 
Design. McGraw-Hill. New York. 1977. pp. 400-406. 

7-15 





Chapter 8 
ARITHMETIC PROBLEMS 

Most arithmetic in microprocessor applications consists of multiple-word binary or 
decimal manipulations. A decimal correction (decimal adjust) or some other means for 
performing decimal arithmetic 1s frequently the only arithmetic instruction provided 
besides basic addition and subtraction. You must implement other arithmetic opera­
tions with sequences of instructions. 

Multiple-prec1s1on binary arithmetic requires simple repetitions of the basic single-word 
instructions. The Carry bit transfers information between words. Add with Carry and 
Subtract with Carrv use the information from the previous arithmetic operations. You 
must be careful to clear the Carry before operating on the first words (obviously there 1s 
no carry into or borrow from the least significant bits). 

Decimal arithmetic is a common enough task for microprocessors that most have 
special instructions for this purpose. These instructions may either perform decimal 
operations directly or correct the results of binary operations to the proper decimal 
form. Decimal arithmetic 1s essential in such applications as point-of-sale terminals. 
calculators. check processors. order entry systems. and banking terminals. 
You can implement mult1plicat1on and div1s1on as series of additions and subtraci1ons 
respectively. much as they are done by hand. Double-word operations are necessary 
since a multiplication produces a result twice as long as the operands. while a division 
similarly contracts the length of the result. Multiplications and div1s1ons are time-con­
suming when done 1n software because of the repeated arithmetic and shift operations 
that are necessary. Of course. multiplying or dividing by a power of 2 1s simple because 
such operations can be implemented with an appropriate number of left or right 
arithmetic shifts. 

EXAMPLES 
Multiple-Precision Addition 
Purpose: Add two multiple-word binary numbers. The length of the numbers (in bytes) 

is in memory location 0040. the numbers themselves start (least significant 
bits first) in memory locations 0041 and 0051. respectively, and the sum 
replaces the number starting in memory location 0041. 

8-1 



Sample Problem: 

(0040) 

(0041) 
(0042) 
(0043) 
(0044) 

(0051) 
(0052) 
(0053) 
(0054) 

Result: (0041) 
(0042) 
(0043) 
(0044) 

that IS, 

+ 

Flowchart: 

04 

C3 
A7 
58 
2F 

88 
35 
DF 
14 

78 
DD 
3A 
44 

2F58A7C3 
14DF3588 

443ADD78 

Start 

Coum !40) 
Pointer 1 41 
Pointer 2 51 

Carry 0 

(Pointer 1) = 
(Pointer 1) t 
{Pointer 2) + 

___ ca'll'rrv ... --• (This step also produces a new Carrv) 

Pointer 1 = Pointer 1 
+ 1 

Pointer 2 = Pointer 2 
+ 1 

Count = Count - 1 

End 

8-2 



Source Program: 

LD 
LD 
INC 
LD 
AND 

ADDW: LD 
ADC 
LD 
INC 
INC 
DJNZ 
HALT 

Object Program: 

HL.40H 
B.(HU 
HL 
DE.51H 
A 
A.(DE) 
A.(HL) 
(HU.A 
DE 
HL 
ADDW 

Memory Address 
(Hex! 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
oooc 
OOOD 
OOOE 
OOOF 
0010 

:COUNT = LENGTH OF STRINGS (IN BYTES) 

:POINTER 1 =FIRST WORD OF STRING 1 
:POINTER 2 =FIRST WORD OF STRING 2 
:CLEAR CARRY TO ST ART 
:GET WORD FROM STRING 2 
:ADD WORD FROM STRING 1 
:STORE RESULT IN STRING 1 

Memory Contents Instruction 
(Hex) (Mnemonic) 

21 LD HL.40H 
40 
00 
46 LD B.(HL) 
23 INC HL 
11 LD DE.51H 
51 
00 
A? AND A 
1A ADDW: LD A.(DE) 
SE ADC A.(HU 
77 LD (HU.A 
13 INC DE 
23 INC HL 
10 DJNZ ADDW 
F9 
76 HALT 

The relative address for DJNZ ADDW 1s: 

09 09 
-10 +FO 

i=9 
The instruction AND A 1s used to clear the Carry bit. Any other logical operation would 
have the same effect. The Carry must be cleared. since there 1s no carry involved in the 
addition of the least significant bytes. 

The 1nstruct1on ADC. Add with Carry, includes the Carry from the previous words in the 
addition. ADC 1s the only instruction in the loop that affects the Carry Remember that 
neither INC nor DJNZ does. 

Both the pointer 1n Register Pair DE and the one in HL must be updated during each 
iteration. 

8-3 



This procedure can add binary numbers of up to 256 bytes in 

length. Note that the ten binary bits correspond to three decimal 

digits. since 210 = 1024 = 1000. So. you can calculate the num­

ber of bits required to give a certain accuracy in decimal digits. For 

example. ten decimal digit accuracy requires: 

. ( 10 bits) 
(1 O d1g1ts) . x -

3 
d" = 33 bits 

1g1ts 

If we were only transferring the data from one place in memory 

to another and not also processing 1t. we could use the Z80's 

powerfu I block transfer instruction LDIR. This single instruction 

moves a bvte of data from the address in HL to the address in 

DECIMAL 
ACCURACY 
IN BINARY 

BLOCK 
TRANSFER 
INSTRUCTIONS 

DE. increments the pointers in HL and DE. and decrements the bvte counter in BC. It 

repeats the move operation until BC is decremented to zero. LOI 1s the same instruction 

without the repetition factor: LDD and LDDR are non-repeated and repeated moves. 

respectively, that decrement the pointers rather than incrementing them. 

A program to transfer a fixed number of bytes (LENGTH) from one place in memory 

(starting at PTR1) to another place 1n memory (starting at PTR2) 1s the following. 

Block Move 
Purpose: Move a block of data BC characters long from the address in HL to the ad­

dress in DE. 

Sample Problem: 

Result: 

Source Program: 

LD 
LO 
LO 

LDIR 
HALT 

(HU 40 
(DE) 50 
(BC) 3 

(0040) 31 
(0041) 32 
(0042) 33 

(0050) 0 
(0051) 0 
(0052) 0 

(0050) 31 
(0051) 32 
(0052) 33 

BC.LENGTH 
HL.PTR1 
DE.PTR2 

:COUNT= LENGTH OF TRANSFER (IN BYTES) 

:POINTER 1 =START OF DATA SOURCE AREA 

:POINTER 2 =START OF DATA DESTINATION 

. AREA 

8-4 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 01 LD BC.LENGTH 
0001 
0002 LENGTH 
0003 21 LD HL.PTR1 
0004 
0005 PTR1 
0006 11 LD DE.PTR2 
0007 
0008 PTR2 
0009 ED LDIR 
OOOA BO 
OOOB 76 HALT 

Try to implement the same program without the LDIR instruction. How many bytes of 
memory and clock cycles does 1t require each way? 

Decimal Addition 
Purpose: Add two multiple-word decimal (BCD) numbers. The length of the numbers 

is in memory location 0040. the numbers themselves start (least significant 
bits first) in memory locations 0041 and 0051. respectively. and the sum 
replaces the number starting in memory location 0041. 

Sample Problem: 

(0040) 04 

(0041) 85 
(0042) 19 
(0043) 70 
(0044) 36 

(0051) 59 
(0052) 34 
(0053) 66 
(0054) 12 

Result: (0041) 44 
(0042) 54 
(0043) 36 
(0044) 49 

that is. 36701985 
+12663459 

49365444 

8-5 



Flowchart: 

Source Program: 

LD 
LO 
INC 
LD 
AND 

DECAD LO 
ADC 
DAA 
LD 
INC 
INC 
DJNZ 
HALT 

HL.40H 
B.(HL) 
HL 
DE.51H 
A 
A(DE) 
A.(HL) 

(HU.A 
DE 
HL 
DE CAD 

Start 

Count 140) 
Pointer 1 41 
Pointer 2 51 

Carry 0 

Pointer 1 = 
Pomter 1 + 1 

Pointer 2 = 
Pointer 2 + 1 

Count = Count - 1 

End 

:COUNT =LENGTH OF STRINGS (IN BYTES) 
:POINTER 1 =FIRST WORD OF STRING 1 
:POINTER 2 =FIRST WORD OF STRING 2 
:CLEAR CARRY TO START 
:GET 2 DECIMAL DIGITS FROM STRING 2 
:ADD PAIR OF DIGITS FROM STRING 1 
:MAKE ADDITION DECIMAL 
:STORE RESULT IN STRING 1 

8-6 



Object Program: 

Memory Address Memory Contents I nstruct1on 
(Hex) (Hex) (Mnemonic) 

0000 21 LO HL.40H 
0001 40 
0002 00 
0003 46 LO B.(HL) 
0004 23 INC HL 
0005 11 LO DE.51H 
0006 51 
0007 00 
OOOB A7 AND A 
0009 1A DECAD: LO A.(DE) 
OOOA SE ADC A.(HL) 
OOOB 27 DAA 
oooc 77 LO (HU.A 
0000 13 INC DE 
OOOE 23 INC HL 
OOOF 10 DJNZ DEC AD 
0010 F8 
0011 76 HALT 

The Decimal Adjust instruction (DAA) uses the Carry (C) and Half I DECIMAL Carry (H) bits to correct the following s1tuat1ons: 
ADJUST 

1 Th f e sumo two d1g1ts 1s between 10 and 15. inclusive. In this 
case. six must be added to the sum to give the nght result. 1.e. 

0101 (5) 
+ 1000 (8) 

1101 (D) 
+ 0110 

0001 0011 (BCD 13. which 1s correct) 

2) The sum of two digits 1s 16 or more. In this case the result 1s a proper BCD number 
but six less than 1t should be, 1.e. 

1000 (8) 
+ 1001 (9) 

0001 0001 (BCD 11) 
+ 0110 

0001 0111 (BCD 17. which 1s correct) 

Six must be added 1n both s1tuat1ons. However. case 1 can be recognized by the fact 
that the sum 1s not a BCD digit. 1t 1s between 10 and 15 (or A and F hexadecimal). Case 
2 can be recognized only by the fact that the Carry (most significant dig1tl or Half Carry 
(least significant digit) has been set to 1. since the result is a valid BCD number. DAA is 
the only instruction that uses the Half Carry. Note that DAA operates only on the Ac­
cumulator. 

The Z80 microprocessor also has a flag that distinguishes be­
tween Add instructions (ADD. ADC) and Subtract instructions 
(SUB. SBC). This flag. called the Add/Subtract flag or N flag. is 

ADD/SUBTRACT 
FLAG 

cleared by all Add instructions and set by all Subtract instructions. The sole use of this 
flag 1s to allow the DAA instruction to correctly change binary addition into BCD addi­
tion and binary subtraction into BCD subtraction. The 8080 and 8085 microprocessors 
do not have an N flag. and so their DAA instructions operate properly only after addi­
tion. 

8-7 



DAA can be used only after instructions that place their result into the Accumulator 

and that properly affect the Carry. Half-Carry, and Add/Subtract flags. Thus. you cannot 

use DAA after INC (since INC does not affect the Carry). DEC. or any of the double-word 

1nstruct1ons that place their results into the index registers or Register Pair HL. 

This procedure can add decimal (BCD) numbers of any length. ACCURACY IN 
Here four binary bits are required for each decimal digit. so ten- BINARY AND 
digit accuracy requires: BCD ..._ _____ _, 

10 x 4 = 40 bits 

as opposed to 33 bits in the binary case. This 1s essentially five 8-bit words instead of 

four. The decimal procedure also takes a little longer per word because of the extra 

DAA instruction. 

8-Bit Binary Multiplication 
Purpose: Multiply the 8-bit unsigned number in memory location 0040 by the 8-b1t 

unsigned number 1n memorv location 0041. Place the eight least significant 

bits of the result into memorv location 0042 and the eight most significant 

bits into memorv location 0043. 

Sample Problems: 

a. (0040) 03 

b. 

(0041) 05 

Result: (0042) OF 
(0043) 00 

or in decimal 3 x 5 = 15 

(0040) 
(0041) 

Result: (0042) 
(0043) 

6F 
61 

OF 
2A 

or 111 x 97 = 10. 767 

You can perform mult1plicat1on on a computer in the same way that you do long 

mult1plicat1on by hand. Since the numbers are binary. the only problem 1s whether to 

multiply by 0or1: multiplying by zero obviously gives zero as a result. while multiplying 

by one produces the same number that You started with (the multiplicand). So, each 

step in a binary mult1plicat1on can be reduced to the following operation . .---------
1 f the current bit in the multiplier is 1. add the multiplicand MULTIPLICATION 
to the partial product. ALGORITHM 

The only remaining problem 1s to ensure that you line everything up correctly each 

time. The following operations perform this task. 

1) Shift multiplier left one bit so that the bit to be examined 1s placed into the Carry. 

2) Shift product left one bit so that the next addition is lined up correctly. 

The complete process for binary mu ltiplicat1on is as follows: 1 

Step 1 - lnit1alizat1on 

Product= 0 
Counter= 8 

Step 2 - Shift Product so as to line up properly 
Product = 2 x Product (LSB = 0) 

Step 3 - Shift Multiplier so bit goes to Carry 
Multiplier= 2 x Multiplier 

8-8 



Step 4 - Add Multiplicand to Product if Carry 1s 1 
If Carry= 1. Product= Product+ Multiplicand 

Step 5 - Decrement Counter and check for zero 
Counter= Counter - 1 
If Counter =I 0 go to Step 2 

In the case of Sample Problem b. where the multiplier 1s 61 (hex) and the multiplicand 1s 
6F (hex) the process works as follows: 

Initialization: 

Product 0000 
Multiplier 61 

Multiplicand 6F 
Counter 08 

After first 1terat1on of steps 2-5. 

Product 0000 
Multiplier C2 

Multiplicand 6F 
Counter 07 

Carry from Multiplier 0 

After second iteration: 

Product 006F 
Multiplier 84 

Mu lt1plicand 6F 
Counter 06 

Carry from Multiplier 1 

After third 1terat1on: 

Product 0140 
Multiplier 08 

Multiplicand 6F 
Counter 05 

Carry from Multiplier 1 

After fourth 1terat1on: 

Product 029A 
Multiplier 10 

Multiplicand 6F 
Counter 04 

Carry from Multiplier 0 

After fifth 1terat1on: 

Product 0534 
Multiplier 20 

Multiplicand 6F 
Counter 03 

Carrv from Multiplier 0 

After sixth iteration: 

Product OA68 
Multiplier 40 

Multiplicand 6F 
Counter 02 

Carry from Mu lt1plier 0 

8-9 



After seventh iteration: 

Product 
Multiplier 

Multiplicand 
Counter 

Carrv from Multiplier 

After eighth 1terat1on: 

Flowchart: 

Product 
Multiplier 

Multiplicand 
Counter 

Carry from Multiplier 

No 

1400 
80 
6F 
01 

0 

2AOF 
00 
6F 
00 

1 

Start 

Multiplicand (40} 
Multiplier (41 l 
Product 0 
Count 8 

Product = 2 x Product 
(Shift left 1 bit} 

Multiplier =2xMult1plier 
(Shift left 1 bit) 

Product= 
Product + 
Multiplicand 

Count =Count - 1 

142 and 43} = 

Product 

End 

8-10 



Source Program: 

LO 
LO 
LO 
INC 
LO 
LO 
LO 

MULT ADD 
RLA 
JR 
ADD 

CHCNT DJNZ 
LO 
HALT 

Object Program: 

HL.40H 
E.(HU 
D.O 
HL 
A.(HL) 
HL.O 
B.8 
HL.HL 

NC.CHCNT 
HL.DE 
MULT 
(42H).HL 

:GET MULTIPLICAND 
:EXTEND TO 16 BITS 

:GET MULTIPLIER 
:PRODUCT= ZERO 
:COUNT= BIT LENGTH OF MULTIPLIER 
:SHIFT PRODUCT LEFT 1 BIT 
;SHIFT MULTIPLIER LEFT 1 BIT 
:IS CARRY FROM MULTIPLIER 17 
:YES. ADD MULTIPLICAND TO PRODUCT 

:SAVE PRODUCT IN MEMORY 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 21 LO HL.40H 
0001 40 
0002 00 
0003 5E LO E.(HL) 
0004 16 LO D.O 
0005 00 
0006 23 INC HL 
0007 7E LO A.(HU 
0008 21 LO HL.0 
0009 00 
OOOA 00 
OOOB 06 LO B.8 
oooc 08 
0000 29 MULT ADD HL.HL 
OOOE 17 RLA 
OOOF 30 JR NC.CHCNT 
0010 01 
0011 19 ADD HL.DE 
0012 10 CHCNT DJNZ MULT 
0013 F9 
0014 22 LO (42H).HL 
0015 42 
0016 00 
0017 76 HALT 

Note that the multiplicand must be extended to 16 bits by clearing Register D so that 1t 
can be added to the product using the ADD HL.DE instruction. 

The instruction ADD HUHL acts as a 16-bit logical left shift for the 16-bit product. 

In this program. the Z80 16-bit instructions handle data rather than addresses. LO HL.O 
is used to initialize the product: ADD HL.HL to perform a 16-bit logical left shift: ADD 
HL.DE to add the multiplicand to the partial product and LO (42Hl.HL to store the 
result in memory. You must be careful to extend 8-b1t quantities {like the multiplicand 
in this example) to 16 bits. Note that you cannot use the 16-bit facilities simultaneously 
for addressing and data manipulation. However. if you have no other·need for the alter­
nate registers. you could save the old contents of the regular registers there and restore 

8-11 



them afterward using the EXX instruction. This instruction exchanges the contents of 

Register Pairs BC. DE. and HL with the contents of their alternate counterparts in 1ust 

four clock cycles. 

Besides its obvious use in calculators and point-of-sale terminals. multiplication 1s a key 

part of almost all signal processing and control algorithms. The speed at which 

mult1plicat1ons can be performed determines the usefulness of a CPU in process con­

trol. signal detection. and signal analysis. 

The algorithm takes between 390 and 440 clock cycles to multiply on a Z80 

microprocessor. The precise time depends on the number of one bits in the multiplier. 

Other algorithms may be able to reduce the average execution time somewhat but 400 

clock cycles will still be a typical execution time for a software mult1plicat1on.2 

8-Bit Binary Division 
Purpose: Divide the 16-bit unsigned number in memory locations 0040 and 0041 

(most significant bits in 0041) by the 8-b1t unsigned number 1n memory loca­

tion 0042. The numbers are normalized so that 1) the most significant bits of 

both the dividend and the divisor are zero and 2) the number in memorv 

location 0042 is greater than the number in memory location 0041. i.e .. the 

quotient is an 8-b1t number. Store the quotient in memory location 0043 and 

the remainder in location 0044. 

Sample Problems: 

a. (0040) 
(0041) 
(0042) 

b. 

Result 

(0040) 
(0041) 
(0042) 

Result 

40 (64 decimal) 
00 
08 

(0043) = 08 
(0044) =00 
1.e .. 64/8 = 8 

6D (12.909 decimal) 
32 
47 (71 decimal! 

(0043) = 85 (181 decimal) 
(0044) = 3A (58 decimal! 
1.e .. 12.909/71 = 181 with a remainder of 58 

You can perform division on the computer 1ust like you would per­

form div1s1on with pen and paper. 1.e .. using trial subtractions. 

Since the numbers are binary, the only question 1s whether the bit 

DIVISION 
ALGORITHM 

1n the quotient 1s 0 or 1. 1.e .. whether or not the divisor can be subtracted from what 1s 

left of the dividend. Each step in a binary division can be reduced to the following 

operation: 

If the divisor can be subtracted from the eight 
most significant bits of the dividend without 
a borrow. the corresponding bit in the quo­
tient 1s 1. otherwise it 1s 0. 

The only remaining problem is to line up the dividend and quotient properly. You can 

do this by shifting the dividend and quotient logically left one bit before each trial 

subtraction. The dividend and quotient can share a 16-bit register. since the procedure 

clears one bit of the dividend at the same time as 11 determines one bit of the quotient. 

8-12 



The complete process for binary division is: 

Step 1 - Initialization: 
Quotient= 0 
Counter= 8 

Step 2 - Shift Dividend and Quotient so as to line up properly: 
Dividend = 2 x Quotient 
Quotient = 2 x Quotient 

Step 3 - Perform trial Subtraction. If no Borrow add 1 to Quotient: 
If 8 MSBs of Dividend > Divisor then 
MSBs of Dividend = MSBs of Dividend - Divisor 
Quotient = Quotient + 1 

Step 4 - Decrement counter and check for zero: 
Counter= Counter - 1 
if Gou nter ;b 0. go to Step 2 
Remainder = 8 MSBs of Dividend 

In the case of sample problem b. where the dividend is 326D (hex) and the divisor 1s 47 
(hex). the process works as follows: 

I nit1alization: 
Dividend 3260 

Divisor 47 
Quotient 00 
Counter 00 

After first iteration of Steps 2 - 4: 
(Note that the dividend is shifted prior to the trial subtraction) 

Dividend 1 DOA 
Divisor 47 

Quotient 01 
Counter 07 

After second iteration of Steps 2 - 4: 
Dividend 3BB4 

Divisor 47 
Quotient 02 
Counter 06 

After third 1terat1on: 
Dividend 3068 

Divisor 47 
Quotient 05 
Counter 05 

After fourth iteration: 
Dividend 1900 

Divisor 47 
Quotient OB 
Counter 04 

After fifth iteration: 
Dividend 33AO 

Divisor 47 
Quotient 16 
Counter 03 

8-13 



After sixth iteration: 
Dividend 2040 

Divisor 47 
Ouot1ent 2D 
Counter 02 

After seventh iteration: 
Dividend 4080 

Divisor 47 
Ouot1ent 5A 
Counter 01 

After eighth 1terat1on: 
Dividend 3AOO 

Divisor 47 
Ouot1ent B5 
Counter 00 

So the quotient 1s B5 and the remainder 1s 3A. 

The MSBs of dividend and divisor are assumed to be zero so as to simplify calculations 

(the shift prior to the trial subtraction would otherwise place the MSB of the dividend in 
the Carry). Problems that are not in this form must be simplified by removing parts of 

the quotient that would overflow an 8-b1t word. For example: 

1024 = 400 (Hex) = 100 
+ 100 (Hex) 

3 3 3 

The last problem 1s now in the proper form. An extra div1s1on may be necessary. 

8-14 



Flowchart: 

Source Program: 

DIV: 

CNT 

LO 
LO 
LO 
LO 
ADD 
LO 
SUB 
JR 
LO 
INC 
DJNZ 
LO 
HALT 

HL.(40H) 
A.(42H) 
C.A 
B.8 
HL.HL 
A.H 
c 
C.CNT 
H.A 
L 
DIV 
(43HJ.HL 

Start 

Dividend = 
(40 and 411 

Divisor (42) 
Count 8 
Quotient = 0 

of Dividend - Divisor 
Quotient =Quotient+ 1 

Count =Count - l 

(43) =Quotient 

(44) = 8 MSBs of 

Dividend 

End 

;GET DIVIDEND 
;GET DIVISOR 

;COUNT= NUMBER OF BITS IN DIVISOR 
;SHIFT DIVIDEND. QUOTIENT LEFT 1 BIT 
:CAN DIVISOR BE SUBTRACTED? 

:NO. GO TO NEXT STEP 
;YES. SUBTRACT DIVISOR FROM DIVIDEND 
;ADD 1 TO QUOTIENT 

;SAVE QUOTIENT. REMAINDER IN MEMORY 

8-15 



Object Program: 

Memorv Address Memorv Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 2A LO HL.(40H) 
0001 40 
0002 00 
0003 3A LO A,(42Hl 

0004 42 
0005 00 
0006 4F LO C,A 
0007 06 LO B.8 
0008 08 
0009 29 DIV: ADD HL.HL 

OOOA 7C LO A.H 
OOOB 91 SUB c 
oooc 38 JR C,CNT 

0000 02 
OOOE 67 LO H.A 
OOOF 2C INC L 
0010 10 CNT: DJNZ DIV 
0011 F7 
0012 22 LO (43H).HL 

0013 43 
0014 00 
0015 76 HALT 

Register Pair HL holds both the dividend and the quotient. The quotient simply replaces 
the dividend in Register L as the dividend is shifted left logically. 

For longer division problems. you could use the instruction SBC HL. which subtracts the 

contents of a register pair and the contents of the Carrv from the contents of Register 
Pair HL. 

The instruction INC L sets the least significant bit of the quotient to 1. since ADD HL.HL 
has previously cleared that bit. 

Division 1s necessary in calculators. terminals. communications error checking, control 
algorithms. and many other applications. 

This algorithm takes between 400 and 430 clock cycles to divide on a Z80 

microprocessor. The precise time depends on the number of one bits in the quotient. 

Other algorithms may reduce the average execution time somewhat. but 400 clock cy­
cles will still be typical for a software div1s1on. Some of the references listed at the end 

of this chapter discuss faster methods for implementing division. 

8-16 



Self-Checking Numbers 
Double Add Double Mod 10 
Purpose: Calculate a checksum digit from a stnng of BCD digits. The length of the 

stnng of digits (number of words) 1s in memory location 0041, the string of 
digits (2 BCD digits to a word) starts 1n memory location 0042. Calculate the 
checksum digit by the Double Add Double Mod 10 technique3 and store it 1n 
memory location 0040. 

The Double Add Double Mod 10 technique works as follows: 

1) Clear the checksum to start. 
2) Multiply the leading digit bv two and add the result to the 

checksum. 
3) Add the next digit to the checksum. 

SELF-CHECKING 
NUMBERS 

4) Continue the alternating process until you have used all the digits. 
5) The least significant digit of the checksum 1s the self-checking digit. 
Self-checking digits are commonly added to identification numbers on credit cards. in­
ventory tags. luggage, parcels. etc .. when they are handled by computerized systems. 
Thev mav also be used in routing messages. identifying files. and other applications. 
The purpose of the digits is to minimize entry errors such as transposing digits (69 in­
stead of 96), shifting digits (7260 instead of 3726), missing digits by one (65 instead of 
64!. etc. You can check the self-checking number automatically for correctness upon 
entry and can eliminate manv errors immediately. 

The analysis of self-checking methods is quite complex. For example. a plain checksum 
will not find transposition errors (4 + 9 = 9 + 4). The Double Add Double algorithm will 
find simple transposition errors (2 x 4 + 9 = 17 *' 2 x 9 + 4); but will miss some errors. 
such as transpositions across even numbers of digits (367 instead of 763). However. 
this method will find many common errors! The value of a method depends on what er­
rors it will detect and on the probability of particular errors in an application. 
For example, if the string of digits 1s 

549321 

the result will be: 

Checksum = 5 x 2 + 4 + 9 x 2 + 3 + 2 x 2 + 1 = 40 
Self-checking digit = 0 (least significant digit of a checksum) 

Note that an erroneous entrv like 543921 would produce a different self-checking digit 
(4). but erroneous entries like 049321 or 945321 would not be detected. 
Sample Problems: 

a. (0041) 03 

b. 

(0042) 36 
(0043) 68 
(0044) 51 

Result: Checksum = 3 x 2 + 6 + 6 x 2 + 8 + 5 x 2 + 1 = 43 
(0040) 03 

(0041) 
(0042) 
(0043) 
(0044) 
(0045) 

04 
50 
29 
16 
B3 

Result: Checksum= 5 x 2 + 0 + 2 x 2 + 9 + 1 x 2 + 6 + 8 x 2 + 3 = 50 
(0040) = 00 

8-17 



Flowchart: 

Start 

Checksum 0 
Count (41) 

Pointer 42 

MSD =(Pointer)/ 16 
LSD = Pointer AND 

000011116 
Checksum =Checksu 

+ 2xMSD =LSD 

Pointer = Pointer + 1 

Count = Count - 1 

(40) = Checksum 

AND 000011116 

End 

8-18 



Source Program: 

LO A.(41H) :COUNT= LENGTH OF STRING IN BYTES 
LO B.A 
LO c.o :CHECKSUM= 0 
LO HL.42H :POINT TO START OF STRING OF DIGITS 

CHDIG. LO A.(HU :GET TWO BCD DIGITS FROM STRING 
LO D.A :SAVE COPY 
RRA :GET MSD BY SHIFTING AND MASKING 
RRA 
RRA 
RRA 
AND 00001111B 
ADD A.A :DOUBLE MSD 
DAA :MAKE DOUBLED MSD DECIMAL 
ADD A.C :ADD DOUBLED MSD TO CHECKSUM 
DAA :KEEP CHECKSUM DECIMAL 
LD C.A 
LD A.D :GET LEAST SIGNIFICANT DIGIT 
AND 00001111B : (MASK OUT MSD) 
ADD A.C :ADD LSD TO CHECKSUM 
DAA :KEEP CHECKSUM DECIMAL 
LD C.A 
INC HL 
DJNZ CHDIG 
AND 00001111B :MASK OFF SELF-CHECKING DIGIT 
LD (40H).A :SAVE SELF-CHECKING DIGIT 
HALT 

8-19 



Object Program: 

Memory Address Memorv Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 3A LO A.(41H) 

0001 41 
0002 00 
0003 47 LO 8.A 

0004 OE LO c.o 
0005 00 

0006 21 LO HL.42H 

0007 42 
0008 00 
0009 7E CHDIG: LO A(HL) 

OOOA 57 LO D.A 

0008 1F RRA 

oooc 1F RRA 

0000 1F RRA 

OOOE 1F RRA 

OOOF E6 AND 000011118 

0010 OF 
0011 87 ADD A.A 

0012 27 DAA 

0013 81 ADD A.C 

0014 27 DAA 

0015 4F LO C.A 

0016 7A LO A.D 

0017 E6 AND 000011118 

0018 OF 
0019 81 ADD A.C 

001A 27 DAA 

0018 4F LO C.A 
001C 23 INC HL 

0010 10 DJNZ CHDIG 

001E EA 
001F E6 AND 000011118 

0020 OF 
0021 32 LO (40H).A 

0022 40 
0023 00 
0024 76 HALT 

The digits are removed by shifting and masking. Four right shifts are needed to separate 

out the most significant digit. 

A decimal adjust (DAA) must follow each addition to produce the proper decimal result. 

A single DAA after a series of additions will not work (trv 1t!l. Remember that DAA 

works only on the Accumulator. 

There 1s no problem with carries from the decimal sum. since the procedure uses only 

the least significant digit of the checksum anvwav. 

8-20 



An alternative (and superior) approach 1s to use the Z80 
decimal shift instruction Rl..D. This instruction 1s a 4-bit 

DECIMAL SHIFT 
INSTRUCTIONS 

shift that moves the contents of the four least significant 
bits of the memory location addressed by HL into the four most significant bits of that 
location. the previous contents of the four most significant bits of that location into the 
four least significant bits of the Accumulator. and the previous contents of the four 
least significant bits of the Accumulator into the four least significant bits of the memo­
ry location. Thus. RLD not only moves a single digit to the Accumulator. but it also 
shifts the next digit so that it can be moved to the Accumulator with the next RLD. 
Figure 8-1 shows an example of how RLD works; RRD is the same instruction except 
that the shift is right instead of left. 

The Double Add Double Mod 10 algorithm can be implemented as follows using RLD: 

Source Program: 

LD A.(41Hl ;COUNT =LENGTH OF STRINGS (IN BYTES) 
LD B.A 
LD c.o ;CHECKSUM = 0 
LD HL.42H :POINT TO START OF STRING OF DIGITS 

CHDIG; SUB A ;CLEAR MSD 
RLD ;GET MSD FROM STRING 
ADD A.A :DOUBLE MSD 
DAA ;MAKE DOUBLED MSD DECIMAL 
ADD A.C ;ADD DOUBLED MSD TO CHECKSUM 
DAA :KEEP CHECKSUM DECIMAL 
LD C.A 
SUB A ;CLEAR MSD 
RLD :GET LSD FROM STRING 
ADD A.C :ADD LSD TO CHECKSUM 
DAA :KEEP CHECKSUM DECIMAL 
LD C.A 
INC HL 
DJNZ CHDIG 
AND 00001111B ;MASK OFF SELF-CHECKING DIGIT 
LD (40H).A :SAVE SELF-CHECKING DIGIT 
HALT 

8-21 



Object Program: 

Memorv Address Memorv Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 3A LD A,(41H) 

0001 41 
0002 00 
0003 47 LD B.A 

0004 OE LD c.o 
0005 00 
0006 21 LD HL.42H 

0007 42 
0008 00 
0009 97 CHDIG. SUB A 

OOOA ED RLD 

0008. 6F 
oooc 87 ADD A.A 

OOOD 27 DAA 

OOOE 81 ADD A.C 

OOOF 27 DAA 

0010 4F LD C.A 

0011 97 SUB A 
0012 ED RLD 

0013 6F 
0014 81 ADD A.C 

0015 27 DAA 

0016 4F LD C.A 

0017 23 INC HL 

0018 10 DJNZ CHDIG 

0019 EF 
001A E6 AND 000011118 

0018 OF 
001C 32 LD (40H).A 

0010 40 
001E 00 
001F 76 HALT 

We could improve this program even further (it 1s already shorter than the previous ver­

sion). Since we are dropping the most significant digit at the end anyway, there is no 

reason to clear it out each time with the SUB A instruction. 

8-22 



Initial Conditions 

{HU =4000 
{Al =7F 
{40001=12 

After RLD 

{Al =71 
{40001 =2F 

Before 

Accumulator 

After 

Memorv Accumuiator Memory 

--..........--.! F I f7T7l fF• 1 [El 
\ \~ __ )l]f L 

' I ' , ' , ........... ___ ,,,.,,, 

High-order bit = 0, set S to 0 .. ,... _________ __,, Non-zero result, 
4 ones, set P/0 to 1 

After ARD 

{Al =72 
{40001 = F 

Before 

Accumulator Memorv 

setZtoO 

After 

Accumulator Memorv 

I CD 
'--~--'-f.---,.-J. -.cJT I I I c:::EJ 

~ 

\ ', , -, ' ........ __ .... ~~- ..... '/ 

High-order bit = 0. set S to 0 '"------------' 
4 ones, set P /0 to 1 

L~.-~ .. ~· 
Figure B-1. Examples of the ZBO Digit Shifts 

You can double a decimal number (in the Accumulator) by 
adding 1t to itself and then performing a decimal correction. 
i.e .. 

ADD 
DAA 

A :DOUBLE NUMBER 
:AND MAKE RESULT DECIMAL 

setZtoO 

DOUBLING 
AND HALVING 
BINARY 
NUMBERS 

Remember that the Accumulator can hold only valid decimal digits in the range 0-99. 
You cannot use SLA A (Shift Left Arithmetic Al because that 1nstruct1on alwavs clears 
the Half-Carry (only Add and Subtract instructions set H properly). 

You can divide a decimal number by two simply by shifting 1t right logically and then 
subtracting three from any digit that 1s eight or larger (since 10 BCD 1s 16 binary). The 
following program divides a decimal number in memory location 0040 by two and 
places the result into memory location 0041. 

8-23 



DONE: 

LO 
SRL 
BIT 
JR 
SUB 
LO 
HALT 

A(40Hl 
A 
3.A 
Z.DONE 
3 
(41H).A 

GET DECIMAL NUMBER 
DIVIDE BY 2 IN BINARY 
IS LEAST SIGNIFICANT DIGIT 8 OR MORE? 

:YES. SUBTRACT 3 FOR DECIMAL CORRECTION 

:STORE NUMBER DIVIDED BY 2 

Try this program and the method on the decimal numbers 28, 30. and 37 Do you un­

derstand why 1t works? 

Rounding 1s simple whether the numbers are binary or decimal. A 

binary number can be rounded as follows: 

If the most significant bit to be dropped 1s 1. 

add 1 to the remaining bits. Otherwise. leave 

the remaining bits alone. 

BINARY 
ROUNDING 

This rule works because 1 1s halfway between 0 and 10 in binary, much as 5 1s halfway 

in decimal (note that 0.5 decimal = 0.1 binary). 

So. the following program will round a 16-bit number in memory locations 0040 and 

0041 (MSBs in 0041) to an 8-bit number in memory location 0041. 

LO 
BIT 
JR 
INC 
INC 

DONE. HALT 

HL.40H 
7.(HU ;IS MSB OF EXTRA BYTE 1 i 

Z.DONE 
HL :NO, ROUND UP 
(HU 

If the number 1s longer than 16 bits. the rounding must ripple through the other bytes 

as needed. 

Decimal rounding 1s a bit more difficult because the crossover 

point 1s now BCD 50 and the rounding must produce a decimal 

result. The rule 1s: 

If the most significant digit 1s to be dropped 

1s 5 or more. add 1 to the remaining digits. 

DECIMAL 
ROUNDING 

The following program will round a 4-digit BCD number in memory locations 0040 and 

0041 (MSBs 1n 0041) to a 2-digit BCD number in memory location 0041. 

LD 
LO 
CP 
JR 
INC 
LO 
ADD 
DAA 
LO 

DONE. HALT 

HL.40H 
A.(HL) :IS BYTE TO BE DROPPED 50 OR MORE? 

50H 
C.DONE 
HL :YES, ROUND MSB'S UP 
A,(HU 
A.1 

:KEEP DIGITS DECIMAL 
(HU.A 

Remember that the DAA instruction works only on numbers in the Accumulator. In this 

case. we could round with the instruction INC A. since we know that the Carry 1s zero 

(whyi - remember the JR 1nstruct1on). Normally, we need the sequence ADD A. 1 

followed by DAA. since INC A does not affect the Carry. 

8-24 



Very often when performing multibyte twos complement 
signed arithmetic. 1t is necessary to propagate the sign bit 
through the high-order bytes. This operation can be performed 

SIGN 
PROPAGATION 

in a straightforward manner if. as is usually the case. the sign is in the Carry. The SBC 
A.A instruction has the effect of propagating the state of the Carry throughout a word. 
Since A-A always equals 0, SBC A.A 1s equivalent to subtracting the Carry from 0 and 
can yield only the values 0 and FFH. 

PROBLEMS 
1) Multiple-Precision Subtraction 
Purpose: Subtract one multiple-word number from another. The length of the num­

bers 1s in memory location 0040. the numbers themselves start (least signifi­
cant bits first) 1n memory locations 0041 and 0051. respectively, and the 
difference replaces the number starting in memory location 0041. Subtract 
the number starting in 0051 from the one starting in 0041. 

Sample Problem: 

(0040) 04 

(0041) C3 
(0042) A7 
(00431 58 
(00441 2F 

(00511 B8 
(00521 35 
(0053) DF 
(00541 14 

Result: (0041) OB 
(0042) 72 
(0043) 7C 
(00441 1A 

that IS, 2F5BA7C3 
14DF35B8 
1A7C720B 

2) Decimal Subtraction 
Purpose: Subtract one multiple-word decimal (BCD) number from another. The length 

of the numbers 1s 1n memory location 0040. the numbers themselves start 
(least significant bits first) in memory locations 0041 and 0051. respectively. 
and the difference replaces the number starting in memory location 0041. 
Subtract the number starting in 0051 from the one starting 1n 0041. 

Sample Problem: 

(0040) 04 

(0041) 85 
(0042) 19 
(0043) 70 
(0044) 36 

(0051) 59 
(0052) 34 
(0053) 66 
(0054) 12 

8-25 



Result: (0041) 26 
(0042) 85 
(0043) 03 
(0044) 24 

that IS. 36701985 
12663459 

24038526 

3) 8-Bit by 16-Bit Binary Multiplication 

Purpose: Mu lt1ply the 16-bit unsigned number in memory locations 0040 and 0041 

(most significant bits in 0041) by the 8-b1t unsigned number 1n memory loca­

tion 0042. Store the result in memory locations 0043 through 0045. with the 

most significant bits in memory location 0045. 

Sample Problems: 

a. (0040) 03 
(0041) 00 
(0042) 05 

Result: (0043) OF 
(0044) 00 
(0045) 00 

that IS, 3 x 5 = 15 

b. (0040) 6F 
(0041) 72 (29.295 decimal) 
(0042) 61 (97 decimal) 

Result: (0043) OF 
(0044) 5C 
(0045) 28 

that IS, 29.295 x 97 2.841.615 

4) Signed Binary Division 
Purpose: Divide the 16-bit signed number in memory locations 0040 and 0041 (most 

significant bits in 0041 by the 8-b1t signed number in memory location 0042. 

The numbers are normalized so that the magnitude of memory location 0042 

1s greater than the magnitude of memory location 0041. Store the quotient 

(signed) in memory location 0043 and the remainder (always pos1t1ve) in 

memory location 0044. 

Sample Problems: 

a. 

b 

(0040) co 
(0041) FF (-64) 
(0042) 08 

Result: (0043) F8 (-8) quotient 
(0044) 00 (0) remainder 

(0040) 93 
(0041) ED (-4717) 
(0042) 47 (71 decimal) 

Result: (0043) BD (-67 decimal) 
(0044) 28 (+40 decimal) 

Hint: Determine the sign of the result. perform an unsigned div1s1on. and ad-

1ust the quotient and remainder properly. 

8-26 



5) Self-Checking Numbers Aligned 1, 3, 7 Mod 10 
Purpose: Calculate a checksum digit from a string of BCD digits. The length of the 

string of digits (number of words) 1s in memory location 0041. the string of 
digits (2 BCD digits to a word) starts in memory location 0042. Calculate the 
checksum digit by the Aligned 1. 3. 7 Mod 10 method and store It in memory 
location 0040. 

The Aligned 1. 3. 7 Mod 10 technique works as follows: 

1) Clear the checksum to start. 
2) Add the leading digit to the checksum. 
3) Multiply the next digit by 3 and add the result to the checksum. 
4) Multiply the next digit by 7 and add the result to the checksum. 
5) Continue the process (Steps 2-4) until you have used all the digits. 
6) The self-checking digit 1s the least significant digit of the checksum. 
For example. if the string of digits 1s: 

549321 

the result will be: 

Checksum 
Self-checking digit 

Sample Problems: 

5 + 3 x 4 + 7 x 9 + 3 + 3 x 2 + 7 x 1 = 96 
6 

a. (0041) 
(0042) 
(0043) 
(0044) 

03 
36 
68 
51 

Result: Checksum = 3 + 3 x 6 + 7 x 6 + 8 + 3 x 5 + 7 x 1 = 93 
(0040) 03 

b. (0041) 04 
(0042) 50 
(0043) 29 
(0044) 16 
(0045) 83 

Result Checksum= 5 + 3 x 0 + 7 x 2 + 9 + 3 x 1 + 7 x 6 + 8 
+3x3=90 

(0040) = 00 

Hint: Note that 7 = 2 x 3 + 1 and 3 = 2 x 1 + 1. so the formula 
Mi = 2 x Mi-1 + 1 can be used to calculate the next mult1plv1ng factor. 

8-27 



REFERENCES 

1. Several mult1plicat1on algorithms are described in T. Dollhoff. "Microprocessor 

Software: How to Optimize Timing and Memory Usage. Part Four. Techniques for 

the Zilog Z80." Digital Design. February 1977. pp. 44-51. 

2. Some microprocessors (such as the 9900. 8086. and Z-80001 have hardware 

multiplication instructions that are somewhat faster. but maximum speed requires 

the addition of external hardware. 

Other methods for implementing multiplication. div1s1on. and other arithmetic tasks 

are discussed 1n: 

Geist. D. J .. "MOS Processor Picks up Speed with Bipolar Multipliers." Electronics. 

July 7. 1977, pp. 113-115. 

Kolodz1nsk1. A. and D. Wainland. "Multiplying with a Microcomputer." Electronic 

Design. January 18. 1978. pp. 78-83. 

Mick. J. R. and J. Springer. "Single-chip Multiplier Expands Digital Role in Signal 

Processing," Electronics. May 13. 1976. pp. 103-108. 

Parasuraman. B .. "Hardware Multiplication Techniques for Microprocessor 

Systems," Computer Design. April 1977. pp. 75-82. 

Tao. T. F et al.. "Applications of Microprocessors in Control Problems." 1977 Joint 

Automatic Control Conference Proceedings. San Francisco. CA., June 22-24. 1977 

Waser. S .. "State-of-the-art in High-Speed Arithmetic Integrated Circuits." Com­

puter Design. July 1978. pp. 67-75. --

We1ssberger. A. J. and T. Toal. "Tough Mathematical Tasks Are Child's Play for 

Number Cruncher." Electronics. February 17. 1977. pp. 102-107 

3. See J. R. Herr. "Self-Checking Number Systems." Computer Design. June 1974. 

pp. 85-91. 

8-28 



Chapter 9 
TABLES AND LISTS 

Tables and lists are two of the basic data structures used with all computers. We have 
already seen tables used to perform code conversions and arithmetic. Tables may also 
be used to identify or respond to commands and instructions. linearize data. provide ac­
cess to files or records. define the meaning of keys or switches. and choose among 
alternate programs. Lists are usually less structured than tables. Lists may record tasks 
that the processor must perform, messages or data that the processor must record. or 
conditions that have changed or should be monitored. Tables are a simple way of mak­
ing decisions or solving problems. since no computations or logical functions are 
necessary. The task. then. reduces to organizing the table so that the proper entry 1s 
easy to find. Lists allow the execution of sequences of tasks. the preparation of sets of 
results. and the construction of interrelated data files (or data bases). Problems include 
how to add elements to a list and remove elements from 1t. 

EXAMPLES 

Add Entry to list 
Purpose: Add the contents of memory location 0040 to a list if 1t 1s not already pre­

sent in the list. The length of the list 1s in memory location 0041 and the list 
itself begins in memory location 0042. 

Sample Problems: 

a ~040) BB 
(0041) 04 
(0042) 37 
(0043) B1 
(0044) 3B 
(0045) 1D 

Resu It: (0041) 05 
(004B) BB 

The entry is added to the list. since it 1s not already present. The length of the list 1s in­
creased by 1. 

b. (0040) 
(0041) 
(0042) 
(0043) 
(0044) 
(0045) 

BB 
04 
37 
BB 
38 
1D 

Result: No change. since the entry 1s already in the list. 

9-1 



Flowchart: 

Source Program: 

LD 
LD 
INC 
LD 
INC 

SRLST CP 
JR 
INC 
DJNZ 
LD 
LD 
INC 

DONE: HALT 

HL.40H 
A,(HU 
HL 
B.(HU 
HL 
(HU 
Z.DONE 
HL 
SRLST 
(HU.A 
HL.41 H 
(HU 

Start 

Entry (401 

Count (41l 

Po mt er 42 

Pointer = Pointer + 1 

Count = Count - 1 

(Pointer) = Entry 

(41) ~ (41) + 1 

End 

:POINT TO ENTRY 
:GET ENTRY 
:POINT TO COUNT 
:COUNT = LENGTH OF LIST 

:POINT TO START OF LIST 

:IS ENTRY= ELEMENT IN LIST? 

: YES. THROUGH 
:NO. GO ON TO NEXT ELEMENT 

:ADD ENTRY TO LIST 
:ADD 1 TO LIST LENGTH 

9-2 



Object Program: 

Memory Address Memory Contents I nstruct1on 
(Hex) (Hex) (Mnemonic) 

0000 21 LO HL.40H 
0001 40 
0002 00 
0003 7E LO A.(HU 
0004 23 INC HL 
0005 46 LO B.(HU 
0006 23 INC HL 
0007 BE SRLST CP (HU 
0008 28 JR Z.DONE 
0009 08 
OOOA 23 INC HL 
OOOB 10 DJNZ SRLST 
oooc FA 
0000 77 ADELM: LO (HU.A 
OOOE 21 LO HL.41H 
OOOF 41 
0010 00 
0011 34 INC (HU 
0012 76 DONE. HALT 

We could also use the block search instruction CPIR in our example. as follows: 
Source Program: 

LO 
LO 
INC 
LO 
LO 
INC 
CPIR 
JR 
LO 
LO 

DONE: HALT 

HL.40H 
A.(HU 
HL 
B.O 
C.(HU 
HL 

Z.DONE 
(HU.A 
HL.41 H 

:POINT TO ENTRY 
:GET ENTRY 
:POINT TO COUNT 
:COUNT= LENGTH OF LIST (16 BITS) 

:POINT TO START OF LIST 
:LOOK FOR ENTRY IN LIST 
:DONE IF ENTRY FOUND 
:OTHERWISE. ADD ENTRY TO LIST 
:ADD 1 TO LIST LENGTH 

9-3 



Object Program: 

Memory Address Memory Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 21 LO HL.40H 

0001 40 
0002 00 

0003 7E LO A.(HU 

0004 23 INC HL 

0005 06 LO B.O 

0006 00 

0007 4E LO C.(HU 

0008 23 INC HL 

0009 ED CPIR 

OOOA B1 
OOOB 28 JR Z.DONE 

oooc 05 
0000 77 LO (HU.A 

OOOE 21 LO HL.41 H 

OOOF 41 
0010 00 
0011 34 INC (HU 

0012 76 DONE: HALT 

Remember that CPIR automatically repeats the basic Search instruction until either BC 

1s decremented to zero or a true comparison occurs (i.e .. A= (HL)). 

Be careful of the following slight differences from the previous version: 

1) BC is a 16-bit counter. Thus. CPIR can handle strings longer than 256 bytes. 

2) The Parity/Overflow bit (P /0) 1s cleared if BC is decremented to zero. and set other­

wise. 

Clearly. this method of adding elements 1s very inefficient if the list 

1s long. We could improve the procedure by limiting the search to 
I HASHING I 

part of the list or by ordering the list. We could limit the search bv using the entry to get 

a starting point 1n the list. This method is called "hashing". and 1s much like selecting a 

starting page in a dictionary or directory on the basis of the first letter in an entry. We 

could order the list by numerical value. The search could then end when the list values 

went beyond the entry (larger or smaller. depending on the ordering technique used). A 

new entry would have to be inserted properly. and all the other entries would have to be 

moved down in the list. 

The program could be restructured to use two tables. One table could provide a starting 

point in the other table; for example. the search point cou Id be based on the most or 

least significant 4-bit digit 1n the entry. 

9-4 



The program does not work if the length of the list could be zero (what happens?). We 
cou Id avoid this problem bv checking the length initially. The 1nit1alizat1on procedure 
for the first program would then be: 

LD HL.40H :POINT TO ENTRY 
LD A.(HU :GET ENTRY 
INC HL :POINT TO LENGTH 
LD 8.(HU :COUNT= LENGTH OF LIST 
INC HL :POINT TO START OF LIST 
INC 8 :IS COUNT ZERO? 
DEC 8 
JR Z.ADELM :YES. GO ADD ENTRY TO LIST 

ADELM: LD (HU.A :ADD ENTRY TO LIST 

Note that the sequence INC. DEC 1s an easv way to check for a zero value 1n a register 
without using the Accumulator or changing the value in the register. 
The procedure: 

LD HL.ADDR 
INC (HU 

1s a quick way to add 1 to a counter in memory location ADDR without using the Ac­
cumulator. You can use DEC (HU in a similar manner to subtract 1 from the counter. LD 
(HU.CONST can place a starting value (such as zero) in the counter. Memory locations 
should. of course. be used for counters only when no readily accessible registers are 
available. 

If each entry were longer than one word. a pattern-matching program would be necess­
ary. The program would have to proceed to the next entry if a match failed: that is. skip 
over the last part of the current entry once a mis-match was found. 

Check an Ordered List 
Purpose: Check the contents of memory location 004·1 to see if 1t 1s in an ordered list. 

The length of the list 1s 1n memory location 0042: the list itself begins 1n 
memory location 0043 and consists of unsigned binary numbers in increas­
ing order. If the contents of location 0041 1s in the list. clear memory loca­
tion 0040: otherwise. set memory location 0040 to FF (hex). 

Sample Problems: 

a. (0041) 68 

b. 

(0042) 04 
(0043) 37 
(0044) 55 
(0045) 7D 
(0046) A1 

Resu It: (0040) 
(0041) 
(0042) 
(0043) 
(0044) 
(0045) 
(0046) 

FF. since 68 1s not in the list. 
68 
04 
37 
55 
68 
A1 

Result: (0040) 00. since 68 1s in the list. 

9-5 



Flowchart: 

Start 

Entrv (41) 
Count (42 

Pointer 43 
Mark O 

Pointer = Pointer + 1 
Count = Count - 1 

Mark = FF (Haxl 

(40) =Mark 

End 

The searching process 1s a bit different here since the elements are ordered. Once we 
find an element larger than the entry. the search 1s over. since subsequent elements will 
be even larger. You may want to trv an example to convince yourself that the procedure 
works. 

As in the previous problem. a table or other method that could 
choose a good starting point would speed up the search. One 
method would be to start in the middle and determine which half 

SEARCHING 
METHODS 

of the list the entry was in. then divide the half into halves. etc. This method 1s called a 
binary search. since 1t divides the remaining part of the list in half each time.1 

9-6 



Source Program: 

LD 
LD 
INC 
LD 
LD 
INC 

SRLST· CP 
JR 
JR 
INC 
DJNZ 

NOTIN: LD 
DONE: LD 

LD 
HALT 

Object Program: 

HL.41H 
A.(HL) 
HL 
B.(HL) 
c.o 
HL 
(HU 
Z.DONE 
C.NOTIN 
HL 
SRLST 
C.OFFH 
A.C 
(40H).A 

:POINT TO ENTRY 
:GET ENTRY 
:POINT TO LENGTH 
;COUNT= LENGTH OF LIST 
;MARK= ZERO FOR IN LIST 
:POINT TO START OF LIST 
:IS ENTRY= ELEMENT IN LIST' 
;YES SEARCH COMPLETED 
:ENTRY NOT IN LIST IF LESS THAN ELEMENT 

:MARK =FF FOR NOT IN LIST 
:SAVE MARK 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 21 LD HL.41 H 
0001 41 
0002 00 
0003 7E LD A.(HL) 
0004 23 INC HL 
0005 46 LD B.(HL) 
0006 OE LD c.o 
0007 00 
0008 23 INC HL 
0009 BE SRLST: CP (HL) 
OOOA 28 JR Z.DONE 
OOOB 07 
oooc 38 JR C.NOTIN 
OOOD 03 
000!: 23 INC HL 
OOOF 10 DJNZ SRLST 
0010 F8 
0011 OE NOTIN: LO C.OFFH 
0012 FF 
0013 79 LO A.C 
0014 32 LO (40Hl.A 
0015 40 
0016 00 
0017 76 HALT 

The Z80 block search instructions are not as usefu I here as in the previous example 
because we want to do more than a simple search. Now we also want to check to see if 
we have examined the relevant part of the list (i.e .. the part where the elements are less 
than or equal to the entry). Try rewriting the program to use CPI. Remember that you 
must use the Parity/Overflow flag to determine if the byte counter has been decre­
mented to zero. 

9-7 



Remove Element from Queue 
Purpose: Memorv locations 0042 and 0043 contain the address of the head of the 

queue (MSBs in 0043). Place the address of the first element (head) of a 

queue into memorv locations 0040 and 0041 (MSBs in 0041) and update 

the queue to remove the element. Each element in the queue 1s two bytes 

long and contains the address of the next two-byte element in the queue. 

The last element in the queue contains zero to indicate that there 1s no next 

element. 

Queues are used to store data in the order in which 1t will be used. or tasks in the order 

1n which they will be executed. The queue 1s a first-in. first-out data structure: 1.e .. ele­

ments are removed from the queue in the same order in which they were entered. 

Operating systems place tasks 1n queues so that they will be executed in the proper 

order. 1/0 dnvers transfer data to or from queues so that 1t will be transmitted or 

handled in the proper order. Buffers may be queued so that the next available one can 

easily be found and those that are released can easily be added to the available storage. 

Queues may also be used to link requests for storage. timing. or 1/0 so that they can be 

satisfied in the correct order. 

In real applications each element in the queue will typically contain a large amount of 

1nformat1on or storage space besides the address required to link the element to the 

next one. 

Sample Problems: 

a. (0042) 
(0043) 
(0046) 
(0047) 
(004D) 
(004E) 

Result: (0040) 
(0041) 
(0042) 
(0043) 

b. (0042) 
(0043) 

Result: (0040) 
(0041) 

6~} address of first element 1n queue 

6~} address of second element in queue 

~~} end of queue 

~g} address of element removed from queue 

6~} address of new first element in queue 

~~} empty queue 

gg} no element available from queue 

9-8 



Flowchart: 

Source Program: 

LO 
LO 
LO 
OR 
JR 
LO 
INC 
LO 
LO 

DONE: HALT 

Object Program: 

HL.(42H) 
(40H).HL 
A.H 
L 
Z.DONE 
E.(HL) 
HL 
D.(HL) 
(42H).DE 

Start 

Pointer = (42 and 43) 
(40 and 411 = Pointer 

(421 = (Pointeri 

(43) = {Pointer + 1) 

End 

:GET ADDRESS OF HEAD OF QUEUE 
:REMOVE HEAD OF QUEUE 
:IS QUEUE EMPTY? 

:YES. DONE 
:NO. GET ADDRESS OF NEXT ELEMENT 

:MOVE NEXT ELEMENT TO HEAD OF QUEUE 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 2A LO HL.(42H) 
0001 42 
0002 00 
0003 22 LO (40H).HL 
0004 40 
0005 00 
0006 7C LO A.H 
0007 B5 OR L 
0008 28 JR Z.DONE 
0009 07 
OOOA 5E LO E.(HL) 
OOOB 23 INC HL 
oooc 56 LO D.(HL) 
0000 ED LO (42H).DE 
OOOE 53 
OOOF 42 
0010 00 
0011 76 DONE: HALT 

9-9 



Queuing can handle lists that are not 1n sequential memory locations. Each element 

must contain the address of the next element. Such lists allow You to handle data or 

tasks in the proper order. change variables. or fill 1n definitions in a program. Extra 

storage 1s required. but elements can easily be added to the queue or deleted from 1t. 

Note the use of the sequence: 

LD A.H 
OR L 

to determine if the contents of a 16-bit register pair 1s zero. Remember that INC and 

DEC do not affect anv flags when applied to a register pair. Try to devise some other se­

quences that could handle this problem -1t obviously occurs whenever vou use a 16-

bit counter rather than the 8-b1t counter that we have used in most of the examples. 

One problem is that there 1s no 1nstruct1on that loads a register pair using the address in 

a register pair. A sequence of 1nstruct1ons is necessary whenever a register pair must be 

loaded directly. 

It may be useful to maintain pointers to both ends of the queue rather than Just to its 

head. The data structure may then be used in either a first-In. first-out manner or in a 

last-in. first-out manner. depending on whether new elements are added to the head or 

the tail. How would you change the program example so that memory locations 0044 

and 0045 contain the address of the last element (taill of the queue? 

If there are no elements in the queue. the program clears memory locations 0040 and 

0041. A program that requested an element from the queue would then have to check 

those memory locations to see if its request had been satisfied. Can you suggest other 

wavs to provide this information? 

8-Bit Sort 
Purpose: Sort an array of unsigned binary numbers into descending order. The length 

of the arrav is in memory location 0040 and the array itself begins in memo­

ry location 0041. 

Sample Problem: 

(0040) 06 
(0041) 2A 
(0042) B5 
(0043) 60 
(0044) 3F 
(0045) D1 
(0046) 19 

Resu It: (0041) D 1 
(0042) B5 
(0043) 60 
(0044) 3F 
(0045) 2A 
(0046) 19 

A simple sorting technique works as follows: 

Step 1) Clear a flag INTER. 

Step 2) Examine each consecutive pair of numbers in the array. If 

any are out of order. exchange them and set INTER. 

SIMPLE 
SORTING 
ALGORITHM 

Step 3) If INTER= 1 after the entire array has been examined. return to Step 1. 

9-10 



INTER will be set if any consecutive pair of numbers 1s out of order. Therefore. if IN­
TER = 0 at the end of a pass through the entire array, the array 1s 1n proper order. 

This sorting method 1s referred to as a "bubble sort" It 1s an easy algorithm to imple­
ment. ·However. other sorting techniques should be considered when sorting long lists 
where speed 1s 1mportant.2 

The technique operates as follows in a simple case. Let us assume that we want to sort 
an array into descending order: the array has four elements - 12. 03. 15. 08. 

1st Iteration: 

Step 1) INTER= 0 

Step 2) Final order of the array 1s: 
12 
15 
08 
03 
since the second pair (03.15) is exchanged and so is the third pair (03,08). 
INTER= 1. 

2nd Iteration: 

Step 1) INTER= 0 
Step 2) Final order of the array 1s: 

15 
12 
08 
03 
since the first pair (12. 15) is exchanged. INTER = 1. 

3rd Iteration: 

Step 1) INTER= 0 

Step 2) The elements are already in order. so no exchanges are necessary and INTER 
remains zero. 

9-11 



Flowchart: 

Inter 

Count 
Pointer 

Start 

Temp = 

0 
(40)-1 

41 

(Pointer) = (Pointer+ 1) 
IPointer+1) = Temp 

Inter = 1 

Pointer = Pointer + 1 

Count = Count - 1 

End 

9-12 



Source Program: 

SORT: LO c.o :CLEAR INTERCHANGE FLAG 
LO HL.40H :COUNT= LENGTH OF ARRAY 
LO B.(HU 
DEC B :NUMBER OF PAIRS= COUNT-1 
INC HL ;POINT TO START OF ARRAY 

PASS1 LO A.(HU ;GET ELEMENT FROM ARRAY 
INC HL 
CP (HU ;IS IT LESS THAN NEXT ELEMENT? 
JR NC.CNT :NO. NO INTERCHANGE NECESSARY 
LO D.(HU :YES. INTERCHANGE ELEMENTS 
LO (HU.A 
DEC HL 
LO (HU.D 
INC HL 
LO C.1 ;SET INTERCHANGE FLAG 

CNT DJNZ PASS1 
DEC c :WAS INTERCHANGE FLAG SET? 
JR Z.SORT ;YES. DO ANOTHER PASS 
HALT 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 OE SORT LD c.o 
0001 00 
0002 21 LD HL.40H 
0003 40 
0004 00 
0005 46 LD B.(HU 
0006 05 DEC B 
0007 23 INC HL 
0008 7E PASS1 LD A.(HU 
0009 23 INC HL 
OOOA BE CP (HU 
0008 30 JR NC.CNT 
oooc 07 
OOOD 56 LD D.(HL) 
OOOE 77 LD (HU.A 
OOOF 2B DEC HL 
0010 72 LD (HU.D 
0011 23 INC HL 
0012 OE LD C.1 
0013 01 
0014 10 CNT DJNZ PASS1 
0015 F2 
0016 OD DEC c 
0017 28 JR Z.SORT 
0018 E7 
0019 76 HALT 

The case where two elements in the array are equal is very important here. The program 
should not perform an interchange in that case. since that interchange would occur 1n 
every pass. The result would be that every pass would set the interchange flag. thus 
producing an endless loop. 

9-13 



The program must reduce the counter by 1. since the number of consecutive pairs 1• 

one less than the number of elements (the last element has no successor). Before start 

ing each sorting pass. we must be careful to reinitialize the counter. pointer. and in 

terchange flag. 

There are many possible minor variations on this program. For example, we could use 

RES 0.C and SET O.C to clear and set the interchange flag instead of LD C.O and LD C.1. 

We could also use the sequence MOV B.C followed by DJNZ SORT to check the in· 

terchange flag. 

Note that Register B should be used for the inner counter. since that counter is decre­

mented most frequently. This allows us to take maximum advantage of the DJNZ in­

struction. 

Indexing would be a convenient way to perform the interchange if the Z80's index 

registers were more accessible. Trv rewriting the program so as to use one of the index 

registers and compare the execution time and memory usage of the rewritten program 

to those of the original program. 

Using an Ordered Jump Table 

Purpose: Use the contents of memorv location 0040 as an index to a iump table start­

ing in memorv location 0041. Each entrv in the iump table contains a 16-bit 

address with LSBs in the first word. The program should transfer control to 

the address with the appropriate index; that is. if the index is 6, the pro­

gram 1umps to address entrv #6 in the table. Assume that the table has 

fewer than 128 entries. 

Sample Problem: 

(0040) 
(0041) 
(0042) 
(0043) 
(0044) 
(0045) 
(0046) 
(0047) 
(0048) 

Resu It: (PC) 

Flowchart: 

02 
48 
00 
4C 
00 
50 
00 
54 
00 

0050. since that is entrv #2. 
(starting from zero) in the 1ump table. 

Start 

Index (40) x 2 

Basa 41 

JELEM = 

Base + Index 

(PCl = 
(JELEMl (JELEM + 1 l 

9-14 



The last box results in a transfer of control to the address obtained from the table. 

Source Program: 

LD 
LD 
ADD 
LD 
LD 
INC 
ADD 
LD 
INC 
LD 
EX 
JP 

Object Program: 

HL.40H 
A.(HU 
A.A 
E.A 
D.O 
HL 
HL.DE 
E.(HL) 
HL 
D.(HL) 
DE.HL 
(HU 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
oooc 
OOOD 
OOOE 

:POINT TO INDEX 
:GET INDEX 
:DOUBLE INDEX FOR 2-BYTE TABLE 

:EXTEND INDEX TO 16 BITS 
:BASE ADDRESS OF JUMP TABLE 
:INDEX INTO JUMP TABLE 
:GET LSB'S OF DESTINATION ADDRESS 

:GET MSB'S OF DESTINATION ADDRESS 

:TRANSFER CONTROL TO DESTINATION 

Memory Contents I nstruct1on 
(Hex) (Mnemonic) 

21 LD HL.40H 
40 
00 
7E LD A.(HU 
87 ADD A.A 
5F LD E.A 
16 LD D.O 
00 
23 INC HL 
19 ADD HL.DE 
5E LD E.(HL) 
23 INC HL 
56 LD D.(HL) 
EB EX DE.HL 
E9 JP (HL) 

Jump tables are very useful in situations where one of several routines must be 
selected. Such situations arise in decoding commands. selecting test programs. choos­
ing alternate methods. or selecting an 1/0 configuration. 

The 1ump table replaces a whole series of conditional jump operations. The program 
that accesses the jump table could be used to access several different tables merely by 
changing the starting address. 3 

The data must be multiplied by two to give the correct index. since each entry in the 
iump table 1s a two-byte address. 

The instruction JP (HU. which transfers the contents of Register 
Pair HL to the Program Counter. 1s an indirect jump that 1s very 
handy in jump tables and monitor programs. Note that JP (HL) is a 

INDIRECT 
JUMPS 

Jump instruction. since it places a new value into the Program Counter: however. it 
allows us to place a variable address directly into the Program Counter. All of the Condi­
tional Jump instructions (and the Call instructions) use fixed addresses. The only Jump 
instructions with similar flexibility are the two-word instructions JP (IX) and JP (IY). 

No ending operation 1s necessary, since JP (HU transfers control to the address ob­
tained from the jump table. 

9-15 



PROBLEMS 

1) Remove an Entry From a list 
Purpose: Remove the contents of memory location 0040 from a list if 1t is present. 

The length of the list is in memory location 0041 and the list itself begins in 

memory location 0042. Move the entries below the one removed up one 

pos1t1on and reduce the length of the list by 1. 

Sample Problems: 

a. 

Result: 

b. 

Result: 

(0040) 
(0041) 
(0042) 
(0043) 
(0044) 
(0045) 

68 
04 
37 
61 
28 
10 

No change. since the entry 1s not in the list. 

(0040) 68 
(0041) 04 
(0042) 37 
(0043) 68 
(0044) 28 
(0045) 10 

(0041) 03 
(0042) 37 
(0043) 28 
(0044) 10 

The entry is removed from the list and the ones below 1t are moved up one position. The 

length of the list 1s reduced by 1. 

9-16 



2) Add an Entry to an Ordered List 
Purpose: Place the contents of memory location 0040 into an ordered list if 1t 1s not 

already there. The length of the list 1s m memory location 0041. and the list 
itself begins m memory location 0042, which consists of unsigned binary 
numbers m increasing order. Place the new entry m the correct position m 
the list. adjust the elements below 1t down. and increase the length of the 
list by 1. 

Sample Problems: 

a. (0040) 
(0041) 
(0042) 
(0043) 
(0044) 
(0045) 

Result: (0041) 

b. 

(0044) 
(0045) 
(0046) 

(0040) 
(0041) 
(0042) 
(0043) 
(0044) 
(0045) 

6B 
04 
37 
55 
70 
A1 

05 
6B 
70 
A1 

6B 
04 
37 
55 
6B 
A1 

Result: No change. since the entry 1s already m the list. 

3) Add an Element to a Queue 
Purpose: Add the address m memory locations 0040 and 0041 (MSBs 1n 0041) to a 

queue. The address of the first element of the queue is in memory locations 
0042 and 0043 (MSBs m 0043). Each element in the queue contains either 
the address of the next element in the queue or zero if there 1s no next ele­
ment; all addresses are 16 bits long with the most significant bits m the 
second word of the element. The new element goes at the end (tail) of the 
queue; its address will be m the element that was at the end of the queue 
and 1t will contain zero to indicate that 1t is now the end of the queue. 

Sample Problem: 

Result: 

(0040) 
(0041) 
(0042) 
(0043) 
(0046) 
(0047) 

(0046) 
(0047) 
(0040) 
(004E) 

6~} new element to be added to queue 

6~} pointer to head of queue 

gg} last element in queue 

40} 
00 

00} 
00 

old last element points to 
new last element 

new last element m queue 

How would you add an element to the queue if memory locations 0044 and 0045 con­
tained the address of the tail (last element) of the queue? 

9-17 



4) 16-Bit Sort 
Purpose: Sort an array of unsigned 16-bit binary numbers into descending order. The 

length of the array 1s in memory location 0040 and the array itself begins 1n 
memory location 0041. Each 16-bit number is stored with the least signifi­

cant bits 1n the first word. 

Sample Problem: 

(0040) 03 
(0041) 01 
(0042) 19 
(0043) 60 
(0044) 3F 
(0045) 2A 
(0046) B5 

Result: (0041) 2A 
(0042) B5 
(0043) 60 
(0044) 3F 
(0045) 01 
(0046) 19 

The numbers are B52A. 3F60. and 1901 

5) Using a Jump Table With a Key 
Purpose: Use the contents of memory location 0040 as the key to a 1ump table start­

ing 1n memory location 0041. Each entry in the iump table contains an 8-b1t 
key value followed by a 16-bit address (MSBs in second word) to which the 
program should transfer control if the key 1s equal to that key value. 

Sample Problem: 

(0040) 
(0041) 
(0042) 
(0043) 
(0044) 
(0045) 
(0046) 
(0047) 
(0048) 
(0049) 

Result: (PC) 

38 
32 
4B 
00 
35 
40 
00 
38 
4F 
00 
004F. since that address corresponds 
to key value 38. 

Try writing the program with and without the CPIR instruction. Can vou think of a wav 
to simplify the version that uses the CPIR instruction? Hint: place all the corresponding 

8-b1t words into separate tables so that the program only has to add 1 to the table 
pointer to move from one key value to the next.4 

9-18 



REFERENCES 
1. Knuth describes other searching techniques in his book The Art of ComQuter Pro­

gramming. Volume Ill: Sorting and Searching, Addison-Wesley, Reading, Mass., 
1978. Knuth also has discussed searching and hashing in a more elementary way 
in an article entitled" Algorithms" (see the April 1977 issue of Scientific American). 

2. There are many sorting algorithms that vary widely in efficiency. Knuth describes 
some in the book mentioned above (The Art of Comguter Programming. Volume 
Ill: Sorting and Searching). Sorting and searching algorithms are also discussed in 
K. A. Schember and J. R. Rumsey, "Minimal Storage Sorting and Searching Techni­
ques for RAM Applications. a Tutorial". ComQuter. June 1977. pp. 92-100. 

3. There are additional examples of the use of 1ump tables in L. A. Leventhal, "Cut 
Your Processor's Computation Time". Electronic Design. August 16. 1977. pp. 
82-89. and in Chapter 7 of J. B. Peatman, MicrocomQuter-Based Design,_ McGraw­
Hill. New York. 1977 

4. This method is discussed by T. Dollhoff 1n "Microprocessor Software: How to Op­
timize Timing and Memory Usage: Part Four: Techniques for the Zilog Z80". 
QJ.g1tal Design,_ February 1977. pp. 48-49. 

9-19 





Chapter 10 
SUBROUTINES 

None of the examples that we have shown so far 1s typically a program all by itself. 
Most real programs perform a series of tasks. many of which mav be the same or may 
be common to several different programs. We need a way to formulate these tasks once 
and make the formulations conveniently available both in different parts of the current 
program and in other programs. 

The standard method 1s to write subroutines that perform particu­
lar tasks. The resulting sequences of instructions can be written 
once. tested once. and then used repeatedly. They can form a 

SUBROUTINE 
LIBRARY 

subroutine library that provides documented solutions to common problems. 
Most microprocessors have special instructions for transferring 
control to subroutines and restoring control to the main pro­
gram. We often refer to the special instruction that transfers 

SUBROUTINE 
INSTRUCTIONS 

control to a subroutine as Call. Jump-to-Subroutine. Jump and Mark Place. or Jump 
and Link. The special instruction that restores control to the main program 1s usually 
called Return. On the ZBO microprocessor. the Call instruction (CALL) saves the old 
value of the Program Counter in the RAM Stack before placing the starting address of 
the subroutine into the Program Counter: the Return instruction (RET) gets the old 
value from the Stack and puts it back in the Program Counter. The effect 1s to transfer 
program control. first to the subroutine and then back to the main program. Clearly the 
subroutine may itself transfer control to a subroutine. and so on. 
In order to be really useful. a subroutine must be general. A routine that can perform 
only a specialized task. such as looking for a particular letter in an input string of fixed 
length. will not be very useful. If. on the other hand. the subroutine can look for any let­
ter in strings of any length. 1t will be far more helpful. We call the data or addresses that 
the subroutine allows to vary "parameters" An important part of writing subroutines 1s 
deciding which variables should be parameters. 

One problem 1s transferring the parameters to the subroutine: this 
process 1s called passing parameters. The simplest method is for 
the main program to place the parameters into registers. Then the 

PASSING 
PARAMETERS 

subroutine can simply assume that the parameters are there. Of course. this technique 
is limited by the number of registers that are available. The parameters may. however. 
be addresses as well as data. For example. a sorting routine could begin with the start­
ing address of an array in Register Pair HL. 

Other methods are necessary when there are more parameters. One possibility is to use 
the Stack. The main program can place the parameters into the Stack and the 
subroutine can retrieve them. The advantages of this method are that the Stack 1s es­
sentially unlimited in size. and that data in the Stack 1s not lost even if the Stack 1s used 
again. 

The disadvantages are that few ZBO 1nstruct1ons use the Stack. and the Call instruction 
also stores the return address in the Stack. Another method 1s to use an area of memory 
for parameters. The main program can place the address of the area into Register Pair 
HL or into one of the index registers and the subroutine can retrieve the data as needed. 
However. this procedure is awkward if the parameters themselves are addresses. 

10-1 



Sometimes a subroutine must have special characteristics. A I RELOCATION I 
subroutine is relocatable if it can be placed anywhere in memory. 

You can use such a subroutine easily. regardless of the placement of other programs or 

the arrangement of the memory. A strictly relocatable program can use no absolute ad­

dresses: all addresses must be relative to the start of the program. A relocating loader 

1s necessary to place the program in memory properly; the loader will start the program 

after other programs and will add the starting address or relocation constant to all ad­

dresses in the program. 

A subroutine 1s reentrant if it can be interrupted and called by the 

interrupting program and still give the correct results for both the 

interrupting and interrupted programs. Reentrancy is important for 

REENTRANT 
SUBROUTINE 

standard subroutines in an interrupt-based system. Otherwise the interrupt service 

routines cannot use the standard subroutines without causing errors. Microprocessor 

subroutines are easy to make reentrant. since the Call instruction uses the Stack and 

that procedure is automatically reenuant. The only remaining requirement 1s that the 

subroutine use the registers and Stack rather than fixed memory locations for tempor­

ary storage. This 1s a bit awkward. but usually can be done .if necessary. 

A subroutine is recursive if it calls itself. Such a subroutine clearly must also be re­

entrant. However. recursive subroutines are uncommon in microprocessor applications. 

Most programs consist of a main program and several subroutines. This 1s advan­

tageous because you can use proven routines and debug and test the other subroutines 

separately. You must. however. be careful to use the subroutines properly and remem­

ber their exact effects on registers and memory locations. 

SUBROUTINE DOCUMENTATION 
Subroutine listings must provide enough information so that 

users need not examine the subroutine's internal structure. 

Among the necessary specifications are: 

A description of the purpose of the subroutine. 

A list of input and output parameters. 

Registers and memory locations used. 

A sample case. 

If these guidelines are followed. the subroutine will be easy to use. 

EXAMPLES 

DOCUMENTING 
SUBROUTINES 

It 1s important to note that the following examples all reserve an area of memory for the 

RAM Stack. If the monitor invour microcomputer establishes such an area. you may use 

1t instead. If you wish to try establishing your own Stack area. remember to save and 

restore the monitor's Stack Pointer in order to produce a proper return at the end of 

your main program. 

To save the monitor Stack Pointer. use the 1nstruct1on LD (addr).SP. To restore the 

monitor Stack Pointer. use the instruction LD SP.(addr). Both of these instructions re­

quire a two-bvte operation code (ED 78 for loading the Stack Pointer. ED 73 for storing 

1t) in addition to the two bytes of address. 

We have used address 0080 (hex) as the starting point for the Stack. You may have to 

consistently replace that address with one more suitable for your configuration. You 

should consult your microcomputer's manual to determine the required changes. 

10-2 



Hex to ASCII 
Purpose: Convert the contents of the Accumulator to an ASCII character. Place the 

result in the Accumulator. Assume that the Accumulator contains a single 
hexadecimal digit. 

Sample Problems: 

a. (A) 

Result: (A) 

b. (A) 

Result: (A) 

Flowchart: 

Source Program: 

oc 
43 

06 

36 

·c· 

'6' 

Start 

(A)= (A) •ASCII A -
ASC119-1 

(Al = (A) + ASCII 0 

End 

The calling program starts the Stack at memory location 0080. gets the data from 
memory location 0040. calls the conversion subroutine. and stores the result in memorv location 0041. 

ORG 
LD 
LO 
CALL 
LD 
HALT 

0 
SP.80H 
A.(40H) 
AS DEC 
(41H).A 

:START STACK AT LOCATION 0080 
;GET DATA 
:CONVERT DATA TO ASCII 
:STORE RESULT 

The subroutine converts a hexadecimal digit to ASCII. 

ORG 
ASDEC: CP 

JR 
ADD 

ASCZ: ADD 
Rn 

20H 
10 
C.ASCZ 
A.'A'-'9'-1 
A.'O' 

:IS DATA A DECIMAL DIGIT? 

:NO. ADD OFFSET FOR LETTERS 
:CONVERT DATA TO ASCII 

10-3 



Subroutine Documentation: 

. SUBROUTINE ASDEC 

. PURPOSE ASDEC CONVERTS A HEXADECIMAL 

DIGIT IN THE ACCUMULATOR TO AN 

ASCII DIGIT IN THE ACCUMULATOR 

. INITIAL CONDITIONS: HEX DIGIT IN A 

: FINAL CONDITIONS: ASCII CHARACTER IN A 

. REGISTERS USED: A 

. SAMPLE CASE 

INITIAL CONDITIONS: 6 IN ACCUMULATOR 

FINAL CONDITIONS. ASCII 6 (HEX 36) 

IN ACCUMULATOR 

Object Program: 

Memory Address Memory Contents 
(Hex) (Hex) 

1) Calling program 

0000 31 
0001 80 
0002 00 
0003 3A 
0004 40 
0005 00 
0006 CD 
0007 20 

0008 00 
0009 32 
OOOA 41 
0008 00 
oooc 76 

2) Subroutine 

0020 FE 
0021 OA 
0022 38 
0023 02 
0024 C6 
0025 07 
0026 C6 
0027 30 
0028 C9 

ASDEC. 

ASCZ: 

Instruction 
(Mnemonic! 

LO SP.80H 

LO A.(40H) 

CALL ASDEC 

LO (41HLA 

HALT 

CP 10 

JR C.ASCZ 

ADD A.'A'-'9'-1 

ADD A,'0' 

RET 

The instruction LO SP.80H starts the Stack at memory location 0080. Remember that 

the Stack grows downward (to lower addresses). We usually place the Stack at the high 

10-4 



end of RAM (i.e .. the highest address) so that 1t will not interfere with other temporary 
storage. 

The Call instruction places the subroutine starting address (0020 hex) into the Program 
Counter and saves the old Program Counter (0009 hex) 1n the Stack. The procedure 1s: 
STEP 1 - Decrement Stack Pointer. save MSBs of old Program Counter in Stack. 
STEP 2 - Decrement Stack Pointer. save LSBs of old Program Counter in Stack. 
Note that the Z80 Stack Pointer always contains the address of the last occupied Stack 
location. 

The result 1n this case 1s: 

(007F) 00 
(007E) 09 

(SP) 007E 

The value that 1s saved 1s the value of the Program Counter after the processor has 
fetched the entire Call instruction from memory. Note that the address ends up stored 
1ust like other Z80 addresses. with the least significant bits in the lower address. 
The Return 1nstruct1on loads the Program Counter with the contents of the bottom two 
memory locations in the Stack. The procedure 1s: 

STEP 1 - Load eight bits from Stack into LSBs of Program Counter. Increment Stack 
Pointer. 

STEP 2 - Load eight bits from Stack into MSBs of Program Counter. Increment Stack 
Pointer. 

The result in this case 1s: 

(PC) (007F) and (007E) 
0009 

(SP) 0080 

This subroutine has a single input parameter and produces a single result. The Ac­
cumulator 1s the obvious place to put both. 

The calling program involves three steps: placing the data into the Accumulator. call­
ing the subroutine. and storing the result. The overall 1n1t1alization must also place the 
Stack in the appropriate area of memory. 

The subroutine 1s reentrant. since 1t uses no data memory; 1t 1s relocatable. since the 
address ASCZ 1s relative. 

Note that the CALL 1nstruct1on results in the execution of four or five instructions taking 
36 or 38 clock cycles. A subroutine call can take a long time even though 1t appears to 
be a single instruction in the program. 

If vou plan to use the Stack for parameters. remember that CALL places the return ad­
dress at the top of the Stack. You can increment the Stack Pointer twice (INC SP) to get 
past the return address. but you must also remember to adjust the Stack Pointer pro­
perly before returning. You can also move the Stack Pointer to Registers Hand L with 
the sequence: 

LO 
ADD 

HL.O 
HL.SP :MOVE STACK POINTER TO ADDRESS REGISTER 

Now vou can use implied memory addressing with H and L to ac-cess data in the Stack. 
Another alternative 1s to move the Stack Pointer to an index register (say IX) with these­
quence: 

LO 
ADD 

IX.0 
IX.SP :MOVE STACK POINTER TO INDEX REGISTER 

10-5 



This alternative has the advantage that you can now access data and addresses in the 

Stack with indexed offsets. Furthermore. Register Pair HL is 1mmediatelv available for 

use 1n the subroutine. Note that you can use the instructions LO SP.HL or LO SP.IX to 

return an adjusted value to the Stack Pointer. 

Length of a String of Characters 

Purpose: Determine the length of a string of ASCII characters. The starting address of 

the string 1s in Register Pair HL The end of the string 1s marked by a carnage 

return character (CR. hex OD). Place the length of the string (excluding the 

carnage return) into the Accumulator. 

Sample Problems: 

a. (HU 0043 
(0043) OD 

Result: (A) 00 

b. (HU 0043 
(0043) 52 'R' 
(0044) 41 'A' 
(0045) 54 'T 
(0046) 48 'H' 
(0047) 45 'E' 
(0048) 52 'R' 
(0049} OD CR 

Result: (A} 06 

Flowchart: 

Start 

Pointer HL 

Count 0 

Yes 

Count Count + 1 

Pointer Pointer + 1 

End 

10-6 



Source Program: 

The calling program starts the Stack at memory location 0080. gets the starting address 
of the string from memorv locations 0040 and 0041. calls the string length subroutine. 
and stores the result in memory location 0042. 

LD 
LD 
CALL 
LD 
HALT 

SP.80H 
HL.(40H) 
STLEN 
(42Hl.A 

:START STACK AT LOCATION 0080 
:GET STARTING ADDRESS OF STRING 
:DETERMINE STRING LENGTH 
;STORE STRING LENGTH 

The subroutine determines the length of a string of ASCII characters and places the 
length into the Accumulator. 

ORG 
STLEN: LD 

LD 
CHKCR: CP 

JR 
INC 
INC 
JR 

DONE. LD 
RET 

20H 
B.O 
A.OOH 
(HU 
Z.DONE 
B 
HL 
CHKCR 
A.B 

Subroutine Documentation: 

:SUBROUTINE STLEN 

:STRING LENGTH ZERO 
:GET ASCII CARRIAGE RETURN 
:IS CHARACTER A CARRIAGE RETURN? 
:YES. END OF STRING 
:NO. ADD 1 TO STRING LENGTH 

:PURPOSE. STLEN DETERMINES THE LENGTH OF A 
STRING (NUMBER OF CHARACTERS BEFORE 
A CARRIAGE RETURN) 

:INITIAL CONDITIONS. STARTING ADDRESS OF 
STRING IN REGISTER PAIR HL 

:REGISTERS USED: A.B.H.L 

:SAMPLE CASE. 
STARTING CONDITIONS. (HU = 0043 

(0043) = 35. (0044) = 46. (0045) =OD 
FINAL CONDITIONS (Al = 02 

10-7 



Object Program: 

Memory Address Memorv Contents Instruction 

(Hex) (Hex) (Mnemonic) 

1) Calling program 

0000 31 LD SP.80H 

0001 80 
0002 00 
0003 2A LD HL.(40HI 

0004 40 

0005 00 
0006 CD CALL STLEN 

0007 20 
0008 00 
0009 32 LD (42Hl.A 

OOOA 42 
OOOB 00 
oooc 76 HALT 

2) Subroutine 

0020 06 STLEN: LD B.O 

0021 00 
0022 3E LD A.OOH 

0023 OD 
0024 BE CHKCR: CP (HU 

0025 28 JR Z.DONE 

0026 04 
0027 04 INC B 

0028 23 INC HL 

0029 18 JR CHKCR 

002A F9 
002B 78 DONE: LD A.B 

002C C9 RET 

The calling program involves four steps: initializing the Stack Pointer. placing the start-

ing address of the string into Register Pair HL. calling the subroutine. and storing the 

result 

The subroutine is reentrant. since it does not change the contents of any memorv loca­

tions. It is relocatable. since all the Jump 1nstruct1ons use relative addresses. 

The subroutine changes Register B and the address in Register Pair HL as well as the 

Accumulator. The programmer must be aware that data previously stored in Register B 

and the address previously loaded into HL will be lost: the subroutine documentation 

must describe what registers are used. 

An alternative to destroying register contents in the subroutine 1s to save them 1n the 

Stack and then restore them before returning. This approach makes the calling routine 

simpler. but costs extra time and memory (in the program and 1n the Stack). 

This subroutine has a single input parameter. which 1s an address. The best way to pass 

this parameter 1s through a register pair and. since the HL pair 1s certainly the most flex­

ible as far as addressing options are concerned. 1t 1s the obvious choice. 

The subroutine contains an unconditional Jump instruction. JR CHKCR. By altering the 

initial conditions prior to entering the subroutine's loop. can you eliminate this 1ump? 

If the terminating character were not always an ASCII carriage return. we could make 

that character into another parameter. Now the calling program would have to place 

10-8 



the terminating character into the Accumulator and the starting address of the string 
into Register Pair HL before calling the subroutine. 

One way to pass parameters that do not depend on variable data 1s to place the values 
in program memory immediately after the Call 1nstruct1on. You can use the old Program 
Counter (saved at the top of the Stack) to access the data. but you must adjust its value 
properly before returning control to the main program. For example. we could pass the 
value of the term1nat1ng character this way. The main program and subroutine would 
be: 

Calling program: 

ORG 
LD 
LD 
CALL 
DEFB 
LD 
HALT 

Subroutine: 

ORG 
STLEN: POP 

LD 
INC 
PUSH 
LD 

CHKCR: CP 
JR 
INC 
INC 
JR 

DONE: LD 
RET 

0 
SP.80H 
(HU.40H 
STLEN 

(42H).A 

20H 
DE 
A.(DE) 
DE 
DE 
8.0 
(HU 
Z.DONE 
B 
HL 
CHKCR 
A.B 

:START STACK AT LOCATION 0080 
:GET STARTING ADDRESS OF STRING 
:DETERMINE STRING LENGTH 
.TERMINATOR= ASCII PERIOD 
;STORE STRING LENGTH 

:GET START OF PARAMETER LIST 
:GET TERMINATING CHARACTER 
:ADJUST RETURN ADDRESS 

;STRING LENGTH =ZERO 
;IS CHARACTER TERMINATOR? 
:YES. END OF STRING 
;NO. ADD 1 TO STRING LENGTH 

This subroutine 1s longer and uses Register Pair DE. but the calling program need not 
load the terminating character into a register. The INC DE instruction is necessary to 
force a return to the next instruction. rather than to the parameter list 1 
PUSH and POP transfer the contents of register pairs or index registers to and from the 
RAM Stack. The eight least significant bits are removed first and stored last to retain 
consistency with the Z80's upside-down method of storing 16-bit addresses. Remem­
ber that the RAM Stack grows downward (to lower addresses). 

Add Even Parity to ASCII Characters 
Purpose: Add even parity to a string of 7-bit ASCII characters. The length of the string 

1s 1n the Accumulator and the starting address of the string 1s 1n Register Pair 
HL Place even parity 1n the most significant bit of each character. 1.e .. set the 
most significant bit to 1 if that makes the to.ta! number of 1 bits in the wore' 
even. 

10-9 



Sample Problem: 

(Al 
(HU 

(0041) 
(0042) 
(0043) 
(0044) 
(0045) 
(0046) 

Result: (0041) 
(0042) 
(0043) 
(00441 
(0045) 
(0046) 

Flowchart: 

06 
0041 
31 
32 
33 
34 
35 
36 

81 
82 
33 
84 
35 
36 

No 

Start 

Pomter {HL) 
Count (A) 

(Pointer) = (Pointed 

OR 1 OOOOOOOB 

(Set Pantv Biti 

Pointer =Pointer + 1 

Count =Count - 1 

End 

10-10 



Source Program: 

The calling program starts the Stack at memory location 0080, sets the starting address of the string to 0041, gets the string length from memory location 0030. and calls the even parity subroutine. 

ORG 
LO 
LO 
LO 
CALL 
HALT 

0 
SP.80H 
HL.41 H 
A,(30H) 
EPAR 

:START STACK AT LOCATION 0080 
;GET STARTING ADDRESS OF STRING 
:GET STRING LENGTH 

The subroutine adds even parity to a string of ASCII characters. 
ORG 20H 

EPAR: LO B.A 
LO C.10000000B 

SETPR: LO A.(HL) 
OR C 
JP PO.CHCNT 

:GET PARITY BIT OF 1 
:GET A CHARACTER 
:SET PARITY BIT TO 1 
:IS PARITY NOW EVEN? 

LO (HU.A :YES. SAVE CHARACTER WITH EVEN PARITY CHCNT INC HL 
DJNZ SETPR 
HALT 

Subroutine Documentation: 

:SUBROUTINE EPAR 

:PURPOSE: EPAR ADDS EVEN PARITY 
TO A STRING OF 7-BIT ASCII 

. CHARACTERS 

:INITIAL CONDITIONS: STARTING ADDRESS 
OF STRING IN HL. LENGTH OF STRING 

. IN A 

:FINAL CONDITIONS: EVEN PARITY IN 
MSB OF EACH CHARACTER 

:REGISTERS USED: A.B.C.H.L 

:SAMPLE CASE: 
INITIAL CONDITIONS: (HU = 0041 

(A) = 2. (0041) = 32. (0042) = 33 
FINAL CONDITIONS: (0041) = B2. (0042) = 33 

This subroutine has two parameters. an address and a number. Register Pair HL 1s used to pass the address and the Accumulator to pass the number. No explicit results are returned. since the subroutine affects only the MSB of each character in the string. 

10-11 



The calling program must place the starting address of the string into Register Pair HL 

and the length of the string into the Accumulator before transferring control to the 

subroutine. 

The subroutine changes the values in Registers A. H. and L and uses Registers B and C 

for temporary storage. It 1s reentrant. since 1t does not use any fixed memory locations 

for temporary storage. 

Object Program: 

Memory Address Memory Contents Instruction 

(Hex) (Hex) (Mnemonic) 

1) Calling program 

0000 31 LD SP.80H 

0001 80 
0002 00 
0003 21 LD HL.41 H 

0004 41 
0005 00 
0006 3A LD A.(30Hl 

0007 30 
0008 00 
0009 CD CALL EPAR 

OOOA 20 
OOOB 00 
oooc 76 HALT 

2) Subroutine 

0020 47 EPAR: LD B.A 

0021 OE LD C.100000008 

0022 80 
0023 7E SETPR: LD A.(HLi 

0024 81 OR c 
0025 E2 JP PO,CHCNT 

0026 29 
0027 00 
0028 77 LD (HU.A 

0029 23 CHCNT INC HL 

Q02A 10 DJNZ SETPR 

0028 F7 

002C C9 RET 

Pattern Match 
Purpose: Compare two strings of ASCII characters to see if they are the same. The 

length of the strings is in the Accumulator. The starting address of one string 

1s in Register Pair HL: the starting address of the other 1s in Register Pair DE. 

If the two strings match. clear the Accumulator: otherwise. set the .Ac­

cumulator to FF (hex). 

10-12 



Sample Problems: 

a. 

Result: 

b. 

Result: 

Flowchart: 

(A) 03 
(DE) 50 
(HU 60 

(0050) 43 'C' 
(0051) 41 'A' 
(0052) 54 T 
(0060) 43 ·c· 
(0061) 41 'A' 
(0062) 54 T 

(A) 0. since the strings are the same. 
(A) 03 

(DE) 50 
(HU 60 

(0050) 52 'R' 
(0051) 41 'A' 
(0052) 54 T 

(0060) 43 ·c· 
(0061) 41 'A' 
(0062) 54 T 

(A) FF (hex). since the first characters differ. 

Start 

Pointer 1 (DEi 
Pointer 2 (HU 

Count (A) 

Pointer 1 ::. 
Pointer 1 + 1 

Pointer 2 = 
Pointer 2 + 1 

Count = Count - 1 

(A)=O 

End 

No 

!Al = FF (hexl 

10-13 



Source Program: 

The calling program starts the Stack at memory location 0080. sets the starting ad­

dresses of the strings to 0050 and 0060. respectively. gets the string length from 

memory location 0040. calls the pattern match subroutine. and places the result into 

memory location 0041. 

ORG 
LD 
LD 
LD 
LD 
CALL 
LD 
HALT 

0 
SP.80H 
DE.60H 
HL.50H 
A.(40H) 
PMTCH 
(41HJ.A 

;START STACK AT LOCATION 0080 
;GET STARTING ADDRESS OF STRING 1 
:GET STARTING ADDRESS OF STRING 2 
:GET STRING LENGTH 
;CHECK FOR MATCH 
:SAVE MATCH INDICATOR 

The subroutine determines if the two strings are the same. 

ORG 
PMTCH: LD 

LD 
CHCAR: LD 

CP 
JR 
INC 
INC 
DJNZ 
LD 

DONE. LD 
RET 

20H 
8.A 
C.OFFH 
A.(DE) 
(HU 
NZ.DONE 
DE 
HL 
CH CAR 
c.o 
A.C 

Subroutine Documentation: 

:SUBROUTINE PMTCH 

:COUNT= STRING LENGTH 
;MARK= FF (HEX) FOR NO MATCH 

:GET CHARACTER FROM STRING 1 
:IS THERE A MATCH WITH STRING 2? 
:NO. DONE-STRINGS D.O NOT MATCH 

:MARK= ZERO. STRINGS MATCH 

;PURPOSE: PMTCH DETERMINES IF TWO 

. STRINGS ARE EQUIVALENT 

:INITIAL CONDITIONS: STARTING ADDRESSES 

OF STRINGS IN DE AND HL, 

LENGTH OF STRINGS IN ACCUMULATOR 

;FINAL CONDITIONS: 0 IN A IF 

STfllNGS MATCH. FF IN A OTHERWISE 

:REGISTERS USED: A.B.D.E.H.L 

;SAMPLE CASE: 

STARTING CONDITIONS: (HU= 0050. 

(DE) = 0060. (A) = 2 

(0050) = 36, (0051) = 39 

(0060) = 36, (0061) = 39 

FINAL CONDITIONS: (A) =0 SINCE THE STRINGS MATCH 

10-14 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

1) Calling program 

0000 31 LD SP.80H 
0001 80 
0002 00 
0003 11 LO DE.60H 
0004 60 
0005 00 
0006 21 LO HL.50H 
0007 50 
0008 00 
0009 3A LD A,(40H) 
OOOA 40 
0008 00 
oooc CD CALL PMTCH 
0000 20 
OOOE 00 
OOOF 32 LD (41H).A 
0010 41 
0011 00 
0012 76 HALT 

2) Subroutine 

0020 47 PMTCH: LD B.A 
0021 OE LO C.OFFH 
0022 FF 
0023 1A CHCAR: LO A.(DE) 
0024 BE CP (HU 
0025 20 JR NZ.DONE 
0026 06 
0027 13 INC DE 
0028 23 INC HL 
0029 10 DJNZ CHCAR 
002A F8 
0028 OE LO c.o 
002C 00 
0020 79 DONE: LO A.C 
OOZE C9 RET 

This subroutine. like the preceding ones. changes all of the flags. You should generally 
assume that a subroutine call changes the flags unless it 1s specifically stated other­
wise. If the main program needs the old flag values (for later checking). 1t must save 
them in the Stack prior to calling the subroutine. This is accomplished with the PUSH 
AF instruction. 

The subroutine is reentrant and changes all the main registers except C. 

This subroutine has three parameters - the two starting addresses and the length of 
the strings. These parameters use five general-purpose registers. 

10-15 



Multiple-Precision Addition 
Purpose: Add two multiple-byte binary numbers. The length of the numbers in bytes 

1s in the Accumulator. The starting addresses of the numbers are in Register 

Pairs DE and HL. The starting address of the result 1s in Index Register IX. All 

the numbers begin with the least significant bits. 

Sample Problem: 

Flowchart: 

(A) 
(DE) 
(HL) 
(IX) 

(0051) 
(0052) 
(0053) 
(0054) 
(0061) 
(0062) 
(0063) 
(0064) 

Result: 

1.e. 

04 
51 
61 
71 

C3 
A7 
58 
2F 
88 
35 
DF 
14 

(0071) = 78 
(0072) =DD 
(0073) =3A 
(0074) =44 

2F58A7C3 
+ 14DF3588 

443ADD78 

Start 

Count A 
Pointer 1 (DE) 
Pointer 2 (HL) 
Pointer 3 (IX)' 

-Ca 0 

(Pointer 3) : 
!Pointer 1) 

+{Pointer 2) 
+ carrv 

______ ,,,. (lhis step also produces new CsrryJ 

Pointer 1 = Pointer 1 + 1 
Pointer 2;= Pomter2+1 
Pointer 3== Pomter3+1 

Count = Count - 1 

End 

10-16 



Source Program: 

The calling program starts the Stack at memory location 0080. sets the starting ad­
dresses of the various numbers to 0050. 0060. and 0070. respectively. gets the length 
of the numbers from memory location 0040. and calls the multiple-precision addition 
subroutine. 

ORG 
LO 
LD 
LO 
LD 
LD 
CALL 
HALT 

0 
SP.80H 
HL.50H 
DE.60H 
IX.70H 
A.(40H) 
MP ADD 

:START STACK AT LOCATION 0080 
:GET STARTING ADDRESS OF FIRST NUMBER 
:GET STARTING ADDRESS OF SECOND NUMBER 
:GET STARTING ADDRESS OF RESULT 
:GET LENGTH OF NUMBERS IN BYTES 
:MULTIPLE-PRECISION ADDITION 

The subroutine performs mult1ple-prec1s1on binary addition. 

ORG 
MPADD: LD 

AND 
ADDW: LO 

ADC 
LO 
INC 
INC 
INC 
DJNZ 
RET 

20H 
B.A 
A 
A.(DE: 
A.(HL) 
(IX).A 
DE 
HL 
IX 
ADDW 

Subroutine Documentation: 

:SUBROUTINE MPADD 

:PURPOSE. MPADD ADDS TWO 

:COUNT= LENGTH OF NUMBERS IN BYTES 
:CLEAR CARRY TO START 
:GET WORD FROM FIRST NUMBER 
:ADD WORD FROM SECOND NUMBER 
:STORE ONE WORD OF RESULT 

. MULTIPLE-BYTE BINARY NUMBERS 

:INITIAL CONDITIONS: STARTING ADDRESSES 
OF NUMBERS IN D AND E. H AND L. 

STARTING ADDRESS OF RESULT IN IX. 
LENGTH OF NUMBERS IN A 

:REGISTERS USED: A.B.D.E.H.L.IX 

;SAMPLE CASE. 

STARTING CONDITIONS. (HU= 0050. 
(DE) = 0060. (IX) = 0070. (A) = 2. 
(0050) = C3. (0051) = A7. (0060) = B8. (0061) = 35 

FINAL CONDITIONS: (0070) = 78. (0071) =DD 

10-17 



Object Program: 

Memory Address Memory Contents Instruction 

(Hex) (Hex) (Mnemonic) 

1) Calling program 

0000 31 LD SP.80H 

0001 80 
0002 00 
0003 21 LD HL.50H 

0004 50 
0005 00 
0006 11 LD DE.60H 

0007 60 
0008 00 
0009 DD LD IX.70H 

OOOA 21 
OOOB 70 
oooc 00 
OOOD 3A LD A.(40H) 

OOOE 40 
OOOF 00 
0010 CD CALL MP ADD 

0011 20 
0012 00 
0013 76 HALT 

2) Subroutine 

0020 47 LD B.A 
0021 A7 AND A 

0022 1A LD A.(DEl 

0023 8E ADC A.(HL) 

0024 DD LD (IX),A 

0025 77 
0026 00 
0027 13 INC DE 
0028 23 INC HL 
0029 DD INC IX 
002A 23 
0028 10 DJNZ ADDW 

002C F5 
002D C9 RET 

We use Index Register IX to hold the result address. Trv changing the program to use 

Register Pair BC for this purpose. What happens to the counter? 

We could also place the result address at the top of the Stack. The instruction EX 

(SP).HL exchanges the top of the Stack and Register Pair HL. Change the program so 

that 1t uses this instruction. but remember to increment all three pointers after each 

1terat1on. 

This subroutine has four parameters -three addresses and the length of the numbers. 

Six 8-b1t registers and the 16-bit Index Register IX are used for passing parameters. 

10-18 



PROBLEMS 
Note that you are to write both a calling program for the sample problem and a properly 
documented subroutine. 

1) ASCII to Hex 
Purpose: Convert the contents of the Accumulator from the ASCII representation of a 

hexadecimal digit to the 4-bit binary representation of the digit. Place the 
result into the Accumulator. 

Sample Problems: 

a. (A) 43 'C' 

Result: (A) oc 
b. (A) 36 '6' 

Result: (A) 06 

2) length of an ASCII Message 
Purpose: Determine the length of an ASCII-coded message. The starting address of 

the string of characters in which the message 1s located is in Register Pair 
HL The message itself starts with an ASCII STX character (hex 02) and ends 
with ASCII ETX {hex 03). Place the length of the message (the number of 
characters between the STX and the ETX) into the Accumulator. 

Sample Problem: 

Result: 

{HU 
(0041) 
(0042) 
(0043) 
(0044) 
(0045) 

(A) 

0041 
49 
02 STX 
47 'G' 
4F 'O' 
03 ETX 

02 

3) Check Even Parity in ASCII Characters 
Purpose: Check the even parity of a string of ASCII characters. The length of the string 

is in the Accumulator and the starting address of the string is in Register Pair 
HL If the parity of all the characters in the string 1s correct clear the Ac­
cumulator; otherwise. set the Accumulator to FF hex (all ones). 

Sample Problems: 

a. 

b. 

(A) 
(HL) 

(0042) 
(0043) 
{0044) 

Result: {A) 

{A) 

(HU 
{0042) 
{0043) 
{0044) 

Result: (A) 

03 
0042 
81 
82 
33 

00. since all the characters have even parity 

03 
0042 
81 
86 
33 

FF. since the character 1n memorv location 0043 
does not have even parity 

10-19 



4) String Comparison 
Purpose: Compare two strings of ASCII characters to see which 1s larger (i.e .. which 

would follow the other in ·alphabetical' ordering). 

The length of the strings 1s in the Accumulator; the starting address of 
string 1 is in Register Pair HL and the starting address of string 2 1s 1n 
Register Pair DE. If string 1 1s larger than or equal to string 2. clear the Ac­
cumulator; otherwise. set the Accumulator to FF hex (all ones). 

Sample Problems: 

a. (A) 03 
(DE) 0060 
(HU 0050 

(0050) 43 'C' 
(0051! 41 'A' 
(0052) 54 T 

(0062) 42 'B' 
(0063) 41 'A' 
(0064) 54 T 

Result (A)= 00. since CAT 1s 'larger than BAT 

b. (AJ 03 
(DE) 0060 
(HU 0050 

(0050) 44 'D' 
(0051) 4F ·a· 
(0052) 47 'G' 

(0060) 44 'D' 
(0061) 4F ·a· 
(0062) 47 'G' 

Result (A) = 00. since the two strings are equal 

c. (A) 03 
(DE) 0060 
(HU 0050 

(0050) 43 'C' 
(0051) 41 'A' 
(0052) 54 T 

(0060) 43 ·c· 
(0061) 55 ·u· 
(0062) 54 T 

Result (AJ =FF (hex). since CUT 1s 'larger· than CAT 

5) Decimal Subtraction 
Purpose: Subtract one multiple-digit decimal (BCD! number from another. The length 

of the numbers (in bytes) 1s in the Accumulator and the starting addresses of 
the numbers are 1n Register Pairs DE and HL. Subtract the number with the 
starting address in HL from the one with the starting address in DE. The 
starting address of the result 1s 1n Index Register IX. All the numbers begin 
with the least significant digits. The sign of the result 1s returned in the Ac­
cumulator-zero if the result 1s pos1t1ve. FF (hex) if 1t 1s negative. 

10-20 



Sample Problem: 

(A) 04 
(DE) 0050 
(HU 0060 
(IX) 0070 

(0050) 85 
(0051) 19 
(0052) 70 
(0053) 36 
(0060) 59 
(0061) 34 
(0062) 66 
(0063) 12 

Result: (A) 00 (positive) 
(0070) 26 
(0071) 85 
(0072) 03 
(0073) 24 

1.e .. 36701985 
12663459 

+ 24038526 

10-21 



REFERENCES 

1. Other examples of this technique (for the 8080 microprocessor) are in S. Mazor and 

C. Pitchford, "Develop Cooperative Microprocessor Subroutines," Electronic 

Design, June 7. 1978. pp. 116-118. 

10-22 



Chapter 11 
INPUT/OUTPUT 

There are two problems in the design of input/output sections: one 1s how to interface 
peripherals to the computer and transfer data. status. and control signals: the other is 
how to address 1/0 devices so that the CPU can select a particular one for a data 
transfer. Clearly, the first prob:lern is both more complex and more interesting. We will 
therefore discuss the interfacing of peripherals here and leave addressing to a more 
hardware-oriented book. 

In theory, the transfer of data to or from an 1/0 device is similar to 
the transfer of data to or from memory. In fact. we can consider the 
memory as JUSt another 1/0 device. The memory is. however. 
special for the following reasons: 

1) It operates at almost the same speed as the processor. 

1/0 AND 
MEMORY 

2) It uses the same type of signals as the CPU. The only c1rcu1ts usually needed to in­
terface the memory to the CPU are drivers. receivers. and level translators. 

3) It requires no special formats or any control signals besides a Read/Write pulse. 
4) It automatically latches data sent to it 
5) Its word length is the same as the computer's. 
Most 1/0 devices do not have such convenient features. They may operate at speeds 
much slower than the processor: for example. a teletypewriter can transfer only 10 
characters per second. while a slow processor can transfer 10,000 characters per sec­
ond. The range of speeds is also very wide - sensors may provide one reading per 
minute. while video displays or floppy disks may transfer 250.000 bits per second. 
Furthermore. 110 devices may require continuous signals (motors or thermometers). cur­
rents rather than voltages (teletypewriters). or voltages at far different levels than the 
signals used by the processor (gas-discharge displays). 1/0 devices may also require 
special formats. protocols. or control signals. Their word lengths may be much shorter 
or much longer than the word length of the computer. These variations make the 
design of 1/0 sections difficult and mean that each peripheral presents its own special 
interfacing problem. 

We may. however. provide a general description of devices and in­
terfacing methods. We may roughly separate devices into three 
categories. based on their data rates: 

1/0 
CATEGORIES 

1) Slow devices that change state no more than once per second. Changing their 
states typically requires milliseconds or longer. Such devices include lighted dis­
plays. switches. relays. and many mechanical sensors and actuators. 

2) Medium-speed devices that transfer data at rates of 1 to 10.000 bits per second. 
Such devices include keyboards. printers. card readers. paper tape readers and 
punches. cassettes. ordinary communications lines. and many analog data acquisi­
tion systems. 

3) High-speed devices that transfer data at rates of over 10.000 bits per second. Such 
devices include magnetic tapes. magnetic disks. high-speed line printers. h1gh­
speed communications lines. and video displays. 

11-1 



The interfacing of slow devices is simple. Few control signals 

are necessary unless the devices are multiplexed. i.e .. several 

are handled from one port. as shown in Figures 11-1 to 11-4. 

INTERFACING 
SLOW DEVICES 

Input data from slow devices need not be latched. since it remains stable for a long time 

interval. Output data must of course. be latched. The onlv problems with input are 

transitions that occur while the computer is reading the data. One-shots. cross-coupled 

latches. or software delay routines can smooth the transitions. 

A single port can handle several slow devices. Figure 11-1 shows a demultiplexer that 

automatically directs the next output data to the next device bv counting output opera­

tions. Figure 11-2 shows a control port that provides select inputs to a demultiplexer. 

The data outputs here can come in anv order. but an additional output instruction is 

necessary to change the state of the control port. Output demultiplexers are commonly 

used to drive several displavs from the same output port. Figures 11-3 and 11-4 show 

the same alternatives for an input multiplexer. 

Note the differences between input and output with slow devices: 

1) Input data need not be latched. since the input device holds the data for an enor­

mous length of time by computer standards. Output data must be latched. since 

the output device will not respond to data that is present for only a few CPU clock 

cycles. 

2) Input transitions cause problems because of their duration; brief output transitions 

cause no problems because the output devices (or the observers) react slowly. 

3) The maior constraints on input are reaction time and responsiveness. the maior 

constraints on output are response time and observability. 

Medium-speed devices must be synchronized in some way to 

the processor clock. The CPU cannot simply treat these devices 

as if they held their data forever or could receive data at any 

time. Instead, the CPU must be able to determine when a 

INTERFACING 
MEDIUM-SPEED 
DEVICES 

device has new input data or is ready to receive output data. It must also have a wav of 

telling a device that new output data is available or that the previous input data has 

been accepted. Note that the peripheral may be or contain another processor. 

The standard unclocked procedure is the handshake. Here the l HANDSHAKE I 
sender indicates the availability of data to the receiver and 

transfers the data; the receiver completes the handshake by acknowledging the recep­

tion of the data. The receiver may control the situation by initially requesting the data or 

by indicating its readiness to accept data; the sender then sends the data and com­

pletes the handshake by indicating that data is available. In either case. the sender 

knows that the transfer has been completed successfully and the receiver knows when 

new data is available. 

11-2 



Data Outputs 0 . 
Data Bus . .. Output Data . 
~ / Port 

) Inputs y -
Data Outputs l 

Strobe 
... 
) 

y 

Port Se1ect1on Logic - Demultiplexer -
Data Outputs 2 .. 

Clock ) 
r 

- Seject 
Counter - Inputs 

Data Outputs 3 . 
) -

The Counter controls where the Demu!t1plexer sends the data. 

Figure 11-1. An Output Demultiplexer Controlled by a Counter 

Data Data 
Port .Inputs 

Data Bus 

Demultiplexer 

Control Select 

Port Inputs 

The CPU sends control information to the Control Port; that port detennmes 

where the Demultiplexer sends the data. 

Data Outputs 0 

Data Outputs 1 

Data Outputs 2 

Data Outputs 3 

Figure 11-2. An Output Demultiplexer Controlled by a Port 

11-3 



Data Inputs 0 
A 

Data Bus ( 
A A Data . 

< Input 

Port Outputs . 
Data Inputs 1 ... - " ... ~ 

" 
Port Selection Logic .. ' Multiplexer 

' Data inputS 2 
A 

Cock 1 
" 

Select 
Counter - Inputs 

Data Inputs 3 

- ... 
v 

' " 

The Counter controls which input the Multiplexer gates to the Input Port. 

Figure 11-3. An Input Multiplexer Controlled by a Counter 

Data Inputs 0 ... 
Input Data Bus ~ ... Data A 

Data " 
< Port Outputs . -

... Data lhputs 1 

~ . 
Multiplexer 

Data Inputs 2 ... 
? . 

Output Data Bus .. Control Select 
t - Data Inputs 3 

v Port - Inputs .. 
~ . 

The control information which the CPU sends to the Control Port (with an output operationi 

determines which input the Multiplexer routes to the Data Port. 

Figure 11-4. An Input Multiplexer Controlled bv a Port 

11-4 



Figures 11-5 and 11-6 show typical input and output operations using the handshake 
method. The procedure whereby the CPU checks the readiness of the peripheral before 
transferring data is called "polling" Clearly. polling can occupy a large amount of pro­
cessor time if there are many 1/0 devices. There are several ways of providing the 
handshake signals. Among these are: 

• Separate dedicated 1/0 lines. The processor may handle these as additional 1/0 ports 
or through special lines or interrupts. The Z80 processor does not have serial 1/0 lines. 
but the Z80 Parallel Input/Output device· (or PIO) does. 

• Special patterns on the 1/0 lines. These may be single start and stop bits or entire 
characters or groups of characters. The patterns must be easy to distinguish from 
background noise or inactive states. 

We often call a separate 1/0 line that indicates the availability of !STROBE l 
data or the occurrence of a transfer a "strobe" A strobe may, for 
example. clock data into a latch or fetch data from a buffer. 

Many peripherals transfer data at regular intervals; i.e .. synchronously. Here the only 
problem is starting the process by lining up to the first input or marking the first output. 
In some cases. the peripheral provides a clock input from which the processor can ob­
tain timing information. 

Transmission errors are a problem with medium-speed devices. 
Several methods can lessen the likelihood of such errors: they 
include: 

• Sampling input data at the center of the transmission interval 

REDUCING 
TRANSMISSION 
ERRORS 

in order to avoid edge effects; that 1s. keep away from the edges where the data is 
changing. 

• Sampling each input several times and using majority logic such as best three out of 
five.1 

• Generating and checking parity; an extra bit is used that makes the number of 1 bits 
in the correct data even or odd. 

• Using other error detecting and correcting codes such as checksums, LRC 
(longitudinal redundancy check). and CRC (cyclic redundancy check).2 ---------High-speed devices that transfer more than 10,000 bits per INTERFACING 

second require special methods. The usual technique is to con- HIGH-SPEED 
struct a special-purpose controller that transfers data directly DEVICES 

DIRECT 
MEMORY 
ACCESS 

between the memory and the 1/0 device. This process is called 
direct memorv access (DMA). The DMA controller must force 
the CPU off the busses. provide addresses and control signals 
to the memorv. and transfer the data. Such a controller will be 
fairly complex. typically consisting of 50 to 100 chips. 
although LSI devices are now available.3 The CPU must initially load the Address and 
Data Counters in the controller so that the controller will know where to start and how 
much to transfer. 

11-5 



Input 

Acknowledge 

Data Bus Data 
A 1/0 

,. 
CPU K. l' Peripheral 

Section . 
Data Ready --

a) Penpheral provides data and Data Ready signal to computer 1/0 sectton. 

Input 

Acknowledge 

Data Bus Data 
A 1/0 A 

CPU ic;. Section K. Peripheral 
, 

Data Ready 

-

bi CPU reads Data Readv signal from 1/0 section (this may be a hardware interrnpt connectionl. 

Input 

Acknowledge 

Data Bus Data 
A 1/0 A 

CPU K Peripheral 
Section . 

Data Ready --

cl CPU reads data from 1/0 section. 

Input 

Acknowledge . 
Data Bus Data 

~ 1/0 A 

CPU ) K Peripheral . Section ~ 

Data Ready -

d} CPU sends Input Acknowledge signal to 1/0 section. which then provides Input Acknowledge signaj 

to PeriPheral (this mav be a hardware connect1on). 

Figure 11-5. An Input Handshake 

11-6 



Output Ready 

--
Data Bus Data 

" 1/0 . 
CPU 

Section Penpheral 

Peripheral Ready --
al Penpheral provides Penpheral Ready signal to computer 1/0 section. 

Output Ready -
Data Bus Data 

A 1/0 . 
CPU K Section ) Penpheral 

' . 
Penpheral Ready 

-

bi CPU reads Penpheral Ready signal from 1/0 section {this may be a hardware interrupt connection). 

I 

Output Readv 
I 

. 
Data Bus Data . 1/0 . 

CPU 
Section 

Peripheral 

Penpheral Ready I 
I -

Cl CPU sends data to Penpheral. 

Output Ready --
Data Bus Data . 1/0 . 

CPU ) Section Peripheral . . 
Peripheral Ready --

d) CPU sends Output Ready signal to Penpheral (this may be a hardware connection). 

Figure 11-6. An Output Handshake 

11-7 



TIMING INTERVALS (DELA VS) 

One problem that we will face throughout the discussion of in­
put/output is the generation of timing intervals with specific 
lengths. Such intervals are necessary to debounce mechanical 
switches (to smooth their irregular transitions). to provide pulses 

USES OF 
TIMING 
INTERVALS 

with specified lengths and frequencies for displays. and to provide timing for devices 

that transfer data regularly (for example. a teletypewriter that sends or receives one bit 

every 9.1 ms). 

We can produce timing intervals in several ways: 

11 In hardware with one-shots or monostable multivibrators. 
These devices produce a single pulse of fixed duration in 
response to a pulse input. 

2) In a combination of hardware and software with a flexible pro­

grammable timer such as the Z80 Counter-Timer Circuit (or 

METHODS 
FOR 
PRODUCING 
TIMING 
INTERVALS 

CTC) for ZBO based microcomputers. as described in An Introduction to Microcom­
puters: Volume 2 -Some Real Microprocessors. The CTC can provide timing in­

tervals of various lengths with a variety of starting and ending conditions. 

31 In software with delay routines. These routines use the processor as a counter. This 
is possible since the processor has a stable clock reference. but it clearly under-util­
izes the processor. However. delay routines require no additional hardware and 
often use processor time that wou Id otherwise be wasted. 

The choice among these three methods depends on your applica­
tion. The software method is inexpensive but may overburden the 
processor. The programmable timers are relatively expensive. but 
are easy to interface and may be able to handle many complex 
timing tasks. 

DELAY ROUTINES 
A simple delav routine works as follows: 

Step 1) Load a register with a specified value. 

Step 2) Decrement the register. 

Step 3) If the resu It of Step 2 is not zero. repeat Step 2. 

CHOOSING 
A TIMING 
METHOD 

BASIC 
SOFTWARE 
DELAY 

This routine does nothing except use time. The amount of time used depends upon the 
execution time of the various instructions. The maximum length of the delay is limited 

by the size of the register; however. the entire routine can be placed inside a similar 
routine that uses another register. and so on. 

The following example uses Register C and the Accumulator to 
provide delays as long as 255 ms. The choice of registers is ar­
bitrary. You may. in fact. find the use of a register pair (e.g .. BC) 
more convenient. A PUSH BC instruction at the start of the 

TRANSPARENT 
DELAY 
ROUTINE 

delay routine and a POP BC at the end will result in a routine that does not affect any 
registers at all. Such a routine 1s said to be "transparent" to the calling program. Note 
that the PUSH and POP instructions must be included in the time budget. 

11-8 



EXAMPLE 
Delay Program Using Accumulator 
Purpose: The program provides a delay of 1 ms times the contents of Accumulator. 

Flowchart: 

Start 

Count = MSCNT 

Count =Count - l 

!A) =!Al- 1 

No 

End 

The value of MSCNT depends on the speed of the CPU and the memorv cycle. 

11-9 



Source Program: 

DELAY: LO 
DLY1· DEC 

C.MSCNT 
c 

:GET COUNT FOR 1 MS DELAY 
:COUNT =COUNT -1 

JR 
DEC 
JR 
RET 

NZ.DLY1 
A 
NZ.DELAY 

:CONTINUE UNTIL COUNT =ZERO 
:DECREMENT NUMBER OF REMAINING MS 
:CONTINUE UNTIL NUMBER OF MS =ZERO 

Object Program: 

Instruction Memorv Location 
(Hex) 

Memorv Contents 
(Hex) (Mnemonic) 

0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 

OE DELAY: LO C.MSCNT 
MSC NT 
OD DLY1: DEC c 
20 JR NZ.DLY1 
FD 
30 DEC A 
20 JR NZ.DELAY 
FB 
C9 RET 

Time Budget: 

Instruction Number of Times Executed 

LD 
DEC 
JR 
DEC 
JR 
RET 

C.MSCNT 
c 
NZ.DLY1 
A 
NZ.DELAY 

(A) 
(A) x MSCNT 
(A) x MSCNT 
(A) 
(A) 

The total time used should be (A) x 1 ms. If the memory 1s operating at full speed. the 
instructions require the following numbers of clock cycles. 

LO C.MSCNT 7 
DEC C or DEC A 4 
JR NZ 7or12 
RET 10 

The alternative times for JR are for the condition being met (12) or not met (7). 

Ignoring the CALL and RET instructions (which occur only once). the program takes: 
(A) x (7+16 x MSCNT - 5 + 16) - 5 

clock cycles. The -5's are caused by the fact that JR takes less time during the final 
1terat1on when the condition is not met. 

So. to make the delay 1 ms. 

13 + 16 x MSCNT = Ne 

where Ne 1s the number of clock cycles per millisecond. At the 
standard 4 MHz ZBO clock rate. Ne = 4000. so: 

16 x MSCNT = 3987 

IMSCNT = 249 (hex F9) at a ZBO clock rate of 4 MHz I 

11-10 

zao DELAY 
LOOP 
CONS'rANT 



SIMPLE 1/0 DEVICES 

THE Z80 PARALLEL INPUT/OUTPUT CIRCUIT (PIO) 
The key element in most Z80 input/output sections 1s the Z80 Parallel Input/Output Cir­
cuit or PIO. This device combines latches. buffers. flip-flops. and other logic c1rcu1ts 
needed for handshaking and other simple interfacing techniques. The PIO contains 
many logic connections. certain sets of which can be selected according to the con­
tents of programmable registers. Thus. the designer has the equivalent of a Circuit 
Designer's Casebook under his control. The 1n1tializat1on phase of the program places 
the appropriate values into registers to select the required logic connections. An in­

put/output section based on PIOs can handle many different applications. and changes 
or corrections can be made in software rather than by rewiring. 

Figure 11-7 is the block diagram of a PIO. The device contains two nearly identical 8-b1t 
ports -A. which 1s usually an input port. and B. which 1s usually an output port. Each 
port (see Figure 11-8) contains: 

• An 8-b1t Data Output register 

• An 8-b1t Data Input register 

• A 2-bit Mode Control register. which indicates whether the 
port 1s 1n an output. input. bidirectional. or control mode 

PIO REGISTERS 
AND 
CONTROL LINES 

•An 8-bit Input/Output Control register. which determines whether the corresponding 
data pins are inputs (1) or outputs (0) in the control mode 

• Two control lines (STB and ROY) that are configured by the Mods Control register. 
These lines can be used for the handshaking signals shown in Figures 11-5 and 11-6. 

• A 2-bit Mask Control register (used only in the control mode) that determines the ac­
tive polarity of the inputs and whether they will be logically ORed or ANDed to form 
an interrupt signal 

• An 8-bit Mask register (used only in the control mode) that determines which port 
lines will be monitored to form the interrupt signal 

• An 8-bit Vector Address register used with the interrupt system 

For now. we will be concerned only with the Mode Control registers. the Input/Output 
Control registers. and the control lines. We will discuss the interrupt-related features of 
the PIO in Chapter 12. 

The meanings of the bits in the various control and mask registers are related to the un­
derlying hardware and are entirely arbitrary as far as the assembly language program­
mer is concerned. You must either memorize them or look them up in this chapter and 
in Chapter 12. 

Each PIO occupies four input port addresses and four output port 
addresses. The B/A SEL (Port B or A select) and CID SEL (Control 
or Data Select) lines choose one of the four ports as described in 

PIO 
ADDRESSES 

Table 11-1. Most often. designers attach address bit Ao to the B/A SEL input and ad­
dress bit A1 to the CID SEL input. The PIO then occupies four consecutive port ad­
dresses as described in the last column of Table 11-1. 

Clearly there are far more internal control registers than there are port addresses for 
them. In fact. all the control registers for each port occupy one address according to the 
CID SEL connection. So some of the data bits sent to a control register are actually used 
for addressing purposes. Note the following situations (see Table 11-2): 

Do= 0 means that the remaining data bits are loaded into the Interrupt Vector register. 

11-11 



CPU 

Interface 

,-."--. 

Data 

Bus 

CPU 

Bus 

1/0 
PIO 

Control 

lines 

+5V GND <I> 

i i i 
Internal 

Control 

Logic 

internal 

Bus 

Interrupt 

Control 

Interrupt 

Control Lines 

Port A 

1/0 

Port B 

1/0 

Figure 11-7 PIO Block Diagram 
(Courtesy of Zilog) 

11-12 

Penpheral 

Interface _,.,,_.,_ 
Data or 

Control 

}Handshake 

Data or 
Control 

} Handshake 



Internal Bus 

Mask 

Control 

Reg 

(2 Bits! 

Mode 

Control Reg 

(2 Bitsi 

Mask 

Reg 

(2 Bits! 

Input 

Data 

Input/Output 

Select Reg 

(8 Bits) 

Data Output 

Reg 

(8 Bits) 

Data Input 

Reg 

(8 Bitsi 

8-Bit 

Peripheral 

Data or 

Control Bus 

r-----.. READ\ 

}

Handshake 
Interrupt Requests .. t----1 

Handshake 

Control 

Logic 

Figure 11-8. Block Diagram of PIO Port 
(Courtesy of Zilog) 

11-13 

Lines ... .,. __ _ 



Table 11-1. PIO Addresses 

CONTROL OR PORT BORA REGISTER PORT ADDRESS 

DATA SELECT SELECT ADDRESSED (STARTING WITH PIOADD) 

0 0 Data Register A PIOADD 

0 1 Data Register B PIOADD+l 

1 0 Control A PIOADD+2 

1 1 Control B PIOADD+3 

The port addresses assume that CID SEL 1s tied to A1 and B/A SEL to Ao. 

Table 11-2. Addressing of PIO Control Registers 

REGISTER ADDRESSING 

MODE CONTROL D3 = D2 = D1 = Do = 1 

INPUT/OUTPUT CONTROL NEXT WORD AFTER MODE CONTROL 
SETS MODE 3 

MASK CONTROL REGISTER D3 = 0, D2 = D1 =Do = 1 

INTERRUPT MASK REGISTER NEXT WORD AFTER MASK CONTROL 
REGISTER ACCESSED WITH D4 = 1 

INTERRUPT ENABLE D3=D2=0, D1 =Do=l 

INTERRUPT VECTOR Do= 1 

D3 = 0. D2 = D1 = Do = 1 means that the remaining data bits are loaded into the Mask 
Control register. If D4 = 1, the next control word is loaded into the Interrupt Mask 

register. Interrupts can be enabled or disabled with D3 = D2 = 0, D1 =Do= 1. 

D3 = D2 = D1 = Do = 1 means that the remaining data bits are loaded into the Mode 

Control register. If 07 = 05 = 1 (control model. the next control word is loaded into the 

Input/Output Control register. 

This sharing of an external address means that: 

1) The programmer must be verv careful of the order of operations. The meaning of a 

particular Output instruction depends on the sequence in which 1t occurs. 

2) The programmer should document the PIO configuration in detail. The device 1s 

complex. and a reader is unlikely to be able to make much sense out of the se­
quence of operations that configures it. 

We should note that one usually configures the control registers of the PIO iust once in 

the initialization phase of the program. The rest of the program then uses only the PIO 
data registers. 

11-14 



PIO MODE CONTROL 
The mode of operation of a PIO is established by writing a control 
word to the PIO in the form shown in Figure 11-1. Table 11-3 de­
scribes the meanings of the various modes and the control words 

IPiOI 
~ 

required to establish them. Note that bits 05 and 04 are not used. When power 1s 
turned on. the PIO comes up in mode 1 (input). 

We may summarize the modes as follows: 

1) Mode 0 - OUTPUT 

Writing data into the port Output register latches the data and 
causes it to appear on the port Data Bus. The READY (ROY) 
line goes high to indicate Data Ready: it remains high until the 

PIO 
OUTPUT 
MODE 

peripheral sends a rising edge on the STROBE (STB) line to indicate Data Accepted 
or Device Ready. The rising edge of STB causes an interrupt if the interrupt has 
been enabled. 

2) Mode 1 - INPUT 
The peripheral latches data into the port Input register using 
the STROBE signal. The rising edge of STB causes an interrupt 
(if enabled) and deactivates ROY When the CPU reads the 

PIO 
INPUT 
MODE 

data. ROY goes high to indicate Data Accepted or Input Register Empty. Note that 
the peripheral can strobe data into the register regardless of the state of ROY The 
programmer must thus handle the problem of overrun. i.e .. new data being placed 
into the register before the old data 1s read. 

3) Mode 2 - BIDIRECTIONAL 
This mode uses all four handshake lines. so 1t is allowed 
only on Port A. The Port A ROY and STB signals are used 
for output control and the Port B ROY and STB signals are 

PIO 
BIDIRECTIONAL 
MODE 

used for input control. The only difference between this mode and a combination of 
modes 0 and 1 is that data from the Port A Output register 1s enabled onto the port 
Data Bus only when A STB is active. This allows the Port A bus to be used bidirec­
tionally under the control of A STB (Output Data Request) and B STB (Input Data 
Available). Note that the B side control signals are governed by Input Register A in 
this mode. 

4) Mode 3 - CONTROL 
This mode does not use the ROY and STB signals. It 1s in­
tended for status and control applications in which each 
bit has an individual meaning. When mode 3 1s selected. 
the next control word sent to the PIO defines the directions 
of the port data bits (Figure 11-9). A '1' in a bit position 
makes the corresponding bus line an input. while a 'O' 
makes it an output. 

11-15 

PIO 
CONTROL 
MODE 

PIO 
DIRECTIONS IN 
CONTROL MODE 



Set Mode 

M1 MO Mode 

0 0 Output 

0 1 Input 

1 0 Bidirectional 
1 1 Bit Control 

PIO Mode Meaning . Control Word 

(Binarvl (Hex I 

0 Output 00001111 OF 
1 Input 01001111 4F 
2 Bidirectional 10001111 SF 

3 Control 11001111 CF 

Note that bits 4 and 5 are not used and could 

have anv values. 

When selecting Mode 3, the next word must 
set the 1/0 Register: 

l1101j11oej11osf 1104f 1103j1102f1101 f11oof 
1/0 = 1 Sets bit to Input 

I/ 0 = 0 Sets bit to Output 

Figure 11-9. Mode Control for the Z80 PIO 

Note the following features of the PIO modes: 

1) In modes 0.1. and 2 the peripheral indicates Data Ready, 
Device Ready, or Data Accepted with a rising edge on the 

FEATURES OF 
PIO MODES 

STB line. This edge also causes an interrupt if the interrupt 1s enabled. 

2) In modes 0, 1. and 2 the PIO indicates Data Ready, Input Buffer Empty, or Data Ac­

cepted by sending ROY high. This signal remains high until the next rising edge on 
STB. 

3) Only Port A can be used bidirectionally. If Port A 1s in mode 2 (bidirectional). Port B 

can only be in mode 3 (control) since no handshake lines are available. 

4) The control mode (3) 1s the only mode in which the Input/Output Control register 1s 

used. Otherwise. the entire port 1s used for either input or output. 

51 There is no way for the processor to determine if a pulse has occurred on STB if in­
terrupts are not being used. The PIO 1s designed for use 1n interrupt-driven rather 

than polling systems (see Chapter 12). STB should be tied low if it 1s not being 
used. 

6) The processor cannot directly control the ROY lines. The ROY line on a port goes 

~ when data is transferred to or from the port and goes low on the rising edge of 
STB. 

7) The contents of the data Output register can be read if the port is in the output or 
bidirectional mode. If the port 1s 1n the control mode. the output register data from 
the lines assigned as outputs can be read. The contents of control registers cannot 
be read. 

8) If the ROY output 1s tied to the STB input on a port 1n the output mode, ROY will go 

high for one clock period after each output operation. This brief pulse can be used 
to multiplex displays as shown in Figure 11-1. 

11-16 



CONFIGURING THE PIO 
The program must select the logic connections in the PIO before transferring data to or 
from 1t. This selection (or configuration) is usually part of the startup routine. Note that 
the PIO comes up in the input mode with all interrupts disabled and inhibited and con­
trol signals deactivated (low) when power 1s turned on. However. the PIO does not have 
a RESET input and does not necessarily return to the reset state when the CPU 1s reset. 
The steps in PIO configuration are: 

1) Establish the mode of operation by writing the ap­
propriate control words to the Mode Control register. 
Interrupt control as well as 1/0 mode information may 
have to be sent. 

STEPS IN 
CONFIGURING A 
PIO 

2) If in mode 3. establish the directions of the 1/0 pins by writing a control word to the 
Input/Output Control register. This word must follow the control word that selected 
mode 3. 

Let us now look at some examples of configuring a PIO without interrupts: 

1) OUTPUT PORT 

LO A.00001111 B ;MAKE PORT B OUTPUT 
OUT (PIOCRB).A 

2) INPUT PORT 

LO A.01001111 B :MAKE PORT A INPUT 
OUT (PIOCRA).A 

3) BIDIRECTIONAL PORT 
LO A.10001111B :MAKE PORT A BIDIRECTIONAL 
OUT (PIOCRA).A 

Remember that only Port A can be b1direct1onal and that Port B must then be a control 
port. 

4) CONTROL PORT. ALL INPUTS 
LO A.11001111 B ;MAKE PORT A CONTROL 
OUT (PIOCRA).A 
LO A.OFFH :ALL BITS INPUTS 
OUT (PIOCRA).A 

5) CONTROL PORT. ALL OUTPUTS 
LO A.11001111 B :MAKE PORT B CONTROL 
OUT (PIOCRB).A 
SUB A :ALL BITS OUTPUTS 
OUT (PIOCRB).A 

6) CONTROL PORT. LINES 1.5.6 INPUTS; LINES 0.2.3.4.7 OUTPUTS 
LO A.11001111 B :MAKE PORT A CONTROL 
OUT (PIOCRA).A 
LO A.01100010B ;LINES 1.5.6. INPUTS-0.2.3.4.7 OUTPUTS 
OUT (PIOCRAl.A 

11-17 



ZSO INPUT/OUTPUT INSTRUCTIONS 
The ZBO microprocessor has an extensive set of Input/Output 
instructions. All 1/0 instructions use 8-bit device addresses. 
thus allowing up to 256 input ports and 256 output ports. But 

zso 1/0 
INSTRUCTIONS 

remember that each PIO occupies four output port addresses and four input port ad­
dresses. 

The 1/0 instructions can be grouped as follows: 

1) l_nstruct1ons that use absolute addressing. IN A.(port) and OUT (port).A transfer 
eight bits of data between the Accumulator and the port addressed by the second 
byte of the instruction. 

2) Single-byte instructions that use register indirect addressing. IN reg.(C) and OUT 
(Cl.reg transfer eight bits of data between the specified register and the port ad­
dressed by Register C. 

3) Block 1/0 instructions. INI and OUTI transfer eight bits of data between the memory 
location addressed by Register Pair HL and the port addressed by Register C. Both 
instructions then increment Register Pair HL and decrement the byte counter in 
Register B. The Z flag 1s set if B 1s decremented to zero and reset otherwise. IND and 
OUTD are the same instructions except that they decrement Register Pair HL in­
stead of incrementing 1t. 

4) Repeated .Block 1/0 1nstruct1ons. INIR and OTIR repeat the effects of INI and OUTI. 
respectively, until B 1s decremented to zero. INDR and OTDR have the same rela­
t1onsh1p to IND and OUTD. 

You should note the following features of each group of instructions: 

1) Instructions with absolute addressing. rl~/O~------. 

• Data 1s always transferred to or from the Accumulator. ~~~R~~~~L~~ 
• No flags are affected. ADDRESSING 
• The port address 1s part of the program memory and 

cannot be changed if that memory is read-only. 

2) Single-byte instructions with register indirect addressing. 

• Data can be transferred to or from any of the primary 8-
b1t registers (A.B.C.D.E.H.U. However. remember that 
Register C contains the port address. 

·IN reg,(C) sets the Sign (S). Zero (Z). and Parity (P/0) 

1/0 
INSTRUCTIONS 
WITH INDIRECT 
ADDRESSING 

flags according to the value of the input data. The Carry flag (C) is not modified. 
but the Half Carry (HJ and Negative (N) flags are reset. OUT (Cl.reg does not 
affect any flags. 

• The port address is always in Register C. This address is not 
part of the program memory and could be a parameter for 

1110 DRIVER I 
an 1/0 subroutine (or 1/0 driver). One 1/0 driver could thus be used 1n several 
different applications or with several similar 110 devices in the same application. 

11-18 



3) Block 1/0 instructions. 

• Data is always transferred to or from the memory location 
addressed by Register Pair HL. 

BLOCK 1/0 
INSTRUCTIONS 

• The Z (Zero) flag 1s set if Register B is decremented to zero and cleared other­
wise. The S (Sign). PIO (Parity). and H (Half Carry) flags are affected. but their 
final values are uncertain. 

•The port address 1s always in Register C. Here again. this address could be a 
parameter for an 1/0 driver. 

• Register B 1s an B-b1t counter. Thus. the repeated Block 1/0 instructions can 
transfer a maximum of 256 bytes. This differs from the Block Move and Block 
Compare instructions. which use Register Pair BC as a 16-bit counter and can 
handle up to 65K bytes. 

Some examples of the various 1/0 instructions (without any 
timing cons1derat1ons) are: 

1) Load the Accumulator from Input Port 2. 
a. Using absolute addressing 

IN A.(2) 

b. Using register indirect addressing 
LO C.2 
IN A.(C) 

2) Store the contents of the Accumulator in Output Port 5. 
a. Using absolute addressing 

OUT (5).A 

b. Using register indirect addressing 
LD C.5 
OUT (Cl.A 

3) Load memory location 0040 from Input Port 2. 
a. Using absolute addressing 

IN A.(2) 
LO (40H).A 

:GET DATA 
:STORE DATA 

b. Using register indirect addressing 
LD C.2 :GET PORT NUMBER 
IN A.(C) :GET DATA 
LO (40H).A :STORE DATA 

c. Using block 1/0 
LO 
LD 
INI 

C.2 
HL.40H 

:GET PORT NUMBER 
:GET MEMORY DESTINATION 
:GET DATA 

11-19 

1/0 
INSTRUCTION 
EXAMPLES 



4) Store the contents of memorv location 0040 in Output t'Ort 5. 

a. Using absolute addressing 

LD A,(40H) :GET DATA 
OUT (5).A :SEND DATA 

b. Using register indirect addressing 

LD C.5 ;GET PORT NUMBER 
LD A.(40Hl :GET DATA 
OUT (C).A 

c. Using block 1/0 
LD C.5 
LD HL.40H 
OUTI 

;GET PORT NUMBER 
;GET MEMORY SOURCE 
:SEND DATA 

5) Load memorv locations 0040 through 0047 from Input Port 2. 

a. Using absolute addressing 

LD HL.40H 
LD B.8 

INBYTE: IN A.(2) 
LD (HU.A 
INC HL 
DJNZ INBYTE 

b. Using block 1/0 
LD 
LD 
LD 

INBYTE: INI 

HL.40H 
B.8 
C.2 

:GET STARTING ADDRESS OF DATA 
; BYTE COUNTER = 8 
;FETCH DATA BYTE 
;STORE BYTE IN MEMORY 

:GET STARTING ADDRESS OF DATA 
;BYTE COUNTER= 8 
:GET PORT NUMBER 

JR NZ.IN BYTE 

c. Using repeated block 1/0 

LD HL.40H 
LD B.8 
LD C.2 
INIR 

:GET STARTING ADDRESS OF DATA 
;BYTE COUNTER = 8 
:GET PORT NUMBER 
:MOVE INPUT BYTES TO MEMORY 

11-20 



6) Send the contents of memorv locations 0040 through 0047 to Output Port 5. 
a. Using absolute addressing 

LD HL40H 
LD B.B 

OTBYTE: LD A.(HL) 
OUT (5).A 
INC HL 
DJNZ OTBYTE 

b. Using block 110 
LD 
LD 
LD 

OTBYTE: OUTI 
JR 

HL.40H 
B.B 
C.5 

NZ.OTBYTE 

c. Using repeated block 1/0 
LD HL.40H 
LD B.B 
LD C.5 
OTIR 

:GET STARTING ADDRESS OF DATA 
:GET BYTE COUNTER 
:FETCH BYTE FROM MEMORY 
:OUTPUT BYTE 

:GET STARTING ADDRESS OF DATA 
:GET BYTE COUNTER 
:GET PORT NUMBER 
:OUTPUT BYTE FROM MEMORY 

:GET STARTING ADDRESS OF DATA 
:GET BYTE COUNTER 
:GET PORT NUMBER 
;OUTPUT BYTES FROM MEMORY 

Note that the repeated Block 1/0 1nstruct1ons operate con­
tinuously. You cannot provide any timing between 
transfers. Thus. these 1nstruct1ons cannot be used unless 

USING BLOCK 
1/0 INSTRUCTIONS 

the peripheral operates at the same speed as the processor or timing is handled sepa­
rately in hardware. Ways to handle timing in hardware include forcing the processor 
into Wait states or buffering the data. Note that the Block 1/0 instructions all place the 
contents of the byte counter (Register B) on the top half of the Address Bus during the 
actual 1/0 transfer. In output operations. Register B 1s decremented first. The byte 
counter value 1s then available to external circuitry. 

An obvious application for Block 1/0 instructions is the configuration of PIOs. Several 
words must often be sent to a control register to determine operating mode. select pm 
directions. and establish the interrupt system. No timing problems occur. since PIOs 
operate at the same speed as the CPU. We will discuss the configuration of ZBO PIOs 
and serial interfaces (SIOs) with Block 1/0 instructions later in this chapter and in 
Chapter 12. 

In subsequent 1/0 examples. we will use mainly the instructions with absolute address­
ing. You can easily substitute the instructions with register indirect addressing as long 
as you remember to initialize Register C. We will occasionally indicate applications for 
the Block 1/0 instructions. 

11-21 



+5V 

) 

·= :~ 

To CPU 

" - PIO > - . 

Pushbutton -i ~ ) 
l 

Figure 11-10. A Pushbutton Circuit 

EXAMPLES 

A Pushbutton Switch 
Purpose: To interface a single pushbutton switch (or a single-pole. single-throw (SPST) 

switch) to a ZSO microprocessor. The pushbutton 1s a mechanical switch that 
provides a single contact closure (i.e .. a logic zero) while pressed. 

Circuit Diagram: 

Figure 11-10 shows the c1rcu1try required to interface the pushbutton. It uses one bit of 
a ZSO PIO that acts as a buffer; no latch 1s needed. since the pushbutton remains 
closed for many CPU clock cycles. Pressing the button grounds the PIO input bit. The 
pullup resistor ensures that the input bit 1s one if the button 1s not being pressed. 

Programming Examples: 

We will perform two tasks with this c1rcu1t. They are: 

a) Set a memory location based on the state of the button. 

b) Count the number of times that the button is pressed. 

Task 1: Determine switch closure. 

Purpose: Set memory location 0040 to one if the button 1s not being pressed. and to 
zero if 1t 1s being pressed. 

Sample Cases: 

1) Button open (i.e .. not pressed) 

Result= (0040) = 01 

2) Button closed (i.e. pressed) 

Result= (0040) = 00 

11-22 



Flowchart: 

Source Program: 

LD 
OUT 
LD 
LD 
IN 
AND 
JR 
INC 

DONE. HALT 

A.01001111B 
(PIOCRAl.A 
HL.40H 
(HU.O 
A.(PIODRA) 
MASK 
Z.DONE 
(HU 

Start 

(0040) = 0 

Input and mask 

pushbutton 

data 

(0040) = 1 

End 

;MAKE PORT A INPUT 

:MARKER =0 

;READ BUTTON POSITION 
;IS BUTTON CLOSED (0)? 
:YES. DONE 
:NO. MARKER= 1 

11-23 



Object Program: 

Memory Location Memory Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 3E LO A.0100111 lB 

0001 4F 
0002 03 OUT (PIOCRA).A 

0003 PIOCRA 
0004 21 LO HL.40H 

0005 40 
0006 00 
0007 36 LO (HU.O 

0008 00 

0009 DB IN A.(PIODRA) 

OOOA Pl OD RA 

OOOB E6 AND MASK 

oooc MASK 
0000 28 JR Z.DONE 

OOOE 01 
OOOF 34 INC (HU 

0010 76 HALT 

The port addresses PIOCRA and PIODRA depend on how the PIO 1s connected in your 

microcomputer. The PIO control lines are not used in this example. In fact. we could 

place the A side of the PIO in the control mode with the starting sequence: 

LO A.11001111B :MAKEPORTACONTROL 

OUT (PIOCRA),A 
LO A.OFFH :ALL BITS INPUTS 

OUT (PIOCRA).A 

MASK depends on the bit to which the pushbutton 1s connected: 1t has a one in the 

button pos1t1on and zeros elsewhere. 

Button Pos1t1on Mask 

(Bit Number) Binary Hex 

0 00000001 01 
1 00000010 02 

2 00000100 04 

3 00001000 08 

4 00010000 10 

5 00100000 20 

6 01000000 40 

7 10000000 80 

If the button is attached to bit 0 or bit 7 of the input port. the program can use a Shift 

instruction to set the Carry and thereby determine the button's state. For example. 

Bit 7 

IN 
RLA 
JR 

Bit 0 

A.(PIODRA) :READ BUTTON POSITION 
:IS BUTTON CLOSED (ZERO)? 

NC.DONE :YES. DONE 

IN A.(PIODRA) :READ BUTTON POSITION 

RRA :IS BUTTON CLOSED (ZERO)? 

JR NC.DONE :YES. DONE 

11-24 



The procedure for bit 7 1s even simpler if we have the address of the PIO data register in 
Register C. This is because the input instructions using register indirect addressing 
(e.g .. IN A,(C)) affect the Sign flag. The required sequence is: 

.§.!.!l. (PIODRA in Register Cl 
IN A.(C) :READ BUTTON POSITION 
JP P.DONE :DONE IF BUTTON CLOSED (ZERO) 

If the button is attached to bits 6 or 7 of the input port. the program can use the Sign bit 
to determine the button·s state. For example. 

Bit 7 

IN A,(PIODRA) :READ BUTTON POSITION 
AND A :IS BUTTON CLOSED (ZERO)? 
JP P.DONE :YES. DONE 

IN A.(port) does not affect the flags: therefore, we must use the AND A instruction to 
set the flags without changing the Accumulator. 

Bit 6 
IN 
ADD 
JP 

A,(PIODRAJ :READ BUTTON POSITION 
A.A :IS BUTTON CLOSED (ZERO)? 
P.DONE :YES. DONE 

ALA cannot be used because it does not affect the Sign bit. 

11-25 



Task 2: Count switch closures. 

Purpose: Count the number of button closures by incrementing memorv location 0040 

after each closure. 

Sample Case: 

Pressing the button ten times after the start of the program should give 

(0040) = OA 

Note: In order to count the number of times that the button has 

been pressed, we must be sure that each closure causes a single 

trans1t1on. However. a mechanical pushbutton does not produce a 

SWITCH 
BOUNCE 

single transition for each closure. because the mechanical contacts bounce back and 

forth before settling into their final pos1t1ons. We can use a one-shot to eliminate the 

bounce or we can handle 1t in software. 

The program can debounce the pushbutton by wa1t1ng after it 

finds a closure. The required delay 1s called the debouncing 

time and 1s part of the specifications of the pushbutton. It 1s 

DEBOUNCING 
IN SOFTWARE 

typically a few milliseconds long. The program should not examine the pushbutton dur­

ing this period because 1t might mistake the bounces for new closures. The program 

may either enter a delay routine like the one described previously or may simply per­

form other tasks for the specified amount of time. 

Even after debouncing, the program must still wait for the present closure to end before 

looking for a new closure. This procedure avoids double counting. The following pro­

gram uses a software delay of 1 ms to debounce the pushbutton. You may want to try 

varying the delay or eliminating 1t entirely to see what happens. To run this program, 

you must also enter the delay subroutine into memorv starting at location 0030. 

Flowchart: 

Start 

Count =O 

Count = Count + 1 

Debounce button 

with 1 ms wait 

11-26 



Source Program: 

LD 
OUT 
LD 
LD 

CHKCL: IN 
AND 
JR 
INC 
CALL 

CHKOP: IN 
AND 
JR 
JR 

Object Program: 

A.01001111 B 
(PIOCRA).A 
HL.40H 
(HU.O 
A.(PIODRA) 
MASK 
NZ.CHKCL 
(HL) 
DELAY 
A.(PIODRA) 
MASK 
Z.CHKOP 
CHKCL 

:MAKE PORT A INPUT 

:CLOSURE COUNT= ZERO 
:READ BUTION POSITION 
:IS BUTION BEING PRESSED (0)? 
:NO. WAIT UNTIL IT IS 
:YES. INCREMENT CLOSURE COUNT 
:WAIT 1 MS TO DEBOUNCE 
:READ BUTION POSITION 
:IS BUTION STILL BEING PRESSED (0)7 
:YES. WAIT FOR RELEASE 
:NO. LOOK FOR NEXT CLOSURE 

Memory Location Memorv Contents Instruction 
(Hex) (Hex) (Mnemonic) 
0000 3E LD A.01001111B 
0001 4F 
0002 D3 OUT (PIOCRAl.A 
0003 PIOCRA 
0004 21 LD HL.40H 
0005 40 
0006 00 
0007 36 LD (HU.O 
0008 00 
0009 DB CHKCL: IN A.(PIODRA) 
OOOA Pl OD RA 
OOOB E6 AND MASK oooc MASK 
OOOD 20 JR NZ.CHKCL 
OOOE FA 
OOOF 34 INC (HU 
0010 CD CALL DELAY 
0011 30 
0012 00 
0013 DB CHKOP: IN A.(PIODRA) 
0014 PIODRA 
0015 E6 AND MASK 
0016 MASK 
0017 28 JR Z.CHKOP 
0018 FA 
0019 18 JR CHKCL 
001A EE 

The three instructions beginning with the label CHKOP are used to determine when the 
switch reopens. 

Clearly we do not really need a PIO for this simple interface. An addressable tn-state 
buffer wou Id do the Job at far lower cost. 

11-27 



A Toggle Switch 
Purpose: To interface a single-pole. double-throw (SPOT) toggle switch to a Z80 

microprocessor. The toggle 1s a mechanical device that is either in the nor­

mally closed (NC) position or the normally open (NO) position. 

Circuit Diagram: 

Figure 11-11 shows the circuitrv required to interface the 

switch. Like the pushbutton. the switch uses one bit of a Z80 

PIO that serves as an addressable buffer. Unlike the button. the 

switch may be left in either position. Typical program tasks are 

to determine the switch position and to see if the position has 

DEBOUNCING 
WITH 
CROSS-COUPLED 
NANDGATES 

changed. Either a one-shot with a pulse length of a few milliseconds or a pair of cross­

coupled NANO gates (see Figure 11-12) can debounce a mechanical switch. 

The circuits will produce a single step or pulse in response to a change 1n switch posi­

tion even if the switch bounces before settling into its new position. 

Programming Examples: 

We will perform two tasks involving this circuit. They are: 

1) Set a memorv location to one when the switch is closed. 

2) Set a memorv location to one when the state of the switch changes. 

Task 1: Wait for switch to close. 

Purpose: Memorv location 0040 is zero until the switch is closed and then is set to 

one; that is. the processor clears memorv location 0040. waits for the switch 

to be closed. and then sets memory location 0040 to one. 

The switch could be marked Run/Halt. since the processor will not proceed until the 

switch 1s closed. 

Flowchart: 

Start 

(0040) = 0 

(0040) = 1 

End 

11-28 



NO 

--

+5V 

Debounce 

Circuit 

Figure 11-11. A Toggle Switch Circuit 

+SV 

To CPU 

PIO 

To 1/0 Port (PIO) 

Figure 11-12. A Debounce Circuit Based on Cross-coupled NANO Gates 

11-29 



Source Program: 

LO 
OUT 
LO 
LO 

WAITC: IN 
AND 
JR 
INC 
HALT 

Object Program: 

A.010011118 
(PIOCRA).A 
HL.40H 
(HU.O 
A.(PIODRA) 
MASK 
NZ.WAITC 
(HU 

:MAKE PORT A INPUT 

:MARKER =ZERO 
:READ SWITCH POSITION 
:IS SWITCH CLOSED (ZERO)? 
;NO. WAIT FOR SWITCH TO CLOSE 
:YES. MARKER= 1 

Memorv Location Memorv Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 3E LO A.010011118 

0001 4F 
0002 03 OUT (PIOCRA).A 

0003 PIOCRA 
0004 21 LO HL.40H 

0005 40 
0006 00 
0007 36 LO (HU.O 

0008 00 
0009 DB WAITC: IN A.(PIODRA) 

OOOA PIODRA 
0008 E6 AND MASK 

oooc MASK 
0000 20 JR NZ,WAITC 

OOOE FA 
OOOF 34 INC (HU 

0010 76 HALT 

11-30 



Task 2: Wait for switch to change. 

Purpose: Memorv location 0040 remains zero until the switch pos1t1on changes: 1.e .. 
the processor waits until the switch changes. then sets memorv location 
0040 to 1. 

Flowchart: 

Source Program: 

SRCH: 

LD 
OUT 
LD 
LD 
IN 
AND 
LD 
IN 
AND 
CP 
JR 
INC 
HALT 

A.01001111B 
(PIOCRA).A 
HL.40H 
(HU.O 
A.(PIODRA) 
MASK 
B.A 
A.(PIODRA) 
MASK 
B 
Z.SRCH 
(HL) 

Start 

(40) = 0 

Old data= 
SWitch position 

New data= 
switch Position 

(40) = 1 

End 

:MAKE PORT A INPUT 

:MARKER= ZERO 
:GET OLD SWITCH POSITION 

:GET NEW SWITCH POSITION 

;ARE NEW AND OLD POSITIONS THE SAME? 
:YES. WAIT 
:NO. MARKER= ONE 

11-31 



Object Program: 

Memorv Location Memory Contents Instruction 

(Hex) (Hex) (Mnemonic! 

0000 3E LD A.010011118 
0001 4F 
0002 D3 OUT (PIOCRA).A 

0003 PIOCRA 
0004 21 LD HL.40H 

0005 40 
0006 00 
0007 DB IN A.(PIODRA) 

OOOB PIODRA 
0009 E6 AND MASK 

OOOA MASK 
OOOB 47 LD B.A 

oooc DB SRCH: IN A.(PIODRA) 

OOOD PIODRA 
OOOE E6 AND MASK 

OOOF MASK 
0010 BB CP B 

0011 2B JR Z.SRCH 

0012 F9 
0013 34 INC (HL) 

0014 76 HALT 

A Subtract or Exclusive OR could replace the Compare in the program. Either of these 

instructions would. however. change the contents of the Accumulator. The Exclusive 

OR would be useful if several switches were attached to the same PIO. since it would 

produce a one bit for each switch that changed state. How would vou rewrite this pro­

gram so as to debounce the switch in software? 

11-32 



-7 
A1 ;::: 6 -

-s - A5 

t;::: 4 As 
To CPU 

(~3 A4 
-" ~::: 2 - A3 PIO ) 

;:: 1 ;:. Az r 

::: 0 - Ai 

- - Ao 

Common 

----
Figure 11-13. A Mult1ple-Pos1t1on Switch 

A Multiple-Position (Rotary, Selector, or Thumbwheel) Switch 
Purpose: To interface a mult1ple-pos1t1on switch to a microprocessor. The lead corres­

ponding to the switch pos1t1on 1s grounded. while the other leads are high 
(logic ones). 

Circuit Diagram: 

Figure 11-13 shows the c1rcu1try required to interface an 8-pos1t1on switch. The switch 
uses all eight data bits of one side of a PIO. Typical tasks are to determine the position 
of the switch and to check whether or not that pos1t1on has changed. Two special s1tua­
t1ons must be handled: 

1) The switch 1s temporarily between pos1t1ons so that no leads are grounded. 
2) The switch has not vet reached its final pos1t1on. 

The first of these s1tuat1ons can be handled by waiting until the input 1s not all ones. 1.e .. 
until a switch lead is grounded. We can handle the second s1tuat1on by examining the 
switch again after a delay (such as 1 or 2 seconds) and only accepting the input when 
1t remains the same. This delay will not affect the responsiveness of the system to the 
switch. We can also use another switch (i.e .. a Load switch) to tell the processor when 
the selector switch should be read. 

Programming Examples: 

We will perform two tasks involving the c1rcu1t of Figure 11-13. These are: 
a) Monitor the switch until it 1s in a definite pos1t1on. then determine the pos1t1on and 

store its binary value in a memory location. 
b) Wait for the pos1t1on of the switch to change. then store the new pos1t1on in a 

memory location. 

If the switch 1s in a pos1t1on. the lead from that position 1s grounded through the com­
mon line. Pullup resistors on the input lines avoid problems caused by noise. 

11-33 



Table 11-3. Data Input vs. Switch Position 

Switch Pos1t1on 
Data Input 

Binary Hex 

0 11111110 FE 

1 11111101 FD 

2 11111011 FB 

3 11110111 F7 

4 11101111 EF 

5 11011111 DF 

6 10111111 BF 

7 01111111 7F 

Task 1: Determine switch pos1t1on. 

Purpose: The program waits for the switch to be in a specific position and then places 

the number of that pos1t1on into memory location 0040. 

Table 11-3 contains the data inputs corresponding to the various switch positions. 

This scheme 1s inefficient. since 1t requires eight bits to distinguish among eight 

different pos1t1ons. 

A TTL or MOS encoder could reduce the number of bits needed. 

Figure 11-14 shows a circuit using the 74LS148 TTL 8-to-3 en­

coder. 4 We attach the switch outputs in inverse order. since the 

74LS148 device has active-low inputs and outputs. The output of 

USING 
A TTL 
ENCODER 

the encoder circuit 1s a 3-bit representation of the switch pos1t1on. Many switches in­

clude encoders so that their outputs are coded. usually as a BCD digit (in negative 

logic). 

The encoder produces active-low outputs. so. for example, switch pos1t1on 5. which 1s 

attached to input 2. produces an output of 2 in negative logic (or 5 1n positive logic). 

You may want to verify the double negative for yourself. 

-7 fo -s ;;... 
11 

;:; 5 -
Tz 

t-4 -
?-l-Fc3 -: 13 

iiz To CPU 
f4 74LS148 - Az t;::; 2 ~1 ; 

~ ;::;1 Ts B-to-3 - A1 PIO 

()0 i6 Encoder Oo Ao 
- l7 

Common 

_..., --
Figure 11-14. A Mult1ple-Pos1t1on Switch with an Encoder 

11-34 



Flowchart: 

Source Program: 

LO 
OUT 

CHKSW: IN 
CP 
JR 
LO 

CHPOS. RRA 
JR 
INC 
JR 

DONE: LO 
LO 
HALT 

Start 

Data= 
SWltch position 

PositJon ~o 

Shift data 
nght 1 bit 

YffS 

Position= 
Posifton + 1 (0040} = Position 

End 

A.010011118 ;MAKE PORT A INPUT 
(PIOCRA).A 
A.(PIODRA) :GET SWITCH DATA 
OFFH :IS SWITCH IN A POSITION? 
Z.CHKSW ;NO. WAIT FOR A POSITION 
B.O :SWITCH POSITION =ZERO 

:IS NEXT BIT GROUNDED POSITION? 
NC.DONE :YES. SWITCH POSITION FOUND 
B :NO. INCREMENT SWITCH POSITION 
CHPOS 
HL.40H :STORE SWITCH POSITION 
(HL),B 

11-35 



Object Program: 

Memorv Location Memorv Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 3E LD A.010011118 

0001 4F 
0002 03 OUT (PIOCRAl.A 

0003 PIOCRA 

0004 DB CHKSW: IN A.(PIODRA) 

0005 PIODRA 
0006 FE CP OFFH 

0007 FF 
0008 28 JR Z.CHKSW 

0009 FA 
OOOA 06 LD 8.0 

0008 00 
oooc 1F CHPOS: RRA 

0000 30 JR NC.DONE 

OOOE 03 
OOOF 04 INC 8 

0010 18 JR CHPOS 

0011 FA 
0012 21 DONE: LO HL.40H 

0013 40 
0014 00 
0015 70 LD (HU.8 

0016 76 HALT 

Suppose that a faulty switch or defective PIO results in the input always being OFF1 a. 
How could you change the program so that it would detect this error? 

There 1s an unconditional jump, JR CHPOS, in the source program. Can vou change the 

initial conditions so as to make this instruction unnecessary? 

This example assumes that the switch is debounced in hardware. How would you 

change the program to debounce the switch in software? 

11-36 



Task 2: Wait for switch pos1t1on to change. 

Purpose: The program waits for the switch position to change and places the new 
position (decoded) into memory location 0040. The program waits until the 
switch reaches its new position. 

Flowchart: 

Start 

Old data= 
Switch posi~ion 

New data= 
Swnch position 

11-37 

Position = -1 

Shift data right 1 bit 

Position= 
Position+ 1 

(0040) = Position 

End 



Source Program: 

LD 
OUT 

CHFST IN 
CP 
JR 
LD 

CHSEC: IN 
CP 
JR 
CP 
JR 
LD 

CHPOS. INC 
ARA 
JR 
LD 
LD 
HALT 

A,01001111B 
(PIOCRA),A 
A,(PIODRA) 
OFFH 
Z,CHFST 
B,A 
A,(PIODRA) 
OFFH 
Z.CHSEC 
B 
Z.CHSEC 
B.OFFH 
B 

C.CHPOS 
HL.40H 
(HU.B 

:MAKE PORT A INPUT 

:GET SWITCH DATA 
:IS SWITCH IN A POSITION? 
;NO, WAIT UNTIL IT IS 

:GET NEW SWITCH DATA 
:IS SWITCH IN A POSITION? 
:NO, WAIT UNTIL IT IS 
:IS POSITION SAME AS BEFORE? 
:YES. WAIT FOR IT TO CHANGE 
:SWITCH POSITION = -1 
;INCREMENT SWITCH POSITION 
:IS NEXT BIT GROUNDED POSITION? 
:NO. KEEP LOOKING FOR GROUNDED POSITION 
:STORE SWITCH POSITION 

11-38 



Object Program: 

Memorv Location Memorv Contents I nstruct1on 
(Hex) (Hex) (Mnemonic) 

0000 3E LD A.01001111 B 
0001 4F 
0002 D3 OUT (PIOCRA).A 
0003 PIOCRA 
0004 DB CHFST IN A.(PIODRA) 
0005 PIODRA 
0006 FE CP OFFH 
0007 FF 
0008 28 JR Z.CHFST 
0009 FA 
OOOA 47 LD B.A 
OOOB DB CHSEC: IN A.(PIODRA) 
oooc Pl OD RA 
OOOD FE CP OFFH 
OOOE FF 
OOOF 28 JR Z.CHSEC 
0010 FA 
0011 B8 CP B 
0012 28 JR Z.CHSEC 
0013 F7 
0014 06 LD B.OFFH 
0015 FF 
0016 04 CHPOS; INC B 
0017 1F RRA 
0018 38 JR C.CHPOS 
0019 FC 
001A 21 LD HL.40H 
001B 40 
001C 00 
0010 70 LD (HU.B 
001E 76 HALT 

An alternative method for determining if the switch 1s in a pos1t1on is: 

CHKSW: IN 
INC 
JR 

A.(PIODRA) 
A 
Z.CHKSW 

Why does this work? What happens to the input data? 

11-39 



A Single LED 
Purpose: To interface a single light-emitting diode to a ZSO microprocessor. The LED 

can be attached so that either a logic zero or a logic one turns it on. 

Circuit Diagram: 

Figure 11-15 shows the c1rcu1trv required to interface an LED. The 

LED lights when its anode 1s positive with respect to its cathode 
(Figure 11 -15a). Therefore, you can either light the LED by ground­

LED 
CONTROL 

ing the cathode and having the computer supply a one to the anode (Figure 11 -15b) or 

by connecting the anode to +5 volts and having the computer supplv a zero to the 

cathode (Figure 11 -15c). Using the cathode 1s the most common approach. The LED is 

brightest when 1t operates from pulsed currents of about 10 or 50 mA applied a few 

hundred times per second. LEDs have a very short turn-on time (in the microsecond 

range) so they are well suited to multiplexing (operating several from a single port!. LED 

c1rcu1ts usuallv need peripheral or transistor drivers and current-limiting resistors. MOS 

devices normally cannot dnve LEDs directly and make them bright enough for easy 

viewing. 

Note: The PIO has an output latch on each port. However. the B port 1s normally used 

for output. since 1t has somewhat more dnve capability. In particular. the B port outputs 

are capable of dnv1ng Darlington transistors (providing 1.5 mA minimum at 1.5 Vl. 
Darlington transistors are h1gh-ga1n transistors capable of switching large amounts of 

current at high speed: they are useful in driving solenoids, relavs. and other devices. 

Task: Turn the light on or off. 

Purpose: The program turns a single LED either on or off. 

A Send a Logic One to the LED (turn a positive display on or a negative display off). 

Source Program: 

(form data initially) 

LO 
OUT 
LO 
OUT 
HALT 

A.00001111 B 
(PIOCRB).A 
A.MASKP 
(PIODRB),A 

:MAKE PORT B OUTPUT 

:GET DATA FOR LED 
:SEND DATA TO LED 

An alternative using the control mode 1s: 

LO A.110011118 :MAKE PORT B CONTROL 
OUT (PIOCRB).A 
SUB A 
OUT (PIOCRB).A 
LO A.MASKP 
OUT (PIODRB).A 
HALT 

(update data) 

IN 
SET 
OUT 
HALT 

A.(PIODRB) 
LED.A 
(PIODRB).A 

:MAKE ALL B LINES OUTPUTS 

:GET DATA FOR LED 
;SEND DATA TO LED 

:GET OLD DATA 
;TURN ON LED BIT 
:SEND DATA TO LED 

MASKP has a one bit in the LED pos1t1on and zeros elsewhere. Note that we can read 

the PIO Data Output register when the PIO 1s in the output mode. We can also read any 

combination of input data and output register data when the PIO is in the control 

mode; the combination is defined by the assignment of inputs and outputs. 

11-40 



R 

+svo~------------'W'w 

a) Basic LED c1rcu1trv. The resistor R should limit the maximum current to 50 mA and 

the average current to 10 mA. 

From CPU 

PIO Dnver 

bl Interfacing an LED with positive logic. A iog1c T from the CPU turns the LED on. 

From CPU 

PIO Dnver 

rsv 

~R 

c) Interfacing an LED with negative logic. A logic 'O' from the CPU turns the LEO on. The driver or the CPU 

may mvert the logic levels. 

Figure 11-15. Interfacing an LED 

11-41 



Object Program: 

Memory Location Memory Contents I nstruct1on 
(Hex) (Hex) (Mnemonic) 

(form data initially) 

0000 3E LD A.00001111 B 
0001 OF 
0002 D3 OUT (PIOCRB).A 
0003 PIOCRB 
0004 3E LD A.MASKP 
0005 MAS KP 
0006 D3 OUT (Pl OD RB). A 
0007 PIODRB 
0008 76 HALT 

(update data) 

0009 DB IN A.(PIODRB) 
OOOA PIODRB 
OOOB CB SET LED.A 
oooc LED 
OOOD D3 OUT (PIODRB).A 
OOOE Pl OD RB 
OOOF 76 HALT 

B. Send a Logic Zero to the LED (turn a pos1t1ve display off or a negative display on). 

The differences are that MASKP must be replaced by its log1cal complement 

MASKN and SET LED.A must be replaced by RES LEDA Note that the second byte 
of the object code for SET LED.A and RES LED.A depends on the actual bit position 
to which the name LED refers. 

MASKN has a zero bit in the LED position and ones elsewhere. 

11-42 



85 --
- -

85 

From.CPU 84 --c::> PIO 83 - Dnvers 
--

8z - -- -
81 --
Bo --

87 may be used for dec1mai point LED. 

g 

f 

e 

d Display 

c 

b 

a Common 

__ l __ 
l 
6+sv 

(Common­

Cathode) 

(Common­

Anode) 

Figure 11-16. Interfacing a Seven-Segment Display 

Seven-Segment LED Display 
Purpose: To interface a seven-segment LED display to a Z80 microprocessor. The dis­

play may be either common-anode (negative log1cl or common-cathode 
(pos1t1ve log1cl. 

Circuit Diagram: 

Figure 11-16 shows the c1rcu1try required to interface a 
seven-segment display. Each segment may have one. two. 
or more LEDs attached 1n the same way. There are two 
ways of connecting the displays. One 1s tying all the 
cathodes together to ground (see Figure 11-17a); this 1s a 

COMMON-ANODE 
OR 
COMMON-CATHODE 
DISPLAYS 

"common-cathode" display. Tying all the anodes together to a pos1t1ve voltage supply 
(see Figure 11-17b) 1s a "common-anode" display, and a logic zero at a cathode lights a 
segment. So the common-cathode display uses pos1t1ve logic and the common-anode 
display negative logic. Either display requires appropriate drivers and resistors. 

The Common line from the display is tied either to ground or to +5 volts. The display 
segments are customarily labelled: 

g 

e 

d 

11-43 



a) Common-cathode 

--
bl Common-anode +SV 

Figure 11-17 Seven-Segment Display Organization 

11-44 



Table 11-4. Seven-Segment Representations of Decimal Numbers 

Number 
Hexadecimal Rep_resenta_tion 

Common-cathode Common-anode 

0 3F 40 
1 06 79 
2 5B 24 
3 4F 30 
4 66 19 
5 60 12 
6 70 02 
7 07 78 
8 7F 00 
9 67 18 

Bit 7 is always zero and the others are g. f. e. d. c. b. and a in decreasing order of 
s1gnifi cance. 

Note: The seven-segment display 1s widely used because it 
contains the smallest number of separately controlled seg­
ments that can provide recognizable representations of all 

SEVEN-SEGMENT 
REPRESENTATIONS 

the decimal digits (see Figure 11-18 and Table 11-4). Seven-segment displays can also 
produce some letters and other characters (see Table 11-5). Better representations re­
quire a substantially larger number of segments and more circuitry. 5 Since seven-seg­
ment displays are so popular. low-cost seven-segment decoder/drivers have become 
widely available. The most popular devices are the 7447 common-anode driver and the 
7448 common-cathode dnver6: these devices have Lamp Test inputs (that turn all the 
segments on) and blanking inputs and outputs (for blanking leading or trailing zeros). 

11-45 



0: Segments f. e. d. c, b. a ~ 3: Segments g, d. c, b, a Q!J 

a 0 

f b b 

g 

e c c 

d d 

l: Segments c, b ~ 4: Segments g, f, c, b 2!:I 

b f b 

g 

c c 

2: Segments g, e, d, b, a !!!) 5: Segments g, f, d, c, a 2.1) 

a a 

lb 
f 

g g 

e c 

d d 

Figure 11-18. Seven-Segment Representations of Decimal Digits 

11-46 



6: Segments g, f. e, d, c. a eri 8: Segments g. f. e. d, c. b, a ~ 

a a 

f f b 

g g 

e c e t 

d d 
Note that the alternate representation with.!. off may This 1s the same as LAMP TEST. 
be reserved for the lower case letter 'b'. 

7: Segments c, b. a ~ 9: Segments g, f, c, b, a 2£1 
a a 

b f b 

g 

c c 

An alternate has segment d on also. 

Figure 11-18. Seven-Segment Representations of Decimal Digits 
{Continued) 

11-47 



Table 11-5. Seven-Segment Representations of Letters and Symbols 

Upper-case Letters 

Letter 
Hexadecimal Representation 

Common-cathode Common-anode 

A 77 08 
c 39 46 
E 79 06 
F 71 OE 
H 76 09 
I 06 79 
J 1E 61 
L 38 47 
0 3F 40 
p 73 oc 
u 3E 41 
y 66 19 

Lower-case Letters and Special Characters 

Character 
Hexadecimal Representation 

Common-cathode Common-anode 

b 7C 03 

c 58 27 

d 5E 21 

h 74 OB 
n 54 28 

0 5C 23 

r 50 2F 

u 1C 63 
- 40 3F 
7 53 2C 

11-48 



Task 1: Display a decimal digit. 

Purpose: Display the contents of memory location 0040 on a seven-segment display if 
1t contains a decimal digit. Otherwise. blank the display. 

Sample Problems: 

a. (0040) = 05 

Result 1s 5 on display 
b. (0040) = 66 

Result 1s a blank display 

Flowchart: 

Start 

Code Blank 
Date (0040) 

Code = ISSEG + 
Data! 

Send code 

to display 

End 

11-49 



Source Program: 

DSPLY: 

LO 
OUT 
LO 
LO 
CP 
JR 
LO 

LO 
LO 
ADD 
LO 
LO 
OUT 
HALT 

A.00001111 B 
(PIOCRB).A 
B.BLANK 
A,(40H) 
10 
NC.DSPLY 
DE.SSEG 

H.O 
L,A 
HL.DE 
B.(HU 
AB 
(PIODRBl.A 

;MAKE PORT B OUTPUT 

;GET BLANK CODE 
:GET DATA 
:IS DATA A DECIMAL DIGIT' 
;NO. DISPLAY BLANKS 
:GET BASE ADDRESS OF SEVEN-SEGMENT 
. TABLE 
;MAKE DATA INTO 16-BIT INDEX 

;ACCESS ELEMENT IN TABLE 
:GET SEVEN-SEGMENT CODE 

:SEND CODE TO DISPLAY 

BLANK is 00 for a common-cathode display, FF for a common-anode display. An alter­

native procedure would be to put the blank code at the end of the table and replace all 

improper data values with 10. 1.e .. 

LO 
CP 
JR 
LO 

CNVRT: LO 

A,(40H) 
10 
C.CNVRT 
A.10 
DE,SSEG 

:GET DATA 
;IS DATA A DECIMAL DIGIT? 
:YES, CONVERT DIRECTLY TO SEVEN-SEGMENT 

;NO. GET INDEX FOR BLANK CODE 
;GET BASE ADDRESS OF SEVEN-SEGMENT TABLE 

Table SSEG 1s either the common-cathode or common-anode representation of the 

decimal digits from Table 11-4. 

11-50 



Object Program: 

Memory Location Memorv Contents Instruction 
(Hexl (Hex) (Mnemonic) 

0000 3E LD A.00001111 B 
0001 OF 
0002 03 OUT (PIOCRB).A 
0003 PIOCRB 
0004 06 LD B.BLANK 
0005 BLANK 
0006 3A LD A.(40H) 
0007 40 
0008 00 
0009 FE CP 10 
OOOA OA 
OOOB 30 JR NC.DSPLY 
oooc 08 
0000 11 LD DE.SSEG 
OOOE 20 
OOOF 00 
0010 26 LD H.0 
0011 00 
0012 6F LD L.A 
0013 19 ADD HL.DE 
0014 46 LD B.(HL) 
0015 78 DSPLY· LD A.B 
0016 03 OUT (PIODRB).A 
0017 PIODRB 
0018 76 HALT 

0020-0029 SSEG: (seven-segment code 
table) 

Several displays may be multiplexed. as shown in Figure 11-19. A brief strobe on the B 
ROY line clocks the counter and directs data to the next display. Note that B ROY 1s tied 
directly back to B STB. i.e .. the ready line essentially provides its own acknowledgment. 
The timing of the PIO 1s such that this connection results in a strobe with a duration of 
one clock period. Such a brief strobe 1s exactly what the counter requires. RESET starts 
the decimal counter at nine so that the first output operation clears the counter and 
directs data to the first display. 

The following program uses the delay routine to pulse each of ten common-cathode 
displays for 1 ms. 

11-51 



D. C. B. and A (D most significant, A 

least significant) are the 4-bit output 

from the counter. These 4 bits activate 

the correspondingly numbered output 

from the decoder, and hence the cor­

respondingly numbered displav. 

From CPU 

PIO 

BROY 

Oock 

Decade 

Counter 

Reset 

D 

c 

B 

A 

DO 

01 

02 

03 

04 

05 

06 

07 

08 

09 

9 8 7 6 5 4 3 2 1 0 

4 to 10 
Oecocler/Dnver 

Figure 11-19. Multiplexed Seven-Segment Displays 

11-52 



Task 2: Display ten decimal digits. 

Purpose: Display the contents of memory locations 0040 through 0049 on ten 7-seg­
ment displays that are multiplexed with a counter and a decoder. 

Sample Problem: 

(0040) 66 
(0041) 3F 
(0042) 7F 
(0043) 7F 
(0044) 06 
(0045) 5B 
(0046) 07 
(0047) 4F 
(0048) 6D 
(0049) 7D 
Display reads 4088127356 

Source Program: 

LD A.00001111 B ; MAKE PORT B OUTPUT 
OUT (PIOCRB).A 

DRUN: LD HL.40H ;POINT TO ST ART OF DAT A 
LD B.10 :NUMBER OF DISPLAYS= 10 
LD C.PIODRB ;GET PORT NUMBER 

DSPLY: OUT1 ;SEND DATA TO DISPLAY 
CALL DELAY :WAIT 1 MS 
JR NZ.DSPLY :COUNT DISPLAYS 
JR DRUN ;START ANOTHER SCAN 

, Here we must select the PIO output mode. since the circuit uses the handshake signals. 

Note that OUTI sends the data to the output port addressed by Register C. increments 
the address in Register Pair HL. and decrements the counter in Register B. We have 
assumed that subroutine DELAY does not affect the Z flag so that it can be used after­
wards for a conditional branch. 

11-53 



Object Program: 

Memorv Address Memory Contents I nstruct1on 
(Hex) (Hex) (Mnemonic) 

0000 3E LO A.00001111 B 
0001 OF 
0002 03 OUT (PIOCRB).A 

0003 PIOCRB 
0004 21 DRUN: LO HL.40H 
0005 40 
0006 00 
0007 06 LD B.10 
0008 OA 
0009 OE LD C.PIODRB 
OOOA PIODRB 
OOOB ED DSPLY: OUT! 
oooc A3 
0000 CD CALL DELAY 

OOOE 30 
OOOF 00 
0010 20 JR NZ.DSPLY 
0011 F9 
0012 18 JR DRUN 
0013 FO 

11-54 



PROBLEMS 
1) An On-Off Pushbutton 
Purpose: Each closure of the pushbutton complements (inverts) all the bits in memory 

location 0040. The location initially contains zero. The program should con­
tinuously examine the pushbutton and complement location 0040 with each 
closure. You may wish to complement a display output port instead. so as to 
make the resu Its easier to see. 

Sample Case: 

Location 0040 1nit1ally contains zero. 

The first pushbutton closure changes location 0040 to FF (hex). the second changes 1t 
back to zero. the third back to FF (hex). etc. Assume that the pushbutton is debounced 
in hardware. How would you include debouncing in your program? 

2) Debouncing a Switch in Software 
Purpose: Debounce a mechanical switch by waiting until two readings. taken a de­

bounce time apart. give the same result Assume that the debounce time (in 
ms) is in memory location 0040 and place the switch position into memorv 
location 0041. 

Sample Problem: 

(0040) = 03 causes the program to wait 3 ms between readings. 

3) Control for a Rotary Switch 
Purpose: Another switch serves as a Load switch for a four-position unencoded rotary 

switch. The CPU waits for the Load switch to close (be zero). and then reads 
the position of the rotarv switch. This procedure allows the operator to move 
the rotary switch to its final position before the CPU tries to read 1t The pro­
gram should place the position of the rotarv switch into memory location 
0040. Debounce the Load switch in software. 

Sample Problem: 

Place rotary switch in position 2. Close Load switch. 

Result: (0040) = 02 

11-55 



4) Record Switch Positions on lights 
Purpose: A set of eight switches should have their positions reflected in eight LEDs. 

That is to say. if the switch is closed (zero). the LED should be on. otherwise 

the LED should be off. Assume that the CPU output port is connected to the 

cathodes of the LEDs. 

Sample Problem: 

SWITCH 0 CLOSED 
SWITCH 1 OPEN 
SWITCH 2 CLOSED 
SWITCH 3 OPEN 
SWITCH 4 OPEN 
SWITCH 5 CLOSED 
SWITCH 6 CLOSED 
SWITCH 7 OPEN 

Result: 

LED 0 ON 
LED 1 OFF 
LED 2 ON 
LED 3 OFF 
LED 4 OFF 
LED 5 ON 
LED 6 ON 
LED 7 OFF 

How would you change the program so that a switch attached to bit 7 of Port A of PIO 

#2 determines whether or not the displays are active (i.e .. if the control switch is 

closed. the displays attached to Port B reflect the switches attached to Port A: if the 

control switch is open. the displays are always off)? A control switch is useful when the 

displays may distract the operator. as in an airplane. 

How would you change the program so as to make the control switch an on-off 

pushbutton: that 1s. each closure reverses the previous state of the displays? Assume 

that the displays start in the active state and that the program examines and debounces 

the pushbutton before sending data to the displays. 

5) Count on a Seven-Segment Display 
Purpose: The program should count from 0 to 9 continuously on a seven-segment dis­

plav. starting with zero. 

Hint: Trv different timing lengths for the displays and see what happens. When does 

the count become visible? What happens if the display is blanked part of the time? 

11-56 



MORE COMPLEX 1/0 DEVICES 

More complex 1/0 devices differ from simple keyboards. switches. and displays in that: 

1) They transfer data at higher rates. 
2) They may have their own internal clocks and timing. 
3) They produce status information and require control information. as well as 

transfernng data. 

Because of their high data rates. you cannot handle these 1/0 devices casually. If the 
processor does not provide the appropriate service. the system may miss input data or 
produce erroneous output data. You are therefore working under much more exacting 
constraints than in dealing with simpler devices. Interrupts are a convenient method 
for handling complex 1/0 devices. as we shall see 1n Chapter 12. 

Peripherals such as keyboards. teletypewriters. cassettes. 
and floppy disks produce their own internal timing. These 
devices provide streams of data. separated by specific tim­
ing intervals. The computer must synchronize the in1t1al in-

SYNCHRONIZING I 
WITH 1/0 
DEVICES 

put or output operation with the peripheral clock and then provide the proper interval 
between subsequent operations. A simple delay loop like the one shown previously can 
produce the timing interval. The synchron1zat1on may require one or more of the follow­
ing procedures: 

1) Looking for a trans1t1on on a clock or strobe line provided by the peripheral for tim­
ing purposes. A simple approach would be to tie the strobe to a PIO STB input and 
look for a change in the interrupt (INT) output. However. there 1s no way to directly 
address the INT output (and thus determine its value) and no way to clear 1t other 
than through an interrupt service routine. Thus. to use the PIO in a polling system. 
one must make the strobe available at an input port and latch 1t if necessary. If the 
strobe must be latched. a c1rcu1t must also be provided to clear the latch as part of 
the subsequent input or output transfer. 

2) Finding the center of the time interval during which the data 1s stable. We would 
prefer to determine the value of the data at the center of the pulse rather than at 
the edges. where the data may be changing. Finding the center requires a delay of 
one-half of a transm1ss1on interval (bit time) after the edge. Sampling the data at 
the center also means that small t1m1ng errors have little effect on the accuracy of 
the reception. 

3) Recognizing a special starting code. This 1s easy if the code 1s a single bit or if we 
have some timing 1nformat1on. The procedure 1s more complex if the code 1s long 
and could start at any time. Shifting will be necessary to determine where the 
transmitter 1s starting its bits. characters. or messages (this 1s often called a search 
for the correct "framing"). 

4) Sampling the data several times. This reduces the probability of receiving data in­
correctly from noisy lines. Ma1ority logic (such as best 3 out of 5 or 5 out of 8) can 
be used to decide on the actual data value. 

Reception 1s. of course. much more difficult than transmission. since the peripheral con­
trols the reception and the computer must interpret timing information generated by 
the peripheral. In transm1ss1on. the computer provides the proper timing and formatting 
for a specific peripheral. 

Peripherals may require or provide other information besides 
data and timing. We refer to other 1nformat1on transmitted by 
the computer as "control 1nformat1on". 1t may select modes of 
operation. start or stop processes. clock registers. enable 
buffers. choose formats or protocols. provide operator displays. 

11-57 

CONTROL 
AND STATUS 
INFORMATION 

count operations. or 



identify the type and priority of the operation. We refer to other information transmitted 

by the peripheral as "status information"; it may indicate the mode of operation. the 

readiness of devices. the presence of error conditions. the format of protocol in use. and 

other states or conditions. 

The computer handles control and status information just like data. This information 

seldom changes. even though actual data may be transferred at a high rate. The control 

or status information may be single bits. digits. words. or multiple words. Often single 

bits or short fields are combined and handled by a single input or output port. 

Combining status and control information into bytes reduces the total number of 110 

port addresses required by the peripherals. However. the combination does mean that 

individual status input bits must be separately interpreted and control output bits must 

be separately determined. The procedures for isolating status bits and setting or reset­

ting control bits are as follows: 

Separating Out Status Bits 

Step 1) Read status data from the peripheral 

Step 2) Logical AND with a mask (the mask has ones m bit 
positions that must be examined and zeros 
elsewhere) 

SEPARATING 
STATUS 
INFORMATION 

Step 3) Shift the separated bits to the least significant bit positions 

If the field 1s a single bit. Step 2 1s unnecessarv since we can test the bit with the BIT 1n­

struct1on. If the single bit is m the most significant. next to most significant. or least sig­

nificant pos1t1on. we can use shift logical (AND A or OR A) instructions to determine its 

value. Remember also that the input instructions with register indirect addressing (e.g .. 

IN A.(C)) affect the Sign flag. These somewhat more accessible bit positions are often 

reserved for the most frequently used status 1nformat1on. You should try to write the re­

quired 1nstruct1on sequences for the ZBO processor. 

Step 3 is unnecessary if the field 1s a single bit. since the Zero flag will contain the com­

plement of that bit after Step 2 (try 1t!l. A Shift or Load instruction can replace Step 2 if 

the field 1s a single bit and occupies the least significant. most significant. or next to 

most significant bit pos1t1on. These pos1t1ons are often reserved for the most frequently 

used status information. You should trv to write the required 1nstruct1on sequences for 

the 6800 processor. 

Setting and Clearing Control Bits 

Step 1 J Read prior control information 

Step 2) Logical AND with mask to clear bits (mask has zeros 
m bit positions to be cleared. ones elsewhere) 

COMBINING 
CONTROL 
INFORMATION 

Step 3) Logically OR with mask to set bits (mask has ones in bit pos1t1ons to be set. 

zeros elsewhere) 

Step 4) Send new control information to peripheral 

Here again the procedure 1s simpler if the field 1s a single bit and occupies a pos1t1on at 

the end of the word. 

11-58 



Some examples of separating and combining status bits are: 

1) A 3-bit field 1n bit pos1t1ons 2 through 4 of a PIO data register 1s a scaling factor. 
Place that factor into the Accumulator . 

. READ STATUS DATA FROM INPUT PORT 

IN A.(PIQDR) :READ STATUS DATA 

. MASK OFF SCALING FACTOR AND SHIFT 

AND 
RRCA 
RRCA 

00011100B . :MASK SCALING FACTOR 
:SHIFT TWICE TO NORMALIZE 

2) The Accumulator contains a 2-bit field that must be placed into bit positions 3 and 
4 of a PIO data register. 

, MOVE DATA TO FIELD POSITIONS 

RLA 
RLA 
RLA 
AND 
LD 

:SHIFT DATA TO BIT POSITIONS 3 AND 4 

00011000B 
B.A 

:CLEAR OTHER BIT POSITIONS 
:SAVE NEW FIELD VALUE 

. COMBINE NEW FIELD VALUE WITH OTHER DATA 

IN 
AND 
OR 
OUT 

A.(PIODR) 
1110011 lB 
B 
(PIODR).A 

;CLEAR OLD FIELD VALUE 

:INSERT NEW FIELD VALUE 

Documentation 1s a serious problem in handling control and 
status information. The meanings of status inputs or control 
outputs are seldom obvious. The programmer should clearly in­
dicate the purposes of input and output operations in the com­
ments. e.g.. "CHECK IF READER IS ON." "CHOOSE EVEN 

DOCUMENTING 
STATUS AND 
CONTROL 
TRANSFERS 

PARITY OPTION." or "ACTIVATE BIT RATE COUNTER." The bit manipulation. Logical. 
and Shift instructions will otherwise be very difficult to remember. understand. or 
debug. 

11-59 



Table 11-6. Comparison Between Independent Connections 

and Matrix Connections for Keyboards 

Keyboard Size Number of Lines with Number of Lines with 

Independent Connections Matrix Connections 

3x3 9 6 

4x4 16 8 

4x6 24 10 

5x5 25 10 

6x6 36 12 

6x8 48 14 

BxS 64 16 

EXAMPLES 
An Unencoded Keyboard 

Purpose: Recognize a key closure from an unencoded 3 x 3 keyboard and place the 

number of the key that was pressed into the Accumulator. 

Keyboards are 1ust collections of switches (see Figure 11-20). Small numbers of keys are 

easiest to handle if each key is attached separately to a bit of an input port. Interfacing 

the keyboard 1s then the same as interfacing a set of switches. 

Keyboards with more than eight keys require more than one input 

port and therefore mu I ti byte operations. This 1s part1cu la riv 

wasteful if the keys are logically separate. as in a calculator or ter­

MATRIX 
KEYBOARD 

minal keyboard where the user will only strike one at a time. The number of input lines 

required mav be reduced by connecting the keys into a matrix. as shown in Figure 

11-21. Now each key represents a potential connection between a row and a column. 

The keyboard matrix requires n + m external lines. where n 1s the number of rows and 

m is the number of columns. This compares to n x m external lines if each key 1s sepa­

rate. Table 11-6 compares the number of keys required by typical configurations. 

A program can determine which key has been pressed by using KEYBOARD 

the external lines from the matrix. The usual procedure 1s a SCAN 

"keyboard scan." We ground Row 0 and examine the column 

lines. If any lines are grounded. a key in that row has been pressed. causing a row-to­

column connection. We can determine which key was pressed by determining which 

column line 1s grounded; that is. which bit of the input port 1s zero. If no column line 1s 

grounded. we proceed to Row 1 and repeat the scan. Note that we can check to see if 

any keys at all have been pressed by grounding all the rows at once and examining the 

columns. 

The keyboard scan requires that the row lines be tied to an output port and the column 

lines to an input port. Figure 11-22 shows the arrangement. The CPU can ground a par­

ticular row by placing a zero in the appropriate bit of the output port and ones in the 

other bits. 

The CPU can determine the state of a particular column by examining the appropriate 

bit of the input port. 

11-60 



Kev 1 

_L 

Kev3 

J_ 

Each kev 1s a switch 1ust like a pushbutton and grounds an input Qit if it 1s pressed. 

Figure 11-20. A Small Kevboard 

Column 0 Column 1 Column 2 

RowO 

Row 1 

Row 2 

Each key now serves to connect a row to a column. For instance, key 4 connects row 1 to column 1. 

Figure 11-21. A Keyboard Matrix 

11-61 



Data Bus 

(from CPU) 

Column 0 Column 1 Coiumn 2 

PIO 
Output 0111----111,....---r----.r----r---"""'llP----r--Row 1 

Port 

PIO 

Input 

Port 

Data Bus {to CPU) 

Figure 11-22. 1/0 Arrangement for a Keyboard Scan 

11-62 



Task 1: Determine key closure. 

Purpose: Wait for a key to be pressed. 

The procedure 1s as follows: 

WAITING 
FORA 
KEY CLOSURE 

1) Ground all the rows by clearing all the output bits. 

2) Fetch the column inputs by reading the input port. 
3) Return to Step 1 if all the column inputs are ones. 

Flowchart: 

Source Program: 

LO 
OUT 
LO 
OUT 
SUB 
OUT 

WAITK: IN 
AND 
CP 
JR 
HALT 

A.01001111B 
(PIOCRAJ.A 
A.00001111 B 
(PIOCRB).A 
A 
(PIODRB).A 
A.(PIODRA) 
00000111B 
00000111B 
Z.WAITK 

Start 

Ground all 
keyboard rows 

End 

:MAKE PORT A INPUT 

: MAKE PORT B OUTPUT 

:GROUND ALL KEYBOARD ROWS 

:GET KEYBOARD COLUMN DATA 
:MASK COLUMN BITS 
:ARE ANY COLUMNS GROUNDED? 
;NO. WAIT UNTIL ONE IS 

11-63 



Object Program: 

Memorv Location Memorv Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 3E LO A.01001111B 

0001 4F 
0002 03 OUT (PIOCRA).A 

0003 PIOCRA 
0004 3E LO A.00001111 B 

0005 OF 
0006 03 OUT (PIOCRB).A 

0007 PIOCRB 
0008 97 SUB A 

0009 03 OUT (PIODRB).A 

OOOA PIODRB 
OOOB DB WAITK: IN A.(PIODRA) 

oooc PIODRA 
0000 E6 AND 00000111B 

OOOE 07 
OOOF FE CP 00000111B 

0010 07 
0011 28 JR Z.WAITK 

0012 F8 
0013 76 HALT 

PIO Port B 1s the keyboard output port and Port A 1s the input pon. 

Masking off the column bits eliminates any problems that could be caused by the states 

of the unused input lines. 

We could generalize the routine bv naming the output and masking patterns: 

ALLG EOU 11111000B 
OPEN EOU 00000111 B 

These names could then be used in the actual program; a different keyboard would re­

quire only a change in the definitions and a re-assembly. 

Of course. one port of a PIO 1s all that 1s really necessary for a 3 x 3 or 4 x 4 keyboard. 

Try rewriting the program so that 1t uses onlv Port A. The PIO must be placed into the 

control mode so that lines can be individually selected as inputs or outputs. 

11-64 



Task 2: Identify key. 

Purpose: Identify a kev closure by placing the number of the key into the Accumulator. 

The procedure 1s as follows: 

1) Set key number to -1. counter to number of rows. and output pattern to all ones 
except for a zero in bit 0. 

2) Ground a row by sending the output pattern to the keyboard output port. 
3) Update the output pattern by shifting the zero bit left one pos1t1on. 
4) Fetch the column inputs by reading the input port. 
5) If any column inputs are zero. proceed to Step 8. 
6) Add the number of columns to the kev number to reach the next row. 
7) Decrement counter. Go to Step 2 if anv rows have not been scanned. otherwise to 

Step 10. 
8) Add 1 to key number. Shift columh inputs right one bit. 
9) If Carry = 1. return to Step 8. 

10) End of program. 

Flowchart: 

Start 

Kev Number = - l 
Counter = Number 
Scan Pattern ofjows 

11111110 

Ground row bv 
output of 

Scan Pattern 

Update Scan Pattern 
by shifting left 

circularly 

Kev Number = 
Kev Number + 

Number of Columns 
Counter = Counter- 1 

Eno 

11-65 

Kev Number = 
Kev Number + 1 

Shift Column inputs 
nght 1 bit 

Yes 



Source Program: 

LD A.01001111B :MAKE PORT A INPUT 

OUT (PIOCRA).A 
LD A.00001111 B :MAKE PORT B OUTPUT 

OUT (PIOCRB).A 
LD B.3 :COUNT = NUMBER OF ROWS 

LD C.PIODRB :GET OUTPUT PORT NUMBER 

LD D,3 :GET NUMBER OF COLUMNS 

LD E, 1111111 OB ;START SCAN PATTERN TO GROUND ROW 
ZERO 

LD H.00000111 B :GET KEYBOARD MASKING PATTERN 

LD L.OFFH : KEY NUMBER = -1 

FROW: OUT (C).E :SCAN A ROW 

RLC E :UPDATE SCAN PATTERN FOR NEXT ROW 

IN A,(PIODRA) :GET KEYBOARD COLUMN DATA 
AND H :MASK COLUMN BITS 
CP H :ARE ANY COLUMNS GROUNDED? 

JR NZ,FCOL :YES, GO FIND WHICH ONE 

LD A.L :NO, UPDATE KEY NUMBER FOR NEXT ROW 

ADD A.D 
LD L.A 
DJNZ FROW :EXAMINE NEXT ROW IF ANY LEFT 

INC L :IDENTIFY CASE IN WHICH KEY NOT FOUND 

JR DONE 
FCOL: INC L :INCREMENT KEY NUMBER 

RRA ;IS THIS COLUMN GROUNDED? 

JR NC.FCOL :NO. EXAMINE NEXT COLUMN 

DONE: HALT 

11-66 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 3E LO A.01001111B 
0001 4F 
0002 03 OUT (PIOCRA).A 
0003 PIOCRA 
0004 3E LO A.00001111 B 
0005 OF 
0006 03 OUT (PIOCRB).A 
0007 PIOCRB 
0008 06 LO B.3 
0009 03 
OOOA OE LO C.PIODRB 
OOOB Pl OD RB 
oooc 16 LO 0.3 
0000 03 
OOOE 1E LO E.111111 lOB 
OOOF FE 
0010 26 LO H.00000111 B 
0011 07 
0012 2E LO L.OFFH 
0013 FF 
0014 ED FROW· OUT (C).E 
0015 59 
0016 CB RLC E 
0017 03 
0018 DB IN A.(PIODRA) 
0019 PIODRA 
001A A4 AND H 
001B BC CP H 
001C 20 JR NZ.FCOL 
0010 08 
001E 70 LO A.L 
001F 82 ADD A.D 
0020 6F LO L.A 
0021 10 DJNZ FROW 
0022 Fl 
0023 2C INC L 
0024 18 JR DONE 
0025 04 
0026 2C FCOL: INC L 
0027 1F RRA 
0028 30 JR NC.FCOL 
0029 FC 
002A 76 HALT 

Each time a row scan fails. we must add the number of columns to the key number so 
as to move past the present row (trv 1t on the keyboard in Figure 11-22). 

11-67 



What is the result of the program if no kevs are being pressed? Note the extra INCL 1n­

struct1on so that the program differentiates between no kevs pressed and the last key 
being pressed. What 1s the final value in the Accumulator for these two cases? Note 

that the Zero flag could also be used to distinguish the case where no keys were 
pressed. Can vou explain how? 

An alternative approach would be to use the PIO in its control mode so that lines could 

be changed from inputs to outputs. The procedure would be: 

1) Ground all the columns and save the row inputs. 

2) Ground all the rows and save the column inputs. 

3) Use the row and column inputs together to determine the key number from a table. 

Try to write a program to implement this procedure. 

This program can be generalized by making the number of rows. the number of col­
umns. and the masking pattern into named parameters with EQU pseudo-operations. 

11-68 



".-a A 

" Keyboard Data Inputs 
A1 ' 

Data Bus ( 

to CPU ... 
PID 

A STB - Kevboard Strobe 

84 ~ 
(_J\_or~) 

Figure 11-23. 1/0 Interface for an Encoded Keyboard 

An Encoded Keyboard 
Purpose: Fetch data. when it 1s available. from an encoded keyboard that provides a 

strobe along with each data transfer. 

An encoded keyboard provides a unique code for each key. It has internal electronics 
that perform the scanning and 1dentificat1on procedure of the previous example. The 
tradeoff 1s between the simpler software required by the encoded keyboard and the 
lower cost of the unencoded keyboard. 

Encoded keyboards may use diode matrices. TTL encoders. or MOS encoders. The 
codes may be ASCII. EBCDIC. or a custom code. PROMs are often part of the encoding 
c1rcu1trv. 

The encoding circuitry may do more than 1ust encode key 
closures. It may also debounce the keys and handle "rollover." the 

I ROLLOVER I 
problem of more than one key being struck at the same time. Common ways of han­
dling rollover are: "2-key rollover." whereby two keys (but not more) struck at the same 
time are resolved into separate closures. and "n-key rollover." whereby any number of 
keys struck at the same time are resolved into separate closures. 

The encoded keyboard also provides a strobe with each data transfer. The strobe sig­
nals that a new closure has occurred. Figure 11-23 shows the interface between an en­
coded keyboard and the ZSO microprocessor. The rising edge of the strobe latches the 
data into the input port. We also tie the strobe to the B side of the PIO so that the CPU 
can determine when a rising edge has occurred. Of course. the B port of one PIO could 
hold status signals from up to eight ports. The software would then have to determine 
which ports were active with a shifting and masking operation. 

We have assumed m the program that the strobe signal 1s long enough for the CPU to 
handle it in software. If it is not. the signal will have to be latched and cleared (with 
ROY) when the mput or output transfer occurs. 

You may have to watch the polarity of the strobe. since the PIO always reacts to a rising 
edge. An inverter gate may be necessary. 

11-69 



Task: Input from keyboard. 

Purpose: Wait for the rising edge of a strobe at the B port of a PIO and then place the 

data from Port A into the Accumulator. 

Flowchart: 

Start 

Read 

status port 

Read 
status port 

Read 
data port 

End 

The hardware must hold the control lines 1n a logic one state during reset to prevent the 

accidental setting of status flags. 

Source Program: 

LD A.01001111B :MAKE PORT A INPUT 

OUT (PIOCRA).A 
LD A. 11001111 B :MAKE PORT B CONTROL 

OUT (PIOCRB).A 
LO A.OFFH :ALL PORT B LINES INPUTS 

OUT (PIOCRB).A 

SRCHL. IN A.(PIODRB) ;EXAMINE STATUS PORT 

BIT STB.A :HAS STROBE LINE GONE LOW? 

JR NZ.SRCHL :NO. WAIT UNTIL IT HAS 

SRCHH: IN A.(PIODRB) ;EXAMINE STATUS PORT AGAIN 

BIT STB.A :RISING EDGE FOUND? 

JR Z.SRCHH :NO. WAIT UNTIL ONE OCCURS 

IN A.(PIODRA) :YES. FETCH DATA 

HALT 

11-70 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 3E LO A.01001111 B 
0001 4F 
0002 03 OUT (PIOCRA).A 
0003 PIOCRA 
0004 3E LO A.11001111B 
0005 CF 
0006 03 OUT (PIOCRB).A 
0007 PIOCRB 
0008 3E LO A.OFFH 
0009 FF 
OOOA 03 OUT (PIOCRB).A 
OOOB PIOCRB 
oooc DB SRCHL. IN A.(PIODRB) 
0000 PIODRB 
OOOE CB BIT STB.A 
OOOF STB 
0010 20 JR NZ.SRCHL 
0011 FA 
0012 DB SRCHH: IN A.(PIODRB) 
0013 PIODRB 
0014 CB BIT STB.A 
0015 STB 
0016 28 JR Z.SRCHH 
0017 FA 
0018 DB IN A.(PIODRA) 
0019 Pl OD RA 
001A 76 HALT 

If the CPU repeats this routine. 1t will not fetch another character until the next r1s1ng 
edge occurs on the strobe line. A continuing high level on the strobe line will be ig­
nored. 

STB depends on which bit of Port B 1s used. Figure 11-23 shows bit 4 being used. but 
bits 0. 6. and 7 are. as usual. the easiest to examine. Try rewriting the program to use 
the more accessible bit pos1t1ons. 

The second bvte of the Bit instructions depends on the value of STB but is not equal to 
that value. For example. the second byte 1s 4F15 if STB = 1. 5715 if STB = 2. etc. 

11-71 



A Digital-to-Analog Converter 
Purpose: Send data to an 8-b1t digital-to-analog converter. which has an active-low 

latch enable. 

Digital-to-analog converters produce the continuous signals required bv solenoids. 
relays. actuators. and other electrical and mechanical output devices. Typical conver­
ters consist of switches and resistor ladders with the appropriate resistance values. 7 

The user must generally provide a reference voltage and some other digital and analog 
circuitry. although complete units are becoming available at low cost. 

Figure 11-24 describes the 8-bit Signet1cs NE5018 D/A converter. which contains an 
on-chip 8-b1t parallel data input latch. A low level on the LE (Latch Enable) input gates 
the input data into the latches. where it remains after LE goes high. 

Figure 11-25 illustrates the interfacing of the device to a Z80 microprocessor. Here the 
A side of the PIO is used to generate the Latch Enable signal. The RDY line from the PIO 
could be used 1n the mode where 1t is tied to the STB line to form a pulse lasting one 
clock cycle. However. one clock cvcle may not be long enough. since the NE5018 re­
quires a 400 ns pulse. Furthermore, the polarity 1s the opposite of that needed by the 
NE5018. 

Note that the PIO latches the output data. The data therefore remains stable during and 
after the conversion. The converter typically requires only a few microseconds to pro­
duce an analog output. Thus. the converter latch could be left enabled if the port were 
not used for any other purpose. 

In applications where eight bits of resolution are not enough. 10- to 16-bit converters 
can be used. Additional port logic 1s required to pass all the data bits: some converters 
provide part of this logic. 

The PIO here serves both as a parallel data port and as a serial control port. Of course. if 
Port A 1s used for control. it could actually handle up to eight bits. 

Task: Output to converter. 

Purpose: Send data from memory location 0040 to the converter. 

Flowchart: 

Start 

} Oata = 10040) 

Send data 

to converter 

Pulse 
Latch Enable 

End 

11-72 



- I .!.i 
w 

CE 

Vee 

~ VREF 
Out 

VREFO 
Adj 

VREF 
In 

Bipolar 
Offset 

l I 

-
A 

Vee 

OB7 
MSB 

I 

I 

086 OBS 084 OBJ DB2 

Latches and 

Switch Drivers 

II 
~ 

DAC Switches 

Figure 11-24 Signetics NE5018 D/A Converter 

OB1 DBO 
L.SB 

I 
... 

I OAC Current 

Output 

I 

I 

Digital 

GND 

Sum 

f'I"~ I. " 'ow 

~··· 0 Comp 

Analog 

GND 

--

All R values equal 5k fl and are thermally matched 



Data Bus Analog 

from CPU 
" B7 ~ NE5018 Output 

PIO j DIA -i ,; 
Bo r 

Converter 

A4 lf 

I • 
Figure 11-25. Interface for an 8-b1t Digital-to-Analog Converter 

Source Program: 

LO 
OUT 
SUB 
OUT 
LO 
OUT 
LO 
OUT 
IN 
RES 
OUT 
SET 
OUT 
HALT 

A.11001111B 
(PIOCRA).A 
A 
(PIOCRA).A 
A.00001111 B 
(PIOCRB).A 
A.(40H) 
(PIODRB).A 
A.(PIODRA) 
4.A 
(PIODRA).A 
4.A 
(PIODRA).A 

:MAKE PORT A CONTROL 

:ALL PORT A PINS OUTPUTS 

:MAKE PORT B OUTPUT 

:GET DATA 
:SEND DATA TO DAG 
:GET OLD CONTROL DATA 
:BRING LATCH ENABLE LOW 

:BRING LATCH ENABLE HIGH 

11-74 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 3E LO A.11001111B 
0001 CF 
0002 03 OUT (PIOCRAl.A 
0003 PIOCRA 
0004 97 SUB A 
0005 03 OUT (PIOCRA).A 
0006 PIOCRA 
0007 3E LD A.00001111 B 
0008 OF 
0009 03 OUT (PIOCRB).A 
OOOA PIOCRB 
OOOB 3A LO A.(40H) 
oooc 40 
0000 00 
OOOE 03 OUT (PIODRB).A 
OOOF Pl OD RB 
0010 DB IN A.(PIODRA) 
0011 PIODRA 
0012 CB RES 4.A 
0013 A7 
0014 03 OUT (PIODRA).A 
0015 PIODRA 
0016 CB SET 4.A 
0017 E7 
0018 03 OUT (PIODRA).A 
0019 PIODRA 
001A 76 HALT 

The particular bit that must be set and reset depends. of course. on how the Latch Ena­
ble 1s connected to the control port. Bit 0 is often convenient to use for control purposes 
since. if that bit is onginallv cleared. 1t can be set with an INC instruction and reset with 
a DEC instruction. 

We could use the automatic brief strobe from B ACK if the Latch Enable were act1ve­
h1gh (and if this strobe were long enough when B ACK 1s tied back to B STB). The pro­
gram would then be: 

LO A.00001111 B :MAKE PORT B OUTPUT 
OUT (PIOCRB).A 
LO A.(40H) :GET DATA 
OUT (PIODRB).A :SEND DATA TO DAC AND ENABLE LATCH 
HALT 

An inverter gate could produce an active-low signal. Note how manv fewer instructions 
are necessary. 

11-75 



Analog-to-Digital Converter 
Purpose: Fetch data from an 8-bit analog-to-digital converter that requires an Initiate 

Conversion pulse to start the conversion process and has a Data Valid line to 
indicate the completion of the process and the availability of valid data. 

Analog-to-digital converters handle the continuous signals produced by various types 
of sensors and transducers. 8 The converter produces the digital input which the com­
puter requires. 

One form of analog-to-digital converter 1s the successive approximation device. which 
makes a direct 1-bit comparison during each clock cycle. Such converters are fast but 
have little noise 1mmunitv. Dual slope integrating converters are another form of 
analog-to-digital converter. These devices take longer but are more resistant to noise. 
Other techniques. such as the incremental charge balancing technique. are also used. 

Analog-to-digital converters usually require some external analog and digital circuitry. 
although complete units are becoming available at low cost. 

Figure 11-26 shows the 8-bit Teledyne Semiconductor 8703 A/D converter. The device 
contains a result latch and tristate data outputs. A pulse on the Initiate Conversion line 
starts conversion of the analog input; after about two milliseconds the result will go to 
the output latches. and the Data Valid output will indicate this by switching first low 
and then high. Data is read from the latches by applying ·o· to the ENABLE input. 

Figure 11-27 shows the interface for the Z80 processor and the 8703 converter. 9 Port B 
is used to provide an Initiate Conversion pulse (active-high) of sufficient length. The 
Data Valid signal is tied to A STB so that Data Valid going low and then high will latch 
the converted data into Port A. The Data Valid signal is also tied to a bit of Port B so that 
the CPU can determine its value. The important edge on the Data Valid line 1s the low­
to-h1gh edge. which indicates the completion of the conversion. As in the case of the 
encoded keyboard. additional circuitry will be necessary if the pulse on Data Valid is too 
short to be handled in software. Note that we are using Port B here for both status and 
control. 

11-76 



.... 
I 
-.I 
-.I 

INITIATE 
CONVERSION 

0.1µf 

t +5V 

19 

Voo 

..J'"1_ 0 ~11 .. 1 

V1NO ¥.,.. ± ''"I T f' 
l1N = 10µA FoS. -- 27()pF I 

+ SV 100fl 

100kfl -=-
20kfl > ... ~ • 

Internal 

Clock 
and 

Control 
Logic 

Data 

Counters 

Output 

Latches 

.... 
Binary 
Outputs 

j24 0 ENABLE 

-· 1;....-, ~}:;:; 
1kfl r r-------

-
V55 GNO 

I,.,. : BUSY l--~=======================12~i3:; Data Valid 
I I 

-5V 

13 18 17 20 
·20µA ~RAEF' RBIAS ~ 100kfl 

~ 320kfl 

~0.1µf 

- ":" 
VREF -5V 

•Components chosen for VIN (F S) 10V. VREF -6 4V 

Figure 11-26. Teledyne 8703 A/D Converter 



Data Bus 

to CPU 

85 

PIO 
":1 l/''-----t 
Ao 

A STB 

BZ 

T eledvne 8703 

A/D 
Converter 

Data Initiate 

Valid Conversion 

Analog 

Input 

Figure 11-27 Interface for an 8-b1t Analog-to-Digital Converter 

Task: Input from converter. 

Purpose: Start the conversion process. wait for Data Valid to go low and then high. 
and then read the data and store it in memory location 0040. 

Flowchart: 

Start 

Pulse lnitiate 

Conversion 

line 

Read data from 

data input port 

{0040) = Data 

End 

Note that here the PIO serves as a parallel data port. a serial status oort. and a serial 
control port. 

11-78 



Source Program: 

LO 
OUT 
LO 
OUT 
LO 
OUT 
LO 
OUT 
SUB 
OUT 

WTLOW: IN 
BIT 
JR 

WTHI: IN 
BIT 
JR 
IN 
LO 
HALT 

A.01001111 B 
(PIOCRA).A 
A.11001111 B 
(PIOCRB).A 
A.00001111 B 
(PIOCRB).A 
A.00100000B 
(PIODRB).A 
A 
(PIODRB).A 
A.(PIODRBl 
2.A 
NZ.WTLOW 
A.(PIODRB) 
2.A 
Z.WTLOW 
A.(PIODRA) 
(40H).A 

:MAKE PORT A INPUT 

:MAKE PORT B CONTROL 

;B4-7 OUTPUT. B0-3 INPUT 

:SEND INITIATE CONVERSION HIGH 

:SEND INITIATE CONVERSION LOW 

:HAS DATA VALID GONE LOW? 

:NO. WAIT 
:IS DATA AVAILABLE? 

:NO. WAIT 
:YES. FETCH DATA FROM CONVERTER 
;SAVE CONVERTER DATA 

11-79 



Object Program: 

Memorv Address Memory Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 3E LO A.01001111 B 

0001 4F 
0002 03 OUT (PIOCRA).A 

0003 PIOCRA 
0004 3E LO A.11001111B 

0005 CF 
0006 03 OUT (PIOCRB).A 

0007 PIOCRB 
0008 3E LO A.00001111 B 

0009 OF 
OOOA 03 OUT (PIOCRB),A 

OOOB PIOCRB 
oooc 3E LO A.00100000B 

0000 20 
OOOE 03 OUT (PIODRB).A 

OOOF PIODRB 

0010 97 SUB A 
0011 03 OUT (PIODRB).A 

0012 PIODRB 
0013 DB WTLOW: IN A.(PIODRB) 

0014 PIODRB 
0015 CB BIT 2.A 

0016 57 
0017 20 JR NZ.WTLOW 

0018 FA 
0019 DB WTHI: IN A.(PIODRB) 

001A PIODRB 
001B CB BIT 2.A 

001C 57 
0010 28 JR Z.WTHI 

001E FA 
001F DB IN A.(PIODRA) 

0020 PIODRA 
0021 32 LO (40Hl.A 

0022 40 
0023 00 
0024 76 HALT 

One approach to configuring PIOs 1s to use the repeated Block Output instruction OTIR 

and a table in memorv containing the words to be sent to the Control register. A typical 

routine would be: 

LO 
LO 
LO 
OTIR 

B,LENG 
C.PIOCR 
HL,CTLTAB 

;COUNT =NUMBER OF CONTROL WORDS 
:GET CONTROL PORT NUMBER 
:STARTING ADDRESS OF PIO CONTROL TABLE 
;CONFIGURE PIO 

In fact. another table (or the Stack) could be used to hold the number of control words 

and the port number for each PIO. 

11-80 



One state 

Zero state 

·o· ·o· ·o· .,. ·o· 
~ ...... ______ , ,..------_.,.r-:Pa::".n:tv..--"'.:S:-'.to~p ~ 

Bit 7 Data Bits Bit Bit Bit 

Olaracter is ASCII 'E' with odd parity (45 hexJ. 

Remember that the transmission order is Start bit 

~LbitQbittbit~bitabit~bit~bit&~~ 
bit. Stop bit ('1'), Stop bit (Tl. 

Figure 11-28. Teletypewriter Data Format 

A Teletypewriter (TTY) 
Purpose: Transfer data to and from a standard 10-character-per-

second serial teletypewriter. 

The common teletypewriter transfers data in an asynchronous 
serial mode. The procedure 1s as follows: 

1 l The line 1s normally in the one state. 

2) A Start bit (zero bit) precedes each character. 

3) The character is usually 7-bit ASCII with the least significant 
bit transmitted first. 

4) The most significant bit 1s a Parity bit. which may be even. 
odd. or fixed at zero or one. 

5) Two stop bits (logic one) follow each character. 

TTY 
INTERFACE 

STANDARD 
TTY 

CHARACTER 
FORMAT 

Figure 11-28 shows the format. Note that each character requires the transm1ss1on of 
eleven bits. of which only seven contain information. Since the data rate 1s ten charac­
ters per second. the bit rate 1s 10 x 11, or 110 Baud. Each bit therefore has a width of 
1/110 of a second. or 9.1 milliseconds. This width 1s an average; the teletypewriter 
does not maintain it to any high level of accuracy. 

For a teletypewriter to communicate properly with a computer. the following pro­
cedures are necessary. 

Receive (flowcharted in Figure 11-29): 

Step 1) Look for a Start bit (a logic zero) on the data line. 

Step 2) Center the reception by waiting one-half bit time. or 4.55 
milliseconds. 

TTY 
RECEIVE 
MODE 

Step 3) Fetch the data bits. waiting one bit time before each one. Assemble the data 
bits into a word by first shifting the bit to the Carry and then circularly shifting 
the data with the Carry. Remember that the least significant bit 1s received 
first. 

Step 4) Generate the received Parity and check' it against the transmitted Parity. If 
they do not match. indicate a "Parity error." 

Step 5) Fetch the Stop bits (waiting one bit time between inputs). If they are not cor­
rect (if both Stop bits are not onel. indicate a "framing error." 

11-81 



Start 

Get mput data 

Wait one-hatt 

bit tune 

Count 
Data 0 

Weit one bit time 

Get input data 
Carry = Input data 

Shift data nght 
with Carrv 

Count = Count-1 

Generate 

received panty 

No 

Pantv 
error 

Count =2 

Wait one brt time 

Get mput data 

Framing 

error 

Count = Count - i 

End 

Figure 11-29. Flowchart for Receive Procedure 

11-82 



Task 1 : Read data. 

Purpose: Fetch data from a teletypewriter through bit 7 of a PIO data port and place 
the data into memory location 0060. For procedure. see Figure 11-29. 

Source Program: 

(Assume that the serial port 1s bit 7 of the PIO and that no parity or framing check 1s 
necessary) 

LO 
OUT 

WTSTB: IN 
RLA 
JR 
CALL 
LO 

RCVB: CALL 
IN 
RLA 
RR 
JR 
LO 
LO 
HALT 

(Delav program) 

ORG 
DHALF· PUSH 

LO 
JR 

DFULL: PUSH 
LO 

DLY16: LO 
DLY1. DEC 

JR 
DEC 
JR 
POP 
RET 

A.0100111 lB 
(PIOCRA).A 
A.(PIODRA) 

C.WTSTB 
DHALF 
D. 1 OOOOOOOB 
DFULL 
A.(PIODRA) 

D 
NC.RCVB 
A.D 
(60H).A 

30H 
DE 
D.B 
DLY16 
DE 
D.16 
E.8DH 
E 
NZ.DLY1 
D 
NZ.DLY16 
DE 

:MAKE PORT A INPUT 

:READ SERIAL LINE 
:IS THERE A START BIT? 
:NO. WAIT UNTIL THERE IS 
:YES. DELAY HALF BIT TIME TO CENTER 
:COUNT WITH BIT IN MSB 
:WAIT 1 BIT TIME 
:READ SERIAL LINE 
:MOVE BIT TO CARRY 
:MOVE BIT TO ASSEMBLED WORD 
:CONTINUE IF COUNT BIT NOT IN CARRY 

:SAVE OLD REGISTERS 
:HALF BIT LENGTH COUNT 

:SAVE OLD REGISTERS 
:FULL BIT LENGTH COUNT 
:DELAY 1/16TH BIT TIME 

;RESTORE OLD REGISTERS 

Remember that bit 0 of the data is received first. 

11-83 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 3E LD A.01001111 B 
0001 4F 
0002 03 OUT (PIOCRAJ.A 
0003 PIOCRA 
0004 DB WTSTB: IN A.(PIODRA) 
0005 PIODRA 
0006 17 RLA 
0007 38 JR C.WTSTB 
0008 FB 
0009 CD CALL DHALF 
OOOA 30 
OOOB 00 
oooc 16 LD D.1 OOOOOOOB 
OOOD 80 
OOOE CD RCVB: CALL DFULL 
OOOF 35 
0010 00 
0011 DB IN A.(PIODRA) 
0012 PIODRA 
0013 17 RLA 
0014 CB RR D 
0015 1A 
0016 30 JR NC.RCVB 
0017 F6 
0018 7A LD A.D 
0019 32 LD (60H).A 
001A 60 
001B 00 
001C 76 HALT 
0030 D5 DHALF: PUSH DE 
0031 16 LD D.8 
0032 08 
0033 18 JR DLY16 
0034 03 
0035 D5 DFULL: PUSH DE 
0036 16 LD D.16 
0037 10 
0038 1E DLY16: LD E.SDH 
0039 SD 
003A 1D DLY1: DEC E 
0038 20 JR NZ.DLY1 
003C FD 
003D 15 DEC D 
003E 20 JR NZ.DLY16 
003F FS 
0040 D1 POP DE 
0041 C9 RET 

11-84 



This program assumes that the Stack can be used for subroutine calls, i.e .. the monitor 
must initialize the Stack Pointer. Otherwise you will have to initialize the Stack Pointer 
as shown in Chapter 10. 

The constants for the delay routine were calculated iust as shown earlier in this chapter. 
You might try determining them for yourself. The delays do not have to be highly accu­
rate because the reception is centered. the messages are short. the bit rate is low. and 
the teletypewriter is not highly accurate itself. 

How would you extend this program to check for the two stop bits? They must both be 
one or a framing error has occurred. 

You can extend this program to check odd parity by replacing the LD A.D instruction 
with the sequence: 

SUB 
AND 
JP 

A 
D 
PE.PRERR 

:IS PARITY ODD? 
;NO. PARITY ERROR HAS OCCURRED 

11-85 



Start 

Carrv = O (Start bit) 
Get output data 
Shift data left 
c1rcularty with Carrv 
Count=ll 

Seil\l data to 

Output Port 

Shift data nght 
circularly with Carry 
Carry = 1 {Stop bit) 
Wait 1 bit time 

Count = Count - 1 

End 

Figure 11-30. Flowchart for Transmit Procedure 

Task 2: Write data. 

Purpose: Transmit data to a teletypewriter through bit 0 of a PIO data register. The 
data is in memorv location 0060. 

Transmit (flowcharted 1n Figure 11-30) 

Step 1) Transmit a Start bit (i.e .. a logic zero). 

Step 2) Transmit the seven data bits. starting with the least sig-
nificant bit. 

Step 3) Generate and transmit the Parity bit. 

Step 4) Transmit two Stop bits (i.e .. logic ones). 

TTY 
TRANSMIT 
MODE 

The transmission routine must wait one bit time between each operation. 

11-86 



Source Program: (Assume that pantv need not be generated) 

: MAKE PIO INTO OUTPUT PORT 

LD A.00001111 B :MAKE PORT B OUTPUT 
OUT (PIOCRB).A 

; GET DATA AND CLEAR START BIT 

LD 
ADD 
LD 

A.{60H) 
A.A 
B.11 

:GET DATA 
:SHIFT LEFT AND FORM ST ART BIT 
;COUNT= 11 BITS 

. TRANSMIT A BIT AND UPDATE DATA 

TBIT: OUT 
RRA 
SCF 

(PIODRB).A 

; DELAY 9.1 MS AND COUNT BITS 

CALL DFULL 
DJNZ TBIT 
HALT 

:TRANSMIT A BIT 
:UPDATE FOR NEXT BIT 
:FORM STOP BIT (LOGIC ONE) 

:DELAY 9.1 MS 
:COUNT DOWN 11 BITS 

The DFULL subroutine 1s the same as before. Remember that bit 0 of the data must be 
transferred first. 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) {Hex) (Mnemonic) 

0000 3E LD A.00001111 B 
0001 OF 
0002 D3 OUT {PIOCRB).A 
0003 PIOCRB 
0004 3A LD A.(60H) 
0005 60 
0006 00 
0007 87 ADD A.A 
0008 06 LD B.11 
0009 OB 
OOOA D3 TBIT: OUT {PIODRB).A 
OOOB PIODRB 
oooc 1F RRA 
OOOD 37 SCF 
OOOE CD CALL DFULL 
OOOF 35 
0010 00 
0011 10 DJNZ TBIT 
0012 F7 
0013 76 HALT 

11-87 



ADD A.A clears the least significant bit so that 1t can be used as the start bit. The most 
significant bit 1s saved in the Carrv. In actual applications. the startup routine should 

place a logic ·1· on the teletypewriter line after configuration since that line should nor­

mally be 1n the mark (one) state. 

Each character consists of 11 bits. starting with a start bit (zero) and ending with two 
stop bits (ones). 

This program can easily be extended to generate 7-bit characters with odd parity in the 
most significant bit. The paritv generation routine (to be inserted after LO A.(60H)) 1s: 

ANA A :IS PARITY 0007 
JP PO.STBIT :YES. NO PROBLEM 
SET 7.A :NO. MAKE IT ODD BY SETTING MSB 

STBIT: ADD A.A :SHIFT LEFT AND FORM START BIT 

How would you generate even parity? 

These procedures are sufficiently common and complex to merit a 
special LSI device: the UART. or Universal Asynchronous 
Receiver/Transmitter.10 The UART will perform the reception procedure and provide 

the data in parallel form and a Data Ready signal. It will also accept data in parallel 

form. perform the transmission procedure. and provide a Peripheral Ready signal when 

1t can handle more data. UARTs may have many other features. including: 

1) Ability to handle various bit lengths (usually 5 to 8). parity options. and numbers of 
Stop bits (usually 1. 1-1 /2. and 2). 

2) Indicators for framing errors. parity errors. and "overrun errors" (failure to read a 
character before another one 1s received). 

3) RS-23211 compatibility; 1.e .. a Request-to-Send (RTS) output signal that indicates 

the presence of data to communications equipment and a Clear-to-Send (CTS) in­
put signal that indicates. in response to RTS. the readiness of the communications 
equipment. There may be prov1s1ons for other RS-232 signals. such as Received 
Signal Quality, Data Set Ready. or Data Terminal Ready. 

4) Tristate outputs and control compatibility with a microprocessor. 

5) Clock options that allow the UART to sample incoming data several times in order 
to detect false Start bits and other errors. 

6) Interrupt facilities and controls. 

UARTs act as four parallel ports: an input data port. an output data port. an input 

status port. and an output control port. The status bits include error indicators as well 
as Ready flags. The control bits select various options. UARTs are inexpensive ($5 to 
$50. depending on features) and easv to use. 

11-88 



THE zeo SERIAL INPUT/OUTPUT DEVICE (SIO) 
The ZBO Serial Input/Output Device or SIO (see Figure 11-31) 1s a complete com­
munications contrdller specifically designed for use in ZSO-based microcomputers. It 
can serve a variety of communications functions. but we will only discuss its use as a 
simple asynchronous rece1ver/transm1tter.12 

The SIO has two complete channels (A and B) which can both 
receive and transmit serial data (see Figure 11-32). Channels that 
can receive and transmit simultaneously are called full-duplex. 

FULL­
DUPLEX 

Alternatives include half-duplex (able to transmit and receive. but not at the same 
t1mel. receive-only, and transmit-only. 

An SIO occupies four input port addresses and four output port 
addresses. The B/A (Channel B or A Select) and C/D (Control or 
Data Select) li;ies choose one of the four ports as described in Ta­

SIO 
ADDRESSES 

ble 11-7. Most often. designers attach address bit Ao to the B/A input and address bit 
Ai to the C/5 input. The SIO then occupies four consecutive port addresses as de­
scribed in the last column of Table 11-7 

As with the PIO. SIOs have more control registers than ad­
dresses. In fact. each SIO has eight registers in each chan­
nel for control and three registers for status. Figure 11-33 
contains diagrams of each control or Write register: Figure 

ADDRESSING 
SIO READAND 
WRITE REGISTER 

11-34 contains diagrams of each status or Read register. Two transfers are required to 
read or write any of the registers except Write Register 0. The first transfer (written into 
Write Register 0) contains three bits that direct the next transfer to or from the selected 
register. Note. 1n Figure 11-33. that these three bits occupy the three least significant 
bit pos1t1ons and that zeros in the other bit positions indicate a byte that has no function 
other than addressing. 

11-89 



Data 

Control 

CONTROL OR 
DATA SELECT 

0 
0 
1 
1 

+5V GND 

+ + 

CPU 

Bus 

1/0 

<l> 

i 

Internal 

Control 

Logic 

jnterrupt Control 

Lines 

Sena! Data 

Channel Clock 

Channel A 

SYNC 

WAIT/RDY 

Discrete Modem or 
Control Other 

and Controls 
Status 

Channel B 

Figure 11-31. Block Diagram of the ZBO SIO 

Table 11-7 SIO Addresses 

CHANNEL B OR A REGISTER PORT ADDRESS 
SELECT ADDRESSED (STARTING WITH SIOADD) 

0 Data Register A SIOADD 
1 Data Register B SIOADD+1 
0 Control A SIOADD+2 
1 Control B SIOADD+3 

The port addresses assume that C/D is tied to Al and B/A to Ao 

11-90 



CRC 
Generator 

Internal Bus 

)> 

CRC 

Checker 

TxD TxC 

j 

XMIT 

Shift and 

Bit Insert 

XMIT 

Buffer 

~ ;> 

REC 
FIFO 

REC 

Shift and 

Bit Stnp 

r 

i I 
RxD RxC 

A 

. 
) -
--

SYNC 

Registers 

Channel 

Control 

and 

Status 

SYNC 

Detect 

~ 

--

Figure 11-32. Block Diagram of SIO Channel 

11-91 

5YNC 

WAIT/ADY 



Write Reglatera 

The ZSO SIO contains eight registers in each chenneJ that are programmed (written into) by the system software 

to configure the functional personality of each channel. All Write registers. with the exception of Write Register 0, 

require two bvtes to be property programmed. The first bvte contains three bits that pOint to the selected register 

(00~02}; the second bvte 1s the actual control word that is bemg writteh to that register to configure the SIO. 

Write Register 0 is a special case. RESET (either internal commend or external input) will initialize the 510 to Write 

Register 0. All basic commends (CMD2-CMDO) end CAC controls (CACO, CAC1l can be accessed with a single byte 

using Write Register 0. 

Contained in the first byte of any Write register access are the basic commends (CMD2-CMDO) and the CRC con­

trols (CACO,CRC1) so that maximum svstem control and flexibility is maintained. 

Write Regleter 0 

0 0 0 RegisterO 

0 0 1 Register 1 

0 0 Register 2 

0 1 1 Register 3 

0 0 Register 4 

0 1 Register 5 

0 Register 6 

Register 7 

0 0 0 Null Coda 

0 0 Send Abort (SDLC) 

0 0 Reset External or Status interrupts 

0 1 1 Channel Reset 

0 0 Reset Ax Interrupt on First Character 

0 1 Reset Tx Interrupt Pending 

0 Error Reset 

Return from Interrupt (Ch-A Only) . 

0 0 Null Code 

0 1 Reset Ax CAC Checker 

0 Reset Tx CRC Generator 

Reset CRC/SYNCS Sent/Sending latch 

Write Reglater 1 

.._ _____ External Interrupt Enable 

'--------Tx Interrupt Enable 
.._ ________ Status Affects Vector (Ch-B Only) 

0 0 Rx Interrupt Disable 

0 Rx Interrupt on Rrst Character Only or Error 

0 Interrupt on All Rx Cheractera (Parity Affects Vector! 

Interrupt on All Rx Characters (Parity Does Not Affect Vector) 

'-----WAIT/READY on R/T 

'-------WAIT FN/READY FN 

---------WAIT/READY Enable 

Figure 11-33. SIO ~ntrol or Write Registers 

.11-92 



Write Register 2 

VO 

Vl 

V2 

V3 Interrupt 
V4 Vector 
vs 
VS 

V7 

Write Register 3 

0 0 
0 1 

0 

..._-----Rx Enable 
"--------SYNC Character Load Inhibit 

'--------- Address Search Mode {SDLC) 
'-----------Rx CRC Enable 

'-------------Enter Hunt Mode 
,_--------------Auto Enables 

Rx 5 Bits/Character 

Rx 6 Bits/Character 
Rx 7 Bits/Character 
Rx 8 Bits/Character 

Write Register 4 

----- Pantv Enable 
....._ ______ Parity Even/Odd 

0 0 SYNC Modes Enable 
0 1 1 Stop Bit/Character 

0 1-1/2 Stop Bits/Character 
2 Stop Bits/Character 

0 0 8 Bit SYNC Character 
0 1 16 Bit SYNC Character 

0 SDLC Mode (01111110 SYNC Ragi 
External SYNC Mode 

O 0 x 1 Clock Mods 
0 1 x16 Clock Mode 

0 x32 Clock Mode 
x64 Clock Mode 

Figure 11-33. SIO Control or Write Registers (Continued) 

11-93 



Write Reglater 6 

'----Tx CRC Enable 

'------ATS 
'--------SDLC/CRC-16 

'----------Tx Enable 
------------Send BREAK 

0 0 Tx 5 Bits {or Less)/Character 
0 Tx 7 Bits/Character 

0 Tx 6 Bits/Character 
Tx 8 Bits/Character 

'-----DTR 

Write Register 6 

'----SYNC Bit 0 
------SYNC Bit 1 

,_-------SYNC Bit 2 
----------SYNC Bit 3 

,_-----------SYNC Bit 4 

'-------------SYNC Bit 5 

'--------------SYNC Bit 6 
'-----------------SYNC Bit 7 

Write Register 7 

'----SYNC Bit 8 
------SYNC Bit 9 

--------SYNC Bit 10 

'----------SYNC Bit 11 
'------------SYNC Bit 12 

'-------------SYNC Bit 13 
,_--------------SYNC Bit 14 

'----------------~SYNCBit15 

Also SDLC Address Fial 

For SDLC it must be programmed 
to "01111110" for Flag Recognition 

Figure 11-33. SIO Control or Write Registers (Continued) 

11-94 



Read Registers 

The ZSO SIO contains three registers that can be read to obtain the status of each channel. Status information in­
cludes error conditions, Interrupt vector, and standard communication interface protocol signals. To read the con~ 
tents of a selected Reed register. the system software must first write out to the SIO the byte containing pointer 
information (00~02) in exactly the same manner as a Write register operation. Then. by issuing a READ operation, 
the contents of the addressed Read/Status register can be read by the Z80 CPU. 

The real power in this type of command structure is that the programmer has complete freedom, after pointing to 
the selected register. of either reading or writing to initialize or test that register. Bv designing software to initialize 
the ZSO SIQ in a modular. structured fashion. the programmer can use the powerful ZSO Block 1/0 instructions to 
s1gnificentlv simplify and speed his software development and debug. 

Read Register 0 

._ ____ Rx Character Available 

'-------Interrupt Pending (Ch-A Oniyi 
'---------~TxBufferEmpW 

"---------------DCD 
-----------SYNC/HUNT ._ _____________ CTS 

'----------------Sending CRC/SYNCS 
'----------------BREAK/ABORT 

Reed Register 1 

An Sent 

I-Field Bits l-F181d Bits 1n 
in Previous Second Previous 

Bvte Bvte 

1 0 0 0 3 

0 0 0 4 
1 1 0 0 
0 0 0 
1 0 0 
0 0 
1 1 1 

0 0 0 

Palitv Error 

} Rx Overrun Error 

CRC/Frammg Error 
End of Frame !SDLCI 

Ftesidue Data for 
8 Rx Bits/Character 
Programmed 

Special Rx 
Condition 

Interrupts 

Figure 11-34. SIO Status or Read Registers 

11-95 



Raad Register 2 (Channel B Onlyl 

VO 
V1 
V2 
V3 Interrupt 

V4 Vector 

V5 
vs 
V7 

Figure 11-34. SIO Status or Read Registers (Continued) 

11-96 



Note the following special features of the SIO: 

1) Input and output instructions address physically distinct 
registers. There is no way to read the control registers or write 
into the status registers. 

SPECIAL 
FEATURES 
OFSIO 

2) All control registers for a channel share a single port address. 
Thus two bytes are required to change the contents of any control reg'ister except 
Register 0. 

3) RESET initializes the SIO to Write Register 0. It also disables 
both receivers arrd transmitters. deactivates all control sig­
nals. and disables all interrupts. We will discuss the SIO 1riter­
rupt system in Chapter 12. 

ISiOl 
~ 

4) The SIO must be configured before 1t can be used. The easiest way to do this is by 
placing the required bytes into a table and using the repeated Block 1/0 instruction. 
The table must include both the bytes needed to address the various registers and 
the data that must be placed into them. A typical routine would be: 

LO 
LO 
LO 
OTIR 

B.LENG 
C.SIOCRA 
HL.CTLTAB 

:NUMBER OF WORDS IN TABLE 
;PORT NUMBER 
:START OF CONTROL TABLE 
:CONFIGURE SIO 

5) The RS-232 signals are all active-low. However. the SIO control bits for these sig­
nals are act1ve-h1gh (i.e .. a logic '1' 1n a control bit sends an RS-232 signal low). 

6) The SIO requires an external clock. In asynchronous communications at 110 Baud. 
1760 Hz 1s usually supplied and the X 16 mode is used. The SIO will sample the bits 
at the clock frequency for synchronization and to avoid false start bits caused by 
noise on the line. 

7) The Data Ready (Rx Character Available) flag 1s bit 0 of Read Register 0. The Periph­
eral Ready (Tx Buffer Empty) flag 1s bit 2 of Read Register 0. 

8) Error status bits (parity, overrun. and framing) are in Read Register 1. 

11-97 



EXAMPLES 
Teletypewriter 1/0 via a USART 
Task 1: Read from teletypewriter through SIO 

Purpose: Receive data from a teletypewriter through an SIO and place the data into 

memory location 0040. The data 1s 7-bit ASCII with odd pantv. 

Source Program: 

LO A.4 :ACCESS WRITE REGISTER 4 

OUT (SIOCRA).A 

LO A.010000018 :X16 CLOCK MODE. ODD PARITY 

OUT (SIOCRA).A 
LO A.3 :ACCESS WRITE REGISTER 3 

OUT (SIOCRA).A 
LD A.01000001B ;7 BIT CHARACTERS. ENABLE RECEIVER 

OUT (SIOCRA).A 
SUB A :ACCESS READ REGISTER 0 

OUT (SIOCRA).A 
WAITD: IN A.(SIOCRA) :GET STATUS 

RRA :IS DATA AVAILABLE? 

JR NC.WAITD :NO. WAIT 

IN A.(SIODRA) :YES. GET DATA 

LO (40H).A :SAVE DATA IN MEMORY 

HALT 

11-98 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 3E LO A.4 
0001 04 
0002 03 OUT (SIOCRA).A 
0003 SIOCRA 
0004 3E LO A.01000001B 
0005 41 
0006 03 OUT (SIOCRA).A 
0007 SIOCRA 
0008 3E LO A.3 
0009 03 
OOOA 03 OUT (SIOCRA).A 
OOOB SIOCRA 
oooc 3E LO A.01000001 B 
0000 41 
OOOE 03 OUT (SIOCRA).A 
OOOF SIOCRA 
0010 97 SUB A 
0011 03 OUT (SIOCRA).A 
0012 SIOCRA 
0013 DB WAITD: IN A.(SIOCRA) 
0014 SIOCRA 
0015 1F RRA 
0016 30 JR NC,WAITD 
0017 FB 
0018 DB IN A.(SIODRA) 
0019 SI OD RA 
001A 32 LO (40H).A 
001B 40 
001C 00 
0010 76 HALT 

11-99 



The program establishes Write Register 4 as follows: 

Bits 7 and 6 = 01 to select X 16 clock mode (1760 Hz 
must be supplied) 

Bit 1 = 0 to select odd parity 
Bit 0 = 1 to enable parity checking 

The program establishes Write Register 3 as follows: 

Bits 7 and 6 = 01 for 7 bits per character 

Bit 0 = 1 to enabie the receiver 

The received data status bit 1s bit 0 of Read Register 0. 

Note that any errors found will be reported in Read Register 1: 

Bit 6 = 1 for a framing error (no stop bitl 

Bit 5 = 1 for an overrun error (more data received before 
previous data read) 

Bit 4 = 1 for a paritv error 

Trv adding an error checking routine to the program. Set 

(0061 l 0 if no errors occurred 
1 if a parity error occurred 
2 if an overrun error occurred 
3 if a framing error occurred. 

Note that the receiver always checks for one stop bit. 

11-100 

EXAMPLE 
OFSIO 
CONFIGURATION 

SIO 
ERROR 
STATUS 



Task 2: Write to teletype through SIO. 

Purpose: Send data from memory location 0040 to a teletypewriter through an SIO. 
The data is 7-bit ASCII with odd parity. 

Source Program: 

LD 
OUT 
LD 
OUT 
LD 
OUT 
LD 
OUT 
SUB 
OUT 

WAITR: IN 
BIT 
JR 
LD 
OUT 
HALT 

A.4 
(SIOCRA).A 
A.01001101B 
(SIOCRA).A 
A.5 
(SIOCRA).A 
A.00101000B 
(SIOCRA).A 
A 
(SIOCRA).A 
A.(SIOCRA) 
2.A 
Z.WAITR 
A.(40HJ 
(SIODRA).A 

:ACCESS WRITE REGISTER 4 

;X16 CLOCK MODE. 2 STOP BITS. ODD PARITY 

:ACCESS WRITE REGISTER 5 

:7 BIT CHARACTERS. ENABLE TRANSMITIER 

:ACCESS READ REGISTER 0 

:GET STATUS 
:IS TRANSMITIER READY? 
:NO. WAIT 
:YES. GET DATA 
:AND TRANSMIT IT 

11-101 



Object Program: 

Memory Address Memory Contents Instruction 

(Hex) (Hex) (Mnemonic) 

0000 3E LD A.4 
0001 04 
0002 03 OUT (SIOCRA).A 

0003 SIOCRA 
0004 3E LD A.01001101 B 

0005 40 
0006 03 OUT (SIOCRA).A 

0007 SIOCRA 
0008 3E LD A.5 

0009 05 
OOOA 03 OUT (SIOCRA).A 

OOOB SIOCRA 
oooc 3E LO A.00101000B 

0000 28 
OOOE 03 OUT (SIOCRA).A 

OOOF SIOCRA 
0010 97 SUB A 
0011 03 OUT (SIOCRA).A 

0012 SIOCRA 
0013 DB WAITR: IN A.(SIOCRA) 

0014 SIOCRA 
0015 CB BIT 2.A 
0016 57 
0017 28 JR Z.WAITR 

0018 FA 
0019 3A LD A.(40Hl 

001A 40 
001B 00 
001C 03 OUT (SIODRA).A 

0010 SI OD RA 
001E 76 HALT 

The program establishes Write Register 4 as follows: 

Bits 7 and 6 = 01 to select X 16 clock mode (1760 Hz must be supplied) 

Bits 3 and 2 = 11 to add 2 stop bits to each character 

Bit 1 = 0 to select odd parity 

Bit 0 = 1 to enable paritv generation 

The program establishes Write Register 5 as follows: 

Bits 6 and 5 = 01 for 7 bits per character 

Bit 3 = 1 to enable the transmitter 

The transmitter status bit 1s bit 2 of Read Register 1. 

11-102 



STANDARD INTERFACES 
Other standard interfaces besides the TTY current-loop and STANDARD 
RS-232 can also be used to connect peripherals to the m1crocom- INTERFACES 
puter. Popular ones include: 

1) The serial RS449. RS422. and RS423 mterfaces.13 
2) The 8-bit parallel General Purpose Interface Bus. also known as IEEE-488 or 

Hewlett-Packard Interface Bus (HPIB).14 
3) The S-100 or Alta1r/lmsa1 hobbyist bus.15 This 1s also an 8-b1t bus. 
4) The Intel Multibus.16 This 1s another 8-b1t bus that can. however. be expanded to 

handle 16 bits in parallel. 

PROBLEMS 
6) Separating Closures from an Unencoded Keyboard 
Purpose: The program should read entries from an unencoded 3 x 3 keyboard and 

place them into an array. The number of entries required 1s in memory loca­
tion 0040 and the array starts in memory location 0041. 

Separate one closure from the next by waiting for the current closure to end. Remember 
to debounce the keyboard (this can be simply a 1 ms wa1tl. 

Sample Problem: 

(0040) = 04 

Entries are 7. 2. 2. 4 
Resu It: (0041) 07 

(0042) 02 
(0043) 02 
(0044) 04 

7) Read a Sentence from an Encoded Keyboard 
Purpose: The program should read entries from an ASCII keyboard (7 bits with a zero 

Parity bit) and place them into an array until 1t receives an ASCII period (hex 
2E). The array starts in memory location 0040. Each entrv 1s marked by a 
strobe as in the example given under An Encoded Keyboard. 

Sample Problem: 

Entries are H. E. L. L. 0 .. 
Result: (0040) 48 H 

(0041) 45 E 
(0042) 4C L 
(0043) 4C L 
(0044) 4F 0 
(0045) 2E 

11-103 



8) A Variable Amplitude Square Wave Generator 
Purpose: The program should generate a square wave. as shown in the next figure. 

using a D/A converter. Memory location 0040 contains the scaled amplitude 
of the wave. memory location 0041 the length of a half cycle in milliseconds. 
and memory location 0042 the number of cycles. 

Assume that a digital output of 8015 to the converter results in an analog output of zero 
volts. In general. a digital output of D results in an analog output of VouT = -VREF 
(D-80)/80 volts. 

Sample Problem: 

Result: 

{0040) 
{0041) 
{0042) 

AO (hex) 
04 
03 

+VREF I 

iVREF j 
::: -v:e~ t---- -f--- -\-- ---f-- - -\- -- --f-----\-----j-_41H 

-VREF 
I 4 ms Time __________ ...,.. 

l 

The base voltage 1s 8015 = 0 volts. 
Full scale 1s 10015 = -VREF volts. 
So A015 = {A0-80)/80 X -VREF = -VREF/4 

The program produces 3 pulses of amplitude VREF/4 with a half cycle length of 4 ms. 

9) Averaging Analog Readings 
Purpose: The program should take four readings from an A/D converter ten millise­

conds apart and place the average in memory location 0040. Assume that 
the A/D conversion time can be ignored. 

Sample Problem: 

Readings are {hex) 86. 89. 81. 84 

Result: (0040) = 85 

10) A 30 Character-per-Second Terminal 
Purpose: Modify the transmit and receive routines of the example given under A 

Teletypewriter to handle a 30 cps terminal that transfers ASCII data with one 
stop bit and even parity. How could you write the routines to handle either 
terminal depending on a flag bit in memory location 0060: e.g .. {0060) = 0 
for the 30 cps terminal. {0060) = 1 for the 10 cps terminal? 

11-104 



REFERENCES 

1. Barnes. J., and V Gregory. "Use Microcomputers to Enhance Performance with 
Noisy Data." EON. August 20. 1976. pp. 71-72. 

2. Swanson. R .. "Understanding Cvclic Redundancy Codes." Computer Design. 
November 1975. pp. 93-99: and McNamara. J. E .. Technical Aspects Ofi5iila 
Communication. Digital Equipment Corp .. Maynard. Mass. 1977 

3. For example. the Z80 Direct Memory Access Controller (or OMA) for Z80 based 
microcomputers 1s described in An Introduction to Microcomputers: Volume 2 -
Some Real Microprocessors. 

4. The TTL Data Book for Design Engineers. Texas Instruments Inc .. P 0. Box 5012. 
Dallas. Texas 75222. 1976. 

5. Dilatush. E .. "Special Report: Numenc and Alphanumeric Displays." EON. Febru­
ary 5. 1978. pp. 26-35. 

6. See Reference 4. 

7 Hnatek. E. R .. A User's Handbook of D/A and A/D Converters. Wiley. New York. 
1976. 

8. See Reference 7 

9. See also D Guzeman. "Marry Your µ.P to Monolithic A/Ds." Electronic Design. 
January 18. 1977. pp. 82-86. --

10. For a discussion of UARTs. see P Rony et al .. "The Bugbook Ila." E and L Instru­
ments Inc.. 61 First Street. Derby, CT. 06418: or D. G. Larsen et al .. 
"INWAS: Interfacing with Asynchronous Serial Mode." IEEE Transactions on In­
dustrial Electronics and Control Instrumentation. February 1977. pp. 2-12. Also 
see McNamara. Reference 2. 

11. The official RS-232 standard 1s available as "Interface between Data Terminal 
Equipment and Data Commun1cat1ons Equipment Employing Senal Binary Data 
Interchange." EIA RS-232C August. 1969. You can find introductory descnpt1ons 
of RS-232 in G. Pickles. "Who's Afraid of RS-232?." Kilobaud. May 1977. pp. 
50-54 and 1n C. A. Ogdin. "Microcomputer Buses - Part II." Mini-Micro Systems. 
July 1978. pp. 76-80. Ogdin also describes the newer RS-449 standard. 

12. The SIO 1s discussed more completely in Volume 3 of An Introduction to 
Microcomputers: the following reference describes its use as a data link con­
troller: We1ssberger. A. J .. "Data-Link Control Chips: Bnnging Order to New Pro­
tocols." Electronics. June 8. 1978. pp. 104-112. 

13. Electronic lndustnes Assoc1at1on. "Electrical Charactenst1cs of Balanced Voltage 
Digital Interface Circuits." EIA RS-422. April 1975. 

Electronic Industries Assoc1at1on. "Electrical Charactenst1cs of Unbalanced 
Voltage Digital Interface Circuits." EIA RS-423. April 1975. 

Electronic Industries Assoc1at1on. "General Purpose 37-Pos1t1on and 9-Pos1t1on In­
terface for Data Terminal Equipment and Data Circuit Terminating Equipment 
Employing Serial Binary Data Interchange," EIA RS-449. November 1977 

Morns. D .. "Revised Data Interface Standards." Electronic Design. September 1. 
1977. pp. 138-141. 

11-105 



14. Institute of Electrical and Electronics Engineers. "IEEE Standard Digital Interface 
for Programmable Instrumentation." IEEE Std 488-1975-ANSI MC 1. 1-1975. 

J. B. Peatman. Microcomputer-Based Design. McGraw-Hill. New York. 
1977; Loughry. D. C. and M. S. Allen. "IEEE Standard 488 and Microprocessor 
Synergism." Proceedings of the IEEE. February 1 g78. pp. 162-172. 

15. Morrow. G .. and H. Fullmer. "Proposed Standard for the S-100 Bus." Computer. 
May 1978. pp. 84-89. 

Smith. M. L .. "Build Your Own Interface." Kilobaud. June 1977. pp. 22-28. 

16. Rolander. T.. "Intel Multibus Interfacing," Intel Application Note AP-28. Intel Cor­
poration. Santa C Iara, CA.. 1977 

11-106 



Chapter 12 
INTERRUPTS 

Interrupts are inputs that the CPU examines as part of each instruction cycle. These in­
puts allow the CPU to react to asvnchronous events in a more efficient manner than 
polling each device. When interrupts are utilized to initiate 1/0. generally more hard­
ware than ordinary, programmed 1/0 1s required. but this provides a faster and more 
direct response.1 

Why use interrupts? Interrupts allow events such as alarms. power 
failure. the passage of a certain amount of time. and peripherals 
having data or being ready to accept data to get the immediate at­
tention of the CPU. The programmer does not need to poll every 

REASONING 
BEHIND 
INTERRUPTS 

device. nor need the programmer worry about the system completely missing events. 
An interrupt system 1s like the bell on a telephone -1t rings when a call is received so 
that you don't have to pick up the receiver occasionally to see if someone 1s on the line. 
The CPU can go about its normal business (and get a lot more done). When something 
happens. the interrupt rouses the CPU and forces it to service the input before resuming 
normal operations. Of course. this simple description becomes more complicated (just 
like a telephone switchboard) when there are many interrupts of varying importance 
and there are tasks that cannot be interrupted. 

The 1mplementat1on of interrupt systems vanes greatly. 
Among the questions that must be answered to character­
ize a particular system are: 

1) How many interrupt inputs are there? 

2) How does the CPU respond to an interrupt? 

CHARACTERISTICS 
OF INTERRUPT 
SYSTEMS 

3) How does the CPU determine the source of an interrupt if the number of sources 
exceeds the number of inputs? 

4) Can the CPU differentiate between important and unimportant interrupts? 

5) How and when 1s the interrupt system enabled and disabled? 

There are many different answers to these questions. The aim of all the implementa­
tions. however. 1s to have the CPU respond rapidly to interrupts and resume normal ac­
t1v1ty afterwards. 

The number of interrupt inputs on the CPU chip determines the number of different 
responses that the CPU can produce without any additional hardware or software. Each 
input can produce a different internal response. Unfortunately, most microprocessors 
have a very small number (one or two. typ1callv) of separate interrupt inputs. 

The ultimate response of the CPU to an interrupt must be to transfer control to the cor­
rect interrupt service routine and to save the current value of the Program Counter. The 
CPU must therefore execute a Jump-to-Subroutine or Call instruction with the begin­
ning of the interrupt service routine as its address. This action will save the return ad­
dress in the Stack and transfer control to the interrupt service routine. The amount of 
external hardware required to produce this response vanes greatly. Some CPUs inter­
nally generate the instruction and the address: others require external hardware to 
form them. The CPU can onlv generate a different instruction or address for each sepa­
rate input. 

12-1 



If the number of 1nterrupt1ng devices exceeds the number of in­
puts. the CPU will need extra hardware or software to identify the 
source of the interrupt. In the simplest case. the software can be a 
polling routine which checks the status of the devices that may be 

POLLING 

VECTORING 

interrupting. The only advantage of such a system over normal polling 1s that the CPU 
knows that at least one device is active. The alternative solution 1s for additional hard­

ware to provide a unique data input (or "vector") for each source. The two alternatives 

can be mixed; the vectors can identify groups of inputs from which the CPU can iden­
tify a particular one by polling. 

An interrupt system that can differentiate between important and 
unimportant interrupts 1s called a "pnonty interrupt system." In­

I PRIORITY I 
ternal hardware can provide as many priority levels as there are inputs. External hard­

war13 can provide additional levels through the use of a Priority register and comparator. 
The external hardware does not allow the interrupt to reach the CPU unless its priority 
1s higher than the contents of the Pnonty register. A pnonty interrupt system may need 

a special way to handle low-priority interrupts that may be ignored for long periods of 
time. 

Most interrupt systems can be enabled or disabled. In fact. most 
CPUs automatically disable interrupts when a RESET 1s performed 
(so that the programmer can configure the interrupt system) and 
on accepting an interrupt (so that the interrupt will not interrupt 
its own service routine). The programmer may wish to disable in­

ENABLING 
AND 
DISABLING 
INTERRUPTS 

terrupts while preparing or processing data. performing a t1m1ng loop. or executing a 
mu lt1-byte operation. 

An interrupt that cannot be disabled (sometimes called a "non­
maskable interrupt") may be useful to warn of power failure. an 
event that obviously must take precedence over all other ac­
t1v1t1es. 

The advantages of interrupts are obvious. but there are also 
disadvantages. These include: 

1) Interrupt systems may require a large amount of extra 
hardware. 

NON-MASKABLE 
INTERRUPT 

DISADVANTAGES 
OF INTERRUPTS 

2) Interrupts still require data transfers under program control through the CPU. There 
1s no speed advantage as there is with DMA. 

3) Interrupts are random inputs. which makes debugging and testing difficult. Errors 
may occur sporadically, and therefore may be very hard to find.2 

4) Interrupts may involve a large amount of overhead if many registers must be saved 

and the source must be determined by polling. 

ZBO INTERRUPT SYSTEM 
The ZSO's internal response to an interrupt 1s fairly complex. since there are three 
different operating modes. The interrupt system consists of: 

1l An active-low maskable interrupt input (INT) and an act1ve­
low non-maskable interrupt input (NMil. 

2) Two enable flip-flops (IFF1 and IFF2). IFF1 can be set or reset 
to enable or disable interrupts. IFF2 serves as temporary 
storage for IFF1 during non-maskable interrupts. 

12-2 

zso 
INTERRUPT 
INPUTS 



The ZSO checks the current status of the interrupt system at the 
end of each instruction cycle. If an interrupt is active and enabled. 
the response is as follows:3 

1) The CPU disables the interrupt system by clearing IFF1. IFF2. 

Z80 
INTERRUPT 
RESPONSE 

however. is left in its original state if a non-maskable interrupt has occurred. Note 
that RESET clears both interrupt flip-flops so that the system can be configured 
before interrupts are enabled. 

2) The CPU executes a special Interrupt Acknowledge cycle. dist1ngu1shed by the M1 
signal (operation code fetch) being active. MREO (memory request) inactive (so the 
CPU will not perform its normal memory access). and IORQ (input/output request) 
active so that an interrupt response vector can be placed on the Data Sus. 

The remainder of the response depends on the interrupt mode and the source. 

Note in particular that the Z80 will check for interrupts after each transfer or com­
parison in a Block Move, Block Compare, or Repeated Block 1/0 instruction. 

The ZSO has the following special instructions for use with the 
interrupt system: 

1) El (Enable Interrupts) enables the maskable interrupt by 
setting the interrupt flip-flops. 

Z80 INTERRUPT 
INSTRUCTION 

2) DI (Disable Interrupts) disables the maskable interrupt by clearing the interrupt flip­
flops. 

3) RST (Restart) 1s a one-word Call instruction that saves the current value of the Pro­
gram Counter in the Stack and 1umps to the address specified m the instruction. 
Table 12-1 contains the various Restart instructions and their destination ad­
dresses. RST is often used m interrupt systems because 1t 1s a one-word instruction 
that is easy to form and place on the Data Bus. 

4) RETI (Return from Interrupt) acts exactly like a normal Return (RET) 1nstruct1on ex­
cept that ZSO peripheral chips (PIOs. SIOs. and CTCsl recognize this instruction and 
use it as a notification that the current interrupt service routine has been com­
pleted. 

5) RETN (Return from Non-Maskable Interrupt) acts exactly like a normal Return (RET) 
instruction except that it loads IFF1 from IFF2 so as to restore the original state of 
the interrupt system. 

6) LO A.I loads the Accumulator with the contents of the I (Interrupt Vector) register. 
This instruction (and LO A.R) also places IFF2 into the PIO bit of the Flag register. 
That flag can then be tested or saved in the Stack. 

7) LO I.A loads the I Onterrupt Vector) register with the contents of the Accumulator. 
8) IM (Set Interrupt Mode) determines the modem which interrupts are serviced. The 

three options are 0. 1. or 2: these are described later in this chapter. 

Non-Maskable Interrupt 
The non-maskable interrupt is an edge-sensitive (negative 
edge triggered) input. The processor therefore reacts only to 
the edge of a pulse on this line. and the pulse will not interrupt 
its own service routine. Non-maskable interrupts are useful for 

Z80 
NON-MASKABLE 
INTERRUPT 

applications that must respond to loss of power (i.e .. must save data in a low-power 
memory or switch to a backup battery). Typical applications are communications equip­
ment that must retain codes and partial messages and test equipment that must keep 
track of partially completed tests. 

12-3 



Table 12-1 The Restart (RST) Instructions 

RST Instruction Operation Code Destination Address 

(Mnemonic) Hex I (Hex) (Dec1mal) 

RSTO C7 0000 0 

RST 8 CF 0008 08 

RST 10H 07 0010 16 

AST lBH OF 0018 24 

RST 20H E7 0020 32 

RST 28H EF 0028 40 

AST 30H F7 0030 48 

AST 38H FF 0038 56 

The ZSO responds to a non-maskable interrupt as follows: 

1) It clears IFF1. thus disabling all interrupts (but saving the old state of IFF1 in IFF2). 

21 It ignores the next instruction fetched from memory and instead 1umps to memory 
location 006615. saving the old value of the Program Counter in the Stack. 

Remember that a RETN 1nstruct1on at the end of the service routine will restore the old 
state of IFF1 from IFF2. 

We will not discuss the non-maskable interrupt further. Henceforth. we will assume 
that all interrupt inputs are tied to INT. 

Z80 Interrupt Modes 
The ZSO has three interrupt modes. The programmer can choose 
any of these modes with the appropriate IM instruction. On reset. 
the processor always enters Mode 0. The modes are: 

Mode 0 

INTERRUPT 
MODES 

In this mode. the CPU uses the data input during the Interrupt Acknowledge cycle as an 
instruction. This mode is the same as the 8080 interrupt response mode.4 

The normal data input that must be provided externally is a RST instruction (see Table 
12-1). 

RST 1s useful in interrupt systems for the following reasons: 

1) It 1s a one-word 1nstruct1on and so requires only one fetch 
cycle. 

2) It provides eight different destination addresses or vectors. 

RESTART 
INSTRUCTION 

3) Its vectors are far enough apart to allow Jump instructions to reach the actual ser­
vice routines. 

4) It 1s easv to form. since five of the bits are always· 1. · An 8-to-3 encoder can provide 
the other three bits quite easily. 

RST has the following disadvantages: 

1) It cannot provide more than eight vectors. 

2) Its vectors are not far enough apart to allow space for entire interrupt service 
routines. 

3) Its vectors are in a fixed area of memory. 

4) RST 0 has the same destination address as the RESET input and 1s therefore verv 
difficult to use. The system needs hardware to differentiate between RESET and 
RST 0. since the two cannot be distinguished bv software alone. 

12-4 



Remember that RST saves the old Program Counter in the Stack JUSt as CALL does. 

Mode 1 

In this mode. the CPU ignores the data input during the Interrupt Acknowledge cycle 
and alwavs executes RST 38H. thus Jumping to memory location 003815 and saving 
the old Program Counter in the Stack. This mode 1s equivalent to Mode 0 if the data in­

put 1s alwavs RST 38H (FF15). 

The advantage of this mode 1s that no external hardware 1s required. Its disadvantages 
are that there 1s no way to directly differentiate among interrupt sources and the 
destination address 1s fixed. Mode 1 is useful 1n applications that have only one or two 
interrupt sources and 1n which minimum hardware cost is essential. 

Mode 2 

In this mode. the CPU uses the data input as part of an address from which to get the 
starting address of the interrupt service routine. When an interrupt 1s accepted. the 
CPU: 

1) Disables further interrupts by clearing IFF1 and IFF2. 
2) Stores the old Program Counter in the RAM Stack. 
3) Forms a pointer from the contents of Register I (eight MSBs) and the Data Bus input 

during the Interrupt Acknowledge cycle (eight LSBs). The least significant bit of 
this pointer 1s forced to zero. 

4) Fetches an address from the two memory locations starting with the one referred to 
by the pointer (see Figure 12-1). 

5) Transfers control to the address obtained from memory. 

Interrupt response in this mode requires 19 clock cycles. 

The advantage of this mode is that 1t can provide a full page of 128 interrupt service 
vectors located anywhere 1n memory. The disadvantages of this approach are that the 
interrupt response is slower and the system must be initialized. as follows: 

1) The table of vectors must be loaded into memory if it 1s not in ROM. 
2) The I register must be loaded with the eight most significant bits (or page number) 

of the table address. Note that RESET clears Register I. You can load I with a value 
as follows: 

LD 
LD 

A.IPGNO 
I.A 

:GET INTERRUPT PAGE NUMBER 
:STORE IN VECTOR REGISTER 

3) Interrupt Mode 2 must be set with the instruction IM 2. 

Mode 2 1s designed to work with Z80 PIOs. SIOs. and CTCs. PIO and SIO interrupts are 
described later 1n this chapter. 

Z80/8080 INTERRUPT COMPATIBILITY 
Mode 0 for the ZSO interrupt system 1s. as mentioned. identical to the 8080 interrupt 
response. The 8080 does not have Interrupt Modes 1 or 2. although Mode 1 1s really JUSt 
a special case of Mode 0. The 8080 also has no NMI input. 

The 8085 has additional interrupt inputs. not available on either the 8080 or the Z80. 
The 8085 also has a non-maskable interrupt (called TRAP) that forces a call to a 
different address (2415) than that used bv the Z80 NMI input. 

12-5 



desired starting address 

pointed to bv: 

8 Bits from 

I Register 

7 bits from 

Penpheraf 
low-order 

high-order 

Interrupt 

Service 
Routine 

Starting 

Address 

Table 

Figure 12-1. Forming an Interrupt Vector in Interrupt Mode 2 

PIO INTERRUPTS 
Most Z80 interrupt systems involve PIOs. Each port of the PIO has 
the following features for use with interruots: 

1) An 8-b1t Interrupt Vector register used to hold the eight least 

PIO 
INTERRUPTS 

significant bits of the table address formed by the CPU in Interrupt Mode 2. 

2) An interrupt enable bit. 

3) An Interrupt Control register used to determine the logical operation performed and 
the active polarity monitored for generating interrupts in the control mode. 

41 An Interrupt Mask register used to determine which data lines will be monitored to 
generate interrupts in the control mode. 

The Interrupt Vector register 1n each port can be accessed by writ­
ing a control word with a zero 1n its least significant bit. as shown 
below (see also Table 11-2): 

07 06 05 04 03 02 01 DO 

V7 V6 V5 V4 V3 V2 

signifies this control word is an 

interrupt vector 

A typical sequence to establish the value 1n this register is: 

LD A.IVECT 
OUT (PIOCRl.A 

PIO 
INTERRUPT 
VECTOR 

where IVECT has a 'Q' in its least significant bit. The starting address for the interrupt 
service routine 1s at address IVECT on the page assigned to the table of starting ad­
dresses for service routines. 

12-6 



D7 D6 DS D4 D3 D2 Dl DO 

Enable AND/ High/ Mask 
Interrupt OR Low follows 

0 

'- -v - ,J 

used 1n Mode 3 only signifies interrupt control word 

Figure 12-2. Format for a PIO Interrupt Control Word 

D7 D6 DS D4 D3 D2 Dl DO 

MB7 MB6 MBS MB4 MB3 MB2 MB1 MBO 

Only those port lines whose mask bit 1s zero will be momtored for generatmg an mterrupt. 

Figure 12-3. Format for a PIO Interrupt Mask 

We can set the interrupt control word in each port. by writing a 
control word with the format shown in Figure 12-2. If the port 1s in 
Mode 3. bits 06. 05. and 04 have the following meanings: 
1) 06 = 1 means that all monitored 1/0 lines must become active 

to cause an interrupt (i.e .. a logical AND). while 06 = 0 means 

PIO 
INTERRUPT 
CONTROL 
MODE 

that any monitored 1/0 line becoming active will cause an interrupt (i.e .. a logical 
OR}. 

Note that an interrupt occurs onlv if the logical equation 1s true when interrupts are 
enabled or if 1t changes from false to true while interrupts are enabled. 

2) 05 defines the active polarity (high or low) of the monitored 1/0 lines 05 
means active high. 05 = 0 means active low. 

3) 04 = 1 means that the next control word 1s an interrupt mask (Figure 12-3) Only 
lines with a mask bit of zero will be monitored. 04 = 0 means that the mask does 
not follow. 

Bit 7 of the interrupt control word determines the value of the 
interrupt enable flip-flop for the port. Interrupts may be gener­
ated if the flip-flop 1s set. Power-on resets this flip-flop. but 
remember that the PIO has no RESET input. The interrupt ena­

ENABLING AND 
DISABLING PIO 
INTERRUPTS 

ble flip-flop may be set or reset without affecting the rest of the interrupt control word 
by writing a control word with the flip-flop value in bit 7 and 0011 in the four least sig­
nificant bits. 

Setting bit 4 of the interrupt control word clears any pending interrupts. This can be 
used to clear interrupts that may have occurred inadvertently during a reset. 

12-7 



Examples 
1) Interrupting output port with vector located at address 

8015. Remember that the page number 1s in the CPU I 

register. 

LO A.00001111 B :MAKE PORT B OUTPUT 
OUT (PIOCRB).A 

EXAMPLES OF 
PIO INTERRUPT 
CONFIGURATION 

LO A.80H :VECTOR ADDRESS= 80 HEX 

OUT (PIOCRA).A 
LO A.10000011 B :ENABLE PIO INTERRUPT 

OUT (PIOCRBl.A 

An alternative that clears pending interrupts as well as enabling interrupts from the 

port 1s: 

LO A.10010111 B :ENABLE PIO INTERRUPT 

OUT (PIOCRAl.A 

An interrupt will occur on the rising edge of STB. 

2) Interrupting input port with vector located at address 6015. 

LO A.01001111 B :MAKE PORT A INPUT 
OUT (PIOCRA).A 
LO A.60H :VECTOR ADDRESS= 60 HEX 

OUT (PIOCRAl.A 
LO A.10000011 B :ENABLE PIO INTERRUPT 
OUT (PIOCRA).A 

An interrupt will occur on the rising edge of STB. 

3) Interrupting control port with vector located at address 4815. An interrupt willJie 

generated if data lines A4 and A7 both go low. 

LO A.110011118 :MAKE PORT A CONTROL 
OUT (PIOCRA).A 
LO A.100010008 ;LINES 4.7 INPUTS - OTHERS OUTPUTS 

OUT (PIOCRA).A 
LO A.48H :VECTOR ADDRESS= 48 HEX 

OUT (PIOCRA).A 
LO A.11010111B :ENABLE PIO INTERRUPT 
OUT (PIOCRAl.A 
LO A.01110111 B :MONITOR LINES 4.7 ONLY 
OUT (PIOCRA).A 

The interrupt control word has: 

bit 7 1 to enable the interrupt 
bit 6 1 to generate an interrupt only if all monitored lines are or 

become active (a logical AND) 
bit 5 0 to specify that a logic ·o· is the active state to be monitored 

bit 4 1 to indicate that a mask word follows (and to reset pending 

interrupts) 

12-8 



4) Interrupting control port with vector located at address 2815. An interrupt will be 
generated if any of the data lines go high. 

LD A.110011118 :MAKE PORT B CONTROL 
OUT (PIOCRB).A 
LD A.OFFH :ALL LINES INPUTS 
OUT (PIOCRB).A 
LD A.28H :VECTOR ADDRESS= 28 HEX 
OUT (PIOCRB).A 
LD A.101101118 ;ENABLE INTERRUPTS 
OUT (PIOCRB).A 
SUB A :MONITOR ALL LINES 
OUT (PIOCRB).A 

The interrupt control word has: 

bit 7 1 to enable the interrupt 
bit 6 0 to generate an interrupt if anv monitored lines become active 

(a logical OR) 
bit 5 
bit 4 

1 to specify that a logic '1' 1s the active state to be monitored 
1 to indicate that a mask word follows (and to reset pending 
interrupts). 

Obviously a repeated Block Output instruction could be used to shorten these programs 
considerably. 

Each PIO also has a single interrupt output and enable signals 
for daisy chaining. The INT output is active-low when the PIO 
has an interrupt request. The enable signals are: 

IE!'' {Interrupt Enable In) - high if no other devices of higher 
priority are being serviced by a CPU interrupt service routine. 

DAISY 
CHAINING 
PIO 
INTERRUPTS 

IEO (Interrupt Enable Out) - high if IEI 1s high and the CPU 1s not serv1c1ng an interrupt 
from this PIO 

IEI and IEO can be used to form a daisy chain (see Volume 1 of An 
Introduction to Microcom!;!uters) in which PIOs and other devices 
that are connected to the chain closer to the CPU can block inter­
rupt requests from devices further from the CPU. The advantages 
of the daisy chain are: 

1) It identifies each source uniquelv. 
2) It requires no other hardware. 
3) It 1s easy to expand or rearrange in hardware. 

The disadvantages of the daisy chain are: 

1) It can be vaned or changed only in hardware. 
2) It does not provide for eventual servicing of low priority in-

terrupts. 

PIO DAISY 
CHAIN 
SIGNALS 

ADVANTAGES 
AND 
DISADVANTAGES 
OF DAISY CHAIN 
INTERRUPTS 

3) It requires extra time because signals must ripple through the chain. 

The Z80 automatically waits long enough for the signals to ripple through a chain of up 
to four devices when operating in Interrupt Mode 2. Additional hardware can be added 
to allow longer chains. 

12-9 



Note that a part1cu lar device in the chain operates as follows: 

1) It places its interrupt vector on the bus during an Interrupt 

Acknowledge cycle only if it has a pending interrupt re­
quest and Interrupt Enable In is high (indicating no higher 
prioritv devices are being serviced). Interrupt Enable Out 1s 

DEVICE 
OPERATION 
IN A DAISY 
CHAIN 

also set low. Within a device. Port A interrupts take precedence over Port B inter­
rupts. 

2) It subsequently brings its Interrupt Enable Out high (enabling lower priority 

devices) only if a RETI 1nstruct1on 1s executed while its Interrupt Enable In 1s high. 

Thus. a particular device will be serviced only when 1t has the highest priority request 

and will block lower-priority requests until its service routine has been completed. A 

h1gher-prior1tv device can interrupt a lower-pnonty service routine without any 

difficulty. Note that a RETI instruction at the end of the high priority routine will not be 

recognized by the lower-priority device. 

SIO INTERRUPTS 
The SIO can also serve as a source for interrupts. You should note 

the following features of the SIO interrupt-based systems: 

1) The transmitter interrupt 1s enabled by setting bit 1 of Write 

Register 1 on each channel. 

SIO 
INTERRUPTS 

2) The interrupt vector 1s affected by bits 2. 3, and 4 of Write Register 1 according to 

Tables 12-2 and 12-3. 

3) The interrupt vector 1s 1n Write Register 2 on Channel B only. It can be read from 

Read Register 2 on Channel B only. 

4) Bit D1 of Read Register 0 on Channel A 1s 1 if any interrupt condition is presenh'!jl 

the entire SIO. · 
' 

Within an SIO. Channel A interrupts have priority over Channel B interrupts. receiver inL 

terrupts have priority over transmitter interrupts. and transmitter interrupts have 

priority over external or status interrupts. 

SIOs can be used in a polling interrupt system. The CPU must 

check each SIO for act1v1ty by examining bit 1 of Read Register 9 
on Channel A. 1.e., 

SUB 
OUT 
IN 
BIT 
JR 

A 
(SIOCRA).A 
A.(SIOCRA) 
1.A 
NZ.SERVE 

:ACCESS READ REGISTER 0 

:GET SIO STATUS 
:ANY INTERRUPTS PENDING? 
:YES. INTERRUPT ACTIVE 

The important features of a Z80 polling system are: 

POLLING 
INTERRUPT 
SYSTEMS 
WITH SIOs 

1) The first interrupt examined has the highest pnoritY. since the remaining interrupts 

will not be examined if the first one is active. The second interrupt has the next 

highest priority, and so on. 

2) The service routine must clear the SIO interrupt by reading or writing the appropri­

ate data register even if a data transfer is otherwise unnecessary. 

12-10 



Table 12-2. Further Vectoring of SIO Interrupts 
(Bit 2 of SIO Write Register 1 on Channel Bis 1) 

Status Affects Vector (02) (Channel B Onlvl 

ff this bit 1s 1, the vector returned from an interrupt acknowledge cycle will be vanable according to the following: 

V3 V2 V1 

0 0 0 Ch 8 Transmit Buffer Empty 
0 0 1 Ch B External/Status Change Ch B 
0 1 0 Ch B Receive Character Available 
0 1 1 Ch B Special Receive Condition• 

1 0 0 Ch A Transmit Buffer Empty 
1 0 1 Ch A External/Status Change Ch A 
1 1 0 Ch A Receive Character Available 
1 1 1 Ch A Special Receive Condition• 

Parttv Error or 

•Special Receive Conditions ...... 
Rx Overrun Error or 

CRC/Frammg Error or 

End of Frame (SOLC) 

If this bit 1s 0. the fixed vector programmed in the Interrupt Vector register 1s returned. 

Table 12-3. SIO Interrupt Modes 
(Bits 3 and 4 of Write Register 1) 

Rec Int Mode O (03), Rec Int Mode 1 (04) 

Receive Interrupt Mode 0 and Receive Interrupt Mode 1 together specify the venous character available conditions: 

04 03 

Mode 
Rec Int Rec Int 

Mode 1 Mode 0 

0 0 0 Receiver interrupts disabled 
1 0 1 Receive mterrupt on first character 

onlv error 

2 1 0 Interrupt on all Receive Characters-
Paritv error affects Vector 

3 1 1 Interrupt on all Receive Characters-

Parity error does not affect Vector 

12-11 



INTERRUPT EXAMPLES 

A Startup Interrupt 
Purpose: The computer waits for a PIO interrupt to occur before starting actual opera-

tions. 

Many systems remain inactive until the operator actually starts them or a DATA READY 

signal 1s received. On RESET. such systems must 1n1t1alize the Stack Pointer. enable the 

startup interrupt. and execute a HALT instruction. Remember that RESET disables the 

processor interrupt and power-on disables all PIO interrupts. In the flowchart. the dec1-

s1on as to whether startup is active is made in hardware (i.e .. by the CPU examining the 

interrupt input internally) rather than 1n software. 

Flowchart: 

Source Program: 

Main Program: 

RESET EOU 
ORG 
LD 
LO 
OUT 
LD 
OUT 
El 
HALT 

0 
RESET 
SP.100H 
A.01001111 B 
(PIOCRA).A 
A.10000111B 
(PIOCRA).A 

Interrupt Service Routine: 

ORG 
LD 
JP 

INTRP 
SP.100H 
START 

Start 

Initialize Stack Pointer 
Enable startup 

mterrupt on PIO 

Enable CPU interrupt 

End 

:PUT STACK AT END OF MEMORY 
:PUT PIO IN INPUT MODE 

;ENABLE PIO INTERRUPT 

:ENABLE INTERRUPTS 
:AND WAIT 

:REINITIALIZE STACK POINTER 
:START MAIN PROGRAM 

12-12 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

Main Program: 
0000 31 LO SP.100H 
0001 00 
0002 01 
0003 3E LO A.01001111 B 
0004 4F 
0005 03 OUT (PIOCRA).A 
0006 PIOCRA 
0007 3E LO A.10000111 B 
0008 87 
0009 03 OUT (PIOCRA).A 
OOOA PIOCRA 
OOOB FB El oooc 76 HALT 

Interrupt Service Routine: 

INTRP 31 LO SP.100H 
INTRP+1 00 
INTRP+2 01 
INTRP+3 C3 JP START 
INTRP+4 
INTRP+5 START 

The main program must initialize the Stack Pointer. since the interrupt response always 
stores the old Program Counter in the Stack. Here the service routine simply reinitializes 
the Stack Pointer before the actual startup routine is executed. An alternative would be 
to increment the Stack Pointer twice before jumping to the startup routine. Remember 
that the Z80 comes up in Interrupt Mode 0. Anv other mode would require the execu­
tion of an IM instruction. 

The exact location of the interrupt service routine varies 
with the microcomputer. If your microcomputer has no 
monitor. you can start the interrupt service routine 
wherever the external hardware or vector table directs the 

INTERRUPTS ON 
PARTICULAR 
MICROCOMPUTERS 

CPU. Of course. you should place the routine so that 1t does not interfere with fixed ad­
dresses or with other programs. 

If your microcomputer has a monitor. the monitor will often oc- INTERRUPT 
cupy the RESET and interrupt service addresses. It will then supply HANDLING 
service routines or the addresses of those routines. A typical moni- BY 
tor routine initialization would be: · MONITORS 
MONIN: PUSH HL ;SAVE OLD REGISTER CONTENTS 

LO Hl.USRINT ;GET USER ADDRESS FOR SERVICE 
JP (HU ;JUMP TO USER SERVICE ADDRESS 

You must then place the address of your service routine into memory locations USRINT 
and USRINT +1. using the normal Z80 address format with the least significant bits at 
the lower address. Remember that MONIN is an address in the monitor program. 

12-13 



You can include the loading of memory locations USRINT and USRINT+1 in your main 

program: 1.e .. 

LD HL.INTRP :GET STARTING ADDRESS OF SERVICE 
ROUTINE 

LD (USRINT).HL :STORE IT AS USER ADDRESS 

These instructions come before the enabling of the interrupts. 

In this example. the return address that the Z80 stores in the Stack 1s not useful. 

However. the main program still must initialize the Stack Pointer so that there 1s a 
definite place to put that address. You may not need the LD SP instruction if the moni­
tor 1n your microcomputer manages the Stack Pointer. 

The main program enables onlv the interrupt from the startup PIO. The PIO could. of 

course. be in any mode. The interrupt 1s enabled bv setting bit 7 of an interrupt control 

word and writing that word to the PIO control port. The PIO interrupt is enabled before 

the overall interrupt system 1s enabled with the El instruction. 

Remember that RESET and accepting an interrupt automat1callv disable the interrupt 
system. This allows the real startup routine to configure all the PIOs and other interrupt 

sources without being interrupted. 

No action 1s needed in the interrupt service routine. since the interrupt 1s automatically 

cleared as part of the Interrupt Acknowledge cycle involving a particular PIO. 

The implementations of the instructions El (Enable Interrupts) and DI (Disable Inter­

rupts) differ on the Z80. DI takes effect immediately after its execution. while El takes 

effect after the execution of the following instruction. The reasoning behind this fact is 
discussed in Chapter 3 under the description of the El instruction. 

A Keyboard Interrupt 
Purpose: The computer waits for a keyboard interrupt and places 

the data from the keyboard into memory location 0040. 

Sample Problem: 

KeyboaFd data 06 

Result: (0040) 06 

Flowchart: 

Start 

Initialize Stack Pointer 
Enable kevooara 

{40) data 

End 

12-14 

KEYBOARD 
INTERRUPT 



Source Program: 

Main Program: 

RESET EOU 
ORG 
LD 
LD 
OUT 
LO 
OUT 
El 

HERE: JR 

0 
RESET 
SP.lOOH :PUT STACK AT END OF MEMORY 
A.01001111B :PUT PIO IN INPUT MODE 
(PIOCRA).A 
A.10000111 B :ENABLE PIO INTERRUPTS 
(PIOCRA).A 

:ENABLE CPU INTERRUPTS 
HERE :DUMMY MAIN PROGRAM 

Interrupt Service Routine: 

ORG 
EX 
IN 
LO 
EX 
El 
RETI 

Object Program: 

INTRP 
AF.AF 
A.(PIODRA) 
(40H).A 
AF.AF 

:SAVE ACCUMULATOR. FLAGS 
:GET KEYBOARD DATA 
:SAVE KEYBOARD DATA 
:RESTORE ACCUMULATOR. FLAGS 
:RE-ENABLE INTERRUPTS 

Memorv Address Memorv Contents I nstruct1on 
(Hex) (Hex) (Mnemonic) 

Main Program: 

0000 31 LO SP.100H 
0001 00 
0002 01 
0003 3E LO A.01001111 B 
0004 4F 
0005 03 OUT (PIOCRA).A 
0006 PIOCRA 
0007 3E LO A.100001118 
0008 87 
0009 03 OUT (PIOCRA).A 
OOOA PIOCRA 
OOOB FB El 
oooc 18 HERE: JR HERE 
0000 FE 

lnterruot Service Routine: 

INTRP 08 EX AF.AF 
INTRP+1 DB IN A.(PIODRA) 
INTRP+2 Pl OD RA 
INTRP+3 32 LO (40HJ.A 
INTRP+4 40 
INTRP+5 00 
INTRP+6 08 EX AF.AF 
INTRP+7 FB El 
INTRP+8 ED RETI 
INTRP+9 40 

12-15 



The JR HERE is an endless loop (jump-to-self) instruction that is used to represent the 
main program. After interrupts are enabled in a working system. the main program goes 
about its business until an interrupt occurs and then resumes execution after the inter­

rupt service routine is completed. 

The RET instruction at the end of the service routine transfers 
control back to the JR inStruct1on. If you want to avoid this. you 
can simply increment the Program Counter in the Stack. e.g .. 

EX (SP).HL :GET RETURN ADDRESS 

CHANGING THE 
RETURN 
ADDRESS 

INC HL ;INCREMENT RETURN ADDRESS TWICE 
INC HL 
EX (SPl.HL :RESTORE ADJUSTED ADDRESS TO STACK 

The RET instruction will now transfer control to the instruction following the JR. Note 
the use of EX (SPl.HL: this instruction exchanges the contents of Register Pair HL with 

the contents of the memory locations at the top of the Stack. Bv using it we can adjust 
the return address without affecting the contents of Register Pair HL. 

Since the ZBO does not automatically save its registers. you can use them to pass 
parameters and results between the main program and the interrupt service routine. So. 
you could leave the data in the Accumulator instead of in memory location 0040. This 
is. however. a dangerous practice that should be avoided in all but the most trivial 

systems. In most applications. the processor is using its registers during normal pro­
gram execution; having the interrupt service routines randomlv change the contents of 
those registers would surely cause havoc. In general. no interrupt service routine should 
ever alter any register unless that register"s contents have been saved prior to its altera­
tion and will be restored at the completion of the routine. 

Note that you must explicitly re-enable the interrupts atthe end of the service routine. 
since the processor disables the interrupt system when 1t accepts an interrupt. Servic­
ing a PIO interrupt deactivates the interrupt signal so that the same interrupt is not ser­
viced again. 

If interrupt service routines are never themselves interrupted (i.e .. 
there is only one level of interrupts). the instructions EX AF.AF 
and EXX are a convenient way to save and restore the old contents 
of the user registers. EXX exchanges the contents of BC. DE. and 
HL with the contents of their primed equivalents. The two instruc­

SAVING 
VALUES IN 
PRIMED 
REGISTERS 

tions together take only two bytes of memory and eight clock cycles. However. this 
method cannot be used if there are other interrupt levels (since there 1s only a Single set 
of primed registers) or if the primed registers are needed 1n either the main program or 
the interrupt service routine. 

A more general approach to saving and restoring registers 1s to use the Stack. PUSH 

saves the contents of a register pair and POP restores the contents. However. PUSH 
takes 11 clock cycles and POP 10. so this approach is slower. It also uses extra memorv 
locations 1n the Stack. The advantage of this method 1s that it can be expanded in­
definitely (as long as there is room in the Stack) since nested service routines will not 
destroy the data saved by the earlier routines. 

An alternative approach would be for the interrupt routine to 
maintain control until it received an entire line of text (e.g .. a string 
of characters ending with a carnage return). The main program 
would be: 

12-16 

FILLING A 
BUFFER VIA 
INTERRUPTS 



Main Program: 

RESET EQU 0 
ORG RESET 
LD SP. 100H :PUT STACK AT END OF MEMORY 
LD A.01001111 B :PUT PIO IN INPUT MODE 
OUT (PIOCRA).A 
LD A.10000111 B :ENABLE PIO INTERRUPTS 
OUT (PIOCRA).A 
LD HL,70H :INITIALIZE BUFFER POINTER 
LD (40H).HL ;SAVE BUFFER POINTER 
El :ENABLE CPU INTERRUPT 

HERE: JR HERE :DUMMY MAIN PROGRAM 

Interrupt Service Routine: 

ORG INTRP 
EX AF.AF ;SAVE A FLAGS 
EXX ;SAVE OTHER REGISTERS 
LD HL.(40H) ;GET BUFFER POINTER 
IN A.(PIODRA) :GETKEYBOARD DATA 
LD (HU.A ;SAVE DATA IN BUFFER 
CP CR :IS DATA A CARRIAGE RETURN? 
JR Z.ENDL :YES. END OF LINE 
INC HL :NO. INCREMENT BUFFER POINTER 
LD (40H).HL 
EXX ;RESTORE OTHER REGISTERS 
EX AF.AF ;RESTORE A. FLAGS 
El :RE-ENABLE INTERRUPTS 
RETI 

ENDL: JP LPROC :PROCESS LINE WITHOUT INTERRUPTS 

When the processor receives a carriage return. 1t leaves the interrupt svstem disabled 
while 1t handles the line. 

An alternative approach would be to fill another buffer while han­
dling the first one; this approach 1s called double buffering. 

The line processing routine 1s begun at address LPROC with inter-

DOUBLE 
BUFFERING 

rupts disabled. the old register contents in the primed registers. and the original return 
address at the top of the Stack. 

In a real application. the CPU could perform other tasks between interrupts. It could. for 
instance. edit. move. or transmit a line from one buffer while the interrupt was filling 
another buffer. 

A Printer Interrupt 
Purpose: The computer waits for a printer interrupt and sends the data from memorv 

location 0040 to the printer. 

Sample Problem: 

(0040) 

Result: 

51H 

Printer receives a 51 H (ASCII Q) when 1t 1s readv. 

12-17 



Flowchart: 

Source Program: 

Main Program: 

RESET EQU 
ORG 
LD 
LD 
OUT 
LD 
OUT 
El 

HERE: JR 

0 
RESET 

Start 

Initialize Stack Pointer 
Enable pnnter 

Interrupt on PIO 
Data =(40) 

Enable CPU interrupt 

Send data to pnnter 

End 

SP.100H :PUT STACK AT END OF MEMORY 
A.00001111 B :PUT PIO IN OUTPUT MODE 
(PIOCRA).A 
A.10000111 B ;ENABLE PIO INTERRUPTS 
(PIOCRA).A 

:ENABLE CPU INTERRUPTS 
HERE :DUMMY MAIN PROGRAM 

Interrupt Service Routine: 

ORG 
EX 
LD 
OUT 
EX 
El 
RETI 

INTRP 
AF.AF 
A.(40H) 
(PIODRA).A 
AF.AF 

:SAVE ACCUMULATOR. FLAGS 
:GET DATA 
:SEND DATA TO PRINTER 
:RESTORE ACCUMULATOR. FLAGS 
:RE-ENABLE INTERRUPTS 

12-18 



Object Program: 

Memorv Address Memorv Contents Instruction 
(Hex) (Hex) (Mnemonic) 

Main Program: 

0000 31 LO 
0001 00 
0002 01 
0003 3E LO 
0004 OF 
0005 03 OUT 
0006 PIOCRA 
0007 3E LO 
0008 87 
0009 D3 OUT 
OOOA PIOCRA 
OOOB FB El 
oooc 18 HERE: JR 
OOOD FE 

Interrupt Service Routine: 

INTRP 08 EX 
INTRP+1 3A LD 
INTRP+2 40 
INTRP+3 00 
INTRP+4 D3 OUT 
INTRP+5 PIODRA 
INTRP+6 08 EX 
INTRP+7 FB El 
INTRP+B ED RETI 
INTRP+9 40 

Here. as with the keyboard. you could have the printer continue to 
interrupt until it transferred an entire line of text. The main pro­
gram and the service routine would be: 

Main Program: 

RESET EOU 0 
ORG RESET 

SP.100H 

A.00001111B 

(PIOCRA).A 

A.10000111B 

(PIOCRA).A 

HERE 

AF.AF 
A,(40H) 

(PIODRA).A 

AF.AF 

EMPTYING A 
BUFFER WITH 
INTERRUPTS 

LO SP.100H :PUT STACK AT END OF MEMORY 
LD A.00001111 B :PUT PIO IN OUTPUT MODE 
OUT (PIOCRA).A 
LD A.10000111 B :ENABLE PIO INTERRUPTS 
OUT (PIOCRA).A 
LD HL.70H :INITIALIZE BUFFER POINTER 
LD (40H).HL SAVE BUFFER POINTER 
El ENABLE CPU INTERRUPT 

HERE: JR HERE DUMMY MAIN PROGRAM 

12-19 



Interrupt Service Routine: 

ORG INTRP 
EX AF.AF :SAVE A. FLAGS 
EXX :SAVE OTHER REGJSTERS 
LO HL.(40H) :GET BUFFER POINTER 
LO A.(HL) :GET A BYTE OF DATA FROM BUFFER 
OUT (PIODRA).A :SEND DATA TO PRINTER 
CP CR :IS DATA A CARRIAGE RETURN? 
JR ENDL ;YES. END OF LINE 
INC HL :NO. INCREMENT BUFFER POINTER 
LO (40H).HL 
EXX :RESTORE OTHER REGISTERS 
EX AF.AF :RESTORE A. FLAGS 
El :RE-ENABLE INTERRUPTS 
RETI 

ENDL: JP LCOMP :HANDLE COMPLETED LINE 

Again. double buffering could be used to allow 1/0 and processing to occur at the same 
time without ever halting the CPU 

A Real-Time Clock Interrupt 
Purpose: The computer waits for an interrupt from a real-time 

clock. 
REAL-TIME 
CLOCK 

A real-time clock simply provides a regular series of pulses. The in-
terval between the pulses can be used as a time reference. Real-time clock interrupts 
can be counted to give any multiple of the basic time interval. A real-time clock can be 
produced by dividing down the CPU clock. by using a separate timer or a programma­
ble timer like the CTC for ZSO-based microcomputers. or by using external sources such 
as the AC line frequency. 

Note the tradeoffs involved in determining the frequency of the 
real-time clock. A high frequency (say 10 kHz) allows the crea­
tion of a wide range of time intervals of high accuracy. On the 
other hand. the overhead involved 1n counting real-time clock 

FREQUENCY 
OF REAL-TIME 
CLOCK 

interrupts may be considerable. and the counts will quickly exceed the capacity of a 
single 8-bit register or memory location. The choice of frequency depends on the preci­
sion and timing requirements of your application. The clock may, of course. consist 
partly of hardware: a counter may count high frequency pulses and interrupt the pro­
cessor only occasionally. A program will have to read the counter to measure time to 
high accuracy. 

One problem 1s synchronizing operations with the real-time 
clock. Clearly, there will be some effect on the prec1s1on of 
the timing interval if the CPU starts the measurement ran­
domly during a clock period. rather than exactly at the 
beginning. Some ways to synchronize operations are: 

SYNCHRONIZATION 
WITH REAL-TIME 
CLOCK 

1) Start the CPU and clock together. RESET or a startup interrupt can start the clock as 
well as the CPU. 

2) Allow the CPU to start and stop the clock under program control. 

3) Use a high-frequency clock so that an error of less than one clock period will be 
small. 

4) Line up the clock (by waiting for an edge or interrupt) before starting the measure­
ment. 

12-20 



A real-time clock interrupt should have very high priority, smce 
the prec1s1on of the timing intervals will be affected by any delay 
in servicing the interrupt. The usual practice 1s to make the real­
time clock the highest priority interrupt except for power failure. 

PRIORITY 
OF REAL-TIME 
CLOCK 

The clock interrupt service routine is generally kept extremely short so that 1t does not 
interfere with other CPU activities. 

a) Wait for Real-Time Clock 

Source Program: 

Main Program: 

RESET EGU 0 
RESET ORG 

LO 
LO 
OUT 
LO 
OUT 
El 

SP.100H :PUT STACK AT END OF MEMORY 
A.01001111B :PUT PIO IN INPUT MODE 
(PIOCRA).A 
A. 10000111 B :ENABLE PIO INTERRUPTS 
(PIOCRA).A 

:ENABLE CPU INTERRUPTS 
HERE: JR HERE :DUMMY MAIN PROGRAM 

Interrupt Service Routine: 

ORG 
HALT 

Object Program: 

INTRP 
:END CLOCK INTERRUPT 

Memory Address 
(Hex) 

Memory Contents I nstruct1on 

Main Program: 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
oooc 
0000 

Interrupt Service Routine: 

INTRP 

(Hex) 

31 
00 
01 
3E 
4F 
03 
PIOCRA 
3E 
87 
03 
PIOCRA 
FB 
18 HERE: 
FE 

76 

(Mnemonic) 

LD SP. 100H 

LO A,010011118 

OUT (PIOCRA).A 

LD A.1000011 lB 

OUT (PIOCRA).A 

El 
JR HERE 

HALT 

The service routine does not have to do anything. since servicing the PIO interrupt auto­
matically clears 1t and there is no data to send or receive. 

The real-time clock interrupt always occurs on-a rising edge if a PIO STROBE signal 1s 
used for the clock input. 

12-21 



bl Wait for 10 Real-Time Clock Interrupts 

Source Program: 

Main Program: 

RESET EQU 
ORG 
LD 
LD 
OUT 
LD 
OUT 
LD 
LD 
LD 
El 

WTTEN: CP 
JR 
HALT 

0 
RESET 
SP,100H 
A.0100111 lB 
(PIOCRA).A 
A.10000111B 
(PIOCRA).A 
HL.40H 
(HL).0 
A.10 

(HL) 
NZ.WTTEN 

Interrupt Service Routine: 

ORG 
EXX 
EX 
LD 
INC 
EX 
EXX 
El 
RETI 

INTRP 

AF.AF 
HL.40H 
(HU 
AF.AF 

:PUT STACK AT END OF MEMORY 
:PUT PIO IN INPUT MODE 

:ENABLE PIO INTERRUPTS 

;CLOCK COUNTER= ZERO 

;NUMBER OF COUNTS= 10 
;ENABLE CPU INTERRUPTS 
;HAVE TEN COUNTS ELAPSED? 
:NO. WAIT 
:YES, DONE 

:SAVE USER REGISTERS 
:SAVE A. FLAGS 
;INCREMENT CLOCK COUNTER 

:RESTORE A. FLAGS 
:RESTORE USER REGISTERS 
;RE-ENABLE INTERRUPTS 

12-22 



Object Program: 

Memorv Address M!lmory Contents Instruction 
(Mnemonic) (Hex) (Hex) 

Main Program: 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
0008 
oooc 
OOOD 
OOOE 
OOOF 
0010 
0011 
0012 
0013 
0014 
0015 
0016 

Interrupt Service Routine: 

INTRP 
INTRP+1 
INTRP+2 
INTRP+3 
INTRP+4 
INTRP+5 
INTRP+6 
INTRP+7 
INTRP+8 
INTRP+9 

INTRP+10 

31 
00 
01 
3E 
4F 
D3 
PIOCRA 
3E 
87 
D3 
PIOCRA 
21 
40 
00 
36 
00 
3E 
OA 
FB 
BE 
20 
FD 
76 

U9 
08 
21 
40 
00 
34 
08 
D9 
FB 
ED 
4D 

WTTEN: 

LD 

LD 

OUT 

LD 

OUT 

LD 

LD 

LD 

El 
CP 
JR 

HALT 

EXX 
EX 
LD 

INC 
EX 
EXX 
El 
RETI 

SP.100H 

A.01001111 B 

(PIOCRA).A 

A.100001118 

(PIOCRA).A 

HL.40H 

(HU.O 

A.10 

(HL) 
NZ.WHEN 

AF.AF' 
HL.40H 

(HU 
AF.AF 

An alternative approach uses the Stack to save and restore register values. To save H. L. 
and the flags requ1res: 

PUSH 
PUSH 

HL 
AF 

:SAVE REGISTERS HAND L 
:SAVE ACCUMULATOR AND FLAGS 

To restore them requires the sequence: 

POP 
POP 

AF 
HL 

:RESTORE ACCUMULATOR AND FLAGS 
:RESTORE REGISTERS H AND L 

Note that. if the Stack 1s used. registers must be restored in the opposite order from that 
in which they were saved. Clearly the order in which EXX and EX AF.AF are executed 
does not matter. 

12-23 



This interrupt service routine merely updates the counter in memorv location 0040. It 1s 

transparent to the main program. 

A more realistic real-time clock interrupt routine could 
maintain real time in several memory locations. For exam­
ple, the following routine uses addresses 0040 through 0043 
as follows: 

0040 -
0041 
0042 
0043 -

hundredths of seconds 
seconds 
minutes 
hours 

We assume that the routine 1s triggered by a 100 Hz clock. 

Flowchart: 

Start 

Clear clock interrupt 

Hundredths = 
Hundredths + 1 

Hundredths = 0 

Seconds :::: 

Seconds + 1 

Seconds = 0 
Minutes 

Minutes + 1 

Minutes = 0 
Hours 

Hours + 1 

End 

12-24 

MAINTAINING 
REAL TIME 



Source Program: 

ORG INTRP 
PUSH AF :SAVE REGISTERS 
PUSH HL 
LO HL.40H :UPDATE HUNDREDTHS OF SECONDS 
INC (HU 
LO A.100 
CP (HU :IS THERE A CARRY TO SECONDS? 
JR NZ.DONE :NO. DONE 
LO (HU.O :YES. HUNDREDTHS= 0 
INC HL ;UPDATE SECONDS 
INC (HU 
LO A.60 
CP (HU :IS THERE A CARRY TO MINUTES? 
JR NZ.DONE :NO. DONE 
LD (HU.O :YES. SECONDS= 0 
INC HL :UPDATE MINUTES 
INC (HU 
CP (HU :IS THERE A CARRY TO HOURS? 
JR NZ.DONE :NO. DONE 
LO (HU.O :YES. MINUTES= 0 
INC HL :UPDATE HOURS 
INC (HU 
LD A.24 :DAY COMPLETED? 
JR NZ.DONE :NO. DONE 
LO (HU.O :YES. HOURS= 0 

DONE: POP HL :RESTORE REGISTERS 
POP AF 
El :RE-ENABLE INTERRUPTS 
RETI 

Now a wait of 300 ms could be produced in the main program with the routine: 

LO HL.40H :GET PRESENT TIME (HUNDREDTHS OF SECS) 
LO A.(HU 
ADD A.30 
CP 100 

:DESIRED TIME IS 30 COUNTS LATER 
:MOD 100 

JR C.WT30 
SUB 100 

WT30: CP (HU 
JR NZ.WT30 

:DESIRED TIME REACHED? 
:NO. WAIT 

Be careful in this program of the difference between INC HL and INC (HU. INC HL adds 
1 to the 16-bit contents of Register Pair HL. while INC (HU adds 1 to the B-bit contents 
of the memory location addressed by HL. 

Of course. the program could perform other tasks and check the elapsed time only oc­
casionally. How would you produce a delay of seven seconds?. Of three minutes? 

Sometimes you may want to keep time either as BCD digits or as ASCII characters. How 
would you revise the last program to handle these alternatives? 

You can disable the clock interrupt (or any other interrupt) when it 
1s no longer needed in any of the following ways. 

1) By executing a DI instruction in the main program. This disa­
bles the entire interrupt system. 

DISABLING 
INTERRUPTS 

2) By clearing bit 7 of the interrupt control word during the service routine or during 
the main program. This disables only the interrupt from one port of one PIO. 

12-25 



3) By not re-enabling the interrupt during· the service routine. 

Remember that the CPU automatically disables interrupts upon accepting one. Thus. 
the interrupt system is disabled unless the service routine explicitly re-enables it. Note. 
however. that you must be very careful about not re-enabling the interrupts. since the 
main program would be completely unaware that interrupts were no longer allowed. In 
general. all interrupt service routines should ·re-enable the interrupts before return­
ing; any other policy means that the service routines are not transparent to the main 
program. 

A Teletypewriter Interrupt 
Purpose: The computer waits for data to be received from a teletypewriter and stores 

the data in memory location 0040. 

al Using an SIO 

(7-bit characters with odd parity and 2 stop bits). 

Source Program: 

SIO 
INTERRUPT 
ROUTINE 

Main Program: 

RESET EQU 0 
LO A.4 
OUT (SIOCRA).A 
LO A.01000001 B 
OUT (SIOCRA).A 
LO A.3 
OUT (SIOCRA).A 
LO A.01000001B 
OUT (SIOCRA).A 
LO A.1 
OUT (SIOCRA).A 
LD A.000110008 
OUT (SIOCRA).A 
El 

HERE: JR HERE 

Interrupt Service Routine: 

ORG 
PUSH 
IN 
LO 
POP 
El 
RETI 

INTRP 
AF 
A.(SIODRA) 
(40H).A 
AF 

:ACCESS WRITE REGISTER 4 

:X16 CLOCK MODE. PARITY 

:7 BIT CHARACTERS. ENABLE RECEIVER 

:ACCESS WRITE REGISTER 1 

:ENABLE RECEIVER INTERRUPT ON ALL CHARS 

:ENABLE CPU INTERRUPTS 
:DUMMY MAIN PROGRAM 

:SAVE ACCUMULATOR. FLAGS 
:READ CHARACTER FROM SIO 
:SAVE CHARACTER IN MEMORY 
:RESTORE ACCUMULATOR. FLAGS 
:RE-ENABLE INTERRUPTS 

12-26 



Object Program: 

Memory Address Memorv Contents Instruction 
(Hex) (Hex) (Mnemonic) 

Main Program: 

0000 3E LD A.4 
0001 04 
0002 D3 OUT (SIOCRA).A 
0003 SIOCRA 
0004 3E LD A.010000018 
0005 41 
0006 D3 OUT (SIOCRA).A 
0007 SIOCRA 
0008 3E LD A.3 
0009 03 
OOOA D3 OUT (SIOCRA).A 
0008 SIOCRA 
oooc 3E LD A.010000018 
OOOD 41 
OOOE D3 OUT (SIOCRA).A 
OOOF SIOCRA 
0010 3E LD A.1 
0011 01 
0012 D3 OUT (SIOCRA).A 
0013 SIOCRA 
0014 3E LD A.000110008 
0015 18 
0016 D3 OUT (SIOCRA),A 
0017 SIOCRA 
0018 FB El 
0019 18 HERE: JR HERE 
001A FE 

Interrupt Service Routine: 

INTRP F5 PUSH AF 
INTRP+l DB IN A.(SIODRA) 
INTRP+2 SIODRA 
INTRP+3 32 LD (40H).A 
INTRP+4 40 
INTRP+5 00 
INTRP+6 F1 POP AF 
INTRP+7 FB El 
INTRP+8 ED RETI 
INTRP+9 4D 

This service routine assumes that only the receive interrupt from one channel of the SIO 
has been enabled. Otherwise. either further vectoring will be required by changing con­
trol bits Dz. 03. and 04 of Write Register 0 (see the discussion of SIO interrupts earlier 
in this chapter) or the routine will have to examine the status bits in Read Register 0. 
The key status bits are: 

Bit 0 - Receive Character Available -1 when at least one character is available in the 
receive buffers. 

Bit 1 - Interrupt pending (Channel A only) -1 if any interrupt 1s pending in the entire 
SIO. 

12-27 



Bit 2 - Transmit Buffer Empty -1 if the Transmit buffer 1s empty. 

Obviously, 1t would be far shorter and simpler to configure the SIO by using a table (in 
ROM) and the repeated Block 1/0 instruction. 1.e .. 

LD B.6 :NUMBER OF BYTES IN CONFIGURATION 
LD C.SIOCRA :SIO CONTROL PORT 
LD HL.SIOTBL :START OF SIO CONFIGURATION TABLE 
OTIR :CONFIGURE SIO 

This method requires 9 bytes of memory for the program and 6 bytes for the table. as 
compared to the 23 bytes used in the example to configure the SIO. 

The program establishes the SIO registers as follows: 

WRITE REGISTER 4 

Bit 7 = 0. bit 6 = 1 for X16 clock mode 

Bit 1 = 0 to select odd parity 
Bit 0 = 1 to enable paritv generation 

WRITE REGISTER 3 

Bit 7 = 0. bit 6 = 1 to select 7-bit characters 

Bit 0 = 1 to enable the receiver 

WRITE REGISTER 1 

Bit 4 = 1. bit 3 = 1 to produce an interrupt on all re-::e1ved characters with parity errors 
not affecting the vector. 

The CPU clears the Received Character Available bit by reading a character from the 
SIO Data register. The Interrupt Pending bit 1s cleared automatically when the interrupt 
is serviced. 

bl Using a PIO 

(Received data tied to data bit 7 of PIO Port A). 

Source Program: 

START BIT 
INTERRUPT 

Main Program: 

LD A.11001111B :MAKE PORT A CONTROL 
OUT (PIOCRA),A 
LD A.1 OOOOOOOB :MAKE BIT 7 INPUT. OTHERS OUTPUTS 
OUT (PIOCRA).A 
LD A.1001011 lB ;ENABLE INTERRUPT ON START BIT (0) 
OUT (PIOCRA).A 
LD A.01111111B :MASK OUT ALL OTHER BITS 
OUT (PIOCRA).A 
El :ENABLE CPU INTERRUPTS 

HERE: JR HERE :DUMMY MAIN PROGRAM 

Interrupt Service Routine: 

ORG INTRP 
PUSH AF :SAVE ACCUMULATOR. FLAGS 
LD A.00000111 B :DISABLE START BIT INTERRUPT 
OUT (PIOCRA),A 
CALL TTYRCV :FETCH DATA FROM TTY 
LD A. 10000111B :ENABLE START BIT INTERRUPT 
OUT (PIOCRA).A 
POP AF :RESTORE ACCUMULATOR. FLAGS 
El :RE-ENABLE INTERRUPTS 
RETI 

12-28 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

Mam Program: 

0000 3E LD A.110011118 
0001 CF 
0002 03 OUT (PIOCRA).A 
0003 PIOCRA 
0004 3E LD A. 100000008 
0005 80 
0006 03 OUT (PIOCRA).A 
0007 PIOCRA 
0008 3E LD A.100101118 
0009 97 
OOOA 03 OUT (PIOCRA).A 
OOOB PIOCRA 
oooc 3E LD A.01111111 B 
0000 7F 
OOOE 03 OUT (PIOCRA).A 
OOOF PIOCRA 
0010 FB El 
0011 18 HERE: JR HERE 
0012 FE 

lriterrupt Service Routine: 

INTRP F5 PUSH AF 
INTRP+1 3E LD A.000001118 
INTRP+2 07 
INTRP+3 03 OUT (PIOCRA).A 
INTRP+4 PIOCRA 
INTRP+5 CD CALL TTYRCV 
INTRP+6 TTYRCV 
INTRP+7 
INTRP+8 3E LD A.100001118 
INTRP+9 87 

INTRP+10 03 OUT (PIOCRA).A 
INTRP+11 PIOCRA 
INTRP+12 F1 POP AF 
INTRP+13 FB El 
INTRP+14 ED RETI 
INTRP+15 40 

These programs assume that the monitor m1t1alizes the Stack Pointer. Otherwise. 1t will 
have to be loaded m the main program. 

Subroutine TTYRCV is the TTY receive routine shown m the previous chapter. 

The edge used to cause the interrupt 1s very important here. An interrupt must occur 
when the data line changes from the normal MARK or '1' state to the SPACE or 'O' state. 
since this trans1t1on identifies the start of the transmission. 

The service routine must disable the PIO interrupt. since otherwise each '1'-to-'O' tran­
sition m the character will cause an interrupt. Of course. vou must re-enable the PIO in­
terrupt after the entire character has been read. 

12-29 



Note the use of the PIO in the control mode: 

1) The PIO is placed in the control mode by establishing Mode 3. 

2) The next control word defines which data lines are to be inputs ('1') and which are 
to be outputs ('O'). 

31 The interrupt control word has. besides the usual enable in bit 7, 

bit 6 = 0 to perform a logical OR of the monitored data lines for an interrupt (not 
used in this case. since onlv one line 1s monitored) 

bit 5 = 0 to define the active polarity of the data lines as low (for the start bit in this 
case) 

bit 4 = 1 to indicate that a mask word follows. 

41 The next control word contains the interrupt masks. Only those port lines with a 
mask bit of zero will be monitored for generating an interrupt. 

The net result 1s for an interrupt to be generated if bit 7 1s zero or changes from one to 
zero. Note that further interrupts occur only when a change occurs in the status of the 
logical equation. Here again. the PIO could be configured by using a table and the re­
peated block output instruction. 

MORE GENERAL SERVICE ROUTINES 
More general service routines that are part of a complete inter­
rupt-driven svstem must handle the following tasks: 

TASKS FOR 
GENERAL SERVICE 
ROUTINES 

1) Saving all registers that are used in the interrupt service 
routine 1n the Stack so that the interrupted program can be 
correctly resumed. 

Remember that the ZSO Push instruction transfers a register pair (or an index register) 
to the Stack. PUSH AF (Fis the Flag register) transfers the Accumulator and flags to the 
Stack. 

A routine to save all the registers in the Stack would be: 

PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
EX 
EXX 
PUSH 
PUSH 
PUSH 
PUSH 

AF 
BC 
DE 
HL 
IX 
IY 
AF.AF' 

AF 
BC 
DE 
HL 

:SAVE ACCUMULATOR. FLAGS 
;SAVE REGISTERS B.C 
;SAVE REGISTERS D.E 
:SAVE REGISTERS H.L 
;SAVE INDEX REGISTER IX 
:SAVE INDEX REGISTER IY 

:SAVE PRIMED ACCUMULATOR. FLAGS 
:SAVE PRIMED REGISTERS B.C 
:SAVE PRIMED REGISTERS D.E 
;SAVE PRIMED REGISTERS H.L 

Of course. onlv those registers that are used by the interrupt service routine must be 
saved. 

2) Restoring all registers from the Stack after completing the interrupt service routine. 
Remember that registers must be restored in the opposite order from that in which 
they were saved. 

3) Enabling and disabling interrupts appropriately. Remember that the CPU automat­
ically disables its interrupts upon accepting one. 

The service routines should be transparent as far as the interrupted program 1s con­
cerned (i.e .. they should have no incidental effects). 

12-30 



Any standard subroutines that are used by an interrupt service routine must be 
reentrant. If some subroutines cannot be made reentrant. the interrupt service routine 
must have separate versions to use. 5 

PROBLEMS 
1) A Test Interrupt 
Purpose: The computer waits for a PIO interrupt to occur. then executes the endless 

loop instruction: 

HERE: JR HERE 

until the next interrupt occurs. 

2) A Keyboard Interrupt 
Purpose: The computer waits for a 4-digit entry from a keyboard and places the digits 

into memory locations 0040 through 0043 (first one received in 0040). Each 
digit entry causes an interrupt. The fourth entry should also result in the dis­
abling of the keyboard interrupt. 

Sample Problem: 

Keyboard data = 04. 06, 01. 07 

Result: (0040) 04 
(0041) 06 
(0042) 01 
(0043) 07 

3) A Printer Interrupt 
Purpose: The computer sends four characters from memory locations 0040 to 0043 

(starting with 0040) to the printer. Each character is requested by an inter­
rupt. The fourth transfer also disables the printer interrupt. 

4) A Real-Time Clock Interrupt 
Purpose: The computer clears memory location 0040 in1t1ally and then complements 

memory location 0040 each time the real-time clock interrupt occurs. 

How would you change the program so that it complements memory location 0040 
after every ten interrupts? How would you change the program so that it leaves memo­
ry location 0040 at zero for ten clock periods. FF16 for five clock periods. and so on con­
tinuously? You may want to use a display rather than memory location 0040 so that it 
will be easier to see. 

5) A Teletypewriter Interrupt 
Purpose: The computer receives TTY data from an interrupting SIO and stores the 

characters in a buffer starting in memory location 0040. The process con­
tinues until the computer receives a carriage return (0015). 

Assume that the characters are 7-bit ASCII with odd panty. How would you change 
your program to use a PIO? Assume that subroutine TTYRCV is available. as in the ex­
ample. Include the carriage return as the final character in the buffer. 

12-31 



REFERENCES 

1. You may want to review the discussion of interrupts 1n Volume 1 of An Introduction 
to Microcomputers. 

2. For a discussion of designing with interrupts. see R. L. Baldridge. "Interrupts Add 
Power. Complexity to Microcomputer System Design." EON. August 5, 1977. pp. 
67-73. -

3. See Volume 2 of An Introduction to Microcomputers. 

4. See An Introduction to Microcomputers. Volume 2 and 8080A/8085 Assembly 
Language Programming. 

5. For further discussion and some real-life examples of designing Z80-based systems 
with interrupts. see pp. 5-24 through 5-37 of Z80 Programming for Logic Design 
and the following: 

Baldridge. R. L."'lnterrupts Add Power. Complexity to Microcomputer System 
Design." EON. August 5. 1977. pp. 67-73. 

Pond. R. M .. "Let Microprocessors Communicate." Electronic Design. November 8. 
1977. pp. 88-90. --

Shima, M .. and R. Blacksher. "Improved Microprocessor Interrupt Capability," 
Electronic Design. April 26. 1978. pp. 96-100. 

Weller. W. J .. Practical Microcomputer Programming: the Z80. Northern Tech­
nology Books. Evanston. Ill.. 1978. 

Winston. A. W .. and T. B. Smith. "Use of the Z-80 in Data Collection and Control." 
IECI '78 Proceedings - Industrial Applications of Microprocessors. March 20-22. 
1978. pp. 208-214. 

The Proceedings of the IEEE's Industrial Electronics and Control Instrumentation 
Group·s Annual Meeting on "Industrial Applications of Microprocessors" contains 
many interesting articles. Volumes (starting with 1975) are available from IEEE Service 
Center. CP Department. 445 Hoes Lane. Piscataway. NJ 08854. 

12-32 



Chapter 13 
PROBLEM DEFINITION AND 

PROGRAM DESIGN 

THE TASKS OF SOFTWARE DEVELOPMENT 
In the previous chapters. we have concentrated on the writing of short programs in as­
sembly language. While this 1s an important topic. it 1s only a small part of software 
development. Although writing assembly language programs 1s a maior task for the 
beginner. it soon becomes simple. By now. you should be familiar with standard 
methods for programming m assembly language on the Z80 microprocessor. The next 
four chapters will describe how to formulate tasks as programs and how to com­
bine short programs to form a working system. 

Software development consists of many stages. Figure 
13-1 is a flowchart of the software development process. Its 
stages are: 

• Problem definition 

• Program design 

·Coding 

•Debugging 

·Testing 

• Documentation 

• Maintenance and redesign 

STAGES OF 
SOFTWARE 
DEVELOPMENT 

Each of these stages 1s important in the construction of a working system. Note that 
coding. the writing of programs in a form that the computer understands. 1s only one of 
seven stages. 

In fact. coding is usually the easiest stage to define and per­
form. The rules for writing computer programs are easy to learn. 
They varv somewhat from computer to computer. but the basic 
techniques remain the same. Few software projects run into trou­

RELATIVE 
IMPORTANCE 
OF CODING 

ble because of coding: indeed. coding 1s not the most time-consuming part of software 
development. Experts estimate that a programmer can write one to ten fully debugged 
and documented statements per day. Clearly. the mere coding of one to ten statements 
is hardly a full day·s effort. On most software pro1ects. coding occupies less than 25% of 
the programmer·s time. 

Measuring progress in the other stages is difficult. You can say 
that half of the program has been written. but you can hardly say 
that half of the errors have been removed or half of the problem 
has been defined. Timetables for such stages as program design. 

MEASURING 
PROGRESS 
IN STAGES 

debugging. and testing are difficult to produce. Many days or weeks of effort may result 
in no clear progress. Furthermore. an incomplete Job m one stage may result 1n tremen­
dous problems later. For example. poor problem definition or program design can make 
debugging and testing very difficult. Time saved in one stage may be spent many times 
over m later stages. 

13-1 



Start 

Problem definition 

Program design 

Debugging 

Testing 

No 

No 

Documentation 

Maintenance and 
redesign 

End 

Figure 13-1. Flowchart of Software Develooment 

13-2 



DEFINITION OF THE STAGES 
Problem definition Is the formuletlon of the task in terms of 
the requirements that it places on the computer. For example. 
what is necessary to make a computer control a tool. run a series 

PROBLEM 
DEFINITION 

of electrical tests. or handle communications between a central controller and a remote 
instrument? Problem definition requires that you determine the forms and rates of in­
puts and outputs. the amount and speed of processing that 1s needed, and the types of 
possible errors and their handling. Problem definition takes a vague idea of building a 
computer-controlled system and defines the tasks and requirements for the computer. 

Program design is the outline of the computer program which PROGRAM 
will perform the tasks that have been defined. In the design DESIGN 
stage. the tasks are described in a way that can easily be con-
verted into a program. Among the useful techniques in this stage are flowcharting. 
structured programming, modular programming, and top-down design. 

Coding is the writing of the program In a form that the com- .. , C_O_D_l_N_G.,.! 
puter can either directly understand or translate. The form may 
be machine language. assembly language. or a high-level language. 

Debugging, also called program verification. is making the pro­
gram do what the design specified that it would do. In this 

I DEBUGGING I 
stage. you use such tools as breakpoints. traces. simulators. logic analyzers. and in-cir­
cuit emulators. The end of the debugging stage is hard to define. since you never know 
when you have found the last error. 

Testing, also referred to as program validation. is ensuring that 
the program performs the overall system tasks correctly. The 

I TESTING! 

designer uses simulators. exercisers. and various statistical techniques to get some 
measure of the program·s performance. 

Documentation is the description of the program in the lDOCUMENTATION! 
proper form for users and maintenance personnel. Docu-
mentation also allows the designer to develop a program library so that subsequent 
tasks will be far simpler. Flowcharts. comments. memory maps. and library forms are 
some of the tools used in documentation. 

Maintenance and redesign are the servicing, improvement. 
and extension of the program. Clearly, the designer must be 
ready to handle field problems in computer-based equipment. 
Special diagnostic modes or programs and other maintenance 

MAINTENANCE 
AND 
REDESIGN 

tools may be required. Upgrading or extension of the program may be necessary to 
meet new requirements or handle new tasks. 

The rest of this chapter will consider only the problem definition and program 
design stages. Chapter 14 will discuss debugging and testing. and Chapter 15 will dis­
cuss documentation. extension. and redesign. We will bring all the stages together in 
some simple systems examples in Chapter 16. 

PROBLEM DEFINITION 
Typical microprocessor tasks require a lot of definition. For example. what must a pro­
gram do to control a scale. a cash register. or a signal generator? Clearly, we have a 
long way to go 1ust to define the tasks involved. 

13-3 



DEFINING THE INPUTS 
How do we start the definition? The obvious place to begin is with the inputs. We 
should begin by listing all the inputs that the computer may receive in this applica· 
ti on. 

Examples of inputs are: 

• Data blocks from transm1ss1on lines 

• Status words from peripherals 

• Data from A/D converters 

Then, we may ask the following questions about each input: 

1) What 1s its form: 1.e .. what signals will the computer actually 
receive? 

FACTORS 
IN INPUT 

2) When 1s the input available and how does the processor know 1t is available? Does 
the processor have to request the input with a strobe signal? Does the input pro­
vide its own clock? 

3) How long is 1t available? 

4) How often does 1t change. and how does the processor know that it has changed? 

5) Does the input consist of a sequence or block of data? Is the order important? 

6) What should be done if the data contains errors? These may include transmission 
errors. incorrect data. sequencing errors. extra data. etc. 

7) Is the input related to other inputs or outputs? 

DEFINING THE OUTPUTS 
The next step to define 1s the output. We must list all the outputs that the computer 
must produce. Examples of outputs include: 

• Data blocks to transmission lines 

• Control words to peripherals 

• Data to DI A converters 

Then, we may ask the following questions about each output: · 

1) What 1s its form: 1.e .. what signals must the computer produce? 

2) When must it be available. and how does the peripheral know 1t 1s available? 

3) How long must it be available? 

4) How often must 1t change. and how does the peripheral know that it has changed? 

5) Is there a sequence of outputs? Is the order important? 

6) What should be done to avoid transm1ss1on errors or to sense and recover from pe­
ripheral failures? 

7) How 1s the output related to other inputs and outputs? 

13-4 



PROCESSING SECTION 
Between the reading of input data and the sending of output results 1s the processing 
section. Here we must determine exactly how the computer must process the in­
put data. The questions are: 

1) What 1s the basic procedure (algorithm) for transforming input 
data into output results? 

2) What time constraints exist? These mav include data rates. 
delay times. the time constants of input and output devices. etc. 

FACTORS IN 
PROCESSING 

3) What memorv constraints exist? Do we have limits on the amount of program 
memorv or data memorv. or on the size of buffers? 

4) What standard programs or tables must be used? What are their requirements? 
5) What special cases exist. and how should the program handle them? 
6) How accurate must the results be? 
7) How should the program handle processing errors or special conditions such as 

overflow. underflow. or loss of significance? 

ERROR HANDLING 
An important factqr in many applications is the handling of errors. Clearlv. the 
designer must make provisions for recovering from common errors and for diagnosing 
malfunctions. Among the questions that the designer must ask at the definition 
stage are: 

1) What errors could occur? ERROR 
2) Which errors are most likelv? If a person operates the CONSIDERATIONS 

svstem. human error 1s the most common. Following 
human errors. communications or transmission errors are more common than 
mechanical. electrical. mathematical. or processor errors. 

3) Which errors will not be immediately obvious to the system? A special problem 1s 
the occurrence of errors that the system or operator may not recognize as incorrect. 

4) How can the svstem recover from errors with a minimum loss of time and data and 
vet be aware that an error has occurred? 

5) Which errors or malfunctions cause the same system behavior? How can these er­
rors or malfunctions be distinguished for diagnostic purposes? 

6) Which errors involve special system procedures? For example. do parity errors re-
quire retransmission of data? 

Another question is: How can the field technician systematically find the source of 
malfunctions without being an expert? Built-in test programs. special diagnostics. or 
signature analvs1s can help.1 

13-5 



HUMAN FACTORS 
Many microprocessor-based systems involve human interaction. 

Human factors must be considered throughout the develop­

ment process for such systems. Among the questions that the 
designer must ask are: 

OPERATOR 
INTERACTION 

1) What input procedures are most natural for the human operator? 

2) Can the operator easily determine how to begin. continue and end the input 

operations? 

3) How 1s the operator informed of procedural errors and equipment malfunctions? 

4) What errors 1s the operator most likely to make? 

5) How does the operator know that data has been entered correctly? 

6) Are displays 1n a form that the operator can easily read and understand? 

7) Is the response of the system adequate for the operator? 

8) Is the system easy for the operator to use? 

9) Are there guiding features for an inexperienced operator? 

10) Are there shortcuts and reasonable options for the experienced operator? 

11) Can the operator always determine or reset the state of the system after interrup­

tions or distractions? 

Building a system for people to use is difficult. The microprocessor can make the 

system more powerful. more flexible. and more responsive. However. the designer still 

must add the human touches that can greatly increase the usefulness and attractive­

ness of the system and the productivity of the human operator.2 

EXAMPLES 
Response to a Switch 
Figure 13-2 shows a simple system in which the input is from 

a single SPST switch and the output is to a single LED display. 

In response to a switch closure, the processor turns the dis­

play on for one second. This system should be easy to define. 

Let us first examine the input and answer each of the questions 

previously presented: 

1) The input 1s a single bit. which may be either 'O' (switch 
closed) or '1' (switch open). 

2) The input 1s alwavs available and need not be requested. 

DEFINING 
SWITCH AND 
LIGHT 
SYSTEM 

SWITCH AND 
LIGHT INPUT 

3) The input 1s available for at least several milliseconds after the closure. 

4) The input will seldom change more than once every few seconds. The processor 

has to handle only the bounce 1n the switch. The processor must monitor the 

switch to determine when 1t is closed. 

5) There 1s no sequence of inputs. 

6) The obvious input errors are switch failure. failure in the input c1rcu1trv. and the 

operator attempting to close the switch again before a sufficient amount of time 

has elapsed. We will discuss the handling of these errors later. 

7) The input does not depend on any other inputs or outputs. 

13-6 



+sv 

Input 

Port 
.__ .... ____,~ oo---. 

-J-
CPU 

Output 

Port 

+SV 

The switch input 1s a · 1' lf the switch ts open. 'O' if the 
SWltch 1s closed. The CPU applies the output to the 
cathode of the LED: a 'Q' lights the display. 

Figure 13-2. The Switch and Light System 

The next requirement in defining the system is to examine the 
output. The answers to our questions are: 

1) The output 1s a single bit which is ·o· to turn the display on. 
'1' to turn it off. 

SWITCH 
AND LIGHT 
OUTPUTS 

2) There are no time constraints on the output. The peripheral does not need to be in­
formed of the availability of data. 

3) If the displav 1s an LED. the data need be available for only a few milliseconds at a 
pulse rate of about 100 times per second. The observer will see a continuously lit 
display. 

4) The data must change (go off) after one second. 
5) There is no sequence of outputs. 
6) The possible output errors are display failure and failure in the output circuitry. 
7) The output depends only on the switch input and time. 

The processing section is extremely simple. As soon as the switch input becomes 
a logic 'O', the CPU turns the light on (a logic '0') for one second. No time or memo­
ry constraints exist. 

Let us now look at the possible errors and malfunctions. These 
are: 

• Another switch closure before one second has elapsed 
•Switch failure 
• Display failure 
·Computer failure 

SWITCH AND 
LIGHT ERROR 
HANDLING 

Surely the first error 1s the most likely. The simplest solution 1s for the processor to ig­
nore switch closures until one second has elapsed. This brief unresponsive period will 
hardly be noticeable to the human operator. Furthermore. ignoring the switch during 
this period means that no debouncmg c1rcu1try or software 1s necessary, since the 
system will not react to the bounce anvway. 

13-7 



Clearly. the last three failures can produce unpredictable results. The display may stay 

on. stay off. or change state randomly. Some possible ways to isolate the failures would 

be: 

• Lamp-test hardware to check the display; 1.e .. a button that turns the light on 

independently of the processor 

• A direct connection to the switch to check its operation 

• A diagnostic program that exercises the input and output circuits 

If both the display and switch are working. the computer is at fault. A field technician 
with proper equipment can determine the cause of the failure. 

A Switch-Based Memory loader 

Figure 13-3 shows a system that allows the user to enter 
data into any memory location in a microcomputer. One in­
put port. DPORT. reads data from eight toggle switches. 
The other input port. CPORT, is used to read control infor­

DEFINING A 
SWITCH-BASED 
MEMORY LOADER 

mation. There are three momentary switches: High Address, Low Address and 

Data. The output is the value of the last completed entry from the data switches; 

eight LEDs are used for the display. 

The system will also. of course. require various resistors. buffers. and drivers. 

We shall first examine the inputs. The characteristics of the switches are the same as 

1n the previous example: however. here there 1s a distinct sequence of inputs. as 

follows: 

1 l The operator must set the data switches according to the eight most significant 

bits of an address. then 

2) press the High Address button. The high address bits will &ppear on the lights. and 

the program will interpret the data as the high byte of the address. 

3) Then the operator must set the data switches with the value of the least significant 
byte of the address and 

4) press the Low Address button. The low address bits will appear on the lights. and 

the program will consider the data to be the low byte of the address. 

5) Finally, the operator must set the deS1red data into the data switches and 

6) press the Data button. The display will now show the data. and the program stores 

the data in memory at the previously entered address. 

The operator may repeat the process to enter an entire program. Clearly, even in this 

simplified situation. we will have many possible sequences to consider. How do we 

cope with erroneous sequences and make the system easy to use? 

Output is no problem. After each input, the program sends to the displays the 

complement (since the displays are active-low) of the input bits. The output data 

remains the same until the next input operation. 

The processing section remains quite simple. There are no time or memory con­

straints. The program can debounce the switches by waiting for a few milliseconds. and 

must provide complemented data to the displays. 

13-8 



CPU 

Data 
Bus 

Input 

Port 

DPORT 

Input 

Port 

CPO RT 

Output 

Port 

J_ 

J_ 

Figure 13-3. The Switch-Based Memory Loader 

13-9 

High Address 

Low Address 

Data 

+5V 



The most likely errors are operator mistakes. These include: 

• Incorrect entries 

• Incorrect order 

• Incomplete entries; for example. forgetting the data 

The system must be able to handle these problems in a reasonable 
wav. since they are certain to occur in actual operation. 

MEMORY 
LOADER 
ERROR 
HANDLING 

The designer must also consider the effects of equipment failure. Just as before. 

the possible difficulties are: 

• Switch failure 

• Display failure 

• Computer failure 

In this system. however. we must pay more attention to how these failures affect the 

system. A computer failure will presumably cause very unusual behavior by the system. 

and will be easy to detect. A display failure may not be immediately noticeable; here a 

Lamp Test feature will allow the operator to check the operation. Note that we would 

like to test each LED separately. in order to diagnose the case in which output lines are 

shorted togethe~ In addition. the operator may not immediately detect switch failure; 

however. the operator should soon notice it and establish which switch is faulty by a 
process of elimination. 

Let us look at some of the possible operator errors. Typical errors 
will be: 

• Erroneous data 

• Wrong order of entries or switches 

• Trying to go on to the next entry without completing the current 
one 

OPERATOR 
ERROR 
CORRECTION 
IN MEMORY 
LOADER 

The operator will presumably notice erroneous data as soon as it appears on the dis­

plays. What 1s a viable recovery procedure for the operator? Some of the options are: 

1) The operator must complete the entry procedure; 1.e .. enter Low Address and Data 
if the error occurs in the High Address. Clearly, this procedure is wasteful and 
would only serve to annoy the operator. 

2) The operator mav restart the entry process by returning to the high address entry 
steps. This solution 1s useful if the error was in the High Address. but forces the 
operator to re-enter earlier data if the error was in the Low Address or Data stage. 

3) The operator mav enter anv part of the sequence at any time simply by setting the 

Data switches with the desired data and pressing the corresponding button. This 
procedure allows the operator to make corrections at any point in the sequence. 

This type of procedure should always be preferred over one that does not allow immedi­
ate error correction. has a varietv of concluding steps. or enters data into the svstem 

without allowing the operator a final check. Any added complication in hardware or 
software will be iustified in increased operator efficiency. You should always prefer to 

let the microcomputer do the tedious work and recognize arbitrary sequences; 1t never 
gets tired and never forgets what was in the operating manual. 

A further helpful feature would be status lights that would define the meaning of the 
display. Three status lights. marked "High Address", "Low Address". and "Data". 

wou Id let the operator know what had been entered without having to remember which 

button was pressed. The processor wou Id have to monitor the sequence. but the added 
complication in software would simplify the operator's task. Clearly, three separate sets 
of displays plus the ability to examine a memory location would be even more helpful to 
the operator. 

13-10 



CPU 

Kevboard 

Input Port 

Dispiav 

Output Port{s1 
Displav 

XMIT 

Output Port 
To Centraj Computer 

RCV 

Input Port 

Status Light 

Output Port 

I----• BUSY Displav 

I----• READY Display 

Figure 13-4. Block Diagram of a Verification Terminal 

We should note that, although we have emphasized human interaction, machine 
or system interaction has many of the same characteristics. The microprocessor 
should do the work. If complicating the microprocessor's task makes error recov­
ery simple and the causes of failure obvious, the entire system will work better 
and be easier to maintain. Note that you should not wait until after the software has 
been completed to consider system use and maintenance: instead. you should include 
these factors in the problem definition stage. 

A Verification Terminal 
Figure 13-4 is a block diagram of a simple credit-verification 
terminal. One input port derives data from a keyboard (see 
Figure 13-5): the other input port accepts verification data 
from a transmission line. One output port sends data to a set of 

DEFINING A 
VERIFICATION 
TERMINAL 

displays (see Figure 13-6): another sends the credit card number to the central 
computer. A third output port turns on one light whenever the terminal is ready to 
accept an inquiry. and another light when the operator sends the information. The 
"Busy" light turns off when the response returns. Clearly, the input and output of 
data will be more complex than in the previous case. although the processing is still 
simple. 

13-11 



ODD 
DDDB 
DDDG 

D 
The dig1t keys allow digit entnes. 

CLEAR deletes the entire entrv. 

SEND transmits the entrv to the central computer. 

Figure 13-5. Verification Terminal Keyboard 

READY BUSY 

D D 

The display consists of ten 7-segment displays. which mav be multiplexed. controlled bv a shift 

register. or addressed separatelv. Two additional lights, READY end BUSY. are also present. 

Figure 13-6. Verification Terminal Display 

13-12 



Additional displays may be useful to emphasize the meaning of the response. Many ter­
minals use a green light for "Yes". a red light for "No". and a yellow light for "Consult 
Store Manager." Note that these lights will still have to be clearly marked with their 
meanings to allow for a color-blind operator. 

Let us first look at the keyboard input. This is. of course. 
different from the switch input. since the CPU must have some 
way of distinguishing new data. We will assume that each key 
closure provides a unique hexadecimal code (we can code 

VERIFICATION 
TERMINAL 
INPUTS 

each of the 12 keys into one digit) and a strobe. The program will have to recogn­
ize the strobe and fetch the hexadecimal number that identifies the key. There 1s a 
time constraint. since the program cannot miss any data or strobes. The constraint 1s 
not serious. since keyboard entries will be at least several milliseconds apart. 
The transmission input similarly consists of a series of characters. each identified 
by a strobe (perhaps from a UART). The program will have to recognize each 
strobe and fetch the character. The data being sent across the transmission lines 
is usually organized into messages. A possible message format is: 

• Introductory characters. or header 
•Terminal dest1nat1on address 
• Coded yes or no 
• Ending characters. or trailer 

The terminal will check the header. read the destination address. and see if the 
message 1s intended for it. If the message 1s for the terminal. the terminal accepts the 
data. The address could be (and often is) hard-wired into the terminal so that the ter­
minal receives only messages intended for it. This approach simplifies the software at 
the cost of some flexibility. 

The output is also more complex than in the earlier examples. 
If the displays are multiplexed, the processor must not only 
send the data to the display port but must also direct the data 
to a particular display. We will need either a separate control port 

VERIFICATION 
TERMINAL 
OUTPUTS 

or a counter and decoder to handle this. Note that hardware blanking controls can 
blank leading zeros as long as the first digit in a multi-digit number is never zero. Soft­
ware can also handle this task. Time constraints include the pulse length and frequency 
required to produce a continuous display for the operator. 
The communications output will consist of a series of characters with a particular 
format. The program will also have to consider the time required between charac­
ters. A possible format for the output message is: 

•Header 
·Terminal address 
• Credit card number 
• Trailer 

A central communications computer may poll the terminals. checking for data 
ready to be sent. 

The processing in this system involves many new tasks, such as: 

• Identifying the control keys by number and performing the proper actions 
• Adding the header. terminal address. and trailer to the outgoing message 
• Recognizing the header and trailer in the returning message 
• Checking the incoming terminal address 

13-13 



Note that none of the tasks involve any complex arithmetic or any 
serious time or memory constraints. 

The number of possible errors in this system is, of course, 

much larger than in the earlier examples. Let us first consider 

the possible operator errors. These include: 

• Entering the credit card number incorrectly 

·Trying to send an incomplete credit card number 

VERIFICATION 
TERMINAL 
ERROR 
HANDLING 

•Trying to send another number while the central computer is processing one 

• Clearing non-existent entnes 

Some of these errors can be easily handled by correctly structuring the program. For ex­

ample. the program should not accept the Send key until the credit card number has 

been completely entered. and 1t should ignore any additional keyboard entnes until the 

response comes back from the central computer. Note that the operator will know that 

the entry has not been sent. since the Busy light will not go on. The operator will also 

know when the keyboard has been locked out (the program 1s 1gnonng keyboard en­

tries). since entries will not appear on the display and the Ready light will be off. 

Incorrect entries are an obvious problem. If the operator recog­

nizes an error. he can use the Clear key to make corrections. The 

operator would probably find 1t more convenient to have two Clear 
keys, one that cleared the most recent key and one that cleared 

CORRECTING 
KEYBOARD 
ERRORS 

the entire entry. This would allow both for the situation in which the operator recog­

nizes the error immediately and for the situation in which the operator recognizes the 

error late in the procedure. The operator should be able to correct errors immediately 

and have to repeat as few keys as possible. The operator will. however. make a certain 

number of errors without recognizing them. Most credit card numbers include a self­

checking digit: the terminal could check the number before permitting it to be sent to 

the central computer. This step would save the central computer from wasting precious 

processing time checking the number. 

This requires. however. that the terminal have some way of informing the operator of 

the error. perhaps by flashing one of the displays or by providing some other special in­

dicator that the operator is sure to notice. 

Still another problem 1s how the operator knows that an entrv has been lost or pro­

cessed incorrectly. Some terminals simply unlock after a maximum time delay. The 

operator notes that the Busy light has gone off without an answer being received. The 

operator 1s then expected to try the entry again .. After one or two retries, the operator 

should report the failure to supervisory personnel. 

Many equipment failures are also possible. Besides the displays, keyboard, and 

processor, there now exist the problems of communications errors or failures and 

central computer failures. 

13-14 



The data transm1ss1on will probably have to include error checking and correcting pro­
cedures. Some possibilities are: 

1) Parity provides an error detection facility but no correction 
mechanism. The receiver will need some way of request­
ing retransm1ss1on. and the sender will have to save a copy 
of the data until proper reception 1s acknowledged. Parity 
is. however. verv simple to implement. 

CORRECTING 
TRANSMISSION 
ERRORS 

2) Short messages may use more elaborate schemes. For example. the ves/no 
response to the terminal could be coded so as to provide error detection and cor­
rection capability. 

3) An acknowledgement and a limited number of retries could trigger an indicator 
that would inform the operator of a communications failure (inability to transfer a 
message without errors) or central computer failure (no response- at all to the 
message within a certain period of time). Such a scheme. along with the Lamp 
Test. would allow simple failure diagnosis. 

A communications or central computer failure indicator should also "unlock" the ter­
minal. i.e .. allow it to accept another entry. This 1s necessary if the terminal will not ac­
cept entries while a verification 1s in progress. The terminal mav also unlock after acer­
tain maximum time delay. Certain entries could be reserved for diagnostics: i.e .. certain 
credit card numbers could be used to check the internal operation of the terminal and 
test the displavs. 

REVIEW OF PROBLEM DEFINITION 
Problem definition is as important a part of software development as it is of any 
other engineering task. Note that it does not require any programming or 
knowledge of the computer; rather, it is based on an understanding of the system 
and sound engineering judgment. Microprocessors can offer flexibility that the 
designer can use to provide a range of features which were not previously availa­
ble. 

Problem definition is independent of any particular computer, computer language, 
or development system. It should, however, provide guidelines as to what type or 
speed of computer the application will require and what kind of hard­
ware/software trade-offs the designer can make. The problem definition stage is 
in fact independent of whether or not a computer Is used at all. although a 
knowledge of the capabilities of the computer can help the designer in suggesting 
possible implementations of procedures. 

13-15 



PROGRAM DESIGN 

Program design is the stage in which the problem definition is formulated as a pro­

gram. If the program is small and simple, this stage may involve little more than 

the writing of a one-page flowchart. If the program is larger or more complex. the 

designer should consider more elaborate methods 

We will discuss flowcharting, modular programming, structured programming, and 

top-down design. We will try to indicate the reasoning behind these methods, and 

their advantages and disadvantages. We will not, however. advocate any particular 

method since there 1s no evidence that one method is always superior to all others. You 

should remember that the goal is to produce a good working system. not to follow 

religiously the tenets of one methodology or another. 

All the methodologies do. however. have some obvious princi­
ples in common. Many of these are the same pnnc1ples that apply 

to any kind of design. such as: 

1) Proceed in small steps. Do not try to do too much at one 

time. 

BASIC 
PRINCIPLES 
OF PROGRAM 
DESIGN 

2) Divide large 1obs into small. logicallv separate tasks. Make the sub-tasks as inde­

pendent of one another as possible, so that they can be tested separately and so 

that changes can be made in one without affecting the others. 

3) Keep the flow of control as simple as possible so as to make it easier to find errors. 

4) Use pictonal or graphic descriptions as much as possible. They are easier to 

visualize than word descnpt1ons. This is the great advantage of flowcharts. 

5) Emphasize clanty and simplicity at first. You can improve performance (if necess­

ary) once the system 1s working. 

6) Proceed in a thorough and systematic manner. Use checklists and standard pro­

cedures. 

7) Do not tempt fate. Either do not use methods that you are not sure of. or use them 

very carefully. Watch for situations that might cause confusion. and clarify them 
as soon as possible. 

8) Keep in mind that the system must be debugged. tested and maintained. Plan for 

these later stages. 

9) Use simple and consistent terminology and methods. Repetitiveness is no fault in 

program design. nor is complexity a virtue. 

10) Have your design completely formulated before you start coding. Resist the 

temptation to start writing down instructions: it makes no more sense than mak­
ing parts lists or laying out circuit boards before you know exactly what will be 1n 
the system. 

11) Be part1cu larly carefu I of factors that may change. Make the implementation of 
likely changes as simple as possible. 

13-16 



D 
D 
0 
CJ 

0 

-1 
( ) 

Input/Output 

Processing operation 
(Arithmetic. Log1c. Data Movement) 

Decision logic 

Subroutine 

Connector point 

Connector arrows 

T ermmal pomt 

(Beginning or Endingl 

Figure 13-7 Standard Flowchart Symbols 

FLOWCHARTING 
Flowcharting 1s certain Iv the best-known of all program design methods. Programming 
textbooks describe how programmers first write complete flowcharts and then start 
writing the actual program. In fact. few programmers have ever worked this way, and 
flowcharting has often been more of a 1oke or a nuisance to programmers than a design 
method. We will trv to describe both the advantages and disadvantages of flowcharts. 
and show the place of this technique in program design. 

The basic advantage of the flowchart is that it is a pictorial ADVANTAGES OF 
representation. People find such representations much more FLOWCHARTING 
meaningful than written descriptions. The designer can v1sual-
1ze the whole system and see the relationships of the various parts. Logical errors and 
inconsistencies often stand out instead of being hidden in a printed page. At its best, 
the flowchart is a picture of the entire system. 

13-17 



Some of the more specific advantages of flowcharts are: 

1) Standard symbols exist (see Figure 13-7) so that flowcharting forms are widely 
recognized. 

2) Flowcharts can be understood by someone without a programming background. 

3) Flowcharts can be used to divide the entire pro1ect into sub-tasks. The flowchart 
can then be examined to measure overall progress. 

4) Flowcharts show the sequence of operations and can therefore aid 1n locating the 
source of errors. 

5) Flowcharting 1s widely used in other areas besides programming. 

6) There are many tools available to aid in flowcharting. including programmer's 
templates and automated drawing packages. 

These advantages are all important. There 1s no question that 
flowcharting will continue to be widely used. But we should 
note some of the disadvantages of flowcharting as a pro­
gram design method, e.g.: 

DISADVANTAGES 
OF 
FLOWCHARTING 

1) Flowcharts are difficult to design, draw. or change in all except the simplest situa­
tions. 

2) There 1s no easy way to debug or test a flowchart. 

3) Flowcharts tend to become cluttered. Designers find it difficult to balance between 
the amount of detail needed to make the flowchart useful and the amount that 
makes the flowchart little better than a program listing. 

4) Flowcharts show onlv the program organization. They do not show the organization 
of the data or the structure of the input/output modules. 

5) Flowcharts do not help with hardware or timing problems or give hints as to where 
these problems might occur. 

6) Flowcharts allow for highly unstructured design. Lines and arrows backtracking 
and looping all over the chart are the antithesis of good structured design princi­
ples. 

Thus. flowcharting is a helpful technique that you should not try to extend too far. 
Flowcharts are useful as program documentation, since they have standard forms 
and are comprehensible to non-programmers. As a design tool. however, flowcharts 
cannot provide much more than a starting outline; the programmer cannot debug a 
detailed flowchart and the flowchart is often more difficult to design than the program 
itself. 

13-18 



EXAMPLES 
Response to a Switch 
This simple task, in which a single switch turns on a ligh1 
for one second, is easy to flowchart. In fact. such tasks are 
typical examples for flowcharting books. although they form a 
small part of most systems. The data structure here 1s so simple 
that 1t can be safely ignored. 

FLOWCHARTING 
SWITCH AND 
LIGHT SYSTEM 

Figure 13-8 is the flowchart. There 1s little difficulty in deciding on the amount of 
detail required. The flowchart gives a straightforward picture of the procedure. which 
anyone could understand. 

Note that the most useful flowcharts may ignore program variables and ask questions 
directly. Of course. compromises are often necessary here. Two versions of the 
flowchart are sometimes helpful- one general version in layman's language, 
which will be useful to non-programmers, and one programmer's version in terms 
of the program variables. which will be useful to other programmers. ------.. A third type of flowchart, a data flowchart, may also be DATA 
helpful. This flowchart serves as a cross-reference for the other FLOWCHARTS 
flowcharts. since 1t shows how the program handles a particular 
type of data. Ordinary flowcharts show how the program proceeds. handling different 
types of data at different points. Data flowcharts. on the other hand. show how particu­
lar types of data move through the system. passing from one part of the program to 
another. Such flowcharts are verv useful in debugging and maintenance. since errors 
most often show up as a particular type of data being handled incorrectly. 

13-19 



Turn light on 

Turn light off 

c ___ End __ ) 

Figure 13-8. Flowchart of One-Second Response to a Switch 

The Switch-Based Memory loader 

This svstem (see Figure 13-3) 1s considerably more complex 
than the previous example. and involves many more dec1s1ons. 
The flowchart (see Figure 13-9) is more difficult to write 
and not as straightforward as the previous example. In this 
example. we face the problem that there 1s no way to debug or 
test the flowchart. 

FLOWCHARTING 
THE 
SWITCH-BASED 
MEMORY LOADER 

The flowchart 1n Figure 13-9 includes the improvements we suggested as part of the 

problem definition. Clearly. this flowchart is beginning to get cluttered and lose its 
advantages over a written description. Adding other features that define the mean­

ing of the entry with status lights and allow the operator to check entries after comple­

tion would make the flowchart even more complex. Writing the complete flowchart 
from scratch could quickly become a formidable task. However. once the program has 

been written. the flowchart 1s useful as documentation. 

13-20 



Start 

High bvte of 
Address= 

Switches 

Lights = Switches 

Wait 
debounce 

time 

Low bvte of 
Address= 
SWltches 

Lights = Svvitchcs 

Wait 
debounce 

time 

No 

Data =Swrtches 

Lights = Switches 

Store Data 
at Address 

Wart 

debounce 

time 

Wait 

debounce 

time 

Figure 13-9. Flowchart of Switch-Based Memorv Loader 

13-21 



Start 

Oear Entry Array 
Kev Pointer =.Start 

of Entrv Array 
Kev C01Jnter = 0 

Kev = Keyl>Ollrd 

Input Data 
!Kev Pointer! = Kev 

Kev Pointer = 
Kev -Pointer + 1 

Kev Counter = 
Kev Counter + 1 

End 

Figure 13-10. Flowchart of Keyboard Entry Process 

The Credit-Verification Terminal 
In this application (see Figures 13-4 through 13-6), the 
flowchart will be even more complex than in the switch-based 
memorv loader case. Here. the best idea is to flowchart sec­
tions separately so that the flowcharts remain manageable. 
However. the presence of data structures (as in the multi-digit 
display and the messages) will make the gap between 
flowchart and program much wider. 

FLOWCHARTING 
THE CREDIT 
VERIFICATION 

FLOWCHARTING 
SECTIONS 

Let us look at some of the sections. Figure 13-10 shows the keyboard entry process 
for the digit keys. The program must fetch the data after each strobe and place the 

digit into the display array if there is room for 1t. If there are already ten digits in the ar­
ray, the program simply ignores the entrv. 

The actual program will have to handle the displays at the same time. Note that either 
software or hardware must de-activate the keyboard strobe after the processor reads a 
digit. 

13-22 



Start 

Claar Displav Arrav 
Key Pointer = Start 

of Dlsplav Arrav 
Kev Counter,= 0 

Kev = Keyboard 

Input Data 

Send 

Figure 13-11. Flowchart of Keyboard Entry Process with Send Key 

Figure 13-11 adds the Send key. This key. of course. 1s optional. The terminal could 
JUSt send the data as soon as the operator enters a complete number. However. that 
procedure would not give the operator a chance to check the entire entry. The 
flowchart with the Send key 1s more complex because there are two alternatives. 

1) If the operator has not entered ten digits. the program must ignore the Send key 
and place any other key into the entry. 

2) If the operator has entered ten digits. the program must respond to the Send key by 
transferring control to the Send routine. and ignore all other keys. 

Note that the flowchart has become much more difficult to organize and to follow. 
There 1s also no obvious way to check the flowchart. 

13-23 



Start 

Oeer Display Array 
Kev Pomter =Start 

of Display Arrav 
Kev Counter = O 

Kev = Keyboard 

Input Data 

(Kev Pomterl = Kev 

Kev Pointer = 

Kev PcMnter + 1 

Send 

Figure 13-12. Flowchart of Kevboard Entrv Process with Function Keys 

Figure 13-12 shows the flowchart of the keyboard entry process with all the func­

tion keys. In this example. the flow of control 1s not simple. Clearly, some written 

description 1s necessary. The organization and lavout of complex flowcharts requires 

careful planning. We have followed the process of adding features to the flowchart one 

at a time. but this still results 1n a large amount of redrawing. Again we should remem­

ber that throughout the keyboard entrv process. the program must also refresh the dis­

plays if they are multiplexed and not controlled bv shift registers or other hardware. 

13-24 



Start 

Al-----""' 
Header flag = 0 
Parity Error flag = 0 
Address Match flag=O 
Address Pointer =Sta 

of terminal address 
Address Counter = 0 
Nmess =0 

Header flag = 1 

Address Counter = 
Address Counter+ 1 

Address Pointer = 
Address Pointer + 1 

Tum off Busv 

light 

Uisplav answer 

Figure 13-13. Flowchart of Receive Routine 

13-25 

RT RAN 



Figure 13-13 is the flowchart of a receive routine. We assume that the serial/parallel 

conversion and error checking are done in hardware (e.g .. by a UART). The processor 

must: 

1) Look for the header (we assume that 1t 1s a single character). 

2) Read the destination address (we assume that 1t is three characters long) and see if 
the message 1s meant for this terminal: 1.e .. if the three characters agree with the 

terminal address. 

3) Wait for the trailer character. 

4) If the message 1s meant for the terminal. turn off the Busy light and go to Display 

Answer routine. 

5) In the event of any errors. request retransm1ss1on by going to RTRAN routine. 

This routine involves a large number of decisions. and the flowchart 1s neither simple 

nor obvious. 

Clearly, we have come a long way from the simple flowchart (Figure 13-8) of the 

first example. A complete set of flowcharts for the transaction terminal would be 

a major task. It would consist of several interrelated charts with complex logic. and 

would require a large amount of effort. Such an effort would be just as difficult as writ­

ing a preliminary program. and not as useful. since you could not check it on the com­
puter. 

MODULAR PROGRAMMING 
Once programs become large and complex. flowcharting 1s no longer a satisfactory 

design tool. However. the problem definition and the flowchart can give you some idea 

as to how to divide the program into reasonable sub-tasks. The division of the entire 

program into sub-tasks or modules is called "modular programming." Clearly. most 

of the programs we presented 1n earlier chapters would typically be modules in a large 

system program. The problems that the designer faces in modular programming are 

how to divide the program into modules and how to put the modules together. 

The advantages of modular programming are obvious: 

1) A single module 1s easier to write. debug. and test than an 
entire program. 

21 A module 1s likely to be useful in many places and in other 

ADVANTAGES 
OF MODULAR 
PROGRAMMING 

programs. particularly if it 1s reasonably general and performs a common task. You 

can build up a library of standard modules. 

3) Modular programming allows the programmer to divide tasks and use previously 

written programs. 

4) Changes can be incorporated into one module rather than into the entire system. 

5) Errors can often be isolated and then attributed to a single module. 

6) Modular programming gives an idea of how much progress has been made and 

how much of the work 1s left. 

13-26 



The idea of modular programming is such an obvious one 
that its disadvantages are often ignored. These include: 

1) Fitting the modules together can be a ma1or problem. par­
t1cularlv if different people write the modules. 

DISADVANTAGES 
OF MODULAR 
PROGRAMMING 

2) Modules require verv careful documentation. since they may affect other parts of 
the program. such as data structures used by all the modules. 

3) Testing and debugging modules separately 1s difficult. since other modules may 
produce the data used by the module being debugged and still other modules may 
use the results. You may have to write special programs (called "drivers") iust to 
produce sample data and test the programs. These drivers require extra program­
ming effort that adds nothing to the svstem. 

4) Programs mav be very difficult to modularize. If you modularize the program poorlv. 
1ntegrat1on will be very difficult. since almost all errors and changes will involve 
several modules. 

5) Modular programs often require extra time and memorv. since the separate 
modules may repeat functions. 

Therefore. while modular programming 1s certain Iv an improvement over trying to write 
the entire program from scratch. 1t does have some disadvantages as well. 

Important considerations include restricting the amount of information shared by 
modules, limiting design decisions that are subject to change to a single module 
and restricting the access of one module to another.3 

An obvious problem is that there are no proven, 
systematic methods for modularizing programs. We 
should mention the following principles:4 

PRINCIPLES OF 
MODULARIZATION 

1) Modules that reference common data should be parts of the same overall module. 

2) Two modules in which the first uses or depends on the second. but not the reverse. 
should be separate. 

3) A module that 1s used by more than one other module should be part of a different 
overall module than the others. 

4) Two modules in which the first 1s used by manv other modules and the second 1s 
used by only a few other modules should be separate. 

5) Two modules whose frequencies of usage are significantly different should be part 
of different modules. 

6) The structure or organ1zat1on of related data should be hidden within a single 
module. 

If you find it very difficult to modularize your program. it is a strong indication that 
the problem is poorly defined, and redefinition is called for.Too many special cases. 
each requiring special handling. or the use of a large number of variables. each requir­
ing special processing. are problems that can be most efficiently handled. by redefining 
the tasks at hand. 

13-27 



EXAMPLES 
Response to a Switch 
This simple program can be divided into two modules: 

Module 1 waits for the switch to be turned on and turns 
the light on in response. 

Module 2 provides the one-second delay. 

MODULARIZING 
THE SWITCH 
AND LIGHT 
SYSTEM 

Module 1 1s likely to be specific to the system. since 1t will depend on how the switch 

and light are attached. Module 2 will be generally useful. since many tasks require 

delays. Clearly. 1t would be advantageous to have a standard delay module that could 

provide delays of varving lengths. The module will require careful documentation so 
that vou will know how to specify the length of the delay. how to call the module. and 
what registers and memory locations the module affects. 

A general version of Module 1 would be far less useful. since 1t would have to deal with 

different types and connections of switches and lights. 

You would probably find 1t simpler to write a module for a particular configuration of 
switches and lights rather than try to use a standard routine. Note the difference be­
tween this situation and Module 2. 

The Switch-Based Memory loader 
The switch-based memory loader is difficult to modularize, 
since all the programming tasks depend on the hardware 
configuration and the tasks are so simple that modules 
hardly seem worthwhile. The flowchart in Figure 13-9 sug­
gests that one module might be the one that waits for the 
operator to press one of the three pushbuttons. 

Some other modules might be: 

MODULARIZING 
THE 
SWITCH- BASED 
MEMORY LOADER 

• A delay module that provides the delay required to debounce the switches 

• A switch and display module that reads the data from the switches and sends 1t to 
the displavs 

• A Lamp Test module 

Highly system-dependent modules such as the last two are unlikely to be generally 

useful. This example 1s not one in which modular programming offers great advantages. 

The Verification Terminal 
The verification terminal, on the other hand. lends itself very 
well to modular programming. The entire system can easily be 
divided into three main modules: 

· Keyboard and display module 

• Data transmission module 

· Data reception module 

MODULARIZING 
THE 
VERIFICATION 
TERMINAL 

A general keyboard and display module could handle many keyboard- and display­
based systems. The sub-modules would perform such tasks as: 

• Recognizing a new keyboard entry and fetching the data 

• Clearing the array in response to a Clear key 

•Entering digits into storage 

• Looking for the terminator or Send key 

• D isplaving the dig 1ts 

13-28 



Although the key interpretations and the number of digits will vary. the basic entry, 
data storage. and data display processes will be the same for many programs. Such 
function keys as Clear would also be standard. Clearly. the designer must consider 
which modules will be useful in other applications, and pay careful attention to 
those modules. 

The data transmission module could also be divided into such sub-modules as: 

1) Adding the header character. 

2) Transmitting characters as the output line can handle them. 
3) Generating delay times between bits or characters. 
4) Adding the trailer character. 
5) Checking for transmission failures; 1.e .. no acknowledgement or inability to 

transmit without errors. 

The data reception module could include sub-modules which: 

1) Look for the header character. 
2) Check the message destination address against the terminal address. 
3) Store and interpret the message. 
4) Look for the trailer character. 
5) Generate bit or character delays. 

Note here how important it 1s that each design decision (such as 
the bit rate. message format. or error-checking procedure) be im­
plemented 1n only one module. A change in any of these dec1s1ons 
will then require changes only to that single module. The other 

INFORMATION 
HIDING 
PRINCIPLE 

modules should be written so that they are totally unaware of the values chosen or the 
methods used in the implementing module. An important concept here is the "infor­
mation-hiding principle, .. 5 whereby modules share only information that is ab­
solutely essential to getting the task done. Other information is hidden within a 
single module. 

An important use of this principle is in error handling. Whenever a module detects a 
lethal error. 1t should not undertake recovery procedures. Instead. it should pass the er­
ror status back up to the calling module and allow 1t to make the dec1s1on of how to 
recover from the error. The reason for this 1s that the lower level procedure often does 
not have enough information to adequately decide what recovery procedures are 
necessary. For example. suppose we have a module that accepts numeric input from a 
user. This module terminates normally when the user enters a string of numeric digits 
terminated by a carriage return. Entry of any non-numeric characters causes the 
module to immediately terminate abnormally. Since the module does not know in what 
context 1t is being used (i.e .. 1s 1t part of an assembler. an interactive editor. or a file 
management system?) 1t cannot make a valid dec1s1on of what action to take when en­
countering an invalid character. If a single error recovery method was designed into the 
module. it would lose its generality and become specific to those situations that employ 
this error recovery technique. 

13-29 



REVIEW OF MODULAR PROGRAMMING 
Modular programming can be very helpful if you abide by 
the following rules: 

1) Use modules of 20 to 50 lines. Shorter modules are 
usually a waste of time. while longer modules are seldom 
general and may be difficult to integrate. 

RULES FOR 
MODULAR 
PROGRAMMING 

2) Try to make modules reasonably general. Differentiate between common 
features like ASCII code or asynchronous transmission formats. which will be the 
same for many applications and key 1dentificat1ons. and number of displays or 
number of characters in a message. which are likely to be unique to a particular ap­
plication. Make the changing of the latter parameters simple. Ma1or changes like 
different character codes should be handled by separate modules. 

3) Take extra time on modules like delays, display handlers. keyboard handlers. etc. 
that will be useful in other projects or in many different places in the present 
program. 

4) Try to keep modules as distinct and logically separate as possible. Restnct the 
flow of information between modules and implement each design decision in a 
single module. 

5) Do not try to modularize simple tasks where rewnt1ng the entire task may be 
easier than assembling or modifying the module. 

STRUCTURED PROGRAMMING 
How do you keep modules distinct and stop them from interacting? How do you 
write a program that has a clear sequence of operations so that you can isolate 
and correct errors? One answer is to use the methods known as "structured pro­
gramming", whereby each part of the program consists of elements from a limited 
set of structures and each structure has a single entry and a single exit. 

Figure 13-14 shows a flowchart of an unstructured program. If an error occurs in 
Module B. we have five possible sources for that error. Not onlv must we check each se­
quence. but we also have to make sure that anv changes made to correct the error do 
not affect any of the other sequences. The usual result 1s that debugging becomes like 
wrestling an octopus. Every time you think the situation 1s under control. there 1s 
another loose tentacle somewhere. 

13-30 



c B 

Figure 13-14. Flowchart of an Unstructured Prograrn 

The solution 1s to establish a clear sequence of operations so 
that vou can isolate errors. Such a sequence uses single-entry, 
single-exit modules. The basic modules that are needed are: 

1 l An ordinary sequence; 1.e .. a linear structure 1n which 
statements or structures are executed consecutively. In 
the sequence: 

S1 

S2 

S3 

BASIC 
STRUCTURES 
OF 
STRUCTURED 
PROGRAMMING 

the computer executes S1 first. S2 second. and S3 third. S 1. S2. and S3 may be 
single instructions or entire programs. 

2) A conditional structure. 
The common one 1s "if C then S1 else S2." where C 1s a condition and S1 and S2 
are statements or sequences of statements. The computer executes S1 if C 1s true. 
and S2 if C is false. Figure 13-15 shows the logic of this structure. Note that the 
structure has a single entry and a single exit; there 1s no way to enter or leave S1 or 
S2 other than through the structure. 

3) A loop structure. 

The common loop structure 1s "while C do S." where C 1s a condition and S 1s a 
statement or sequence of statements. The computer checks C and executes S if C 
1s true. This structure (see Figure 13-16) also has a single entrv and a single exit. 
Note that the computer will not execute S at all if C 1s onginallv false. since the 
value of C 1s checked before S 1s executed. 

13-31 



Start 

S1 S2 

End 

Figure 13-15. Flowchart 6f the If-Then-Else Structure 

Start 

Yes 

End 

s 

Figure 13-16. Flowchart of the Do-While Structure 

In most structured programming languages. an alternative looping construct is pro­
vided. This construct is known as the do-until clause, Its basic structure is "do S until 
C". where C is a condition and S is a statement or sequence of statements. It is similar 
to the do-while construct except that the test of the looping condition C is performed at 
the end of the loop. This has the effect of guaranteeing that the loop is alwavs executed 
at least once. This 1s illustrated by the flowchart in Figure 13-17 The common index­
controlled or DO loop can be implemented as a special case of either of these two basic 
looping constructs. 

13-32 



Start 

s 

End 

Figure 13-17 Flowchart of the Do-Until Structure 

4) A case structure. 
Although not a primitive structure like sequential. if-then-else. and do-while. the 
case structure is so commonly used that we include 1t here as an adjunct to the 
basic structure descriptions. The case structure is "case I of SO. S1. .Sn". where I 
1s an index and SO. S1. .Sn are statements or sequences of statements. If I 1s 
equal to zero then statement SO 1s executed: if I is equal to 1 then statement S1 is 
executed. etc. Only one of then statements 1s executed. After its execution. control 
passes to the next sequential statement following the case statement group. If I 1s 
greater than n (i.e .. the number of statements in the case statement). then none of 
the statements in the case statement 1s executed. and control 1s passed directly to 
the next sequential statement following the case statement. This is illustrated by 
the flowchart 1n Figure 13-18. 

Note the following features of structured programming: 

11 Only the three basic structures, and possibly a small number of auxiliary 
structures, are permitted. 

2) Structures may be nested to any level of complexity so that any program can, 
in turn, contain any of the structures. 

3) Each structure has a single entry and a single exit. 

Some examples of the conditional structure illustrated in 
Figure 13-15 are: 

1) S2 included: 

if X ;;::_ 0 then NPOS = NPOS + 1 
else NNEG = NNEG + 1 

Both S 1 and S2 are single statements. 

2) S2 omitted: 

if X ;bO then Y = 1/X 

EXAMPLES 
OF 
STRUCTURES 

Here no action is taken if C (X ;bO) is false. S2 and "else" can be omitted 1n this case. 

13-33 



No 

No 
so 

S1 

S2 

Sn 

Figure 13-18. Flowchart of the Case Structure 

Some examples of the loop structure illustrated in Figure 13-16 are: 

1) Form the sum of integers from 1 to N. 

1=0 
SUM =0 
do while I< N 

1=1+1 
SUM= SUM+ I 

end 

End 

The computer executes the loop as long as I < N. If N = 0. the program within the "do­
while" is not executed at all. 

2) Count characters in an array SENTENCE until You find an ASCII period. 

NCHAR =0 
do while SENTENCE (NCHAR) ~PERIOD 

NCHAR = NCHAR + 1 
end 

The computer executes the loop as long as the character in SENTENCE is.not an ASCII 
period. The count is zero if the first character is a period. 

13-34 



The advantages of structured programming are: 

1) The sequence of operations is simple to trace. This allows 
you to test and debug easily. 

2} The number of structures is limited and the terminology is 
standardized. 

3) The structures can easily be made into modules. 

ADVANTAGES OF 
STRUCTURED 
PROGRAMMING 

4) Theoret1c1ans have proved that the given set of structures is complete; that is. all 
programs can be written in terms of the three structures. 

5) The structured version of a program is partly self-documenting and fairly easy to 
read. 

6) Structured programs are easy to describe with program outlines. 
7} Structured programming has been shown m practice to increase programmer pro-

ductivity. 

Structured programming basically forces much more discipline on the programmer 
than does modular programming. The result is more systematic and better­
organized programs. 

The disadvantages of structured programming are: 

1) Onlv a few high-level languages (e.g .. PL/M. PASCAL) will 
directly accept the structures. The programmer therefore 
has to go through an extra translation stage to convert the 
structures to assembly language code. The structured ver-

DISADVANTAGES 
OF 
STRUCTURED 
PROGRAMMING 

sion of the program. however. is often useful as documentation. 
2) Structured programs often execute more slowly and use more memory than 

unstructured programs. 
3) Limiting the structures to the four basic forms makes some tasks very awkward to 

perform. The completeness of the structures only means that all programs can be 
implemented with them: 1t does not mean that a given program can be imple­
mented efficiently or convenientlv. 

4) The standard structures are often quite confusing. e.g .. nested "if-then-else" struc­
tures may be very difficult to read. since there may be no clear indication of where 
the inner structures end. A series of nested "do-while" loops can also be difficult to 
read. 

5) Structured programs consider only the sequence of program operations. not the 
flow of data. Therefore. the structures may handle data awkwardly. 

6) Few programmers are accustomed to structured programming. Many find the stan-
dard structures awkward and restrictive. 

We are neither advocating nor discouraging the use of structured programming. It 
is one way of systematizing program design. In general, structured programming 
is most useful in the following situations: 

• Larger programs. perhaps exceeding 1000 instructions 
• Applications in which memory usage 1s not cnticai. 
• Low-volume applications where software development costs. 

particularly testing and debugging. are important factors. 
• Applications involving string manipulation. process control. 

or other algorithms rather than simple bit manipulations. 

13-35 

WHEN TO USE 
STRUCTURED 
PROGRAMMING 



In the future, we expect the cost of memory to decrease, the average size of 
microprocessor programs to increase, and the cost of software development to 
increase. Therefore, methods like structured programming, which decrease soft­
ware development costs for larger programs but use more memory, will become 
more valuable. 

Just because structured programming concepts are usually expressed in high-level 

languages does not mean that structured programming 1s not applicable to assembly 

language programming. On the contrary, the assembly language programmer. with the 
total freedom of expression that assembly level programming allows. needs the struc­

turing concepts provided by structured programming. Creating modules with single 

entry and exit points. using simple control structures and keeping the complexity of 

each module minimal makes assembly language coding more efficient. 

EXAMPLES 
Response to a Switch 
The structured version of this example is: 

SWITCH= OFF 
do while SWITCH =OFF 

READ SWITCH 
end 
LIGHT= ON 
DELAY 1 
LIGHT= OFF 

STRUCTURED 
PROGRAMMING 
IN THE 
SWITCH AND 
LIGHT SYSTEM 

ON and OFF must have the proper definitions for the switch and light. We assume that 

DELAY 1s a module that provides a delay given by its parameter in seconds. 

A statement in a structured program may actually be a subroutine. However. in order to 

conform to the rules of structured programming. the subroutine cannot have any exits 
other than the one that returns control to the main program. 

Since "do-while" checks the condition before executing the loop. we set the variable 

SWITCH to OFF before starting. The structured program 1s straightforward. readable. 

and easy to check by hand. However. 1t would probably require somewhat more memo­
ry than an unstructured program. which would not have to initialize SWITCH and could 
combine the reading and checking procedures. 

The Switch-Based Memory loader 
The switch-based memory loader is a more complex struc­
tured programming problem. We may implement the 
flowchart of Figure 13-9 as follows (an • indicates a com­
ment): 

•INITIALIZE VARIABLES 

HIADDRESS = 0 

LOADDRESS = 0 

STRUCTURED 
PROGRAMMING 
FOR THE 
SWITCH-BASED 
MEMORY LOADER 

• THIS PROGRAM USES A DO-WHILE CONSTRUCT WITH NO CONDITION 

• (CALLED SIMPLY DO-FOREVER). THEREFORE. THE SYSTEM CONTINUALLY 

•EXECUTES THE PROGRAM CONTAINED IN THIS DO-WHILE LOOP 

do forever 

13-36 



·TEST FOR HIADDRESS BUTTON: PERFORM THE REQUIRED PROCESSING 
·IF IT IS ON. 

if HIADDRBUTTON = 1 then 
begin 

HIADDRESS = SWITCHES 
LIGHTS = SWITCHES 
do 

DELAY (DEBOUNCE TIME) 
until HIADDRBUTTON i= 1 

end 

·TEST FOR LOADDRESS BUTTON: PERFORM LOW ADDRESS PROCESSlf'l!G 
·IF IT IS ON. 

if LOADDRBUTTON = 1 then 
begin 

LOADDRESS = SWITCHES 
LIGHTS =SWITCHES 
do 

DELAY (DEBOUNCE TIME) 
until LOADDRBUTTON i= 1 

end 

•TEST FOR DATABUTTON. AND STORE DATA INTO MEMORY 
·IF IT IS ON. 

end 

if DAT ABUTTON = 1 then 
begin 

DATA= SWITCHES 
LIGHTS = SWITCHES 
(HIADDRESS. LOADDRESSJ =DATA 
do 

DELAY (DEBOUNCE TIME) 
until DATABUTTON i= 1 

end 

• THE LAST END ABOVE TERMINATES THE 
do forever LOOP 

Structured programs are not easy to write. but they can give a great deal of insight into 
the overall program logic. You can check the logic of the structured program bv hand 
before writing any actual code. 

13-37 



The Ctedit-Verification Terminal 

Let us look at the keyboard ent..Y for the transaction terminal. 

We will assume that the display array is ENTRY. the keyboard 

strobe 1s KEYSTROBE. and the keyboard data is KEYIN. The struc­

tured program without the function keys is: 

NKEYS = 10 

• CLEAR ENTRY TO ST ART 

do while NKEYS > 0 
NKEYS = NKEYS - 1 
ENTRY(NKEYS) = 0 • 

end 

• FETCH A COMPLETE ENTRY FROM KEYBOARD 

do while NKEYS < 10 
if KEYSTROBE = ACTIVE then 

end 

begin 
KEYSTROBE =INACTIVE 

ENTRY(NKEYS) = KEYIN 

NKEYS = NKEYS + 1 
end 

STRUCTURED 
PROGRAM FOR 
THE CREDIT­
VERIFICATION 
TERMINAL 

STRUCTURED 
KEYBOARD 
ROUTINE 

Adding the SEND key means that the program must ignore extra digits after it has 

a complete entry, and must ignore the SEND key until it has a complete entry. The 

structured program is: 

NKEYS = 10 

• CLEAR ENTRY TO ST ART 

do while NKEYS > 0 
NKEYS = NKEYS - 1 
ENTRY(NKEYS) = 0 

end 

·WAIT FOR COMPLETE ENTRY FOLLOWED BY SEND KEY 

do while KEY i= SEND or NKEYS i= 10 

if KEYSTROBE = ACTIVE then 

begin 
KEYSTROBE =INACTIVE 
KEY= KEYIN 
if NKEYS i= 10 and KEY i= SEND then 

begin 

end 
end 

ENTRY(NKEYS) =KEY 

NKEYS = NKEYS + 1 
end 

13-38 



Note the following features of this structured program. 

1) The second if-then is nested within the first one. since keys are onlv entered after a 
strobe is recognized. If the second if-then were on the same level as the first. a 
single key could fill the entrv. since its value would be entered into the arrav during 
each iteration of the do-while loop. 

2) KEY need not be defined 1nit1allv. ~ince NKEYS 1s set to zero as part of the clear-
ing of the entrv. 

Adding the CLEAR key allows the program to clear the entry originally by simulat­
ing the pressing of CLEAR: 1.e .. bv setting NKEYS to 10 and KEY to CLEAR before 
starting. The structured program must also clear onlv digits that have prev1ouslv been 
filled. The new structured program is: 

•SIMULATE COMPLETE CLEARING 

NKEYS = 10 
KEY= CLEAR 

•WAIT FOR COMPLETE ENTRY AND SEND KEY 

do while KEY *'SEND or NKEYS *' 10 

• CLEAR WHOLE ENTRY IF CLEAR KEY STRUCK 

if KEY =CLEAR then 
begin 

KEY= 0 
do while NKEYS > 0 

NKEYS = NKEYS - 1 
ENTRY(NKEYS) = 0 

end 
end 

• GET DIGIT IF ENTRY INCOMPLETE 

end 

if KEYSTROBE = ACTIVE then 
begin 

KEYSTROBE = INACTIVE 
KEY= KEYIN 
if KEY < 10 and NKEYS ~ 10 then 

begin 

end 

ENTRY(NKEYS) =KEY 
NKEYS = NKEYS + 1 

end 

Note that the program resets KEY to zero after clearing the arrav. so that the operation 1s 
not repeated. 

13-39 



We can similarly build a structured program for the receive 
routine. An initial program could look just for the header and 
trailer characters. We will assume that RSTB is the mdicator that a 
character 1s ready. The structured· program is: 

• CLEAR HEADER FLAG TO ST ART 

HFLAG = 0 

•WAIT FOR HEADER AND TRAILER 

do while HFLAG = 0 or CHAR ,PTRAILER 

•GET CHARACTER IF READY. LOOK FOR HEADER 

if RSTB = ACTIVE then 
begin 

RSTB = INACTIVE 
CHAR= INPUT 
if CHAR = HEADER then HFLAG = 1 

end 

13-40 

STRUCTURED 
RECEIVE 
ROUTINE 



Now we can add the section that checks the message address against the three 
digits in TERMINAL ADDRESS (TERMADDR). If any of the corresponding digits 
are not equal, the ADDRESS MATCH flag (ADDRMATCH) is set to 1. 

•CLEAR HEADER FLAG. ADDRESS MATCH FLAG. ADDRESS COUNTER TO START 

HFLAG = 0 
ADDRMATCH = 0 
ADDRCTR = 0 

•WAIT FOR HEADER. DESTINATION ADDRESS AND TRAILER 

do while HFLAG = 0 or CHAR .&TRAILER OR ADDRCTR .&3 

• GET CHARACTER IF READY 

if RSTB = ACTIVE then 
begin 

RSTB =INACTIVE 
CHAR= INPUT 

end 

• CHECK FOR TERMINAL ADDRESS AND HEADER 

if HFLAG = 1 and ADDRCTR .& 3 then 
begin 

ADDRMATCH = 1 
ADDRCTR = ADDRCTR + 1 

end 
if CHAR = HEADER then HFLAG = 1 

end 

The program must now wait for a header. a three-digit 1dentificat1on code. and a trailer. 
You must be careful of what happens during the 1terat1on when the program finds the 
header. and of what happens if an erroneous 1dentificat1on code character 1s the same 
as the trailer. 

13-41 



A further addition can store the message in MESSG. NMESS is the number of 
characters in the message; if it is not zero at the end, the program knows that the 

terminal has received a valid message. We have not tried to minimize the logic ex­

pressions 1n this program. 

·CLEAR FLAGS. COUNTERS TO START 

HFLAG =0 
ADDRMA TCH = 0 
ADDRCTR =0 
NMESS = 0 

•WAIT FOR HEADER. DESTINATION ADDRESS AND TRAILER 

do while HFLAG = 0 or CHAR *'TRAILER or ADDRCTR #3 

• GET CHARACTER IF READY 

if RSTB = ACTIVE then 
begin 

RSTB = INACTIVE 
CHAR= INPUT 

end 

•READ MESSAGE IF DESTINATION ADDRESS= TERMINAL ADDRESS 

if HFLAG = 1 and ADDRCTR = 3 then 
if ADDRMATCH = 0 and CHAR *TRAILER then 
begin 

MESSG(NMESS) =CHAR 
NMESS = NMESS + 1 

end 

• CHECK FOR TERMINAL ADDRESS 

if HFLAG = 1 and ADDRCTR * 3 then 

if CHAR *TERMADDR(ADDRCTR) then 
begin 

ADDRMATCH = 1 
ADDRCTR = ADDRCTR + 1 

end 

• LOOK FOR HEADER 

if CHAR = HEADER then HFLAG = 1 
end 

13-42 



The program checks for the identification code only if 1t found a header dunng a pre­
vious iteration. It accepts the message only if 1t has previously found a header and a 
complete. matching destination address. The program must work properly dunng the 
iterations when it finds the header. the trailer and the last digit of the destination ad­
dress. It must not try to match the header with the terminal address or place the trailer 
or the final digit of the destination address in the message. You might try adding the 
rest of the logic from the flowchart (Figure 13-13) to the structured program. Note 
that the order of operations is often critical. You must be sure that the program 
does not complete one phase and start the next one during the same iteration. 

REVIEW OF STRUCTURED PROGRAMMING 
Structured programming brings discipline to program design. It forces you to limit 
the types of structures you use and the sequence of operations. It provides single­
entry, single-exit structures, which you can check for logical accuracy. Structured 
programming often makes the designer aware of inconsistencies or possible com­
binations of inputs. Structured programming is not a cure-all, but it does bring 
some order into a process that can be chaotic. The structured program should also 
aid in debugging. testing, and documentation. 
Structured programming is not simple. The programmer must not only define the 
problem adequately, but must also work through the logic carefully. This is 
tedious and difficult, but it results in a clearly written, working program. 
The particular structures we have presented are not ideal and 
are often awkward. In addition, it can be difficult to dis­
tinguish where one structure ends and another begins. partic­
ularly if they are nested. Theorists may provide better struc­

TERMINATORS 
FOR 
STRUCTURES 

tures in the future. or designers may wish to add some of their own. Some kind of 
terminator for each structure seems necessary. since indenting does not always clarify 
the situation. "End" 1s a logical terminator for the "do-while" loop. There 1s no obvious 
terminator. however. for the "if-then-else" statement: some theorists have suggested 
"endif' or "fi'' ("if" backwards). but these are both awkward and detract from the 
readability of the program. 

We suggest the following rules for applying structured pro­
gramming: 

1) Begin by writing a basic flowchart to help define the 
logic of the program. 

RULES FOR 
STRUCTURED 
PROGRAMMING 

2) Start with the "sequential," "if-then-else.'' and "do-while" constructs. They 
are known to be a complete set. i.e .. any program can be written in terms of these 
structures. 

3) Indent each level a few spaces from the previous level. so that you will know 
which statements belong where. 

4) Use terminators for each structure; e.g .. "end" for the "do-while" and "endif" or 
"fi" for the "if-then-else" The terminators plus the indentation should make the 
program reasonably clear. 

5) Emphasize simplicity and readability. Leave lots of spaces. use meaningful 
names. and make expressions as clear as possible. Do not try to minimize the logic 
at the cost of clarity. 

6) Comment the program in an organized manner. 
7) Check the logic. Try all the extreme cases or special conditions and a few sample 

cases. Any logical errors you find at this level will not plague you later. 

13-43 



TOP-DOWN DESIGN 
The remaining problem is how to check and integrate modules 
or structures. Certainly we want to divide a large task into 
sub-tasks. But how do we check the sub-tasks in isolation and 

BOTTOM-UP 
DESIGN 

put them together? The standard procedure, called "bottom-up design," requires 
extra work in testing and debugging and leaves the entire Integration task to the 

end. What we need is a method that allows testing and debugging in the actual 

program environment and modularizes system integration. 

This method is "top-down design." Here we start by writing 
the overall supervisor program. We replace the undefined sub­
programs by program "stubs," temporary programs that may 
either record the entry, provide the answer to a selected test 
problem, or do nothing. We then test the supervisor program 
to see that its logic is correct. 

TOP-DOWN 
DESIGN 
METHODS 

STUBS 

We proceed by expanding the stubs. Each stub will often con- EXPANDING 

tain sub-tasks, which we will temporarily represent as stubs. STUBS 
This process of expansion, debugging, and testing continues ""A_D_V_A_N_T_A_G_E_s""' 

until all the stubs are replaced by working programs. Note that OF TOP-DOWN 

testing and integration occur at each level. rather than all at the DESIGN 
end. No special driver or data generation programs are necessary. 

We get a clear idea of exactly where we are in the design. Top-
down design assumes modular programming, and is compatible with structured 

programming as well. 

The disadvantages of top-down design are: 

1) The overall design may not mesh well with system hard­
ware. 

2) It may not take good advantage of existing software. 

3) Stubs may be difficult to write. particularly if they must 
work correctly in several different places. 

DISADVANTAGES 
OF TOP-DOWN 
DESIGN 

4) Top-down design may not result in generallv useful modules. 

5) Errors at the top level can have catastrophic effects. whereas errors 1n bottom-up 

design are usuallv limited to a particular module. 

In large programming projects, top-down design has been shown to greatly im­

prove programmer productivity. However, almost all of these projects have used 

some bottom-up design in cases where the top-down method would have 

resulted in a large amount of extra work. 

Top-down design is a useful tool that should not be followed to extremes. It pro­

vides the same discipline for system testing and integration that structured pro­

gramming provides for module design. The method, however, has more general 

applicability, since it does not assume the use of programmed logic. However. 

top-down design may not result in the most efficient implementation. 

13-44 



EXAMPLES 
Response to a Switch 
The first structured programming example actually demon­
strates top-down design as well. The program was: 

SWITCH= OFF 
do while SWITCH =OFF 

READ SWITCH 
end 
LIGHT= ON 
DELAY 1 
LIGHT= OFF 

TOP-DOWN 
DESIGN 
OF SWITCH 
AND LIGHT 
SYSTEM 

These statements are really stubs. since none of them is fully defined. For exam­
ple. what does READ SWITCH mean? If the switch were one bit of input port SPORT. it 
really means: 

SWITCH =SPORT AND SMASK 
where SMASK has a ·1 · bit in the appropriate pos1t1on. The masking may, of course. be 
implemented with a Bit Test instruction. 

Similarly, DELAY 1 actually means (if the processor itself provides the delay): 
REG= COUNT 
do while REG ,i,o 

REG= REG - 1 
end 

COUNT is the appropriate number to provide a one-second delay. The expanded ver­
sion of the program is: 

SWITCH =O 
do while SWITCH = 0 

SWITCH =SPORT AND MASK 
end 
LIGHT= ON 
REG= COUNT 
do while REG "'O 

REG= REG - 1 
end 
LIGHT = NOT (LIGHT) 

Certainly this program is more explicit, and could more easily be translated into 
actual instructions or statements. 

13-45 



The Switch-Based Memory Loader 

This example is more complex than the first example. so we 
must proceed svstematicallv. Here again. the structured pro­
gram contains stubs. 

For example. if the HIGH ADDRESS button 1s one bit of input 

port CPORT. "if HIADDRBUTTON = 1" really means: 

1 I Input from CPO RT 

21 Complement 

31 Logical AND with HAMASK 

TOP-DOWN 
DESIGN OF 
SWITCH-BASED 
MEMORY 
LOADER 

where HAMASK has a '1' in the appropriate bit pos1t1on and 'Os' elsewhere. Similarly 

the condition "if DATABUTTON = 1" really means: 

11 Input from CPORT 

2) Complement 

3) Logical AND with DAMASK 

So. the,init1al stubs could 1ust assign values to the buttons. e.g .. 

HIADDRBUTTON = 0 
LOADDRBUTTON = 0 
DAT ABUTTON = 0 

A run of the supervisor program should show that 1t takes the implied "else" path 

through the "if-then-else" structures. and never reads the switches. Similarly, if the 

stub were: 

HIADDRBUTTON = 1 

the supervisor program should stay 1n the "do while HIADDRBUTTON = 1" loop wait­

ing for the button to be released. These simple runs check the overall logic. 

Now we can expand each stub and see if the expansion produces a reasonable 

overall result. Note !low debugging and testing proceed in a straightforward and 

modular manner. We expand the HIADDRBUTTON = 1 stub to: 

READ CPORT 
HIADDRBUTTON =NOT (CPORT) AND HAMASK 

The program should wait for the HIGH ADDRESS button to be closed. The program 

should then display the values of the switches on the lights. This run checks for the 

proper response to the HIGH ADDRESS button. 

We then expand the LOW ADDRESS button module to: 

READ CPORT 
LOADDl-H3UTTON = NOT (CPORT) AND LAMASK 

With the LOW ADDRESS button in the closed position. the program should display the 

values of the switches on the lights. This run checks for the proper response to the LOW 

ADDRESS button. 

Similarly, we can expand the DATA button module and check for the proper response 

to that button. The entire program will then have been tested. 

When all the stubs have been expanded, the coding, debugging, and testing 

stages will all be complete. Of course. we must know exactly what results eac'1 

stub should produce. However. many logical errors will become obvious at each 

level without any further expansion. 

13-46 



Start 

Kevboard 

ACK =O 

Transmit 

Receive 

No 

Oisplav 

End 

Figure 13-19 ln1t1al Flowchart for Transaction Terminal 

The Transaction Terminal 
This example. of course. will have more levels of detail. We 
cou Id start with the following program (see Figure 13-19 for 
a flowchart): 

KEYBOARD 
ACK =0 
do while ACK= 0 

TRANSMIT 
RECEIVE 

end 
DISPLAY 

TOP-DOWN 
DESIGN OF 
VERIFICATION 
TERMINAL 

Here KEYBOARD, TRANSMIT, RECEIVE, and DISPLAY are program stubs that will 
be expanded later. KEYBOARD. for example. could simply place a ten-digit verified 
number rnto the appropriate buffer. 

13-47 



Start 

VER =O 

Complete =O 

Verify 

No 

Yes 

End 

KEVIN 

KEYOS 

Figure 13-20. Flowchart for Expanded KEYBOARD Routine 

The next stage of expansion could produce the following pro­
gram for KEYBOARD (see Figure 13-20): 

VER =0 
do while VER = 0 

COMPLETE =0 
do while COMPLETE = 0 

KEYIN 
KEYDS 

end 
VERIFY 

end 

EXPANDING 
THE 
KEYBOARD 
ROUTINE 

Here VER = 0 means that an entry has not been verified; COMPLETE= 0 means that 

the entry 1s incomplete. KEYIN and KEYDS are the keyboard input and display routines 

respectively VERIFY checks the entry. A stub for KEYIN would simply place a random 

entry (from a random number table or generatorl into the buffer and set COMPLETE to 
1. 

We would continue by similarly expanding, debugging, and testing TRANSMIT, 
RECEIVE. and DISPLAY. Note that you should expand each program by one level 
so that you do not perform the integration of an entire program at any one time. 
You must use your judgment in defining levels. Too small a step wastes time, 
while too large a step gets you back to the problems of system integration that 

top-down design is supposed to solve. 

13-48 



REVIEW OF TOP-DOWN DESIGN 
Top-down design brings discipline to the testing and integration stages of pro­
gram design. It provides a systematic method for expanding a flowchart or prob­
lem definition to the level required to actually write a program. Together with 
structured programming, it forms a complete set of design techniques. 

Like structured programming, top-down design is not simple. The designer must 
have defined the problem carefully and must work systematically through each 
level. Here again the methodology may seem tedious, but the payoff can be sub­
stantial if you follow the rules. 

We recommend the following approach to top-down design: 

1) Start with a basic flowchart. 
2) Make the stubs as complete and as separate as possible. 
3) Define precisely all the possible outcomes from each stub 

and select a test set. 
4) Check each level carefully and svstemat1callv. 
5) Use the structures from structured programming. 

FORMAT 
FOR 
TOP-DOWN 
DESIGN 

6) Expand each stub by one level. Do not trv to do too much in one step. 
7) Watch carefully for common tasks and data structures. 
8) Test and debug after each stub expansion. Do not try to do an entire level at a 

time. 

9) Be aware of what the hardware can do. Do not hesitate to stop and do a little 
bottom-up design where that seems necessary. 

REVIEW OF PROBLEM DEFINITION AND PROGRAM DESIGN 
You should note that we have spent an entire chapter without mentioning any 
specific microprocessor or assembly language, and without writing a single line of 
actual code. Hopefully, though, you now know a lot more about the examples than 
you would have if we had just asked you to write the programs at the start. 
Although we often think of the writing of computer instructions as a key part of 
software development, it is actually one of the easiest stages. 

Once you have written a few programs, coding will become simple. You will soon 
learn the instruction set, recognize which instructions are really useful, and 
remember the common sequences that make up the largest part of most pro­
grams. You will then find that many of the other stages of software development 
remain difficult and have few clear rules. 

We have suggested here some ways to systematize the important early stages. In 
the problem definition stage, you must define all the characteristics of the 
system - its inputs, outputs, processing, time and memory constraints, and error 
handling. You must particularly consider how the system will interact with the 
larger system of which it is a part, and whether that larger system includes 
electrical equipment, mechanical equipment, or a human operator. You must start 
at this stage to make the system easy to use and maintain. 

In the program design stage, several techniques can help you to systematically 
specify and document the logic of your program. Modular programming forces you 
to divide the total program into small, distinct modules. Structured programming 
provides a systematic way of defining the logic of those modules, while top-down 
design is a systematic method for integrating and testing them. Of course, no one 
can compel you to follow all of these techniques: they are, in fact, guidelines more 
than anything else. But they do provide a unified approach to design, and you 
should consider them a basis on which to develop your own approach. 

13-49 



REFERENCES 

1. See. for example. V P Srim "Fault Diagnosis of Microprocessor Systems." Com­

puter. January 1977. pp. 60-65. For a descnpt1on of signature analysis. see G. Gor­

don and H. Nadig. "Hexadecimal Signatures Identify Trouble-spots in 

Microprocessor Systems." Electronics. March 3. 1977. pp. 89-96. There 1s also an 

Application Note (#2221 entitled "A Designer's Guide to Signature Analysis" 
available from Hewlett-Packard. 

2. For a bnef discussion of human factors considerations. see G. Morns. "Make Your 

Next Instrument Design Emphasize User Needs and Wants." EON. October 20. 
1978. pp. 100-105. -

3. D. L. Parnas (see the references below) has been a leader in the area of modular pro-

gramming. 

4. Collected by B. W. Unger (see reference below). 

5. Formulated by 0. L. Parnas. 

The following references provide additional 1nformat1on on problem defin1t1on and pro­

gram design: 

Chaplin. N .. Flowcharts. Auerbach. Princeton. N. J .. 1971. 

Dahl. 0. J .. C. A. R. Hoave. and E. W. Dijkstra. Structured Programming. Academic 
Press. New York. N. Y .. 1972. 

Dalton. W. F .. "Design Microcomputer Software like Other Systems - Systematically," 

Electronics. Januarv 19. 1978. pp. 97-101. 

Dijkstra. E. W .. A Discipline of Programming. Prentice-Hall. Englewood Cliffs. N. J.. 
1976. 

Halstead. M. H .. Elements of Software Science. American Elsevier. New York. 1977 

Hughes. J. K. and J. I. Michtom. A Structured Approach to Programming. Prentice-Hall. 
Englewood Cliffs. N. J .. 1977 

Morgan. D. E. and D. J. Taylor. "A Survey of Methods for Achieving Reliable Software." 
Computer. February 1977. pp. 44-52. 

Myers. W .. "The Need for Software Engineering." Computer. February 1978. pp. 12-25. 

Parnas. D. L.. "On the Cntena to be Used in Decomposing Systems into Modules." Com­
munications£! the ACM. December 1972. pp. 1053-1058. --

Parnas. 0. L .. "A Technique for the Specification of Software Modules with Examples." 

Communications £! the ACM. May 1973. pp. 330-336. 

Schneider. V .. "Prediction of Software Effort and Pro1ect Duration -Four New For­

mulas." SIGPLAN Notices. June 1978. pp. 49-59. 

Shne1derman. B. et al.. "Experimental lnvest1gat1ons of the Utility of Detailed Flow­

charts in Programming." Communications£! the ACM. June 1977. pp. 373-381. 

Ulrickson. R. W .. "Software Modules Are the Building Blocks." Electronic Design. 

February 1. 1977. pp. 62-66. 

Ulrickson. R. W .. "Solve Software Problems Step-by-Step." Electronic Design. January 
18. 1977. pp. 54-58. --

Unger. B. W .. "Programming Languages for Computer System Simulation." Simulation. 
April 1978. pp. 101-110. 

13-50 



Wirth. N .. Algorithms+ Data Structures =Programs. Prentice-Hall. Englewood Cliffs. 
N. J .. 1976. 

Wirth. N .. Svstemat1c Programming: an Introduction. Prentice-Hall. Englewood Cliffs. N. 
J .. 1973. 

Yourdon. E. U .. Techniques of Program Structure and Design. Prentice-Hall. Englewood 
Cliffs. N. J .. 1975. 

13-51 





Chapter 14 
DEBUGGING AND TESTING 

As we noted at the beginning of the previous chapter. debugging and testing are 
among the most time-consuming stages of software development. Even though such 
methods as modular programming, structured programming. and top-down design 
can simplify programs and reduce the frequency of errors, debugging and testing 
still are difficult because they are so poorly defined. The selection of an adequate set 
of test data is seldom a clear or scientific process. Finding errors sometimes seems like a 
game of "pin the tail on the donkey." except that the donkey 1s moving and the pro­
grammer must position the tail bv remote control. Surely. few tasks are as frustrating as 
debugging programs. 

This chapter will first describe the tools available to aid in debugging. It will then 
discuss basic debugging procedures. describe the common types of errors, and 
present some examples of program debugging. The last sections will describe 
how to select test data and test programs. 

We will not do much more than describe the purposes of most of the debugging tools. 
There 1s very little standardization 1n this area. and not enough space to discuss all the 
devices and programs that are currently available. The examples should give you some 
idea of the uses. advantages. and lim1tat1ons of particular hardware or software aids. 

SIMPLE DEBUGGING TOOLS 
The simplest debugging tools available are: 

A single-step facility 
A breakpoint facility 
A Register Dump program (or utility) 
A Memory Dump program 

The single-step facility allows you to execute the program one 
step at a time. Most Z80-based microcomputers have this facility. 
since the c1rcu1try 1s fairly simple. Of course. the only things that 

SINGLE­
STEP 

you will be able to see when the computer executes a single-step are the states 
of the output lines that you are monitoring. The most important lines are: 

Data Bus 

Address Bus 

Control lines MREQ (Memory Request). IORQ !Input/Output Request). RD (Memorv 
Read). and WR (Memorv Write). 

If you monitor these lines (either in hardware or in software), you will be able to 
see the progression of addresses. instructions, and data as the program executes. 
You will be able to tell what kind of operations the CPU is performing. This infor­
mation will inform you of such errors as incorrect Jump 1nstruct1ons. omitted or incor­
rect addresses. erroneous operation codes. or incorrect data values. However. you can­
not see the contents of registers and flags without some additional debugging facility 
or a special sequence of 1nstruct1ons. Many of the operations of the program cannot be 
checked in real time. 

14-1 



Table 14-1 Z80 Restart and Interrupt Addresses 

Instruction or External Input 

(Mnemonic! (Pini 

Instruction Ob1ect Code 
(Hex) 

Destination Address 
(Hex) 

RST OOH 
RST 08H 
RST 10H 
RST 18H 
RST 20H 
RST 28H 
RST 30H 
RST 38H or INT 1n Mode 1 

NMI 

C7 
CF 
07 
OF 
E7 
EF 
F7 
FF 

There are many errors that a single-step mode cannot help you 

to find. These include timing errors and errors in the interrupt 
or OMA systems. Furthermore. the single-step mode 1s very 
slow. typically executing a program at less than one millionth 

0000 
0008 
0010 
0018 
0020 

0028 
0030 
0038 
0066 

LIMITATIONS 
OF SINGLE­
STEP MODE 

of the speed of the processor itself. To single-step through one second oi real processor 

time would take more than ten days. The single-step mode is useful only to check the 

logic of short instruction sequences. 

A breakpoint is a place at which the program will automat­
ically halt or wait so that the user can examine the current 

I BREAKPOINT) 

status of the system. The program will usually not start again until the operator re­
quests a resumption of execution. Breakpoints allow you to check or pass through an 

entire section of a program. Thus. to see if an 1n1t1alizat1on routine is correct. You can 

place a breakpoint at the end of 1t and run the program. You can then check memory 

locations and registers to see if the entire section 1s correct. However. note that if the 

section 1s not correct. you'll still have to pin down the error. either with earlier break­

points or with a single-step mode. 

Breakpoints complement the single-step mode. You can use breakpoints either to 
localize the error or to pass through sections that you know are correct. You can 
then do the detailed debugging in the single-step mode. In some cases. breakpoints 

do not affect program timing; thev can then be used to check input/output interrupts. 

Breakpoints often use part or all of the microprocessor interrupt 
system. Some microprocessors have a special SOFTWARE INTER­
RUPT or TRAP facility that can act as a breakpoint. On the Z80, if 

RST AS A 
BREAKPOINT 

you are not already using all the RST vectors in your program, you can use the RST 
(Restart) instruction as a breakpoint. Table 14-1 gives the dest1nat1on addresses for 

the various RST instructions. Chapter 12 describes the RST instruction in more detail. 

The breakpoint routine can print register and memory contents or 1ust wait (e.g .. ex­

ecute HALT or a conditional iump dependent on a switch input) until you allow the 

computer to proceed. If you are not using the maskable interrupt (INT) or the non­

maskable interrupt (NMI) in your system. you can use those vectors as externally con­

trolled breakpoints. But remember that the interrupts (including NMll and RST use the 

Stack and Stack Pointer to store the return address. Figure 14-1 shows a routine where 

RST results in an endless loop. You would have to clear this breakpoint with a RESET or 

interrupt signal. 

14-2 



Figure 14-1. A Simple Breakpoint Routine 

RST1B 
ORG 
EOU 
JR 

1BH 
1BH 
RST1B .WAIT IN PLACE 

The simplest method for inserting breakpoints is to replace the first byte of the in­
struction with a RST instruction or to replace the instruction with a Jump or CALL 
instruction. Use of a RST instruction 1s preferred on the ZBO. since 1t involves the 
replacement of only a single byte. whereas a JP or CALL involves three bytes. The JR 
instruction 1s not suitable for breakpointing because you cannot guarantee that the 
debug software 1s within -126 to + 129 bytes of the instruction being breakpointed. 
Multiple-byte instructions used to implement breakpoints can cause problems on the 
Z80 due to the presence of single-byte instructions. To illustrate this program. examine 
the program segment shown below: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

100 7B LD A.E 
101 87 L1 ADD A.A 
102 87 L2: ADD AA 

If you wish to set a breakpoint at location 10015 using a 3-byte CALL or JP. the code at 
locations 10115 and 10215 will also get overlaid by the CALL or JP instruction. This 
means that the debugger has to be aware that these locations have also been modified. 
Any transfers of control to L 1 or L2 while the breakpoint 1s set will produce unexpected 
results unless the debugger 1s designed to catch this case. This added complexity can 
be avoided by using a RST 1nstruct1on. 

Many monitors have facilities for inserting and removing 
breakpoints implemented via some type of Jump instruction. 
Such breakpoints do not affect the timing of the program until 

INSERTING 
BREAKPOINTS 

the breakpoint 1s executed. However. note that this procedure will not work if part or all 
of the program 1s in ROM or PROM. Other monitors implement breakpoints by actually 
checking the address lines or the Program Counter in hardware or in software. This 
method allows breakpoints on addresses in ROM or PROM. but 1t may affect the t1m1ng 
if the address must be checked in software. A more powerful facility would allow the 
user to enter an address to which the processor wou Id transfer control. Another 
possibility would be a return dependent on a switch: 

RST18 

WAITS. 

ORG 
EOU 
PUSH 
IN 
BIT 
JR 
POP 
RET 

18H 
18H 
AF 
A.(PIODRA) 
SW.A 
NZ.WAITS 
AF 

:SAVE ACCUMULATOR. FLAGS 
:GET SWITCH DATA 
:IS SWITCH CLOSED? 
:NO. WAIT UNTIL IT IS 
;RESTORE ACCUMULATOR. FLAGS 

Remember to re-enable the interrupts if the routine uses an external interrupt input. 

14-3 



Start 

Store all registers 
in Stack 

COUNT =Number of 
bytes in register = 22 
Data Pointer = 

Stack Pointer + 20 

Store Data Pointer 

m Stack 

Data Pointer = 
Data Pointer - 1 

Print (Data Pointer} 

as 2 hex digits 
COUNT =COUNT -1 

Restore all registers 

from Stack 

End 

Figure 14-2. Flowchart of Register Dump Program 

A Register Dump utility on a microcomputer is a program that 
lists the contents of all the CPU registers. This information is 
usually not directly obtainable. The following routine will print 

REGISTER 
DUMPS 

the contents of all the registers on the system printer, if we assume that PRTHEX 
prints the contents of the Accumulator as two hexadecimal digits. Figure 14-2 1s a 
flowchart of the program and Figure 14-3 shows a typical result. We assume that the 
routine 1s entered with a CALL instruction that stores the old Program Counter at the 
top of the Stack. 

14-4 



. PLACE ALL CPU REGISTER CONTENTS IN STACK (PC ALREADY ON STACK) 

PUSH AF ;SAVE REGULAR USER REGISTERS 
PUSH BC 
PUSH DE 
PUSH HL 
PUSH IX :SAVE INDEX REGISTERS 
PUSH IY 
EX AF.AF :ACCESS AND SAVE PRIMED CPU REGISTERS 
EXX 
PUSH AF 
PUSH BC 
PUSH DE 
PUSH HL 

. USE STACK POINTER AS STARTING ADDRESS 

LD HL.0 :GET STACK POINTER 
ADD HL.SP 
LD DE.20 ;COMPUTE ORIGINAL STACK POINTER 
ADD HL.DE 
PUSH HL ;SAVE ORIGINAL STACK POINTER IN STACK 

. PRINT CONTENTS OF REGISTERS 

. ORDER IS PC(HIGH).PC(LOW).A.F.B.C.D.E.H.L.IX(HIGH).IX(LOWl.IY(HIGH). 
IY (LOW).A'.F .B'. c·. o· .E' .H' ,L' .SP(HIGH).SP(LOW) 

LD B.22 :NUMBER OF BYTES= 22 
PRNT1 DEC HL 

LD 
CALL 
DJNZ 

A.(HL) ;GET A BYTE FROM STACK 
PRTHEX :AND PRINT IT 
PRNT1 

, RESTORE REGISTERS FROM STACK 

POP HL :POP AND DISCARD ORIGINAL STACK POINTER 
POP HL :RESTORE PRIMED CPU REGISTERS 
POP DE 
POP BC 
POP AF 
EX AF.AF 
EXX 
POP IY :RESTORE INDEX REGISTERS 
POP IX 
POP HL ;RESTORE REGULAR CPU REGISTERS 
POP DE 
POP BC 
POP AF 
RET 

14-5 



10 (A) 
42 (Fl 
07 (B) 
3E (C) 
23 (D) 
01 (E) 
17 (H) 
01 {LJ 
03 (IX) 
58 
E2 (IY) 
A2 
36 (A') 
67 (F') 
ES (B'l 
11 (C'l 
EB (D') 
09 (E') 
07 (H') 
66 (L') 
68 (STACK POINTER) 
E2 

Figure 14-3 Results of a Typical Z80 Register Dump 

14-6 



A Memory Dump is a program that lists the contents of memo­
ry on an output device (such as a printer). This 1s a much more 
efficient way to examine data arrays or entire programs than 1ust 

MEMORY 
DUMP 

looking at single locations. However. very large memory dumps are not useful (except 
to supply scrap paper) because of the sheer mass of information that they produce. 
They may also take a long time to execute on a slow printer. Small dumps may, 
however. provide the programmer with a reasonable amount of information that 
can be examined as a unit. Relationships such as regular repetitions of data pat­
terns or offsets of entire arrays may become obvious. 

A general dump 1s often rather difficult to write. The programmer should be careful of 
the following s1tuat1ons: 

1) The size of the memory area exceeds 256 bytes. so that an 8-b1t counter will not 
suffice. 

2) The ending location 1s an address smaller than the starting location. This can be 
treated as an error. or simply cause no output. since the user would seldom want to 
print the entire memory contents in an unusual order. 

Since the speed of the Memory Dump depends on the speed of the output device. the 
efficiency of the routine seldom matters. The following program will ignore cases 
where the starting address is larger than the ending address, and will handle 
blocks of any length. We assume that the starting address 1s in Register Pair DE and 
the ending address is in Register Pair HL. 

. STOP IF ENDING ADDRESS BEFORE STARTING ADDRESS 

AND 
SBC 
JR 
XCHG 
INC 

A 
HL.DE 
C.DONE 

DE 

:CLEAR CARRY 
:IS ENDING ADDRESS BEFORE STARTING? 
:YES. DO NOT DUMP ANYTHING 
:GET STARTING ADDRESS INTO HL 
:COUNT= NUMBER OF LOCATIONS TO BE 

DUMPED 

PRINT CONTENTS OF LOCATIONS 

DUMP· LO 
CALL 
INC 
DEC 
LO 
OR 
JR 

DONE: HALT 

A.(HU 
PRTHEX 
HL 
DE 
A.E 
D 
NZ.DUMP 

:GET CONTENTS OF A LOCATION 
:AND PRINT IT 

:ALL LOCATIONS DUMPED? 

;NO. CONTINUE DUMPING 

Note that the only 16-bit Subtract instruction is SBC. which subtracts the contents of a 
register pair and the Carry from Register Pair HL. SBC. like other Subtract instructions. 
sets the Carry if a borrow 1s required (contrary to what some Z80 manuals say). 

Figure 14-4 shows the output from a dump of memory locations 1000 to 101F. 

14-7 



23 1F 60 54 37 28 3E 00 
6E 42 38 17 59 44 98 37 
47 36 23 81 E1 FF FF 5A 
34 ED BC AF FE FF 27 02 

Figure 14-4. Results of a Typical Memory Dump 

This routine correctly handles the case rn which the starting and ending locations are 
the same (try 1t!l. You will have to interpret the results carefully if the dump area 
includes the Stack. since the dump subroutine itself uses the Stack. PRTHEX may also 
change memory and Stack locations. 

In a memory dump. the data can be displayed rn a number of different ways. Common 
forms are ASCII characters or pairs of hexadecimal digits ior 8-brt values and iour hex­
adecimal digits for 16-bit values. The format should be chosen based on the intended 
use of the dump. It rs almost always easier to interpret an ob1ect code dump if rt rs dis­
played in hexadecimal form rather than ASCII form. 

A common and useful dump format 1s illustrated here: 

1000 54 68 65 20 64 75 60 70 The dump 

Each line consists of three parts. The line starts with the hexadecimal address of the 
first bvte displayed on the line. Following the address are eight or sixteen bytes dis­
played 1n hexadecimal form. Last 1s the ASCII representation of the same eight or six­

teen bytes. Try rewriting the memory dump program so that it will print the address and 
the ASCII characters as well as the hexadecimal form of the memory contents. 

MORE ADVANCED DEBUGGING TOOLS 
The more advanced debugging tools that are most widely used are: 

· Similar programs to check software 

• Logic analyzers to check signals and timing 

Many variations of both these tools exist. and we shall discuss only the standard 
features. 

The simulator 1s the computerized equivalent of the pencil-and­
paper computer. It is a computer program that goes through the 
operating cycle of another computer. keeping track of the con­

SOFTWARE 
SIMULATOR 

tents of all the registers. flags, and memory locations. We could. of course. do this 
by hand. but 1t would require a large amount of effort and close attention to the exact 
effects of each instruction. The s1mu lat or program never gets tired or confused. forgets 
an 1nstruct1on or register. or runs out of paper. 

Most simulators are large FORTRAN programs. They can be purchased or used on the 
time-sharing services. The Z80 simulator 1s available 1n several versions from different 
sources. 

14-8 



Typical simulator features are: 

1) A breakpoint facility. Usually. breakpoints can be set after a particular number of 
cycles have been executed. when a memory location or one of a set of memory 
locations 1s referenced. when the contents of a location or one of a set of locations 
are altered. or on other conditions. 

2) Register and memory dump facilities that can display the values of memory loca­
tions. registers. and 1/0 ports. 

3) A trace facility that will print the contents of particular registers or memory loca­
tions whenever the program changes or uses them. 

4) A load facility that allows you to set values 1nit1ally or change them during the 
simulation. 

Some simulators can also simulate input/output. interrupts. and even OMA. 

The simulator has many advantages: 

1) It can provide a complete desrnpt1on of the status of the computer. since the 
simulator program 1s not restricted by pin lim1tat1ons or other characteristics of the 
underlying c1rcu1try. 

2) It can provide breakpoints. dumps. traces. and other facilities. without using any of 
the processor's memory space or control system. These facilities will therefore not 
interfere with the user program. 

3) Programs. starting points. and other conditions are easy to change. 

4) All the facilities of a large computer. including peripherals and software. are availa-
ble to the microprocessor designer. 

On the other hand, the simulator is limited by its software base and its separation 
from the real microcomputer. The major limitations are: 

1) The simulator cannot help with timing problems. since 1t operates far more slowly 
than real time and does not model actual hardware or interfaces. 

2) The simulator cannot fully model the input/output section. 

3) The simulator 1s usually quite slow. Reproducing one second of actual processor 
time may require hours of computer time. Using the simulator can be quite expen­
sive. 

The simulator represents the software side of debugging; it has the typical ad­
vantages and limitations of a wholly software-based approach. The simulator can 
provide insight into program logic and other software problems, but cannot help 
with timing, 1/0, and other hardware problems. 

The logic or microprocessor analyzer is the hardware solution 
to debugging. Basically, the analyzer is the parallel digital ver­
sion of the standard oscilloscope. The analyzer displays informa­

LOGIC 
ANALYZER 

tion in binary. hexadecimal or mnemonic form on a CRT. and has a variety of triggering 
events. thresholds. and inputs. Most analyzers also have a memory so that they can dis­
play the past contents of the busses. 

The standard procedure 1s to set a triggering event. such as the occurrence of a particu­
lar address on the Address Bus or instruction on the Data Bus. For example. one might 
trigger the analyzer if the microcomputer tries to store data in a particular address or ex­
ecute an input or output instruction. One may then look at the sequence of events that 
preceded the breakpoint. Common problems you can find in this way include short 
noise spikes (or glitches). incorrect signal sequences, overlapping wave-forms, 
and other timing or signaling errors. Of course, a software simulator could not be 
used to diagnose those errors any more than a logic analyzer could conveniently 
be used to find errors in program logic. 

14-9 



Logic analyzers vary in many respects. Some of these are: 

11 Number of input lines. At least 24 are necessary to monitor 

an 8-b1t Data Bus and a 16-bit Address Bus. Still more are 
necessary for control signals. clocks. and other important in­

puts. 

IMPORTANT 
FEATURES 
OF LOGIC 
ANALYZERS 

21 Amount of memory. Each previous state that 1s saved will occupy several bytes. 

31 Maximum frequency. It must be several MHz to handle the fastest processors. 

4) Minimum signal width (important for catching glitches). 

5) Type and number pf triggering events allowed. Important features are pre- and 

post-trigger delays; these allow the user to display events occurring before or 

after the trigger event. 

6) Methods of connecting to the microcomputer. This may require a rather complex 

interface. 

7) Number of display channels. 

8) Binary. hexadecimal or mnemonic displays. 

9) Display formats. 

10) Signal hold time requirements. 

11 l Probe capacitance. 

12) Single or dual thresholds 

All of these factors are important in comparing different logic and microprocessor 

analyzers. since these instruments are new and unstandardized. A tremendous variety 

of products 1s already available and this variety will become even greater 1n the future. 

Logic analyzers, of course. are necessary only for systems with complex timing. 
Simple applications with low-speed peripherals have few hardware problems that 

a designer cannot handle with a standard oscilloscope. 

DEBUGGING WITH CHECKLISTS 
The designer cannot possibly check an entire program by hand: however. there are 

certain trouble spots that the designer can easily check. You can use systematic hand 
checking to find a large number of errors without resorting to any debugging tools. 

The question is where to place the effort. The answer is on 
points that can be handled with either a yes-no answer or with 
a simple arithmetic calculation. Do not try to do complex 
arithmetic. follow all the flags. or try every conceivable case. L1m1t 

WHAT TO 
INCLUDE IN 
CHECKLIST 

your hand checking to matters that can be settled easily. Leave the complex problems 

to be solved with the aid of debugging tools. But proceed systematically: build vour 
checklist. and make sure that the program performs the basic operations correctly. 

The first step is to compare the flowchart or other program documentation with 
the actual code. Make sure that everything that appears in one also appears in the 

other. A simple checklist will do the 1ob. It 1s easy to completely omit a branch or a pro­
cessing section. 

Next concentrate on the program loops. Make sure that all registers and memory 

locations used 1ns1de the loops are 1nit1alized correctly. This 1s a common source of er­
rors; once again. a simple checklist will suffice. 

Now look at each conditional branch. Select a sample case that should produce a 

branch and one that should not: try both of them. Is the branch correct or reversed? If 

the branch involves checking whether a number 1s above or below a threshold. try the 

equality case. Does the correct branch occur? Make sure that your choice 1s consistent 
with the problem definition. 

14-10 



Look at the loops as a whole. Try the iirst and last iterations by hand: these are often 
troublesome special cases. What happens if the number oi 1terat1ons is zero; 1.e .. there 
1s no data or the table has no elements? Does the program fall through correctly7 Pro­
grams often will perform one 1terat1on unnecessarily. or. even worse. decrement coun­
ters past zero before checking them. 

Check off everything down to the last statement. Don't assume (hopefully) that 
the first error is the only one in the program. Hand checking will allow you to get 
the maximum benefit from debugging runs, since you will get rid of many simple 
errors ahead of time. 

A quick review of the hand checking questions: 

1) Is every element of the program design 1n the program (and 
vice versa for documentation purposes)? 

2) Are all registers and memory locations used inside loops in-
itialized before they are used? 

3) Are all conditional branches correct? 

4) Do all loops start and end properly 7 

5) Are equality cases handled correctly7 

6) Are trivial cases handled correctly 7 

LOOKING FOR ERRORS 
Of course, despite all these precautions (or if you skip over 
some of them), programs often still don't work. The designer 
is left with the problem of how to find the mistakes. The hand 

HAND 
CHECKING 
QUESTIONS 

COMMON 
ERRORS 

checklist provides a starting place if you didn't use it earlier; some of the errors 
that you may not have eliminated are: 

1) Failure to initialize variables such as counters, pointers, sums, etc. Do not 
assume that registers. memory locations. or flags necessarily contain zero before 
they are used. 

2) Inverting the logic of a conditional jump, such as using Jump on Carry when you 
mean Jump on Not Carry. Remember the effects of a comparison or subtraction {A 
1s the contents of the Accumulator. M the contents of the register or memory loca­
tion): 

Zero flag 

Carry flag 

1 ifA=M 
0 if A ~M 

1 if A< M 
0 if A;;:::. M 

Note particularly that Carry= 0 if A= M. (the equality case). So. Jump on Carry 
means Jump if A < M. and Jump on Not Carry means 1ump if A 2::: M. If you want 
the equality case on the other side. try either reversing the roles of A and M or 
adding 1 to M. For example. if you want a 1ump if A ;;:::. 10. use: 

CP 10 
JR NC.ADDR 

If. on the other hand. you want a 1ump 1i A > 10. use: 

CP 11 
JR NC.ADDR 

3) Updating the counters and pointers in the wrong place or not at all. Be sure 
that there are no paths through a loop that either skip or repeat the updating in­

structions. 

14-11 



4) Failure to fall through correctly in trivial cases such as no data in a buffer. no 
tests to be run. or no entries in a transaction. Do not assume that such cases will 
never occur unless the program specifically eliminates them. 

Other problems to watch for are: 

5) Reversing the order of operands. Remember that the LO instruction moves the 
second operand into the first operand. For example. LO B.A moves the contents of 
A to B. not the other wav around. 

6) Changing condition flags before you use them. 

Remember that INC and DEC. when applied to a single register or memory loca­
tlOn. affect all the flags except Carry. Remember also that POP AF and EX AF.AF 
affect all the flags. and that Logical instructions clear the Carry. 

7) Failing to change condition flags when you intend to. 

The Zero and Sign flags mav not represent the current state of the Accumulator. 
since many instructions (particularly LO) do not change the flags. Note that incre­
menting or decrementing register pairs (for example. INC HL or DEC BC) and com­
plementing the Accumulator (CPL) affect no flags at all. 

8) Confusing values and addresses. 

Remember that LO HL.1000H loads HL with the number 1000 (hex) while LO 
HL.(1000Hl loads HL with the contents of memory locations 1000 and 1001. A 
similar distinction applies to LO A.COUNT and LO A.(COUNT). 

9) Accidentally reinitializing a register or memory location. 

Make sure that no Jump 1nstruct1ons transfer control back to 1nit1alizat1on state­
ments. 

10) Confusing numbers and characters. 

Remember that the ASCII and EBCDIC representations of digits differ from the 
digits themselves. For example. ASCII 7 1s hex 37. whereas hex 07 1s the ASCII 
BELL character. 

11) Confusing binary and decimal numbers. 

Remember that the BCD representation of a number differs from 1ts bmarv repre­
sentation. For example. BCD 36. when treated as a simple hexadecimal constant. 
1s ·equivalent to 54 decimal (try 1tl. 

12) Reversing the order in subtraction. Be careful also with other operations !like 
division) that do not commute. Remember that SUB and CP produce A-M. not 
M-A. 

13) Ignoring the effects of subroutines and macros. 

Don't assume that calls to subroutines or invocations of macros will not change 
flags. registers. or memory locations. Be sure of exactly what effects subroutines 
or macros have. Note that it 1s verv important to document these effects so that 
the user can determine them without going through the entire listing. 

14) Using the Shift instructions improperly. 

Remember the precise effects of RLC. RL. RRC. RR. SLA. SRA. and SRL. They are 
all 1-bit shifts. SLA and SRL both clear the empty bit. SRA preserves the sign 
(most significant bit) by extending 1t to the right. RLC and RRC are circular shifts 
that do not include the Carry in the circular register; RL and RR are circular shifts 
that include the Carry. Remember that these instructions affect all the flags. even 
if thev are applied to the data 1n a memory location. Note. however. that the one­
word shifts RLCA. RLA. RRCA. and RRA affect only the Carry. 

14-12 



15) Counting the length of an array incorrectly. 
Remember that there are five (not four) memory locations included 1n addresses 
0100 through 0104. inclusive. 

16) Confusing registers and register pairs. 
Remember that the CPU registers and register pairs are physically the same. You 
can use them singly for 8-blt data or in pairs for addresses or 16-bit data. but not 
both at the same time. Note that INC HL actually increments L. affecting H only if 
L 1s incremented to zero. 

17) Confusing 8- and 16-bit registers. 
The Accumulator and other CPU registers are eight bits long. while the index 
registers. Program Counter. Stack Pointer. and register pairs are 16 bits long. You 
cannot transfer the contents of a 16-bit register to an 8-b1t register or vice versa. 

18) Forgetting that 16-bit numbers or addresses occupy two memory locations. 
LD HL,(40H) loads Register Pair HL with the contents of memory locations 0040 
and 0041. Similarly, PUSH DE stores Register Pair DE in two Stack locations. Also 
remember that the Z80 stores all 2-byte quant1t1es in low-order/high-order format. 
For example. LO (40Hl.HL will store the contents of Register L in location 0040 
and the contents of Register H 1n location 0041. 

19) Confusing the Stack and the Stack Pointer. 
DEC. INC. and LO affect the Stack Pointer. not the contents of the Stack. PUSH 
and POP transfer data to or from the Stack. Remember that CALL. RET. RETI. 
RETN. and RST also use the Stack to save or restore the Program Counter. The 
response to an interrupt always involves saving the old Program Counter in the 
Stack even if no explicit instruction 1s obtained externally (as in responding to NMI 
or to INT in interrupt modes 1 or 2). Note that such instructions as EX (SPl.HL do 
not affect the Stack Pointer: they exchange the top two memory locations in the 
Stack with the contents of a register pair or Index register. but leave the Stack 
length unchanged. 

20) Forgetting to initialize the Stack Pointer. 
Remember that you must place the proper memory address into the Stack Pointer 
before calling any subroutines or performing any Stack operations. 

21) Changing a register or memory location before using it. 
Remember that LO changes the contents of the destination (but not the source). 
Be careful of 1nstruct1ons that 1mplic1tly use certain registers - for example. 
DJNZ decrements Register B: LOI. LDIR. LDD. LDDR. CPI. CPIR. CPD, and CPDR 
all decrement the Byte Counter in Register Pair BC and increment or decrement 
Register Pair HL. LDI. LDIR. LDD. and LDDR also increment or decrement Register 
Pair DE. INI. INIR. IND. INDR. OUTI. OUTIR. OUTD. and OTDR all decrement 
Register B and increment or decrement Register Pair HL. 

22) Forgetting to transfer control past sections of the program that should not be 
executed in particular situations. 
Remember that the computer will proceed sequentially through the program 
memory unless specifically ordered to do otherwise. 

14-13 



DEBUGGING 
INTERRUPT­
DRIVEN 
PROGRAMS 

Interrupt-driven programs are particularly difficult to debug, 
since errors may occur randomly. If. for example. the program 
enables the interrupts a few instructions too early. an error will oc­
cur onlv if an interrupt is received while the program is executing 
those few instructions. In fact you can usually assume that ran­
domly occurring errors are caused by the interrupt system.2 Typical errors in inter­
rupt-driven programs are: 

11 Forgetting to re-enable interrupts after accepting one and servicing it. 
The processor disables the interrupt svstem automatically on RESET or on accept­
ing an interrupt. Be sure that no possible sequences fail to re-enable the interrupt 
system. Remember that. in addition to re-enabling interrupts. the program often 
has to perform some action to cause the interrupting signal to be reset. If this 1s not 
done. 1t will appear as if the interrupting device 1s constantly requesting service. 

21 Using the Accumulator before saving it; 1.e .. PUSH AF must precede any input 
or output operations that.involve the Accumulator. 

3) Forgetting to save and restore the Accumulator and flags (Register Pair AFI. 

41 Restoring registers in the wrong order. 
If the order in which they were saved was: 

the order of restoration should be: 

PUSH AF 
PUSH BC 
PUSH DE 
PUSH HL 

POP HL 
POP DE 
POP BC 
POP AF 

51 Enabling interrupts before establishing all the necessary conditions such as 
priority. flags. PIO and SIO configurations. pointers. counters. etc. 

A checklist can aid here. 

61 Leaving results in registers and destroying them in the restoration process. 
As noted earlier. registers should not be used to pass information between the 
regular program and the interrupt service routines. 

71 Forgetting that RST (and NMI) leaves an address in the Stack whether you 
use it or not. 
You may have to re-in1t1alize or update the Stack Pointer. 

81 Not disabling the interrupt during multi-word transfers or instruction se­
quences. 

Watch particularly for s1tuat1ons where the interrupt service routine may use the 
same memorv locations that the program is using. 

Hopefully, these lists will at least give you some ideas as to where to look for er­
rors. Unfortunately, even the most systematic debugging can still leave some 
truly puzzling problems, particularly when interrupts are involved.3 

14-14 



Start 

Data ={40) 

Result = (SSEG 
+Data! 

(41) =Result 

End 

Yes 

Result =O 

Figure 14-5. Flowchart of Decimal to Seven-Segment Conversion 

14-15 



Debugging Example 1 : Decimal to Seven-Segment Conversion 
The program converts a decrmal number rn memory locatron 0040 DEBUGGING 
to a seven-segment code rn memory locatron 0041 It blanks the A CODE 
display if memory locatron 0040 does not contarn a decrmal num- CONVERSION 
ber PROGRAM 

Initial Program (from flowchart rn Figure 14-5): 

LO 
CP 
JR 
LO 
LO 
ADD 
LO 

DONE. LO 

SSEG. 
HALT 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 

A.40H 
9 
C.DONE 
HL.(SSEG) 
D.A 
HL.DE 
A.(HL) 
(41H).A 

3FH 
06H 
5BH 
4FH 
66H 
6DH 
70H 
07H 
7DH 
6FH 

GET DATA 
:IS DATA A DECIMAL DIGIT? 
:NO. KEEP ERROR CODE 
:GET BASE ADDRESS OF 7-SEGMENT TABLE 

:FIND ELEMENT BY INDEXING 
:GET 7-SEGMENT CODE FROM TABLE 
:SAVE 7-SEGMENT CODE OR ERROR CODE 

Usrng the checklist procedure. we were able to find the followrng errors: 

1) The block that cleared Result had been omrtted. 

2) The conditronal branch was rncorrect. 

For example. if the data rs zero. CP 9 sets the Carry, srnce 0 < 9. However. the 1ump on 
the opposrte conditron (i.e .. JR NC.DONE) still did not produce the correct result. Now 
the program handles the equality case rncorrectly srnce. if the data rs 9. CP 9 clears the 
Carry and causes a 1ump. The correct versron rs: 

CP 
JR 

10 
NC.DONE 

:IS DATA A DECIMAL DIGIT? 
NO. KEEP ERROR CODE 

14-16 



Second Program: 

LD 
LD 
CP 
JR 
LD 
LD 
ADD 
LD 

DONE: LD 
HALT 

SSEG. DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 

B.O 
A.40H 
10 
NC.DONE 
HL.(SSEGl 
D.A 
HL.DE 
A.(HLI 
(41Hl.A 

3FH 
06H 
5BH 
4FH 
66H 
6DH 
7DH 
07H 
7DH 
6FH 

:GET ERROR CODE TO BLANK DISPLAY 
:GET DATA 
:IS DATA A DECIMAL DIGIT? 
;NO. KEEP ERROR CODE 
:GET BASE ADDRESS OF 7-SEGMENT TABLE 

;FIND ELEMENT BY INDEXING 
:GET 7-SEGMENT CODE FROM TABLE 
:SAVE 7-SEGMENT CODE OR ERROR CODE 

This version was hand checked successiully. 

Since the program was simple. the next stage was to single-step through 1t with read 
data. The data selected for the trials was: 

0 
9 

10 
6B (hex) 

(the smallest numbed 
(the largest numbed 
(a border case) 
(random) 

The first trial was with zero in location 0040 (hex). The first error was obvious - LD 
A.40H loaded the number 40 into A. not the contents oi memory location 0040. The 
correct instruction was LD A.(40H). After this correction was made. the program moved 
along with no apparent errors until It tried to execute the LD A.(HL) instruction. 

The contents of the Address Bus during the data fetch was 0647. an address that did 
not even exist in the microcomputer. Clearlv. something had gone wrong. 

It was now time for some more hand-checking Since we knew that JR NC.DONE was 
correct. the error was beyond that 1nstruct1on but before LD A.(HU. A haf)d check 
showed: 

1) LD HL. (SSEG) places 3F (hex) into L and 06 (hex) into H. 
This 1s clearly wrong. We want LD. HL.SSEG. not LD HL.(SSEG). That 1s. we want 
the address SSEG. not the contents of that address. to be loaded into Register Pair 
HL 

2) LD D.A places 0 into Register D. 
This 1s wrong - the data should be placed into E. since we want to add 1t to the 
least significant b11s of the table address. In fact. an instruction should clear 
Register D. since the erroneous program was not initializing or changing the other 
half of Register Pair DE at all. 

14-17 



Third Program: 

LO 
LD 
CP 
JR 
LD 
LD 
LO 
ADD 
LD 

DONE. LO 
HALT 

SSEG. DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 

8,0 
A.(40HI 
10 
NC.DONE 
HL.SSEG 
E.A 
D,O 
HL,DE 
A.(HL) 
(41Hl.A 

3FH 
06H 
5BH 
4FH 
66H 
6DH 
7DH 
07H 
?DH 
6FH 

:GET ERROR CODE TO BLANK DISPLAY 
:GET DATA 
:IS DATA A DECIMAL DIGIT? 
:NO, KEEP ERROR CODE 
:GET BASE ADDRESS OF 7-SEGMENT TABLE 

:USE DATA AS 16-BIT INDEX 
:FIND ELEMENT BY INDEXING 
:GET 7-SEGMENT CODE FROM TABLE 
:SAVE 7-SEGMENT CODE OR ERROR CODE 

This program produced the following results: 

Data Result 

00 3F 
09 6F 
OA QA 
6B 6B 

The program was not clearing the result if the data was invalid, 1.e .. greater than 9. The 

program never used the blank code in Register B. Since the program was simple. 1t 

could be tested for all the decimal digits. The results were: 

Data Result 

0 3F 
1 06 
2 5B 
3 4F 
4 69 
5 60 
6 70 
7 07 
8 7D 
9 6F 

Note that the result for number 8 1s wrong - 1t should be 7F Since everything else is 

correct the error 1s almost surely in the table. In fact. entry 8 in the table had been 
m1scop1ed. 

14-18 



The final program is: 

DECIMAL TO 7-SEGMENT CONVERSION 

LD B.O GET ERROR CODE TO BLANK DISPLAY 
LD A.(40HI :GET DATA 
CP 10 .IS DATA A DECIMAL DIGIT? 
JR NC.DONE :NO. KEEP ERROR CODE 
LD HL.SSEG :GET BASE ADDRESS OF 7-SEGMENT TABLE 
LD E.A 
LD D.O :USE DATA AS 16-BIT INDEX 
ADD HL.DE :FIND ELEMENT BY INDEXING 
LD B.(HL) GET 7-SEGMENT CODE FROM TABLE 

DONE. LD A.B 
LD (41Hl.A :SAVE 7-SEGMENT CODE OR ERROR CODE 
HALT 

SSEG. DEFB 3FH 
DEFB 06H 
DEFB 5BH 
DEFB 4FH 
DEFB 66H 
DEFB 6DH 
DEFB 7DH 
DEFB 07H 
DEFB 7FH 
DEFB 6FH 

The errors encountered in this program are typical of the ones that Z80 assembly 
language programmers should anticipate. They include: 

1) Failing to 1n1t1alize registers or memory locations. 

2) Inverting the logic on conditional branches. 

3) Branching incorrectly in the case in which the operands are equal. 

4) Confusing immediate and direct addressing. 1.e. data and addresses. 
51 Failing to d1stingu1sh between 8-b1t data and 16-bit addresses. 

6) Branching to the wrong place so that one path through the program is incorrect 

7) Copying lists of numbers (or instructions) incorrectly. 

Note that straightforward instructions like ADD. SUB. AND. etc. seldom produce any 
problems. One particularly annoying error that you should watch for 1s reversing the 
operands on LD 1nstruct1ons. Many of these errors can be eliminated through the use oi 
a low-level system programming language like PLZ/ASM.4 

14-19 



Start 

Interchange flag = 1 
Count = Umgt~ 

of Array 
Pointer = Start 

of Array 

Interchange (Potnterl 
(Pointer + 1) 

Interchange flag = 0 

Pointer = Pointer + 
Count = Count - 1 

End 

Figure 14-6. Flowchart of Sort Program 

14-20 



Debugging Example 2: Sort into Decreasing Order 
The program sorts an array of unsigned 8-b1t binary numbers into 
decreasing order. The array begins in memory location 0041 and 
its length 1s in memory location 0040. 

Initial Program (from flowchart 1n Figure 14-6): 

LD C.O :CLEAR INTERCHANGE FLAG 
LD A.(40H) :COUNT= LENGTH OF ARRAY 
LD C.A 
LD HL.41 H :POINT TO START OF ARRAY 

PASS1 LD A.(HU :GET ELEMENT FROM ARRAY 
INC HL 
CP (HL) :IS IT LESS THAN NEXT ELEMENT? 
JR C.CNT :NO. NO INTERCHANGE NECESSARY 
LD (HU.A YES. INTERCHANGE ELEMENTS 
INC HL 

CNT DJNZ PASS1 
DEC c :WAS INTERCHANGE FLAG SET? 
JR NZ.PASS1 YES. DO ANOTHER PASS 
HALT 

DEBUGGING 
A SORT 
PROGRAM 

The hand check shows that all the blocks in the flowchart have been implemented in 
the program and that all the registers have been 1nit1alized. The conditional branches 
must be examined carefully. The instruction JR C.CNT must force a branch if the new 
value 1s less than or equal to the old value. Note that the equality case must not result 1n 
an interchange. since this will create an endless loop with the two equal elements 
being switched back and forth. 

Try an example: 

(0040) = 30 
(0041) = 37 

CP (HU results in the calculation of 30-37 The Carry 1s set to one. This example 
should result in an interchange but does not. 

JR NC.CNT will provide the proper branch in this case. If the two numbers are equal. 
the comparison will clear the Carry and JR NC.CNT 1s again correct. 

How about JR NZ.SORT at the end of the program? If there are any elements out of 
order. the interchange flag will be one. so the branch is wrong. It should be JR Z.SORT. 
Now let's hand check the first 1terat1on of the program. The 1n1t1alizat1on results in the 
following values: 

A COUNT 
B COUNT 
c 0 

HL 0041 

The effects of the loop instructions are: 

LD A.(HU :A= (0041) 
INC HL :HL = 0042 
CP (HU : (0041 )-(0042) 
JR NC.CNT 
LD (HU.A : (0042) = (0041) 
INC HL :HL = 0043 

CNT DJNZ PASS1 ;B = COUNT-1 

14-21 



Note that we have already checked the Conditional Jump instructions. Clearly the logic 

is incorrect. If the first two numbers are out of order. the results after the first iteration 

should be: 

(0041) OLD (0042) 
(0042) OLD (0041) 

HL 0042 
B COUNT-1 

Instead. they are: 

(0041) UNCHANGED 
(0042) OLD (0041) 

HL 0043 
B COUNT-1 

The error in HL 1s easy to correct. The second INC HL is unnecessary and should be 
omitted. The interchange requires a bit more care and a temporarv register. i.e .. 

LD D.(HL) 
LD (HU.A 
DEC HL 
LD (HLl.D 
INC HL 

An interchange always requires a temporary storage place in which one number can be 

saved while the other one 1s being transferred. 

14-22 



All of these changes require a new copy of the program, i.e., 

LD 
LD 
LO 
LO 

PASS1: LO 
INC 
CP 
JR 
LO 
LO 
DEC 
LO 
INC 

CNT DJNZ 
DEC 
JR 
HALT 

c.o 
A.(40H) 
C.A 
HL.41 H 
A.(HU 
HL 
(HU 
NC.CNT 
D.(HU 
(HU.A 
HL 
(HU.D 
HL 
PASS1 
c 
NZ.PASS1 

:CLEAR INTERCHANGE FLAG 
:COUNT= LENGTH OF ARRAY 

:POINT TO START OF ARRAY 
:GET ELEMENT FROM ARRAY 

:IS IT LESS THAN NEXT ELEMENT? 
:NO. NO INTERCHANGE NECESSARY 
:YES. INTERCHANGE ELEMENTS 

:WAS INTERCHANGE FLAG SET? 
:YES. DO ANOTHER PASS 

How about the last iteration? Let's say that there are three elements: 

(0040) 03 
(0041) 02 
(0042) 04 
(0043) 06 

Each time through. the program increments Register Pair HL by one. So. at the start of 
the third 1terat1on. 

(HL) = 0041 + 2 = 0043 

The effects of the loop instructions are: 

LO 
INC 
CP 

A.(HL) 
HL 
(HU 

:A= (0043) 
:HL =0044 
: (0043)-(0044) 

This 1s incorrect: the program has tried to move beyond the end of the data. The pre­
vious iteration should. in fact. have been the last one. since the number of pairs 1s one 
less than the number of elements. The correction 1s to reduce the number of 1terat1ons 
by one: this can be accomplished by placing DEC B after LO A.(40H). 

How about the trivial cases? What happens if the array contains no elements at 
all, or only one element? The answer is that the program does not work correctly 
and may change a whole block of data improperly and without any warning (try 
itll. The corrections to handle the trivial cases are simple but essential; the cost 
is only a few bytes of memory to avoid problems that could be very difficult to 
solve later. 

14-23 



The new program is: 

LO C.O 
LO A.(40H) 
CP 2 
JR C.DONE 
LO B.A 
DEC B 
LO HL.41 H 

PASS1 LO A.(HU 
INC HL 
CP (HU 
JR NC.CNT 
LO D.(HU 
LO (HU.A 
DEC HL 
LO (HU.D 
INC HL 

CNT DJNZ PASS1 
DEC c 
JR NZ.PASS1 
HALT 

:CLEAR INTERCHANGE FLAG 
:COUNT= LENGTH OF ARRAY 
:DOES ARRAY HAVE 2 OR MORE ELEMENTS? 

:NO. NO ACTION NECESSARY 

:NUMBER OF PAIRS= COUNT-1 
:POINT TO START OF ARRAY 
:GET ELEMENT FROM ARRAY 

:IS IT LESS THAN NEXT ELEMENT? 
:NO. NO INTERCHANGE NECESSARY 
:YES. INTERCHANGE ELEMENTS 

:WAS INTERCHANGE FLAG SEP 
:YES. DO ANOTHER PASS 

Now it's time to check the program on the computer or on the simulator. A simple set of 

data 1s: 

(0040) 02 
(0041) 00 
(0042) 01 

This set consists of two elements in the wrong order. The program should take two 

passes. The first pass should rearrange the elements. producing: 

(0041) 01 
(0042) = 00 

c = 01 

The second pass should complete the operation and produce: 

c = 00 

This program 1s rather long for single stepping. so we'll use breakpoints instead. Each 

breakpoint will halt the computer and print the contents of all the registers. The break­

points will come: 

1) After LO HL.41 H to check the 1nit1alizat1on. 

2) After CP (HU to check the comparison. 

3) After the second INC HL (i.e .. 1ust before the label CNT) to check the interchange. 

4) After DEC C to check the completion of a pass through the array. The contents oi 

the registers after the first breakpoint were: 

Register 
A 
B 
c 
H 
L 

Contents 
02 
01 
00 
00 
41 

These are all correct. so the program 1s performing the 1n1t1alizat1on correctly in this 

case. 

14-24 



The results at the second breakpoint were: 

Register Contents 

A 00 
B 01 
c 00 
H 00 
L 42 

CARRY 1 

These results are also correct. The results at the third breakpoint were: 

Checking memory showed: 

Register 

A 
B 
c 
D 
H 
L 

Contents 

00 
01 
00 
01 
00 
42 

(0041) = 01 
(0042) = 00 

The results at the fourth breakpoint were: 

Register Contents 

A 00 
B 01 
c 00 
D 01 
H 00 
L 42 

Here. Register C does not contain the correct value - 1t should have been set to one to 
indicate that an interchange had occurred. In fact. a look at the program shows that no 
instruction ever changes C to mark the interchange. The correction 1s to place the in­
struction LO C.1 after JR NC.CNT 

Now the procedure 1s to load Register C with the correct value and continue. The sec­
ond 1terat1on of the second breakpoint gives: 

Register Contents 

A 00 
B 00 
c 00 
H 00 
L 43 

CARRY 1 

Clearly the program has proceeded incorrectly without rein1t1alizing the registers (par­
ticularly HU. The conditional iump that depends on the interchange flag should transfer 
control all the way back to the start of the program. not to the label PASS 1. 

14-25 



The final version of the program is: 

SORT LD c.o ;CLEAR INTERCHANGE FLAG 

LD A.(40H) :COUNT= LENGTH OF ARRAY 

CP 2 :DOES ARRAY HAVE 2 OR MORE ELEMENTS? 
JR C.DONE :NO. NO ACTION NECESSARY 
LD B.A 
DEC B :NUMBER OF PAIRS= COUNT-1 
LD HL.41 H ;POINT TO START OF ARRAY 

PASS1 LD A.(HL) :GET ELEMENT FROM ARRAY 
INC HL 
CP (HL) ; IS IT LESS THAN NEXT ELEMENT? 
JR NC.CNT :NO. NO INTERCHANGE NECESSARY 
LD c:1 ;YES. SET INTERCHANGE FLAG 
LD D.(HL) :INTERCHANGE ELEMENTS 
LD (HU.A 
DEC HL 
LD (HU.D 
INC HL 

CNT DJNZ PASS1 
DEC c :WAS INTERCHANGE FLAG SEP 
JR NZ.SORT :YES. DO ANOTHER PASS 
HALT 

Clearly we cannot check all the possible input values for this program. Two other simple 
sets of data for debugging purposes are: 

1) Two equal elements 

(0040) 02 
(0041) 00 
(0042) 00 

2) Two elements already in decreasing order 

(0040) 02 
(0041) 01 
(0042) 00 

14-26 



INTRODUCTION TO TESTING 
Program testing is closely related to program debugging. 
Surely some of the test cases will be the same as the test 
data used for debugging, such as: 

Trivial cases such as no data or a single element 
Special cases that the program singles out for some reason 
Simple examples that exercise particular parts of the program 

USING TEST 
CASES FROM 
DEBUGGING 

In the case of the decimal to seven-segment conversion program, these cases 
cover all the possible situations. The test data consists of: 

The numbers 0 through 9 
• The boundary case 10 
• The random case 68 

The program does not dist1ngu1sh any other cases. Here debugging and testing are 
virtually the same. 

In the sorting program, the problem is more difficult. The number of elements could 
range from 0 to 255. and each of the elements could lie anywhere in that range. The 
number of possible cases 1s therefore enormous. Furthermore. the program 1s 
moderately complex. How do we select test data that will give us a degree of confi­
dence in that program? Here testing requires some design decisions. The testing 
problem 1s particularly difficult if the program depends on sequences of real-time data. 
How do we select the data. generate 1t. and present 1t to the microcomputer in a 
realistic manner? 

Most of the tools mentioned earlier for debugging are helpful 
in testing also. Logic or microprocessor analyzers can help 
check the hardware; simulators can help check the software. 
Other tools can also be of assistance, e.g., 

TESTING 
AIDS 

1) 1/0 simulations that can simulate a variety of devices from a single input and a 
single output device. 

2) In-circuit emulators that allow you to attach the prototype to a development 
system or control panel and test 1t. 

3) ROM simulators that have the flexibility of a RAM but the timing of the particular 
ROM or PROM that will be used in the final system. 

4) Real-time operating systems that can provide inputs or interrupts at specific 
times (or perhaps randomly) and mark the occurrence of outputs. Real-time break­
points and traces may also be included. 

5) Emulations (often on micro programmable computers) that may provide real-time 
execution speed and programmable 1/0. 5 

6) Interfaces that allow another computer to control the 110 system and test the 
microcomputer program. 

7) Testing programs that check each branch in a program for logical errors. 
8) Test generation programs that can generate random data or other distributions. 

Formal testing theorems exist. but they are usually applicable only to very short pro­
grams. 

You must be careful that the test equipment does not invalidate the test by 
modifying the environment. Often, test equipment may buffer, latch, or condition 
input and output signals. The actual system may not do this, and may therefore 
behave quite differently. 

14-27 



Furthermore. extra software in the test environment may use some of the memo­

ry space or part of the interrupt system. It may also provide error recovery and 

other features that will not exist in the final system. A software test bed must be 

1ust as realistic as a hardware test bed. since software failure can be 1ust as critical as 

hardware failure. 

Emulations and simulations are, of course, never precise. They are usually ade­

quate for checking logic. but can seldom help test the interface or the timing. On 

the other hand, real-time test equipment does not provide much of an overview of 

the program logic and may affect the interfacing and timing. 

SELECTING TEST DATA 
Very few real programs can be checked for all cases. The designer must choose a 

sample set that in some sense describes the entire range of possibilities. 

Testing should. of course. be part of the total development pro- STRUCTURED 

cedure. Top-down design and structured programming provide for TESTING 

testing as part of the design. This 1s called structured testing. 6 

Each module w1th1n a structured program should be checked separately. Testing, as 

well as design, should be modular, structured, and top-down. 

But that leaves the question of selecting test data for a 

module. The designer must first list all special cases that a 

program recognizes. These may include: 

Trivial cases 

Equality cases 

Special s1tuat1ons 

The test data shou Id include all of these. 

You must next identify each class of data that statements 

within the program may distinguish. These may include: 

Pos1t1ve or negative numbers 

Numbers above or below a particular threshold 

TESTING 
SPECIAL 
CASES 

FORMING 
CLASSES 
OF DATA 

Data that does or does not include a particular sequence or character 

Data that 1s or is not present at a particular time 

If the modules are short. the total number of classes should still be small even though 

each div1s1on 1s mult1plicat1ve: 1.e .. two two-way div1s1ons result in four data classes. 

You must now separate the classes according to whether the 

program produces a different result for each entry in the class 
(as in a table) or produces the same result for each entry (such 

as a warning that a parameter is above a threshold). In the dis­

SELECTING 
DATA FROM 
CLASSES 

crete case. one may include each element if the total number 1s small or sample if the 

number 1s large. The sample should include all boundary cases and at least one case 

selected randomly. Random number tables are available in books. and random number 

generators are part of most computer facilities. 

You must be careful of distinctions that may not be obvious. For example, an 8-bit 

microprocessor will regard an 8-bit unsigned number greater than 127 as nega­

tive; the programmer must consider this when using conditional branches that 

depend on the Sign flag. You must also watch for instructions that do not affect 

flags, overflow in signed arithmetic, and the distinctions between address-length 

( 16-bit) quantities and data-length (8-bitl quantities. 

14-28 



Testing Example 1: Sort Program 
The special cases here are obvious: 

• No elements 1n the array 
• One element. magnitude may be selected randomlv 

TESTING 
A SORT 
PROGRAM 

The other special case to be considered 1s one in which elements are equal. 

There may be some problem here with signs and data length. Note that the array itself 
must contain fewer than 256 elements. The use of the instruction LD C.1 or SET 1.C 
rather than DEC C to clear the interchange flag means that there will be no difficulty if 
the number of elements or interchanges exceeds 128. 

We could check the effects of sign by picking half the regular test cases with numbers 
of elements between 128 and 255 and half between 2 and 127 All magnitudes should 
be chosen randomly so as to avoid unconscious bias as much as possible. 

Testing Example 2: Self-Checking Numbers (see Chapter 8) 
Here we will presume that a prior validity check has ensured that 
the number has the right length and consists of valid digits. Since 
the program makes no other distinctions. test data should be 
seiected randomly. Here a random number table or random num­

------TESTING AN 
ARITHMETIC 
PROGRAM 

ber generator will prove ideal; the range of the random numbers 1s 0 to 9. 

TESTING PRECAUTIONS 
The designer can simplify the testing stage by designing pro­
grams sensibly. You should use the following rules: 

1) Try to eliminate tr1v1al cases as early as possible without in­
troducing unnecessary distinctions. 

RULES FOR 
TESTING 

21 Minimize the number of special cases. Each special case means additional testing 
and debugging time. 

3) Consider performing validity or error checks on the data prior to processing. 
4) Be careful of inadvertent and unnecessary distinctions. part1cularlv in handling 

signed numbers or using operations that refer to signed numbers. 
5) Check boundary cases by hand. These are often a source of errors. Be sure that the 

problem defin1t1on specifies what 1s to happen in these cases. 
6) Make the program as general as reasonably possible. Each distinction and separate 

routine increases the required testing. 
7) Divide the program and design the modules so that the testing can proceed in 

steps in con1unct1on with the other stages of software development. 7 

14-29 



CONCLUSIONS 
Debugging and testing are the stepchildren of the software development process. 
Most projects leave far too little time for them and most textbooks neglect them. 

But designers and managers often find that these stages are the most expensive 

and time-consuming. Progress may be very difficult to measure or produce. 

Debugging and testing microprocessor software is particularly difficult because 

the powerful hardware and software tools that can be used on larger computers 

are seldom available for microcomputers. 

The designer should plan debugging and testing carefully. We recommend the 

following procedure: 

11 Try to write programs that can easily be debugged and tested. Modular pro­

gramming, structured programming, and top-down design are useful techni­

ques. 

2) Prepare a debugging and testing plan as part of the program design. Decide 

early what data you must generate and what equipment you will need. 

31 Debug and test each module as part of the top-down design process. 

41 Debug each module's logic systematically. Use checklists. breakpoints. and 

the single-step mode. If the program logic is complex. consider using the soft­

ware simulator. 

51 Check each module's timing systematically if this is a problem. An 

oscilloscope can solve many problems if you plan the test properly. If the tim­
ing is complex, consider using a logic or microprocessor analyzer. 

61 Be sure that the test data is a representative sample. Watch for any classes of 

data that the program may distinguish. Include all special and trivial cases. 

71 If the program handles each element differently or the number of cases is 

large, select the test data randomly.8 

81 Record all test results as part of the documentation. If problems occur, you 
will not have to repeat test cases that have already been checked. 

14-30 



REFERENCES 
1. For more information about logic analyzers. see: 

R. L. Down. "Understanding Logic Analyzers." Computer Design. June 1977. pp. 
188-191. --

w. A. Farnbach. "Bring up Your µ.P." Electronic Design. July 10. 1976. pp. 80-85. 
B. Farly, "Logic Analyzers Aren't All Alike." Electronic Design. Feb. 1. 1978. pp. 
70-76. --

K. Pines. "What Do Logic Analyzers Do? ... Digital Design. September 1977, pp. 
55-77 ----

N. A. Robin. "The logic Analyzer: A Computer Troubleshooting Tool." Computer 
Design. March 1976. pp. 89-96. 

S. Runyon. "Focus on Logic and µ.P Analyzers," Electronic Design. February 1. 
1977, pp. 40-50. --

A. Santoni. "The Latest Logic Analyzers Offer More Functions and Less Cost." 
Electronic Design. Feb. 1. 1978. pp. 26-32. 

2. See W. J. Weller. Assembly Level Programming for Small Computers. Lexington 
Books. Lexington. Mass .. 1975. 

3. Some guidelines for debugging interrupt problems are given in R. L. Baldrige. "In­
terrupts Add Power. Complexity to Microcomputer System Design." EON. August 
5. 1977. pp. 67-73. 

4. See C. Bass. "PLZ: A Family of System Programming Languages for 
Microprocessors," Computer. March 1978. pp. 34-39. 

5. See. for example. H. R. Bums. "Time-Scaled Emulations of the 8080 
Microprocessor:· Proceedings of the 1977 National Computer Conference. pp. 
937-946. 

6. See D. A. Walsh. "Structured Testing." Datamation. July 1977. pp. 111-118. 

7 Testing (and debugging) are also discussed in R. A. DeMillo et al.. "Hints on Test 
Data Selection: Help for the Practicing Programmer." Computer. April 1978. pp. 
34-41 and in W. F. Dalton. "Design Microcomputer Software:· Electronics. Januarv 
19. 1978. pp. 97-101. 

8. Random numbers and their generation are discussed in T. G. Lewis. Distribution 
Sampling for Computer Simulation. Lexington Books. Lexington. Mass., 1975 and 
in R. A. Mueller. et al.. .. A Random Number Generator for Microprocessors." Simula­
tion. April 1977. pp. 123-127 ---

14-31 





Chapter 15 
DOCUMENTATION AND REDESIGN 

The working program is not the only requirement of software development. Ade­
quate documentation is also an important part of a software product. Not only 
does documentation help the designer in the testing and debugging stages, it is 
also essential for later use and extension of the program. A poorly documented 
program will be difficult to maintain, use, or extend. 

Occasionally, a program uses too much memory or executes too slowly. The 
designer must then improve it. This stage is called redesign, and requires that you 
concentrate on the parts of the program that can yield the most improvement. 
SELF-DOCUMENTING PROGRAMS 
Although no program is ever completely self-document­
ing, some of the rules that we mentioned earlier can help. 
These include: 

• Clear. simple structure with as few transfers of control 
(jumps) as possible 

•Use of meaningful names and labels 

RULES FOR 
SELF-DOCUMENTING 
PROGRAMS 

• Use of names for 1/0 devices. parameters. numerical factors. etc. 
• Emphasis on s1mplic1tv rather than on minor savings in memory usage. execution 

time. or typing 

For example. the following program sends a string of characters to a teletypewriter: 

W: 

LO 
LO 
LO 
LO 
OUT 
CALL 
INC 
OJNZ 
HALT 

A.(2000H) 
B.A 
HL.1000H 
A.(HU 
(6).A 
xxx 
HL 
w 

Even without comments we can improve the program. as follows: 

MESSG EOU 1000H 
COUNT EOU 2000H 
TTYSIO EOU 6 

LO A.(COUNT) 
LO B.A 
LO HL.MESSG 

OUTCH: LO A,(HL) 
OUT (TTYSIO).A 
CALL BITOLY 
INC HL 
OJNZ OUTCH 
HALT 

15-1 



--··---··----

Surely this program 1s easier to understand than the earlier version. Even without 

further documentation. you could probably guess at the function of the program and 

the meanings of most of the vanables. Other documentation techniques cannot 
substitute for self-documentation. 

Some further notes on choosing names: 

1) Use the obvious name when 1t is available. like TTY or CRT 
for output devices. START or RESET for addresses. DELAY or 
SORT for subroutines. COUNT or LENGTH for data. 

CHOOSING 
USEFUL 
NAMES 

2) Avoid acronyms like S 16BA for §.ORT J.Q-!11T .fl.RRA Y These seldom mean any­

thing to anybody. 

3) Use full words or close to full words when possible. like DONE. PRINT. SEND. etc. 

4) Keep the names as distinct as possible. 

COMMENTS 
The most obvious form of additional documentation is the comment. However, 
few programs (even those used as examples in books!. have effective comments. 
You should consider the following guidelines for good comments. -----.... 
1) Don't repeat the meaning of the instruction code. Rather. COMMENTING 

explain the purpose of the instruction in the program. Com- GUIDELINES 
ments like 

DEC B ;B = B-1 

add nothing to documentation. Rather. use 

DEC B ;LINE NUMBER= LINE NUMBER-1 

Remember that you know what the operation codes mean and anyone else can 

look them up in the manual. The important point is to explain what task the 
program is performing. 

2) Make the comments as clear as possible. Do not use abbrev1at1ons or acronvms 

unless they are well-known (like ASCII. PIO. or UART) or standard !like no for num­

ber. ms for millisecond. etc.). Avoid comments like 

DEC B ;LN = LN-1 
or 

DEC B ;DEC LN BY 1 

The extra typing simply 1s not all that expensive. 

3) Comment every important or obscure point. Be particularly careful to mark 

operations that may not have obvious functions. such as 

AND 11011111 B :TURN TAPE READER BIT OFF 
or 

ADD HL.DE :INDEX GRAY CODE TABLE 

Clearly. 1/0 operations often require extensive comments. If you're not exactly 
sure of what an instruction does. or if you have to think about 1t. add a clarifying 

comment. The comment will save you time later and will be helpful in documenta­
tion. 

15-2 



4) Don't comment the obvious. A comment on each line simply makes 1t difficult to 
find the important points. Standard sequences like 

INC HL 
DJNZ SEARCH 

need not be marked unless you're doing something special. One comment will 
often suffice for several lines. as in 

RRCA :SWAP DIGITS 
RRCA 
RRCA 
RRCA 

LD 
LD 
LD 

A.C 
C.B 
B.A 

;EXCHANGE MOST SIGNIFICANT. LEAST 
SIGNIFICANT BYTES 

5) Place comments on the lines to which they refer or at the start of a se­
quence. 

6) Keep your comments up-to-date. If you change the program. change the com­
ments. 

7) Use standard forms and terms in commenting. Don t worry about repet1t1veness. 
Vaned names for the same things are confusing. even if the variations are 1ust 
COUNT and COUNTER. START and BEGIN. DISPLAY and LEDS. or PANEL and 
SWITCHES. 

There's no real gain in not being consistent. The variations may seem obvious to 
you now. but may not be clear later; others will get confused from the verv begin­
ning. 

8) Make comments mingled with instructions brief. Leave a complete explanation 
to header comments and other documentation. Otherwise. the program gets lost 
1n the comments and you may have a hard time even finding 1t. 

9) Keep improving your comments. If you come to one that you can t read or un­
derstand. take the time to change 1t. If you find that the listing is getting crowded. 
add some blank lines. The comments won't improve themselves; 1n fact. they will 
1ust become worse as you leave the task behind and forget exactly what you did. 

10) Before every major section, subsection, or subroutine, insert a number of 
comments describing the functions of the code that follows. Care should be 
taken to describe all inputs. outputs. and side effects. as well as the algorithm 
employed. 

11) It 1s good practice when modifying working programs to use comments to in­
dicate the date, author, and type of modification made. 

Remember, comments are important. Good ones will save you time and effort. Put 
some work into comments and try to make them as effective as possible. 

15-3 



Commenting !Example 1 : Multiple-Precision 

Addition 
The basic program is: 

LO 
LO 
LD 
LD 
AND 

ADDWD: LD 
ADC 
LD 
INC 
INC 
DJNZ 
HALT 

A.(30Hl 
B.A 
HL.41H 
DE.51H 
A 
A.(DE) 
A.(HL) 
(HU.A 
DE 
HL 
ADDWD 

COMMENTING 
EXAMPLES 

First. comment the important points. These are typically initializations. data fetches. 

and processing operations. Don't bother with standard sequences like updating poin­

ters and counters. Remember that names are clearer than numbers. so use them freely. 

The new version of the program 1s: 

:MUL TIPRECISION ADDITION 

:THIS PROGRAM PERFORMS MUL Tl-BYTE ADDITION 

;INPUTS: LOCATION 30H =LENGTH OF NUMBERS (IN BYTES) 

LOCATIONS 41 H-50H = FIRST ADDEND IN LSB-+MSB ORDER 

LOCATIONS 51 H-60H = SECOND ADDEND 

: OUTPUTS. LOCATIONS 41 H-51 H = SUM 

LENGTH 
NUMB1 
NUMB2 

ADDWD: 

EOU 
EOU 
EOU 
LOA 
LD 
LO 
LO 
AND 
LO 
ADC 
LD 
INC 
INC 
DJNZ 
HALT 

30H 
41H 
51H 
LENGTH 
B.A 
HL.NUMB1 
DE.NUMB2 
A 
A.(DE) 
A.(HU 
(HU.A 
DE 
HL 
ADDWD 

:COUNT= LENGTH OF NUMBERS (IN BYTES) 

;START AT LSB'S OF 1ST NUMBER 
;START AT LSB'S OF 2ND NUMBER 

:GET 8 BITS OF 2ND NUMBER 
;ADD 8 BITS OF 1ST NUMBER 
;STORE RESULT IN 1ST NUMBER 

Second. look for any instructions that might not have obvious 

functions and mark them. Here. the purpose of AND A 1s to clear 

the Carry the first time through. 

QUESTIONS 
FOR 
COMMENTING 

Third. ask yourself whether the comments tell you what you would 

need to know if you wanted to use the program. e.g.: 

1) Where is the program entered? Are there alternative entry points? 

2) What parameters are necessary? How and in what form must they be supplied? 

15-4 



3) What operations does the program perform? 

4) From where does 1t get the data? 

5) Where does it store the results? 

6) What special cases does it consider? 

7) What does the program do about errors? 

8) How does 1t exit? 

Some of the questions may not be relevant to a particular program and some of the 
answers may be obvious. Make sure that you won't have to sit down and dissect the 
program to figure out what the answers are. Remember that too much explanation 1s 
1ust dead wood that you will have to clear out of the way. Is there anything that you 
would add to or subtract from this listing? If so. go ahead -you are the one who has to 
feel that the commenting 1s adequate and reasonable . 

. MUL TIPRECISION ADDITION 

;THIS PROGRAM PERFORMS MUL Tl-BYTE ADDITION 

INPUTS: LOCATION 30H =LENGTH OF NUMBERS (IN BYTES) 
LOCATIONS 41H-50H =FIRST ADDEND IN LSB-+MSB ORDER 
LOCATIONS 51 H-60H =SECOND ADDEND 

OUTPUTS:LOCATIONS 4 lH-51 H =SUM 

LENGTH 
NUMBl 
NUMB2 

ADDWD: 

EOU 
EOU 
EOU 
LOA 
LO 
LO 
LO 
AND 
LO 
ADC 
LO 
INC 
INC 
DJNZ 
HALT 

30H 
41H 
51H 
LENGTH 
B.A 
HL.NUMBl 
DE.NUMB2 
A 
A,(DE) 
A.(HL) 
(HU.A 
DE 
HL 
ADDWD 

;LENGTH OF NUMBERS 
;LSB'S OF 1ST NUMBER AND RESULT 
;LSB'S OF 2ND NUMBER 
:COUNT= LENGTH OF NUMBERS (IN BYTES) 

;START AT LSB'S OF 1ST NUMBER 
;START AT LSB'S OF 2ND NUMBER 
:CLEAR CARRY TO START 
:GET 8 BITS OF 2ND NUMBER 
;ADD 8 BITS OF 1 ST NUMBER 
:STORE RESULT IN 1 ST NUMBER 

Commenting Example 2: Teletypewriter Output 
The basic program is: 

LO A.(60H) 
ADD A.A 
LO B.11 

TBIT OUT (PIODRBJ.A 
RRA 
SCF 
CALL BITDLY 
DJNZ TBIT 
HALT 

15-5 



Commenting the important points and adding names gives: 

:TELETYPEWRITER OUTPUT PROGRAM 

:THIS PROGRAM PRINTS THE CONTENTS OF MEMORY LOCATION 60H TO THE 
TELETYPEWRITER 

INPUTS: LOCATION 60H =CHARACTER CODE 
OUTPUTS: NONE 

TTYPIO EOU 
NBITS EOU 
TDATA EOU 

LO 
ADD 
LO 

TBIT OUT 
RRA 
SCF 
CALL 
DJNZ 
HALT 

Pl OD RB 
11 
60H 

A.(TDATA) 
A.A 
B.NBITS 
(TTYPIO).A 

BITDLY 
TBIT 

:NUMBER OF BITS PER CHARACTER 
:ADDRESS OF CHARACTER TO BE 
. TRANSMITTED 
:GET DATA 
;SHIFT LEFT AND FORM START BIT 
:COUNT= NUMBER OF BITS PER CHARACTER 
;SEND BIT TO TTY 
:UPDATE FOR NEXT BIT 
:FORM STOP BIT (LOGIC ONE) 
:DELAY 1 BIT TIME 

Note how easily we could change this program so that 1t would transfer a whole string 
of data. starting at the address in locations DPTR and DPTR + 1 and ending with an 
"03" character (ASCII ETX). Furthermore. let us make the terminal a 30 character per 
second device with one stop bit (we will have to change subroutine BITDL Yl. Try mak­
ing the changes before looking at the listing. 

:STRING OUTPUT PROGRAM 

;THIS PROGRAM OUTPUTS A STRING TO THE TERMINAL. TRANSMISSION CEASES 
WHEN AN ASCII ETX (30H) IS ENCOUNTERED 

INPUTS: LOCATIONS 60H-61 H CONTAIN ADDRESS OF 
STRING TO OUTPUT 

OUTPUTS: NONE 

DPTR 

ENOCH 
NBITS 
TTY PIO 

TCHAR: 

TBIT: 

DONE: 

EOU 

EOU 
EOU 
EOU 
LO 
LO 
CP 
JR 
ADD 
LO 
OUT 
RRA 
SCF 
CALL 
DJNZ 
INC 
JR 
HALT 

60H ;LOCATION OF OUTPUT BUFFER START 
ADDRESS 

03 :ENDING CHARACTER =ASCII ETX 
11 :NUMBER OF BITS PER CHARACTER 
PIODRB 
HL,(DPTR) ;GET STARTING ADDRESS OF STRING 
A.(HU :GET A CHARACTER 
ENOCH :IS IT ENDING CHARACTER? 
Z.DONE :YES. DONE 
A.A ;SHIFT DATA LEFT AND FORM START BIT 
B.NBITS :COUNT= NUMBER OF BITS PER CHARACTER 
(TTYPIO).A :SEND BIT TO TTY 

:UPDATE FOR NEXT BIT 
:FORM STOP BIT (LOGIC ONE) 

BITDLY ;DELAY 1 BIT TIME 
TBIT 
HL 
TC HAR 

15-6 



Good comments can make it easy for you to change a program to meet new require­
ments. For example. try changing the last program so that it: 

• Starts each message with ASCII STX (02 hex) followed by a three-digit identification 
code stored in memory locations 0030 through 0032 

• Adds no start or stop bits 
• Waits 1 ms between bits 

·Transmits 40 characters. starting with the one located at the address in DPTR and 
DPTR+1 

• Ends each message with two consecutive ASCII ETXs (03 hex) 

FLOWCHARTS AS DOCUMENTATION 
We have already described the use of flowcharts as a design tool 
in Chapter 13. Flowcharts are also useful in documentation. partic­
ularly if: 

•They are not so detailed as to be unreadable 
• Their decision points are clearly explained and marked 
• They include all branches 

• They correspond to the actual program listings 

HINTS FOR 
USING 
FLOWCHARTS 

Flowcharts are helpful if they give you an overall picture of the program. They are not 
helpful if they are JUSt as difficult to read as an ordinary listing. 

STRUCTURED PROGRAMS AS DOCUMENTATION 
A structured program can serve as documentation for an assembly language program 
if: 

• You describe the purpose of each section in the comments 
• You make 1t clear. which statements are included 1n each conditional or loop structure 

by using indentation and ending markers 
·You make the total structure as simple as possible 
• You use a consistent. well-defined language 

The structured program can help you to check the logic or improve it. Furthermore. 
since the structured program is machine-independent. 1t can also aid you in implement­
ing the same task on another computer. 

MEMORY MAPS 
A memory map is simply a list of all the memory assignments in a program. The map 
allows you to determine the amount of memory needed. the locations of data or 
subroutines. and the parts of memory not allocated. The map is a handy reference for 
finding storage locations and entry points and for dividing memory between different 
routines or programmers. The map will also give you easy access to data and 
subroutines if you need them in later extensions or in maintenance. Sometimes a 
graphical map 1s more helpful than a listing. 

15-7 



A typical map would be: 

Address Routine 

Program Memory 

Purpose 

TYPICAL 
MEMORY 
MAP 

0000-0002 RESET TRANSFERS CONTROL TO MAIN PROGRAM IN LOCATION 
40 HEX 

0038-003A INTRPT TRANSFERS CONTROL TO INTERRUPT SERVICE 
IN LOCATION 300 HEX 

0040-0265 MAIN MAIN PROGRAM 
0270-027F DELAY DELAY PROGRAM 
0280-0290 DSPLY DISPLAY CONTROL PROGRAM 
0300-0340 KEYIN INTERRUPT CONTROL PROGRAM FOR KEYBOARD 

Data Memory 

1000 NKEYS NUMBER OF KEYS 
1001-1002 KPTR KEYBOARD BUFFER POINTER 
1003-1041 KBFR KEYBOARD BUFFER 
1042-1051 DBFR DISPLAY BUFFER 
1052-105F TEMP TEMPORARY STORAGE 
10E0-10FF STACK RAM STACK 

The map may also list additional entry points and include a specific description of the 

unused parts of memory. 

PARAMETER AND DEFINITION LISTS 
Parameter and definition lists at the start of the program and each subroutine 
make understanding and changing the program far simpler. The following rules can 
help: 

1 ) Separate RAM locations, 1/0 units, parameters, defini­
tions, and memory system constants. 

2) Arrange lists alphabetically when possible, with a descrip­

tion of each entry. 

RULES FOR 
DEFINITION 
LISTS 

3) Give each parameter that might change a name and include it in the lists. Such 

parameters may include timing constants. inputs or codes corresponding to partic­

ular keys or functions. control or masking patterns. starting or ending characters. 

thresholds. etc. 

4l Make the memory system constants into a separate list. These constants will 

include Reset and interrupt service addresses. the starting address of the program, 

RAM areas. Stack areas. etc. 

5) Give each port used by an 110 device a name, even though devices may share 

ports in the current system. The separation will make expansion or reconfiguration 

much simpler. 

15-8 



A typical list of definitions will be: 

:MEMORY SYSTEM CONSTANTS 

RESET EOU 
INTRP EOU 
START EOU 
KEYIN EOU 
RA MST EOU 
STKPTR EOU 

. 1/0 UNITS 

DSPLY EOU 
KBDIN EOU 
KBDOUT EOU 
TTY PIO EOU 

;RAM LOCATIONS 

ORG 
NKEYS DEFS 
KBDPTR DEFS 
KBDBFR DEFS 
DSPBFR DEFS 
TEMP DEFS 

:PARAMETERS 

BOUNCE 
GOKEY 
MSC NT 
OPEN 
TPULS 

:DEFINITIONS 

ALL1 
STCON 

EOU 
EOU 
EOU 
EOU 
EOU 

EOU 
EOU 

0 
38H 
40H 
300H 
1000H 
1100H 

OEOH 
OE1H 
OEOH 
OFOH 

RAM ST 
1 
2 
40H 
10H 
14H 

2 
10 
133 
OFH 

OFFH 
SOH 

TYPICAL 
DEFINITION 
LIST 

:RESET ADDRESS 
:INTERRUPT ENTRY 
:START OF MAIN PROGRAM 
:KEYBOARD INTERRUPT PROGRAM 
;START OF DATA STORAGE 
:START OF STACK 

:OUTPUT PIO FOR DISPLAYS 
:INPUT PIO FOR KEYBOARD 
:OUTPUT PIO FOR KEYBOARD 
.TTY DATA PORT 

:NUMBER OF KEYS 
:KEYBOARD BUFFER POINTER 
:KEYBOARD INPUT BUFFER 
:DISPLAY DATA BUFFER 
.TEMPORARY STORAGE 

:DEBOUNCING TIME IN MS 
:IDENTIFICATION OF 'GO' KEY 
:COUNT FOR 1 MS DELAY 
:PATTERN FOR OPEN KEYS 
:PULSE LENGTH FOR DISPLAYS IN MS 

:ALL ONES PATTERN 
:START CONVERSION PULSE 

Of course. the RAM entries will usually not be in alphabetical order. since the designer 
must order these so as to m1nim1ze the number of address changes required in the pro­
gram. 

15-9 



LIBRARY ROUTINES 
Standard documentation of subroutines will allow you to build up a library of 
useful programs. The idea is to make these programs easily accessible. A standard for­
mat will allow you or anyone else to see at a glance what the program does. The best 
procedure is to make up a standard form and use 1t consistently. Save these programs 
in a well-organized manner (for example. according to processor. language. and type of 
program). and you will soon have a useful set. But rememberthat without organiza­
tion and proper documentation, using the library may be more difficult than rewrit­
ing the program from scratch. Debugging a system requires a precise understanding 
of all the effects of each subroutine. 

Among the information that you will need in the standard form is: 

•Purpose of the program 

• Processor used 

• Language used 

·Parameters required and how they are passed to the subroutine 

·Results produced and how they are passed to the main program 

• Number of bytes of memory used 

STANDARD 
PROGRAM 
LIBRARY 
FORMS 

•Number of clock cycles required. This number may be an average or a typical figure. 
or 1t may vary widely. Actual execution time will. of course. depend on the processor 
clock rate 

• Registers affected 

• Flags affected 

• A typical example 

• Error handling 

• Special cases 

• Documented program listing 

If the program 1s complex. the standard library form should also include a general 
flowchart or a structured program. As we have mentioned before. a library program 1s 
most likely to be useful if 1t performs a single distinct function in a reasonably general 
manner. 

LIBRARY EXAMPLES 

Library Example 1 : Sum of Data 
Purpose: The program SUMS computes the sum of a set of 8-b1t unsigned binary num­

bers. 

Language: Z80 assembler. 

Initial Conditions: Starting address of set of numbers in Register Pair HL. length of set 
in Accumulator. 

Final Conditions: Sum 1n Accumulator. 

Requirements: 
7 bytes. Memory 

Time 13 + 26N clock cycles. where N 1s the 
length of the set of numbers. 

Registers A. B. H. L. 
All flags affected. 

15-10 



Typical Case: (all data in hexadecimal) 

Start: 
HL 
A 

(0050) 
(0051) 
(0052) 
End: 

0050 
03 
27 
3E 
26 

A SS 

Error Handling: Program ignores all carries. Carrv bit reflects only the last operation. 
Initial contents of Accumulator must be 1 or more. 

Listing: 

:SUM OF S-BIT DATA 

SUMS: LO 
SUB 

ADDS: ADD 
INC 
DJNZ 
RET 

B.A 
A 
A.(HL) 
HL 
ADDS 

:COUNT= LENGTH OF DATA BLOCK 
:SUM =ZERO 
:SUM= SUM+ DATA ENTRY 

Library Example 2: Decimal-to-Seven-Segment Conversion 
Purpose: The program SEVEN converts a decimal number to a seven-segment display 

code. 

Language: ZSO assembler. 

Initial Conditions: Data in Accumulator. 

Final Conditions: Seven-segment code in Accumulator. 

Requirements: 

Memory 26 bvtes. including the seven-segment table (10 en-
tnesl. 

Time - 74 clock cycles if the data 1s valid. 40 if 1t 1s not. 
Registers A. B. D. E. H. L. 
All flags affected. 

Input data in Accumulator 1s destroyed. 

Typical Case: (data in hexadecimal) 

Start: 
A 05 

End: 
A 66 

Error Handling: Program returns zero in the Accumulator if data 1s not a decimal digit. 

15-11 



Listing: 

:DECIMAL TO SEVEN-SEGMENT CONVERSION 

SEVEN: 

DONE: 

SSEG: 

LD 
CP 
JR 
LO 
LD 
LD 
ADD 
LO 
LO 
RET 

B.O 
10 
NC.DONE 
L.A 
H.O 
DE.SSEG 
HL.DE 
B.(HU 
A.B 

DEFB 3FH 
DEFB 06H 
DEFB 5BH 
DEFB 4FH 
DEFB 66H 
DEFB 6DH 
DEFB 7DH 
DEFB 07H 
DEFB 7FH 
DEFB 6FH 

:GET ERROR CODE TO BLANK DISPLAY 
:IS DATA A DECIMAL DIGIT? 
:NO. KEEP ERROR CODE 
:YES. MAKE DATA INTO A 16-BIT INDEX 

:GET BASE ADDRESS OF 7-SEGMENT TABLE 
:FIND ELEMENT BY INDEXING 
:GET 7-SEGMENT CODE FROM TABLE 
:SAVE 7-SEGMENT CODE OR ERROR CODE 

library Example 3: Decimal Sum 
Purpose: The program DECSUM adds two multi-word decimal numbers. 

Language: Z80 assembler. 

Initial Conditions: Address of LSBs of one number in Register Pair HL. address of LSBs 
of other number in Register Pair DE. length of numbers (in bytes) in 
A. Numbers arranged starting with LSBs at lowest address. 

Final Conditions: Sum replaces number with starting address 1n Register Pair HL. 

Requirements: 

Memory - 11 bytes. 
Time 13 + 50N clock cvcles. where N 1s the number of 

bvtes involved. 
Registers - A. B. D. E. H. L. 
All flags affected. Carry shows if sum produced a carrv. 

Typical Case: (data in hexadecimal) 

Start: 
HL 0060 
DE 0050 

A 2 
(0060) 34 
(0061) 55 
(0050) 88 
(0051) 15 

End: 

(0060) 22 
(0061) 71 

CARRY 0 

15-12 



Error Handling: Program does not check the validity of decimal inputs. Accumulator 
must be 1 or greater. 

Listing: 
DECSUM: LO 

AND 
B.A 
A 
A.(DE) 
A.(HL) 

:COUNT = LENGTH OF NUMBERS (IN BYTES) 
:CLEAR CARRY TO START 

DECADD: LO 
ADC 
DAA 
LO 
INC 
INC 
DJNZ 
RET 

:GET 2 DECIMAL DIGITS FROM STRING 2 
:ADD PAIR OF DIGITS FROM STRING 1 
:MAKE ADDITION DECIMAL 

(HU.A 
DE 

:STORE RESULT IN STRING 1 

HL 
DECADD 

TOTAL DOCUMENTATION 
Complete documentation of microprocessor software will in­
clude all or most of the elements that we have mentioned. So. 
the total documentation package may involve: 

• General flowcharts 
• A written description of the program 
• A list of all parameters and definitions 
• A memory map 
• A documented listing of the program 
• A description of the test plan and test results 

The documentation may also include: 
• Programmers' flowcharts 
• Data flowcharts 
• Structured programs 

DOCUMENTATION 
PACKAGE 

The documentation procedures outlined above are the minimal acceptable set of 
documents for non-production software. Production software demands even 
greater documentation efforts. The follow1ng documents should also be produced: 
• Program Logic Manual 

·User Guide 

• Maintenance Manual 

The program logic manual expands on the written explanation produced with the 
software. It should be written for a technically competent individual who may not 
possess the detailed knowledge assumed 1n the written explanation in the software. 
The program logic manual should explain what the design goals of the system were. 
what algorithms were chosen to implement these goals. and what tradeoffs had to be 
made in achieving them. 

It should then explain 1n great detail what data structures were employed and how they 
are manipulated. It should provide a step-by-step guide to the inner workings of the 
code. Finally. 1t should contain any special tables or graphs that help explain any of the 
concepts embodied in the code. Code conversion charts. state diagrams. translation 
matrices. and flowcharts should be included. 

The user guide is probably the most important and most overlooked piece of docu­
mentation. No matter how well a system is designed, it is useless if no one can 
use it effectively. The user guide should provide all users. sophisticated and un­
sophisticated. with an introduction to the svstem. It should then provide detailed ex-

15-13 



planations of system features and their use. Use plenty of examples because a good ex­
ample can crystallize the 1nformat1on contained in many pages of text. Step-by-step 
directions should be given. Test the user guide. 1.e .. try out the step-by-step usage pro­
cedures as you have documented them. Programmers with detailed knowledge of a 
svstem·s design often take shortcuts that are not at all apparent to the general reader. 
An entire book could be written about the writing of user guides. and further discussion 
1s beyond the scope of this book. However. remember that you can never spend too 
much effort in preparing a user guide. because 1t will be the most used of all system 
documents. 

The maintenance manual is designed for the programmer who has to modify the 
system. It should outline step-by-step procedures for those reconfigurations designed 
into the system. In addition. 1t should outline any prov1s1ons placed into code for future 
expansion. 

Documentation should not be taken lightly or postponed until the end of the soft­
ware development. Proper documentation. combined with proper programming 
practices, is not only an important part of the final product but can also make 
development simpler, faster. and more productive. The designer should make con­
sistent and thorough documentation part of every stage of software development. 

REDESIGN 

Sometimes the designer may have to squeeze the last microsecond of speed or 
the last byte of extra memory out of a program. As larger single-chip memories have 
become available. the memory problem has become less serious. The time problem. of 
course. is serious only if the application 1s time-critical: in many applications the 
microprocessor spends most of its time waiting for external devices. and program speed 
is not a ma1or factor. 

Squeezing the last bit of performance out of a program is 
seldom as important as some writers would have you believe. 
In the first place, the practice is expensive for the following 

COST OF 
REDESIGN 

reasons: 

1) It requires extra programmer time. which 1s often the single largest cost in software 
development. 

2) It sacrifices structure and s1mplic1ty with a resulting increase in debugging and 
testing time. 

3) The programs require extra documentation. 

4) The resulting programs will be difficult to extend. maintain. or re-use. 

In the second place, the lower per-unit cost and higher performance may not really 
be important. Will the lower cost and higher performance really sell more units? Or 
would you do better with more user-oriented features? The only applications that 
would seem to justify the extra effort and time are very high-volume, low-cost 
and low-performance applications where the cost of an extra memory chip will far 
outweigh the cost of the extra software development. For other applications, you 
will find that you are playing an expensive game for no reason. 

However, if you must redesign a program, the following 
hints will help. First, determine how much more perfor­
mance or how much less memory usage is necessary. If 
the required improvement is 25% or less, you may be 

,,,...~~~~~~~~ 

MAJOR OR 
MINOR 
REORGANIZATION 

able to achieve it by reorganizing the program. If it is more than 25%, you have 
made a basic design error; you will need to consider drastic changes in hardware 
or software. We will deal first with reorgan1zat1on and later with drastic changes. You 
should also look at Chapter 5 of ZSO Programming for Logic Design for some examples. 

15-14 



Note particularly that saving memory can be critical if 1t allows a program to fit into the 
limited amount of ROM and RAM available in a simple one-chip or two-chip microcom­
puter. The hardware cost for small systems can thus be substantially reduced. if their 
requirements can be limited to the memory size and 1/0 limitations of that particular 
one-chip or two-chip system. 

REORGANIZING TO USE LESS MEMORY 
The following procedures will reduce memory usage for Z80 
assembly language programs: 

1) Replace repetitious in-line code with subroutines. Be 

SAVING 
MEMORY 

sure. however. that the CALL and RETURN instructions do not offset most of the 
gain. Note that this replacement usually results in slower programs because of the 
time spent in transferring control back and forth. 

2) Use register operations when possible. But remember the cost of the extra 1n-
1tializat1on. 

3) Use the Stack when possible. The Stack Pointer 1s automatically updated after 
each use so that no explicit u pdatmg instructions are necessary. 

4) Eliminate Jump instructions. Try to reorganize the program or use indirect iumps 
(JP (HU or JP (IX or IY)). RST. or RETURN instructions. 

5) Take advantage of addresses that you can manipulate as 8-bit quantities. 
These include page zero and addresses that are multiples of 100 hexadecimal. For 
example. you might try to place all ROM tables in one 10015-byte section of 
memory. and all RAM variables into another 10015-byte section. 

6) Organize data and tables so that you can address them without worrying 
about address calculation carries or without any actual indexing. This will 
again allow you to manipulate 16-bit addresses as 8-bit quantities. See pages 5-1 
to 5-6 of Z80 Programming for Logic Design for an example. 

7) Use the 16-bit instructions to replace two separate 8-bit operations. This 
may be particularly useful in m1t1alization or storing results. 

8) Use leftover results from previous sections of the program. 

9) Take advantage of such instructions as INC (HU. OCR (HU. LO (HU. RL (HU. and 
RR (HU. which operate directly on memory locations without using registers. 

10) Use INC or DEC to set or reset flag bits. 

11) Use relative jumps rather than jumps with direct addressing. 

12) Take advantage of the Block Move, Block Search, and Block 1/0 instructions 
whenever you are handling blocks of data. 

13) Watch for special short forms of instructions such as the Accumulator shifts 
(RLCA. RLA. RRCA. and RRA) and DJNZ. 

14) Use algorithms rather than tables to calculate arithmetic or logical expressions 
and to perform code conversions. Note that this replacement may result in slower 
programs. 

15) Reduce the size of mathematical tables by interpolating between entries. Here 
again. we are saving memory at the cost of execution time. 

16) Take advantage of the alternate register set to cut down on the use of 
storage. This can save time as well. 

Although some of the methods that reduce memory usage also 
save time, you can generally save an appreciable amount of 
time only by concentrating on frequently executed loops. Even 

15-15 

SAVING 
EXECUTION 
TIME 



completely eliminating an instruction that is executed only once can save at most a few 
microseconds. But a savings in a loop that is executed frequently will be multiplied 
many times over. 

So, if you must reduce execution time, proceed as follows: 

1 l Determine how frequently each program loop is executed. You can do this by 
hand or by using the software simulator or another testing method. 

2) Examine the loops in the order determined by their frequency of execution, 
starting with the most frequent. Continue through the list until you achieve the re­
quired reduction. 

3) First, see if there are any operations that can be moved outside the loop, 1.e .. 
repet1t1ve calculations. data that can be placed into a register or the Stack. ad­
dresses that can be placed into register pairs or index registers. special cases or 
errors that can be handled elsewhere, etc. Note that this will require extra in-
1t1alization and memory but will save time. 

4) Try to eliminate Jump statements. These are very time-consuming. Or. use 
1umps with direct addressing that require more memory but less time than 1umps 
with relative addressing. 

5) Replace subroutines with in-line code. This will save at least a CALL and a 
RETURN instruction. 

6) Use the Stack for temporary data storage. 

7) Use any of the hints mentioned in saving memory that also decrease execu­
tion time. These include the use of block handling instructions. 8-b1t addresses. 
16-bit instructions. RST. special short forms of instructions. etc. 

8) Do not even look at instructions that are executed only once. Any changes 
that you make in such instructions only invite errors for no appreciable gain. 

9) Avoid indexed and relative addressing whenever possible because they take 
extra time. 

10) Use tables rather than algorithms; make the tables handle as much of the tasks 
as possible even if many entries must be repeated. 

MAJOR REORGANIZATIONS 
If you need more than a 26% increase in speed or decrease in memory usage, do 
not try reorganizing the code. Your chances of getting that much of an improve­
ment are small unless you call in an outside expert. You are generally better off 
making a major change. 

The most obvious change is a better algorithm. Particularly if 
you are doing sorts. searches. or mathematical calculations. you 
mav be able to find a faster or shorter method in the literature. 

BETTER 
ALGORITHMS 

Libraries of algorithms are available 1n some 1ournals and from professional groups. See. 
for example. References 1 through 10 at the end of this chapter. 

More hardware can replace some of the software. Counters. shift registers. 
arithmetic units. hardware multipliers. and other fast add-ons can save both time and 
memory. Calculators. UARTs. keyboards, encoders. and other slower add-ons may save 
memory even though they operate slowly. Compatible parallel and serial interfaces. and 
other devices specially designed for use with the Z80 may save time by taking some of 
the burden off the CPU. 

15-16 



Other changes may help as well: 

1 l A CPU with a longer word will be faster if the data is long 
enough. Such a CPU will use less total memory. 16-bit pro­
cessors. for example. use memory more efficiently than 8-bit 
processors. since more of their instructions are one word long. 

OTHER 
MAJOR 
CHANGES 

2) Versions of the CPU may exist that operate at higher clock rates. But remem­
ber that you will need faster memory and 1/0 ports. and you will have to adjust any 
delay loops. 

3) Two CPUs may be able to do the job in parallel or separately if you can divide the 
Job and solve the communications problem. 

4) A specially microprogrammed processor may be able to execute the same pro­
gram much faster. The cost. however. will be much higher even if you use an off­
the-shelf emu lat ion. 

5) You can make tradeoffs between time and memory. Lookup tables and function 
ROMs will be faster than algorithms. but will occupy more memory. 

This kind of problem, in which a large improvement is neces­
sary, usually results from lack of adequate planning in the 
definition and design stages. In the problem definition stage 
you should determine which processor and methods will be 

------... DECIDING 
ON A MAJOR 
CHANGE 

adequate to handle the problem. If you misjudge, the cost later will be high. A 
cheap solution may result in an unwarranted expenditure of expensive develop­
ment time. Do not try to just get by; the best solution is usually to do the proper 
design and chalk a failure up to experience. If you have followed such methods as 
flowcharting, modular programming, structured programming, top-down design, 
and proper documentation, you will be able to salvage a lot of your effort even if 
you have to make a major change. 

15-17 



REFERENCES 

1. Collected Algorithms from ACM. ACM. Inc .. P 0. Box 12105. Church Street Sta­

t!On. New York 10249. 

2. Chen. T. C .. "Automatic Computation of Exponentials. Logarithms. Ratios. and 
Square Roots." IBM Journal of Research and DevelOJ:.1ment. Volume 18. pp. 
380-388. July. 1972. --

3. H. Schmid. Decimal ComRutat1on. Wiley-lntersc1ence. New York. 1974. 

4. Knuth. D. E.. The Art of Computer Programming. Volume 1. Fundamental 
.tijgonthms. Addison-Wesley, Reading. Mass .. 1967 

5. Knuth. D. E .. The Art of Computer Programming. Volume 2: Sem1numerical 
Alg~. Addison-Wesley. Reading. Mass .. 1969. 

6. Knuth. D. E.. The Art of Computer Programming. Volume 3: Sorting and Search­

l.0..9· Addison-Wesley. Reading. Mass .. 1973. 

7 Carnahan. B. et al...8.P..Rlied Numerical Methods. Wiley, New York. 1969. 

S. Despain. A. M. "Fourier Transform Computers Using CORDIC Iterations," IEEE 
Transactions on Computers. October 1974. pp. 993-1001. 

9. Luke. Y L .. Algorithms for the Computation of Mathematical Functions. Academic 
Press. New York. 1977 

10. Hwang. K .. ComRuter Arithmetic, Wiley, New York. 1978. 

11. Dollhoff. T.. "Microprocessor Software: How to Optimize Timing and Memorv 
Usage. Part Four: Techniques for the Zilog Z80." Digital Design. February 1977. 
pp. 44-51. - --- -

15-18 



Chapter 16 
SAMPLE PROJECTS 

PROJECT #1 : A Digital Stopwatch 
Purpose: This project is a digital stopwatch. The operator enters 

two digits (minutes and tenths of minutes) from a 
calculator-like keyboard and then presses the GO key. 
The system counts down the remaining time on two 

STOPWATCH 
INPUT 
PROCEDURE 

seven-segment LED displays (see Chapter 11 for a description of unencoded 
keyboards and LED displays). 

Hardware: The project uses one input port and one output port (one Z80 Parallel 
Input/Output Device or PIO). two seven-segment displays, a 12-key keyboard. a 7404 
inverter. and either a 7400 NANO gate or a 7408 AND gate. depending on the polarity 
of the seven-segment displays. The displays may require drivers. inverters. and resis­
tors. depending on their polarity and configuration. 

The hardware is organized as shown in Figure 16-1. Output lines 0. 1. and 2 are used to 
scan the keyboard. Input lines 0. 1. 2. and 3 are used to determine whether any keys 
have been pressed. Output lines 0. 1. 2. and 3 are used to send BCD digits to the seven­
segment decod.er/drivers. Output line 4 1s used to activate the LED displays (if line 4 1s 
'1'. the displays are lit). Output line 5 is used to select the left or right display; output 
line 5 is '1' if the left display 1s being used. ·o· if the right display is being used. Thus. 
the common line on the left display should be active if line 4 1s '1' and line 5 is '1'. while 
the common line on the right display should be active if line 4 is ·1· and line 5 1s ·o· 
Output line 6 controls the right-hand decimal point on the left display. It may be driven 
with an inverter or simply left on. 

Keyboard Connections: The keyboard 1s a simple calculator keyboard available for 
50¢ from a local source. It consists of 12 unencoded key-switches arranged in four rows 
of three columns each. Since the wiring of the keyboard does not coincide with the ob­
served rows and columns. the program uses a table to identify the keys. Tables 16-1 
and 16-2 contain the input and output connections for the keyboard. The decimal point 
key is present for operator convenience and for future expansion: the current program 
does not actually use the key. 

In an actual application. the keyboard would require pullup resistors to ensure that the 
inputs would actually be read as logic Ts when the keys were not being pressed. It 
would also require current-limiting resistors or diodes on the output port to avoid 
damaging the drivers in the case where two outputs were driving against each other. 
This could occur if two keys in the same row were pressed at the same time. thus con­
necting two different column outputs. 

16-1 



87 -lnotused) 
85 

Output 85 

Port 84 

(PIO 83 

Port Bl 82 
a, -Bo i 1r 

, , Ir I J I 1 J r 1 r 

c0 c 1 C2 I Oo Di 02 D3 

I 
Do Di Di D3 

A3 - R3 I - DP 
~ 

Input - Display Display 

Port 
A2 - R2 and and 

Keyboard 
{PIO Al 

Dnver Driver 

Port Al - Rl (left) lrightl 

Ao - Ro 

Common Common 

I? IP 

b 1:t 
Figure 16-1. Digital Stopwatch 1/0 Configuration 

Table 16-1. Input Connections for Stopwatch Keyboard 

Input Bit Keys Connected 

0 '3'. '5'. '8' 
1 ·2· '6'. ·g· 
2 'O'. '1'. '7' 
3 '4'. '.'.'GO' 

Table 16-2. Output Connections for Stopwatch Keyboard 

Output Bit Keys Connected 

0 'O'. ·2·. '3'. ·4· 
1 '1' '8'. '9'. 'GO' 
2 '5', '6'. '7' .... 

16-2 



General Program Flowchart: 

Start 

lnitielizat1on 

Identify 

key closure 

Save kev value Count time on LEDs 

End 

16-3 



Display Connections: The displays are seven-segment displays with their own in­

tegral decoders. A typical example would be the Texas Instruments TIL309 device. 

which has an internal TTL MSI chip with latch. decoder. and driver. Clearly. standard 

seven-segment displays would be cheaper but would require some additional software 

(the seven-segment conversion routine shown in Chapter 7). Data is entered into the 

display as a single binary coded decimal digit; the digits are represented as shown in 

Figure 11-15. The decimal point is a single LED that is turned on when the decimal 

point input 1s a logic · 1 · You can find more information about displays in References 10 

and 11 at the end of this chapter. 

Program Description: 

The program 1s modular and has several subroutines. The emphasis 1s on clarity and 

generality rather than efficiency; obviously. the program does not utilize the full 

capabilities of the ZSO processor. Each section of the listing will now be described in 

detail. 

1) Introductory Comments 

The introductory comments fully describe the program: these comments are a 

reference so that other users can easily apply. extend. and understand the pro­

gram. Standard formats. indentations. and spacings increase the readability of the 

program. 

2) Variable Definitions 

All variable defin1t1ons are placed at the start of the program so that they can easily 

be checked and changed. Each variable 1s placed in a list alphabetically with other 

variables of the same type; comments describe the meaning of each variable. The 

categories are: 

a) Memory system constants that may vary from system to system depending on 

the memory space allocated to different programs or types of memories 

b) Temporary storage (RAM) used for variables 

c) 1/0 (PIO) port addresses 

d) Defin1t1ons 

The memory system constants are placed in the definitions so that the user may 

relocate the program. temporary storage. and memory stack without making any 

other changes. The memory constants can be changed to accommodate other 

programs or to co1nc1de with a particular system's allocation of ROM and RAM ad­

dresses. 

Temporary storage 1s allocated by means of DEFS (Define Storage) pseudo-opera­

tions. An ORG (origin) pseudo-operation places the temporary storage locations in 

a particular part of memory. No values are placed in these locations so that the 

program could eventually be placed in ROM or PROM and the system could be 

operated from power-on reset without reloading. 

Each port address occupied by a PIO 1s named so that the addresses can easily be 

changed to handle vaned configurations. The naming also serves to clearly dis­

tinguish control registers from data registers. 

The definitions clarify the meaning of certain constants and allow parameters to 

be changed easily. Each definition 1s given 1n the form (binary. hex. octal. ASCII. or 

decimal) in which its meaning is the clearest. Parameters (such as debounce time) 

are placed here so that they can be vaned with system needs. 

16-4 



3) Initialization 
Memory location 0 (the reset location on the Z80 microprocessor) contains a 1ump 
to the starting address of the main program. The main program can thus be 
placed anywhere in memory and reached via a "RESET" signal. 

The 1nit1alizat1on consists of four steps: 

al Place a starting value in the Stack Pointer. The Stack 1s used onlv to store 
subroutine return addresses. 

bl Configure the PIO control registers. 

cl Start the number of digit keys pressed at zero. 

di Initialize the location where the next digit key pressed will be saved to the 
start of the digit key array. An indirect procedure 1s used. in which KEY AD 
contains the address in which the next digit will be placed. Each time a digit 
key 1s recognized. the contents of KEY AD are incremented so that the next 
digit key will be placed into the next memory location. 

41 Look for Key Closure 
Flowchart: 

Start 

Ground all keyboard 

columns 

End 

Kev closures are identified by grounding all the keyboard columns and then 
checking for grounded rows (i.e .. column-to-row switch closures). Note that the 
program does not assume that the unused input bits are all high; instead. the bits 
attached to the keyboard are isolated with a logical AND instruction. 

5) Debounce Key 
The program debounces the key closure in software by waiting for two millise­
conds. This 1s usually long enough for a clean contact to be made. Subroutine 
DELAY simply counts with Register C for 1 millisecond. The number of millise­
conds 1s in the Accumulator. DELAY would have to be adjusted if a slower clock or 
slower memories were being used. You could make the change simply by redefin­
ing the constant MSCNT. 

16-5 



6) Identify Key Closure 

Flowchart: 

Start 

Set kev table pointer 
to KTAB • 1 

Set pattern pointer 
to PATT 

Ground a keyboard 
column bv output of 

{pattern pointer) 

Yes 

End 

Increment key tabl~ 
pointer bv 1 

Shift keyboard· input 
right 1 bit 

Key ID= 
(kev table pointer) 

Use kev table pointer 
to get key ID 

End 

The particular key closed is identified by grounding single columns and observing 
whether a closure 1s found. Once a closure 1s found (so the key column is known). 
the key row can be determined by shifting the input. 

The patterns required to ground single keyboard columns are 1n a table PATT in 
memory. The final pattern in the table 1s a marker (ECODE) which indicates that all 
the columns have been grounded without a closure being found. This pattern also 
indicates to the main program that the closure could not be identified (e.g .. the 
key closure ended or a hardware error occurred before we could find the closure). 

16-6 



The key 1dentificat1ons are in table KTAB in memory. The 
keys in the first column (attached to the least significant out­
put bit) are followed by those 1n the second column. etc. 
Within a column. the key in the row attached to the least significant input bit 1s 
first. etc. Thus. each time a column is scanned without finding a closure. the num­
ber of keys 1n a column (NROWS) must be added to the key table pointer in order 
to move to the next column. The key table pointer is also incremented by one 
before each bit in the row inputs 1s examined: this process stops when a zero input 
1s found. Note that the key table pointer 1s started one location before the table. 
since 1t is always incremented once in the search for the proper row. 
If we cannot identify the key closure. we simply ignore 1t and look for another 
closure. 

7) Act on Key Identification 
If the program has enough digits (two in this simple case). 1t looks only for the GO 
key and ignores all other keys. If 1t finds a digit key. it saves the value in the key 
array, increments the number of digit keys pressed. and increments the key array 
pointer. 

If the entry 1s not complete. the program must wait for the key closure to end so 
that the system will not read the same closure again. The user must wait between 
key closures (i.e .. release one key before pressing another one). Note that the pro­
gram will identify double key closures as one key or the other. depending on 
which closure the 1dentificat1on routine finds first. An improved version of this 
program would display digits as they were entered and would allow the user to 
omit a leading or trailing zero. (i.e .. key in",". "7". "GO" to get a count of seven­
tenths of a minute). 

8) Set Up Display Output 
The digits are placed in registers or memorv locations with bit 4 set so that the 
output is· sent to the displays. Bits 5 and 6 are set for the most significant digit to 
direct the output to the left displav and to turn on the decimal point. 

9) Pulse the LED Displays 
Each display is turned on for two milliseconds. This process 1s repeated 1500 
times in order to get a total delay of 0.1 minutes. or 6 seconds. The pulses are fre­
quent enough so that the LED displays appear to be lit continuously. 

16-7 



1 0) Decrement Display Count 

Flowchart: 

Start 

Right Display = Right 

Display - 1 

!Jilt Oispiay = 

Left Display - 1 

Right Display = 9 

End 

No 

Yes 

End 

End of timer 

program 

The value of the less significant digit 1s reduced by one. If this affects bit 4 

(LEDON - used to turn the displays on). the digit has become negative. A borrow 
must then be obtained from the more significant digit. If the borrow from the more 
significant digit affects bit 4. the count has gone past zero and the countdown 1s 
finished. Otherwise. the program sets the value of the less significant digit to 9 
and continues. 

Note that comments describe both sections of the program and individual statements. 
The comments explain what the program 1s doing. not what specific instruction codes 
do. Spacing and indentation have been used to improve readability. 

16-8 



;PROGRAM NAME: TIMER 
;DATE OF PROGRAM: 10/24/78 
:PROGRAMMER: LANCE A. LEVENTHAL 
;PROGRAM REQUIREMENTS. Dl (209) BYTES 
;RAM REQUIREMENTS: 5 BYTES 
;1/0 REQUIREMENTS. 1 INPUT PORT. 1 OUTPUT PORT (1 Z80 PIO) 

.THIS PROGRAM IS A SOFTWARE TIMER WHICH ACCEPTS INPUTS FROM A 
CALCULATOR-LIKE KEYBOARD AND THEN PROVIDES A STOPWATCH 

. COUNTDOWN ON TWO 7-SEGMENT LED DISPLAYS IN MINUTES AND TENTHS 

. OF MINUTES 

:KEYBOARD 

:A 12-KEY KEYBOARD IS ASSUMED 
.THREE COLUMN CONNECTIONS ARE OUTPUTS FROM THE PROCESSOR 
. SO THAT A COLUMN OF KEYS CAN BE GROUNDED 
;FOUR ROW CONNECTIONS ARE INPUTS TO THE PROCESSOR SO THAT 
. COMPLETED CIRCUITS CAN BE IDENTIFIED 
;THE KEYBOARD IS DEBOUNCED BY WAITING FOR TWO MILLISECONDS 
. AFTER A KEY CLOSURE IS RECOGNIZED 
:A NEW KEY CLOSURE IS IDENTIFIED BY WAITING FOR THE OLD ONE 

TO END SINCE NO STROBE IS USED 
.THE KEYBOARD COLUMNS ARE CONNECTED TO BITS 0 

TO 2 OF THE PIO B PORT 
THE KEYBOARD ROWS ARE CONNECTED TO BITS 0 

TO 3 OF THE PIO A PORT 

:DISPLAYS 

:TWO 7-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS 
. (7447 OR 7448 DEPENDING ON THE TYPE OF DISPLAY) 
.THE DECODER DATA INPUTS ARE CONNECTED TO BITS 0 TO 3 

OF THE PIO B PORT 
:BIT 4 OF THE PIO B PORT IS USED TO ACTIVATE THE LED 
. DISPLAYS (BIT 4 IS 1 TO SEND DATA TO LEDS) 
:BIT 5 OF THE PIO B PORT IS USED TO SELECT WHICH 
, LED IS BEING USED (BIT 5 IS 1 IF THE LEADING DISPLAY 

IS BEING USED. 0 IF THE TRAILING DISPLAY IS BEING USED) 
:BIT 6 OF THE PIO B PORT IS USED TO LIGHT THE DECIMAL 
. POINT LED ON THE LEADING DISPLAY (BIT 6 IS 1 IF 
. THE DISPLAY IS TO BE LIT) 

:METHOD 

;STEP 1 - INITIALIZATION 
THE MEMORY STACK POINTER (USED FOR SUBROUTINE RETURN 
ADDRESSES) IS INITIALIZED. THE NUMBER OF DIGIT KEYS PRESSED IS SET 

. TO ZERO. AND THE ADDRESS INTO WHICH THE NEXT DIGIT KEY 

. IDENTIFICATION WILL BE PLACED IS INITIALIZED TO THE FIRST ADDRESS 

. IN THE DIGIT KEY ARRAY 
:STEP 2 - LOOK FOR KEY CLOSURE 

ALL KEYBOARD COLUMNS ARE GROUNDED AND THE KEYBOARD ROWS 
ARE EXAMINED UNTIL A CLOSED CIRCUIT IS FOUND 

16-9 



:STEP 3 - DEBOUNCE KEY CLOSURE 
A WAIT OF 2 MS IS INTRODUCED TO ELIMINATE KEY BOUNCE 

:STEP 4 - IDENTIFY KEY CLOSURE 
THE KEY CLOSURE IS IDENTIFIED BY GROUNDING SINGLE KEYBOARD 

COLUMNS AND DETERMINING THE ROW AND COLUMN OF THE KEY 

CLOSURE. A TABLE IS USED TO ENCODE THE KEYS ACCORDING TO THEIR 

ROW AND COLUMN NUMBER 
IN THE KEY TABLE. THE DIGITS ARE IDENTIFIED BY THEIR VALUES. 
THE DECIMAL POINT KEY IS NO. 10. AND THE "GO" KEY IS NO 11 

:STEP 5 - SAVE KEY CLOSURE 
DIGIT KEY CLOSURES ARE SAVED IN THE DIGIT KEY ARRAY UNTIL 

TWO DIGITS HAVE BEEN IDENTIFIED. DECIMAL POINTS. FURTHER DIGITS. 

AND CLOSURES OF THE "GO" KEY BEFORE TWO DIGITS HAVE BEEN 

IDENTIFIED ARE IGNORED 
AFTER TWO DIGITS HAVE BEEN FOUND. THE "GO" KEY IS USED TO 

ST ART THE COUNTDOWN PROCESS 
:STEP 6 - COUNT DOWN TIMER INTERVAL ON LEDS 

A COUNTDOWN IS PERFORMED ON THE LEDS WITH THE LEADING DIGIT 

REPRESENTING THE REMAINING NUMBER OF MINUTES AND THE TRAILING 

DIGIT REPRESENTING THE REMAINING NUMBER OF TENTHS OF MINUTES 

TIMER VARIABLE DEFINITIONS 
:MEMORY SYSTEM CONSTANTS 

BEGIN EOU 50H 

LASTM EOU 1000H 
TEMP EOU SOOH 
:RAM TEMPORARY STORAGE 

ORG TEMP 
KEYAD: DEFS 2 

KEYNO: DEFS 2 

NKEYS. DEFS 

:1/0 UNITS AND PIO ADDRESSES 

PIODRA EOU OEOH 
PIOCRA EOU OE2H 
PIODRB EOU OE1H 

PIOCRB EOU OE3H 

:DEFINITIONS 

DEC PT EOU 6 

:BEGIN IS STARTING MEMORY LOCATION 

FOR PROG 
:LASTM IS STARTING STACK ADDRESS 
:TEMP IS START OF RAM STORAGE 

:KEYAD HOLDS THE ADDRESS IN THE 
DIGIT KEY ARRAY IN WHICH THE 
IDENTIFICATION OF THE NEXT DIGIT 

. KEY WILL BE PLACED 
:KEYNO IS THE DIGIT KEY ARRAY - IT 
. HOLDS THE IDENTIFICATIONS OF THE 
. DIGIT KEYS THAT HAVE BEEN PRESSED 
:NKEYS HOLDS NUMBER OF DIGIT KEYS 
, PRESSED 

:INPUT PIO FOR KEYBOARD 

:OUTPUT PIO FOR KEYBOARD AND 
. DISPLAY 

;BIT POSITION TO TURN ON DECIMAL 
POINT LED 

16-10 



EC ODE EOU OFFH ;ERROR CODE IF ID ROUTINE DOES NOT FIND 
KEY 

GOKEY EOU 11 ;IDENTIFICATION NUMBER FOR "GO" KEY 
LEDON EOU 4 ;BIT POSITION TO SEND OUTPUT TO LEDS 
LED SL EOU 5 ;BIT POSITION TO SELECT LEADING 

DISPLAY 
MSC NT EOU OF9H :COUNT NEEDED TO GIVE 1 MS DELAY TIME 
MXKEY EOU 2 :MAXIMUM NUMBER OF DIGIT KEY 

CLOSURES USED 
NROWS EOU 4 ;NUMBER OF ROWS IN KEYBOARD OR KEYS 

IN COLUMN 
OPEN EOU 00001111B :INPUT FROM KEYBOARD IF NO KEY 

CLOSED 
TPULS EOU 2 :NUMBER OF MS BETWEEN DIGIT DISPLAYS 
TWAIT EOU 2 :NUMBER OF MS TO DEBOUNCE KEYS 

ORG 0 

;RESET ROUTINE TO REACH TIMER PROGRAM 

JP BEGIN ;FIND TIMER PROGRAM 

:INITIALIZATION OF TIMER PROGRAM 

ORG BEGIN 
LD A.0100111 lB :MAKE PIO PORT A INPUT 
OUT (PIOCRA).A 
LO A.00001111 B :MAKE PIO PORT B OUTPUT 
OUT (PIOCRB).A 
LD SP.LASTM ;PUT STACK AT END OF MEMORY 
SUB A 
LD (NKEYS).A :NUMBER OF DIGIT KEYS PRESSED= ZERO 
LO HL.KEYNO :STARTING LOCATION FOR DIGIT KEYS 
LD (KEY AD).HL 

:SCAN KEYBOARD LOOKING FOR KEY CLOSURE 

START CALL SCANC 

:WAIT FOR KEY TO BE DEBOUNCED 

LO 
CALL 

A.TWAIT 
DELAY 

:WAIT FOR KEY CLOSURE 

:GET DEBOUNCE TIME IN MS 
:WAIT FOR KEY TO STOP BOUNCING 

;IDENTIFY WHICH KEY WAS PRESSED 

CALL 
CP 
JR 

IDKEY 
ECODE 
Z.START 

:ACT ON KEY IDENTIFICATION 

IDENTIFY KEY CLOSURE 
WAS KEY CLOSURE IDENTIFIED? 
NO. WAIT FOR ANOTHER CLOSURE 

16-11 



LO 
LO 

LO 
CP 
JR 
LO 
CP 
JR 
INC 
LO 
LO 
INC 
L[) 

B.A 
HL.NKEYS 

A,(HU 
MXKEY 
Z.KEYF 
A.B 
10 
NC.WAITK 
(HU 
HL,(KEYAD) 
(HU.A 
HL 
(KEYADl.HL 

;SAVE KEY NUMBER 
;CHECK FOR MAXIMUM NUMBER OF DIGIT 

KEYS 

;HAS MAXIMUM BEEN REACHED? 
:YES. LOOK FOR GO KEY 
:NO. LOOK FOR DIGIT KEYS ONLY 
:IS THIS KEY A DIGIT/ 
:NO. IGNORE IT 
:YES. INCREMENT DIGIT KEY COUNTER 

;SAVE KEY NUMBER IN ARRAY 

:WAIT FOR CURRENT KEY CLOSURE TO END 

WAITK. CALL 
JR 

SC ANO 
START 

;WAIT FOR KEY TO BE RELEASED 

:GO LOOK FOR NEXT KEY 

:LOOK FOR GO KEY IF ENOUGH DIGITS FOUND 

KEYF LO 
CP 
JR 

A.B 
GOKEY 
NZ.WAITK 

:GET NUMBER OF KEY PRESSED 
:IS IT "GO" KEY? 
:NO. IGNORE IT 

:PUT DIGITS INTO REGISTERS FOR DISPLAY 

LO 
LO 
SET 
SET 
SET 
INC 
LO 
SET 

HL.KEYNO 
D.(HU 
DECPT.D 
LEDON.D 
LEDSL.D 
HL 
E.(HU 
LEDON.E 

;PULSE THE LED DISPLAYS 

LEDLP· 
TLOOP· 
LDPUL. 

LO 
LO 
LO 
OUT 
LO 
CALL 
OUT 
LO 
CALL 
DJNZ 
DEC 
JR 

C.PIODRB 
H.6 
B.250 
(C).D 

A.TPULS 
DELAY 
(Cl.E 
A.TPULS 
DELAY 
LDPUL 
H 
NZ.TLOOP 

;GET LEADING DIGIT 
:TURN ON DECIMAL POINT 
:SET OUTPUT TO LEDS 
;SELECT LEADING DISPLAY 

:GET TRAILING DIGIT 
:SET OUTPUT TO LEDS 

:GET OUTPUT PORT ADDRESS 
:SET COUNTERS FOR 6 SECONDS 

:OUTPUT LEADING DIGIT TO LED 1 
:DELAY BETWEEN DIGITS 

:OUTPUT TRAILING DIGIT TO LED 2 
:DELAY BETWEEN DIGITS 

:DECREMENT COUNT ON LED DISPLAYS 

16-12 



DEC 
BIT 
JR 
DEC 
BIT 
JP 
LD 
SET 
JR 

E 
LEDON.E 
NZ.LED LP 
D 
LEDON.D 
Z.BEGIN 
E.9 
LEDON.E 
LED LP 

:COUNT DOWN TRAILING DIGIT 
:IS TRAILING DIGIT PAST ZERO? 
;NO. CONTINUE 
:COUNT DOWN LEADING DIGIT 
:IS LEADING DIGIT PAST ZERO? 
:YES. WAIT FOR NEXT TIMING TASK 
:NO. SET TRAILING DIGIT TO 9 
;SET OUTPUT TO LEDS 
;RETURN TO DISPLAY SECTION 

:SUBROUTINE SCANC SCANS THE KEYBOARD WAITING FOR A KEY CLOSURE 
;ALL KEYBOARD INPUTS ARE GROUNDED 

SCANC: SUB 
OUT 
IN 
AND 
CP 
JR 
RET 

A 
(PIODRB).A 
A.(PIODRA) 
OPEN 
OPEN 
Z.SCANC 

:GROUND ALL KEYBOARD COLUMNS 

;IGNORE UNUSED INPUTS 
:ARE ANY KEYS CLOSED? 
:NO. CONTINUE SCANNING 

:SUBROUTINE DELAY WAITS FOR THE NUMBER OF MILLISECONDS SPECIFIED 
. IN REGISTER A 

DELAY EXX 
DLY1 LD 
WTLP· DEC 

JR 
DEC 
JR 
EXX 
RET 

C.MSCNT 
c 
NZ.WTLP 
A 
NZ.DLY1 

:SAVE USER REGISTERS 
:LOAD REGISTER C FOR 1 MS 
:WAIT 1 MS 

:COUNT DOWN NUMBER OF MS 

:RESTORE USER REGISTERS 

:SUBROUTINE IDKEY DETERMINES THE ROW AND COLUMN NUMBER OF THE 
. KEY CLOSURE AND IDENTIFIES THE KEY BY USING A TABLE 

IDKEY LD 
LD 
LD 

BC.PATT 
HL.KTAB-1 
DE.NROWS 

;POINT TO SCAN PATTERNS 
;START KEY TABLE POINTER 
:GET NUMBER OF KEYS IN A COLUMN 

:SCAN KEYBOARD COLUMNS SUCCESSIVELY LOOKING FOR CLOSURE 

FCOL. LD 
CP 
RET 
OUT 
IN 
AND 
CP 
JR 
ADD 

INC 
JR 

A.(BC) 
EC ODE 
z 
(PIODRB).A 
A.(PIODRA) 
OPEN 
OPEN 
NZ.FROW 
HL.DE 

BC 
FCOL 

:GET PATTERN TO GROUND COLUMN 
:ALL COLUMNS SCANNED? 
:YES. RETURN WITH ERROR CODE 
:SCAN COLUMN 

:IGNORE UNUSED INPUTS 
:ANY KEYS IN THIS COLUMN CLOSED? 
:YES. GO DETERMINE CLOSURE ROW 
:NO. MOVE KEY TABLE POINTER TO 
; NEXT COLUMN 
:POINT TO NEXT SCAN PATTERN 

16-13 



:DETERMINE ROW NUMBER OF CLOSURE 

FROW· INC 
RRCA 
JR 

HL 

C.FROW 

IDENTIFY KEY FROM TABLE 

LD 
RET 

A.(HL) 

:MOVE KEY TABLE POINTER TO NEXT ROW 
:NEXT ROW GROUNDED? 
:NO, KEEP LOOKING 

:GET KEY NUMBER 

:SCAN PATTERNS USED TO GROUND ONE COLUMN AT A TIME 

:ERROR PATTERN USED TO INDICATE THAT ALL COLUMNS HAVE BEEN SCANNED 

.THE COLUMN ATTACHED TO OUTPUT BIT 0 IS SCANNED FIRST. THEN 

THE ONE ATTACHED TO OUTPUT BIT 1. ETC. 

PATT DEFB 
DEFB 
DEFB 
DEFB 

:KEYBOARD TABLE 

00000110B 
00000101B 
00000011B 
ECODE 

:COLUMNS ARE PRIMARY INDEX. ROWS SECONDARY INDEX 

:THE KEYS IN THE COLUMN ATTACHED TO OUTPUT BIT 0 ARE FOLLOWED 

BY THOSE IN THE COLUMN ATTACHED TO OUTPUT BIT 1. ETC. WITHIN 

A COLUMN. THE KEY ATTACHED TO INPUT BIT 0 IS FIRST FOLLOWED 

. BY THE ONE ATTACHED TO INPUT BIT 1. ETC. 

:THE DIGIT KEYS ARE 0 TO 9. DECIMAL POINT IS 10. GO IS 11 

KTAB: DEFB 3 :CO.RO 
DEFB 2 :CO.R1 
DEFB 0 :CO.R2 
DEFB 4 :CO.R3 
DEFB 8 :Cl.RO 
DEFB 9 :C1.R1 
DEFB 1 :C1.R2 
DEFB 11 ;C1.R3 
DEFB 5 :C2.RO 
DEFB 6 :C2.R1 
DEFB 7 :C2.R2 
DEFB 10 :C2.R3 

:SUBROUTINE SCANO SCANS THE KEYBOARD WAITING FOR KEY CLOSURE TC 

END SO NEXT CLOSURE CAN BE FOUND 

SCANO: SUB 
OUT 
IN 
AND 
CP 
JR 
RET 
END 

A 
(PIODRB).A 
A.(PIODRA) 
OPEN 
OPEN 
NZ.SCANO 

:GROUND ALL KEYBOARD COLUMNS 

;IGNORE UNUSED INPUTS 
;ARE ANY KEYS STILL CLOSED? 

:YES. CONTINUE SCANNING 

16-14 



PROJECT #2: A Digital Thermometer 
Purpose: This project 1s a digital thermometer which shows the temperature in 

degrees Celsius on two seven-segment displays. 

Hardware: The project uses one input port and one output port. two seven-segment 
displays, a 74LS04 inverter. a 74LSOO NANO gate or a 74LS08 AND gate depending on 
the polarity of the displays. an Analog Devices AD7570J 8-bit monolithic A/D con­
verter. an LM311 comparator. and various peripheral drivers. resistors. and capacitors 
as required by the displays and the converter. (See Chapter 11 and Reference 1 at the 
end of this chapter for discussions of A/D converters.) 

Figure 16-2 shows the organization of the hardware. Output line 7 from PIO Port B 1s 
used to send a Start Conversion signal to the A/D converter. Input lines 0 through 7 are 
attached directly to the eight digital data lines from the converter. Output lines 0 
through 3 are used to send BCD digits to the seven-segment decoder/drivers. Output 
line 4 activates the displays and output line 5 selects the left or right display (line 5 1s '1' 
for the left display). 

The analog part of the hardware is shown in Figure 16-3. The 
thermistor simply provides a resistance that depends on tem­
perature. Figure 16-4 1s a plot of the resistance and Figure 16-5 
shows the range of current values over which the resistance 1s 

THERMOMETER 
ANALOG 
HARDWARE 

linear. The conversion to degrees Celsius in the program 1s performed with a calibration 
table. The two potentiometers can be adjusted to scale the data properly. A clock for 
the A/D converter is generated from an RC network. The values are R7=33 k!l and 
C1 =1000 pF, so that the clock frequency 1s about 75 kHz. At this frequency. the max­
imum conversion time for eight bits 1s about 50 microseconds. A much longer delay is 
allowed for conversion so that no check for the end of conversion 1s necessary. The 8-
bit version of the converter requires the following special connections. The eight data 
lines are DB2 through DB9 (DB1 1s always high during conversion and DBO low). The 
Short Cycle 8-bit input (pin 26-SC8) is tied low so that only an 8-b1t conversion 1s per­
formed. In the present case. High Byte Enable (pin 20-HBEN) and Low Byte Enable (pin 
21-LBEN) were both tied high so that the data outputs were always enabled. 

The A/D converter uses the successive approximation method to perform a conversion. 
The ADC's data register is connected to the inputs of an internal D/ A converter whose 
output (available at OUT1 and OUT2) 1s compared to the analog input. When a conver­
sion 1s initiated. the ADC logic sets the data register to all zeros with the exception of 
the most significant bit (MSB). which is set to one. If the analog input 1s less than the 
resulting internally generated analog value. then the MSB 1s reset to zero: otherwise 1t 
remains a one. The next most significant bit 1s then set to one and the process repeated 
until all eight bits have been "tested" 1n this wav. After the eighth cycle. the value in the 
register 1s the value which most closely corresponds to the analog input. 

This method 1s fast. but 1t requires that the input be stable during the conversion pro­
cess. Rapidly changing or noisy inputs would require additional signal conditioning. The 
references at the end of this chapter describe more accurate methods for handling 
analog 1/0. 

16-15 



B7 
B5 -{not used) 

Output B5 

Port B4 

IPIO B3 

Port Bl Bz 

B1 

Bo 

I' I ' , , I J I J I ,, 
A1 - Start Do D1 Dz D3 Do Dl Dz D3 

- Conversion 
A5 -

Input As ~ Display I Oisplav 

Port A4 .:: AID and and 

A3 
:;; 

Converter {PIO - Dnver Dnver 

Port Al Az lief ti (nghtl 

Al -
Ao -

I 
Common Common 

. i p 

b alag Input lho An 

Figure 16-2. 1/0 Configuration for a Digital Thermometer 

16-16 



R6 
so kn 

OFFSET ADJ 
-1SVO 

...... 
~·" 0+1SV 

+1SV +s v 
RS 

2Mn 

R3 
22 

200 n 2 
Vee Voo 

4 VREF 
VREF OUT1 

-10 v 
+s v R1 

s 
1kn 

OUT2 

R7 
33 •n 

-1S v 
24 

CLOCK COMP 
+1S v 

8 
C1 AD7S70J SRO (not used) 

JooopF A/D 9 
Converter SYNC (not used) 

10 
DB9 A7 

A 3 ANALOG 11 
DBS A6 

lkn 
INPUT 

R4 12 
Gain Adjust DB7 AS 

+SV 13 
086 A4 To PIO 

20 14 Port A 
A H8EN D85 A3 

21 15 
LBEN DB4 A2 

25 16 
From PIO Port 8, bit 7 STRT D83 Al 

(not used) 
28 

BUSY D82 
17 

AO 

27 18 
(not used) BSEN DB1 

26 
sea 

19 
D80 (not used) 

AGND DGND 

6 23 

":"' D ":"'A "::" D 

Note: If positive VREF 1s used, the ANALOG INPUT range 1s 0 to -VREF• and the 
COMPARATOR's (-1 input should be connected to OUT1 (pm 4) of the AD7570. 

RT 1s the thenmstor. The analog mput from the voltage divider 1s: 

Since RF= 68 kil. the mput is: 

Ra x 1S Volt 

Rs+ Rr 

1.02 Mn 
-----Volt 
Rr + 68 kn 

RT has a minimum value of 34 kn (T=50"C. see Figure 16-4) so full scale 1s 10 Volt. 

Figure 16-3. Digital Thermometer Analog Hardware 

16-17 

R2 
Skn 



1000000 

e 
.J: 
g 

" " 100 000 c 

" :;; 
·~ 
a: 

10000 

10 

O.G1 

T("C) R(Ohml 

0 365 000 

25 100 000 )... __ 
50 34 000 -- 100 6 000 

,...__ 

0 

--... _ 
....... 

"().. ..... ... 
............... 

........... 
.......... 

..... 

I 
25 

Temperature ("C) 

Figure 16-4. Thermistor Characteristics 
(Fenwal GA51J1 Bead) 

The curve 1s linear (i.e .. the resistance 1s 
independent of current) for currents less 
than 0.1 milliampere. 

0.1 

I (milliampere) 

Figure 16-5. Typical E-1 Curve for Thermistor (25°C) 

16-18 

f 
50 

1.0 



General Program Flowchart· 

( Start 

' lnitializaoon 

- ..... .. 
Send Start 

Conversion Slgnal 

to A/0 converter 

t 
Wait1ms 

' Read data from 
AID converter 

; 
Convert data to 
degrees Celsius 

t 
Display 

temperature on 
LEDs loo' six seconds 

I 

16-19 



Program Description: 

1) Initialization 

Location 0 (the Z80 microprocessor RESET location) contains a jump to the starting 

address of the main program.The initialization configures the PIO control registers 

and starts the Stack Pointer at the highest address in RAM. The Stack is used onlv 

to store subroutine return addresses. 

2) Send START CONVERSION Signal to AID Converter 

The CPU pulses the START CONVERSION line bv first placing a ·1· on line 7 of PIO 

Port B and then placing a ·o· on that line. Each input from the converter requires a 

starting pulse. 

3) Wait 1 ms for Conversion 

A delay of 1 ms after the START CONVERSION pulse guarantees a completed con­

version. Actually, the converter takes only a maximum of 100 microseconds for an 

8-b1t conversion. We could reduce the delay by checking the BUSY signal from the 

converter. This s1g nal is either a '1' (conversion complete) or 'O' (conversion 1n 

progress) if the BUSY ENABLE line 1s addressed. In the present case there is no 

reason to speed the conversion process. Clearly. interrupts could be used with 

BUSY tied to the PIO STROBE line. 

4) Read Data from A/D Converter 

Reading the data involves a single input operation. We should note that the Analog 

Devices .AD7570J has an Enable input and tristate outputs so that 1t could be tied 

directly to the microprocessor Data Bus. 

The 7570 converter 1s. of course. underutilized in this particular application. partic­

ularly since we are interfacing it to the Z80 processor through a PIO. A simpler 8-b1t 

A/D converter such as the National 5357 device would do the job at lower cost 

this device 1s available in an 18-pin package. has a START CONVERSION input. and 

provides tristate outputs. It also has output latches and an END OF CONVERSION 

output signal. 

16-20 



5) Convert Data to Degrees Celsius 
Flowchart: 

Start 

Value = Data rec31ved 
from AID converter 
Index == 0 

Pornter:::::. Start of table 

fndex = Index + 1 
Pointer= Pomter + 1 

Yes 

Temperature = Index 

End 

The conversion uses a table that contains the largest in­
put value corresponding to a given temperature. The pro­
gram searches the table. looking for a value greater than 
or equal to the value received from the converter. The first 

USING A 
CALIBRATION 
TABLE 

such value it finds corresponds to the required temperature: that 1s, if the tenth 
entry 1s the first value larger than or equal to the data. the temperature 1s 10 
degrees. This search method 1s inefficient but adequate for the present applica-
lion. 

Note that we must keep the entry number in decimal rather than binarv. The 1n­
struct1on sequence "ADD A.1. DAA" keeps the index as two decimal digits in­
stead of a binarv number. For example. the entrv number after 9 (00001001 bin­
ary) will be decimal 10 (00010000 BCD) rather than binary ten (00001010). The 
reason for this is that we plan to display the temperature as two decimal digits and 
would have to convert 1t from binary to decimal otherwise. 
The table could be obtained bv calibration or by a mathematical approx1mat1on. 
The calibration method 1s simple. since the thermometer must be calibrated any­
way. The table occupies one memory location for each temperature value to be 
displayed.1 

To calibrate the thermometer. you must first adjust the potentiometers to produce 
the proper overall range and then determine the converter output values corres­
ponding to specific temperatures. 

16-21 



6) Prepare Date for Display 

Flowchart: 

Start 

Get feast significant 
digit and sat 

output to LEDs 

Get most 

significant digit 

Set output to LEDs 

End 

The least significant digit 1s masked off. We set the bit that 
turns on the displays. The result 1s saved 1n Register E. 

The only difference for the most significant digit 1s that a lead­
ing zero 1s blanked (i.e .. the displays show "blank 7" rather 

BLANKING 
A LEADING 
ZERO 

than "07" for 7°C). This simply involves not setting the bit that turns on the dis­
plays if the digit is zero. The result 1s saved 1n Register D. 

16-22 



7) Display Temperature for Six Seconds 
Flowchart: 

Start 

Count = TSAMP 

Send most 

stgnificant digit 
to left displav 

Wait 2 ms 

Send least 
significant digit 

to right display 

Wait 2ms 

Count = Count - 1 

End 

Each display 1s pulsed often enougn so that 1t appears to be lit continuously. If 
TPULS were made longer (say 50 msl. the displays would appear to flash on and 
off. 

The program uses a 16-bit counter to count the time between temperature sam­
ples. The Z80 has 1nstruct1ons to increment or decrement 16-bit register pairs or in­
dex registers. However. these instructions do not affect the flags. so there 1s no way 
to directly determine when the counter reaches zero. So we make this determina­
tion by logically ORing the eight most significant and the eight least significant bits 
of the counter. If that result 1s zero. the 16-bit counter 1s zero. 

16-23 



:PROGRAM NAME: THERMOMETER 
:DATE OF PROGRAM: 10/20/78 
:PROGRAMMER: LANCE A. LEVENTHAL 
:PROGRAM MEMORY REQUIREMENTS: 154 BYTES 
:RAM REQUIREMENTS. NONE 
:110 REQUIREMENTS: 1 INPUT PORT. 1 OUTPUT PORT (1 ZSO PIO! 

:THIS PROGRAM IS A DIGITAL THERMOMETER THAT ACCEPTS INPUTS FROM 
AN A/D CONVERTER ATTACHED TO A THERMISTOR. CONVERTS THE INPUT 

. TO DEGREES CELSIUS. AND DISPLAYS THE RESULTS ON TWO 
SEVEN-SEGMENT LED DI SPLAYS 

:AID CONVERTER 

THE A/D CONVERTER IS AN ANALOG DEVICES 7570J MONOLITHIC CONVERTER 
WHICH PRODUCES AN 8-BIT OUTPUT 

.THE CONVERSION PROCESS IS STARTED BY A PULSE ON THE START 

. CONVERSION LINE (BIT 7 OF PIO PORT Bl 
:THE CONVERSION IS COMPLETED IN 50 MICROSECONDS AND THE 
. DIGIT AL DAT A IS LATCHED 

;DISPLAYS 

.TWO SEVEN-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS 
: (7447 OR 7448 DEPENDING ON THE TYPE OF DISPLAY) 
:THE DECODER DATA INPUTS ARE CONNECTED TO BITS 0 TO 3 OF 

PIO PORT B 
:BIT 4 OF PIO PORT BIS USED TO ACTIVATE THE LED DISPLAYS 
. (BIT 4 IS 1 TO SEND DAT A TO LEDS) 
:BIT 5 OF PIO PORT B IS USED TO SELECT WHICH LED IS BEING 
. USED (BIT 5 IS 1 IF THE LEADING DISPLAY IS BEING USED. 
. 0 IF THE TRAILING DISPLAY IS BEING USED) 

:METHOD 

:STEP 1 - INITIALIZATION 
. THE MEMORY STACK (USED FOR SUBROUTINE RETURN ADDRESSES) IS 
. INITIALIZED 
:STEP 2 - PULSE START CONVERSION LINE 
. THE A/D CONVERTER'S START CONVERSION LINE (BIT 7 OF PIO 
. PORT B) IS PULSED 
:STEP 3 - WAIT FOR A/D OUTPUT TO SETTLE 

A WAIT OF 1 MS ALLOWS FOR COMPLETION OF THE CONVERSION 
:STEP 4 - READ AID VALUE. CONVERT TO DEGREES CELSIUS. 
. A TABLE IS USED FOR CONVERSION IT.'CONTAINS THE MAXIMUM 

INPUT VALUE FOR EACH TEMPERATURE READING 
:STEP 5 - DISPLAY TEMPERATURE ON LEDS 

THE TEMPERATURE IS DISPLAYED ON THE LEDS FOR SIX SECONDS 
BEFORE ANOTHER CONVERSION IS PERFORMED 

.THERMOMETER VARIABLE DEFINITIONS 

:MEMORY SYSTEM CONSTANTS 

16-24 



BEGIN EOU 
LASTM EOU 

50H 
1000H 

:1/0 UNITS AND PIO ADDRESSES 

PIODRA EOU 
PIOCRA EOU 
PIODRB EOU 
PIOCRB EOU 

:DEFINITIONS 

LEDON EOU 
LEDSL EOU 
MSCNT EOU 
STCON EOU 
TPULS EOU 
TSAMP EOU 

OEOH 
OE2H 
OE1H 
OE3H 

4 
5 
OF9H 
10000000B 
2 
1500 

ORG 0 

:STARTING ADDRESS OF MAIN PROGRAM 
:STARTING ADDRESS FOR RAM STACK 

:INPUT PIO FOR CONVERTER 

:OUTPUT PIO FOR DISPLAYS 

:BIT POSITION TO SEND DATA TO LEDS 
:BIT POSITION TO SELECT LEADING DISPLAY 
:COUNT NEEDED TO GIVE 1 MS DELAY 
;OUTPUT TO BRING START CONVERSION HIGH 
:DISPLAY PULSE LENGTH IN MS 
;TSAMP IS THE NUMBER ,OF TIMES THE 
; DI SPLAYS ARE PULSED. IN A 
:TEMPERATURE SAMPLING PERIOD. THE 
;LENGTH OF A SAMPLING PERIOD IS THUS 
:2*TPULS*TSAMP MILLISECONDS.THE FACTOR 
:OF 2*TPULS IS INTRODUCED BY THE FACT 
. THAT EACH OF 2 DISPLAYS IS PULSED FOR 
. TPULS MS 

:RESET ROUTINE TO REACH THERMOMETER PROGRAM 

JP BEGIN :FIND THERMOMETER PROGRAM 

:INITIALIZATION OF THERMOMETER PROGRAM 

ORG BEGIN 
LD A.01001111B :MAKE PIO PORT A INPUT 
OUT (PIOCRA).A 
LD A.00001111 B :MAKE PIO PORT B OUTPUT 
OUT (PIOCRB).A 
LD SP.LASTM :PUT STACK AT END OF RAM 

;PULSE START CONVERSION LINE 

START: LD 
OUT 
SUB 
OUT 

A.ST CON 
(PIODRB).A 
A 
(Pl OD RB). A 

:SEND START CONVERSION HIGH 

:SEND START CONVERSION LOW 

16-25 



:DELAY 1 MS FOR CONVERSION 

LO 
CALL 

A.1 
DELAY 

:CONVERSION DELAY TIME IN MS 
:WAIT FOR CONVERSION 

:READ DIGITAL DATA FROM CONVERTER 

IN A.(PIODRA) :GET DATA FROM A/D CONVERTER 

:CONVERT A/D DATA TO 2 BCD DIGITS 

CALL CO NVR 

:GET LEAST SIGNIFICANT DIGIT 

LD 
AND 
SET 
LO 

B.A 
OFH 
LEDON.A 
E.A 

:CONVERT DATA TO BCD 

;SAVE BCD DIGITS 
; MASK OFF LSD 
: SET OUTPUT TO LEDS 
:SAVE LSD IN REGISTER E 

:GET MOST SIGNIFICANT DIGIT. BLANK LEADING ZERO 

LD A.B ;RESTORE BCD DIGITS 
RRCA :SHIFT MSD 
RRCA 
RRCA 
RRCA 
AND OFH :MASK OFF MSD 
JR Z.SVMSD :DON'T TURN DISPLAY ON IF VALUE ZERO 
SET LEDON.A ;SET OUTPUT TO LEDS 
SET LEDSL.A :SELECT LEADING DISPLAY 

SVMSD: LD D.A ;SAVE MSD IN REGISTER D 

:PULSE THE LED DISPLAYS 

LD C.PIODRB :GET OUTPUT PORT ADDRESS 
LD HL.TSAMP :GET 16-BIT PULSE COUNTER 

DSPLY OUT (C).D :OUTPUT LEADING DIGIT TO DISPLAY 
LD A.TPULS :DELAY DISPLAY PULSE LENGTH 
CALL DELAY 
OUT (C).E :OUTPUT TRAILING DIGIT TO DISPLAY 
LD A.TPULS ;DELAY DISPLAY PULSE LENGTH 
CALL DELAY 
DEC HL :COUNT DOWN 16-BIT COUNTER 
LD A.H :REMEMBER DEC HL DOES NOT SET Z FLAG 
OR L 
JR NZ.DSPLY :CONTINUE PULSING DISPLAYS 
JP START :GO SAMPLE TEMPERATURE AGAIN 

:SUBROUTINE DELAY WAITS FOR THE NUMBER OF MILLISECONDS SPECIFIED 
IN REGISTER A 

16-26 



DELAY: EXX 
DLY1· LD 
WTLP: DEC 

JR 
DEC 
JR 
EXX 
RET 

C.MSCNT 
c 
NZ.WTLP 
A 
NZ.DLY1 

;SAVE USER REGISTERS 
;LOAD REGISTER C FOR 1 MS DELAY 
:WAIT 1 MS 

:COUNT DOWN NUMBER OF MS 

:RESTORE USER REGISTERS 

:SUBROUTINE CONVR CONVERTS INPUT FROM A/D CONVERTER TO DEGREES 
. CELSIUS BY USING A TABLE. INPUT DATA IS IN THE ACCUMULATOR. 
. RESULT IS 2 BCD DIGITS IN THE ACCUMULATOR 

:REGISTERS USED: A.B.C.H,L 

CONVR: LD 

LD 
LD 

CHVAL: LD 
CP 
LD 
RET 
ADD 
DAA 
LD 
INC 
JR 

HL.DEGTB 

B.A 
c.o 
A.(HL) 
B 
A.C 
NC 
A.1 

C.A 
HL 
CHVAL 

:GET BASE ADDRESS OF CONVERSION 
. TABLE 
:SAVE A/D INPUT 
:START DEGREES AT ZERO 
:GET ENTRY FROM TABLE 
:IS A/D INPUT BELOW ENTRY? 
;GET VALUE IN DEGREES CELSIUS 
:YES. VALUE FOUND 
:NO. ADD 1 TO DEGREES 
;KEEP DEGREES IN BCD 

:TABLE DEGTB WAS OBTAINED BY CALIBRATION WITH A KNOWN REFERENCE 
:DEGTB CONTAINS THE LARGEST INPUT VALUE THAT CORRESPONDS TO A 

PARTICULAR TEMPERATURE READING (I.E .. THE FIRST ENTRY IS DECIMAL 
58 SO AN INPUT VALUE OF 58 IS THE LARGEST VALUE GIVING A ZERO 

. TEMPERATURE READING - VALUES BELOW ZERO ARE DISPLAYED AS ZERO 

16-27 



DEGTB: DEFB 5B 
DEFB 61 
DEFB 63 
DEFB 66 
DEFB 69 
DEFB 71 
DEFB 74 
DEFB 77 
DEFB 80 
DEFB 84 
DEFB 87 
DEFB 90 
DEFB 93 
DEFB 97 
DEFB 101 
DEFB 104 
DEFB 108 
DEFB 112 
DEFB 116 
DEFB 120 
DEFB 124 
DEFB 128 
DEFB 132 
DEFB 136 
DEFB 141 
DEFB 145 
DEFB 149 
DEFB 154 
DEFB 158 
DEFB 163 
DEFB 167 
DEFB 172 
DEFB 177 
DEFB 181 
DEFB 186 
DEFB 191 
DEFB 195 
DEFB 200 
DEFB 204 
DEFB 209 
DEFB 214 
DEFB 218 
DEFB 223 
DEFB 227 
DEFB 232 
DEFB 236 
DEFB 241 
DEFB 245 
DEFB 249 
DEFB 253 
DEFB 255 
END 

16-28 



References 

1. A method that uses far less memory 1s described 1n T. A. Seim. "Numerical Interpola­
tion for Microprocessor-based Systems.'' Computer Design. February 1978. pp. 111-
116. --

See also: 

2. Auslander. D. M. et al., "Direct Digital Process Control: Practice and Algorithms for 
Microprocessor Applications.'' Proceedings of the IEEE. February 1978. pp. 199-208 ----

3. Bernstein. N .. "What to Look for in Analog Input/Output Boards.'' Electronics. Janu­
ary 19. 1978. pp. 13-119 

4. Bibbero. R. J .. Microprocessors in Instruments and Control, Wiley, New York. 1977 

5. Burton. D. P. and A. L. Dexter. Microprocessor Systems Handbook. Analog Devices. 
Inc .. P.O. Box 796. Norwood. MA. 02062. 1977 

6. Finkel. J .. Computer-Aided Expenmentat1on. Wiley. New York. 1975 

7. Garrett. P H .. Analog Systems for Microprocessors and Minicomputers. Reston Pub­
lishing Co .. Reston. VA .. 1978 

8. Hnatek. E. R.. A User's Handbook of D/A and AID Converters. Wiley, New York. 
1976 

9. Mrozowsk1. A .. "Analog Output Chips Shnnk A-D Conversion Software.'' Electronics. 
June 23. 1977, pp. 130-133 

10. The Optoelectronics Data Book. Texas Instruments. Inc .. P.O. Box 5012. Dallas. TX .. 
1978 

11. The Optoelectronic Designer's Catalog. Hewlett-Packard Inc .. 1820 Embarcadero 
Road. Palo Alto. CA. 94303.1978 

12. Peatman. J. B .. Microcomputer-based Design. McGraw-Hill. New York. 1977 

13. Rony, P R. et al.. "Microcomputer Interfacing: Sample and Hold Devices:· Computer 
Design. December 1977, pp. 106-108 

14. Sheingold. D. H. ed .. Analog-Digital Conversion Notes. Analog Devices. Inc .. P 0. 
Box 796. Norwood. MA. 02062. 1977 

16-29 





Index of Instruction Descriptions 

ADC A.data 3-43 
ADC A.reg 3-44 
ADC A.(HLI 3-45 
ADC A.(IX + displ 3-45 
ADC A.(IY + displ 3-45 
ADC HL.rp 3-46 
ADD A.data 3-47 
ADD A.reg 3-48 
ADD A.(HLI 3-49 
ADD A.(IX + dispJ 3-49 
ADD A.(IY + displ 3-49 
ADD HL.rp 3-50 
ADD xv.rp 3-51 
AND data 3-52 
AND reg 3-53 
AND IHLI 3-54 
AND (IX + disp) 3-54 
AND (IY + disp) 3-54 

SIT b.reg 3-55 
BIT b.(HL) 3-56 
BIT b.IJX + disp) 3-56 
BIT b.llY + disp) 3-56 

CALL label 3-57 
CALL condition.label 3-58 
CCF 3-59 
CP data 3-60 
CP reg 3-61 
CP IHLI 3-62 
CP (IX + displ 3-62 
CP (IY + displ 3-62 
CPD 3-63 
CPDR 3-64 
CPI 3-65 
CPIR 3-66 
CPL 3-67 

DAA 3-68 
DEC reg 3-69 
DEC rp 3-70 
DEC IX 3-70 
DEC IY 
DEC (HU 3-71 
DEC (IX+ disp) 3-71 
DEC llY + disp) 3-71 
DI 3-72 
DJNZ disp 3-73 

El 3-73 
EX AF.AF' 3-75 
EX DE.HL 3-76 
EX (SPl.HL 3-77 
EX (SPl.IX 3-77 
EX (SPl.IY 3-77 
EXX 3-78 

HALT 3-79 

IM 0 3-80 
IM 1 3-80 
IM 2 3-80 
IN A.(port) 3-81 
INC reg 3-82 
INC rp 3-83 
INC IX 3-83 
INC IY 3-83 
I NC (H L) 3-84 
INC (IX + disp) 3-84 
INC (IY + displ 3-84 
IND 3-85 
INDR 3-85 
INI 3-86 
INIR 3-86 
IN reg.(C) 3-87 

JP label 3-88 
JP condit1on.label 3-89 
JP (HU 3-90 
JP (IX) 3-90 
JP IJY) 3-90 
JR C.disp 3-91 
JR disp 3-92 
JR NC.disp 3-93 
JR NZ.disp 3-93 
JR Z.disp 3-94 

LO A.I 3-94 
LO A.R 3-94 
LO A.(addrl 3-95 
LD A.(rp) 3-96 
LO dst.src 3-97 
LO Hl.(addrl 3-98 
LD rp.(addrl 3-98 
LO IX.(addrl 3-98 
LO IY.(addrl 3-98 
LO I.A 3-99 
LOR.A 3-99 
LO reg.data 3-100 
LO rp.data 3-101 
LO IX.data 3-101 
LO IY.data 3-101 
LO reg.IHLI 3-102 
LO reg,(IX + disp) 3-102 
LD reg.(IY + disp) 3-102 
LO SP.HL 3-103 
LO SP.IX 3-103 
LO SP.IY 3-103 
LO laddrl.A 3- 104 
LD laddrl.HL 3-105 
LO laddrl.rp 3-105 
LO laddr).xy 3-105 
LD (HU.data 3-107 
LD (IX + displ.data 3-107 
LO (IY + displ.data 3-107 

xv 



Index of Instruction Descriptions (Continued) 

LD (HU.reg 3-108 
LD (IX + disp).reg 3-108 
LD (IY + disp).reg 3-108 
LD(rp),A 3-109 
LDD 3-110 
LDDR 3-111 
LDI 3-112 
LDIR 3-113 

NEG 3-113 
NOP 3-114 

OR data 3-115 
OR reg 3-116 
OR (HL) 3-117 
OR (IX+ displ 3-117 
OR (IY + disp) 3-117 
OUT (Cl.reg 3-118 
OUTD 3-119 
OTDR 3-119 
OUTI 3-120 
OTIR 3-120 
OUT (portl.A 3- 1 21 

POP rp 3-122 
POP IX 3-122 
POP IY 3-122 
PUSH rp 3-123 
PUSH IX 3-123 
PUSH IY 3-123 

RES b.reg 3-124 
RES B.(HL) 3-125 
RES b.llX + displ 3-125 
RES b.(IY + displ 3-125 
RET 3-126 
RET cond 3-127 
RETI 3-128 
RETN 3-129 
RL reg 3-130 
RL (HLI 3-131 
RL (IX + disp) 3-131 
RL (IY + disp) 3-131 

RLA 3-132 
RLC reg 3-133 
RLC (HL) 3-133 
RLC (IX + disp) 3-134 
RLC (IY + displ 3-134 
RLCA 3-135 

RLD 3-136 
RR reg 3-137 
RR (HU 3-138 
RR (IX + disp) 3-138 
RR (IY + disp) 3-13B 
RRA 3-139 
RRC reg 3-140 
RRC IHU 3-141 
RRC (IX+ disp) 3-141 
RRC (IY + disp) 3-141 
RRCA 3-142 
RRD 3-143 
RST n 3-144 

SBC A.data 3-145 
SBC A.reg 3-146 
SBC A.IHU 3-147 
SBC A.llX + disp) 3-147 
SBC A.(IY + disp) 3-147 

SBC HL.rp 3-148 
SCF 3-149 
SET b.reg 3-150 
SET b.(HL) 3-151 
SETb.llX+disp) 3-151 

SET b.llY + disp) 3-151 
SLA reg 3-152 
SLA (HU 3-153 
SLA (IX + disp) 3-153 
SLA (IY + disp) 3-153 
SRA reg 3-154 
SRA (HU 3-155 
SRA (IX + disp) 3-155 
SRA (IY + disp) 3-155 
SRL reg 3-156 
SRL IHU 3-157 
SRL (IX + disp) · 3-157 
SRL (IY + disp) 3-157 
SUB data 3-158 
SUB reg 3-159 
SUB (HU 3-160 
SUB (IX + disp) 3-160 
SUB (IY + displ 3-160 

XOR data 3-161 
XOR reg 3-162 
XOR (HL) 3-163 
XOR (IX+ disp) 3-163 
XOR (IY + disp) 3-163 

xvi 



Index 

Accumulator. using the. 4-2 
Add/Subtract flag. 8-7 
Address field. numbers and characters in. 3-172 
Algebraic notation. 1-8 
Algorithm 

mult1plicat1on. 8-8 
simple sorting. 9-10 

Allocating RAM. 2-7 
Arithmetic and Logical Expressions. 2-10 
ASCII 

characters. 2-10 
handling data in. 6-1 

Assembler. 1-5 
arithmetic and logical operations. 3-172 
choosing an. 1-6 
meta- 2-14 
micro-, 2-14 
one-pass. 2-14 
resident. 2-14 
two-pass. 2-14 

Assembler directive. 2-4 
Assemblv language 

applications. 1-10 
fields. 2-1 
program. 1-5 

Baste software delay, 11-8 
BCD and binary, accuracy in. 8-8 
Blanking a leading zero. 16-22 
Block 1/0 instruction. 6-6 

use of. 11-21 
Block. moving data within. 7-8 
Block search instructions. 6-6 
Block transfer instructions. 8-4 
Binary and BCD. accuracy in. 8-8 
Binary instructions. 1-1 

rounding. 8-24 
Binary numbers. doubling and halving. 8-23 
Bootstrap loader. 2-15 
Bottom-up design. 13-44 
Breakpoint. 14-2 

insertion of. 14-3 
RST as. 14-2 

Buffer 
double buffering. 12-7 
emptying with interrupts. 12-19 
filling via interrupts. 12-16 

Buffer. emptying with interrupts. 12-19 

Calibration table. use of. 16-21 
Character format. 11-81 
Checklist. what to include in. 14-10 
Coding. 13-3 

relative importance of. 13-1 
Commenting 

examples. 15-4 
guidelines. 15-2 
techniques. 2-13 

questions for. 15-4 
Common-anode or common-cathode displays. 

11-43 
Compiler. 1-7 

cost of. 1-8 
Computer program. 1-1 
COND and ENDC pseudo-operations. 3-174 
Control and status 1nformat1on. 11-57 
Control information. combining. 11-58 
Credit verification terminal. structural program 

for. 13-38 
Cross-assembler. 2-14 

Daisy chain 
device operation in. 12-10 
interrupts. advantages and disadvantages. 
12-9 
PIO interrupts. 12-9 

Data. forming classes of. 14-28 
moving w1th1n a block. 7-8 

Data flowcharts. 13-19 
Debouncing 

in software. 11-26 
with cross-coupled NANO gates. 11-28 

Debugging. 13-3 
code conversion program. 14-6 
interrupt-driven programs. 14-14 
sort program. 14-6 
use of test cases from. 14-27 

Decimal 
accuracy in binary, 8-4 
adjust. 8-7 
data or addresses. 2-9 
rounding. 8-24 
shift instructions. 8-21 

DEFB. DEFL DEFM. DEFS. DEFW pseudo­
opera!t1ons. 3-170. 3-171 

Definition list 
rules for. 15-8 
typical. 15-9 

Definitions. placement of. 2-7 
Delay loop constant. 11-10 
Delimiters. 2-2 
Direct memory access (OMA). 11-5 
Disabling interrupts. 12-25 
Displays, common-anode or common-cathode. 

11-43 
Div1s1on algorithm. 8-12 
Documentation. 13-3 

of status and control transfer. 11-59 
of subroutines. 10-2 
package. 15-13 

Double buffering. 12-7 

8-b1t summation. 5-3 
8080A unused operation codes. 3-164 
8080A/Z80 

assembly level conversion. 3-164 

xvii 



Index (Continued) 

8080A/Z80 (continued) 
compatibility features. 3-164 
incompatibilities. 3-164 

8085/Z80 incompatibilities. 3-165 
ENDC and COND pseudo-operations. 3-174 
Error cons1derat1ons. 13-5 
Errors. common. 14-11 
Example format. 4-1 
Examples. guidelines for. 4-1 
Execution time. saving. 15-15 
External references. 2-8 

Flowcharting 
advantages of. 13-17 
credit verification. 13-22 
disadvantages of. 13-18 
sections. 13-22 
switch and light system. 13-19 
switch-based memorv loader. 13-20 

Flowcharts 
data. 13-19 
hints for use. 15-7 

Format. 2-2 
FORTRAN. 1-7 
Full-duplex. 11-89 

General service routines. tasks for. 12-30 

Hand assemblv. 1-5 
Hand checking questions. 14-11 
Handshake. 11-2 
Hashing. 9-4 
Hexadecimal loader. 1-3 
Hexadecimal or octal. 1-3 
High-level language 

advantages of. 1-9 
applications for. 1-10 
disadvantages of. 1-9 
inefficiency of. 1-8 
machine independence. 1-7 
overhead for. 1-9 
portability of. 1-8 
syntax of. 1-10 
unsuitability of. 1-10 

Index registers. use of. 7-7 
Information hiding pric1ple. 13-29 
Initializing RAM. 2-8 
Input. factors in. 13-4 
Instructions 

defining a sequence of. 2-11 
faster and slower executing. 3-164 

Interfaces. standard. 11-103 
Interfacing 

high-speed devices. 11-5 
medium-speed devices. 11-2 
slow devices. 11-2 

Interrupts 

disabling. 12-2. 12-25 
disadvantages of. 12-2 
enabling. 12-2 
emptying a line buffer with. 12-19 
handling by monitors. 12-13 
inputs. 12-2. 12-3 
instruction. 12-3 
keyboard. 12-14 
modes. 12-4 
non-maskable. 12-2. 12-3 
on particular microcomputers. 12-13 
PIO. 12-6. 12-7 
reasoning behind. 12-1 
SIO. 12-26. 12-10 
start bit interrupt. 12-28 
systems. characteristics of. 12-1 

1/0 
and memory. 11-1 
categories. 11-1 
driver. 11-18 
instruction examples. 11-19 
instructions with absolute addressing. 11-18 

Jumps. indirect. 9-15 

Key closure. waiting for. 11-62 
Key table. 16-7 
Keyboard errors. correcting. 13-14 
Keyboard interrupt 12-14 
Keyboard routine. expanding the. 13-48 
Keyboard scan. 11-60 

Label field. 2-2 
Labeling. rules of. 2-3 
Labels 

choice of. 2-3 
in 1ump instructions. 2-2 

Language levels 
application areas for. 1-10 
future trends in. 1-11 

LED control. 11-39 
Link editor. 2-15 
Linking loaders. 2-15 
Loader 

bootstrap. 2-15 
hexadecimal. 1-3 
linking. 2-15 
memory, 13-10. 13-28 
relocating. 2-15 

Local or global variables. 2-13 
Location counter. 2-7 
logic analyzer. 14-9 

important features of. 14-10 
Logical and arithmetic expressions. 2-10 

Machine language 
applications for. 1-10 
program. 1-2 

MACRO and ENDM pseudo-operations. 3-174 

xviii 



Index (Continued) 

Macro-assembler. 2-14 
Macros 

advantages of. 2-12 
disadvantages of. 2-12 

Maintenance and redesign. 13-3 
Matrix keyboard. 11-60 
Memory dump. 14-7 
Memory loader error handling. 13-10 
Memory map. typical. 15-8 
Meta-assembler. 2-14 
Micro-assembler. 2-14 
Mnemonics. problems with. 1-4 
Modular programming 

advantages of. 13-26 
disadvantages of. 13-27 
rules for. 13-30 

Modularization 
principles of. 13-27 
switch and light system. 13-28 
switch-based memorv loader. 13-28 
verification terminal. 13-28 

Multiplication algorithm. 8-8 

Names 
choice of. 2-6. 15-2 
defining. 2-6 
use of. 2-6 

Number svstems. 2-9 
Numbers. self-checking, 8-17 
Non-maskable interrupt. 12-2. 12-3 

Ob1ect program. 1-2. 1-5 
Octal or hexadecimal, 1-3 
One-pass assembler. 2-14 
Operation codes, two-word, 3-164 
Operator error connection in memorv loader. 

13-10 
Operator interaction. 13-6 
ORG pseudo-operation. 3-171 

Passing parameters. 10-1 
PIO 

addresses. 11-11 
bidirectional mode. 11-15 
control mode. 11-15 
daisy chain signals. 12-9 
directions in control mode. 11-15 
input mode, 11-15 
interrupts. enabling and disabling. 12-7 
modes. 11-15. 11-16 
output mode, 11-15 
registers and control lines. 11-11 
steps in configuring, 11-17 

Polling. 12-2. 12-10 
Polling interrupt systems with SIOs. 12-10 
Portability, 1-6 
Primed registers, saving values in. 12-16 
Priority, 12-16 
Problem definition. 13-3 

xix 

Processing, factors in. 13-5 
Program design. 13-3 

basic principles of. 13-6 
Programming guidelines. 4-2 
Pseudo-operations. 2-4 

COND. 3-174 
DEF8. 3-170 
DEFL. 3-171 
DEFM. 3-170 
DEFS. 3-171 
DEFW. 3-170 
END. 3-172 
ENDC. 3-174 
ENDM. 3-174 
EOU. 3-171 
MACRO. 3-174 
ORG. 3-171 

RAM 
allocating, 2-7 
initializing. 2-8 

Real-time clock. 12-20 
frequency of. 12-20 
pnoritv of. 12-21 
synchronization with, 12-20 

Real time. maintaining, 12-24 
Receive routine. structured. 13-40 
Redesign and maintenance. 13-3 
Redesign. cost of. 15-14 
Re-entrant subroutine. 10-2 
References. external, 2-8 
Register dumps. 14-4 
Register Pair HL. using, 4-2 
Relocating loader. 2-15 
Relocation. 10-2 
Relocation constant. 2-3 
Reorganization. maior or minor. 15-14 
Resident assembler. 2-14 
Restart instruction, 12-4 
Return address. changing the. 12-16 
Rollover. 11-69 
RST as a breakpoint. 14-2 

Searching methods. 9-6 
Self-checking numbers. 8-17 
Self-documenting programs. rules for. 15-1 
Seven-segment representations. 11-45 
Sign propagation. 8-25 
Simple sorting algorithm. 9-10 
Single-step. 14-1 
Single-step mode. lim1tat1ons of. 14-2 
SIO 

addresses, 11-89 
configuration, example of. 11-100 
error status. 11-100 
interrupt routine. 12-26 
interrupts, 12-10 
read and write register. addressing. 11-89 



Index (Continued) 

SIO (continued) 
reset. 11-97 
special features of. 11-97 

Software developement. stages of. 13-1 
Software simulator. 14-8 
Source program. 1-5 
Special instructions. 4-3 
Standard interfaces. 11-103 
Standard program library forms. 15-10 
Standard TTY. 11-81 
Start bit interrupt. 12-28 
Status and control transfers. documenting. 

11-59 
Status changes with instruction execution, 3-22 
Status information. separating. 11-58 
Stopwatch input procedure. 16-1 
Strobe. 11-5 
Structures. examples of. 13-33 

terminators for. 13-43 
Structured keyboard routine, 13-38 
Structured program for credit verification 

terminal. 13-38 
Structured programming 

advantages of. 13-35 
basic structures of. 13-31 
disadvantages of. 13-35 
for switch-based memory loader. 13-36 
in switch and light system. 13-36 
ru I es for. 13-43 
when to use. 13-35 

Structured receive routine. 13-40 
Structed testing. 14-28 
Stubs. 13-44 
Subroutine instructions. 10-1 
Subroutine library, 10-1 
Subroutines. documenting, 10-2 
Switch and light error handling, 13-7 
Switch and light input. 13-6 
Switch and light outputs. 13-7 
Switch and light system. defining, 13-6 
Switch-based memory loader. defining, 13-8 
Switch bounce. 11-26 
Symbol table. 2-6 
Svnchronizing with 1/0 devices. 11-57 

Terminators for structures. 13-43 
Testing. 13-3 

arithmetic program, 14-29 

xx 

rules for. 14-29 
sort program, 14-29 
special cases. 14-28 

Testing aids. 14-27 
Testing. structured, 14-28 
Thermometer analog hardware. 16-15 
Timing incompatibilities, 3-165 
Timing intervals 

methods for producing, 11-8 
uses of. 11-8 

Timing method. choosing a. 11-8 
Top-down design 

advantages of. 13-44 
disadvantages of. 13-44 
format for. 13-49 
methods. 13-44 
of switch and light system. 13-45 
of switch-based memory loader. 13-46 
of verification terminal. 13-47 

Transm1ss1on errors 
correcting. 13, 15 
reducing. 11-5 

Transparent delay routine. 11-8 
TTL encoder. using a. 11-34 
TTY 

interface. 11-81 
receive mode. 11-81 
standard TTY. 11-81 
transmit mode. 11-86 

Two-pass assembler 2-14 
Two-word operation codes, 3-164 

UART. 11-88 

Variables. local or global. 2-13 
Vectoring, 12-2 
Verification terminal 

defining a. 13-11 
error handling. 13-14 
inputs. 13-13 
outputs. 13-13 

Z80 
delay loop constant. 11-10 
index registers, use of. 7-7 
interrupt inputs. 12-2 
interrupt instruction. 12-3 
interrupt response. 12-3 
1/0 instructions. 11-18 
non-maskable interrupt. 12-3 



About the Author 

Lance A. Leventhal is a partner in Emulative Systems Company, a San 
Diego-based consulting firm specializing in microprocessors and 
microprogramming. He serves as Technical Editor of the Society for Com­
puter Simulation and as a Contributing Editor for Digital Design. He is a na­
tional lecturer on microprocessors for the IEEE. the author of five books 
and over forty articles on microprocessors. and a regular contributor to 
such publications as Simulation, Digital Design, and Kilobaud. 

Dr. Leventhal's previous experience includes affiliations with Linkabit Cor­
poration, lntelcom Rad Tech, Naval Electronics Laboratory Center and Har­
ry Diamond Laboratories. He received a B.A. degree from Washington 
University in St. Louis, Missouri, and M.S. and Ph.D. degrees from the 
University of California at San Diego. He is a member of SCS, ACM. and 
IEEE. 





OSBORNE/McGraw-Hill GENERAL BOOKS 
An Introduction to Microcomputers series 

by Adam Osborne 
Volume 0 - The Beginner's Book 
Volume 1 - Basic Concepts 
Volume 2 - Some Real Microprocessors (1_9_78 ed.) 
Volume 3 - Some Real Support Devices (1978 ed.) 

Volume 2 1978-1979 Update Series 
Volume 3 1978-1979 Update Series 

The 8089 1/0 Processor Handbook 
by Adam Osborne 

The 8086 Book 
by R. Rector and G. Alexy 

8080 Programming for Logic Design 
by Adam Osborne 

6800 Programming for Logic Design 
by Adam Osborne 

Z80 Programming for Logic Design 
by Adam Osborne 

8080A/8085 Assembly Language Programming 
by L. Leventhal 

6800 Assembly Language Programming 
by L. Leventhal 

6502 Assembly Language Programming 
by L. Leventhal 

Z8000 Assembly Language Programming 
by L. Leventhal et al. 

Running Wild: The Next Industrial Revolution 
by Adam Osborne 

PET-CBM Personal Computer Guide 
by Carroll Donahue and Janice Enger 

PET and the IEEE 488 Bus (GPIB) 
by E. Fisher and C. W. Jensen 

OSBORNE/McGraw-Hill SOFTWARE 
Practical Basic Programs 

by L. Poole et al. 
Some Common BASIC Programs 

by L. Poole and M. Borchers 
Payroll with Cost Accounting - CBASIC 

by Lon Poole et al. 
Accounts Payable and Accounts Receivable - CBASIC 

by Lon Poole et al. 
General Ledger - CBASIC 

by Lon Poole et al. 
Some Common Basic Programs - PET/CBM 

edited by Lon Poole et al. 






