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Preface

For thousands of years humans have struggled with the relationship be-
tween the mental and the physical, with the mindbody problem. Our
efforts have been rewarded with a clear understanding of some of the
alternatives and a great respect for the difficulty of the problem, but with
no satisfactory solution. At long last, pieces of a solution seem to be on
the horizon. Researchers in many fields are producing possible mecha-
nisms of mind. Some are theoretical, some algorithmic, some robotic. To-
gether they are leading us to a very different way of thinking about mind,
a new paradigm of mind. This work is an exploration of these mecha-
nisms of mind, and of the new paradigm of mind that accompanies them.
It's intended to change your mind about mind.

Though the research involved is highly technical, this exploration of it
is not. Technical concepts have been purposefully made accessible to the
lay reader. Though I hope and expect that artificial intelligence research-
ers, computer scientists, cognitive psychologists, ethologists, linguists,
neurophysiologists, philosophers of mind, roboticists, and such can learn
of activity in the other fields from this multidisciplinary tour, it's not de-
signed only for them. I also hope that anyone interested in how mind
arises from brains, or from machines, can enjoy accompanying us on this
exploration. Finally, I hope to have achieved accessibility without damage

to the many powerful and elegant ideas, concepts, models, and theories
to be explored.

Preparations for this exploration of mechanisms of mind began with a
series of lectures titled "Artificial Minds." Even before the lectures began,
it was becoming clear that my role was to be as much that of hawkster as
of tour guide. I had my own goods to sell to the audience, an emerging
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new way of thinking about mind. The tenets of this new paradigm helped
guide the selection of the mechanisms to be explored. Each mechanism is
to provide background for understanding the new paradigm, or evidence
to support it. I wanted to report on these mechanisms and to have a hand
in shaping this new paradigm.

Little did I realize the magnitude of this endeavor. It's now four years
later, and the end is in sight only with the help of more people than I
would have believed. Appreciations are in order.

Thanks to Don Franceschetti for suggesting the title "Artificial Minds."
My heartfelt thanks to the participants in the Cognitive Science Semi-

nar during the summer and fall of 1991 for listening to my "Artificial
Minds" lectures and arguing with me about them. Thanks also to the
students in the "Artificial Minds" class in the spring of 1994 who listened
to and commented on these same lectures, and a few more.

The University of Memphis, through its College of Arts and Sciences
and its Department of Mathematical Sciences, has been supportive
throughout, by providing a sabbatical during the fall of 1991 and a fac-
ulty research grant during the summer of 1994.

Thanks to Elizabeth Bainbridge, to a second typist I never met, and to
Helen Wheeler for transcribing the recorded lectures. Thanks also to the
Institute for Intelligence Systems and to the Mathematical Sciences De-
partment for supporting this work. Also thanks to Jarek Wilkiewicz for
helping me to obtain permissions to reprint, for proofreading, and for
indexing, all supported by the Institute.

For invaluable conversations over many years about this material, my
thanks to Kaveh Safa, Daniel Chan, and Art Graesser.

And many, many thanks for stimulating conversations over the years to
participants in the weekly AI lunch: Bill Baggett, Paul Byrne, Max Gar-
zon, Art Graesser, David Kilman, Jim Michie, Joel Neely, Lloyd Partridge,
Bob Schreiber, Shane Swamer, and many others. So often I tried ideas out
on you first. And so often they came away improved, or discarded.

Perhaps my deepest indebtedness is to those friends (and relatives) who
read and commented ori chapters as they were produced: Bob Sweeney,
Art Graesser, Phil Franklin, Dan Jones, Bill Boyd, David Kilman, Pat Pat-
terson, David Lee Larom, John Caulfield, Nick Herbert, and Elena Frank-
lin. Though I revised assiduously in the light of their comments, as the
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book goes to press, I find myself wishing I'd heeded even more of what
they said. That would surely have improved the work, but perhaps would
have required a second volume.

And thanks also to several reviewersMark Bedau, John Caulfield,
Janet Halperin, John Holland, Chris Langton, and others who remain
anonymousfor their helpful comments and suggestions.

My appreciation to Larry McPherson and to Eric Ehrhart for encour-
agement and badgering, to Brian Rotman for encouragement and for dis-
cussions about writing and publishing, and to Ralph Randolph for advice
about how to look for a publisher.

Thanks to Fiona Stevens and to Harry and Betty Stanton for encourag-
ing this project, and getting it through the door at the MIT Press. Addi-
tional gratitude to Fiona for so patiently dealing with my many questions
and concerns, and for prodding me actually to finish (stop) the manu-
script. I'm sure the phone company appreciates her also. And my appre-
ciations to Katherine Arnoldi for gently guiding me through the
copyediting process, and to Beth Wilson for a superb job of copyediting.

Much appreciation to Arthur Goodman for such fine work on the
illustrations.

Finally, and most important, I'm so grateful to my wife, Jeannie Stone-
brook, for support and encouragement, for sage advice, and for assuming

many of my chores to give me time for this project.
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i
Mechanisms of Mind

Phase Transitions and Fascinating Questions

The title Artificial Minds has a strange ring to it, almost oxymoronic. Are
there any artificial minds? Could there possibly be artificial minds? What
would make you think there might be such things to begin with? Why
would one want to ask such a question? Let's take a brief detour by way
of putting these questions in broader perspective.

Recall the notion of phase transition from that almost forgotten physics
course. Common phase transitions occur when ice melts to water, shifting
from solid to liquid, and when water boils to steam, shifting from liquid
to gas. The properties of systems change quite rapidly at these phase
boundaries. Some would say that all the interesting stuff, including life
itself, happens only at phase boundaries (Langton 1992a). But that's an-
other story.

Three questions seem to be inherently interesting, even fascinating, to
many people:

How did the universe come to be?
How did life originate?
What is the nature of intelligence?

Each of these apparently has to do with a phase transition. For the cosmo-
logical question, there's the phase transition between being and not being,
or between pre- and post-big bang, if you're of that persuasion. The ori-
gin of life question focuses on the phase transition between living and
nonliving matter. Asking about the nature of mind leads to the phase tran-
sition between the physical and the mental.
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2 Chapter 1

These phase transitions are not as sharp as those bounding solids and
liquids, or liquids and gasses. Some might argue that no phase transition
occurs between being and not being, because the class of nonbeing has
nothing in it. Also, the dividing line between the living and the nonliving
isn't easily agreed upon. Biologists might argue about whether viruses are
alive. How about the boundary between the physical and the mental?
That question is the major issue of this book.

Here we will be primarily concerned with mechanisms of mind, with
how mental activity arises from physical substructure. Don't miss the un-
derlying assumption of the last sentence. It takes a currently fashionable
position on the mindbody problem. More on that a little later, and in
chapter 2. For now, I hope that our detour into the natural questions
arising from phase transitions has begun the booklong process of putting
the nature of intelligence in context.

Life Itself

Mind, until now, has been associated with life, usually only with human
life. If we're to explore the mechanisms of mind, it would be well to trace
a little of their history and development. Focusing a wide-angle lens on
life, as we know it on Earth, may help. This goal gives me a perfect oppor-
tunity to tout you onto a marvelous little book by the DNA decoder, Fran-
cis Crick, titled Life Itself (Crick 1981). A wag of a reviewer referred to
it as "Life Itself by Crick Himself."

Figure 1.1, taken from Life Itself, displays a time line of the universe.
The Age of Humans is not explicitly mentioned, Why not? Well, from
this view we're hardly visible. If the life span of the Earth to date, roughly
4.5 billion years, was represented by the Eiffel Tower, our "dominion"
would occupy the thickness of the uppermost coat of paint. Compare this
with what Crick calls the Age of the Prokaryotes, the simplest kind of
single-cell organism, including bacteria and blue-green algae, which have
had the Earth to themselves for well over half its lifetime. Some would
say that neither humans nor ants nor cockroaches dominate the Earth
today. It's the Age of Bacteria. It always has been, and always will be, as
long as there's an Earth (Margulis and Sagan 1986).
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Figure 1.1
Life in time (redrawn from Crick 1981)
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4 Chapter 1

Bacteria are small, one to a few microns in diameter. They can sense
food concentrations and toxic chemicals, and move toward or away from
them by means of tiny flagella. They exercise efficient control of their
metabolism, and enjoy a tenuous sex life without being dependent on
sex for reproduction. Bacteria thrive in every ecological niche on Earth,
inhabiting even nuclear reactors. Their combined biomass probably ex-
ceeds that of all other living things. Loose talk of humans wiping Out life
on Earth by nuclear warfare is just that: loose talk. Bacteria will survive
quite nicely, thank you.

Amid all this glorifying of the infinitesimal, let's ask if in any sense
bacteria could be said to partake of mind. (This is not the most ridiculous
question we'll pose, but it's close.) The knee-jerk answer of "Certainly
not!" may be less satisfying than you would think, after we've finished
our exploration.

Next up on Crick's chart we find the first eukaryotes. These include all
cells containing a well-defined nucleus and organelles surrounded by a
membrane. Some eukaryotes are single-celled, like amoebas. All multicell
organisms, like you and me and the grass on your front lawn, are colonies
of eukaryotic cells.

At long last we arrive at the stuff of paleontology, the first fossils with
hard parts. Our brief tour of the Earth's time line à la Crick ends with the
origins of mammals and the extinction of the dinosaurs. (Don't tell the
birds, who are widely believed to be the descendants of the dinosaurs.)

What strikes me most in Crick's chart is that mind, as we're accustomed
to think about it, evolved from bacteria very much as a latecomer, even
as an afterthought. Mind, in this view, has had no affect on life except
during this last coat of paint atop the Eiffel Tower. Some trivial chance
fluctuation along the way could easily have resulted in no humans1 and,
hence, no mind according to the Oxford English Dictionary.2

Crick makes two other points that may well prove germane to our ex-
ploration. One has to do with natural selection, and the other with what
he calls the "combinational principle." Let's look first at Crick's combina-
tional principle. Here's the argument. All life as we know it is complex.
Nothing but natural selection produces such complexity.3 This complex-
ity requires the storing and replication of much information. The only
efficient mechanism is the combinational principle: express the informa-
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tion by using a small number of standard units combined in very many
different ways. We use the alphabet in this way to produce written lan-
guage. Perhaps a more pertinent example is DNA, whose constituents
form the "alphabet of life." If one wants artificial minds to replicate, this
combinational principle doesn't seem like such a bad idea.

Here's Crick's most interesting view of natural selection: what natural
selection does is to make rare chance events become common. Suppose
you have a genome with a mutation in it, a rare, improbable event. If the
mutation is successful, which would also be rare, it can influence organ-
isms down the eons and eventuallly become quite common. Given enough
time, organisms become finely tuned to their environment. This works as
long as the environment stays fairly constant, but major environmental
changes can lead to extinctions.

Crick points out that there's no mechanism to direct changes in the
genes so that favorable alterations are produced. You don't know which
mutations are going to be successful and which are not. This point has
recently become controversial. There's new evidence that some bacteria
(what else?), when placed in a sugar solution, mutate in the direction of
metabolizing sugar at greater than chance rates. Some people are begin-
ning to think there might indeed be mechanisms directing evolution. The
issue of mechanisms directing evolution provides a bridge to get us back
on track from our detour.

Stubbs's Great Leaps

Most evolutionists staunchly deny any direction or progress in evolution,
any mechanism providing direction. Nonetheless, Monday morning quar-
terbacks often discern direction in the evolutionary record. One such is
Derek Stubbs, a physician-turned-computer scientist, who publishes a
newsletter now titled Sixth Generation Computing. Stubbs maintains
that the evolution of life has made several "great leaps" when judged by
"the criterion of adaptability and particularly the speed of adaptability"
(1989). A more precise criterion might be rate of adaptability. Keep in
mind that "adaptability" is commonly used in several senses in this one
context. You can speak of evolution as adapting species to their environ-

ments. You can also think of an individual adapting its behavior during
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its lifetime via learning. You may also talk of an individual adapting its
behavior to short-term changes in its surroundings without new learning.
These three meanings of the word are quite distinct. Watch out for the
potholes.

So what are the great leaps"? Stubbs identifies seven.
Life itself is the first great leap. First came the ability to reproduce, the

basic definition of life.5 Mutations are blueprint errors that, along with
transcription errors,6 allow for variation from which to select on the basis
of fitness.

Second, sexual reproduction "allowed organisms to swap great chunks
of adaptive blueprints from their selected-as-fit mating partners."

Third, multicell organisms developed for "safety in numbers" and for
"the enhanced productivity of division-of-labor." (Each of the eukaryotic
cells comprising our multicell organism contains organelles that some
think derived from independently living prokaryotic ancestors [Margulis
and Sagan 1986; Gould 1989]. These were incorporated into the eukary-
otic cell. Perhaps they were parasitic to begin with, and evolved some sort
of symbiosis. Hence we might view each eukaryotic cell as multicellular.)

The fourth leap was the development of specialized nerve cells that al-
lowed the organism to "find food and mates and escape predators more
rapidly."

Fifth was "Invention of a central nervous system. This allowed the or-
ganisms to more rapidly adapt to the highly nonlinear dynamics of the
outside world and to store memories."

So far these "great leaps" seem uncontroversial, keeping in mind the
criterion of rate of adaptability. But hang on to your hat for the next one.
Stubbs says:

Then nothing happened for half a billion years until one creature invented com-
puters and shortly thereafter, the sixth step of evolution was invented as arti-
ficial neural networks: artificial learning machines. Life was becoming a going
concern and was really in business to start shaping the Universe. Competitors
such as rocks and gravity and earth, wind, and fire were taking a distinctly sec-
ond place.

We'll hear a lot more about artificial neural networks in this and subse-
quent chapters. For now, suffice it to say that they are computing devices
based loosely on biological models. You may or may not agree with
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Stubbs's assessment of artificial learning machines as a great leap in evolu-
tion. But it's clear that such machines must partake in at least one aspect
of what we call mind: learning.

At this point Stubbs leaves the past and leaps into the future: "From
here onwards, life was guiding its own evolution, since the seventh step is
genetic engineering, environment engineering and life-computer symbio-
sis." One might infer the coming of artificial minds from "life-computer
symbiosis," or one might dismiss the whole notion as science fiction.
Some competent scientists are predicting artificial minds. As a mathema-
tician, like me, is wont to do, let's look at one of the extremes.

Mind Children

Among the competent scientists who, after serious study, expect to see
artificial minds and then some, is Hans Moravec, a roboticist at Carnegie
Mellon University. The following quote from his book Mind Children sets
forth his expectations clearly:

Today, our machines are still simple creations, requiring the parental care and
hovering attention of any newborn, hardly worthy of the word "intelligent." But
within the next century they will mature into entities as complex as ourselves,
and eventually Into something transcending everything we knowin whom we
can take pride when they refer to themselves as our descendants. (1988, p. 1)

Keep in mind that Moravec is a serious scientist expressing a thoughtful
judgment backed by a book full of arguments. He may well be wrong,
but he's not to be lightly dismissed. Toward the end of this volume, we'll
have a look at some of his arguments. In the meantime, let's look at one
more quote from Moravec to remove all doubt about exactly what he's
predicting.

We are very near to the time when virtually no essential human function, physical
or mental, will lack an artificial counterpart. The embodiment of this convergence
of cultural developments will be the intelligent robot, a machine that can think
and act as a human. (1988, p. 2(

We now have an existence proof. There is at least one serious scientist
who thinks it's reasonable to talk of artificial minds. There are others.7 I
hope there will be many more after this book has been widely read. (Mor-

avec shouldn't be allowed a monopoly on wild predictions.)
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Moravec has also engaged in Monday morning quarterbacking, dis-
cerning a direction through prehistory leading (inevitably?) to mind chil-
dren (1988, P. 2). A graphical version appears as figure 1.2. Notice how
what each of us sees depends so heavily on our interest and concerns-
that is, on the ax we're grinding. Figures 1.1 and 1.2 overlap almost not
at all. Such time lines, like statistics, can be bent to almost any will.

What Is Mind, and Why Study It?

We started out asking if there were any artificial minds, or if there even
could be. So far, our best answer is that some respectable scientists believe
there can be. That's not very convincing. Some respectable scientists can

years ago evolutionary event
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Figure 1.2
Evolution of mind children
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be found who believe almost anything. I hope we can do better before the
end of our exploration.

But even if we could be more convincing about the possibility of artifi-
cial minds, there's still the question of why we should study them. Why
explore the mechanisms of mind? The preceding sections have provided
answers, at least one of which, the first, is convincing to me. The three
reasons are:

Questions of the nature of intelligence are inherently fascinating. The
study of artificial minds may well throw light on this question.

Stubbs might well suggest that we study artificial minds, at least arti-
ficial learning machines, to better understand the coming man-machine
symbiosis.

If we give credence to Moravec's predictions, we would be well advised
to study artificial minds to prepare to give birth to our upcoming mind
children, and to deal with them more effectively.

Now suppose we are at least marginally convinced by these arguments
and, therefore, bent on exploring mechanisms of mind. What does this
mean? What is mind? How can mental events occur in a physical world?
Do mental events arise from the physical, or are they some kind of spiri-
tual or mental stuff of their own? If they do arise from the physical, how
do they do it? And if they don't, where do they come from? Later in this
chapter we'll take a brief excursion into the philosophy of mind and the
mindbody problem. Chapter 2 is devoted to these issues. For now, let's
make what is known as the physicalist assumption: Mind is what brain
does, or something very like it in relevant ways.

I want to assume so, not because it's the only reasonable alternative but

because it allows a scientific approach to the mindbody problem.8 Let's

act on the physicalist assumption and see how far we can get. Let's ask

how mental events arise from the physical, and what the mechanisms of
mind are. Can they he simulated, or even implemented?

Having focused on these questions, how can we hope to answer them?

There are approaches to the study of mind from various disciplines. Fig-

ure 1.3 displays some of them via their top-down versus bottom-up and

their synthetic versus analytic dimensions.

You can start from cognitive psychology, which is a top-down ap-

proach. By and large it studies high-level concepts. It also takes an ana-
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top-down

analytic M I N D

Neuroscience

bottom-up

Figure 1.3
Approaches to mind

lytic approach in that it looks at existing minds and tries to understand
them. Artificial Intelligence (AI) takes a top-down approach as well, but
is synthetic in that it tries to build minds. Neuroscience, particularly cog-
nitive neuroscience, studies mind from the bottom up and analytically. It
looks at individual neurons and at groups of neurons and their activity.
It's not trying to build things; it's trying to analyze what's already there,
to take it apart to see how it works. Finally, some people are beginning
to take a bottom-up and synthetic approach. They are trying to build
what I like to call mechanisms of mind, artificial systems that exhibit
some properties of mind by virtue of internal mechanisms. Later, and
after some preparation, we will see this same figure with "mechanisms of
mind" replaced by "robotics."

Let's not leave our discussion of figure 1.3 without pointing out its ma-
jor deficiency. There's no mention of culture. How can one hope to under-
stand mind while ignoring the cultural factors that influence it so
profoundly? I certainly have no such hope. I clearly recognize that the
study of culture is indispensable to an understanding of mind. I simply
don't know how to gently include culture in the diagram. It's certainly
top-down and analytic. Perhaps anthropology and sociology should share
a corner with cognitive psychology.

Copyrighted Material
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So far, we've put our proposed exploration of mechanisms of mind in
some context, we've at least feebly rationalized the endeavor, and we've
looked cursorily at several approaches to the study of mind. Let's now try
for something of an overview of where this exploration is likely to lead us.

Itinerary

I view myself as a tour guide for this exploration of mechanisms of mind.
What should a tour guide do? He or she should keep the touring group
more or less on course; make the way as easy, as comfortable, and as
enjoyable as possible; and, above all, point out the interesting sights along
the way, pausing to recount their stories. I hope to do all this.

But where are we going? Every tour should have its itinerary. Each tour-
ist should look at it before embarking. After all, you might not want to
go. It's only meet that I provide you such a look.

The upcoming itinerary will touch lightly on some of the major land-
marks of the tour. More detailed views will appear in subsequent chap-
ters, along with other sights of interest. For the most comprehensive
understanding, the tourist is invited to live a while with the original
sources, which will always be referenced. The itinerary begins here. Let's
look briefly at some important specific approaches to creating mecha-
nisms of mind. Concepts only alluded to here will be treated more fully
later.

Symbolic Artificial Intelligence
AI is sometimes defined as the art of making machines do things that
would require intelligence if done by a humanfor example, playing
chess, or speaking English, or diagnosing an illness. AI systems typically
confine themselves to a narrow domain; for example, chess-playing pro-

grams don't usually speak English. They tend to be brittle, and thus break
easily near the edges of their domain, and to be utterly ignorant outside

it. I wouldn't want a chess player speculating as to the cause of my chest
pain. AI systems tend to be designed and programmed, rather than
trained or evolved. They tend to be propositional in nature, that is, based

upon rules or some other data structure expressed in some language. AI

systems are typically implemented on ordinary serial computers, often
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referred to in the trade as von Neumann machines. This dependence on
serial computing will be less true in the future because of a move to paral-

lel processors.

Artificial Neural Networks
These are cognitive andlor computational models based roughly on the
structure of nervous systems. One such system is the sniffer, a device used

to scan neutron reflections from airline baggage for plastic explosives. A
straight expert system model (symbolic AI) couldn't quite get it right, but

an ANN seems to have succeeded. Another example is Nettalk, a system
that learns to pronounce English text. ANN systems can also perform
higher-level cognitive tasks such as changing active sentences to passive
ones. Typically, ANNs are trained rather than programmed. That's what
Stubbs meant by "learning machines." Learning machines are crucial to
full artificial minds. It would be utterly impossible to specify everything a
human needs to know, as one would have to do when writing a computer
program. There has to be some kind of learning involved.

ANNs operate in parallel rather than serially. Faulty units or connections
result in graceful degradation rather than in sudden collapse (as occurs in
symbolic AI systems). ANNs are particularly useful for pattern recognition
and/or classification problems, although they are theoretically capable of
anything any computer can do (Franklin and Garzon, to appear).

Silicon Nervous Systems
Having traveled downhill from high-level cognitive skills to pattern recog-
nition and classification, let's go even further down to sensation via silicon
nervous systems. This gives me a chance to quote from one of my heroes,
Carver Mead: "If we really understand a system we will be able to build
it. Conversely, we can be sure that we do not fully understand the system
until we have synthesized and demonstrated a working model" (1989, p.
8). That's the engineering view. It's also the critical issue that separates
cognitive scientists from cognitive psychologists. Cognitive scientists have
a lust to build models, and hence their understanding is likely to be far
more sophisticated. I think of this quote as justifying the bottom-up, syn-
thetic approach of mechanisms of mind.
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Artificial neural network chips are now on the market. I view these as
the forerunners of components from which you might hope to contrive a
silicon nervous system. Mead and his group have produced a silicon retina
and an electronic cochlea (Mead 1989; Mahowald and Mead 1991). The
enabling principle for these creations is wafer scale integration. This
means using an entire silicon wafer, say 4 inches in diameter, for a single
circuit.9 The fault tolerance (graceful degradation) of ANNs makes this
possible. Mahowald and Douglas have produced a "silicon neuron" suf-
ficiently realistic to fool neurobiologists with its real-neuronlike output
(l991a).

Artificial Life
Moving from concrete implementations to abstract simulations leads us
to artificial life (AL). This is the study of man-made systems that exhibit
behaviors characteristic of natural living systems. One AL example is
Reynolds's boids, a computer model of flocking behavior in, say, birds or
fish (1987). The flock will, for example, divide to pass on either side of
an obstacle, then reassemble beyond it. There's no executive guiding this
behavior. Each boid follows relatively simple local rules: keep a minimum
distance from neighbors and obstacles, match your speed with that of

your neighbors, and move toward what looks like the center of mass of

the nearby boids. Yet they produce this emerging, global, birdlike

behavior.
Computer viruses provide another AL example (Spafford 1992). They

exhibit reproducing behavior as well as make trouble. So far, they tend

not to evolve. Let's hope they never do! There are, however, populations

of algorithms or programs that do evolve (Hillis 1992; Ray 1992).

These artificial life systems are typically concerned with the formal ba-

sis of life, not how it's made but how it behaves. Such systems attempt to

synthesize lifelike behavior, focusing on the emergent behavior. Most such

systems are highly distributed and massively parallel. Populations often

evolve and sometimes coevolve.

Computational Neuroethology
The next stop on our itinerary refers to some relatively simple ideas with

a not so simple name, computational neuroethology (CN). Ethology is
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the study of animal behavior within a dynamic environment. Neuroethol-
ogy is the study of the neural substrates of such behavior. Computational
neuroethology is concerned with the computer modeling of this behavior,
including its neural substrates.

CN systems work within a closed-loop environment. That is, they per-
ceive their (perhaps artificial) environment directly rather than through
human input, as is typical in AI systems. They act upon their environment
in ways that affect their next perceptions, thereby closing the loop. After
the simulation or robot is running, there is no human in the loop to pro-
vide semantics. This is a central tenet of CN. The CN people both insist
on a closed-loop environment and claim that traditional AI got untracked
by failing to heed this dictum (Cliff 1991).

CN systems may model individual animals (Beer 1990; Wilson 1985)
or populations (Ackley and Littman 1992). They tend to evolve geneti-
cally10 and to learn neurally. They behave adaptively, which means they
change their behavior depending upon the circumstances in which they
find themselves. CN simulations tend to consume enormous computa-
tional resources. CN practitioners claim you'll learn more by building
complex models of simple animals than you will by making simple mod-
els of complex animals, the traditional AI approach. My view is that we
should do both. Here's another Mead quote that can be viewed as sup-
porting the computational neuroethologists' position: "The nervous sys-
tem of even the simplest animal contains computing paradigms that are
orders of magnitude more effective than those systems made by humans"
(1989, p. xi).

The next segment of our itinerary will mention only briefly several indi-
vidual, and quite distinct, mechanisms of mind. Winograd has something
to say about the necessity of such variation: "I predict we will not find a
unified set of principles for intelligence but rather a variety of mechanisms
and phenomena some of which are close to the current symbolic para-
digm in AI and others that are not."

Subsumption Architecture
Brooks pushes what he calls subsumption architecture: the old brain that
we share with the alligators controls much of our lower-level functioning,
such as breathing (1989, 1990a, 1990b). We have built higher-level func-
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tions on top of that. For instance, we can suppress the old brain and hold
our breath. If something happens to the higher-level operation, the lower-
level stuff reemerges and is no longer suppressed. Conscious control of
breathing works until you pass out. Then the old brain takes over.

Brooks has built robots on this principle, giving them a sequence of
competencies, some subsuming andlor using others. His robots are built
incrementally; new competencies are added one at a time, without dis-
turbing older ones. For example, he hardwired a mobile robot to avoid
stationary objects, so that it would stop or turn when about to run into
something. On top of that he built the capacity of avoiding moving ob-
jects. Its next competence was to scan across the room, find an object,
and move toward it. The object avoidance abilities remained. On top of
all this he created a mechanism for exploration. All these competencies
are hardwired. Nothing is learned. The robot seems to have goal-directed
behavior but, according to Brooks, it has no representations of anything
at all. This issue will be treated in some detail when we explore the neces-
sity of internal representation to intelligence. There's some controversy
here, to which I refer as the third AI debate. Among the protagonists are
Brooks, who says nay to representations, and Simon and Newell, who
maintain that symbolic representation is necessary for general

intelligence.

Dynamic Representations
Another very different mechanism of mind, or more specifically, mecha-
nism of perception, is Freeman's notion of dynamic representations11
(1983, 1987; Freeman and Skarda 1990). Briefly put, consider patterns

of firing rates of the neurons in the olfactory bulb of a rabbit as state
vectors in the state space of a dynamic system)2 This view makes visible

various attractors and their basins. Freeman shows that rabbits classify

smells depending upon the basin in which the state vector falls. I suspect

that this mechanism underlies much of our perception, regardless of
mode, and that it will prove to be a useful mechanism for artificial minds.

Other Mechanisms
Piaget discussed the when of children acquiring "object permanence,"

without speculating on the how. Drescher's schema mechanism provides
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a computer model of one way that object permanence could occur in chil-
dren or in artificial minds (1986, 1987, 1988). It allows representations
of objects to be created, recognized, and classified, but at a considerable
computational cost. Drescher defends this cost, saying he sees no reason
to expect that intelligence at the human scale can be achieved with sig-
nificantly less powerful hardware than we have.

At a higher cognitive level than obiect recognition lies the use of lan-
guage. Two related mechanisms for language processing are Pollack's
RAAM (1990) and Chalmers's passivization network (1990). These
mechanisms are both embodied as artificial neural networks. How can
you take something complex and of varying length, like a sentence, and
represent any such by a fixed-length vector? Pollack's RAAM does just
that. Chalmers uses the RAAM mechanism to build a network for chang-
ing active sentences to passive. Both are examples of mechanisms of mind
implemented as ANNs. There are, of course, many other such examples
(e.g., St. John and McCelland 1990). I want to introduce you to the Chal-
mers work because of its implications concerning the second AI debate
on symbolic versus subsymbolic models.

Moving from artificial neural networks to biological neural networks,
we come to Gerald Edelman's theory of neuronal group selection (1987,
1988, 1989; Reeke and Edelman 1988). The key idea here is that individ-
ual groups of neurons aren't wired genetically or developmentally for spe-
cific purposes but, rather, are selected for specific tasks according to their
suitability. Each of these neuronal groups, and collections of them as well,
can be thought of as mechanisms of mind.

For any mind, biological or artificial, and at any given time, there is a
single overriding issue: how to do the right thing. This includes what to
do next as well as how to go about it. Don't think of "the" right thing
as implying there is only one; for any organism or agent in any given
circumstance there may be many possible right things." And don't think
of the "right" thing as being in some sense the optimal thing. Rather,
think of it as a "good enough" thing. With these caveats, the control issue
is central for any mind. The next two "mechanisms of mind" stops on
our itinerary are control mechanism stops.

Maes's reactive-plus-planning algorithm puts control in the hands of a

network of nodes, each node representing some competence, that corn-
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pete for the chance to take the next action via spreading activation in the
network (1990). She's after a control mechanism that can make quick,
good enough decisions in a dynamically changing environmentsay, ex-
ploring the surface of the moon. John Jackson's pandemonium theory has
competence demons in a sports arena screaming to be chosen for action
by spectator competence demons sitting in the stands (1987). We have,
of course, visited other control mechanism stops at other points on our
itineraryBrooks's subsumption architecture, for example.

Our itinerary ends with the notion of a society of mind: mind is best
viewed as a commonwealth3 of more or less autonomous agents or com-
petencies that have some intercommunication. They both compete for the
right to act and cooperate to serve common needs. Ornstein, a psycholo-
gist, says in Multimind: "Some small minds are more encompassing than
others; they may well control many smaller small minds" (1986, p. 74).
He constructs a hierarchical kind of structure with a single decision-
making "talent" at the top. Minsky, a computer scientist, says in his Soci-
ety of Mind: "you can build a mind from many little parts, each mindless
by itself. Each mental agent by itself can only do some simple thing that
needs no mind or thought at all. Yet when we join these agents in societies

this leads to true intelligence" (1985, p. 17).

Having perused the itinerary, you now have some idea of where this
tour will take us, and of whether you want to embark. Before you decide,
however, I feel obliged to warn you: THIS TOUR MAY BE INJURIOUS
TO YOUR PRESENT CONCEPT OF MIND. In particular, it's not an
unbiased tour. The stops have been carefully chosen to strengthen certain
positions your tour guide wants to sell. Here are some of these positions.

Mind is better viewed as a continuous as opposed to a Boolean14
notion. That is, it should not be a question of whether something has
mind or it doesn't. It's more useful to think about degrees of mind, and
what capabilities of mind a particular organism, system, or agent
displays.

Mind is aggregate rather than monolithic. All but the most simple
minds are comprised of relatively independent competencies or agents
with only limited communication bandwidth between them. Communi-
cation must be limited because, with so many different systems, it would
he impossible for each system to be in contact with every other. Also,
there is typically no need for one agentsay, the one that contracts your
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right thumbto dialogue with anothersay, your respiratory control
mechanism. On the other hand, it's useful to hold your breath when you
go underwater. So it's useful that the goal agent for swimming underwater
communicate with respiratory control.

Mind is enabled by a multitude of disparate mechanisms. There is
a role for all the various modalities and mechanisms we have discussed
so far and, no doubt, many, many more. I'm not a fan of unified theories
of cognition (Newell 1990).

The overriding task of mind is to produce the next action. This is
what minds, natural or artificial, are about. A few cautions seem in order.
Don't be misled by "next." Mind may well operate in parallel, producing
more than one action simultaneously. Also, "next" doesn't imply discrete,
rather than continuous, action. Finally, don't read purpose into the word
"task." Producing actions is just what minds do. A consequence is that
minds are properties of autonomous agents.

S. Mind operates on sensations to create information for its own use.
I don't think of minds as information-processing machines in the sense of
taking information from the environment and processing it to arrive at
the next action. Rather, I think of information as not existing out there in
the environment at all. Information comes into being when minds process
sensations (Oyama 1985). The same scene can provide quite different in-
formation to different minds.

Mind uses prior information (memories) to produce actions by a
reconstructive process rather than by retrieval. Memories are not stored
as if in a folder in a filing cabinet; rather, they are rebuilt when triggered
by appropriate associative cues.

Mind, to some degree, is implementable on machines. The question
is, how muchand, more important, how do we do it?

Thus ends the warning label. On with our exploration of the mecha-
nisms of mind. Our tour begins with an attempt to put the nature of mind
and the mindbody problem in perspective.

Notes

Stephen Jay Gould (1989, p. 291) put it thus: "Homo sapiens, I fear, is a 'thing
so small' in a vast universe, a wildly improbable evolutionary event well within
the realm of contingency."

During our "Nature of Mind" tour stop, we'll see that the QED ascribes mind
only to humans.
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To get some hands-on experience with analogous complexity, there's software
for the Mac by Richard Dawkins, titled "The Blind Watchmaker," that accompan-
tes his book of the same name (Dawkins 1987). Highly recommended!

All the quotes and paraphrases from Stubbs are from this source.
It seems to me that the ability to reproduce should not be taken as the essence

of life. There are many things that are alivesay mules or sterile humansthat
cannot reproduce. There are also nonliving things, like crystals, that can repro-
duce. And then there are viruses. Note that I'm falling into the trap of assuming
there is some essence of life, some sharp distinction. That this is, indeed, an insidi-
ous trap will be made clear on a later tour stop when we meet Sloman's ideas on
free will.

A mutation might occur, for example, when a cosmic ray strikes a gene. A
transcription error occurs during the duplication of the DNA.

Biologists Margulis and Sagan (1986, p. 261) speculate that "Perhaps within
the next few centuries, the universe will be full of intelligent lifesilicon philoso-
phers and planetary computers whose crude ancestors are evolving right now in
our midst."

My friend and colleague Art Graesser pointed out to me that science, as an
activity, can proceed assuming a dualist or even an idealist position on the mind-
body problem. He gives cognitive science as an example. I'll say more about my
stubborn insistence on a tentative physicalist position in chapter 2.

In producing typical computer chips, these wafers are cut into dozens of, hope-
fully, identical squares, each about the size of the nail of your little finger. Many
of these will prove useless due to imperfections that are in the original wafer or
are acquired in processing.

These systems evolve using John Holland's genetic algorithms (1975), of
which more in chapter 9.

Freeman would rio doubt object to my use of the term "representation" in
this context. The issue of the need for representations is at the heart of the third
AI debate, a topic to be met later in the tour.

A discussion of dynamical systems and their state spaces, attractors, and ba-
sins will be found in chapter 12.

I am indebted to my friend and colleague Lloyd Partridge, a neurophysiolo-

gist, for this metaphor.
In computer science a Boolean variable, or just a Boolean, is one that can

take one of only two values. These values are most often represented as i and 0,
but can be interpreted as "yes" and "no" or "true" and "false.'
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The Nature of Mind and the Mind-Body
Problem

Science's biggest mystery is the nature of consciousness. It is not that we possess
bad or imperfect theories of human awareness; we simply have no such theories
at all.

Nick Herbert, Quantum Reality

Perhaps the problem is the seeming need that people have of making black-and-
white cutoffs when it comes to certain mysterious phenomena, such as life and
consciousness. People seem to want there to be an absolute threshold between the
living and the nonliving, and between the thinking and the "merely mechanical,"

But the onward march of science seems to force us ever more clearly into
accepting intermediate levels of such properties.

Douglas Hofstadter, Metamagical Themes

Well, it's amateur night on the "mechanisms of mind" tour; Stan Franklin
is going to talk about philosophy. Professionals make a living at what they
do. And besides that, they usually have some professional training, and
surely some professional experience. Well, I don't, and I have neither.' I
worried about this, particularly at the thought of philosophers reading
this chapter. But then the truth struck. Essentially every stop on the tour

is going to be amateur night.2 My training is in mathematics, my profes-

sional experience is in math and computer science, and I earn my living

at the latter. The next chapter is about animal minds. I'm surely an ama-

teur. And so it goes with almost all the rest.

But there's an upside to being an amateur. In an endeavor like exploring

mechanisms of mind, being an amateur is a necessity. So many fields are

involved that no one can be professional in them all. There's also a case

to be made for what the Zen people call "beginner's mind." An amateur

can, at least theoretically, view a field without being so enmeshed in its
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prevailing paradigms as to be blind to what's outside them. If this sounds
like rationalization to you, it does to me, too. We'll see if there is any
truth in it.

The Nature of Mind

In any event, being an amateur, and wanting to know about the nature of
mind, what would you do first? You can't look mind up in the current
literature; you wouldn't even know where to find it. But our amateur does
know where to find the dictionary, so let's start there. Figure 2.1 describes
mind according to the Oxford English Dictionary (OED). It starts with
definition 17, passing by those having to do with "Do you mind?" or
"mind the store" or any of those things. Definitions 17 and 18 are the
ones that seem to suit the particular context of mind with which we're
concerned.

Do notice that according to the OED, only humans have minds. It says
very clearly of a person" and "of a human being." There is nothing in

17. Mental or psychical being or faculty.
The seat of a person's consciousness,
thoughts, volitions, and feelings.
The system of cognitive and emotional
phenomena and powers that constitutes
the subjective being of a person.
Also the incorporeal subject of the
psychical faculties, the spiritual part of
a human being.
The soul as distinguished from the body.

18. In more restricted applications.
The cognitive or intellectual powers, as
distinguished from the will and
emotions. Often contrasted with heart.

Figure 2.1
Mind according to the OED
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the definition that has anything to do with anything except people. I will
argue that a vastly broader notion of mind is useful. I even want to talk
about whether "mind" might, in some sense, be usefully ascribed to a
bacterium or a Coke machine. I hope this won't sound so crazy later on.

Do note several features of "mind according to the QED":

Mind is essentially identified with the conscious mind. It's almost as if
Freud had never existed. But much of what I want to call mind can lie
outside of consciousness.

Mind is subjective. And that raises the question of whether artificial
minds have subjective experience. More on this later in this chapter, and
in chapter 5 on the first AI debate.

The mind is incorporeal, and is to be distinguished from the body. This
leads to the mindbody problem, the subject of much of this chapter.

Definition 18 describes what I think of as the rational mind, a deliber-
ative mind.

A number of different kinds of minds have come up. Let's take an orga-
nized look at some of these varieties of minds before getting into the
mindbody problem. Figure 2.2, a Venn diagram with boxes, may help.
Note that all the boundaries are fuzzy; they are intentionally so.

The largest class is labeled agents. An agent, roughly speaking, is any-
thing that acts. Agents are typically described as having motives. The class
of agents surely should include anything with mind, including subcon-
scious mind. Agents with minds must include agents with conscious
minds. And then there are agents with rational minds. It may be that
rational minds are always conscious, but that's not clear to me just now.

Among the conscious agents are those that are also self-aware. Humans
and some of the great apes are examples, according to Gallup (1970;
Suarez and Gallup 1981) and Patterson (1991). In these studies, evidence
of self-recognition in a mirror was taken as sufficient to conclude self-
awareness. Apparently, baboons, gibbons, and some monkeys can't be
shown to be self-aware in this way (Gallup 1977a, b).

At least one well-respected developmental psychologist, Barry Ghol-

son, views agents with rational minds as lying completely in the class of
self-conscious agents (personal communication). I'm open to this possi-
bility. The containment relations expressed in figure 2.2 are speculative
at best. This is necessarily so because the classes are by no means well
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rational minds

Figure 2.2
Varieties of mind

defined. But these various usages of the word mind" are going to come
up. We'll certainly want to distinguish between them.

The Mind-Body Problem

There's a tension between the physical and the mental over which one is
going to have the ascendancy. Does the mental arise from the physical, or
is it the other way around? How does consciousness occur in a physical
universe? Or is the physical universe simply maya (illusion) and every-
thing really mind? The desire for a resolution of this tension, for an expli-
cation of the relationship between the mental and the physical, gives rise
to the mindbody problem, an active area of philosophical thought for
millennia.

Here's what David Chalmers says about the significance of the mind-
body problem: "The problem of consciousness, also known as the Mind-
Body Problem, is probably the largest outstanding obstacle in our quest
to scientifically understand reality" (1991). The thought that a solution

self-awareness

consciousness

mind (including subconscious)

agents
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to the mindbody problem may at long last become conceivable led me
to this exploration of mechanisms of mind. My hope is that understand-
ing the physical mechanisms leading to mind, and being able to model
them, will lead to a fuller understanding of the relationship between mind
and body.

To provide a context for the "physicalist" theory we'll tentatively
adopt, let's spend a few minutes looking at traditional mindbody theo-
ries. There are essentially three.3 The mentalist theory maintains that the
mind is everything, and that it produces the material world as its sensa-
tion. The materialist theory asserts that mind is only a physical process.
The dualist theory holds that the mental and the material have existences
of their own.

How do we decide which of these views to accept? By rational thought,
the traditional philosophical mode? Scientifically, by appeal to empirical
facts? One may well argue that philosophers have tried their methods at
least since the time of Aristotle without conspicuous success. Therefore,
let's turn to science. Putnam is not optimistic about this approach: "The
various issues and puzzles that make up the traditional mindbody prob-
lem are wholly linguistic and logical in character: whatever few empirical
'facts' there may be in this area support one view as much as another"
(1981).

Later I'll argue that, for the purposes of this exploration of mechanisms
of mind, we should tentatively accept a form of materialism. For the mo-
ment, let's have a quick glance at each of the three major mindbody
theories, and some of their subtheories. (See figure 2.3.)

The dualist view asserts that minds and bodies are both substances.
The body consists of extended or material substances; it occupies space.

The mind is unextended, or spiritual. And (now for the kicker) the dualist

view asserts that mind is subject to completely different principles of op-

eration than body. That is, mind and body are essentially different and

distinct.
The mentalist (or idealist) view says that mind is a spiritual substance,

meaning that it occupies no space, and bodies are sensations of minds.

Although Western philosophers these days aren't so high on mentalism, it

must be mentioned, if only because most of the peoples of Asia profess

religions based on mentahsm.
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Mentalist

Figure 2.3
Mind-body theories

The materialists maintain that physical principles can account for mind
as well as for body. This doesn't refer only to naive physical principles;
they allow anything derived from physics, up to and including quantum
mechanics.

Branchings of the dualist view are shown in figure 2.4. Cartesian dual-
ity postulates mind and body as substances, one extended and material,
the other unextended and spiritual. A second view came from Hume, who
looked around and said he couldn't find anything like mind, only bundles
of perceptions. That's the bundle theory, partitioning the mind into bun-
dles while leaving the physical world intact. I don't think these two will
concern us greatly. Then there is interactive duality, which says that the
mind affects the body and the body affects the mind. It seems obvious
when separated from its dualist context. Parallel duality holds that the
mind and body run in parallel, with neither having anything to do with
the other. This seems not at all believable to me. Finally there's the epiphe-
nomenalist view that the body affects the mind but not conversely. That
is, our subjective experience is an epiphenomenon, and everything we do
would go on in just the same way, even if we didn't have this subjective
experience.

The following quote by physicist Eugene Wigner offers motivation for
mentalism and its offspring, neutral monism, to be discussed below: "It
is not possible to formulate the laws of quantum mechanics in a fully
consistent way without reference to the consciousness." This is not an
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Figure 2.4
Branchings of the dualist view

unusual point of view for a quantum mechanic. Similar assertions go

hack as far back as Niels Bohr. The consciousness referred to is, of course,
that of the researcher.

Recall that the mentalists hold mind to be a spiritual substance, with
the body as its sensations. Neutral monism brings bundle theory into the
mentalist camp. It views mind and matter as different ways of organizing
and marking off bundles of the same constituents. This view is interesting
in that it implies a single substance rather than two, with mind and body
referring to different levels of observing this one substance. Chalmers
takes a somewhat analogous position in a article we'll meet later in this
chapter (1991).

Mentalism underlies the doctrine of two major religions, Taoism and
Buddhism. The Buddhists believe that all is Mind, with a capital M. Mind
in the Buddhist sense seems, superficially, like the Western notion of God

but is vastly different in that there is no personification. The Taoists are
also mentalists, but their view of the Tao is too subtle to talk about
briefly.4 I think a third major religion, Hinduism, could also fall in the
mentalist camp, but I hesitate to make such a pronouncement. Hinduism
is quite complex, and you can find all kinds of views within it. Still, I'm
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sure there are many Hindus who would agree that what appears to be
physical reality is all maya, that is, illusion. The adherents of these reli-
gions add up to a lot of people. Even though you might not personally
know many, it may well be that most people are mentalists.

Finally, there's the materialist view and its branchings, as shown in fig-
ure 2.5. Behaviorism maintains that mind is nothing more than sophisti-
cated overt behavior. This is different, I've been warned, from
psychological behaviorism, which is essentially methodological in nature.
Here we have the ontologica! statement that certain types of behavior
constitute mind. Next is the identity view, which identifies mental events
with physical processes in the nervous system. There is only one sub-
stance, the physical, but mental happenings are allowed to interact caus-
ally with the physical body. Minsky adopts the functionalist view when
he proclaims: as far as I'm concerned, the so-called problem of body and
mind does not hold any mystery: Minds are simply what brains do"
(1985, p. 287). The functionalists view mind, the software, running on
brain, the hardware. It could, of course, run on some other hardware,
say computers. Hence, researchers in artificial intelligence are apt to be
functionalists.

Identity View

Dual-Attribute

Figure 2.5

Materialist view and branchings

Materialist Physicalist

Behaviorist
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The dual-attribute position is that brain processes have both physical
and nonphysical properties. Both mental and physical processes reside in
the nervous system, but they're precisely the same. There's no distinction
to be made. Brain processes have certain properties that are called physi-
cal, and others that are called mental. Different properties of the same
processes, that's what it's about. For example, voltage across a membrane
or the output of a cell would be physical properties. But there might also
he some subjective sensation attached to a process that would be a mental
property. The dual-attribute theory moves us to within a hairsbreath of
dualism. Its ghost is depicted at the bottom of figure 2.5.

The dual-attribute theory also seems related to an issue within cogni-
tive science. To what extent, if any, should cognitive scientists look to
neuroscience for mechanisms andlor inspiration? Many would argue that
brain processes are so complex, and their mental and physical properties
so intertwined, that the study of physical properties is a hopeless entan-
glement for the cognitive scientist. Others would maintain that there is
no hope of fully understanding the human mind until the neuroscientists
and the cognitive scientists meet on middle ground.

Mind as Global Dynamics

The dual-attribute theory leads us directly to what I call the global dy-
namics view of mind.5 A continuous dynamical system consists of a state
space, X, and a mapping T: X X [O,oI - X, called the global dynamics.
Each state vector, x C X, represents a single, instantaneous, full state of
the system. For example, a state vector of a working brain should include
all relevant information about that brain's state or condition at some given
time, perhaps a vector of voltages of individual neurons. The global dy-
namics, T, describes the way the system changes over time. For a given
time t n [O,00], and a given initial state x0 n X, T(x0,t) represents the state
of the system at time t when started from the initial state x0. Typically, X
is a subset of some very large dimensional vector space, and T is given as
the solution of a different equation that describes the way the system
changes. We'll encounter dynamical systems again while visiting connec-

tionist models.

Copyrighted Material



30 Chapter 2

Let's look at Minsky's quote again: "Minds are simply what brains do."
He and other people are saying that mind is the activity of the brain, the

processes that carry brains from state to state. Here, as above, state"

refers to the global state, a full, instantaneous state of the system. The

brain's process is mind. When viewed statically, you see the brain, the

nervous system. When viewed dynamically, you see the mind.
Minsky's view of mind as process, surely not original with him, is now

widely shared among people who talk about these things. It will serve
admirably, I think, as a foundation for exploring mechanisms of the mind

and the possibility of artificial minds. To explore mechanisms of mind is

to look for ways that physical things give rise to mental events. For that
enterprise we must, at least tentatively, adopt some sort of physicalist po-
sition and see how far we are able to proceed on that basis. We shall

see that a dynamical systems view of mind as process will be just what

we need.6
However, the global dynamics view is incomplete as an explanation of

mind because it lacks any account of subjective experience. The next stop

on our tour will be devoted to something that purports to be the begin-

nings of such an account.

Consciousness à la Chalmers

Chalmers (1991) talks about consciousness and takes two different ap-
proaches (see also Nagel 1974 and Dennett 1991). The third-person ap-
proach regards consciousness as a scientific problem, while the first-
person approach treats it as a metaphysical issue. Under the third-person
approach, consciousness is considered as a problem in science, like heat,
life, or nuclear physics, and subject to the same methods. This approach,
he says, leads to psychology, the study of behavior; to neuroscience, the
study of brain functions; and to artificial intelligence, the study of cogni-
tive modeling. Its essence is functionalism, that is, it understands mental
processes by revealing the underlying abstract causal structure behind
brain function. This structure can be understood objectively and dupli-
cated in different materialsin computers, for examplein addition to
carbon-chain chemistry. Thus Chalmers comes out explicitly for the pos-
sibility of artificial minds. Third-person consciousness is to be understood
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as an aspect of a complex system perhaps as that process by which "the
system scans its own processing." This view of consciousness bothers me.
I think a mouse is often conscious, but I can't imagine it spending much
time scanning its own processes. On the other hand, existing self-
diagnosing machines scan their own processing,7 but surely could be con-
scious only at a rudimentary level if at all. Perhaps we should think of
consciousness as synonymous with awareness, and "metaconsciousness"
as scanning its own processing. There is, of course, the logical possibility
of infinite regress here. It's a logical, but not a psychological, possibility
because of the limitations of short-term memory. A brief thought experi-
ment should convince you that watching yourself watching yourself
can only go on successfully for precious few levels. And defining con-
sciousness as awareness still leaves us with the problem of understanding
awareness. But on to the first person.

Chalmers claims that there are three hard problems concerning con-
sciousness, and that they lie within the first-person approach. The first is
the problem of sensory qualia (to be defined below): Why does red look
like red? Why does red look like anything at all? The second is the prob-
lem of mental content: thoughts are about something, say white ele-
phants. By our physicalist assumption, thought arises from neural firings.
But what should neural firings have to do with white elephants? The third
is the existence of subjective experience: Why should subjective states ex-
ist in the first place?

We've been on our tour only a short while, and already we've landed
in a quagmire. Some people claim that we shouldn't bother studying sub-
jective experience, that it's not scientific. Others point out that there's no
other kind of experience. What else can you study? Still others say that
nobody studies experience, unless it's his or her own. You may study be-
havior by observations, but you don't study anybody else's experience ex-
cept by inference. As you can see, it's easy to get bogged down here.

But whether we study experience or not, we talk as if we do. We talk
about other people's experiences. We talk about our own experiences. We
talk about consciousness. Chalmers claims that consciousness itself is a
mystery, but not what we say about it. According to our basic assump-

tion, the physicalist view of mind, the third-person approach is sufficient,

in principle, to yield a complete explanation of human behavior. Claims
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about consciousness are facts of human behavior. Facts about human be-
havior can be explained with the third-person, scientific approach. There-
fore, the third-person approach, in principle, is sufficient to explain our
claims about consciousness, the things we say about it. Claims about con-
sciousness are not mysterious, but consciousness is, as a result of the three

problems mentioned above.
We'll see that the third-person approach seems not sufficient to explain

all first-person phenomenon. Let's start with qualia. Qualia are the quali-
tative aspects of our mental states, such as color sensations, the taste of
chocolate, pleasure and pain. Looking at a red patch triggers a pattern
of nerve firings. Why is there such a rich subjective sensation? Why this
sensation and not green? And how personal that sensation is. I've often
wondered if what I see as red is what you see as purple but refer to as red.

There's no way to ever know.
Here's a little thought experiment that Chalmers provides8 to highlight

the problem of qualia:

A future scientist, living in a time when neuroscience is completely understood,
might learn everything there is to know about physical brain processes. But if she
has lived all her life in a black-and-white room, she will still not know what it LS
like to see red; when she sees red for the first time, she will learn something.

One might conclude that qualia cannot be understood in terms of phys-
ical brain functions, that something else is needed to explain them. That
is, no matter how suitable the physicalist assumption is for our purposes,
it can't hope to provide an adequate foundation for an explanation of
conscious, subjective experience.9 I would rather put it in a slightly differ-
ent way. While a scientific approach cannot even in principle substitute
for actual experience, it could allow for some explanation of that experi-
ence.10 We may hope that starting with "mind is what brain does" may
lead us to an explanation of qualia via an understanding of some of the
mechanisms of mind. Now on to mental content.

Chalmers points out that thoughts have subjective content, that think-
ing about a lion has something to do with lions. Brain states must thus
carry intrinsic content, not merely arbitrary attribution. Thoughts of a
lion seem more like shared pattern than like reference, more like a picture
of a lion than like the word "lion." This may well be because some of the
same neural mechanisms are activated when thinking of a lion as when
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looking at one. Chalmers infers that a completed theory of subjective
mental content may end up having very little to do with reference."

I agree. The rational mind surely employs reference, but most of the
rest of mind must get along quite well without it. Reference is needed for
symbolic representation. Is this an argument against our using mental
symbolic representations? Very much so. We certainly use them some-
times, but how much? Some people (Agre and Chapman 1987, 1988;
Brooks 1990c, 1991; Chapman 1987, 1991; Freeman and Skarda 1990)
claim that the rational mind is a thin veneer on top of all of the nonrefer-
ential, nonrepresentational activity that goes on in minds. In later chap-
ters we'll look at their compelling arguments.

Finally, what of subjective experience? Why do I experience anything
at all? Why don't I just go ahead and do what I'm doing without any
experience? The epiphenomenalists maintain that subjective experiences
are inconsequential, that only the physical processes really count. Ac-
cording to them, subjective states are purely epiphenomenal; they don't
do anything. Chalmers doesn't subscribe to this view (and neither do I).
Few people believe in zombies, that is, people exhibiting normal behavior
hut without any subjective mental states. However, functional zombies,
androids with human functioning but without consciousness, are some-
how more acceptable. Perhaps some of us tend to suspend disbelief be-
cause of our science fiction experiences.

This raises a question crucial to the study of artificial minds: To what
class of entities may we ascribe subjective states? In chapter 3 we'll specu-
late on subjective states in nonhuman animals. Can any machine experi-
ence a subjective state? Some serious scientists think so (Moravec 1988).
Answered affirmatively, this question gives rise to another, even more cru-
cial, question: What are the mechanisms producing consciousness or fa-
cilitated by it? How is it done? But the issue of consciousness is surely
not Boolean at all, not either present or absent. There must be many de-

grees of consciousness. This assertion may be more palatable after our

tour has visited Sloman's dissolution of the freewill problem later in this

chapter.
In any event, Chalmers is asking for some sort of explanation of subjec-

tive states, for some sort of a theory that explains the experience he's so

aware of. What would satisfy him as an explanation? I don't know. I
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doubt that he knows. But we're going to see his beginnings of an answer,
even though it doesn't satisfy him, and likely won't satisfy us either.

The key to Chalmers's beginnings of an answer to the problem of con-
sciousness is his identification of pattern and information. His sequence
of ideas runs like this:

Pattern and information, if they occur, always occur together.
All information is carried by some pattern in the physical world.
All patterns carry some information.
Patterns and information are two aspects of the same thing, PATTERN-
INFORMATION.

One might object that some information might be carried in patterns
over time, and hence not by a pattern in the physical world. But the physi-

cal world is a dynamical system varying over time. To me, a pattern in
time qualifies as a pattern in the physical world.

One might also object that by this view, pixels darkened at random on
a screen carry no information, and hence comprise no pattern. But this
"random screen" provides information to a process that computes the
average number of darkened pixels per line. Here we have a process for
which the random screen would indeed carry information, even though
the intent was that it carry none.

A pattern may carry different information, depending on the process
that accesses that information. A text file may carry information about a
new product for me, but quite different information for a word-
processing utility program that simply counts the words. This observation
led Chalmers to speak of information as a difference that makes a differ-
ence,1 that is, a way things are to which some process is causally sensitive,

leading to consequences that depend on that information (personal com-

munication). Thus information must be relative to a choice of process.
Different information makes a different difference.

Here's a synopsis of Chalmers's proposal for a step toward a solution
to the mindbody problem. Third-person (objectively understandable)
mental events are patterns of neural firings in the brain not all of which
are conscious. Any corresponding subjective (first-person) mental events
are information. Qualia are just information. Information is what pattern
is like from the inside. My conscious mentality arises from the one big
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pattern that I am. This is a dual-aspect theory of mindbody. The aspects
are information and pattern. Chalmers hopes that this view will focus
attention on the relationship between pattern and information, and that
whatever discoveries are made will illuminate the mindbody problem.

Let's consider several of the issues raised by this proposal. From Chal-
mers's viewpoint, one must conclude that any agent that uses information
derived from pattern is conscious to some degree. This would be true
even of a bacterium following a gradient in its ambient solution, or of a
computer running a program. Chalmers can live with this. So can I. Mind,
I maintain, is best viewed as continuous, not Boolean, not "there or not
there" but "there to some degree, perhaps O degree." Our now imminent
encounter with Sloman's views on free will should add plausibility to
this contention.

The onemany relationship between pattern and informationthat is,
the same pattern providing different information to different agents-
seems to account for the difference in subjective experience (information)
of different agents when confronted by the "same" stimulus. This, of
course, assumes that different agents can ever perceive the same" stimu-
lus. Here "the 'same' stimulus" must refer to two equivalent stimuli ac-
cording to some relevant notion of equivalence.

This view of information as the onemany counterpart of pattern sup-
ports the contention of Oyama and many others that information doesn't
simply reside within a pattern (Oyama 1985; Skarda and Freeman 1987;
Winograd and Flores 1986; Maturana and Varela 1980). Rather, infor-
mation is created by each agent according to its needs and goals of the
moment, taking into account its present perception of the environment.
Skarda and Freeman support this contention with physiological evidence,

as we shall see in chapter 12. But for now, let's check out Sloman's view

of free will as scalar rather than Boolean.i2

Free Will à la Sloman

I'm rather taken with Sloman's notions about free will (1988). But how
do I justify bringing up the freewill issue in a chapter entitled "The Nature
of Mind and the MindBody Problem"? Well, we've just talked about an
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agent creating information according to its needs and goals. What if there
are goal conflicts? Does our agent exercise free will? That's one connec-
tion. Recall that the central issue, always, for a mind is how to do the
right thing. Does a mind exercise free will in deciding what is the right
thing to do? That's a second connection.

But all this is rationalization. Sloman disposes of the freewill problem
by showing it to be a pseudoproblem. He refocuses our attention away
from the question "Does this agent have free will or not?" by exposing
us to all sorts of degrees of free will. I want to convince you that it will
be useful to think of all sorts of degrees of having mind, of all sorts of
degrees of having consciousness. I hope Sloman's approach to free will
serve as a formal analogy.

Sloman maintains that the basic assumption behind much of the dis-
cussion of free will is the assertion that "(A) there is a well-defined distinc-
tion between systems whose choices are free and those which are not."
However, he says,

if you start examining possible designs for intelligent systems IN GREAT DETAIL
you find that there is no one such distinction. Instead there are many "lesser"
distinctions corresponding to design decisions that a robot engineer might or
might not takeand in many cases it is likely that biological evolution tried
alternatives.

The deep technical question, he says, that lurks behind the discussion of
free will is "What kinds of designs are possible for agents and what are
the implications of different designs as regards the determinants of their
actions?"

What does Sloman mean by "agents"? He speaks of a "behaving sys-
tem with something like motives." An agent, in this sense of the word,'3
operates autonomously in its environment, both perceiving the environ-
ment and acting upon lt. What follows is a representative sample of Sb-
man's many design distinctions, taken mostly verbatim.

Design distinction I
Compare

an agent that can simultaneously store and compare different motives
as opposed to

an agent that has only one motive at a time.
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I would say that the first exercises more free will than the second.

Design distinction 2
Compare

agents all of whose motives are generated by a single top level goal
(e.g., "win this game")
with

agents with several independent sources of motivation (e.g., thirst,
sex, curiosity, political ambition, aesthetic preferences, etc.).

If you're designing an autonomous agent, say a Mars explorer, here's a
design decision you have to make. Will you design in only one top-level
goal, or will you create several independent ones? If you choose the sec-
ond, I'd say you must build in more free will.

This is going to get tiresome after a while because there are lots of these
design distinctions. But that's Sloman's point! I have to show you lots of
them, or you may miss it. Just skip ahead when you feel convinced.

Design distinction 3
Contrast

an agent whose development includes modification of its motive gen-
erators in the light of experience
with

an agent whose generators and comparators are fixed for life (pre-
sumably the case for many animals).

Design distinction 4
Contrast

an agent whose generators change under the influence of genetically
determined factors (e.g., puberty),
as opposed to

an agent for whom they can change only in the light of interactions
with the environment and inferences drawn therefrom.

In this case, I couldn't say which one exercises more free will. It's not

much of an issue any more. The issue dissolves as we focus on whether

to design in a certain decision-making property. And I think the issues of

what has mind and what doesn't, or what's conscious and what's not,

are going to dissolve in the same way when we get down to designing

mechanisms of minds.
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Design distinction 5
Contrast
(a) an agent whose motive generators and comparators are themselves
accessible to explicit internal scrutin y, analysis and change
with
(h) an agent for which all the changes in motive generators and compara-
tors are merely uncontrolled side effects of other processes, such as addic-
tions, habituations, and so on.

In the first case we have an agent that not only can change its motive
generators but also can change them consciously. That seems like quite a
lot of free will.

Design distinction 6
Contrast

an agent preprogrammed to have motive generators and comparators
change under the influence of likes and dislikes, or approval and disap-
proval, of other agents
and

an agent that is only influenced by how things affect it.

The agent has some social awareness. There's much more to designing
agents than just the pseudo issue of free will.

Design distinction 7
Compare

agents that are able to extend the formalisms they use for thinking
about the environment and their methods of dealing with it (like human
beings)
and

agents that are not. (most other animals?)

Agents that can think about their paradigms and change them would
seem to have a lot more free will.

Design distinction 8
Compare

agents that are able to assess the merits of different inconsistent mo-
tives (desires, wishes, ideals, etc.) and then decide which (if any) to act on
with

agents that are always controlled by the most recently generated mo-
tive (like very young children? Some animals?).
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Design distinction 9
Compare

agents with a monolithic hierarchical computational architecture
where subprocesses cannot acquire any motives (goals) except via their
"superiors," with only one top-level executive process generating all the
goals driving lower-level systems
with

agents where individual subsystems can generate independent goals.
In case (b) we can distinguish many subcases, such as
(bi) the system is hierarchical and subsystems can pursue their indepen-
dent goals if they don't conflict with the goals of their superiors
(b2) there are procedures whereby subsystems can (sometimes?) override
their superiors. [e.g., reflexes?1
Design distinction 10
Compare

a system in which all the decisions among competing goals and sub-
goals are taken on some kind of "democratic" voting basis ora numerical
summation or comparison of some kind (a kind of vector addition,
perhaps)
with

a system in which conflicts are resolved on the basis of qualitative
rules, which are themselves partly there from birth and partly the product
of a complex high-level learning system.

Here we have the distinction between connectionist systems (a) and sym-
bolic AI systems (b). This distinction will occupy us during a later stop
on our tour. Surely you've gotten the point by now and we can stop with
ten examples, although Sloman did not.

It's a strange kind of argument. Sloman argues against free will not
directly but by pointing Out that free will is based on the assumption of a
sharp distinction. He then says that if you look closely enough, you don't
find this sharp distinction. The whole idea is to point out that free will is
really a nonissue, that these specific design distinctions are the important
issues. He's essentially taking the engineer's point of view rather than the
philosopher's, even though he is a philosopher. When we explore the fasci-

nating space of possible designs for agents, the question of which of the
various systems has free will becomes less interesting)4 Design decisions

are much more fascinating.
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Degrees of Mind

As we begin to make specific design distinctions concerning aspects of
mind other than control, the question of mind attribution should dissolve
as the freewill question did. Here are a few such distinctions couched in
the style of Sloman. Note that all of them could and should be refined into
finer distinctions, and that some of them may well turn out to be spurious.

Design distinction Si
Compare

an agent with several sense modalities
with

an agent with only one sense (e.g., a thermostat).

Design distinction S2
Compare

an agent only one of whose senses can be brought to bear on any
given situation (e.g., a bacterium [?]).
with

an agent who can fuse multiple senses on a single object, event, or
situation.

Design distinction Ml
Compare

an agent with memory of past events
with

an agent without memory.

Does a thermostat have memory? It certainly occupies one of two states
at a given time. One might claim that it remembers what state it's in.
Allowing memory in such a broad sense makes it difficult to imagine any
agent without memory. This distinction should be taken to mean memory
in some representational sense, perhaps the ability to re-create a represen-
tation of the event.

Design distinction M2
Compare
(a) an agent with short- and long-term memory
with
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(b) an agent with only short-term memory.

Do insects have only short-term memory for events, or can some of them
recall the distant past?

Design distinction M3
Compare

an agent that can add to its long-term memory (learn?)
with

an agent that cannot (e.g., some brain-damaged humans).

I can imagine wanting to design an agent that remembers during its devel-
opment period but not thereafter. An analogous situation is a human
child's ability to learn a new language easily until a certain age and with
more difficulty thereafter.

Design distinction M4
Compare

an agent that can store sensory information from all its modalities
with

an agent that can store sensory information from only some of them.

I think some of Rodney Brooks's robots satisfy (b), at least for brief peri-
ods (1990c). His work will occupy a stop on our tour.

Design distinction TI
Compare

an agent that can operate only in real time
with

an agent that can plan.

This is a graphic example of a coarse distinction that could be refined,
probably through several levels. The ability to plan can range from a dog
walking around an obstacle to get to food on the other side to a complex
chess stratagem involving ten or more moves of each player.

Design distinction T2
Compare

an agent that can "visualize" in all sensory modalities

with
an agent that can "visualize" in none
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with
an agent that can visualize in some but not others.

I, for instance, can easily conjure up a mental image of my living room,
but I cannot "hear" a melody in my head or imagine the smell of pop-
corn. Note that this is not simply a lack of memory for music or smells.
I cari readily recognize familiar melodies on hearing them, and familiar
odors as well.

Design distinction T3
Compare

an agent that can create mental models of its environment
with

an agent that cannot.

The utility of mental models is a hotly debated issue just now, in the guise
of "to represent or not." We'll visit this topic toward the end of our tour.
Also, we have here another obvious candidate for refinement. There are
surely many degrees to which an agent could create mental models, medi-
ated by sensory modalities, type and capacity of available memory, and
so on.

Could we say that agents with some of these abilities display a greater
degree of mind than the counterpart with which they were compared? I
think so. Surely it takes more mind to plan than to act, if only because
planningfor an agent, not a plannerpresumes acting.

Thinking of mind as a matter of degree may well make the task of
synthesizing mind seem less formidable» We can start with simple minds
and work our way up. I expect a real understanding of the nature of mind
to arise only as we explore and design mechanisms of mind. Let me re-
mind you of a quote you've already seen in Chapter 1 by way of driving
home the point: "If we really understand a system we will be able to build
it. Conversely, we can be sure that we do not fully understand the system
until we have synthesized and demonstrated a working model" (Mead
1989, p. 8).

The next stop on the tour is zoology, the animal kingdom. If we're to
find minds and their mechanisms in other than humans, surely that's the
first place to look.
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Well, almost neither. Since writing the first draft of this chapter, I've published
an article in a philosophy of computing journal (Franklin and Garzon 1992).

A kind reviewer suggested I clarify the "essentially" that begins this sentence.
I have written several papers on artificial neural networks (in collaboration with
Max Garzon, John Caulfield, and others), one on genetic algorithms (with David
Kilman and others), and a couple in cognitive science (with Art Graesser, Bill
Baggert, and others). A sampling can be found under these names in the refer-
ences. All this is in order that you not take me for "a computer hack ... spending
his spare time writing speculative pop science/philosophy." Still, I stand by my
claim to amateur status.

The following account is taken largely from Armstrong (1987).

The first verse of the Tao Te Ching, the Taoist bible, warns us that the Tao
that can be spoken of cannot be the true Tao.

In the following description my mathematician self, who's gotten little exercise
so far on the tour, slips out to provide a mathematical definition of a continuous
dynamical system. This note is intended to explain some of the notation. [0,']
denotes the set of all nonnegative real numbers, t E [0," says that r belongs to
that set. X X [0,o.oj denotes the set of ordered pairs (x, t) with x in X and t E [0,"I.
The mapping T assigns to each such ordered pair some state in X. A vector space,
in this context, can be thought of as all vectors, that is, ordered lists, of real num-
bers of some fixed length d, where d is the dimension of the space. Differential
equations can be thought of as equations involving rates of change whose solu-
tions are mappings.

My friend Art Graesser points out that cognitive scientists tend to view the
mind as an "abstract information system." While this certainly seems a valid ap-
proach, the dynamical systems view might well prove more suitable for our en-
deavor of searching out mechanisms of mind. The dynamical systems view can
hope to take us back to neural mechanisms for human minds, while the abstract
information system view must stop at least somewhat short.

I'm indebted to Phil Franklin for pointing this out.

Due originally to Frank Jackson (1982).
This seems to be the conclusion drawn from the thought experiment by many

philosophers of mind. An exception is Dennett (1991, pp. 398ff).
Science does study classes of subjective states. Ifa number of people were to

experience a particular stimulus, you'd get a class of subjective states, which may
have properties that you can study scientifically. Cognitive psychologists do Just
that. They build theories that try to predict the properties of such classes of sub-
jective states resulting from the perception of a given stimulus.

Nick Herbert and Brian Rotman have kindly pointed out that this description
of information dates back to Gregory Bateson. Chalmers also.
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Computer scientists speak of a Boolean variable, or just Boolean, as one that
assumes only two values, usually O and 1. A scalar variable, or scalar, assumes
one of some finite set of values.

Minsky, in his Society of Mind (1985), uses agent" to refer to a mental
process with a certain amount of autonomy and some particular competence.

Not everyone will agree. Bob Sweeney comments as follows: "Free will has
as much to do with the issues of accountability, ethics and 'sin'. These cannot be
glossed over by reductionist arguments about design features."

I'm indebted to Dan Jones for this observation.
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3
Animal Minds

Chuang Tzu and Hut Tzu were standing on the bridge across the Hao River.
Chuang Tzu said, "Look how the minnows are shooting to and fro! How joyful
they are!"
"You are not a fish," said Hui Tzu. "How can you know that the fishes are
joyful?"
"You are not I," answered Chuang Tzu. "How can you know Ido not know about
the joy of the fishes? . . . I know it from my own joy of the water."

Animal Minds?

On this stop of our tour we'll visit not artificial minds but natural minds,
animal minds. That is, if there are any. Recall that the Oxford English
Dictionary ascribes mind only to humans. But I think it is important to
our exploration of the mechanisms of mind to consider to what extent, if
any, animals can be said to have minds. It is conceivable that artificial
minds can exist while nonhuman animals experience mind not at all. Not
that I believe this for a minute. I suspect that all animals can be ascribed
some degree of mind, although there will surely be great variation from
species to species. This suspicion of mine stems from adherence to a more
general principle that was asserted as follows by Potts (1991, p. 42): "all
distinctively human traits are extensions of the behavioral capacities of
other primates." Diamond espouses this same principle in his The Third
Chimpanzee.

Much of the material in this chapter is taken from, or motivated by,
Griffin's Animal Thinking (1984). Griffin isn't looking for mechanisms
of mind; rather, he is trying to make a case that it's reasonable to think
that animals have minds. Some behavioral psychologists and anthropolo-
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gists would argue against animal minds to this day (Griffin 1984, pp.
9ff.). Griffin reminds me of Chalmers in asserting that "It's a fundamental
intellectual challenge to understand the nature of subjective mental
experience" (p. 1).

Will the study of animals help us do that? I suspect it might. But Griffin
gets right to grinding his ax, saying:

It is of great interest to inquire whether the important class of phenomena that
we call thoughts and feelings occur only in human beings. If our species is unique
in this respect, what endows us with this special attribute? Is the human brain
different from all other central nervous systems in some basic property that per-
mits consciousness? (p. 1)

I find this last hard to believe.
Can animals other than humans have minds? This question splits natu-

rally into three subquestions according to our previous classification of
mind. Can animals be conscious, be self-aware, have rational minds?
Griffin focuses mainly on the first of these. During this stop on the tour
we'll hear some of what Griffin has to say, as well as encounter thoughts
of later workers.

The Mechanistic Alternative

Suppose we decide that animals don't have minds. What's the alternative?
Here is what Griffin calls the mechanistic alternative: animal behavior is
adequately explained by genetic instructions conveyed by DNA and
molded by natural selection, or by learning during the lifetime of the indi-
vidual animal, or by some combination of both.i That's all you need, it
says. You don't have to postulate consciousness or self-awareness or ratio-
nal thought. Programmed and/or trained specifications are enough. Pos-
tulating conscious thinking adds nothing.

Furthermore, the notion of animal consciousness seems unfalsifiable,
and therefore unscientific. Let me remind you of a currently popular ex-
tention of Popper's view of proper scientific procedure. Accumulating evi-
dence to support a scientific theory is not the appropriate way to test it.
What you should do is try to falsify it, to challenge it with your best
efforts at proving it false. A theory that withstands those best efforts can
really gain some credibility, whereas a theory that only builds on confir-
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mation isn't convincing. Theories that can't be so challenged, that are un-
falsifiable, cannot be scientifically convincing.

As a final point in favor of the mechanistic alternative, there's the first
commandment of ethology: Thou shalt not anthropomorphize. That is,
don't attribute human feelings, capacities, and such to animals. Chuang
Tzu was guilty of just that in the epigraph to this chapter.

Of course there are reactions against the mechanistic alternative. The
critics of sociobiology like to point out that genes produce proteins, not
behavior. It seems a little incongruous that these same people say genetics
can't help to explain human behavior but often claim that genes suffice
for animals. For one biologist's view of the relationship of genes and be-
havior, see Dawkins's The Extended Phenotype (1982), where he argues
that the genes of one individual may conspire to produce behavior even
in a member of another species.

Another argument against the mechanistic alternative points out that
complex behaviors would require an impossibly lengthy genetic instruc-
tion booklet. How could you possibly encode genetically for all the be-
haviors of an individual animal? Ants perhaps. But chimps?

Griffin also claims that concepts and generalizations, being compact
and efficient, would be useful to animals for the same reasons they're
useful to humans. He asserts that conscious thinking is valuable when
learning some new skill, when planning, and when the stakes are high.
Another obvious use is for debugging. When routine unconscious proce-
dures begin to go awrysay your tennis serve lapses into double faults-
you will surely begin thinking. If consciousness has evolved in humans
because of its utility, why not also in other animals?

One might well counter by proposing that categories and concepts
evolve without consciousness, that they have third-person being as neural

patterns but don't occur in first-person subjective experience. As we've

seen, some people hold that consciousness is an epiphenomenon anyway.

All this utility can be had without it, they say. Griffin doesn't take this

argument seriously. You and I probably don't either. Griffin explicitly val-

ues the possibility of thinking ahead: "When the spectrum of possible

changes is broad . . . then conscious mental imagery including explicit

anticipation of likely outcomes and simple thoughts about them are likely

to achieve better results than thoughtless reaction" (p. 41).
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Finally, with regard to anthropomorphizing, Griffin simply wants to
repeal the commandment. He claims that if you don't anthropomorphize,
you're going to miss what's going on. To some extent, at least, he sides
with Chuang Tzu. Cheney and Seyfarth, whose work with vervet mon-
keys we'll soon encounter, concur (1990, p. 303): anthropomorphizing
works: attributing motives and strategies to animals is often the best way
for an observer to predict what an individual is likely to do next."

Other Minds

So how do we think about other minds? Well, there's a continuum with
solipsism at one end and panpsychism at the other. The solipsist says "I'm
the only one there is, and you guys are all just figments of my imagina-
tion." The panpsychist posits some mentality in everything. How do we
judge this? How do we decide on some point between solipsism and pan-
psychism? How do we judge whether other humans have minds? What
makes you think that I have a mind, or think that you have one? It's
mostly by convention, I believe. I've been taught that. I look at my own
experience and figure that you can't be all that different.

How about humans judging machines? How can you tell whether a
machine has a mind, or to what degree? Turning offers one test (1950):
Question it from a terminal, and see if it can fool you into thinking it's
human.

This brings us to the issue at hand. How about humans judging ani-
mals? How can we tell whether an animal has a mind, or to what degree?
Griffin offers some suggestions of behavior that might indicate an animal
is thinking consciously.

Griffin's Criteria for Animal Consciousness

The following are to be interpreted as criteria in the sense that presence
of any of them gives evidence of animal consciousness, not in the sense
of necessary and sufficient conditions for animal consciousness.

His first criterion is complex behavior. He doesn't press this point. Sup-
pose you look at an antelope running away from a cheetah, for example.
It looks simple at first. The antelope simply runs as fast as it can, occa-
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sionally changing direction in an attempt to escape. But the more closely
you look, the more complex this behavior seems. At a low level there are
coordinated muscle contractions controlled by nerve tissue. At a higher
level, there's the split-second timing required to take advantage of features
of the environment. So Griffin concludes that complex behavior might be
regarded as evidence but not as weighty evidence.

But why doesn't complex behavior constitute weighty evidence? The
following passage, out of Wooldridge (1968) via Hofstadter (1985,
p. 529), prompts caution:

When the time comes for egg laying, the wasp Sphex builds a burrow for the
purpose and seeks out a cricket which she stings in such a way as to paralyze but
not kill it. She drags the cricket into the burrow, lays her eggs alongside, closes
the burrow, then flies away, never to return. In due course, the eggs hatch and the
wasp grubs feed off the paralyzed cricket, which has not decayed, having been
kept in the wasp equivalent of a deepfreeze. To the human mind, such an elabo-
rately organized and seemingly purposeful routine conveys a convincing flavor of
logic and thoughtfulnessuntil more details are examined. For example, the
wasp's routine is to bring the paralyzed cricket to the burrow, leave it on the
threshold, go inside to see that all is well, emerge, and then drag the cricket in. If
the cricket is moved a few inches away while the wasp is inside making her prelim-
inary inspection, the wasp, on emerging from the burrow, will bring the cricket
back to the threshold, but not inside, and will then repeat the preparatory proce-
dure of entering the burrow to see that everything is all right. If again the cricket
is removed a few inches while the wasp is inside, once again she will move the
cricket up to the threshold and reenter the burrow for a final check. The wasp
never thinks of pulling the cricket straight in. On one occasion this procedure was
repeated forty times, with the same result.

Griffin's second suggestion is adaptability to changing circumstances.2
Some people are beginning to take adaptability as the very essence of in-

telligence (Beer 1990). But every animal adapts to changing circumstances

to some degree, and thus would be intelligent to that degree. This seems

right on to me. As an argument against adaptive behavior as a criterion

for consciousness, Griffin notes conscious but nonadaptive behavior in

humans. This point isn't at all clear to me. Why can't adaptive behavior

be a sign of consciousness and some conscious behavior be nonadaptive?

Where's the problem? Besides, my guess is that very little human behavior

is really nonadaptive. As outside observers, we tend to see some behavior

as nonadaptive. But if I had inside access to the person behaving, I might

well realize that he or she was doing the best possible thing from his or
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her point of view. But what about suicide? Could the progeny benefit?
Might suicide improve the gene pool? Ah, back to the fundamental issue
facing any mind: how to do the right thing. Let's leave this digression,
and get back to the issue of animal consciousness.

How about obtaining food by a complex series of actions never before
performed? This would be a special case of adaptability to changing cir-
cumstances. Griffin gives, as an example, the tit, a small, chickadee-like
bird of the English town and countryside, pecking through the aluminum
foil cover of a milk bottle (circa 1930) to get at the cream inside. He
speculates that this was done "with the conscious intention of obtaining
food." I suspect that one smart tit discovered the behavior either by con-
scious ingenuity or by accident,3 and was then copied by others. The be-
havior spread through the countryside until the dairies changed their
packaging.

Another of Griffin's criteria requires interactive steps in a relatively long

sequence of appropriate behavior patterns. The prototypical example is
of the mama killdeer luring predators away from her eggs. I distinctly
remember my wife's aunt showing me a little clutch of eggs lying on the
ground just off her driveway. The eggs were so well camouflaged that at
first I walked right past without seeing them. But on one occasion the
mother was home. As I approached, she began slowly and inconspicu-
ously to creep away from her nest. Once she'd moved some ten to fifteen
feet, she squawked loudly and flapped her wings, apparently to draw my
attention. She then limped off at an angle, giving every appearance of
being injured. Sometimes she'd drag one wing, as if it were broken. When
I followed her, she continued moving in this way until I was twenty or
thirty feet from her nest. She then flew off and circled back to land even
further from her nest. If! didn't follow her, she'd move back toward me
and start this act over again, trying to lure me after her. Predators are well
conditioned to go after a sick or injured animal. Mama killdeer has been
observed acting out her drama with cats, with foxes, with weasels, and
with skunks; it typically works.

You may think that this relatively long sequence of appropriate behav-
ior patterns is all bred in. If a herd of cattle, rather than a human or a
cat, is approaching, does mama perform the same routine? No; she be-
haves entirely differently. She stays where her eggs are, squawks loudly,

Copyrighted Material



and flaps her wings. It's as if she knows perfectly well the cows are not
after her eggs, but might well trample them unintentionally.

This, to me, is a grand example of adaptability to changing circum-
stances. It is certainly interactive, since the behavior depends crucially
upon who or what is approaching and whether the person or animal fol-
lows her. The sequence also satisfies me as long and consisting of appro-
priate behavior. It's not so clear how much of this behavior is built in
genetically, how much is learned, and how much is due to conscious
thought.4 It's my guess that all of these come into play. There surely must
be some evolutionary predisposition, some built-in capacity to make cer-
tain sounds and movements. In addition, Mama Killdeer may well have
to learn which limp and which squawk work well. There must also be
times when she has to think about itfor example, when individual dif-
ferences come up. The standard routine does fine as long as the other
guy's playing his role right. The minute he doesn't, she has to think up
something else to do. As we'll see later on our tour, Agre and Chapman
maintain that almost all of human activity is routine, requiring little or
no conscious thought (1987; Agre forthcoming; Chapman 1991).

Still, many will maintain that all of this activity can be attributed to
genetics. Some would also say that this behavior could be produced by a
production system, an AI device we'll encounter early in the next chapter.
Some would even say that all thought can be produced mainly by a pro-
duction system (Newell 1990; Newell and Simon 1972).

Finally, Griffin points to inventive behavior, the kind of behavior that
happens very rarely. The example he gives is one that he experienced. He
was looking at a raven's nest on a cliff face. He climbed up a chimney for
a view inside the nest. The raven, squawking loudly from above, dived at
him a time or two as discouragement. When that didn't work, the raven
began picking up stones in its beak and dropping them on him. Griffin
had never seen this behavior before, and had never heard of another case
of a raven dropping a stone on anything. Yet the raven dropped stones.
He calls this inventive behavior, not typical raven behavior at all. How
could this sort of behavior come from learning or evolution?

Let me reiterate that Griffin doesn't take these criteria as conditions
conclusively demonstrating consciousness. He would argue that these

are a few examples among many, lending support to there being some
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conscious activity going on, as well as the results of evolution and learn-
ing. One could, presumably, come up with a machine learning system
leading to any of these sequences of behaviors. You could do that with
any individual bit of any human behavior. That's exactly what the AI
people, including the connectionists, have been doing, as we'll see in
chapters 4 and 5. But that clearly doesn't mean that we're not conscious.
As with free will and understanding in chapter 2, I'm going to argue that
all sorts of design decisions result in consciousness to different degrees
and of different types.

Brain and Consciousness

Like us, Griffin makes a physicalist assumption and, thus, presumes that
consciousness comes from brain. The nervous system structures crucial
to consciousness are, according to Griffin, the cerebral cortex and the
reticular system. If you damage the reticular system, you do away with
consciousness, as far as anyone can tell. It's not always easy to know.
There are anecdotes of surgical patients under general anesthesia later
recalling jokes told by operating room staff, or remarks like "We almost
lost her that time."

Griffin asks what could be so different about human nervous systems
as to allow consciousness there and not in other animals. Could there be
consciousness neurons, or some kind of biological substances that are
unique to human nervous systems? He doesn't believe either of these ex-
ists. Nor do I; there's simply no evidence of either. Griffin believes that
"consciousness results from patterns of activity involving thousands or
millions of neurons."

I'm not sure how much explanatory value this provides, but we've
surely heard it before from Chalmers when he talked about the third-
person view of consciousness as patterns of neural activity. On a later
tour stop we'll hear a far-out version of the same theme from Hans
Moravec.

Well, if not only humans can think, how far down the complexity lad-
der can thought be found? How about organisms with no central nervous
system? Can they think? There's no evidence that they can, says Griffin,
but also none that they can't. If we allow degrees of consciousness, a bac-
terium or a paramecium will be pretty far down on our list.
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Griffin points out that there are only minor differences between the
neurons and the synapses of insects and humans. As a result, he specu-
lates that it's not the physical equipment, but the interactive organization,
that distinguishes conscious thought. So, theoretically, consciousness
could occur in the central nervous system of any multicellular animal. He
doesn't see any reason to rule it out. He's not saying that every multicellu-
lar animal is conscious, but that there's no strong evidence against it at
this point.

Are consciousness and thought the same thing? Well, we haven't de-
fined either, and won't. Still, I'd like to distinguish between the two. I've
been in a meditative state in which I was quite conscious but where there
was nothing that I would call thought. There was nothing verbal going
on, no beliefs, no desires, no visual images, none of the things that I
would normally call thoughts. I think of this state as simple awareness.
Thus it seems that thinking and consciousness can be different. I suspect
that Griffin is equating them.

Griffin's next argument in favor of animal consciousness is interesting,
if not completely convincing. He says that small brains can store fewer
instructions and thus have a greater need for simple conscious thinking.5

An insect, for example, has a tiny brain compared with ours. There's not
much room for detailed instructions for each of its complex behavior pat-

terns. Thus, it probably needs to think instead. That's the argument. But
it's not clear that animals with small brains need as complex a repertoire

as animals with large brains. The argument is not complete but might
well have some truth to it. I believe that conscious systems exist because

they are more efficient. They save both space and time by continuously

using fresh data directly from the environment, as opposed to storing in-

ternal representations and executing detailed instructions. We'll encoun-

ter this idea again when our tour takes us to the work of Agre and
Chapman. For now, let's move on to one of Griffin's most intriguing ideas.

Inherited Templates

Griffin proposes that genetically programmed behavior in ari individual

may be adaptive to changing circumstances. Suppose some neural mecha-

nism responds selectively to a particular sensory pattern, that is, a tem-

plate. Suppose also that the animal seeks to alter the sensory input to
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match its pattern. For example, suppose a beaver has a template of a pond
in its head and that, at some stage in its life, it feels the urge to alter the
environment so as to make a pond. If an animal is aware of such a goa1

template," it might be capable of consciously behaving to match lt.
Inherited templates might help to explain several different animal be-

havior patterns. Caddis fly larvae create clothing for themselves in the
form of hard cases made of grains of sand, daubs of mud, cut pieces of
leaf, and such, glued together with their own silk. All larvae of the same
species of caddis fly construct cases of a particular, identifiable pattern. If
a piece of the case breaks off, or is removed by an experimenter, the larva
will go out and get or cut something else of the same shape with which
to replace the missing piece. Inherited templates might help explain how

individuals of a certain species of caddis fly build such similar cases, and
how they choose particles or cut leaves of a particular size and shape so
as to maintain the pattern of their case structure.

Individuals of some species of songbirds, raised apart from others of
their species, will learn the songs of some alien species. Experiments show
that they learn those of their own species much more quickly than those
of another. There may, of course, be no template, but simply anatomy
more suited to the songs of their species. The experimenters in this case
didn't think so, because the range of sounds was the same in both songs.

Griffin devotes an entire chapter to examples of animal behavior pat-
terns that might be explained by inherited templates. Most of his ex-
amples are taken from insect behavior. He says:

Can we reasonably infer from the varied, effective, and highly integrated behavior
of leaf-cutter ants that they might think consciously about burrow construction,
leaf gathering, fungus gardening, or other specialized activities? . . . The workers
of leaf-cutter ants are tiny creatures, and their entire central nervous system is less
than a millimeter in diameter. Even such a miniature brain contains many thou-
sands of neurons, but ants must do many other things besides gathering leaves
and tending fungus gardens. Can the genetic instructions stored in such a diminu-
tive central nervous system prescribe all of the detailed motor actions carried out
by one of these ants? Or is it more plausible to suppose that their DNA programs
the development of simple generalizations such as "Search for juicy green leaves"
or "Nibble away bits of fungus that do not smell right," rather than specifying
every flexion and extension of all six appendages? (p. 105)

Presumably the "generalizations" to which Griffin refers are in the
form of inherited templates. The argument seems to support some theory
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of action other than that of genetically determined routines for each pos-
sibly behavior.6 Our tour will expose us to several such theories, my favor-
ite being that of Agre and Chapman.7

Although Griffin sticks strictly to discussing other animals, how about
inherited templates for humans? We apparently have built-in language
capabilities. What form do these take? I suspect that some of it might be
in the form of templates, but of course not visual templates. Such tem-
plates might, for example, somehow bias us toward the use of syntax, or
toward attaching names to our categories.

The evaluation functions of Ackley and Littman (1992), which we'll
encounter later on the tour, resemble a kind of template. Reinforcement
learning takes place under the direction of these inherited evaluation
functions. These evaluation templates do not change over lifetimes but
do evolve over generations. They reward behavior that brings the environ-
ment in line with their values. This may be a little more sophisticated than
what Griffin had in mind, but it seems to be the same sort of idea.

Can inherited templates be the basis of future-directed behavior in ani-
mals? Griffin thinks it might well be, but cautions against postulating
thinking about the future:

Most of an animal's thoughts and subjective sensations are probably confined to
the immediate situation rather than ultimate results. . . . When a female wasp digs
a burrow . . . for an egg she has not yet laid, in a future she will not live to experi-
ence, it is unreasonable to imagine that she thinks about her eventual progeny.
there is no way for information about the progeny to teach her central nervous
system. But this inability to know the long-term results of her behavior in no way
precludes conscious thinking about what she is doing. (p. 116)

Tool Use

One reason for ascribing intelligence and perhaps even consciousness to
animals is their use of tools. We humans once considered tool use charac-
teristic of our species. When Jane Goodall found chimps fishing for ter-
mites with straws, the response was either to redefine "tool" or redefine
"tool use." But Griffin cites many examples of tool use among "lower"
animals. Here are a few such.

Hermit crabs put their back ends into deserted snail shells with their
claws out. You might say that's not really a tool; they've just found a
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home. All right, but they also attach anemones, those little creatures that
sting, to their shells, so that other creatures will leave them alone. Dar-
win's finch, in the Galapagos, uses a cactus pine needle to skewer insects
in crevices too small for its beak. The sea otter cracks shells on a flat rock
balanced on its belly.

My favorite example of tool use is by the assassin bug, which feeds on
termites. There are worker termites and warrior termites. He wants to
feed on the workers, not the warriors, which are large and equipped with
fierce pincers. In fact, he wants to avoid the warriors at all costs. So the
assassin bug disguises itself with a coat made of material from the outer
cover of the termite nest. He then stations himself by the entrance. The
warriors don't notice him because of his camouflaged appearance, touch,
and smell. When a worker happens by, the assassin bug grabs it and sucks
out all the juice. He then places the remaining exoskeleton just inside the
termite nest opening and holds on to one end of it, "jiggling it gently."
Since the workers are compulsively neat, the first one that comes along
picks the skeleton up to throw it in the trash. Our tool-using assassin bug
reels this worker in, sucks her dry, and uses her skeleton as the next lure.
Researchers have observed a single assassin bug consume thirty-one
workers in a single feast.

Some tool use must be learned. Researchers noticed that young chimps
fishing for termites weren't as successful as their more experienced com-
panions. When humans tried it, they didn't do all that well. There's clearly
a learning curve to be traversed. When humans learn a new skill, they pay
conscious attention to what they're doing. Why should we believe that
chimps don't?

Animal Architecture

Like tool use, we humans often consider architecture as characteristic of
our species alone. Of course, there are spider webs, wasp's nests, and even
beaver dams. But we dismiss these, saying that they are done instinctively
and require no conscious thought. Human building is different. Griffin is
not so sure.

Neither am I. I had the opportunity to witness one of Griffin's ex-
amples, the weaverbird. In the late 1960s, I visited at the Indian Institute
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of Technology, Kanpur, in northern India. My daily route across campus
from home to office led past a weaverbird's nesting site. I was privileged
to watch the construction of their nests by the males, and the subsequent
courtships as well. Made of straw, their gourd-shaped nests hang from
tree branches, affixed by a knotted strand of straw. It's amusing to watch
a sparrow-sized bird struggling to tie a knot in a length of straw wrapped
around a branch, and lt's surprising when they succeed. The nest is then
woven from foot-long strands of the same straw. The term "woven" is
used advisedly. The finished nest is much like a woven basket. New
strands are woven in and out among the old. An entrance hole protected
by a narrow passageway is left in the floor. Although seeming much alike
when viewed from a distance, the nests are quite individual in both loca-
tion and construction. The nest, along with the male's display, is thought
to determine the female's choice of a mate. Unsuccessful males often dis-
assemble their unattractive creation and rebuild it. The colony of nests
surely constitutes impressive architecture.

And then there are the bowerbirds of Australia and New Guinea, which
build elaborate, decorated bowers for courtship, not for nesting. Made of
leaves, moss, and branches, these bowers are decorated with all sorts
of brightly colored objects, including colorful leaves, shells, feathers,
pebbles, flowers, and fruits. Walls are sometimes colored with fruit pulp.
Wilted flowers are replaced with fresh ones. Bits of plastic, tin cups, and
car keys have been used. Not only might we reasonably suspect the bow-
erbird of thinking about "what he is doing, the males with which he is
competing, and the females he hopes to attract," but we might well be
seeing an instance of animal art.

Among the most impressive of the animal architects are species of ter-
mites in Africa whose nest height is to their length as a skyscraper a mile
and a half high would be to a human. Their nests, which are air-
conditioned by mazelike cooling passages in the basement, have numer-

ous special-purpose rooms.
Finally, we must consider our fellow mammal, the beaver, which builds

elaborate lodges and dams, requiring sometimes months of effort, which

produce benefits only in the rather distant future. Experimenters have

tricked beavers into piling branches on loudspeakers playing sounds of

running water. This gives evidence that dam building may be a purely
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instinctive activity. But this theory doesn't explain the beaver, in natural
settings, repairing an almost silently leaking dam, yet failing to dam a
stream rushing noisily into its pond. Beavers also don't build dams when
natural ponds are available, even when there is plenty of rushing water.
Griffin speculates about an inherited template, and points out that the
behavior of beavers would be facilitated if the beavers could visualize
the future pond." A behaviorist would maintain that the beaver's actions
result from inherited tendencies augmented by reinforcement learning.
On a later tour stop we'll encounter yet another view, called participatory
improvisation by Agre and Chapman: "Improvisation, like Planning, in.
volves ideas about what might happen in the future. Improvisation differs
from Planning in that each moment's action results, effectively, from a
fresh reasoning-through of that moment's situation" (1987, p. 2).

There are many other such examples of animal architecture among the
social insects, say the leaf-cutter ants. Their behavior raises the issue of
collective, versus individual, knowledge or competency. "Aunt Hilary," to
use Hofstadter's term for an ant hill as a collective entity (1979), can build
an arch. I doubt that any individual ant can even conceive of one. Yet it's
difficult for me to imagine an arch emerging from the purely instinctive
and local activities of an individual ant. There must be analogous situa-
tion involving humans. Probably no single human could build, say, a Boe-
ing 747 or a space station.

Could dam-building beavers, and even arch-building ants, be conscious
of what they're doing in something like the way a human aircraft builder
is? Griffin suspects so. So do I, with the caveat that major aspects of their
consciousness, particularly the ant's, may differ materially from that of
the human. I also believe that the Agre-Chapman theory of situated activ-
ity (Agre forthcoming; Chapman 1991) will help to clarify our thoughts
about animal architecture.

Communication Among Animals

Communication, interpreted broadly, is ubiquitous in the biological
world. Some of this communication is clearly instinctive, genetically ex-

plained. Is all of it? Or does some communication between animals yield
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evidence for animal minds? Cooperative hunting, suggestive of planning,
provides some evidence.

Lions, being large and often diurnal, are relatively easy to observe while
hunting. I recently watched, via TV documentary, a male lion half-
heartedly pursuing a wildebeest. After a short chase, the wildebeest found
itself in the claws of a second male lion that had been lying in ambush
downwind. The pair promptly began to feed.8

Schaller (1972) found that groups of four or five lionesses, hunting to-
gether, often approached their quarry starting in a line, with the center
lionesses moving more slowly. In this way, at the time of the final rush,
the lionesses were in a U-shaped formation surrounding the quarry on
three sides.

Does either of these anecdotes give evidence of intentional coopera-
tion? Reasonable opinions could surely differ. But Griffin was fortunate
enough to witness a scenario even more suggestive of intentional coopera-
tion. A group of five lionesses approached two groups of wildebeest sepa-
rated by a road. Two lionesses mounted ant hills so as to be clearly visible
but pose no threat. A third crept along a ditch paralleling the road until
she was between the two bands of wildebeest. Then a fourth lioness
charged out of the woods adjacent to the leftmost band, driving them
across the road toward the other band. The lioness in the ditch easily
killed one wildebeest as it jumped the ditch. All five then began to feed.

Griffin says:

This single observation cannot be taken as conclusive proof of intentional cooper-
ation, but it was certainly very suggestive. Why should two lionesses climb to
conspicuous positions where the wildebeest could easily see that they presented
no serious danger? Why should a third sneak along the ditch to a position about
midway between the two groups? Was it a pure coincidence that a fourth lioness
just happened to rush out from an optimal point at the forest edge to chase the
wildebeest over the ditch where one of her companions was waiting? . . . Consid-
ering the obvious advantages to cooperative hunting, it seems reasonable to con-
clude that lions are capable of planning their hunting tactics. (1984, p. 86)

It's hard for me to believe that the lionesses described by Griffin met as
a committee to devise their plan. On the other hand, it's equally hard for
me to believe that this scenario occurred unconsciously and without some

sort of communication.9
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The semantic alarm calls of the vervet monkeys provide an example of
symbolic communication among nonhuman animals. These monkeys give
three distinct calls in the face of predators, one for the presence of a leop-
ard or other large carnivore, another warning of a large snake, and a third
one saying "There is a martial eagle in sight." These are quite distinct
calls, and specific in their meaning. The monkeys behave in quite different
ways in response to the individual calls. The leopard call sends them into
the high, small branches of a tree. At the eagle call, they move into thick
vegetation near the trunk or on the ground. The snake call causes them
to stand on their hind legs to locate the snake so they can avoid it. When
researchers played the alarm calls over a concealed loudspeaker, the mon-
keys reacted in the appropriate way for the particular call. The experiment
was carefully controlled to verify that the monkeys were responding only
to the semantic content of the calls. Vervet monkeys are also known to
use grunts with meanings.

Symbolic communication is not restricted to primates, nor to mam-
mals, nor even to vertebrates. Honeybees use symbolic gestures to direct
their companions toward food when they perform their waggle dance.
The direction to the food is signaled symbolically in relation to the cur-
rent position of the sun! The dance conveys not only the direction of the
food but its distance and desirability as well. Pretty slick for an animal
with such a tiny nervous system.

Perhaps an even more striking example of animal communication
comes from the weaver ants, who not only communicate about events at
a distance but also pass on hearsay evidence. Weaver ants are remarkable
for other reasons. They build their nests of leaves high above ground.
Sometimes chains of several ants reach from one leaf to the next to pull
them together. They use their larvae as portable glue guns to join the
leaves together. They also go out to search for food. When one returns
with food, it will rub antennae with another worker in the nest, and make
a side-to-side head movement. This tells the other what odor trail to fol-
low to find the food. Some of the other workers will follow the trail, but
not all. Some pass on the communication second hand to yet other work-
ers. The news of the available food and where to find it is passed along a
treelike route serving to recruit additional workers to bring it in. The news
may not always be of food but rather of enemies. In this case, the head
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movement is back-to-front and jerky. Why a different movement? To help
the other know what to expect? This is certainly an example of an animal
passing on specific information the communicator obtained not directly
but from another ant.

Is it possible that the weaver ants communicate consciously? Here's
what Griffin says (1984, pp. 172-173):

The central nervous system of ants are minute compared to those of even the
smallest birds and mammals. But how can we be certain about the critical size
necessary for conscious thinking? Even the smallest insect brain contains thou-
sands of neurons, each capable of exchanging nerve impulses with dozens of oth-
ers. The content and complexity of conscious thought, and their range of
versatility, might be roughly proportional to the volume of the central nervous
system, but an absolute criterion of mass necessary for conscious thinking is not
supported by anything we know about the nature and functioning of central ner-
vous systems.

So animals can communicate. But do they have language? Here's where
we can draw the line. Language must be characteristic of humans, of us.
Or must it?

Animal Language

According to Zuckerman, a distinguished biologist, language is:

the critical evolutionary development that made man a unique primate, and one
that released him from the immediate present within which apes and monkeys are
tied, and by so doing opened for us human beings a world of our own creation,
with a past, a present, and a future, one limitless in time and space. . . . it is what
apes and monkeys do not share that makes us humanlanguage. (1991)

Is there, in fact, no past and no future without language? Don't some
animals (dolphins) exhibit memory of the past? Don't some (beavers) ap-

pear to plan for the future? How do we know that nonhumans don't
imagine? I suspect that some nonhuman animals do imagine: lions lazing

on a hot afternoon, for example. But that's merely a suspicion. I'm not as

confident as Chuang Tzu was of his joyful fish. I am more confident, how-

ever, that the old silverback gorilla who leads his troop to a tree at the far

side of its range, full of freshly ripened fruit, is both remembering having

eaten that fruit before and how to get back to it. I'm almost equally con-

fident that he's anticipating the pleasure of tasting the fresh fruit once
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again. Similar tales are told of the matriarch of a band of elephants lead-
ing them to distant and seldom-used food sources. I don't believe that
past and present depend on language.

Still, I suspect that only humans are concerned with cosmology, the
origin of life, or the mindbody problem. On the other hand, I doubt that
bacteria either remember long term or plan. There must be many degrees
of pastfuture awareness in minds of many degrees. But back to language.

There doesn't seem to be any hard evidence of animals communicating
among themselves using what we would call language, although some
suspect dolphins and whales do. There have, however, been many studies
of animal communication with humans. In particular, there have been a
number of experiments with chimps being taught sign language. Some of
the people who worked with them for yearsTerrace, for example-
turned out to be quite critical of the results, saying that it really wasn't
language at all (Zuckerman 1991). Critics point to a lack of syntax. Some
suspect the "clever Hans" phenomenon,'° where the experimenter may
have been giving off subtle cues that were followed by the animal. The
chimps were communicating all right, but it was thought not to be lan-
guage. And then there is Koko.

Koko is an adult female gorilla who after more than a decade of study,
or training if you prefer, has learned some 2000 words of American sign
language (Cohn and Patterson 1991). She regularly signs to herself, which
makes it hard for me to put much credence in the "clever Hans" phenom-
enon. She's been observed playing with her two dolls, signing a story be-
tween them. When the experimenter walks into the room, she puts them
aside as if embarrassed. (There we go, anthropomorphizing again.)
Koko's play with her dolls may well be evidence of animals imagining.
She also signs regularly with Michael, another gorilla, and has learned
new signs from him. When asked what she wanted for a Christmas (?)
present, Koko replied, "Kitten." After some months of having a kitten as
a pet, it was accidentally killed. On being asked how she felt, Koko re-
plied, "Sad." It seems clear to me that Koko communicates by using prim-

itive features of American sign language. She's pretty poor at syntax. One
can reasonably define "language" so as to exclude what she does.

And then there's Kanzi. Kanzi is a ten-year-old bonobo,11 or pigmy
chimp, from equatorial Africa whose language abilities are said to cam-
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pare favorably with those of a two-year-old human child (Golden 1991).
Kanzi communicates by pointing to lexigrams on a large keyboard. He
asks for specific foods, for specific games, and even "announces his inten-
tions, such as running off to visit another animal." Kanzi uses word order
to distinguish between meanings, and so shows some understanding of
syntax.

There are also animals that communicate using words of the English
language. Pepperberg (1981, 1983) trained an African parrot named Alex
to use some forty English words. Alex will name objects shown to him.
He'll ask for an object with which to play by name. If offered something
else, he will say "no." He also uses a few verbs, and adjectives for shape
and color. There is no claim that Alex "has language." Still, it seems re-
markable that a bird with a relatively small brain can communicate in
this way.

The common assumption is that a larger body requires more motor
neurons, more sensory neurons, and therefore a larger brain for the
"same" degree of intelligence. More neurons are needed just to sense and
control things because there's more to sense and control. So instead of
comparing brain size as a measure of the intelligence of species, it would
seem more sensible to try the encephalization quotient (EQ), the ratio of
brain volume to body volume (or brain weight to body weight). Dolphins
have the highest EQ of any nonhuman animal, approximately twice as
high as the great apes (Wintsch 1990). So one would think that the likely
place to look to falsify the theory of animal language is the dolphins.

Unlike Koko, there are dolphins, Phoenix and Ake, that apparently un-
derstand syntax (Herman et al. 1984). "Syntax is what tells us the vene-
tian blind is not a blind venetian." 12 Presented sentences by means of
gestures or of sounds, these dolphins can distinguish between PIPE SURF-
BOARD FETCH and SURFBOARD PIPE FETCH. In the first case the
surfboard is taken to the pipe; in the second the pipe is taken to the surf-
board. They are also able to substitute new lexical items without training.
When taught the new symbol HOOK, the first time one was told SURF-
BOARD HOOK FETCH, he took the hook to the surfboard. Having
learned the meaning of a symbol in one context, they are able to utilize
what they have learned in another context. They refuse even to try to
execute impossible commands. PERSON SPEAKER FETCH results in no
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movement by the dolphin. Anomalous commands such as PERSON
SPEAKER HOOP FETCH are easily interpreted, resulting in the hoop
being brought to the person. But are these really instances of language
use?

Animal language critic and sea lion researcher Ronald Shusterman
gives this necessary criterion for language: For true language words and
their reference should be interchangeable. That is, words comprehended
by an animal should have a symmetric relationship with their associated
objects, as in human language. Shusterman claims that no nonhuman ani-
mal has passed this rigorous test, and that the apparent linguistic ability
of these dolphins relies on paired associative learning and on conditional
sequential discrimination. They simply learn to perform a different action
depending on the order given. Herman claims the interchangeability test
has been passed by his dolphins. Showing one of them an object and sig-
naling the action yields the same response as if you had signaled both the
object and the action. They treat the sign for ball and the ball itself the
same in this context.

The use of learned symbols in new contexts gives further evidence of
linguistic understanding. These dolphins generalize symbols to various
exemplars of reference. Suppose they have been playing regularly with a
large ball. If one day they have only a small ball to play with and someone
says "Fetch the ball," they fetch the small ball. The dolphins can some-
times understand a symbol even when its referent is absent. They have
been taught to answer questions about the presence of an object (e.g., Is
there a ball in the pool?). They answer yes or no. It takes them longer to
decide that there is no ball in the pool than to find one, which is exactly
what you would expect. They can also answer "yes" or "no" to the ques-
tion of whether a person swimming in the tank has performed a certain
action. I'll leave to the linguists whether all this constitutes the use of
language. But it certainly seems to support the possibility of linguistic
competence in dolphins.

The communication between humans and apes, parrots, and dolphins
described above was largely a result of training via classical behaviorist
reinforcement. There is also one case of symbols coming to have referen-
tial quality for dolphins without the traditional training with food re-
wards. A keyboard with shapes representing an object or action was

Copyrighted Material



placed daily in the tank with two young dolphins. When one of them
touched a key, the object symbolized on it, perhaps a ball, was placed in
the tank. If the symbol represented an action, say a belly rub, that action
was performed by the experimenter. Pressing the key also resulted in an
auditory signal. The order of the keys was changed daily to ensure that
the dolphins were responding to the symbols rather than their positions.
What happened? First, spontaneous mimicry developed. A "ball" whistle
was often emitted just before the "ball" key was pressed, or while playing
with the ball. A "rub" whistle was often used during tactile interaction.
A combination "ring and ball" whistle was invented for use while playing
with both simultaneously. These vocalizations seem to have achieved ref-
erential quality. Amazingly, after two years of not seeing the keyboard,
the dolphins were immediately able to use it again.

It seems that communication is ubiquitous in the animal world, and
that some of it can be pretty sophisticated, using symbols for reference
and paying attention to simple syntax. Whether any of this constitutes
the use of language is a matter of how we want to use the word "lan-
guage," and not a question of the abilities of nonhuman animals. Perhaps
language, like free will and mind, is more fruitfully thought of not as a
Boolean,13 but as a matter of degree. Cheney and Seyfarth go to great
experimental length to show ways in which communication between
monkeys is languagelike and ways that it isn't (1990). They conclude, for
example, that vervet monkeys' sounds for the various predators have se-
mantic content, as do our words. On the other hand, they find that some
monkeys fail to attribute knowledge to others and, hence, to "speak"
accordingly.

Self-Awareness

Among the many claims of uniqueness for humans within the animal
kingdom is that we are the only animal to exhibit self-awareness. Gallup
(1970, 1977a, 1977b) subjected this claim to experimental testing with
primates. His idea was that an animal that isn't self-aware, when looking
in a mirror, would consider the image to be another animal of the same
species. (I wonder if there has been experimental verification of this as-
sumption.) A self-aware animal, on the other hand, would react to the
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image as one of itself. Gallup would allow a primate to play with a mirror
over a period of time to become accustomed to it. He would then anesthe-
tize the animal and put a red mark on its forehead. When the animal woke
up and looked in the mirror, if it was self-aware, it would be expected to
touch the spot, perhaps rub it, while observing its action in the mirror.
Gallup's mirror experiments succeeded with chimpanzees and orangutans
but failed with gorillas, gibbons, and several species of monkeys. He con-
cluded that chimps and orangs gave evidence of self-awareness via the
mirror experiments but no evidence of self-awareness was provided by
the other species.

But Koko seems perfectly self-aware. She signs about herself, and even
to herself. When asked who she is, the response is always multisigned,
and each response is different. They all contain one of the signs KOKO,
ME, GORILLA. Patterson performed her version of Gallup's mirror test
on Koko (1991). She accustomed Koko to having her head rubbed with
a soft, damp, lavender cloth. One day the cloth had lavender face paint
on it, the kind a clown might use. When Koko looked in the mirror, she
immediately rubbed the paint on her forehead.

There are other behaviors put forth as evidence of self-awareness. One
is self-concealment, where the animal is trying to hide the whole body
and not just a part of it. Another is avoiding leaving tracks, an action
attributed to grizzlies. Stags are aware of the dimensions of their growing
antlers. Rowan (1991, p. 287) proposes intentional deception, as Goodall
reports of chimps (1986), as a sufficient condition for self-awareness. His
reasoning is as follows: "For an animal to deceive intentionally, it must
have the idea that the observer (the 'deceivee') thinks that it (the animal)
is thinking and acting in a certain way. This necessitates a self-reflexive
mental capacity and, hence, self-awareness."

Accepting Rowan's argument may entail conceding self-awareness to
vervet monkeys. A member of one band, which is being bested by a neigh-
boring band in an altercation, sometimes deceives the adversaries by emit-
ting a "leopard" call. As a result, both bands scurry into the small
branches, effectively breaking off the fight. Cheney and Seyfarth (1990,
pp. 213ff.) argue persuasively that the call is intentional. They devote an
entire chapter (1990, chap. 7) to deception by nonhuman animals. Trivers
assumes that the practice of deception by animals is well known to biolo-
gists, and argues interestingly that it leads to self-deception (1991).
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What is meant by self-awareness? Clearly, becoming the object of one's
own attention. But there are so many and such varied forms of that atten-
tion. I believe there is no sharp distinction between animals that are self-
aware and those that are not. Just as with free will, self-awareness is best
looked at as a sequence of design decisions. Here's a list of competences
that might or might not be built into a robot by its designer. Each might
indicate some level of self-awareness. Contrast agents who can

Conceal their bodies appropriately
Observe their mental processing
Attempt to modify (improve?) themselves
Recognize themselves in a mirror
Use personal pronouns
Talk to themselves
Talk about their own mental states
Attribute mental states to others
Practice deception

with those who cannot, Koko does the last six.
Well, there's another attempt at establishing human uniqueness down

the tubes. How about rationality? Surely there are no rational animals
other than humans.

Rational Animals?

As with mind, self-awareness, and so on, whether there are rational but
nonhuman animals depends on what we mean by "rational." It would
seem that one might draw a sharp distinction here. For instance, only
humans can do mathematics, right? Well, that depends on what we mean
by "mathematics."

Laboratory animals have been trained to follow rather abstract rules,
for example, to distinguish the "oddball" among members of a set of
objects presented. Shown three blue disks and a red one, they are trained
to pick out the red one. A single such case isn't impressive, but whether

you show them three blue disks and a red one, or three square disks and

a triangle, they can still pick the odd one. They seem able to generalize.
Chimps do rather well on such problems, pigeons less well, and cats and
raccoons poorer yet.
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Mathematicians often want to distinguish symmetry from asymmetry.
So do trained pigeons and goldfish. A goldfish was trained to swim to-
ward a square with a little triangle on top rather than toward a perfect
square. When presented with a circle and a circle with a little semicircle
on top, it swam toward the one with the semicircle on top. Again, it
seemed to generalize, to follow an abstract rule.

There are also reported occasions of animals with some sort of number
sense. Trained ravens can distinguish the number of objects in a group
(up to seven) even when the objects change in size, color, and position.
Even more remarkable are two rhesus monkeys who, when presented
with five digits, chosen randomly and placed at random on a screen, can
select them with the cursor in descending order (Washburn and Rum-
baugh 1991). More recent results have chimps doing very simple
additions.

Surely these chimps, monkeys, and goldfish won't compete with your
eighteen-year-old for admission to her favorite college. Nor am I ready to
attribute rationality to them. Still, their abilities suggest that rationality
in humans had its roots in the animal world. Rationality, again, is proba-
bly better viewed as a matter of degree, of what design decisions were
implemented.

Animal Humor?

The following anecdote concerns work by Gordon and Patterson (1990)
with Koko's friend Michael, also a gorilla. They say, "Sometimes when
we work with Michael using voice only, he responds with signs unrelated
in meaning, but similar in sound when translated back into English"
(p. 10).

Here's a transcript of one such conversation with Michael:

Penny: Can you work?
Michael: Work.
P: How do you sign stink? (voice only)
M: Stink ear eye.
P: Sign belly button? (voice only)
M: Bellybutton. Berry bottom.
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My first impression on reading this transcript was that Michael was
trying to be funny. Not very sophisticated humor, I grant you, but humor
nonetheless. After some struggle to find a better explanation, I still view
it as an attempt at humor. Perhaps humor is common but undetected in
the animal world. I wonder if baboons tell jokes to one another. Or could
it be that humor depends on language? In any event, it's no longer clear
to me that we're the world's only comedians.

After all this recounting of experiments and anecdotes about the cognitive
capabilities of other animals, it would be nice to draw some conclusions.
Do animals have minds or not?

I believe, à la Sloman and free will, that there is no sharp distinction to
be usefully made between animals with mind and those without. If we
assume that other animals have no cognitive abilities, we're not likely to
find any. If we assume they may have such abilities, we are more likely
to recognize their occurrence. The evidence seems clear that many other
animals can cognize to some extent. The questions of interest now are to
what extent, and how do they do it?

I also see no sharp distinction between those animals with rational
mind and those without, though this is a less strongly held belief. There
seems to be no sharp distinction even between those animals with lan-
guage and those without, unless one draws an arbitrary line. In each of
these cases, I'd prefer to focus on the design decisions facing a robot engi-
neer re mind, rationality, and language.

I also believe that a synthetic, bottom-up approach, a study of the
"mechanisms of mind," will yield significant insights into cognition in
humans and animals as well as in machines. Let me be clear that I am
advocating this approach in addition to continuing work in the fields of
cognitive psychology, artificial intelligence, and neuroscience. This ser-

mon will be preached more than once before we complete our tour.
Next, let's visit the synthetic, top-down approach of symbolic AI.

Notes

1. Keep in mind that our physicalist assumption from chapters 1 and 2 implies
that any consciousness results from some underlying mechanism. Such a con-
sciousness mechanism would not fall within Griffin's mechanistic alternative.
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Let me remind you again that the term "adaptive" is used in at least three
different ways. We can say that the species has adapted by evolution, that individ-
uals adapt by learning that changes their long-term patterns of behavior, or that
an individual is behaving adaptively by changing short-term behavior in order to
cope with short-term environmental changes.

Pop quiz: How many human discoveries resulted from accidents? Can you
name some?

Does behavior due to conscious thought result from something other than
learning or genetics? How else can it come about? Intuition, perhaps, or ingenu-
ity? I think we're viewing the same elephant from different levels of abstraction.

We'll talk later in this chapter about the relationship between brain size and
body size.

I say "seems to" because I'd prefer some quantitative estimate of the carrying
capacity of the leaf-cutter's brain compared with a similar estimate of the informa-
tion requirements of its behaviors. Maybe this is too much to ask for.

I apologize for repeatedly referring to Agre and Chapman's work without tell-
ing you about it. Unfortunately, it doesn't lend itself to brief encapsulation.

I specifically mention "male" lion because such stories are usually told of lion-
esses, who do almost all the hunting for a pride. These two males were indeed
members of a pride containing females, but had wandered away from the rest of
the pride and were hunting alone.

What motivates this lack of belief is, of course, the old watchmaker argument.
On finding a watch with its many finely cooperating parts, one expects that, some-
where, there was a watchmaker. Dawkins (1987) goes to great lengths to demolish
this argument in the case of complex natural creatures such as humans.

Clever Hans was a show horse who would tap out the answer to simple sums
like 4 + 3, stopping after seven taps. People eventually concluded that Hans was
taking cues from his master unbeknown to anyone, including his master. Seems
pretty clever to me.

The bonobo is the primate whose sexual behavior most resembles that of
humans. In particular, it prefers the missionary position for intercourse, and is
anatomically suited for it. Also, the females are continuously in estrus.

The material in this section on dolphins, including this quote, is from
Wintsch (1990).

A Boolean variable takes only two values, which may be interpreted as "yes"
or "no."
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Symbolic AI

Our artificial minds tour is billed as an exploration of the mechanisms of
mind. But the first stop consisted only of a preview of coming attractions.
The second was spent with philosophers discussing the nature of mind,
and the third with ethologists speculating about animal minds. When are
we going to explore anything that looks like a real "mechanism of mind"?
Is there anything that even remotely resembles an artificial mind? 1f there
is, let's stop there.

OK. On this stop we'll visit SOAR,1 a prime candidate for the title of
artificial mind. For some preliminary background we'll first take a peek
at production systems, a possible mechanism of mind and the basic struc-
ture of SOAR. With some familiarity with SOAR as a foundation, we'll
then eavesdrop on the first AI debate, an ongoing discussion of whether
we can ever hope to see a system worthy of being called an artificial mind.

Productions systems, and SOAR, are a part of what is now called sym-
bolic artificial intelligence. In chapter 1 we spoke of symbolic AI as the
art of making machines do things that would require intelligence if done
by a human, such as playing chess, speaking English, or diagnosing an
illness. This rather engineering approach to Al will prove excessively nar-

row for our current purposes. Fortunately, Sloman (1986) gives a broader
view that should be ideal: "AI is a very general investigation of the nature
of intelligence and the principles and mechanisms required for under-
standing or replicating lt." This view exhibits both the engineering side of
Al and its cognitive science side. Both SOAR and the first AI debate are
intimately concerned with each side.
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Production Systems

Introduced in 1943 by Post, production systems were first employed to
model intelligence by Newell2 and Simon (1972). Since then, they've
played a major role in several symbolic AI systems, including SOAR. They
also underlie one AI programming language, OPS S (Forgy and McDer-
mort 1977), and provide the theoretical foundations of rule-based expert
systems (Buchanan and Shortliffe 1984).

To comprehend the structure of a production system more easily, let's
keep a motivating example in mind. We'll use the eight puzzle, an abbrevi-

ated version of the familiar, cheaply constructed, plastic sixteen puzzle
that children so often bring to their daddies, crying, "It's broken!" The
eight puzzle (see figure 4.1) consists of eight numbered squares in a three-
by-three grid, leaving one empty position. It comes in some initial state,
and challenges the user to transform it into some goal state by successively
moving squares into the blank position.

Suppose we have a systemanything that changes over time. The eight
puzzle, together with someone or something trying to solve it, is a simple
system. At any given instant in time, that system has a current state given
as a description of its various parameters. For the eight puzzle, the collec-
tion of all the positions of the small squares would constitute its current
state.

The state space of a system is the set of all possible current states, that
is, the set of all the states the system could possibly assume. The state
space of the eight puzzle consists of all possible arrangements of the eight
small squares within the large one. In many cases one can represent the

Initial state

Figure 4.1
The eight puzzle (adapted from Laird et al. 987)

Goal state
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state space geometrically, so that you can think of the states as points in
some kind of a multidimensional space. For example, one might represent
states of the eight puzzle as integer points in a nine-dimensional space.
Thus a state would be represented by a vector containing the integers 1,
2, . . . 8 in some order, with a O inserted to stand for the empty space.

Take the initial state of the system as a starting point in the state space
and track the sequence of current states of the system as it moves toward
its goal. You can think of this track as being a trajectory in a dynamical
system. "Dynamical system"? Let's take a brief detour to view this im-
portant attraction.

In its most abstract form a dynamical system consists of a set X, called
its state set, and a transition function, T, that maps X into itself.3 If we
think of the system's changing in discrete stepsa discrete dynamical sys-
tem4then T specifies for each state s in X its next state, T(s). Starting
with some initial state s, as in the eight puzzle, the series of states through
which the system steps before arriving at a goal state is called the trajec-
tory of s. A trajectory need not lead to a fixed point, such as a goal state,
which is always mapped by T to itself. It may be periodic, visiting each of
several states in turn over and over again, as shown in figure 4.2.

Initial point

Fixed point

Figure 4.2
Trajectories in state space

Initial point
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A production system is a special kind of discrete dynamical system that
consists of three components. One is the global database, which com-
prises the data of the system. Another is the set of production rules, the
operations of the system that take it from state to state. Finally, the con-
trol structure acts as the executive of the production system, determining
which production rule will fire next.

The global database is sometimes referred to as working memory,
short-term memory, or the fact list. It's the system's representation of the
current state of its world. In other words, the global database at a specific
time can be thought of as a point in state space. The state space of a
production system is the set of all possible global databases. Figure 4.3
uses our old friend the eight puzzle to illustrate a global database.

Production rules, often simply called productions, are conditionlaction
rules: whenever a certain condition is satisfied, then a specified action is
performed or may be performed.

Condition-action rules:
WHENEVER (condition) IS SATISFIED, PERFORM (action).

Note that something like pattern matching is required to tell whether
the condition is satisfied. Figure 4.4 is an example of a production rule
from a possible system trying to solve the eight puzzle.

A global
database

Initial

Figure 4.3
A global database

Goal
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Example from the 8-puzzle:
If the empty square isn't next to the left edge of the
board, move it to the left.

Figure 4.4
Production rule

Procedure PRODUCTION SYSTEM

DATA <-- initial global database
until DATA satisfies halt condition do

begin
select some rule R that can be applied to DATA
DATA <-- result of R applied to DATA

end

Figure 4.5
Production system algorithm

Production rules can be thought of collectively as the long-term mem-
ory of the production system, that is, what the system knows: its knowl-
edge base. This is the declarative view. From a procedural view,
production rules are operators. As a collection, they constitute what the
system can do.

Let's take a look at an algorithm for the production system itself (see
figure 4.5). Our procedure is labeled PRODUCTION SYSTEM. First, we
store the initial global database of the system in an appropriate variable
named DATA. We then loop until a specified halt condition is reached,
say a goal state. Inside the loop we select some applicable rule, one whose
condition is satisfied by some fact in DATA. (Not every rule is applicable
to every global database.) The selected production rule is then applied
and the global database, in the variable DATA, is updated. Our new
global database thus reflects the consequences of firing the rule.

What remains of our production system is its control structure, which
performs the selection process in the PRODUCTION SYSTEM proce-
dure. The control structure picks out the production rule to be fired next.
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How does it do that? Via various heuristic search strategies. Search is
required because typically not enough is known to point directly to the
ideal rule. The search is heuristic in the sense that it's likely, but not guar-
anteed, to find the best choice. Nilsson (1980) describes several produc-
tion system control strategies with such colorful terms as irrevocable,
backtracking, graph-search and hill-climbing.

Let's see how the flow of control goes through a production system.
Figure 4.6 may help. You start with some initial global database, a set of
facts that defines the initial state of the system. Consulting that set of
data, the control structure selects a rule to be fired. The rule is then fired.
That firing results in some change in the global database. The system con-
tinues to loop in this way until a halt condition occurs. The system then
stops. It seems pretty simple so long as we ignore the tricky part: choosing
the next rule to fire.

While the human user of a production system may think of its global
database as representing something in the outside world, to the produc-
tion system its global database is its world. The control structure perceives
this internal world in some unspecified way and then acts on it via the
production rules. For it to be of use to us, some human must provide the
initial global database and interpret the final global database. Relative to
the outside world, a production system is purely a syntactic device manip-
ulating symbols without regard to their meaning. Its relations to the out-

CONTROL STRUCTURE
(Rule Interpreter)

KNOWLEDGE BASE
(Rule Set)

Figure 4.6
Control flow through a production system
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side world, its meanings, its semantics, must be provided by a human.
We'll confront this issue of connecting mechanisms of mind to the outside
world frequently during our tour.

Now we've had a look at one possible mechanism of mind. (After all,
such a device can solve the eight puzzle.) We know something about what
a production system is and how it operates. The obvious and important
next question is about its capability. What sorts of activities can a produc-
tian system control? What problems can it solve? What can it compute?
It's going to turn out that production systems can control, solve, or com-
pute anything a computer can, no more and no less. To convince our-
selves, we need to know what a computer can do, what it means to
compute. Let's take a short side trip to visit an esoteric topic from theoret-
ical computer science, Turing machines.

Turing Machines

Turing machines exist only in the way that numbers exist, as mathemati-
cal entities. But useful mathematical entities. You may think of a Turing
machine as an abstract version of the kind of computer that you work
with on your desk. That won't he quite right, but it's close enough to ease
your way. Figure 4.7 may be helpful.

A Turing machine is composed of a tape, a read-write head, and a
finite-state machine. The tape is essentially its input-output device, corre-
sponding to the keyboardlmonitor of your PC or Mac. The read-write
head can read a symbol from the tape and can write one on it. The head
also can move itselfchange its position on the tape by one square left
or right. The read-write head is analogous to a combination keystroke-
reader/cursor-control/print-to-the-monitor routine. The finite-state ma-
chine acts as the memory/central processor. It's called a finite-state
machine because it can keep track of which of finitely many states it is
currently in; it has some finite memory. Knowing which state it's in, and
knowing what symbol was just read from the tape, the finite-state ma-
chine will determine what symbol to write, what state to change to, and
which way the head should move (left or right). It may, of course, rewrite
the same symbol, remain in the same state, andlor keep the head where it
is. Let me say all that again. The finite-state machine uses two pieces of
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Tape

Figure 4.7
Turing machine

input, the symbol that's currently being read from the tape and its current
state, to determine three actions. First, it can possibly write a new symbol
on the current square of the tape. Second, it can possibly assume a new
state. And third, it can possibly move the current position of the head one
square to the left or to the right.

Input to a Turing machine and output from it come from some speci-
fied, but arbitrary, finite alphabet, which, in figure 4.7, is comprised of at
least the three symbols 0, 1, and blank. A finite set of states, again arbi-
trary, must be specified. Finally, the action of the finite-state machine must
be specified by a transition function that acts on a state/input-symbol pair
and yields a state/output-symbollhead-move triple. With these three, the
formal description of the Turing machine is complete. Its tape is assumed
to be potentially infinite, that is, as large as need be for the current com-
putation. Certain states are typically designated as halt states. Upon en-
tering such a state, the machine halts, that is, it no longer changes state,
writes symbols, or moves the head.

Why do this kind of thing? Why all the formality? Well, Turing, a Brit-
ish mathematician who is considered the grandfather of both computing
and artificial intelligence, wanted to prove theorems about what could
and could not be computed (1937). Some such formal definition was es-
sential. During the 1930s, 1940s, and 1950s, many formal approaches to
computability were offered. Each said something about what is comput-
able and what isn't. All these approaches turned out to be equivalent in
that they all gave you exactly the same things being computable. The Tu-

Finite state machine

Read-write head
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ring machine, being relatively easy to describe and amenable to a geomet-
ric illustration, became the standard representative of these equivalent
approaches, and is now invoked in almost every discussion of
computability.

So the question is, what can a Turing machine compute? Answer: any-
thing that can be computed. This is one view of the Church-Turing thesis:
any effective procedure (algorithm) can be implemented via a Turing ma-
chine. This is not simply a formal definition, nor is it a provable theorem.
Rather, it's a statement that meets our intuition about what effective com-
putability should mean. That's the reason it's called a thesis. It serves to
make precise our rather intuitive idea of what computation is about. Any
old-timers among you should keep in mind that we're talking about digi-
tal computation, not analog. Now that we've seen enough of what's com-
putable, let's get back to the question of what production systems can
compute.

Production Systems vs. Turing Machines

As mentioned above, several formal approaches to computability were
offered, all of which proved equivalent. One of these approaches was this
very notion of a production system, introduced by Post in 1934. It
was later shown that any computation on a Turing machine could be
emulated by a production system and vice versa. Production systems
today are typically simulated on digital computers and, hence, should
be implementable by Turing machines. Here we're interested in the con-
verse. How can production systems implement Turing machines?

Let's see how one might build a production system to implement some
given Turing machine. Suppose someone gives us a Turing machine and
says, "Can you emulate this with a production system?" What would we
do? First, we'd define the global database. We would want to know the
current head position, the symbols on the tape, and their positions. We'd
write all this into our global database. We'd also have to assume that
there's sufficient room to write it. If we're going to implement a Turing
machine, our global database must be infinitely expandable, as is the tape

on the Turing machine. Otherwise, there may be insufficient room in the
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global database to hold the arbitrarily long string of symbols on the tape.
Remember, these are idealized notions of computability.

With global database in hand, where are we going to get our produc-
tion rules? From the Turing machine. By definition, its finite-state ma-
chine knows what to do when presented with a given current state and a
given input symbol. We may assume that this knowledge is in the form of

a transition table whose rows each correspond to some state, and whose

columns each correspond to some input symbol. Then for every cell in
the transition tablethat is, for each pair consisting of a state and a sym-
bolthe corresponding table entry specifies the next current state, a sym-

bol to be written, and possibly a head movement. Thus, the production
rule extracted from the transition table cell corresponding to state i and
symbol 2 will read something like "If in state I and reading symbol 2,
then go to state 2, write symbol 4, move head i to the left." That's a
perfectly good production rule. We have only to write one of those for
every entry in the transition table of the Turing machine.

With our global database specified and all needed production rules cre-

ated, we lack only a control strategy for our production system. How will
we select the particular rule to employ at each time step? This is easy. At
any given time, there will be only one rule whose preconditions are satis-

fied, because there's only a single current state and a single symbol read
by the head at any time. So there's only one rule to choose from. The
control strategy says to select that rule.

The production system thus defined will faithfully emulate the compu-
tation of the Turing machine. Since our Turing machine was arbitrary,
any Turing machine can be emulated by some suitably defined production

system. Given an algorithm, by Church's thesis, some Turing machine can

execute it. But some production systems can emulate that Turing ma-
chine. Hence, some production system can execute any given algorithm.
Thus, production systems can compute whatever is computable.

The point of all this is that production systems are powerful computing
devices. They're not little toys, even though they may be used for toy prob-
lems like the eight puzzle. If you want a production system to guide a
spacecraft to the moon, you can, in principle, have one. Researchers in
symbolic Al use production systems to model cognitive processes. We've
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seen in this section that if such modeling can be accomplished by comput-
ers at all, it can, in principle, also be accomplished by production systems.
If computers suffice to create intelligence, so do production systems. With
that point made, let's visit a recent extension of production systems.

Parallel Production Systems

The era of parallel computing, that is, of computing simultaneously with
multiple processors in a single machine, is fast approaching. Current par-
allel computers run from four to ten quite powerful processors, or up to
65,000 simple processors at once (Hillis 1985; Almasi and Gottlieb 1989,
chap. 10). With this kind of hardware available, one can begin to think
seriously of parallel production systems, that is, production systems
where more than one production rule can fire simultaneously.

Suppose that instead of working with a serial computer, we had a paral-
lel machine with many, many processors, all processing in parallel. Sup-
pose also that it's a shared memory machine, meaning that a single block
of memory is shared by all the processors. In a shared memory machine
the processors communicate with one another by writing and reading to
and from memory. When processor A wants to communicate with proces-

sor B, it writes a message to memory that can then be read by B. Shared

memory machines are typically MIMD (Multiple Instructions Multiple
Data) machines. Thus two processors may be simultaneously executing

quite different instructions on quite distinct data.
Shared memory machines seem ideal for implementing parallel produc-

tion systems. Common memory holds the global database; all facts are
stored in memory. A few processors would be devoted to controlling input

to the system and output from it. Each production rule, or a small set of

them, is implemented by its own processor. Each processor is like a little

demon,6 who sits and watches memory. When he sees the conditions for

(one of) his production rule(s) pop up, "Aha!" he says, and he fires. Some

sort of conflict resolution strategy would be needed because you may very

well have two demons who want to fire at the same time and write to

memory. That's OK as long as what they write doesn't conflict. But if both

of them want to change the same place in memory to different values,
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then someone's got to resolve the conflict.7 In practice, this won't be much
of a problem because a typical shared memory machine has only one path
(called a bus) down which data can flow to be written to memory. The
machine itself typically implements some sort of conflict resolution strat-
egy when two processors want access to the bus simultaneously. I've
glossed over timing problems here, but the major point holds: shared
memory parallel computers seem ideally suited for parallel production
systems.8

Note that no central executive rules here. Such a parallel production
system is strictly a local operation. Each demon looks only to its own
condition. No one has a global view, much less global authority. The clos-
est thing to a central executive would be the conflict resolution device,
but its powers are quite limited. A system like this is reminiscent of Min-
sky's Society of Mind (1985), which was mentioned in chapter 1 and will
be visited at more length during a later stop on the tour. Each of the
processor demons, ready to fire his production rules, can be thought of
as an instance of a mechanism of mind, an agent in Minsky's terms. Each
of these little rules would have its own enabling mechanism.

All this brings us at last to SOAR.

SOAR

All this talk of production systems was by way of background for visiting
SOAR (Laird et al. 1987; Newell 1990; Rosenbloom et al. 1991). Why
choose this one among the literally thousands of symbolic AI programs?9
Because SOAR's designers, up front and unhesitatingly, declare it an ar-
chitecture for general intelligence:

the goal is to provide the underlying structure that would enable a system to per-
form the full range of cognitive tasks, employ the full range of problem solving
methods and representations appropriate for the tasks, and learn about all aspects
of the tasks and Its performance on them. In this article we present SOAR, an
implemented proposal for such an architecture. (Laird et al. 1987, abstract, p. 1)

SOAR, then, should not be thought of as a mechanism of mind but,
rather, as a collection of mechanisms of mind, well organized so as even-
tually to produce general intelligence. SOAR is also intended as the basis
for a psychological theory that finds its expression in Newell's Unified
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Theories of Cognition (1990). The above quote constitutes a high-level
specification for SOAR and according to its authors, for general intelli-
gence as well.

SOAR, they say, must be able to work on the full range of tasks, from
the routine to extremely difficult open-ended problems. That's why they
want to "employ the full range of problem solving methods and represen-
tations." Notice the assumption that representations are necessary for
problem solving. We'll encounter controversy about the role of represen-
tations before our tour is done. The extent to which representations are
necessary for general intelligence is the center of what I call the third
AI debate.'°

The goal of the SOAR project is to provide an architecture capable of
general intelligence. There's no claim by its designers that it yet does so.
They mention several necessary aspects of general intelligence that are
missing:

SOAR has no deliberate planning facility; it's always on-line, reacting
to its current situation. It can't consider the long-term consequences of an
action without taking that action.

SOAR has no automatic task acquisition. You have to hand-code the
task you want to give it. It does not create new representations of its own.
And its designers would like it to. For Newell and company, not creating
representations leaves an important gap in any architecture for general
intelligence.

Though SOAR is capable of learning, several important learning tech-
niquessuch as analysis, instruction, and examplesare not yet incor-
porated into it.

SOAR's single learning mechanism is monotonic. That is, once
learned, never unlearned; it can't recover from learning errors.

Finally, a generally intelligent agent should be able to interact with the
real world in real time,1' that is, in the time required to achieve its goal
or to prevent some dire consequence. SOAR can't yet do this, but Robo-
SOAR is on the way (Laird and Rosenbloom 1990; Laird et al. in press).

With many capabilities of general intelligence yet to be implemented,
SOAR's architecture may not be stable. Some mechanisms may change;
although SOAR's builders think it's roughly stable, they won't guarantee
it. With all these caveats out of the way, let's explore SOAR'S mechanisms.
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SOAR's Mechanisms
At this stop on the tour we're concerned with symbolic AI, as opposed to
other kinds of artificial intelligence. How is SOAR symbolic? How does
it use symbolic representation? To begin with, the most elementary repre-
sentation within SOAR is of objects as collections of attribute-value
pairs. If SOAR's task is in the toy world of blocks (blocksworld), for ex-
ample, it might represent b13 as (block b13 Acolor red Ashape cube).
Acolor red" and Ashape cube" are attribute-value pairs.'2 SOAR's

goals are also represented symbolically, and progress toward them is ac-
complished by symbolic processes. SOAR's knowledge of the task envi-
ronment is encoded symbolically in production rules and is used to govern
its behavior. (Later, we'll struggle with the distinction between a system
being rule describable vs. rule governed. You can describe the motion of
the planets around the sun by rules, but it would be hard to say that
your rules govern their motion.) SOAR, as any production system must,
explicitly uses its knowledge to control its behavior. Symbolic representa-
tion is used explicitly and crucially.

SOAR's problem-solving activity is based on searching its problem
space for a goal state. The state space of a problem-solving dynamical
system, SOAR in this case, is called its problem space. Our old acquain-
tance the eight puzzle provides an example (see figure 4.8).

The triangle in figure 4.8 bounds only a small window into the problem
space. There is much more to it. On the left is the initial state for some
particular problem instance. Arrows out of a given state point to possible
next states. A move is chosen, and then another. This continues until a
goal state is reached. Task implementation knowledge and search control
knowledge are used to choose the next move. For example, a task imple-
mentation production rule might allow you to move left if you're not al-
ready at the left edge of the board. But when should this rule be applied?
There may be other production rules that encode your strategy for choos-
ing which of the valid moves to act on. You may, for example, want to
have a method of determining how far each of the possible moves leaves
you from a goal. Using this method, you choose the operation that moves
you closer to the goal. This strategy is called meansends analysis. There
are lots of such strategies.

Goals and subgoals represent what the system wants to achieve. Don't
take this too literally. It's really what the designers of the system want it
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to achieve. The system has no intentionality in the ordinary use of the
word, although it may well have in a philosophical sense (Dennett 1987).
Goals and subgoals control the system's behavior. Newell and company
chose the problem space as the fundamental organization for all goal-
oriented symbolic activity. Every task for SOAR is formulated as finding
a desired state in a problem space. As a consequence, every task takes the
form of heuristic search. Symbolic AI is built around heuristic search.

Except for the current state, and possibly a few remembered states, the
states of a problem space do not preexist as data structures. Except for
toy problems, nobody has the whole problem space in front of them.
Problem spaces are much too large. New states, although they exist theo-
retically as part of the problem space, must be generated for the system
by applying operators to states currently existing within the system. This
seems like an obvious point, even a trivial one, but I think it's important.13

At any given time SOAR occupies a context consisting of its current
goal, the chosen problem space, its current state within that problem
space, and perhaps an operator with which to move to the next state.
All of these are represented explicitly and symbolically as objects with
attribute-value pairs residing in working memory. A goal might look like
(goal g3 Aproblemspace p14 Astate sSl). If asked to tell you about itself,
it might reply, "I'm a goal. My name is g3. I'd like to move problem space
pl4 to its state sSl." A problem space might look like (problem space
p14 Aname base-level-space), a state like (state sSl Aobject bSO b70 b64
Ainput i16 Atried o76), and an operator like (operator o82 Aname

comprehended).
A production in SOAR is, of course, a condition-action rule. Its condi-

tions require that certain objects be in working memory. These objects
may be domain objects (e.g., a numbered square in the 8 puzzle), goals,
a problem space, a state, an operator, and so on. Its action must add
objects to working memory. No other action is allowed. Productions in
SOAR serve only as memory, reacting to cues (conditions) by recalling
associated facts to working memory (its action).

If productions act only as memory, who makes the moves? In the pro-
duction systems we looked at previously, changes of state were effected
by productions directly. The particular production to act was chosen by
the control system. SOAR operates quite differently. Its control mecha-
nism leads it through a decision cycle composed of an elaboration phase
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and a decision procedure. During the elaboration phase, each production
whose conditions are satisfied acts to deposit objects in working memory.
These new additions may then enable other productions that remember
more objects. This procedure continues in a recursive forward chaining
sort of way until, at last, no new memories are added. Thus ends the
elaboration phase of the decision cycle. Note that conflict resolution is
missing; any production with satisfied conditions fires. Note also the pos-
sibility of a parallel production system being employed to advantage.
Working memory then contains, among other objects, operators, each
clamoring to change the current state of some problem space.

To understand the second part of SOAR's decision cycle, the decision
procedure, we'll need to meet yet another type of object, the preference.
Some of these may have been deposited in working memory by the firing
of productions. One such, represented symbolically by (preference o82
Arole operator Avalue acceptable Aproblemspace p14 Astate sSl), finds
operator o82, which moves problem space pi4 to state sSl, an acceptable
next move. Other possible values of the Avalue attribute of a preference

are reject, better, worse, best, worst, and indifferent. The semantics are
intuitive. They mean what you think they mean. One may prefer o82 to
o16 (better). Another may reject o16 altogether, even though some other
finds o16 quite acceptable. The rules for applying these preferences follow
commonsense semantics closely. Reject takes precedence. If two are ac-
ceptable and the choice is indifferent, it is made at random. Preferences,
like other objects, take part in both the condition and the action ends of
productions, and thus accumulate in working memory during the elabo-
ration phase. Preferences may be for or against operators, problem spaces,

goals, or states.
Preferences also afford Newell an occasion for espousing a necessary

condition for intelligence (1990, pp. 170-71):

An intelligent system must also be able to express its knowledge about what ac-
tions should be taken. It must be able both to represent an action, without taking
it, and to represent that an action should be taken, again without taking it. This
latter may be a little less obvious, but if it were not possible, how could delibera-
tion of what should happen occur? Furthermore, since it is the architecture that
finally actually takes an action (even an operator, which is an internal action),
there must be an architecturally defined and understood communication about
what action to take. Preferences are Soar's means of such communication.
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One can agree with at least part of Newell's argument without Joining
the ranks of those who maintain that symbolic representation is necessary
for all intelligent action. Later in the tour we'll meet the ideas of Maes
on action selection (1990). She proposes a system that plans without rep-
resenting its plans to itself, one that deliberates numerically, using spread-
ing activation, rather than symbolically.

SOAR's decision procedure uses only preferences, and in a straightfor-
ward, commonsense sort of way. To be chosen for the new context, an
object must be acceptable. No rejected object may be chosen, even if it is
acceptable. Other things being equal, a better object must be chosen. And
so on. An object may be proposed (acceptable) but rejected. Deliberation
occurs. When al! the decisions are made, SOAR's decision cycle starts
again with another elaboration phase. The cycle continues until SOAR
has solved its problem, that is, has reached a goal state in its problem
space.

Will repetition of this decision cycle always lead to a solution? No.
Sometimes it leads to an impasse so that problem solving cannot con-
tinue. For example, lack of preferences between task operators can create
a tie impasse. This situation is detected by the architecture and a subgoal
is automatically created for overcoming the impasse. In the case of the
tie impasse, the subgoal might be to choose between the two operators.
Goals other than initial goals are created only in response to impasses.

A new subgoal pushes a new context onto SOAR's context stack.14 This
new context contains only a goal state, that is, it looks like (g, - -, -),
with g representing the new goal and empty slots for problem space, cur-
rent state, and operator. SOAR then may choose a problem space in
which to search for this new goal state, a current state from which to
begin its search, and the first operator with which to change state. Thus
SOAR creates a dynamically changing hierarchy of subgoals to help it
reach its initial goals. Newell conjectures that such a structure is necessary
for intelligent action: "one of the main things that has been learned in AI
is the effectiveness, and apparent necessity, of a goal hierarchy, with goals,
subgoals, and alternative subgoals, for controlling behavior to achieve
intelligent performance" (1990, p. 174). The truth of this assertion un-
doubtedly depends upon where we draw the line for intelligent action. At
the high level of human problem solving, Newell must be right. On a later
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stop of our tour we'll see that Brooks's robots may be viewed by an out-
side observer as having a goal hierarchy. But internally, Brooks maintains,
there are no such representations (1991).

Just as a new context is pushed onto the context stack in response to
an impasse and its resulting new subgoal, so an existing context is popped
from the stack whenever its subgoal is satisfied. More generally, an ex-
isting context reemerges whenever some decision changes a context fur-
ther down the stack, making its subgoal irrelevant. SOAR's decisions are
not constrained by the structure of its context stack but by the preferences
in working memory. (For a more detailed exposition, see Newell 1990,
chap. 4.)

Where do the initial goals come from? From the human user, of course.
SOAR has no agenda of its own. Later we'll encounter Herbert, one of
Brooks's robots (1990c), who wanders around an office collecting empty
soda cans. Does Herbert have its own agenda, or Brooks's agenda? Do
we have our own agenda, or one supplied by the Blind Watchmaker
(Dawkins 1987)? Earlier! asserted that mind is a property of autonomous
agents. One can argue that all agendas arise from outside the system, that
SOAR, when supplied by some user with a problem to work on, is just
as autonomous as Herbert, or as you and I. Perhaps "autonomous"
should be understood not in the sense of supplying its own agenda but in
the sense of pursuing that agenda without help or interpretation from
outside the system. But having solved the eight puzzle means nothing to
SOAR. Perhaps we'd best conclude that SOAR is not yet an autonomous
agent and thus, so far, is devoid of mind.

Yet another SOAR mechanism is called garbage collection in computer
science. Suppose it creates a subgoal to choose between two operators
and, in the process of pursuing this, creates some local structures or some
facts about it. The minute the decision is made, all these objects are dis-

carded. The architecture cleans up after itself. The garbage is collected.

But having elaborated as much as machinely possible, having remem-

bered all the potentially relevant facts, and still having reached an im-

passe, how does SOAR extract itself? How does it even begin to find a

way out of its impasse? It uses weak methods, that is, methods of finding

a trajectory through problem space to a goal. One such method, means-
ends analysis, repeatedly finds some operator that reduces the distance
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from the current state to the goal state. Another is hill-climbing. Here the
problem space is represented as a hypersurface in some high-dimensional
Euclidean space15 with goals at maximum points. A hill-climbing proce-
dure moves the system uphill. Many such methods are employed. They
are called weak methods because they don't require a lot of knowledge.
They can be used in knowledge-lean situations. Typically these methods
are implemented in individual procedures. In SOAR, they are uniformly
implemented by search control productions instead. SOAR climbs hills
because of productions that tell it that this operator has a higher evalua-
tion than that operator. Nothing in SOAR implements hill-climbing
directly, yet it is observed to climb hills. SOAR's weak methods are pro-
duced uniformly by productions.

SOAR also learns, and in a uniform way, by chunking. Suppose SOAR
reaches an impasse and establishes a subgoal to clear it. Weak methods
are used to find additional knowledge with which to arrive at a state satis-
fying the subgoal. If this is achieved, SOAR's chunking mechanism creates
a production whose condition describes the state of affairs leading to the
impasse, and whose action collapses into a single step the trajectory fol-
lowed by the weak methods in clearing the impasse. If this same initial
situation is encountered again, it's not an impasse anymore. The new pro-
duction rule fires during the elaboration phase and the work continues.
This is one-shot learning via collapsing the work of satisfying a subgoal
into a single production. We'll meet other versions of this kind of learning
along the tour.

Experimental evidence shows that learning during one task can result
in increased efficiency in performing other tasks within the same domain.
What's learned tends to generalize within a task domain. New produc-
tions resulting from chunking not only are theoretically available for
other tasks but are actually so used.

SOAR's designers view weak methods as essential to intelligent ac-

tion, being needed whenever a situation becomes knowledge-lean, say
in new problem spaces or when all knowledge is used up. Weak meth-
ods drive learning, since chunking requires some way of attaining goals
before knowledge is assimilated. Weak methods in SOAR are built into
control productions (those producing preferences) that are part of the
domain knowledge. There is no need to learn weak methods. This
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theme of the need for built-in weak methods will recur several times
during our tour.

With all this said, we should now be able to appreciate a more global
view of SOAR's architecture, as provided in figure 4.9. A few minutes
spent contemplating it made SOAR's process more comprehensible to me.
I recommend your doing likewise.

Applications of SOAR
SOAR has been under development for a decade with order of magnitude
loo published articles describing the work. A number of these concern
applications implemented in SOAR. Here, we'll look briefly at one such
and mention a few others.

One of the more successful commercial expert systems is Rl, written
initially at Carnegie Mellon to configure VAXs for Digital Equipment
Company (DEC).17 Some years back I remember reading that DEC de-
voted seven person-years per year to the operation, maintenance, and fur-
ther development of Rl, and produced a net savings of some $25 million
by its use. Based on some 10,000 rules, Rl was, at that time, already a
large and complex system.

Rl has been partially reimplemented in SOAR. Ri-SOAR implements
25 percent of Rl. This is no toy problem. We've seen that SOAR is a

general-purpose problem solver capable of working in knowledge-lean
problem spaces by extensive search. By contrast, Rl is a knowledge-
intensive, special-purpose expert system, carefully tuned to its specific
task, that does as much direct recognition and as little search as possible.
Much to my surprise, Rl proves to be only half again as fast as Ri-SOAR
when working on problems that Ri-SOAR can solve. I'm impressed.

SOAR has been tried out on lots of other tasks. As would be expected,
it performs well on knowledge-lean toy AI tasks and puzzles such as
blocks world,'8 eight queens,19 missionaries and cannibals,2° tic-tac-toe,
and tower of Hanoi.2' It also has little difficulty with small routine tasks
such as unification,22 finding roots of equations, or correctly employing
syllogisms. In addition to Rl, SOAR has successfully mimicked other ex-
pert systems such as NEOMYCIN and DESIGNER. Small demos have
been produced for miscellaneous AI tasks such as natural language
parsing, concept formation, and resolution theorem proving.23 A most
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SOAR's architecture (redrawn from Laird et al. 1987)
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interesting development is Robo-SUAR, which interfaces SOAR with the
external world via a video camera and a robot arm to implement blocks
world (Laird et al. 1989).

SOAR's Hypotheses

SOAR embodies some dozen basic hypotheses about the architecture re-
quired for general intelligence that are explicit enough to allow us to com-
pare SOAR with some of the newer methods. Also, these hypotheses can
be viewed as high-level specifications for mechanisms of mind. We will
visit those that seem the most useful for our purposes. Their order is such
that the latter hypotheses often depend on the former.

All lean on the first, the physical symbol system hypothesis, which says
that every general intelligence must be realized by a symbolic system. This
quite explicitly draws a line in the dirt for the second AI debate, which
we shall encounter later on the tour. It seems clear to me that a rational
mind must use some type of symbol system. How else would one do, say,
mathematics? Thus a symbol system seems necessary for general intelli-
gence. But this hypothesis claims more; every general intelligence operates
only by means of a symbol system. The physical symbol system may well
be implemented on top of some other, finer-grained architecture. But at
some level, the physical symbol system hypothesis claims that there must
be a symbol system that accounts for all the observed intelligence in every

intelligent agent. This extends not only to rational intelligence but to ev-

ery other sort as well, say image recognition.
It's this last that bothers me. I agree that a physical symbol system

seems necessary for rational thought.24 It even seems possible that physi-
cal symbol systems suffice for all intelligence, in that any intelligent be-
havior can be implemented by a physical symbol system, given sufficient
time. This last is the rub. I doubt if physical symbol systems could ever
implement in real time the mental activity of a basketball player during a
fast break.25 If this is true, there must be other, essentially different mech-
anisms of mind. Much of the rest of this tour will be spent exploring
various proposals for such. Here's a foretaste of the views of one proposer
(Maes 1991, p. 1):
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Since 1970 the Deliberative Thinking paradigm has dominated Artificial Intelli-
gence research. Its main thesis is that intelligent tasks can be implemented by a
reasoning process operating on a symbolic internal model. . . . This approach has
proved successful in . . . areas such as expert level reasoning. However, only poor
results have been obtained in its application to research on autonomous agents.
The few systems built show deficiencies such as brittleness, inflexibility, no real
time operation. . . . They also spawned a number of theoretical problems such as
the frame problem26 and the problem of non-monotonic reasoning27 which re-
main unsolved (at least within realistic time constraints). Some researchers view
this as evidence that it is unrealistic to hope that more action.oriented tasks could
also be successfully implemented by a deliberative machine in real time.

What Maes calls the deliberative thinking paradigm includes the physi-
cal system hypothesis as well as a second SOAR hypothesis, the produc-
tion system hypothesis: Production systems are the appropriate
organization for encoding all long-term knowledge. Here we have the
"knowledge via rules" position. There are opposing views. Connec-
tionists would prefer to encode long-term knowledge in the weights (syn-
apses) of their artificial neural networks. Brooks would hardwire it into
the layers of his subsumption architecture. We'll encounter each of these
positions on later tour stops.

A third SOAR hypothesis is called the goal structure hypothesis. lt as-
serts that control in a general intelligence is maintained by a symbolic
goal system. It seems clear that any intelligent system must be motivated
by drives or goals or some such, either inherited, learned, programmed
in, or self-generated. The controversial point of this hypothesis is that they
must be maintained symbolically. There are competing hypotheses. Here's
one from Brooks (1991, p. 148): "Each layer of control can be thought
of as having its own implicit purpose (or goal if you insist). . . . There
need be no explicit representations of goals."

SOAR developers also promote the problem space hypothesis, which
contends that problem spaces are the fundamental organizational unit of
all goal-directed behavior. This approach emphasizes search and selec-
tionsearch through problem space via operators and selection of the
appropriate operator. Here's an alternative approach, again from Brooks
(1991, p. 146): "Each activity, or behavior producing system, individually
connects sensing to action." Connectionists offer yet another alterna-
tivelet your artificial neural net spread its activation so as to relax into
an action. Maes (1990) offers a somewhat different version of spreading
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activation, and John Jackson (1987) suggests that various demons shout
each other down, with the loudest allowed to act. We'll take more de-
tailed looks at each of these during later tour stops.

You'll not be surprised to find here the weak-method hypothesis, as-

serting that the weak methods form the basic methods of intelligence.
Arguments in favor were given above. I'm not aware of any against, al-
though many symbolic AI researchers jump immediately to stronger
methods, such as those of Rl (discussed above). Although this form of
the hypothesis implicitly assumes symbolic representation and search
through a problem space, weak methods can also emerge from the newer
approaches that we've already mentioned and that we'll encounter later
on the tour.

The last SOAR hypothesis we'll mention is called the uniform learning
hypothesis. It insists that goal-based chunking is the general learning
mechanism. Recall that chunking remembers an efficient path through a
search tree. While something like chunking is included in every alternative
system (J. Jackson 1987) or would seem a useful addition (Maes 1990),
it's not clear to me how learning from observed examples, learning from
an outside agent, or learning from reading can be accommodated within
the concept of chunking.

Let me remind you that SOAR isn't the only symbolic AI system; it's
not even the only one with pretensions to general intelligence. We might
well have chosen Anderson's Act* (1983) or perhaps CAPS (Just and Car-
penter 1987). My long-range goal in this discussion of SOAR was to pro-
vide you with some basis of comparison for the newer models we'll
encounter as the tour progresses. The short-term goal was to create a
target for the first AI debate. Could it be that the decade of work invested
in SOAR is all for nought because artificial intelligence is inherently
impossible?

Notes

I'm capitalizing SOAR because I think it was originally an acronym. Research-
ers developing the system sometimes write SOAR and sometimes Soar.

Allen Newell died in July 1992. The Earth is poorer.

That is, given any element x of X, T assigns to it another element, T(x), of X.
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Dynamical systems that change continuously over time are even more com-
mon. In this case T is usually given as a solution of a differential equation. On
this tour we'll mostly visit discrete systems.

Analog computation proceeds continuously by, say, voltage variation rather
than by discrete steps, as does digital computation. Of course, analog computa-
tion can be approximated by digital.

This term is common computing jargon, referring to a process that waits
watchfully for certain conditions to occur, at which time it performs its function.

Art Graesser kindly pointed out to me that if you make your rules specific
enough, they'll rarely produce a conflict. But if you rely on more general rules, the
implementation of conflict resolution strategies ends up being a major component
of the system.

I'm not saying that a shared memory machine is necessary for parallel produc-
tion systems. The DADO parallel production system machine built at Columbia
(see Almasi and Gottlieb 1989, pp. 378-81 for a brief description and further
references) spreads the global database among the leaves of a tree of processors.

There are, in fact, other reasonable choices, such as Anderson's Act* (1983),
or perhaps CAPS (Just and Carpenter 1983).

In my terminology, the first AI debate is about whether computing machines
can ever be intelligent, whereas the second questions whether connectionism (arti-
ficial neural networks) can add anything essential to what can be accomplished
by symbolic Al. Both of these debates will be visited at length along the tour.

Consider a program capable of predicting weather with perfect accuracy
twenty-four hours in advance. The rock in its shoe is the forty-eight hours it takes
to make a prediction. Such a program does not operate in real time.

In spite of the superficial resemblance to Minsky's frames (1975) and to the
objects of object-oriented programming (Goldberg and Robson 1983), SOAR's
object representations are much simpler, lacking default values, attachment of
procedures, and inheritance.

Analogously, memories don't exist in humans as data structures, but must be
reconstructed as needed from cues currently existing in the system. The distinction
is analogous to that of looking up a function value in a table as opposed to com-
puting it.

A stack is a computer science data structure analogous to a stack of dishes.
Some piece of information may be pushed on to the stack, that is, added to the
top. Or some piece of information may be popped from the stack, that is, taken
from the top. These are the only means by which information can be stored or
retrieved in a stack.

The position of a point in the three-dimensional Euclidean space in which
most of us think we live is given by a triple of numbers (x1, x2, x3). In a Euclidean
space of dimension n, points are n-vectors of numbers (xi, x2, ....x,). State
spaces are often subsets of some high-dimensional Euclidean space. A hypersur-
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face is the high-dimensional analogue of a two-dimensional surface in three-
dimensional space.

That is, closer to loo than to 10 or 1000.
Rl has since been renamed XCON. VAX names a particular line of comput-

ers manufactured by DEC.

A simulation of a single robot arm capable of recognizing blocks of various
colors and shapes, and of following a command to stack a certain one upon an-
other even if several unspecified intervening moves must be first performed.

Place eight queens on a chessboard so that no one attacks any other.
Produce a plan to ferry three missionaries and three cannibals across a river

by repeated crossings in a boat holding only two people, subject to the constraint
that there must never be more cannibals than missionaries on the same side of
the river.

A stack of disks of decreasing diameter is impaled on one of three stakes.
The game is to transfer the stack to another specified stake by moving one disk at
a time to some stake while never allowing a larger disk upon a smaller.

A process of formal logic useful in automatic reasoning and logic program-
ming (e.g., PROLOG) that's a little complex to explain in a brief footnote.

Again part of automated reasoning and logic programming, and too complex
for a brief footnote.

Although there is some lingering doubt. In my earlier life as a topologist,
much of the mathematics I discovered came in the form of fragmentary visual
images rather than as overt symbols.

This particular image is from Horgan and Tienson (1989), who give argu-
ments for such a belief.

The intractable problem of tracking the side effects of actions of a complex
system in the complex world by making corresponding modifications in the data-
base representing the state of the world.

In ordinary logic, once an assertion is proved, it remains true regardless of
subsequently acquired information. In the real world" I assume that if Tweet)' is
a bird, then Tweety can fly, until I learn that Tweety is a penguin. Nonmonotonic
logics attempt to handle this type of reasoning.
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The First AI Debate

With thought comprising a non-computational element, computers can never do
what we human beings can.

Roger Penrose, The Emperor's New Mind

Setting the Stage

With the above quote from Penrose, the battle is joined. Can we, or can
we not, expect computers to think in the sense that humans do? This
question invites an immediate rejoinder: On an already packed tour, why
give time and space to a question that boils down to how we want to use
the words "thought" and "computer"? The issue, though intriguing,
lacks substance without agreed-upon definitions of the key words. None-
theless, the ideas that arise during the debate will prove important to our
understanding of the constraints on mechanisms of mind. So here we go.

The stage for the debate is set beautifully by John Haugeland (1985,

p. 2). Speaking of artificial intelligence, he says:

The fundamental goal of this research is not merely to mimic intelligence or pro-
duce some clever fake. Not at all. 'AI" wants only the genuine article: machines
with minds, in the full and literal sense. .

Scoffers find the whole idea quite preposterousnot just false but ridiculous-
like imagining that your car (really) hates you or insisting that a murderous bullet
should go to jail.

Boosters . . are equally certain that it's only a matter of time; computers with
minds, they say, are as inevitable as interplanetary travel and two-way pocket TV.

This is the debate. Who's right, the scoffers or the boosters?
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Opening Statements

Let's allow each side brief opening statements. A scoffer speaks (Penrose,
1989, pp. 447-48):

Consciousness seems to me to be such an important phenomenon that I simply
cannot believe that it is something lust accidentally" conjured up by a compli-
cated computation.

it is indeed obvious" that the conscious mind cannot work like a com-
puter, even though much of what is actually involved in mental activity might
do so.

In the first sentence, Penrose is taking issue with the view of some AI
proponents that consciousness will emerge in sufficiently complex ma-
chines. The second sentence requires some clarification. Penrose is draw-
ing the line at consciousness, claiming that a computer can never be
conscious. Don't take this as only a denial of first-person consciousness,
the experience of qualia.1 He's also denying the possibility of third-person
consciousness2 in a computer. Not only can computers not experience the
things we experience consciously, they can't do the things we do con-
sciously. Penrose is clearly a scoffer.

And now a booster (Moravec, 1988, pp. 1-2):

Today, our machines are still simple creations, requiring the parental care and
hovering attention of any newborn, hardly worthy of the word "intelligent." But
within the next century they will mature into entities as complex as ourselves,
and eventually into something transcending everything we knowin whom we
can take pride when they refer to themselves as our descendants. .

We are very near to the time when virtually no essential human function, physi-
cal or mental, will lack an artificial counterpart. The embodiment of this conver-
gence of cultural developments will be the intelligent robot, a machine that can
think and act as a human.

Here we have the strongest statement I've seen from an AI booster. But
don't mistake it for wild science fiction. Rather, it's a conjecture about
which a careful scientist3 has thought seriously and has come up willing
to bet his career. It can't simply be dismissed out of hand.

The Turing Test

How can we tell if a computer has really achieved AI? Turing (1950) of-
fered us his "Turing test" as a sufficient criterion for machine intelligence,
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Figure 5.1
The Turing Test setup

though not a necessary one. A barrier separates an interrogator from a
human and a machine as in figure 5.1. Allow the interrogator to question
each via a terminal. The machine will be deemed intelligent if sophisti-
cated interrogators, unconstrained as to subject matter, cannot reliably
tell which responder is human and which is machine. To date, no machine
has even come close to passing Turing's test in its full glory, although trials
have been held at the Computer Museum in Boston with interrogators
limited to questions from a narrow domain. The virtue of Turing's test lies
in the general, but by no means universal, agreement that it is sufficient to
establish the existence of computer intelligence. Thus it is at least theoret-
ically possible to settle the first AI debate.

The Pro Position

Having heard the opening statements for and against a computer eventu-
ally being able to think, and having encountered Turing's suggestion of
one way to settle the issue, we now turn to the arguments pro and con,
mostly con. Why mostly con? Because the typical booster says, "Wait and
see; we'll produce machine intelligence and show you." The scoffers, on
the other hand, produce arguments purporting to prove the impossibility
of artificial minds.

Let's narrow the issue and talk about the possibility of an artificial mind
via symbolic AI. Recall that a physical symbol system uses physical sym-

Interrogator
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bols, symbolic structures (expressions) composed of these symbols, and
operators that create, copy, modify, or destroy these symbols andlor struc-
tures. The system runs on a machine that, through time, produces an
evolving collection of symbol structures. SOAR is one such physical sym-
bol system.

Among the ardent boosters of symbolic AI are Herbert Simon and Al-
len Newell. The following quotes illustrate their views: "intelligence is the
work of symbol systems" and "a physical symbol system has the neces-
sary and sufficient means for general intelligent action. The computer is

. [aj physical symbol system. . . The most important [suchi is the hu-
man mind and brain" (Simon 1981, p. 28).

They say that a physical symbol system can be intelligent, and that any
intelligent agent must be implemented via a physical symbol system.
That's a strong assertion, but one subscribed to by many on the cognitive
side of AI4:

there are now in the world machines that think, that learn and that create.
Moreover, their ability to do these things is going to increase rapidly untilin a
visible futurethe range of problems they can handle will be coextensive with
the range to which the human mind has been applied. (Simon and Newell 1958)

Simon also made some predictions about how long all this would take.
As is so often the case, his predictions proved overly optimistic.

With the booster's position in place, let's look at several different at-
tacks on the possibility of artificial minds. We'll do so, not trying to de-
cide who's right but to get acquainted with the arguments of the scoffers.
First we turn to Dreyfus.

The Dreyfus Attack

Even its boosters readily admit that symbolic AI has stumbled over corn-
monsense knowledge and reasoning. A typical human, in our society,
would expect a dropped glass of water to break and splatter its contents.
A typical AI program would expect no such thing unless specifically in-
structed. Dreyfus5 (1988, p. 33) maintains that this situation is inevitable:
"If background understanding is indeed a skill and if skills are based on
whole patterns and not on rules, we would expect symbolic representa-
tions to fail to capture our commonsense understanding." Dreyfus (1988,
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p. 37) specifically attacks the physical symbol hypothesis: "The physical
symbol system approach seems to be failing because it is simply false to
assume that there must be a theory of every domain."

A theory in this context is a collection of rules describing behavior
within the domain. Dreyfus claims that not every domain is rule describ-
able. Horgan and Tienson (1989, pp. 154ff.) offer basketball as such a
domain. Imagine all the factors influencing a point guard's decision, dur-
ing a fast break, to shoot or pass, and if the latter, to whom. They don't
prove a description via rules to be impossible, but they clearly place the
onus on proponents of rules to produce one.6 Not likely!

But then, if not by rules, how are such decisions made? Dreyfus (1987,
pp. 98ff.) identifies five stages of learning. As we view each stage, keep in
mind some experiences of your own during which you became expert,
say in learning to drive a car: (1) the novice uses rules, typically supplied
by a teacher, applied to context-free features, also usually from the
teacher; (2) a beginner, in addition, begins to recognize new situational
aspects, such as using engine sounds to help determine when to shift
gears; (3) a competent driver will examine only the situational features
that are relevant to the selected goals or plan; (4) a proficient driver
doesn't have to examine anymore but sees directly what is relevant-
nonetheless, he or she decides consciously what to do at this point; (5)
the expert just does it.

When things are going well experts do not solve problems or make inferences or
figure Out anything at all; they simply do what normally works and it normally
works.

experience-based, holistic, similarity recognition produces the deep situa-
tional understanding of the proficient performer. No new insight is needed to
explain the mental processes of the expert. (Dreyfus 1987, p. 102)

Dreyfus maintains that similarity recognition says it all.
To illustrate this point, Dreyfus paired an international chess master

(Julio Kaplan) with a slightly weaker master. Playing five-seconds-per-
move chess, Kaplan was required to mentally add numbers presented
orally to him once every second. Dreyfus intended to keep his conscious
mind busy adding these numbers so that Kaplan would have no time to
see problems or construct plans. Nevertheless, Kaplan played well and

won. Deprived of the time necessary to think, he still "produced fluid and



104 Chapter 5

coordinated play." Although interesting and provocative, this experiment
doesn't seem conclusive. Kaplan may have time-shared7 his consciousness
between the two activities.

To summarize, Dreyfus believes that human experts typically choose
the behavior that usually works via similarity recognition, without re-
sorting to problem solving by means of rules. This directly contradicts the
physical symbol system hypothesis of Simon and Newell by denying its
necessity. It also calls into question its sufficiency, since humans provide
the only currently known example of general intelligence.

Scripts à la Schank

As background for our coming attraction, Searle's Chinese Room thought
experiment, we'll pay a brief visit to Schank's notion of a script (Schank
and Abelson 1977). Schank has been a leading exponent of natural lan-
guage comprehension via machine. The data structure underlying several
of his systems is called a script. Scripts are used for representing knowl-
edge of common sequences of events, say those involved in going out to
dinner. Such a script might record that you typically go into a restaurant,
sit down (or are seated by a hostess), are brought a menu by a waiter who
also takes your order and brings both your food and, later, the check.
After eating, you leave a tip, pay the check, and depart. Scripts may con-
tain entry conditions, results, props, roles, tracks, scenes, and so on.

One program uses scripts to answer questions about trivial stories.
For example:

John went out to a restaurant last night. He ordered steak. When he paid for it,
he noticed that he was running Out of money. He hurried home since it had started
to rain.

The question: Did John eat dinner last night? We would answer yes be-
cause we understand something about what happens in restaurants. The
program also answers yes after consulting its restaurant script. Schank's
program infers that John ate in spite of there being no statement to that
effect in the story. This program is also supposed to understand some-
thing about what happens in restaurants. Well, not everyone agrees that
it "really" understands, which takes us to our next stop.
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Figure 5.2
The Chinese Room

The Chinese Room

Philosophers, like physicists, often propose thought experiments designed
to shed light on some issue. The famous Chinese Room experiment, of-
fered by John Searle (1980), focuses on understanding. For the experi-
ment Searle puts himself in a closed room (see figure 5.2). A story and a
question about it, both written in Chinese, are slipped under the door
to him. Searle understands no Chinese; the writing means nothing, just
squiggles on paper. But he has been given a comprehensive script, written
in English, that provides an algorithmic way of answering the question as
a native speaker might. Thinking in English, and carefully following the
directions contained in the script, Searle produces squiggles that form a
native speaker's answer to the question. Searle slips the results of this
purely formal transformation under the door as an answer. Searle, who
understands English but no Chinese, has produced an answer giving the

Story
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appearance of understanding. He actually understands nothing of the
story, the question, or the answer. In the same way, Searle asserts,
Schank's computer understands nothing of the stories even as it answers
questions about them.

The Chinese Room experiment is certainly provocative and, in fact, has
provoked any number of rejoinders. The first reply that occurred to me on
hearing of the experiment is called the systems reply. Sure, Searle doesn't
understand, but the entire system, including the script, must understand
because it produces native speaker answers. To me that was almost a
definition of understanding. How do we convince ourselves that some
other person understands a story we've told? A common approach is
to question that person and judge understanding by the quality of the
answers. Searle counters the systems reply by supposing that he, Searle,
memorizes the entire system. Then he is the system, and he still doesn't
understand Chinese. But, you retort, it's preposterous to suppose that
Searle could memorize that script. Of course it is. But lt's no more prepos-
terous than the existence of such a script in the first place. Thought exper-
iments are often allowed this kind of license. After all, it's possible in
principle, they say.

Another retort to Searle, at least as far-fetched as the thought experi-
ment, is called the brain simulator reply. Suppose a computer program
simulates the actual neural firings of a native Chinese speaker in order to
answer questions posed about a simple story. To say that the system
doesn't understand is to say that the native speaker doesn't understand,
the argument goes. The system is doing exactly what the native speaker
did. Searle counters thus: Have Searle calculate the answers using a sys-
tem of water pipes and valves that simulate the native speaker's brain.
Neither Searle, nor the water pipe system, nor their conjunction under-
stands. The con)unctlon fails because the whole system could again be
internalized. Searle could simply memorize all the workings of the native
speaker's brain and go on from there. Thus, Searle maintains that the orig-
inal script could have worked by simulating a native speaker's brain with
the same lack of understanding. But how can a brain understand Chinese
when a simulation of that same brain, neurally equivalent except for a
slowdown factor, can't?
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Comments on Searle's Behavioral and Brain Sciences article (1980) of-
fer many other rebuttals, all of which Searle counters, at least to his satis-
faction. Machines just don't understand, he maintains. But I've come to
another view of understanding, as is illustrated next.

Quadratic Understanding

Discussions about whether a given system understands Chinese typically
assume that there is a well-defined set of systems that understand, and
that a system either understands or it doesn't. This is another instance of
the "sharp boundary" fallacy we met in a previous chapter in connection
with Sloman's treatment of free will. There we looked at many design
decisions providing more or less free will. As with free will, there is no
useful dichotomy between understanding and not understanding. Here
we'll see degrees of understanding.

Arnie is a formal system (computer program) that solves quadratic
equations. Feed it the numerical coefficients, a, b, and c of a quadratic
equation ax2 + bx + c = 0, and it pops out a solution. Arnie gives you
right answers but understands nothing of the numbers it spews, and noth-
ing else of algebra. In my view, it must understand something of quadratic
equations because it can solve them correctly. It understands more than a
program that produces incorrect solutions. But that's certainly very little
understanding.

Bobby, by the ninth grade, has memorized some arithmetic facts and
algebraic manipulations, and can solve quadratics. His teacher claims he
does so by rote, and understands little of what he's doing. While this may
well be true, he still understands more than Arnie, since he does under-
stand something of the numbers and formula he's using.

Charlie not only can solve quadratics but also can derive the formula.
But what that i(' '- 1) is that crops up unbidden, he doesn't quite under-
stand. Doris, however, is one up on Charlie, because she can derive the
formula and she understands something about complex numbers. Elaine,
whose mother is a mathematician, looks down her nose at Doris because
Doris doesn't know the fundamental theorem of algebra,8 which puts the
quadratic formula in broader perspective. Elaine's mother, of course,
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views all this from the vantage point of algebraic field theory,9 an exten-
sive and detailed theory about how fields behave (see, e.g., van der Waer-
den 1953 for an introduction). She understands quadratics at a much
deeper level than does her daughter.

A system's understanding of a concept, or of a collection of concepts,
seems to vary with the complexity of its connections from the given con-
cepts to other knowledge. Roughly, the more connections, the more
understanding.

My colleagues Horgan and Tienson tell me that Searle anticipated this
argument by degrees of understanding, and replied that computer systems
have zero understanding, making them different in kind from the human
systems with varying degrees of understanding. I disagree. Starting with
a system having, say, Bobby's level of quadratic understanding, it should,
in principle, be possible to dismember connections one by one. Thus one
could approximate Arnie's level of quadratic understanding as closely as
desired. Arnie has some connections, and therefore in my view, nonzero
understanding. A system with more understanding can be reduced to Ar-
nie's level connection by connection. I see no difference in kind.'0

Chinese is many orders of magnitude more complex than quadratic
equations. There must be at least as many levels of understanding Chi-
nese, depending on the surrounding network of knowledge. It seems to
me that the system comprised of Searle and his script does understand
Chinese at some minimal level. Searle's argument doesn't lead me to
doubt that artificial systems can be given, or can learn, ever increasing
understanding of quadratic equations and of Chinese. Whether this arti-
ficial understanding must of necessity always fall short of that of humans,
or whether the understanding of our mind children" will eventually sur-
pass ours, is the essence of this first AI debate.

Gödel's Incompleteness Theorem

Before visiting with our next participant in the AI debate, let's take a

pilgrimage. A pilgrimage? Yes, indeed. I regard Gödel's theorem and its
proof as one of the high points of human intellectual achievement, to be
approached with respect, even with reverence.ii As a professional mathe-
matician, I often had occasion to read other people's theorems and their
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proofs. Usually I'd think to myself, "Well that's pretty clever, but if I had
worked hard on that, I'd have gotten it." But when I read Gödel's proof I
thought, "I would never have found this proof in a thousand years.'

"That's enough adulation," you say. "Let's get to the theorem." 0k.
But let me quickly provide some needed context. Around the turn of the
twentieth century, logicians, pushed by Hubert (1901), were trying to de-
rive mathematics from logic. The idea was to develop a formal system,
starting with finitely many axioms and rules of deduction, and from it to
deduce all of mathematics. One major attempt was produced by Frege
(1893, 1903). Whitehead and Russell spent decades writing their version,
the Principia Mathematica'2 (1910-1913). Then, in 1931, along came an
unknown Austrian, Kurt Gode!, who proved that their whole endeavor
was hopeless to begin with.

After all this preamble, what's the theorem? Roughly, it says that every
sufficiently powerful formal theory allows a true but un provable pro posi-
tion (Gödel 1931). Some elaboration seems in order. Let's suppose our
formal theory to be consistent. (Inconsistent systems are uninteresting be-
cause every assertion is provable).13 "Sufficiently powerful" means that
the system can account for integer arithmetic. What is meant by allowing
a true but unprovable proposition P? A formal theory will have symbols
(variables, constants, and operators) as well as rules of syntax. P must be
composed of some of these symbols arranged according to the syntax of
the system. In technical terms, it must be a well-formed formula of the
system. Furthermore, P is unprovable from the axioms and rules of deduc-
tion of the system.14 On the other hand, the meaning of P is known to be
true in the system. P, for example, might assert that P is unprovable in the
system. This may be known to be true by an argument outside the system.

So, given any sufficiently powerful theory, Gödel's proof provides a
method of constructing a proposition that you know to be true by the
very nature of the beast, and that you also know to be unprovable within
this very system. Gödel's theorem also has a computational form which
asserts that every algorithm15 for deciding mathematical truth must fail
to decide some proposition correctly. An algorithm will tell you a proposi-

tion is true only if it can prove it. A true but unprovable proposition gets
a wrong reading. The bottom line is that not all of mathematics can be
produced algorithmically.
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Some philosophers (e.g., Lucas 1961) have argued that as a conse-
quence of Gödel's theorem, mathematicians must think nonalgorithmi-
cally. Our next scoffer, Penrose, makes much the same argument, and
another besides.

The Penrose Attack

Penrose, a distinguished mathematician and mathematical physicist,
joined the AI debate as a scoffer with his best-selling The Emperor's New
Mind (1989). He's concerned with consciousness. Computers operate
algorithmically. Brains also do algorithmic processing, but mostly uncon-
sciously. Why, then, he asks, is anything conscious? Perhaps conscious-
ness evolved to make judgments that cannot be made algorithmically.
Penrose claims that humans make some judgments that cannot be made
algorithmically, and that, therefore, cannot be made by a computer. His
attack is two pronged: (1) the nonalgorithmic nature of mathematical
thought and (2) quantum mechanical effects in the brain.

Penrose gives a reductio ad absurdum argument16 in favor of mathemat-
ical judgments being nonalgorithmic (1989, pp. 417-18). He doesn't
claim the argument constitutes a proof, but that it is convincing to him.
Here is his argument. Suppose mathematical judgments are algorithmic.
These judgments are communicable. Two mathematicians not only can
discuss them but, unlike practitioners of many other disciplines, can even-
tually agree as to what's been proved, that is, agree in their mathematical
judgment. Two such mathematicians can't be using different algorithms,
Penrose says, or they wouldn't agree. Hence, a single algorithm must be
universally employed. (This step in the argument bothers me. It is cer-
tainly possible for two different algorithms to give the same answer all
the time. For example, the many different sorting algorithms all result in
the same linear orderings.)

Now, he claims, this algorithm cannot be both known and the one used
to decide mathematical truth. If the algorithm were known, the construc-
tion in Gödel's theorem would produce a proposition that it wouldn't
handle correctly. Remember that our assumption is that mathematical
judgments are algorithmic. Hence there would be an algorithm that
would handle all such correctly. Thus, if there is an algorithm that is going
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to handle all mathematical judgments correctly, it can't be known; other-
wise, you could contradict it by Gödel's theorem. Thus this algorithm
must be so complicated or obscure that its very validity can never be
known to us." But mathematical truth is "built up from such simple and
obvious ingredients." It is not a "horrendously complicated dogma whose
validity is beyond our comprehension." Thus, the original assumption
that mathematical judgment is algorithmic leads to an absurdity. Penrose
proposes this as a convincing argument that mathematical judgments are
nonalgorithmic.

Could the issue here be simply a case of confusion of levels of abstrac-
tion? In my AI classes we often stress heuristic programming, programs
that usually yield the right answer but are not guaranteed to do so. In
every class I disturb my students with the following question: How can
this be a heuristic program when it runs on a computer that only acts
algorithmically? The answer I want points to a difference in levels of ab-
straction. A running AI program performing a heuristic search in a prob-
lem space is simply executing an algorithm at the machine level. This
algorithm is not guaranteed to find the goal state. At a higher level of
abstraction it is performing a heuristic search. Is Penrose only denying an
algorithm for mathematical judgment at a high level of abstraction? If so,
we could probably agree. But in fact he seems to be denying such an algo-
rithm at the network of neurons level.

I'm not persuaded. The essence of Penrose's argument, and its refuta-
tion, were captured in a review by Dennett (1989). Dennett counters not
the particular form of Penrose's argument but the larger context of his
argument against mathematical judgment being algorithmic. Here's Den-
nett's counter, almost verbatim (p. 1056):

For X read mathematician. Premise one: X is superbly capable of achieving math-
ematical truth. (Mathematicians have done so over the centuries.) Premise two:
There is no (practical) algorithm guaranteed to achieve mathematical truth. (Gö-
del's theorem) Conclusion: X does not owe its power to achieve mathematical
truth to an algorithm.

This argument, says Dennett, "is simply fallacious." Substitute Deep
Thought for X. (Deep Thought is a chess playing program that has
achieved grand master status.) And substitute "checkmate" for "mathe-
matical truth." Let's read the argument again: Premise one: Deep Thought
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is superbly capable of achieving checkmate. (That's certainly true. Deep
Thought can checkmate essentially everyone in the world except for per-
haps a hundred or fewer of the finest human players.) Premise two: There
is no practical algorithm guaranteed to achieve checkmate. (Perhaps an
exhaustive search algorithm can guarantee checkmate. Unfortunately, the
time required for any such process is prohibitive; under ideal conditions,
it would take longer to make a single move than the age of the universe.
Hence, no practical algorithm guarantees checkmate.) Conclusion: Deep
Thought does not owe its power to achieve checkmate to an algorithm.
(Not true, since Deep Thought runs on a computer.) Although both prem-
ises are true, the conclusion is false. Thus, the argument is formally falla-
cious; it simply doesn't hold. Here's Dennett's summary of this issue:

So even if mathematicians are superb recognizers of mathematical truth, and even
if there is no algorithm, practical or otherwise, for recognizing mathematical
truth, it does not follow that the power of mathematicians to recognize mathe-
matical truth is not entirely explicable in terms of their brains executing an algo-
rithm. Not an algorithm for intuiting mathematical truthwe can suppose that
Penrose has proved that there could be no such thing: What would the algorithm
be for, then? Most plausibly it would be an algorithmone of very manyfor
trying to stay alive, an algorithm that, by an extraordinarily convoluted and indi-
rect generation of byproducts, "happened" to be a superb (but not foolproof)
recognizer of friends, enemies, food, shelter, harbingers of spring, good argu-
mentsand mathematical truths. (1989, p. 1056)

Let's move on to the second prong of Penrose's attack: quantum gravity.
One might argue that consciousness arises from brains. Brains are physi-
cal. The laws of physics provide an algorithm for computing what goes
on in the physical world17 (in this case consciousness). Hence conscious-
ness is algorithmic. But, says Penrose, there are problems with the laws
of physics:

There is actually a big gap in present understanding between classical physics,
explaining the"big", and quantum mechanics explaining the "tiny". It is neces-
sary to first bridge this gap. . . . That won't put everything into place immediately,
but it is the first essential step to come to a scientific theory of consciousness.
(1989, p.

Who is this person claiming problems with the laws of physics? Penrose
is a professor of mathematics at Oxford. His main scientific contributions
have been to combinatorial mathematics (e.g., Penrose tiles) and theoreti-
cal physics (e.g., black hole theory). He's not some crackpot shooting
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from the hip at the laws of physics. He's an insider. All this is not to say
that I agree with him, or that you should, or that he is right. It is to
say that Penrose's claim of problems with the laws of physics is a serious
proposal, not lust hot air.

The kind of problem to which Penrose refers has to do with the collaps-
ing of the many potentialities contained in a quantum description into
a single actuality. It is best illustrated by a thought experiment known
affectionately as the Schrödinger cat experiment (1935). A cat and a vial
of cyanide are placed in a box insulated from any sort of observation of
the condition of the cat. The vial is connected to a device that will break
it (killing the cat) or not, depending on some atomic event happening one
way or another.

One such device might be constructed as follows: Ari emitter of some
sort sends a slow stream of photons toward a barrier with two parallel,
closely spaced slits cut in it, until one photon passes through. A detector
notes through which slit the photon travels. The device breaks the cyanide

vial or not, depending on whether the photon travels through the right or
the left slit. Since the box is so well insulated, we don't know whether the
cat is alive or dead until we don gas masks and open the box.18

Quantum physicists, who deal with this sort of thing, maintain that
which slit the photon went through is not decided until somebody looks

at the detector, until the two potentialities collapse into a single actuality.
But where does that leave the poor cat? Is it alive or dead? The mathemat-

ics of quantum mechanics seems to say that it is neither until some ob-

server looks at the detector, at which time the potentialities collapse into

an actuality and the decision is made.
The situation can be further muddied by placing a suitably protected

observer in the box with the cat in view. From the perspective of this

observer, the cat is deterministically either dead or alive shortly after the

photon hits the detector, while simultaneously (whatever that means to

these quantum mechanics) from the perspective of the first observer, the

decision is not yet made. Weird stuff!

Don't look to me to defend any of this. I don't believe a word of it.

And I'm in good company. Einstein argued until his death that quantum

mechanics was incomplete because it was stochastic by nature and
seemed inexplicable. He thought that new theories would make sense of
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all this. But quantum mechanics works. Its mathematics allows superbly
accurate predictions of every type of particle reaction against which it's
been tested, all this in spite of apparently allowing no sensible explana-
tion whatever. Quantum mechanics, weird as it is, is the reigning, unde-
feated world champ. My favorite full account of all this is Herbert's
Quantum Reality (1985). A clear but much shorter account can be found
in chapter 12 of Davies's The Cosmic Blueprint (1988).

Penrose, along with Einstein but few others, expects new discoveries in
physicsnamely, a quantum gravity theoryto provide understanding
and sensible explanations of these happenings. He postulates that a cor-
rect quantum gravity theory will be nonalgorithmic: "a common pre-
sumption is that if something acts according to the laws of physics, then
it is computational. I believe this is false" (1989).

From this he concludes that brain processes involving frequent quan-
tum decisions would be noncomputable. Hence, computers couldn't im-
plement these processes, and artificial intelligence would be inherently
limited. All this is based on there being such quantum mechanical deci-
sions in the brain, for which Penrose argues in detail, and on a nonalgo-
rithmic theory of quantum gravity, which so far is pure speculation,
though he provides plausibility arguments.

Enough physics for now. Let's return to the philosophers.

The Horgan-Tienson Attack

Two philosophers, Horgan and Tienson, although not ruling out machine
intelligence, claim that it cannot be produced via symbolic AI alone, via
rule-based systems (1989). Theirs is a three-pronged attack, via multiple
soft constraints, cognitive folding and the frame problem. We'll visit each
in turn.

Many activities requiring intelligence seem to involve the satisfaction
of multiple soft constraints. For example, suppose I want to shop for run-
ning shoes at a certain store in a shopping mall. Let's ignore the multiple
soft constraints to be satisfied in getting to the mall. After arriving at the
mall, I must search out a parking place following prescribed traffic pat-
terns, modified by the actions of other vehicles, and occupy it. Next I
must make my way to an entrance, taking care not to become a casualty
on the way. Then I must find my way to the right level, perhaps traveling
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up or down escalators, all the time avoiding stationary obstacles
(benches, potted plants, pillars, vendors' carts) as well as moving people
and baby carriages. Surprisingly, I most often arrive at the shoe store
without mishap.

There is a lot going on, many factors to take into account as I make my
way along. Since these factors often interact with one another, the number
of computations required expands exponentially with the number of
factors.

Note a surprising contrast. Adding constraints makes the task harder
for computers but easier for humans. For computers, every trial solution
must be tested against all applicable constraints. But to decide which con-
straints are applicable means, essentially, to test against all constraints.
For humans, having more constraints sometimes makes things easier. Sup-
pose a guest of honor at a ball must choose a partner for the opening
dance. Additional constraints (say having to choose someone from the
head table, or the spouse of a founder of the sponsoring organization)
may make the choice easier.

The constraints, in addition to being multiple, are usually soft. If the
parking place I find is marked Handicapped, I'll have to search further.
That is, unless I've recently pulled a hamstring and have a Handicapped
sticker. I'm constrained to avoid those moving obstacles called other
shoppers. That is, unless one of them happens to be one of my grown
children looking the other way, whom I bump into accidentally on pur-
pose. When I eventually find my way to the store, I'll buy shoes. Unless
the store is late opening. These constraints are soft, and each of the innu-
merable possible exceptions to a constraint requires another rule. Horgan
and Tienson point out that humans deal well with multiple soft con-
straints but Al programs do not. This, they claim, suggests that human
intelligence is different in kind from computer intelligence.

Note that this is an argument not against computer intelligence but
against symbolic AI. Brooks's robots seem to satisfy multiple soft con-
straints. Does this argument then imply that they cannot be viewed as
physical symbol systems? Again we're back to the issue of rule-governed
vs. rule-described systems.

The second prong is by way of cognitive folding. Horgan and Tienson
claim that cognition cannot be partitioned into isolated domains. Any
part of commonsense knowledge might be called upon in dealing with
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any of a vast number of cognitive tasks. Thus any fully intelligent agent
must be able to see what is relevant in a given situation, and to recall the
relevant information. For example, children easily fold together restau-
rant scripts and birthday party scripts to form reasonable expectations
when they go to a birthday party at a restaurant for the first time. They
don't get it all right, but they do have a fair idea of what to expect. They
are able to fold the two scripts together. Nobody has the slightest idea of
how to program a computer to know in general what's relevant to what.
Is it because no one has tried? No. Schank and his colleagues have worked
on the folding part of this problem for years (Schank and Abelson 1977;
Schank 1980).19 Or could it be that symbolic AI is inherently incapable
of such folding? Anyway, for now, humans do it well; computers, almost
not at all.

Horgan and Tienson also point out a relationship between folding and
the Turing test. To pass the Turing test, a system must converse intelli-
gently about many domains, individually and in every relevant combina-
tion. A sophisticated interrogator will see to it. But, say Horgan and
Tienson, "there is little reason to believe that there are ... domain inde-
pendent rules2° that govern the folding together of knowledge about any
two . . . arbitrarily chosen domains" (1989, p. 153). This is reminiscent
of the earlier comment by Dreyfus that there need not be a theory of
everything.

The third prong of the HorganTienson attack is via the frame prob-
lem, which they state as follows: to determine in an effective and general
way, what to change and what to leave the same in a system of beliefs,
when any new bit of information is added. Humans deal with this prob-
lem rather well; symbolic AI, with great difficulty and little success. A
commonly used illustration of the frame problem has a system tracking,
among many other things, a robot with a key in its hand. The system
notes that the robot has passed from the office to the shop. Should it also
note that the key is no longer located in the office? If so, how is it to do
that? Building large systems that sensibly track such side effects seems an
insurmountable problem. Whole conferences, even books (Brown 1987),
have been devoted to the frame problem, without notable success. Hu-
mans, on the other hand, seem to handle the frame problem with relative
ease. Could this be, in part, because we humans don't store representa-
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tions of information but, rather, re-create those representations as
needed? To a computer scientist, it's the difference between consulting a
lookup table and running an algorithm.

Horgan and Tienson do not claim to have disproved the utility of sym-
bolic AI as a model of general intelligence. They do assert that "the pre-
ponderance of evidence points to the conclusion that [symbolic AIl is a
fundamentally mistaken paradigm for understanding human cognition"
(1989, p. 153). I see the HorganTienson attack as a challenge. If sym-
bolic AI is to win this debate, it must successfully deal with at least these
three issues: multiple soft constraints, the folding problem, and the
frame problem.

What do we conclude? Will a descendant of SOAR someday discuss the
early history of Al with one of our great grandchildren? The scoffers have
not convinced me that it simply can't happen. They, particularly Horgan
and Tienson, have made it clear that there are major obstacles to be over-
come. A fully intelligent automaton surely must compile its procedural
knowledge into automatically operating routines that don't consult ex-
plicit rules. It must make countless connections in order to understand.
I'd like it well if it could prove a theorem or two, not within a formal
system but as mathematicians do. And surely it must handle multiple soft
constraints, the folding problem, and the frame problem. Will all this hap-
pen? To my mind, the jury's still out.

For those of you who are intrigued by the AI debate vistas and want ro
explore a little longer, let me recommend a detour through a few de-
lightful pages in Crevier's history of AI (1993, pp. 263-77). For the rest
of us, let's see what happens when one substitutes a brain model of mind
for the computer model of mind we've been discussing.

Notes

My friend Art Graesser points out that first-person consciousness includes, in
addition to the experience of qualia, the experience of relations, both subjective
(e.g., more beautiful than) and objective (e.g., above).

Recall that we encountered the concepts of first- vs. third-person conscious-
ness while visiting "Consciousness à la Chalmers" during our tour stop at chap-
ter 2.
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Moravec, director of the Mobile Robot Laboratory at Carnegie Mellon Uni-
versity, is a leading roboticist.

AI, like Janus, has two faces, one facing cognitive science, the other facing
computer science. The cognitive face aims at increasing our understanding of in-
telligence via computer models. The computational face aims at smarter, and
hence more efficient, computer programs. The computational AI people typically
take no side in this debate.

"Dreyfus" actually refers to two people, Hubert Dreyfus and his brother Stu-
art. For linguistic convenience I'll refer to them in the singular. References are to
the two of them.

Their account is too long for me to include as a quote. The next time you're
in a university library, do take a few minutes to read it.

A computer serving several users, apparently simultaneously, allots a fraction
of each second to each user. It time-shares.

Every polynomial equation with complex coefficients has a solution in the
complex numbers.

Simply called field theory by mathematicians. I've added "algebraic" to distin-
guish it from a similarly named subdiscipline of physics.

The mathematically inclined among you may well be uncomfortable with this
argument. After all, relative complexity of connection networks is not likely to
comprise a linear order. What is the sense of "more understanding"? It's in the
sense of the partial order defined by set inclusion of connections. "OK," you say,
"but connections are discrete." "You can't approximate the complexity of a con-
nection network 'as closely as desired.'" True, a connection network is a discrete
system, but the sheer number of connections we're talking about makes approxi-
mation, as in continuous systems, a reasonable analogy.

A lengthy but extraordinarily rich approach with reverence is contained in
Hofstadter's Pulitzer Prize-winning Gödel, Escher, Bach (1979). Highly recom-
mended, but allow six months for a thorough understanding.

Pages of the Principia consist almost entirely of logical symbols seasoned
with an occasional word. A favorite ploy has been to leave one thick volume on
the coffee table, and to inform curious guests that it's for bedtime reading.

Suppose the proposition P and its negation P are both provable. Let A be
any proposition whatever. Since P is provable, so is P or A. But P or A together
with P implies A.

A more precise statement of Gödel's theorem asserts that both P and its nega-
tion are unprovable, that is, that P is undecidable.

An algorithm can be thought of roughly as a recipe for action, sufficiently
detailed that it can be followed mechanically by the person or machine executing
it. A lucid and detailed description is given in the first chapter of Harel's Algorith-
mics (1987).

Assume the contrary and deduce a contradiction.
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One might well balk at this assertion, pointing out that algorithms are inher-
ently discrete whereas most of the laws of physics are continuous. The retort might
be that the continuous is approximable by the discrete to any desired degree of
accuracy. Another might retort that the physical universe is discrete in both time
and space, and that the laws of physics are only approximations.

Apparently this was a politically correct experiment in Schrödinger's day.

Thanks to Art Graesser for these references.

Here they are talking about hard (exceptionless), representation-level rules.
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Connectionism

ConnectionismThe Basic Ideas

The early stops on our mechanisms of mind tour have afforded us views
only of symbolic mechanisms. Their general form is a program consisting
essentially of rules of some kind, stored in memory along with appro-
priate data structures. The rules then operate on the data structures, pro-
ducing, we hope, some semblance of intelligence.

Symbolic mechanisms, however, are far from being the only attractions
available these days. In this chapter we'll visit another type: connectionist
models, also referred to as artificial neural networks and sometimes by
the general name of parallel distributed processing.' Yet another name
for this class of models is subs ymbolic AI, denoting an AI approach at
the subsymbolic level. Connectionist models are often used to model cog-
nitive functions at a level of abstraction below the symbol level, hence
subsymbolic. Most connectionists still view themselves as contributing
to AI.

Here's the basic idea from major contributors to this approach: "The
idea of parallel distributed processing . . . intelligence emerges from the
interactions of large numbers of simple processing units" (Rumelhart et
al. 1986, p. ix). This idea actually encompasses more than connectionist
models. Since the processing units are unconstrained, except for being
relatively simple, networks of automata, with relatively simple finite state
machines at each mode, would qualify. The statement also doesn't restrict
the way nodes are connected. Other nonconnectionist models implement-
ing this basic idea will appear later in the tour.
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So far, we've dealt with symbolic AI, the computer model of cognition:
brains work the way computers do. Connectionism can be thought of as
the brain model of cognition. You model notions of cognition on how
brains apparently do it. Here is the view of Lloyd, a philosopher (1989,

p. 90): "The central idea of connectionism is that cognition can be mod-
eled as the simultaneous interaction of many highly interconnected neu-
ronlike units." Lloyd's version constrains the processors to be neuronlike
and highly interconnected. "Highly interconnected" should be taken to
require "many" connections from one unit to others in a human sense,
and not necessarily connections from each unit to a large percentage of
the others.2

A third and more detailed view is what Chapman (1991, pp. 35-40)
calls essential connectionism," that is, what he deems the essential devel-
opment of the basic idea expressed by Lloyd. A connectionist model must
be brainlike. But what does that mean? Certainly not that it weighs three
and a half pounds, and is wet and pinkish-gray. Here's Chapman's answer:

The essential connectionist facts are that the brain

is made up of a great many components (about 1011 neurons)
each of which is connected to many other components (about 10)
and each of which performs some relatively simple computation (whose nature
is unclear)
slowly (less than a kHz3)
and based mainly on the information it receives from its local connections.
(p. 36)

Modeling a Neuron

So with all that, what are connectionist models? What are we talking
about? Connectionist models are mathematical or computer models
based roughly on the local structure of nervous systems of animals.
"Roughly" cautions us that many of the features of nervous systems are
suppressed and that several simplifying assumptions are made. We must
carefully distinguish connectionist models from mathematical or com-
puter models of some aspect of real nervous systems. The simplifying as-
sumptions are much too great to allow these models typically to interest
neuroscientists. With this caveat in mind, let's take a quick peek inside
real nervous systems.
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Figure 6.1
A neuron

The fundamental units of an artificial neural network (variously called
units, nodes, neurodes) are modeled after individual neurons. Let's look
at the principal parts of a typical individual neuron (see figure 6.1). Its
dendritic tree collects excitatory and inhibitory inputs from other neu-
rons, and passes these messages, as voltages, on to the cell body or soma.
These voltages are added to its current voltage, if excitatory, or sub-
tracted, if inhibitory. When a threshold is exceeded, an output voltage
signal is transmitted down an axon to synapses that connect the leaves of
the axonic tree to the dendrites of other neurons. Each synapse is a chemi-
cal connection between the axon in one neuron and a dendrite of the
next. When the signal arrives at a synapse, vesicles of a chemical neuro-
transmitter are popped. The neurotransmitter then disperses across the
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Formal neuron

Also called a linear threshold device or
a threshold logic unit

x -- the inputs
w, -- the weights (synaptic strengths)

e -- the threshold
y -- the output

( i if wx1(t)
y(t+l) =

I O otherwise

Figure 6.2
Formal neuron

synaptic gap, where it is picked up as an excitatory or inhibitory input on
a dendrite of the postsynaptic neuron. And the process continues.

Neurons can be modeled formally, mathematically. Here is one such
mathematical model, called a linear threshold device, that forms the fun-
damental unit comprising one kind of artificial neural network (see figure
6.2). First there are finitely many inputs, x1, x2,. . . , x. Think of inputs as
(possibly negative) numbers4 in general, but restricted to the two Boolean
values O and i for linear threshold devices. These inputs model both the
excitatory (if positive) and the inhibitory (if negative) signals arriving at
synapses from presynaptic neurons. The efficiency of a synapse in trans-
mitting an incoming signal or, equivalently, the importance of this partic-
ular signal to the postsynaptic neuron, is represented by a number called
its weight or synaptic strength. These weights are the numbers w1, w2,

w, either positive or negative, one for each incoming synapse. The
threshold that the voltage inside the cell body must reach in order to fire
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is represented by another number, O, again possibly positive or negative.
The output of a neuron is represented by yet another number, y, which
takes on the Boolean value O or i at time t + 1, according to whether the

weighted sum of the inputs, w,x1(t), is less than O or not, where x(t) is

the ith input value at time t. Thus we have a formal model of a neuron, a
formal neuron. Note that our formal neuron, or linear threshold device,
is discrete both in time and in inputloutput values. It is discrete in time in
that time proceeds in discrete moments enumerated by t = 0, 1, 2, 3.....
t, t + i.....The input and output values are restricted to the discrete set
{0, 1}. Linear threshold devices are due to McCulloch and Pitts (1943).
These ideas are not new.

Our formal neuron, or linear threshold device, seems to be a rather
faithful model of a real neuron as described a few paragraphs back. The
signals arriving at synapses are modeled by the inputs, the synaptic effi-
ciency by the weights, the accumulation of voltages in the cell body by
the weighted sum, the actual threshold by the formal threshold, and the
voltage traveling down the axon by the output. Then why the caveat? Why
is this a "rough," simplified model of a neuron? Let's tick off a few of the
rough spots. In our model the output signal is represented by the magni-
tude of the output y, whereas in real neurons the significance of the signal
most frequently is carried by the rate of firing, not the magnitude of a
single firing. Another simplification allows a single neuron to excite one
subsequent neuron via a positively weighted synapse, and to inhibit an-
other via a negatively weighted synapse. In real nervous systems, individ-
ual neurons are either inhibitory or excitatory to all subsequent neurons
to which they connect. And, of course, there are many details unac-
counted for in the model, such as ion channels and neurotransmitters.

Computation with Formal Neurons

We've seen that a linear threshold device is a rough, simplified mathemati-

cal model of a neuron. So what? What can we do with such a simple
model? With a single linear threshold device, not much. With networks

of them, quite a lot! (McCulloch and Pitts 1943)
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xl

Figure 6.3
OR gate

Figure 6.4
AND gate

A single linear threshold device can act as an OR gate, one of the stan-
dard devices used in microelectronics5 (see figure 6.3): If either or both
inputs are i (true), then the next output (x1 or x2) should also be i (true).
Otherwise the output should be O (false). A linear threshold device with
exactly two inputs, each with weight 1, and a threshold of i exhibits
precisely this behavior. It is, by definition, an OR gate. Take a moment to
check that this is so.

If you'd like an AND gate instead of an OR gate, one in which the
output is i only when both inputs are 1, simply change the threshold to
2 (see figure 6.4). Or leave the threshold alone and change each weight
to 0.5.

A NOT gate changes a i input to a 0 output and vice versa (see figure
6.5). A single input linear threshold device with weight 1 and threshold
o does the job.

But these are trivial, you say, each involving only a single device. Yes,
they are. But, as every computer architect knows, with AND gates, OR
gates, and NOT gates, one can, at least theoretically, build any digital
computer. Thus networks of linear threshold devices are computationally
quite powerful. Such networks are, in fact, computationally universal.

or
gate

x1 or x2

x1 and x2
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Figure 6.5
NOT gate

That is, they can compute anything that can be computed by a Turing
machine.6 Given a Turing machine and its initial input, Franklin and Gar-
zon (1991) have provided a recipe (an effective algorithm) for building a
network of these formal neurons that computes step by step exactly as
the given Turing machine does. Thus, any computation that can be car-
ried out by a Turing machine, and hence by a digital computer (Church-
Turing thesis7), can be performed by an artificial neural network.

An Exclusive-Or Network

To begin to get a feel for these networks of formal neurons, let's look at
one that's only a little more complex than AND gates and OR gates. It's
called an exclusive-or device, or more commonly an XOR gate (see figure
6.6). An "or" becomes "exclusive' if we insist that one input, but not
both, take on the value i in order to get an output of 1. 1 had cereal or
pancakes for breakfast this morning, but not both. Put another way, the
output of XOR is to be i only if the two inputs are different. An XOR
gate is an anti-matching instrument. A little thought will convince you
that a single formal neuron doesn't suffice to implement XOR. Just a few
units will suffice, however.

In the figure, the leftmost circles represent input units that generate and
pass forward the inputs. The two central units are called hidden units
because they neither receive input directly nor produce output directly.
The rightmost unit produces the output of the network. The hidden units
and the output unit are linear threshold devices, formal neurons.

Let's spend a few moments watching this XOR net compute its output.
Given two U's as input, both weighted sums at the hidden units are below
threshold, so that the output unit receives only O inputs, leading to a O
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input
units

hidden
units

Figure 6.6
An XOR network

output as desired. Suppose the upper input unit receives a i and the lower
a 0. At the next time step the weighted sum of the upper hidden unit is at
threshold and that of the lower is below. Thus at the third time step the
output unit receives an input of a i and a 0, leading to a weighted sum at
threshold and, hence, an output of i as desired. If the i and O inputs are
reversed, the situation is quite symmetrical and the result the same. The
action is a little trickier when both inputs are 1. At time step two, both
weighted sums of hidden units are O, due to their excitatory and inhibi-
tory inputs canceling one another. Thus at the third step the output unit
receives 0's and produces a O as desired.

You might enjoy producing your own XOR net using one fewer hidden
unit but allowing connections from the input units to the output units.
Such a net would employ four units and five connections as opposed to
the five units and six connections in the example above. The exercise is
guaranteed to add to your understanding of how artificial neural net-
works work in specific cases, Thnderstanding" in the sense of the qua-
dratic understanding of chapter 5.

The XOR net we analyzed above is known as a layered, feed-forward
network. Its composed of three layers of units, and all of the arrows point
from lower-level layers to higher-level layers, that is, to the right. There is
no feedback at all. But feedback can play an important role in computa-
tion via artificial neural networks, as we will see next.
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Feedback and Word Recognition

Building an XOR device is a simple task. One might expect it to be easily
accomplished using simple, artificial neural networks. How about some-
thing more challenging? One of the early connectionist models attempted
a task that, although still a toy problem, required considerably more com-
plexity in its network, including feedback.

McClelland and Rumelhart (1981; Rumelhart and McClelland 1982)
tackled the problem of word recognition, at least for a small number of
short words. Their network (see figure 6.7) is also layered but is not feed-
forward. Their units are not Boolean but, rather, take on values from an
interval of real numbers.

Their idea for recognizing words is to begin by recognizing letters.
Their idea for recognizing letters is to recognize the strokes that produced
them. To keep the project computationally feasible, they restricted them-
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Figure 6.7
Word recognition network (reprinted from McCelland and Rumeihart 1981)
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selves to four-letter words. For each of the four possible letter positions in
a word, twenty-six letter units locally represent the letters of the English
alphabet. (The representations are local in that each unit represents a let-
ter in a one-to-one fashion. See the next section for more detail.) Thus
the network uses 104 letter units. Only five of these are depicted in figure
6.7. Let's assume these represent five possibilities for the first letter posi-
tion. The units in the lowest layer locally represent strokes. There must be
four copies of the full set of stroke representing units. Note that there are
more strokes than are depicted in the figure. For example, an N requires
a long diagonal stroke that's not shown. In the topmost level, possible
words are locally represented.

For the purpose of recognizing words, strokes are unrelated to one an-
other. Hence, there are no connections between units in any of the stroke
layers. The stroke layer and the letter layer, for each letter position, are
fully interconnected, meaning that each stroke unit is connected to each
letter unit. A stroke unit excites a letter unit if the corresponding stroke
is used in forming the corresponding letter, and inhibits it otherwise. Ex-
citatory connections are shown with little arrows and inhibitory connec-
tions end with small disks. Within the letter layer, for each letter position,
a single unit must emerge victorious. Thus each letter unit within a given
position inhibits every other letter unit, producing a winner-take-all situa-
tion. Similarly, each word unit inhibits every other word unit, resulting in
another winner-take-all strategy that serves to recognize exactly one
word.

Connections between the word layer and the four letter layers occur in
both directions. A unit representing a word, say ABLE, with the letter A
in the first position, is excited by the unit representing the letter A in the
first position, and is inhibited by each unit representing some other letter
in that position. And similarly for the B in the second position. Feedback
occurs when the A in the first position unit is excited by the ABLE unit,
as is the B in the second position unit, and so on.

Let's see how this network might behave if given noisy input like the
one in figure 6.8. What word could this be? By some mysterious process
you and I rather quickly conclude it has to be WORK. Perhaps we reason
that the last letter must be either an R or a K, and that WORR isn't a
word. McClelland and Rumeihart's network model reaches the same con-
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Figure 6.8
Noisy input (reprinted from McCelland and Rumelhart 1981)

clusion, not in any obvious way by following rules, but rather by settling
on the correct answer. Let's see if we can get some feeling about how this
settling happens.

The units representing W, O, and R should rapidly gain ascendancy in
their respective positions because each of their strokes is present and no
others are. Units representing K and R should compete for ascendancy in
the fourth position. Having the same strokes present, they should initially
rise about the same amount. The feedback from the word level eventually
distinguishes between them.

At the word level, units representing WORD, WORK, and FORK,
among others (say WEAK, or WEEK), may be initially highly activated
by virtue of several of their corresponding letter units running high. These
letter units are, in turn, strengthened by the three word units. But D can-
not win out in the fourth position because too little activation came from
the strokes. Lack of input from D eventually weakens WORD. Similarly,
FORK can't win out for lack of input from F in the first position. The
network settles on WORK.

It's not the details of this process that are interesting but its ability to
look at incomplete information and come to a correct conclusion. The
popular computer maxim, "Garbage in, garbage out," seems to be vio-
lated here. From a cognitive science point of view, the network accom-
plishes word recognition, a form of categorization. From a computer
science point of view, the network is acting as a content addressable mem-

ory, able to access the appropriate data record from part of its contents.
Also note that this process arrives at its correct conclusion via a form

of statistical calculating, giving rise to a global dynamics that settles into

some stable situation. This process apparently is not rule based. There's
nothing that looks quite like the syntactic operators applied to symbols,
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unless one is willing to broaden the conventional meanings of these
terms considerably.

Representation

Practitioners of symbolic AI often tout the importance of representation.
Winston (1992, p. 18) raises this position to the level of a principle: "The
representation principle: Once a problem is described using an appro-
priate representation, the problem is almost solved." Horgan and Tienson
(1989), you'll recall, conclude that humans typically operate using repre-
sentations but not rules. Later we'll visit cognitive cultures containing
philosophers, psychologists, neurophysiologists, computer scientists, and
roboticists who maintain that representation can be dispensed with alto-
gether (Maturana and Varela 1980; Winograd and Flores 1986; Brooks
1991; Varela et al. 1991). The connectionist camp, for the most part,
sides with the representationists.

Let's first distinguish between two forms of connectionist representa-
tion, local and distributed. Local representation employs one unit to rep-
resent one object, one concept, or one hypothesis. A one-to-one
correspondence is set up between the units in the network and the items
to be represented. Thus, with n units I could represent n objects; the abil-
ity to represent increases linearly with the number of units. The networks
we've viewed so far all use local representation.

With distributed representation, on the other hand, each unit may par-
ticipate in the representation of several items, and conversely, each item
is represented by a pattern of activity over several different units. Thus
you can represent as many items as you have subsets of units; n units
can represent 2 items. Theoretically, ten units, using distributed repre-
sentation, can represent over a thousand items. The trade-offs are clear:
distributed representation is much more computationally compact
than local representation, whereas local representation is much easier to
comprehend.

A third type of artificial neural network representation, featural repre-
sentation, occupies a middle ground between local and distributed repre-
sentation (Lloyd 1989, p. 104). Here individual items are represented
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distributively by patterns of activity over sets of units, and the individual
units locally represent features of the given item. Featural representations
can be programmed into a system or can occur with no human fore-
thought during a training process, as we'll see shortly. Featural represen-
tation can lead to spontaneous generalization. For example, suppose you
are "teaching" your network about the great apes, and you mention that
chimps like bananas. If both chimps and gorillas are represented in a fea-
tured way, many of their features will be held in common, and may be
very different from those of a gazelle or something else. If you then ask
the network whether gorillas like bananas, it will probably tell you yes,
on the basis of what it knows about chimps and on the similarity of their
features. All this is likely to occur not via the application of rules but by
the network settling on an answer.

Lloyd suggests classifying connectionist models according to their type
of representation (1989, pp. 105-6). Locally represented systems model
at the fully cognitive level. Since units represent concepts, the dynamics of
the network would model the dynamics of thought itself. The distinction
between the computational view of mind held by symbolic AI and tradi-
tional cognitive science, and a strong form of the connectionist view, is

particularly clear here. In a locally represented connectionist model, there
is nothing that looks at all like symbol manipulation via rules. There is
no recognizable stored program. All this conflicts with the computer
model of mind.

Featurally represented systems model at what Lloyd calls the microcog-
nitive level At the conceptual level, patterns of activation interact in com-
plex ways. Thoughts are then activation vectors. At the featural level,
units can still be interpreted, inferences can sometimes be discerned, and
the cognitive level is emergent.

Fully distributed systems model at the subcognitive level, since the indi-
vidual units are uninterpreted. Cognition emerges only at the whole sys-
tem level. Thus the connectionist model may be implementing some
production system when viewed from a higher level of abstraction. These
issues will come to the fore a little later in our tour. For now, let's have a
look at some of the more pleasant features of artificial neural networks
themselves.
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Virtues of Artificial Neural Networks

Connectionists often claim that their tool of choice, the artificial neural
network, will produce cognitive models superior to symbolic models be-
cause they enjoy inherent advantages in their architecture. In this section
we'll look at some of these purported virtues. (A more extensive account
of these issues was presented by McClelland et al. 1986.)

One of the most conspicuous properties of an artificial neural network
is its lack of a central executive. Nobody's in charge. No one has the
overall picture and makes decisions. Control is distributed. All decisions
are made on local information. Each unit decides on its output solely on
the basis of the input it gets from its neighbors, possibly including itself,
and its internal state. It can't even tell one neighbor from another. Why is
this a virtue? Because the network incurs no expense gathering global
information and arriving at a global decision.

Another conspicuous benefit of the architecture is the automatic pres-
ence of default assignments. Give it an input, and you'll get an output.
The network is going to do something, no matter what. That something
is a default value for the situation at hand. With symbolic systems, a pro-
grammer laboriously builds in whatever defaults are to be present.

While visiting the word recognition example, we saw artificial neural
networks complete patterns such as the corrupted word WORK. Pattern
completion allows content addressability. Some of these networks have
been designed as little databases (McClelland et al. 1986, pp. 23-29;
McClelland and Rumelhart 1988, chap. 7).8 If you want information out,
just put part of it in.

Symbolic AI systems tend to be brittle. That is, a single, apparently
small mishap often results in catastrophic failure. A widely circulated, but
perhaps apocryphal, story illustrates this point graphically. A Venus
lander, designed to land softly under the cloud cover, splattered uncere-
moniously due to a misplaced comma in its program. Connectionist net-
works using distributed representation, on the other hand, tend to
degrade more gracefully. The failure of a small number of units is more
likely to cause some degradation of performance rather than a cata-
strophic failure.
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Note that spontaneous generalization, which we've previously encoun-
tered in connectionist networks, may well be considered a virtue. These
networks also often exhibit global behaviors beyond the scope of any of
their individual units. These are called emergent behaviors, and are con-
sidered by some to be a distinct advantage. And finally, there's the feature
of artificial neural networks that brought them fame and fortunelearn-
ing. This virtue is definitely worth a more careful look.

Learning by Artificial Neural Networks

The output of a unit is often referred to as its activation. The pattern of
this activation at a given time is called the network's configuration at that
time. Think of a configuration as short-term memory, or what the net-
work is representing at the moment. The pattern of weights, on the other
hand, is more like long-term memory, representing what the network
knows. This pattern of weights determines how the network will react to
a given stimulus. In order for an artificial neural network to learn, it must
change some of its behaviors, that is, it must respond differently to a given

stimulus. For this to happen, weights must change. Thus learning in arti-
ficial neural networks takes place via changing of weights.9

Recall the example of an XOR network (see figure 6.9), this time with
its units labeled with lowercase letters, and with its distinctive pattern of
weights. This pattern is often represented in matrix form. Figure 6.10
shows the corresponding weight matrix.

Since there is no connection from a to a, a O occurs in the ath row, ath
column of the matrix.10 There is a connection from a toc with weight 1.
Hence a i occurs in the ath row, cth column.

An artificial neural network is build on a directed graph, or digraph,11
called the architecture of the network. The units of the network are the
nodes of the digraph, and the weighted links are its arcs. Given a particu-
lar architecture, the set of all its possible weight matrices comprises its
weight space. The architecture of the XOR network above is a digraph
consisting of five nodes and six arcs. Thus its weight space will be com-
posed of all S >< S matrices containing 0's in all but perhaps the six posi-
tions specified by the existing arcs in the digraph. One could, for example,
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Figure 6.9
A labeled XOR network

abcde

Figure 6.10
Weight matrix

enter weights at random in the positions not required to be zero and get
a member of the weight space. You should not expect the corresponding
network to behave like the XOR network.

As is so often the case with humans, a geometric view helps our under-
standing. A S X 5 weight matrix contains twenty-five weights (numbers),
and thus can be thought of as a point in a 25-dimensional space.12 The
weight space can then be thought of as a subset of this 25-dimensional
space. Learning, then, can be viewed as a search problem in weight space.
You look from weight matrix to weight matrix, trying to find the one that
will do your job best. Note the analogy between this view of learning and
the view of problem solving as a search for a path through state space
encountered during our visit to symbolic AI land.

Now we have some idea about what learning is, at least in artificial
neural networks. The next question is how to make those networks learn.
What heuristic strategies can we use to guide our search through weight
space? There are at least five major strategies, or training styles, that can
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Hard-wired (programmed)
Weights and connections specified
by a human designer

Error correction (supervised practice)
Responses compared to target output
and weights adjusted

Reinforcement (graded learning)
Numeric score over sequence of tria
(value of cost function) and weights
adjusted

Stochastic learning
Random or Hebbian weight change
accepted it cost decreases or by som e
probability distribution

Self-organization
Weights modified in response to mp ut

Figure 6.11
Training styles

be classified from the highly supervised to the highly unsupervised (see
figure 6.11). Supervision is by humans, of course.

A hardwired, or hand-coded, network is the most highly supervised of
all. The weights and connections are specified by a human designer. The
word recognition model we've already visited is an example. Garzon and
I specified all the weights and connections for a neural network imple-
mentation of a Turing machine (Franklin and Garzon 1991). Hardwiring
is a reasonable strategy when you have a carefully thought-out model
that works.

Error correction or supervised practice provides a somewhat less super-
vised training method. In this paradigm, responses are compared with
targeted output and weights are adjusted so as to minimize the error.
Back propagation is by far the most common example of supervised prac-
tice. Here a layered, feed-forward network13 is trained on a corpus of
input-output exemplars. Each network output is compared with the de-

Supervised

s

Unsupervised
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sired output of the exemplar and the error is calculated. That error is then
propagated back through the network and used to modify weights so as
to reduce the error. Errors can be totaled over all the exemplars, defining
an error surface in weight space. Back-propagation works via gradient
descent (going downhill in the steepest direction) on that error surface.
We'll encounter this popular and effective training method several times
at future tour attractions.

Reinforcement or graded learning allows a still less supervised training
paradigm for neural networks. This method reminds me of the child's
game during which a blindfolded protagonist stumbles after a goal guided
only by cries of "You're getting hotter" or "You're getting colder." For
neural network reinforcement training, a numeric score, the value of a
cost function, is calculated over a sequence of trials and the weights are
adjusted so as to lower the cost. (A behaviorist might well jump at this
method, protesting that this is how humans do it.) The interesting thing
is the cost function. Where does it come from? From the designer, no
doubt. Can such a cost function have evolved in us? I suspect so. We'll
return to this issue during a later stop on the tour at the Isle of Artificial
Life14 (chapter 9).

Stochastic learning uses trial and error. Try out a random weight
change and check the cost to see if it decreases. If it does, accept that
change; if it doesn't, go back to the previous weights. Or follow this same
procedure using Hebbian weight change. Hebb's rule (1949; or Anderson
and Rosenfeld 1988, p. 50) says to increase the synaptic strength between
any two connected neurons that fire almost simultaneously.

And finally, some neural nets self-organize, which is as unsupervised as
you can get. Their weights are modified in response to input. How would
you modify the weights in response to inputs? One possibility is to see
which output was the strongest for a particular input and strengthen
those connections even more while weakening neighboring connections a

little. Repetition of this process can allow the net to categorize its inputs.
We'll meet self-organizing systems again when we visit Edelman's work.

During the next major stop on our tour, we'll question the possible
contribution of connectionism to cognitive science. Are there mechanisms
of mind that can be modeled by artificial neural nets but cannot be mod-
eled well via symbolic AI? Or can connectionism, at best, merely imple-
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ment the symbolic paradigm without adding anything new? These
questions spur the second Al debate.

Notes

"Connectionist" models are most often cognitive, whereas "artificial neural
networks" often refer to purely computational models. Originally, "connection-
ism" referred to the Rochester school, which was distinguished by its use of local
representation (an object or concept represented by a single node) vs. distributed
representation (an object or concept represented by a pattern of activity over
many nodes). "Parallel distributed processing" referred to the San Diego school,
which relied on disttibuted representation. These distinctions have become
blurred, with the term "parallel distributed processing" falling into disuse.

I can't resist including one more delightful quote from Lloyd: "the brain exem-
plifies the fact that it is all tight to be very stupid if you're well connected."

That is, less than 1000 cycles per second.

I'm being deliberately vague about the kind of numbers being discussed. Math-
ematical readers can think of them as real numbers. However, most connectionist
models are simulated on digital computers where "numbers" are restricted to
finite subsets of the rational numbers.

In practice, NOR gates, the negation of OR gates, are commonly used, along
with NAND gates.

To review the definition of a Turing machines, see chapter 4.

Again, see chapter 4.

The book referred to last comes with software illustrating many connectionist
models in depth. It is highly recommended.

As so often happens when one tries to simplify, this assertion is nor quite right.
Learning can also occur via a change in the threshold. And, the threshold function
that operates on the weighted sum of inputs to calculate the output of a linear
threshold model is only one example of what is often called an activation function
or a transfer function. There are many others. Presumably, an artificial neural
network could also change its behavior, and thereby learn, by changing the activa-
tion functions of its units. This strategy is certainly not common.

Note that a connection with O weight into a unit has precisely the same effect
on the weighted sum that unit produces as does no connection at all. Hence, for
the purpose of constructing weight matrices, we shall assume that all connections
are present but that some have O weights.

A directed graph consists of a set of nodes (often represented by dots) and a
set of directed edges, or arcs (often represented by arrows), with each arc connect-
ing two (not necessarily distinct) nodes in a fixed direction.

The physical space in which we live is traditionally regarded as being three-
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dimensional, meaning that three numbers are required to specify the position of
a point relative to some coordinate axis system. Mathematicians have generalized
this notion so as to regard a sequence of n numbers as a point in n-dimensional
space. These higher-dimensional spaces have proved useful in many fields, includ-
ing physics, engineering, economics, and artificial neural networks.

The network is formed of layers of units. Each units sends output only to
units in subsequent layers.

If you're impatient, see Ackley and Lirtman (1992).
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The Second AI Debate

Setting the Stage

Two stops back on the tour, we visited the first AI debate. Philosophers,
physicists, computer scientists, and others were arguing over whether
there can be any such thing as AI, over whether artificial intelligence can
exist in principle. Serious thinkers can be found on each side of the issue.
As far as I can tell, the jury's still Out.

Whereas the first AI debate pitted AI researchers against outsiders, the
second is a family squabble between siblings. In one corner we find
the symbolic AI people advocating a computer model of mind, and in the
other corner the connectionists argue for a brain mode! of mind. Sym-
bolic AI constructs its model of mind using computation as a metaphor;
mental activity is like the execution of a stored program. Connectionism
bases its model of mind on a nervous system metaphor; mental activity is
like the settling of a network into a stable configuration. I refer to them
as siblings for two reasons. First, both sides share the twin goals of under-
standing and implementing intelligence. And second, severa! of the prac-
titioners of connectionism came from the ranks of disaffected symbolic

AI researchers.
The symbolic AI people maintain that intelligence can be achieved only

via symbol manipulation. (Recall the physical symbol hypothesis of
SOAR's designers that we met in chapter 4.) Although admitting that con-
nectionist models can implement symbolic structures,1 and therefore in-

telligence, the symbolic AI corner denies that anything new can be
obtained by doing so. That is, connectionism doesn't give us any informa-
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tian about cognition that isn't available from symbolic models. Connec-
tionist models are at too low a level of abstraction to be useful, they say.2

In response, the connectionist camp claims to have made contributions.
One such claim is from Lloyd (1989, p. 100): "The main contribution of
connectionism to the science of the mind is the postulated formal treat-
ment of highly interconnected networks of simple units." In other words,
connectionist units don't have to work just like neurons. The basic idea is
that intelligence and mind somehow emerge out of these highly intercon-
nected groups of relatively simple units.3

The Connectionist Agenda

How do the connectionists see themselves? What are they all about? What
do they want to do? Of the many people we might ask, McClelland, a
founder of the field and an author of its "bible' (Rumelhart, McCelland,
et al. 1986; McCelland et al. 1986), is an appropriate choice. His version
of the connectionists' agenda, taken from an Internet message on the
Connectionists List,4 contains three major items:

To find better methods of solving AI problems
To model actual mechanisms of neural computation
To explore mechanisms of human information processing.

Let's take them up one by one, since he has a little more to say about each.
McClelland's first purpose is "to find better methods of solving AI

problems, particularly those that have proven difficult to solve by conven-
tional AI approaches." This goal is by no means surprising, since McClel-
land is a cognitive scientist who became dissatisfied with symbolic
methods. But have they succeeded? Well, yes and no. First the no. I per-
sonally know of nothing I would call a difficult AI problem that has been
completely solved by connectionist methods. And now the yes. Connec-
tionist models have proven particularly effective at visual pattern recogni-
tion, at learning to predict time series, at producing quick, good enough
solutions to optimization problems. In many of these areas traditional
computational methods still hold a slight advantage, but the connec-
tionists have made remarkable progress in only a few years.

I think this comparison reflects the suitability of symbolic AI for mim-
icking rational thought. That is what symbolic AI does well, whereas con-
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nectionist models excel at pattern and information recognition. When a
carpenter goes Out looking for work, he looks for a door to put in or a
deck to build. He doesn't look for a toilet to fix, because he has the wrong
set of tools. The symbolic AI people have quite naturally looked for the
kinds of problems their tools can help to solve. The connectionists are
doing exactly the same. Of course, there is some overlap.

Also, keep in mind that until now, all connectionist models have been
simulated on digital computers. Neural network chips are now on the
market, with neural network boards and even neurocomputers not far
behind. To reach their full potential, connectionist models depend on
massive parallelism. Serial emulations hardly do them justice. I believe
McClelland's first agenda item may well be achieved when connectionist
models routinely run on massively parallel neurocomputers.5

Concerning his second agenda item, modeling mechanisms of neural
computation, McClelland says:

There's lots of data on such things as the stimulus conditions under which particu-
lar neurons will fire, but there is little understanding of the circuitry that leads to
the patterns of firing that are seen or the role the neurons play in overall system
function. Connectionist models can help in the exploration of these questions.

Distinguish connectionist modeling carefully from computational mod-
eling of neuronal function or neuronal group function. Connectionist
models are greatly simplified. They're not detailed enough to model neu-
ronal activity well at a low level of abstraction, but they can give useful
information at higher levels. Although connectionist models have cer-

tainly proved useful, their promise is, in my view, still greater than their
performance.

Finally, McClelland talks about human information processing:

The idea is that there is a set of putative principles of human information pro-
cessing that are more easily captured in connectionist models than in other for-
malisms. The effort to determine whether these principles are the right ones or
not requires the use of models, since it is difficult to assess the adequacy of sets
of principles without formalization, leading to analysis and/or simulation.

Note that connectionism, as does symbolic AI, models the mind as an
information processor. In that sense, they are siblings. This is the first
time we've seen the connectionist brother saying to his symbolic AI sister,
"Hey,! can do it better than you." Later on, we'll see that Edelman (1987,
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pp. 37-42) and others assert that brains are not information-processing
systems in the sense that computers are. Information processing, ac-
cording to them, is simply a metaphor that they are ready to throw out.
This line of thought will lead us, in chapter 14, to the third AI debate,
over the necessity of internal representations. In the meantime, let's visit
a calculation argument against brains as computers.

The Hundred-Step Rule

Human reaction time is order of magnitude 500 milliseconds. That is, for
a human to categorize a perception, retrieve a memory, disambiguate a
word in a sentence, or perform some other single cognitive act requires
something like half a second. "Something like" should be interpreted as
within a factor of 10 more or less, that is, between 50 milliseconds and a
few seconds. Consecutive neuron firing times fall within a narrow range
around 5 milliseconds. Thus the number of firings per reaction is approxi-
mately 500 divided by 5, or about 100 neural firings. Feldman's hundred-
step rule6 is a consequence: Human reactions are physiologically con-
strained to require roughly 1 00 serial steps to calculate. Note that we are
talking about reaction time, not decision time, not stopping and deliber-
ating, but simply having an idea pop up.

But no serial computer computes anything worthwhile in 100 serial
steps. Here we're talking about primitive steps corresponding, say, to sin-
gle machine language instructions.7 One concludes that nervous systems
must depend heavily on their massive parallelism. One mustn't conclude
that computers can't do useful work in the time it takes a human to pro-
cess 100 serial steps. Remember that computers calculate much more rap-
idly than neurons do. Keep in mind also that serial computers can do
informative, symbolic, cognitive modeling off-line,8 often by simulating
parallelism. What Feldman's argument does make clear is that serial com-
putation, as a model for human cognition, has limitations.

Some may well object that some aspects of human cognition, say route
planning or storytelling, are inherently serial, and thus may be modeled
effectively by serial computers. Granted, but with a caution. Some appar-
ently inherently serial processes can be performed more efficiently in par-
allel. For example, one of the most obviously serial tasks I can think of is
to locate the end of a linked list, starting at the beginning. A linked list is
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Figure 7.1
A linked list

a common data structure in computer science. It holds an ordered but
unindexed list of items. Each item in the linked list (see figure 7.1) con-
tains a slot for its content and a second slot for a pointer to (i.e., the
address of) the next item in the list.

Each cell knows where its next cell is but cannot locate any other cell
in the list. So suppose you want an algorithm to find the end of a linked
list when given the beginning. Clearly, only from the first cell can you find
the second, and only from the second cell the third, and so on. Thus,
locating the end cell of a linked list seems to be a quintessentially serial
process for which no amount of parallelism will help. More specifically,
it seems absolutely and unmistakably clear to me that the time required
to locate the end of a linked list is directly proportional to the length of
the list, whether or not you're working with a parallel computer. If you've
got a longer list, it's going to take you longer. However, in spite of being
"absolutely and unmistakably clear," this belief is simply false. Hillis and
Steele (1986) found a "data parallel algorithm" that finds the end faster.
That is, with their algorithm, the time required to locate the end of a
linked list increases quite slowly as the length of the list increases, not
proportionally.9

The moral I draw from this story is not to trust my intuition as to what's
usefully parallelizable and what's not.

Brain vs. Computer Model of Mind

Let's take a few minutes to make explicit the difference between the brain
model and the computer model of mind. The computer model postulates
symbolic internal representation, an internal language of thought. The
brain model drops this idea. The computer model postulates stored pro-
grams in the form of production rules or some such. This idea is also
dropped from the brain model, which postulates instead activity guided
by connections in networks tuned by their weights.
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In order to set the stage for a later visit to the "enactive" approach to
mind during the third AI debate, let's view the distinctions between the
brain and computer models of mind from the vantage point of their re-
spective answers to three common questions. This formulation is quoted
from Varela et al. (1991). First the questions and their symbolic AI re-
sponses (pp. 42-43):

Question 1: What is cognition?
Answer: Information processing as symbolic computationrule-based
manipulation of symbols.
Question 2: How does it work?
Answer: Through any device that can support and manipulate discrete
functional elementsthe symbols. The system interacts only with the
form of the symbols (their physical attributes), not their meaning.
Question 3: How do I know when a cognitive system is functioning
adequately?
Answer: When the symbols appropriately represent some aspect of the
real world, and the information processing leads to a successful solution
of the problem given to the system.

And now the same questions as answered by the connectionists (p. 99):

Question 1: What is cognition?
Answer: The emergence of global states in a network of simple
components.
Question 2: How does it work?
Answer: Through local rules for individual operation and rules for
changes in the connectivity among the elements.
Question 3: How do I know when a cognitive system is functioning
adequately?
Answer: When the emergent properties (and resulting structure) can be
seen to correspond to a specific cognitive capacitya successful solution
to a required task.

Though quoted from proponents of yet a third model of mind, the an-
swers to these questions seem faithful to their respective camps, and high-
light the distinctions between the symbolic AI and connectionist views.

One must carefully distinguish the use of the word "rule" in the sym-
bolic AI answer to question 1 from the use of the same word in the con-
nectionist answer to question 2. Once again we have a disparity of level.
Symbolic rules (production rules) operate on high-level (representation-
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level) constructs, whereas connectionist rules operate locally on low-level
(implementation level?) constructs.1° The first is a rule in the sense of con-
ditioniaction or premise/conclusion. The second is a mathematical rule
(formula) for updating the activation of a unit or for changing the
strength of a connection. This second use might well dig a pothole to trip
an unwary traveler.

Note also that the answers to question 3 are alike in that each postu-
lates an act of interpretation by a human. The problem mentioned in the
symbolic AI answer is given by a human who, presumably, also decides
whether it has been solved successfully. In the connectionist answer, the
same may be said of the task and its solution. A human must also have

seen" whether an emergent property" "corresponds to a specific cog-

nitive capacity." Later on our tour, we'll see pushes from several direc-
tions to get the human out of the loop.

Lloyd's Cautions

Connectionism offers a brain metaphor for the mind. Lloyd, whom we
met earlier, cautions us about taking that metaphor too seriously. As phi-
losophers are wont, he proposes a thought experiment to make his point.
Suppose we're a century into the future and neurophysiologists have gone
great guns. They've gotten more funding than the Human Genome Proj-

ect and the Supercollider11 combined, and have produced a complete wir-
ing diagram of the brain. (Of course we know that not all brains are wired

alike, but suspend disbelief. This caveat won't affect the argument.) Fur-
ther, they've constructed a computer model that operates exactly as their
wiring diagram of the brain prescribes. Now what? This model must be

implemented as a computer program with loo billion subroutines, one
for each neuron. If that's not imposing enough, it must have a million
billion subroutine calls, one for each synapse. Their number may have

surpassed the national debt. What can you do with such a program? Even

a simple cognitive act couldn't be simulated in a lifetime on any conceiv-

able computer. Ignoring for a moment the problem of scale, suppose you

could run it.
The model is, in essence, only a wiring diagram of the brain. That's not

going to tell you much about cognition. Lloyd states the goal of cognitive
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neuroscience as "a principled interpretation of our understanding of the
brain that transfigures it into an understanding of the mind" (1989, page
93). A total brain simulation does little to meet this goal. It does not
"transfigure" our understanding. It provides no "principled interpreta-
tion." To use Lloyd's metaphor, it amounts no more to an understanding
of mind "than photocopying an alien script amounts to translating it."
Hence, let's be cautious. That connectionist models are based roughly on
brains needn't, per se, add to their value as cognitive models.

Lloyd goes on to offer a second caution: "Just because we can describe
the behavior of a complex system with cognitive language does not make
the system cognitive and certainly does not make the system a mind." He
presents the following thought experiment to illustrate his point (11989,

pp. 93-94).

This time let us imagine a much simpler device, without biological pretensions.
Call it a Computational Associational Reactive device, or CAR for short. It will
be another simulation of the brain but greatly simplified: Just as brains receive
many inputs at once, so will the CAR device, which will have about ten distinct
simultaneous inputs. These inputs are processed in parallel as in the brain. CAR's
outputs are also parallel and distributed, again varying along ten or so dimen-
sions. All of this is mechanical; but under a suitable interpretation, CAR provides
a model of a complex cognitive taskface recognition. Our interpretation of
CAR maps facial features onto ten input dimensions and name features onto ten
output thmerssions. For example, perhaps one input variable will stand for the
height of a forehead and one output variable for the first letter of a simple name.
Though the interpretation scheme is not obvious, with patience we can find a
consistent scheme, supporting the interpretation of CAR as a cognitive model. It
may not work ¡ust as we do, but it does "recognize faces" in that when a face
is encoded along the ten input dimensions, an (encoded) name pops out. Face
recognition is a cognitive task, so CAR looks like a system to study for insight
into the brain and the mind.

This is a cautionary thought experiment for the simple reason that CAR is an
automobile. Its parallel inputs include specific quantities of air and gasoline, the
state of the accelerator, gearshift, steering wheel, ignition system, and so forth. Its
parallel outputs include exhaust, forward motion, direction of movement, and so
on. One can also interpret it as a model of face recognition, but the unveiling of
an old Ford Falcon ought to give us pause. We are warned against succumbing to
the lulling rhythms of the language of cognitive science.

Lloyd has been evenhanded with his cautions, first warning us against
taking connectionism to the extreme, and then warning us against follow-
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ing symbolic AI down the garden path to the junkyard. With these cau-
tions in mind, let's meet one of the main protagonists in this second AI
debate.

Fodor's Attack

A quick, and somewhat simplistic, view of Fodor's attack on connection-
ism follows (Fodor and Pylyshyn 1988; Fodor and McLaughlin 1991).
Why quick, and why simplistic? Well, quick because I haven't the patience
to devote as much time to this tour stop as it deserves. We could easily
spend our whole tour on this one sight alone. And simplistic, because
Fodor's arguments, as those of philosophers are wont to be, are both sub-
tle and intricate, and can be presented only in overly simplified form if
they are to be presented briefly. I'd like to give you the flavor of what
Fodor and his cohorts are putting forth by describing one of their
arguments.

Fodor says that thoughts have composite structure, which he refers to
as compositionality. Put in linguistic terms, words are composed to form
phrases, phrases are composed to form sentences, sentences to form para-
graphs, and so on. In logical terms, constants, predicates, operators, and
quantifiers compose to form propositions; propositions, operators, and
quantifiers compose to form new propositions; and so on.'2 Thoughts
may be expressed linguistically, logically, or in some other form, but can
be composed to form new thoughts. Compositionality is an essential fea-
ture of thought.

Thus thoughts have composite structure. Cognitive processes are sensi-
tive to the structure of the thoughts they process. Symbolic AI systems
represent entities compositionally and process them in a structure-
sensitive matter. On the other hand, connectionist processes operate via
statistical association and are not structure-sensitive. Hence, connection-
ism, says Fodor, can add nothing to cognitive modeling beyond the contri-

butions of symbolic AI.
Fodor does concede that connectionist models may provide mere low-

level implementation of symbolic AI structures and processing. You can
build symbolic models out of these connectionist models, but that is the
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best you can do. McClelland's "principles of human information pro-
cessing that are more easily captured in connectionist models" simply
don't exist, according to Fodor.

Of course, not many connectionists concur. Smolensky (1988), one of
several physicists-turned-connectionist, prefers to treat connectionist
models as subsymbolic rather than as implementing symbolic AI. The
subsymbolic level lies between the neuronal level and the symbolic level,
with individual connectionist units modeling neuronal groups rather than
neurons. He views symbolic rules as approximations of what is really
happening at this subsymbolic level, not exactly right but close.

Lloyd (1989, p. 126) claims that, lacking a stored program, "connec-
tionist networks are manipulating representations noncomputationally":
"That is, there are black boxes in [connectionisti systems which have rep-
resentations as inputs, representations as outputs, but nothing representa-
tional in between." Computers operate on symbolic representations, by
means of rules. Lloyd claims that connectionist models do it in some
other fashion. But what other fashion? What other mechanism? Let's
look at one candidate.

Chalmers's Defense

Chalmers asserts that despite Fodor's arguments to the contrary, connec-
tionist models can process in a structure-sensitive way. And, in an abso-
lutely unphilosopher-like manner, he proceeds to construct a neural
network (connectionist model) that does so. But I'm getting ahead of
myself.

Following van Gelder (1990), Chalmers (1990) distinguishes two ver-
sions of compositionality, the concatenative version that Fodor has in
mind and a functional version. In the concatenative version, two symbol
tokens are composed by concatenating them, that is, by placing one next
to the other. In functional composition, on the other hand, functions13
operate on symbol tokens, producing coded representations having a
complex compositional structure. To appreciate distinguishing features
of these two forms of compositionality, it helps to have a nodding ac-
quaintance with the classical AI programming language, LISP. Being a
longtime LISP hacker, I'll happily introduce you.
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LISP, an acronym for LISt Processing, uses simple lists as its basic data
structure. A left parenthesis signals the beginning of a list (a b c), and a
right parenthesis ends it. The elements of the list are separately by spaces.
LISP operates on lists by means of functions, typically producing other
lists. These functions are asked to operate on their arguments using a list
of the form (function-name argumentl arguinent2).

The fundamental constructor of lists in LISP, a function called cons

allows concatenative composition. It operates as the following example
indicates: (cons d (a b C) ) produces (d a b c),that is, cons in-

serts its first argument, d, as the new first element in its second argument,

(a b c), yielding the expanded list (d a b c) . That's how lists
are put together. How are they taken apart? By functions, what else? The
fundamental LISP extractor functions, first and rest, together act
to undo what cons does: first returns the first element of its single
argument, thus (first (d a b cl) returns d; rest returns its
argument missing its first element, so (rest (d a b C) ) returns

(a b c)

Symbolic AI, Chalmers points out, allows exactly these classical sym-
bol-manipulating operations of construction and extraction, and no
other. You can put things together (compose them) and take them apart
(extract them), and that's all. Symbolic systems have only compositional
structure. Beyond this are only atomic components. They don't have any
structure of their own. You can cons d into (a b C), but you can't get

down into d itself. To change the tense of a sentence, say (stan is go-

ing on a tour) to (stan went on a tour), first extractions,
and then concatenations, are required. Symbolic AI has no means of mak-

ing that change directly. Concatenation and extraction are allowed, and

that's it.
Connectionism is richer, says Chalmers. It allows you to operate holisti-

cally on functionally composed representations, that is, without first pro-

ceeding through the step of extraction. But this is precisely what must be

proved to show that Fodor's argument is wrong. Cognitive models must

use operations other than composition and extraction to go beyond mere
implementations of symbolic AI models. Further, such models must oper-

ate directly on distributed representationsdirectly, in that extractions
and compositions are not allowed. Chalmers wants to produce just such
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a model. As a major tool he uses another mechanism of mindinterest
in its own right, which we'll visit next.

Pollack's RAAM

An often applied neural network architecture called recursive auto-
associative memory, RAAM for short, was produced by Pollack (1990)14
Let's pick this name apart as a first step in understanding what RAAM's
all about. "Memory" refers to some sort of storage device. An associa-
tive memory" stores input/output pair associations. Given an input pat-
tern, it should produce the associated output pattern, or perhaps the
output pattern associated with the closest match the system can find to
the input. In an "auto-associative memory" each input pattern is associ-
ated with itself as the output pattern.

Associate a pattern with itself? Why would you want to do that? If you
already have the input pattern, why go looking for it in an auto-
associative memory? Ah, but such initial intuitions can be misleading.
Why would one want a number that counts nothing? Because zero is of
great utility. And then there's the infamous empty set, the set with no
elements, that's indispensable in set theory. You'll soon see that auto-
associative memory has much to recommend it.

A recursive procedure is one that calls itself during its operation. Since
we're now slightly acquainted with LISP, let's look at a recursive LISP
function as an example. Suppose I want a function that returns the num-
ber of elements in a simple list, that is, given the list (a b c), it would
return the number 3. LISP code defining such a function, named
length, follows:

(defun length (list)

(if (null list) O

(+ 1 (length (rest list)))))

Here's a verbal description of what this code means. The first line says
that we're defining a function named length with one argument named
list. The second line says that if the list, list, is null (empty), then
return a 0, else execute the next line. The third line finds the length of all
of the list but its first element, and adds I to it. Note that the recursive
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Figure 7.2
RAAM architecture (redrawn from Chalmers 1990)

function length calls itself in the third line. Applying length to a

small list such as (a b C) helps in understanding recursion. Take it as
an exercise.

A recursive auto-associative memory, then, associates patterns with
themselves in a recursive way. The ultimate goal is to store sentences15 in
a fixed amount of space regardless of their length, a kind of fixed-length
compaction. Let's see how all this is done.

Imagine an artificial neural network with three sets of five input units,
a single set of five hidden units, and another three sets of five output units
(figure 7.2). Each input unit is connected to each hidden unit, and each
hidden unit to each output unit. Train the network as an auto-associator
via backpropagation, whose acquaintance we made in chapter 6. That is,
train it so that its output pattern is identical with its input pattern. We
now have an auto-associative memory.

Our trained artificial neural network has three layers: an input layer, a
hidden layer, and an output layer. An input pattern of length 15, presented

to the input layer, will induce a coded version of itself in the hidden layer

at the next time step. This encoded pattern will induce the original input
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Figure 7.3
Encoder and decoder (redrawn from Chalmers 1990)

pattern on the output layer at the next time step. Thus we may regard the
bottom two layers as an encoding device, and the top two as a decoding
device. Taken together, they constitute the two necessary portions of a
device for compressing data, an encoder and a decoder (figure 7.3). The
compression device, in this case, compresses three to one.

In these days of graphical computing, compressors are useful devices.
The computer screen I'm looking at right now displays almost a million
dots (pixels, in computer science jargon). A single graphic image from
this screen would occupy a goodly chunk of storage space. If we had an
auto-associative memory with a million inputs rather than fifteen, we
could compress that data to one-third size, using the encoder, and store
the compressed version. The decoder could later serve to put the image
back in its original form.16

So far we've talked about our encoder/decoder pair as being an auto-
associative memory. But Pollack calls it a recursive auto-associative mem-

Copyrighted Materia!

OUTPUT 3

00000

00000
INPUT 3



Copyrighted Material

The Second Al Debate 155

ory. How can this encoder/decoder pair be used recursively? Suppose that
a word can be represented by five units. Take a sentence like "The vervet
monkey fearfully screamed an eagle alarm." Using representations of the
three words in the first phrase, "The vervet monkey," as input, encode the
phrase as a five-tuple of values of the hidden units, called phrase 1. Add-
ing a placeholder, nil, to the second phrase, "fearfully screamed," brings
its word count to 3. Encode the extended phrase, "fearfully screamed nil,"
as phrase2. Then encode the third phrase, an eagle alarm," as phrase3.
Now comes the recursive part. Use the three encoded phrasesphrasel,
phrase2, and phrase3as input to the encoder, yielding a five-tuple en-
coding of the entire sentence, sentence 1. To retrieve the original sentence,
send sentencel to the decoder as input, yielding codes for the three
phrases as output. Each of these is then decoded separately, and the ong!-
nal sentence reconstructed. This is an overly simplified account in several
respects,17 but it illustrates recursive use of an auto-associative memory.

Pollack's RAAM, in principle, allows fixed-length representation of ar-
bitrarily long sentences. The "in principle" caveat is included because
computer systems are limited in the number of numbers they can discrimi-
nate, and because errors tend to accumulate as we recurse to deeper
depths. With RAAM well in hand, let's see what Chalmers does with it.

Passivization of Sentences

As we've seen, Fodor claims that connectionist models are incapable of
structure-sensitive processing because they operate purely statistically.
Chalmers offers, as a counterexample, a connectionist system that con-
verts active sentences to passive form without extracting and reusing parts
of the active sentences (1990). His system works directly with representa-
tions encoded via Pollack's RAAM.

Chalmers first builds and trains a 3 X 13 RAAM (figure 7.4). (We pre-
viously looked at a 3 X 5 RAAM.) He then builds a second three-layer
network with thirteen input and thirteen output units. This network is
also trained via back-propagation to convert an encoding of an active

sentence to an encoding of its passive form. To use the completed system

to passivize a sentence, one just encodes the sentence using the RAAM,
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0000000000000
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Figure 7.4
Transformation network (redrawn from Chalmers 1990)

then runs the encoded version through this second network, and finally
decodes the resulting output.

Chalmers claims the encoded distributed representation of a sentence
still maintains the structure of the sentence, because that structure can be
recovered from the encoded version by decoding. This encoding illustrates
functional rather than concatenative composition. The encoded distrib-
uted representation of the active sentence is then processed by the second
network, the processing occurring holistically, without any kind of
extraction.

For this plan to work requires a trained passivizer net. Chalmers used
forty active sentences and their passive versions as training pairs. Both
active and passive sentences were encoded via the RAAM encoder. These
encoded representations were then used to train and passivizing net, with
the active sentence RAAM encoding serving as input and its passive form
as the target. After training, the entire system, RAAM and passivizer,
worked perfectly on the training sentences. Training was successful.

But did the system really know how to passivize sentences, or had it
simply memorized the appropriate responses to these forty sentences?
When tested with forty active sentences other than those it was trained
on, twenty-six decoded to the correct passive, thirteen produced one in-
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correct word, and one showed an incorrect sentence structure. Analysis
showed that all the errors occurred during the encoding/decoding process,
and not during passivizing. Not only did the system generalize, it general-
ized quite well.

Chalmers concludes that RAAM representations are well suited for di-
rect structure-sensitive operations, and that they can be used directly to
train connectionist models via backpropagation. He asserts the impossi-
bility of describing this system at any level of functional abstraction as an
implementation of a purely symbolic process. Compare this assertion to
that of Fodor and McLaughlin: ". . . the constituents of complex activity
vectors typically aren't 'there' so if the causal consequences of tokening a
complex vector are sensitive to its constituent structure, that's a miracle"
(1991, p. 347). These "complex activity vectors" are the encoded versions
of active sentences. They have no constituents, so whatever structure-
sensitive processing took place didn't depend on constituent structure.
Something other than an implementation of a symbolic system must be
going on. Hence, we have a counterexample to Fodor's attack. Maybe
a "miracle"?

Is Connectionism Richer?

Earlier we noted Chalmers's claim that connectionist representations are
inherently richer than symbolic representations. Symbolic representations
have primitive atomic components and compositional structures, and
that's all. Connectionist representations also have a compositional struc-
ture, as we've just seen. But instead of having primitive atomic compo-
nents, they have a complex, distributed microstructure containing much
more information. Let's look at an example to clarify what's meant here.

Suppose I'm going to represent animals by using a connectionist repre-
sentation with microfeatures. One unit may represent the number of legs,
another the number of horns, and so on. Each species of animal is repre-
sented by its vector of features. Each feature may take part in the repre-
sentation of several different species, and each species is represented by a
host of different features. This is distributed representation. Suppose we
represent gorillas, and include a feature asserting that gorillas like ba-
nanas. If we now ask the system if chimps like bananas, without having
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included such a feature for chimps, it's not difficult for a connectionist
system to respond yes because chimps and gorillas have so many features
in common.

Still, I'm not convinced that connectionism is inherently richer than
symbolic AI. Though symbolic systems all ultimately rest on primitive
atomic elements, these can be chosen at as fine a grain size as needed. I
can imagine, for example, a symbolic system that can handle the chimps
and bananas question nicely, concluding that chimps probably like ba-
nanas because it knows that gorillas do and that the two species are simi-
lar in many respects.

Well, we've seen attacks on connectionism and defenses of it. Our next
visit may be a little harder to interpret.

Representations Without Rules

Horgan and Tienson, philosophers and colleagues of mine, talk about
representations without rules (1989). They come down strongly for the
necessity of representations, and equally strongly in opposition to rules.
It's not clear that they're wholly in the connectionist camp, but their argu-
ments do seem to lend credence to a connectionist view.

They assert the need for representations as follows:

The cognitive system needs representations that can be processed in highly inter-
active, highly content sensitive, ways. That is, it needs representations that contain
repeatable predicates applied to repeatable subjects, so that the relevant relations
of co-reference and co-prediction can get encoded and thus can get accommo-
dated during processing. In short, it needs syntactic structure, a language of
thought. (1989, p. 155)

So far, Horgan and Tienson haven't strayed from the symbolic camp. The
phrase "language of thought" derives from a book of that title by Fodor
(1975).

And why are representations needed? Flow else, they ask, could one
take into account all the relevant factors with which to make a decision,
for example, about what to do next during a basketball game? Or for
another, it seems clear to me that in planning a route from an unusual
starting point in a city I know well to a familiar destination, I use semivi-
suai representations. I conjure up a sequence of intersections, landmarks,

Copyrighted Material



Copyrighted Material

The Second AI Debate 159

and so on. It's hard for me to imagine planning such a route without some
use of representations. A plan itself is a sequence of representations. This
issue will pop up again when we visit the third (and last?) AI debate over
the need for representations.

So much for representations. What do Horgan and Tienson say about
rules? First, note that by a rule they mean a hard, high-level rule, hard in
the sense of being exceptionless, and high-level in that it operates on high-
level representations. The formula (rule) for computing the weighted sum
of the inputs to a connectionist unit would be hard but not high-level.
The rule asserting that birds fly would be high-level but not hard, since
penguins are birds that don't fly.

Again basketball is a canonical example. Here you are, the point guard
on a fast break. You have to decide whether to shoot or to pass off. What
sorts of issues are relevant? Your position on the floor, the positions of
the other players, both teammates and opponents. All their speeds and
directions. The offensive and defensive strengths of these individual play-
ers. Who's hot and who's not? Who is guarding whom? Your center of
gravity. How many points you have scored that night. Whether the guy
you might pass to has a girlfriend who is watching and whom you are
after. And the decision must be made in milliseconds. With this back-
ground, Horgan and Tienson build their argument:

It seems very unlikely that this sort of thing [playing basketballi could be done by
a program.

Any of these constraints can come into play in any combinationthereby
threatening computation explosion.

All of these constraints are soft constraints. Any one of them can be violated
while the system is working properly.

[Symbolic AIl can produce a semblance of this softness only by adding excep-
tions to its rules, which enormously compounds the computational problem.
(1989, p. 156)

It is certainly hard for me to imagine a symbolic expert system that
could play point guard in real time. It's true that Andersson's robot Ping-
Pong player uses a symbolic expert system to choose its next stroke
(1988), but the Ping-Pong player's task seems orders of magnitude less
complicated than the point guard's.18 The number and complexity of the
issues to be considered during a fast break seem almost unlimited. Each
of these issues imposes constraints on possible choices. Any constraint
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seems capable of combining with any other, so that the number of combi-
nations of constraints would seem to increase without bound. And each
of these constraints admits of a seemingly endless number of exceptions,
with each exception requiring an additional rule. And we've considered
only decision making, not the probably more difficult problems of percep-
tion and motor control. Animals are capable of amazing feats of compu-
tation in real time. Our computers seem much more limited. I'll believe
in a robot point guard based on a symbolic expert system only when I
see it.

(Art Graesser asks at this point, "What about a case-based system?"
Cased-based systems decide on actions by analogy with previously expe-
rienced, similar situations. Brief accounts of such systems can be found
in standard AI texts [Rich and Knight 1991] along with further refer-
ences. We'll meet this concept again on a visit to the work of Brustoloni.
But to answer Art's question, I'm less skeptical about a case-based point
guard than I am about one that's rule based.)

In support of an essentially limitless supply of possible exceptions,
Horgan and Tienson point out that all, or virtually all, psychological laws
will be, ceteris paribus, generalizations, that is, of the form If A and noth-
ing else is relevant, then B. As an example, they say, suppose Susie is
thirsty for a beer. If she thinks there is a beer in the fridge, and if nothing
else is relevant, then maybe she will go and get a beer. But maybe she
doesn't want to miss a conversation that's going on. Or maybe she doesn't
want to stop reading her book in the middle of a paragraph. Or maybe
she doesn't want to drink a beer in front of her mother. Or maybe. .

One could always dream up one more exception. The number must be
endless. Hence a rule-based system, in the sense of hard, high-level rules,
seems at best highly improbable.

Horgan and Tienson give connectionism something concrete to shoot
at. How does one model decision making under myriad, simultaneous,
soft constraints? Many connectionists would maintain that this kind of
task is exactly what artificial neural networks do best. The problem is to
make them do it best in a complex real-time domain comparable with
basketball.

Their metaphor of basketball, with multiple competing and conspiring
factors influencing every decision, as a goal of cognition also lends sup-
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port to the notion of a multiplicity of mind. Thinking of these factors as
independent agents, each "clamoring for attention," gives us a foretaste
of Minsky's society of mind (1985) and of John Jackson's pandemonium
theory of mind (1987), both of which we'll visit later on the tour.

So after all this debate, what are we left with? Perhaps a clearer picture
of just where each contestant stands. Let's see if we can systematically
catalog and contrast the positions (table 7.1). As is typical with such suc-
cinct comparisons, some caveats are called for. Here are some.

Not all symbolic rules are hard. Some receive hypotheses with confi-
dence factors attached and assign confidence factors to their conclusions.
But a single number can never do justice to all possible exceptions. I don't
think confidence factors invalidate any of the arguments we've heard.

And not all symbolic systems are rule-based. Some newer systems are
case-based and, as such, not subject to a combinatorial explosion of
exceptions.

Since the arrival of parallel processors, symbolic AI has moved toward
their use. Hence, not all multiple-constraint situations are handled se-
quentially, although almost all still are. And parallel actions can be taken
on serial machines; it just takes longer.

Table 7.1
Symbolic Al versus Connectionism

Activity patterns over sets of units
represent structure.

Problems are solved by networks settling
into states fitting well with constraints.

All constraints are put into the hopper at
once and allowed to do their work.

Only active representations are present.
Representation-forming dispositions reside in
the weights.

Symbolic AI Connectionism
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The corresponding assertion about connectionist models handling mul-
tiple constraints in parallel is ideally, but not practically, true. Most con-
nectionist models today are simulated on sequential digital computers.
However, artificial neural network chips are now available, with boards
allowing their use just around the corner. When real neurocomputers are
common, this assertion will be true.

The last line of table 7.1 requires some additional comment. Symbolic
models typically contain symbolic representations, often in encoded
form. Connectionist models must reconstruct representations each time
they are needed. The difference is analogous to that between looking up
the current principal owed on your mortgage from a table versus calculat-
ing it from a formula. The table holds the representation you are looking
for explicitly, whereas it is implicitly available from the formula. In con-
nectionist models, and in human brains, representations are available only
implicitly. Cues are required to trigger the calculating process that recon-
structs them. Only currently active symbols are explicitly present. Repre-
sentation-forming dispositions that serve to reconstruct symbols reside
in the strengths of connections (synapses). Memories are not stored but
reconstructed. The dispositions, the procedures for reproducing the mem-
ories, are stored in a distributed way, not as individual little files that you
can label as a representation of a particular memory. Connectionist mod-
els, and humans, re-create their memories.

There are several reasons for optimism about connectionism. First, con-
nectionist representations can have arbitrarily complex syntactic struc-
ture. They can be expected to do anything a symbolic model can, because
they can do anything that a computer (Turing machine) can do (Franklin
and Garzon 1991). Second, connectionist models are good at satisfying
multiple soft constraints, at softly folding together multiple items of in-
formation. Third, the lack of stored information may help connectionist
models bypass the frame problem. And fourth, from Horgan and Tien-
son, "Robust softness at the representational level is likely to rest upon a
form of subrepresentational softness in which the causal links typically
work collectively rather than singly" (1989, p. 166). Connectionist mod-
els may well be able to implement systems driven by multiple soft con-
straints. These are reasons for optimism.
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Finally, a quote from Lloyd ends this stop on our tour: connectionism
is a study of great value even if connectionist models are poor shadows
of brains" (1989, p. 126). They certainly are that.

During our next tour stops we'll visit genetic algorithms and classifier
systems to get an evolutionary view of mechanisms of mind.

Notes

Connectionist models are computationally universal (Franklin and Garzon
1991), as we saw in chapter 6.

A similar level of abstraction argument is used against cognitive neuroscience,
the attempt to understand cognitive function by studying activity in the nervous
system. My friend Art Graesser uses a TV metaphor, asserting that one would be
foolish to attempt to understand TV programming by studying electrical activity
in the hardware of television sets.

Graesser's symbolic network model of human question answering, QUEST,
(Graesser and Franklin 1980) can be seen as another step somewhat in this direc-
tion. Though his networks are not so highly interconnected as typical connec-
tionist models (much less as nervous systems), there is an elegant formal theory
behind them.

The Internet is a worldwide electronic communications network. On it one
can send and receive electronic mail, download files, access distant computers
remotely, and so on. Messages can be posted on lists on the Internet for the pe-
rusal of subscribers to those lists. That is, each posted message is automatically
mailed to each subscriber. I subscribe to the Connectionists List. The agenda re-
ferred to above was posted by McClelland.

S. I take this prediction seriously enough to bet a fair amount of effort on it. The
AMNIAC project (Garzon, Franklin et al. 1992), to produce a general-purpose
neurocomputer, has reached the hardware prototyping stage. An optical version
has been designed (Caulfield, Garzon, Boyd, and Franklin submitted). Proposals
for funding of both optical and VLSI implementations have been submitted as of
this writing.

I have no reference for this, having first heard Feldman lecture about it at the
University of Memphis some years back.

Machine language is the primitive language of a computer, typically expressed
in strings of zeros and ones. Even the most trivial chore useful to a human requires
many machine-language instructions.

In computerese, off-line is the opposite of real time. A computer operating in
real time responds to its sequence of inputs as they come in, dealing with one
before the next arrives. A computer operating off-line stores its inputs and re-
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sponds to them as it can. Real-time responsiveness will be necessary for imple-
menting machine intelligence.

In technical terms, their algorithm is of order log2N rather than order N. For
a clear explanation of these terms see Harel (1987, chap. 6).

Talk of a connectionist model operating at a low level of abstraction may
well seem to contradict my recent warning about confusing these models with
models of neuronal or neuronal group function. There I spoke of connectionist
models as being at a higher level of abstraction. The apparent contradiction results
from "higher" and "lower" being relative terms. Smolensky (1988) places con-
nectionist models in a "subsymbolic" slot above low-level implementation (neu-
rons) and below higher-level abstractions (symbol processing). We'll meet him
briefly in just a bit.

Congress shot me down on this one by cutting off funding. Feel free to re-
place "Supercollider" with your favorite "big science" project.

Here's a brief glossary of logical terminology. Constants typically represent
specific entities, such as Socrates. Predicates represent some assertion about enti-
ties, such as "Socrates is mortal." Operators typically join predicates or proposi-
tions, such as "All men are mortal and Socrates is a man." Quantifiers assert the
scope of an assertion, such as "All men are mortal."

Recall from your math classes that a function, say f, operates on one or more
elements, say x and y, of its domain to produce an element, f(x,y), of its range.

Pollack, a computer scientist by trade, is by avocation a hilarious stand-up
comic. If you get a chance to hear him, don't miss it. I'm sorry that only his
RAAM act can be part of this tour.

RAAMs actually store trees, but not biological trees. To a computer scien-
tists, a tree is a particularly useful data structure. The organization chart of your
favorite bureaucracy is no doubt an example of this sense of a tree.

I've given you a somewhat simplified account of this process. A single pixel
might well take more than one unit to represent its current value.

That is, in the length of the representations and in the accuracy of the decod-
ing. The original sources (Pollack 1990; Chalmers 1990) provide full accounts.

My friend and son-in-law, Bob Sweeney, was amazed to hear of a robot Ping-
Pong player, and quite reasonably asked, "Is it any good?" It plays "robot Ping-
Pong" on a slightly downsized table with shots over the net constrained to travel
within a wire rectangle directly over the net. The human opponent always serves,
since the robot has only one arm. The robot plays completely defensively, only
attempting to get the ball back in play. Within these limits it plays well enough to
consistently beat its maker, who looks like a middling amateur player. There's a
video available, so judge for yourself.
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Evolution, Natural and Artificial

It is raining DNA outside. On the bank of the Oxford canal at the bottom of my
garden is a large willow tree, and it is pumping downy seeds into the air. There is
no consistent air movement, and the seeds are drifting outwards in all directions
from the tree. Up and down the canal, as far as my binoculars can reach, the
water is white with floating cottony flecks, and we can be sure that they have
carpeted the ground to much the same radius in other directions too. The cotton
wool is mostly made of cellulose, and it dwarfs the tiny capsule that contains the
DNA, the genetic information. The DNA content must be a small proportion of
the total, so why did I say that it was raining DNA rather than cellulose? The
answer is that it is the DNA that matters. The cellulose fluff, although more bulky,
is 'ust a parachute, to be discarded. The whole performance, cotton wool, catkins,
tree and all, is in aid of one thing and one thing only, the spreading of DNA
around the countryside. Not just any DNA, but DNA whose coded characters
spell out specific instructions for building willow trees that will shed a new gener-
ation of downy seeds. Those fluffy specks are, literally, spreading instructions for
making themselves. They are there because their ancestors succeeded in doing the
same. It is raining instructions out there; it's raining programs; it's raining tree-
growing, fluff-spreading, algorithms. That is not a metaphor, it is the plain truth.
It couldn't be any plainer if it were raining floppy discs.

Richard Dawkins, The Blind Watchmaker

Evolution of Mind

Our tour now takes a Darwinian turn. Many of the sights are chronicled
by Dawkins in The Blind Watchmaker (1987). It's sobering to have him
point out that "living organisms exist for the benefit of DNA rather than
the other way around" (p 126). That's you and I he's talking about. "An
individual body is a large vehicle or survival machine built by a gene co-
operative for the preservation of [its membersi" (p. 192). If we're our

Copyrighted Material



166 Chapter 8

bodies, that's what we're all about. But what about minds? Since, for the
duration of this tour, we've made the physicalist assumption that minds
are what brains do (natural minds, anyway), minds must also serve the
preservation of the genes. But what are minds for, anyway? They decide
what to do next, which certainly affects the preservation of the genes. I
sometimes think that we are allowed to choose the tactics while the genes
provide the strategy. Within the strategy genes insist on, I can have some
little choice about what I do. I can't choose to fly or to burrow, but within
walking or running I can choose direction and speed. I can't choose to
echolocate, but I can choose what to look at. Ah, but I can build a sonar
device with which to echolocate, or an airplane in which to fly. But let's
not pursue this issue of strategy vs. tactics too far, lest we bog down in
the mire of nature vs. nurture.i That would require a whole other tour.

But this tour is about artificial minds. Why should we spend time on
evolution? For several reasons. First, the evolution of simple animals,
rather than complex ones, may help us better understand artificial minds.
Also, a look at evolution may provide some perspective on philosophical
issues, such as subjective experience. What about these artificial minds?
Do they experience? And if they do, in what way? Natural evolution also
provides background for genetic algorithms, which will be the second
major attraction of this tour stop. Finally, a view of evolution will help
with artificial life, the port of call of our next major tour stop.

Here is some of what Dawkins has to say about the evolution of brains:

Our brains were designed to understand hunting and gathering, mating and child-
rearing; a world of medium-sized objects moving in three dimensions at moderate
speeds. We are ill-equipped to comprehend the very small and the very large;
things whose duration is measured in picoseconds or gigayears; particles that
don't have position; forces and fields that we cannot see or touch which we know
of only because they affect things that we can see or touch. (1987, p. 2)

How well designed are our brains for understanding mind? Probably not
well at all. In particular, we are not well equipped to comprehend neurons
and synapses, which are too small, or algorithms and mechanisms of
mind, which are too abstract. That's not what we evolved for, and yet
here we are struggling with them. By the very nature of things, our tour
must be a struggle.2
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End of life on Earth (Sun to explode)

Present time

Advent of humans

First fossils with hard parts

Multicellular organisms

Advent of eukaryotic cells
Oldest unmetamorphized rocks (contain fossils of cells)

Oldest sedimentary rocks (signs of organic activity)

Earth's beginnings
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Life's Timetable

With that warning, let's struggle a bit with gigayears to put life's time span
(and mind's) on Earth in perspective. Here's a table that will help.3 Let's
start at the bottom (table 8.1). Current estimates mark the age of the
Earth at about 4.5 billion years. The oldest sedimentary rocks show signs
of organic molecules or organic activity. The oldest unmetamorphized
rocks, the earliest that could contain any fossils, actually do. In geologic
terms, life has been around a long time. For some 2 billion years only
prokaryotes, the bacteria and blue-green algae, lived on Earth. Many call
this period the age of bacteria. Margulis and Sagan argue that we still live
in the age of bacteria and claim that it will always be the age of bacteria
(1986). Eukaryotic cells, the kind you and I, and all living things except
the bacteria and blue-green algae, are made of, first evolved about 1.4
billion years ago. All life on Earth consisted of single-cell organisms until
some .7 billion years back. At roughly the halfway point of the expected
span of life on Earth, multicellular organisms first evolved. Organisms
with hard parts soon evolved to make life more enjoyable for the
paleontologists.

We humans evolved only a coat of paint ago. What? A coat of paint?
Recall the analogy from chapter 1. Suppose the time span from the Earth's

Table 8.1
Life's Timetable on Earth

Billions of Years

5.0

0.0

0.000001
0.5
0.7
1.4
3.5
-3.7
4.5
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formation to the present were represented by the height of the Eiffel
Tower. The time span of the human species would then be represented by
the thickness of the topmost coat of paint.4 Again, it's sobering to realize
that Earth and its biosphere have gotten along perfectly well without us
for all but a minute part of their existence and could, no doubt, have
continued to do so. It is equally sobering to be told that all but an infini-
tesimal portion of the species that have occupied the Earth are now ex-
tinct (Margulis and Sagan 1986, p. 66). What's the probability that
humans will be around to avoid being incinerated by an exploding sun?
Approaching zero?5

Single-Cell Minds

I suspect you're wondering about more of this talk of prokaryotes and
eukaryotes. What can they have to do with mechanisms of mind? This is
biology. What does it have to do with artificial life? Well, I've often asked
myself, and sometimes other people, how much mind a single cell has, if
any at all. So we need to know something about single cells. All prokary-
otes are single-cell organisms. They have none of the cellular structure we
learned to expect in elementary biology class: no organelles, no nucleus,
no paired chromosomes, no chloroplasts, no mitochondria. Eukaryotes
can be single-cell (e.g., amoebas, paramecia) or multicell, and may well
have evolved from colonies of prokaryotes. Prokaryotes are the simplest
of living creatures. Nonetheless, they are highly successful. Measured ei-
ther by number or by biomass, collectively they probably outnumber and
outweigh all other living beings.

Well, what can they do? Lots! As we've seen, they can synthesize most
vitamins. They can manufacture most of the essential amino acids that
you and I have to eat to get. They are mobile. Some of them can detect
and move toward food concentrations. They can avoid certain toxic sub-
stances. These last two are, perhaps, the most elemental natural behav-
iors. They can produce particular enzymes as needed. In other words,
they can turn enzyme production on and off as needed, depending on
their current state. So they preserve a certain homeostasis. They have a
tenuous sex life. Although they don't need sex for reproduction, they do
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exchange genetic material. They can reproduce in twenty minutes to half
a day. They live in a variety of habitats, apparently from the upper atmo-
sphere down to 2000 feet below the Earth's surface. They even take up
residence in nuclear reactors.

The assertions of the previous paragraph may well leave you concerned
about quantifiers. Can all bacteria really do all these things? We typically
talk of a species being capable of some function though not every member
is. For example, we speak of chimps using tools to crack nuts, though not
all bands know to do this. Being conspecific, in essence, means being able
to usefully share genetic material, usually in the context of reproduction.6
But "all the world's bacteria essentially have access to a single gene pool"
(Margulis and Sagan, 1986, p. 18). Hence, "there are no true species in
the bacterial world. All bacteria are one organism" (Margulis and Sagan,
1986, p. 89). Thus it seems reasonable to speak of bacteria being capable
of these various functions though not all of them are.

All right, suppose we agree that bacteria are capable of all these func-
tions. Does that imply they have minds? I'm inclined to answer yes, to
come small degree. Minds control behavior. Bacteria behave. Whatever
controls that behavior is usefully thought of as a smidgen of mind.7

'What Is Life?

Well, here we are, caught in the trap of arguing about how to use the
word "mind." Another word that often leads to such a snare is "life."
Discussion about whether viruses are alive is not uncommon! Some have
been bold enough to attempt a definition. Here's one such, due to Crick
(1981, p. 56), that will prove useful in preparing us for genetic algorithms
to come. To be alive,

A system must be able to replicate directly both its own instructions
and indirectly any machinery needed to execute them [instructions for its
own replication].

The replication of the genetic material must be fairly exact, but muta-
tionsmistakes that can be faithfully copiedmust occur at a rather
low rate.

A gene and its product" must be kept reasonably close together.9
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4. The system will be an open one and must have a supply of raw material
and, in some way or another, a supply of free energy.

Note that sexual reproduction is not a basic requirement. Note also the
requirement that mutations occur but at a low rate. Without mutation
there is no new genetic material, at best myriad recombinations of the
old. Too much mutation, on the other hand, leads to chaos, which is
typically not viable. Here we have one instance of a general principle:
interesting systems balance on the edge of chaos. Almost any dynamic
organization exemplifies this principle. If the system is too static, too con-
trolled, there is no interesting dynamics. If it's too chaotic, with things
going this way and that, there is no interesting order. Interesting systems,
including life, live on the edge of chaos)°

Crick's requirements for life omit not only sex but also that mysterious
life force, that élan vital, that almost all of us would like to consider the
essence of life. Where Crick leaves it out, Dawkins shoots it down. Here's
his view, presaged by this chapter's opening quote: "What lies at the heart
of every living thing is not a fire, not warm breath, not a spark of life'. It
is information, words, instructions. . . . If you want to understand life,
don't think about vibrant, throbbing gels and oozes, think about mf orma-
tion technology" (1987, p. 112). Ah, but what is this information, and
how is it processed?

Evolution as Information Processing

Recall that a gene is essentially a recipe for a protein. With it, a cell con-
taining the necessary building materials can manufacture the protein. The
gene provides information as to the protein's structure. The collection of
genes of an organism is called its genotype. Every organism begins as
a single cell containing such a genotype. Some organisms develop into
multicellular creatures like ourselves. The organism's phenotype is the
collection of properties or attributes it exhibits during development.
What these properties will be depends on the properties and the abun-
dance of the proteins produced, and on the properties of the environ-
ment.11 The information in the genes is processed during development
into the phenotype. How well the resulting organism fits its environment
depends on both the organism and its environment.
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But the processing isn't over. It continues via natural selection. Differen-
tially successful reproduction among organisms results in expanding or
contracting populations of certain genes in the gene pool. Natural selec-
tion has taken place.hi Here is a brief sermon from Dawkins on what
natural selection is, and isn't.

Natural selection, the blind, unconscious, automatic process which Darwin dis-
covered, and which we now know is the explanation for the existence and appar-
ently purposeful form of all life, has no purpose in mind. It has rio mind and no
mind's eye. It does not plan for the future. It has no vision, no foresight, no sight
at all. If it can be said to play the role of watchmaker in nature, it is the blind
watchmaker. (1987, p. 5)

Note the phrase "apparently purposeful form." We'll encounter this idea
again when we visit with the roboticists, who sometime speak of robots
exhibiting emerging behavior that is apparently purposeful. But Daw-
kins's, or rather Darwin's, essential message is that there is no progress in
evolution. There's no goal to progress toward: "Having survived in an
unbroken line from the beginnings of life, all organisms today are equally
evolved" (Margulis and Sagan 1986, p. 16). Nothing in the information-
processing mechanisms of evolution allows for combination or mutation
of genes to achieve favorable changes.13

Darwin's basic idea is that order, and unbelievable complexity, incred-
ible capabilities, result from selection operating cumulatively on chance
events. Crick puts it this way: "When times get tough, true novelty is
needednovelty whose important features cannot be preplannedand
for this we must rely on chance. Chance is the only source of true nov-
elty" (1981, p. 58).

If you are going to build artificial creatures with artificial minds, and
you want them to survive and procreate, you will have to endow them
with some way to produce novel behavior. Not all important contingen-
cies can be predicted, on either an individual's or evolution's time scale.
Crick is telling us that chance is the only source of the needed novelty.14
This assertion certainly seems right when applied to natural evolution.
The "only" part seems doubtful when applied to learning in an individu-
al's lifetime, or to artificial evolution, which we'll visit soon. In the mean-
time, let's try to get a handle on subjective experience.
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Us and Bats

Early on, I warned you to expect a sales job along with the sights on this
tour. It's like being invited to spend two nights free in a condo at the
newest lakeside resort. All you have to do is listen to a sales pitch. Here
you have to somehow acquire access to this book and listen to a sales
pitch. If the cost seems high, you can skip the next couple of paragraphs.
Unfortunately, I don't promise to warn you of each approaching hawking.

Here's a quote from the first chapter of this book:

Mind operates on sensations to create information for its own use. I don't think
of minds as information-processing machines in the sense of taking information
from the environment and processing it to arrive at the next action. Rather, I think
of information as not existing out there in the environment. Information comes
into being when minds process sensations (Oyama 1985). The same scene can
provide quite different information to different minds.

But, you exclaim, surely there's information in the environment. Either
there's one dog barking at me or two. I don't create one event or the other.
Of course, one or two dogs barking is information to the one being
barked at, but it is only data to a squirrel high in a neighboring oak.
Again I find myself, somewhat reluctantly, arguing about the use of a
word. Consider a computer screen containing this very text. Its informa-
tion content is very different to a human reader than to a word-processing
utility that counts words. The information content will even differ from
human reader to human reader. Yet the data from the environment are
exactly the same. I think it useful to distinguish between data from the
environment and information created from that data by and for its user.
This point has important consequences. Ornstein, from whom we'll hear
more on a later stop, states it thus: "Our world appears to us the way it
does because we are built the way we are, not because of how the world
is" (1986, p. 40). When we build artificial minds, their world is not going
to appear to them the way our world appears to us. The same is true of
other natural minds.

Still, there may be similarities based on function. Dawkins compares
the subjective experience of humans and bats, noting that bats depend
largely on echolocation, whereas humans are primarily visual animals as
a result of our arboreal progenitors. Since we and the bats seem to need
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the same type of internal model for locating objects in space, he conjec-
tures that bats see via echo in much the same way as we do via light
(1987, p. 34). That is, their subjective experience might be similar to ours.
I wonder how this might sort out among dolphins, who use both sight
and echolocation. I also have some concern at the reliance on internal
models. Certainly there are internal responses, but are they representa-
tional in nature? Are they models to be consulted or simply causal gears
in some mechanism of mind? Later, we'll encounter proponents of this
latter view.

All this discussion of bats leads to a highlight of the tour,'5 Dawkins's
intelligent bat's view of humans. Please forgive me for quoting at such
length, but the passage would only suffer under my paraphrasing.

I can imagine some other world in which a conference of learned and totally
batlike creatures, flabbergasted to be told of animals called humans that are actu-
ally capable of using the newly discovered inaudible rays called "light," still the
subject of top-secret military development, for finding their way about. These oth-
erwise humble humans are almost totally deaf (well, they can hear after a fashion
and even utter a few ponderously slow deep drawling growls, but they only use
these sounds for rudimentary purposes like communicating with each other; they
don't seem capable of using them to detect even the most massive objects. They
have, instead, highly specialized organs called "eyes" for exploiting "light" rays.
The sun is the main source of light rays, and humans, remarkably, manage to
exploit the complex echoes that bounce off objects when light rays from the sun
hit them. They have an ingenious device called the "lens" whose shape appears to
be mathematically calculated so that it bends these silent rays in such a way that
there is an exact one to one mapping between objects in the world and an image
on a sheet of cells called a 'retina". These retinal cells are capable, in some myste-
rious way, of rendering the light "audible" (one might say), and they relay their
information to the brain. Our mathematicians have shown that it is theoretically
possible, by doing the right kind of highly complex calculations, to safely navigate
through the world using these light rays, just as effectively as one can in the ordi-
nary way use ultrasoundin some respects even more effectively! But who would
have thought that a humble human could do these calculations. (1987, p. 35-36)

Variations in built-in equipment have other possible consequences.
Here's a delightful fantasy about dolphins taken from Dawkins (1987,

pp. 96-97). Echoes from some object produce a particular pattern of
sound. Dolphins have highly versatile voices, so why can't they mimic this
pattern? By doing so, perhaps they could convey a mental picture of the
object to other dolphins. Although there is no evidence that such commu-
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nication actually occurs, it's an intriguing thought. It's as if we could pro-
duce holographic images via the activity of some internally produced and
controlled light source. Maybe I could produce a holographic image to
show you what I think it's like to be a bat.

Genetic Nuts and Bolts

Here are a few miscellaneous facts about genes and how they operate, to
provide background for our visit to genetic algorithms. Dawkins mea-
sures the storage capacity of cells by the number of copies of the Encyclo-
paedia Britannica, all thirty volumes, that can be encoded in its DNA.
Let's call this unit an eb. An individual human cell measures 3 or 4 ebs.
Quite a lot! (A lily seed measures 60 eb, an amoeba 1000 eb and a bacte-
rium 0.003 eb.) Human cells use only about 1 percent of their genetic
material during their lifetime. There's no generally accepted explanation
(1987, p. 116). At any time an individual gene may be on or off, that is,
usable as a template or not.

Another important point is that development is local. Embryos grow
by cell division, each cell splitting into two daughter cells. Genes affect
bodies by local influences on cells. Everything is local. Large-scale form
emerges from local cellular effects. There is no grand design (1987, pp.
52-53). Note that the maximum evolution rate occurs when mutation
is unchecked. Natural selection acts as a brake by weeding out most of
the mutations.

The world shows various levels of organization, ranging from the rela-
tive simplicity of a rock, a cloud, or a bacterium, to the highly complex
organization of a bat or a human. The second law of thermodynamics
tells us that in a closed system, increasing entropy moves the system from
complexity to simplicity, from organization to heat death. But how do
things organize in the first place? One answer is through cumulative selec-
tion, an iterated process of generation and selection (figure 8.1).

Cumulative Selection

Cumulative selection is the key to the evolution of complex, capable or-
ganisms. This process leads to what I like to call organized complexity.
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1
Increasing

organization via
cumulative selection

Primeval simplicity

Figure 8.1
Cumulative selection

In some sense, cumulative selection can be thought of as an inverse of
increasing entropy. We'll see it in action once again when we visit artificial
evolution next.

Genetic Algorithms

Having paid homage to Darwin (and unjustly ignored Wallace), let's leave
natural evolution and turn to an artificial version. Developed by Holland,
his students, and his colleagues at the University of Michigan (Holland
1975, 1992; Goldberg 1989), genetic algorithms are search algorithms
based on natural evolution. As we saw in our visit to symbolic AI, prob-
lem solving can be viewed as a search through the state space of a system
for one of the goal states that solve the problem. Typically, we start our
search at a single initial state, perhaps randomly chosen, perhaps not, and
use various heuristics to guide a search trajectory toward a goal state. The
better the heuristics, the more efficient the search. Genetic algorithms,
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instead of starting with a single initial state, begin with an initial sample
population of usually randomly chosen states. Heuristics modeled on nat-
ural evolution are then iteratively applied, allowing the entire population
to evolve toward an acceptable solution of the problem. Genetic algo-
rithms, following multiple search paths simultaneously, run efficiently on
parallel computers (Kilman et al. 1992; Collins 1992).

Now that we've had a view from the stratosphere, let's see what genetic
algorithms look like from the treetops. Think of the population of states
as a collection of potential solutions to the problem. The four basic ele-
ments of a typical genetic algorithm are mating, mutation, selection, and
reproduction. Members of the initial population mate. Their offspring are
subject first to mutation and then to selection. Those selected comprise
the next iterate of the population, and start the process once again by
mating. This process iterates until an acceptable solution to the problem
is found or until the searcher gives up.

Now let's climb down out of the trees for a ground-level view. A state
in the population is referred to as a genotype. Typically it is just a string
of genes representing some possible hypothesis or solution. Sometimes a
genotype can be more complexa hierarchical Structure, for instance. A
gene, or rather its chosen allele,16 is typically expressed as a character, or
string of characters, in some alphabet, often a binary one. As is true for
the genotype, an individual gene can have a more complex structure. Usu-
ally a gene codes for a particular feature or parameter value. You've no
doubt noticed the juxtaposition of biological terms (gene, genotype) with
computer terms (string, tree, codes for). A concordance (see table 8.2)
may help keep things straight. This one introduces a little more complex-
ity than I've mentioned. Thinking of a genotype as containing a single
chromosome, as is typical in genetic algorithms, tames it quite a bit.

With this structure in mind, let's look at the steps in a simple genetic
algorithm in more detail. Here's a version of the algorithm.

Initialize the population with random alleles.

Parallel repeat until a good enough solution is found.

Judge the fitness of each candidate.

Select candidate strings for reproduction in proportion to their fitness.

Mate pairs of selected strings via crossover.

Mutate the resulting new strings.
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Natural Genetic Algorithm
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Modified from Goldberg 1989

A genetic algorithm first forms an initial population of trial solutions
by randomly choosing values (alleles) for each of the features (genes).17
The algorithm then cycles through four steps until it finds a good enough
solution. Each of these steps involves operations on all members of the
population or on a subset thereof. They can often be carried out in paral-
lel for increased efficiency. Let's look at these steps one at a time.

First the fitness of each candidate is judged. "Fitness," as in "the sur-
vival of the fittest," is a troublesome term to some biologists: "F'Fitness'I
is actively confusing because it has been used in so many different ways"
(Dawkins 1982, p. 179). For the artificial geneticist, fitness is simply a
function in the mathematical sense. The fitness function assigns to each
candidate solution some value, typically numerical, that measures how
close the candidate comes to an "optimal" solution. Usually implemented
as a procedure, the fitness function puts each candidate solution through
its paces and returns how well each performed as its fitness. Since the
fitness of one candidate solution is usually independent of that of another,
the computation of a population's fitness can be done efficiently in
parallel.

Once the fitness of each candidate is determined, the next step selects
candidates for reproduction in proportion to their fitness. The fitter a can-
didate is, the better its chance of being selected. That doesn't mean that
one who is not so fit might not be selected; it Just has a smaller chance.

Once the lucky winners have been selected, they are paired at random.
(To my knowledge, no one has yet tried arranged marriages.) Mating
takes place via crossover. Suppose our genotypes are single strings of al-

Evolution, Natural and Artificial 177

Table 8.2
Concordance of biological and computer terms

chromosome string

allele feature, character or detector
locus position on string
genotype structure

phenotype parameter set, alternative solution, decoded structure



178 Chapter 8

leles of genes. One possible crossover mechanism lines up two mating
strings, chooses a crossover point at random, and interchanges the por-
tions of the two strings after the crossover point. There are other, more
complex crossovers, say with two crossover points that interchange the
segment between them. Once the pairings have been made, crossover can
be efficiently implemented in parallel. Entirely different operators also
can be inserted into the genetic algorithm just after (or even instead of)
crossover. The choice of such operators is dictated by knowledge of the
problem domain.

With crossover complete, it's time to mutate. It often works this way.
Choose a small number of candidates at random. In each of these, ran-
domly choose a single gene and, having done so, randomly choose a re-
placement allele for that gene. The candidate has mutated. Again, this
mutation can be implemented efficiently in parallel. Some mutations are
much fancierchanging, for example, the length of a genotype or the
structure of a gene.

With all the operations complete, a new population is constituted and
the process begins again. Most genetic algorithms keep their population
at a fixed size. Sometimes all the parents are replaced by their children,
so that each successive population is entirely new. Another possibility is
to evaluate the fitness of the children, and to choose the new population
from parents and children with the fitter having the better chance of being
selected. As you can see, there are many different genetic algorithms.

As search procedures, say for optimization, genetic algorithms are gen-
erally useful and often effective. One typically needs to know little about
the problem domain, other than enough to be able to code candidates as
genotypes and to develop an appropriate fitness function. Often, however,
a search procedure designed for the particular problem domain, and
therefore requiring more knowledge, will prove more efficient than a ge-
netic algorithm. But all this is quite abstract. How about something
more concrete?

Genetic Search for XOR Weights
Let's look at a simple genetic algorithm in action. During our connec-
tionist visit, we met an artificial neural network that implemented an ex-
clusive or (XOR) net. Recall that an XOR neural net outputs a O if its
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Figure 8.2
XOR net

two inputs are the same, and a i if they are different. Figure 8.2 illustrates
a neural network handcrafted to behave in this way. Recall that each node
of the network produces a i if the weighted sum of its inputs equals or
exceeds the threshold (1 in this case), and yields a O otherwise. You can
easily check that the network behaves as specified by the table.

What makes the network work? This choice of weights, of course.
Some other choice of weights might also allow it to behave as an XOR,
but most would not. Now suppose we didn't know those weights, that
the l's and l's mysteriously disappeared. We're left with the problem of
finding suitable weights for this network so that it becomes an XOR. Of
course, they needn't be the same as those that disappeared. Let's choose
to search for them using a genetic algorithm, so we can see how one is set
up and put to work.

Our first task is to produce an encoding scheme for transforming nets
into genotypes. To begin, let's label the diagram of nodes and arrows,
the underlying directed graph. Figure 8.3 provides such a labeling. These
numbers are simply labels by which we can refer to particular arrows.
They're not weights but position markers. Using these position markers,
a genotype can be simply a string of six numbers, each representing the
weight at its position. Figure 8.4 provides an example of such a genotype.
This genotype assigns, for example, a weight of 0.9 to the arrow labeled
4. Now that we know how to code a candidate set of weights into a string
acting as genotype, how might we calculate its fitness? First construct its
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Figure 8.3
Labeled digraph

Figure 8.4
Genotype for a neural net

Figure 8.5
The phenotype net

phenotype, which the neural net the string determines. Figure 8.5 shows
the net for the string we saw just above.

Next evaluate that net over each of its four inputs, that is, put in the
four inputs one at a time, and see what you get out. Calculate the error
for each input, and sum the errors thus produced. The lower the number,
the higher the fitness. Here's an example of fitness evaluation, using the
same string we looked at before (figure 8.6). It gives rise to these individ-
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Figure 8.6
Error calculation

o

Figure 8.7
Fitness spinner

ual errors. With a total error of 3, where 4 is worst and O is best, this is
certainly not a very fit phenotype, and would have only a small chance
of mating.

With fitness determined lt's time to select the lucky winners in the mat-
ing game. Use a spinner wheel with the central angles of the wedges
roughly proportional to fitness to select a fitness level (figure 8.7). Then
randomly select a string of that fitness for reproduction. (I warned you
this was a simple version.) Continue this process until you've selected as
many as your initial population size.

Now that we've selected the strings, we want to mate them. Choose
pairs at random from among all of the selected strings. For each such pair
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Before Crossover After Crossover

Crossing Site

String i P New String i

String 2 New String 2

Figure 8.8
Crossover (adapted from Goldberg 1989)

choose a crossover point at random. If string1 is paired with string2, swap
the segments after the chosen crossover point, to yield two new strings.
Figure 8.8 illustrates one such crossover.

We're now ready to mutate. With small probability, choose a string.
Randomly choose a site on that string, randomly choose a replacement
allele for that site, and return the modified string to the population. In
this simple genetic algorithm the genotype size (length) is kept constant.
We want to change only the weights, not the architecture. Notice that
what we've done is very much a parallel generate-and-test algorithm.
We've generated possible solutions, tested them, and used the best candi-
dates to generate again.

In summary, genetic search proceeds from a population of strings, not
from a single point. After selection via some fitness function, they cross-
breed, they mutate, and the search begins anew from (one hopes) a more
fit (closer to the desired solution) population. Picture the space of possible
solutions as a surface with hills and valleys, ridges and plains. Picture the
problem as one of optimization; you want to find, say, the top of the
highest hill. Starting with a sample population spread over the landscape,
a genetic algorithm iteratively selects new populations whose members
tend to cluster around the various hills. Success is attained when some
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solution sits atop the highest hill or, rather, high enough on a high enough
hill. We humans (and nature also) are almost always satisfied with a good
enough solution.

But what has all this talk of selection to do with mechanisms of mind?
Surely individual minds don't evolve in this way. Well, that's not so clear.
On a later stop we'll hear about Edelman's theory of neural Darwinism
(1987), where just such a suggestion is made. But before that, let's look
at artificial animals that learn by artificial evolution. We'll meet them in
the context of artificial life, our next stop.

Notes

For a safe path through, or rather above, the naturenurture quagmire, I rec-
ommend Oyoma (1985).

In my experience, both faculty and students struggle with almost everything
that goes on in a university.

Much of this table comes from Crick's diagram, which we discussed in chap-
ter 1.

I first heard this vivid analogy during a presentation by Stephen Jay Gould. It
seems to go back at least to the humorist Mark Twain (1938, pp. 215-16).

Bob Sweeney cautions me about making analogies from past conditions to
those of the future, and points Out that some species have already survived for
hundreds of millions of years. While acknowledging the truth of what he says, I'd
still be loath to bet on human long-term survival. Though we are surely among
the most adaptable of all species, which works in favor of survival, we are also
the most dangerous to ourselves by virtue of the global effects of our actions.

Dawkìns (1987, p. 118) puts it this way: "The thing that defines a species is
that all members have the same addressing system for their DNA."

Bob Sweeney suggests that glaciers behave, and asks about ascribing mind to
them. My first reaction was to deny that their motion is behavior, because it is
unintentional. They don't sense the world and respond to it in the service of needs.
But where are the boundaries of sensing? Does my thermostat have more of a
need than a glacier? Here I am again, caught firmly in the quagmire of the fuzzy
boundaries of word meanings.

Unable to create the components to be a true living system, viruses are little
more than a stretch of DNA or RNA coated with protein" (Margulis and Sagan
1986, p. 50).

At least one biologist would disagree. Dawkins argues that genes can encode
for behavior in a member of another species (1982).
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For an example of this principle involving cellular automata, see Langton
(1992a). For some cautions, and a pointer to earlier versions of the principle, see
Mitchell et al. (to appear).

That and" is crucial. Oyama (1985) expounds this theme.

A point of some moment is glossed over here. Natural selection is often con-
strained to refer to selecting out those who don't survive to reproduction age.
Another form of selection, sexual selection, is exemplified by peahens choosing
to mate with peacocks with more abundant tails. Also, there's genetic drift, the
result of mutations that are neutral as to fitness.

I recall reading of some strain of bacteria that normally couldn't metabolize
particular sugars but could mutate to do so. When placed in an environment
rich in those sugars, this mutation occurred faster than expected, indicating a
"direction" in the mutation. I can't recall the source of information about these
experiments, nor do I know if they have been successfully replicated. The view
expressed above is, to my knowledge, still current.

Chance need not be nondeterministic, as is believed of quantum mechanical
events (Herbert 1985). Rather, It may mean unpredictable, such as a distant point
in the trajectory of a chaotic dynamical system (see Gleick 1987 for a popular
account or Devaney 1987 for a mathematical account).

IS. It leads as well to a fascinating side trip for the philosophically inclined. See
Negal's "What is it like to be a bat?" and Hofstadter's reflections on it Hofstadter
and Dennett (1981).

Allele? An oversimplified version of the story has the human gene that codes
for eye color containing either the allele for blue eyes or the allele for brown eyes.

In some cases one wants to start with random variations on a single, seed
solution. I'm involved in a research project using recursive transition networks
(RTN) to predict speech acts (Baggett et al. 1993), which uses this idea.
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Artificial Life

So far on our tour of mechanisms of mind, we've visited mostly mecha-
nisms aimed at high-level abstract tasks like configuring VAXs, solving
puzzles, recognizing words, and turning active sentences to passive ones.
This initial emphasis follows history. Early AI researchers worked from
the perhaps unconscious, and culturally blessed, homocentric view that
minds are a specifically human characteristic. Thus they concentrated
their efforts on characteristically human tasks: chess playing, theorem
proving, language translation. Recall the "Approaches to Mind" diagram
(figure 1.3) we encountered as our tour began. It classified approaches to
mechanisms of mind along two dimensions, analytic/synthetic and top-
downlbottom-up. Symbolic AI occupied the synthetic, top-down corner
by virtue of the high-level abstract tasks upon which it focused. Toy ver-
sions of these tasks proved relatively tractable, and much was learned. But
most solutions scaled up poorly to real world problems.

Consequently, another group of researchers, including the computa-
tional neuroethologists (Cliff 1991; Wilson 1991), whom we've met
briefly, propose to approach mind from the synthetic, bottom-up corner
instead. They expect to learn more by building complex models of simple
systems (such as simple animals) than by making simple models of com-
plex systems (such as humans). Much of the rest of our tour will be de-
voted to mechanisms arising from models of relatively simple systems,
such as autonomous vehicles, robots, and artificial agents living on com-
puter monitors. The last of these examples brings us to the focal point of
this tour stop, artificial life.
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Artificial Life

We previously defined artificial life as the study of man-made systems
that behave in ways characteristic of natural living systems. This definition
comes from Langton, arguably the father of the field,1 as do many of the
ideas in this section (1989, pp. 1-6). Levy has produced a very readable
account of the brief history of this new discipline (1992).

Artificial life researchers are "typically concerned with the formal basis
of life." They ask what mechanisms produce lifelike behavior. They then
build systems that synthesize such behavior. These are almost always
computer systems; artificial creatures mostly "live" in artificial environ-
ments visible on computer monitors. Reynolds's boids (1987), whom
we've met briefly, are such creatures. Intended to model flocking behavior,
they live in an environment so simple that it contains, in addition to boids
and space, only obstacles for the boids to flow around. Artificial environ-
ments, though typically simple compared with environments supporting
natural creatures, are often more complex than this one.

Much of the lifelike behavior displayed by these artificial creatures is
emergent, that is, produced without being specifically programmed in by
the system's builder. A boid is instructed by Reynolds only to (1) maintain
a minimum distance from obstacles and other boids, (2) to match its
speed with the average speed of nearby boids, and (3) to fly toward the
perceived center of the mass of the boids it can see. Flocking behavior
emerges as the individual boids follow these instructions. Local behavior
in artificial life systems is often built in, whereas global behavior is often
emergent.

Many artificial life systems, like Reynolds's boids, are inhabited by a
population of artificial creatures. Most such systems are highly distrib-
uted, in that no central executive controls behavior from a Godlike van-
tage. Rather, control is local and global behavior emerges. These systems
are often implemented on massively parallel computers with many thou-
sands of processors.2 Populations often evolve, employing one or another
of Holland's genetic algorithms. Sometimes, as natural creatures almost
always do, they coevolve. The natural world arms race pits ever increasing
offensive potency of the predator against ever improving defensive resil-
iency of the prey.
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Other artificial life systems are home to a single artificial creature rather
than a population. These range from rather simple creatures like Wilson's
Animat (1985), which learns to find food, to considerably more complex
creatures such as Johnson and Scanlon's Pacrat (1987), which according
to its designers, both thinks and feels. Animat is one of the two major
attractions of this tour stop; a population model due to Ackley and Litt-
man (1992) is the other.

We'll meet several familiar mechanisms of mind. Animat learns via
classifier systems (see below), an amalgam of production systems and ge-
netic algorithms. Ackley and Littman's agents evolve via a genetic algo-
rithm and learn using neural networks. These mechanisms, along with
cellular automata,3 are among the most common in artificial life systems.

Symbolic AI systems have been criticized for having their input prepro-
cessed by humans and their output interpreted by humans. Critics main-
tain that this simplification sloughs off the hardest problems, those of
perception and motion. Connectionist systems are often subject to the
same criticism. Artificial life creatures, though designed and implemented
by humans, sense their environments and act on them directly. Their ac-
tions affect the environment and, hence, the creature's future perceptions.
All this without further human intervention. The human is taken out of
the loop. Thus the semantics of the system are well grounded and "results

are generated by observation rather than by interpretation. . . . the fruits

are 'hard' objective measurements rather than 'soft' subjective ones"

(Cliff 1991, p. 29).
But all this is rather abstract. Let's have a close look at one such artifi-

cial life system, Animat.

Animat and Intelligence

The basic idea of an artificial creature that learns to cope with a simple
environment by means of a classifier system is due to Holland and Reit-

man (1979). We'll visit with a version of such a creature designed by Wil-

son (1985).
For many years I've been meeting each Wednesday at noon for lo mein

(soft noodles) and conversation with a diverse group whose initial com-

mon interest was AI. Before trying to define artificial intelligence, we
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thought it prudent first to say what we meant by intelligence. After almost
two years of wrangling, we gave it up as hopeless.4 But not everyone fails
so miserably. Here's a definition from the physicist van Heerden, as
adapted by Wilson: "Intelligent behavior is to be repeatedly successful in
satisfying one's psychological needs in diverse, observably different, situa-
tions on the basis of past experience" (1985). Wilson was drawn to this
definition because it is easily translated into computing terms. Let's exam-
ine his computational translation a clause at a time.

What does it mean "to be repeatedly successful in satisfying one's psy-
chological needs"? On the level of simple animals, the somatic level, it
means satisfying bodily needs. More specifically, it means a high rate of
receipt of certain reward quantities, and a low rate of others. More plea-
sure, less pain. This should be easy to model computationally, perhaps as
simply as by variations of a couple of variables.

How about "diverse, observably different, situations"? Wilson talks of
"sets of distinct sensory input vectors with each having a particular impli-
cation for optimal action." In other words, the behaving creature faces
different situations and best responds to them in obviously different ways.
Computationally, it's no trick to produce meaningful variations in envi-
ronmental states, that is, states requiring distinct responses. And it's no
trick to observe the response of an artificial creature.

And finally, what does he mean by "past experience"? Wilson speaks
of "a suitable internal record of earlier interactions with the environment,
and their results." Now we've come to an interesting issue. Keep this state-
ment in mind as we visit with Wilson's Animat. The "internal record" will
he in the form of genetically produced production rules. This seems very
different from the usual memory paradigm of data structures5 recording
past events. Production rules seem closer to procedures, recipes for ac-
tion, than to data structures for memory. There will seem to be nothing
that looks like a representation of any "earlier interaction" or of its "re-
sult." It will be well to bear all this in mind on a later stop, when we visit
the third AI debate, over the need for representations. Anyhow, Wilson
was able to satisfy himself that this part of the definition was computa-
tionally operational.

With van Heerden's definition of intelligence translated into computa-
tional terms, Wilson set himself the task of producing an artificial crea-
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ture, Animat,6 that exhibits intelligent behavior. Let's see how he goes
about it.

Animat as a Simple Animal

As we've seen, there's much support for the idea of making complex mod-
els of simple animals rather than simple models of complex animals. So
what can be said about simple animals? First, where do simple animals
find themselves? In a sea of sensory signals, says Wilson. At any given
moment only some of these signals are significant; the rest are irrelevant.
The irrelevant signals typically far outnumber the significant ones. Our
simple animal must figure out which is which, not absolutely but relative
to its needs and circumstances. Second, simple animals are capable of
actions (movements) that tend to change these sensory signals. Although
they don't control the environment, they do affect it. Third, certain sig-
nalsthose attendant on consumption of food for example, or the ab-
sence of certain signals, such as freedom from painhave special status.
We often think of pleasure and pain as being internally produced in re-

sponse to external stimuli. Wilson simply treats them as sensory input.
Fourth, simple animals act both externally and through internal opera-
tions so as to approximately optimize the rate of occurrence of the special
signals. They tend to maximize their pleasure and minimize their pain.

From this vantage point, Wilson describes the basic problem of our
simple animal as determining what to do next in order to maximize plea-
sure and minimize pain. I'd like to take this idea a little further. If we're
willing to expand our range to include psychological pleasure and pain,
and even if we're not, the same can be said of complex animals like us.
Our only problem is what to do next. The same is true of any animal.

The life of the sea squirt makes this point crystal clear. During its larval
stage, this creature swims about, for a few minutes to a few days, looking
for sustenance and for a rock or a coral reef or a wharf onto which to
permanently settle. During this stage it has a small but adequate nervous
system. Its adult stage commences when it attaches itself permanently to
a hard surface, thenceforth absorbing nutrients from the surrounding wa-
ter. Early in this adult stage, the creature reabsorbs its unneeded nervous
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system. It no longer has the problem of what to do next, so it eats its
brain (Dethie 1986). But back to Wilson and Animat.

Wilson rephrases this basic problem as one of generating rules that as-

sociate sensory signals with appropriate actions so as to achieve some-
thing close to optimization. Notice the assumption; it's going to be done
with rules. As a result, Wilson constructs his Animat using a classifier
system, à la Holland, that operates via rules.

I wonder if the rules will be hard or soft. Recall Horgan and Tienson's
distinction, which we encountered on an earlier stop. A hard, or excep-
tionless, rule produces its action whenever its condition is satisfied. A soft
rule, on the other hand, says that other things being equal, the action
follows when the condition occurs. This is not a matter of probabilities
but a means of allowing for exceptions. If the conditions hold, and no
circumstance has occurred that suppresses the rule, then the action will
be taken. That's the notion of a soft rule. Sometimes it's not so easy to
distinguish a hard rule from a soft one.

I'm also curious as to whether these are going to be low-level rules,
dealing more or less directly with sensory input and motor output, or
high-level rules with more abstract conditions and actions.

Wilson poses the major questions for Animat as (1) how to discover
and emphasize rules that work; (2) how to get rid of rules that don't
workyour system has limited memory and won't survive a lot of noise;
(3) how to optimally generalize the rules that are kepta more general
rule will operate in more situations and will take the place of several spe-
cific ones, thus using less memory. Animat must discover and emphasize
rules that work, get rid of rules that don't, and generalize the rules it
keeps.

Having defined intelligence, the basic problem, and the major ques-
tions, Wilson defines an animat in terms of these concepts as a computer
model of a simple animal in a simple animal's situation that solves the
basic problem by satisfactorily answering the major questions and so sat-
isfies the given definition of intelligence" (1985). Note that this is a func-
tional definition of an animat. It allows for the possibility of many

animats based on different solutions to the basic problem, even in the
same environment. Here we'll continue to refer to Wilson's classifier-
based animat as Animat.
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Animat and Its Environment

Animat lives on a rectangular grid, eighteen rows by fifty-eight columns.
Each row is circled back on itself, so that its two ends are identified, as
are the tops and bottoms of the columns. Animat's world is toroidal,7 a
big doughnut. Objects populating this world are represented by alphanu-
meric characters located at various positions (squares) on the grid, for
example a T for a tree, or an F for food. Animat himself is represented
by Some positions, possibly many, are blank. These are represented
by b's.

Since the basic problem is posed in terms of sensory signals, Animat
must have sensory channels with which to sense its environment. Animat
can receive signals from eight neighboring positions: the four cardinal
directions and the diagonal ones. The positions surrounding Animai are
mapped onto a string. The mapping begins above Animat and proceeds
clockwise. For example,

TT

maps into the string

TTFbbbbb.

Call this string a sense vector. It denotes that Animat has trees to its north
and to its northeast, and food to the east. He senses equally well on all
sides rather than when facing in a particular direction.

Note that Animat comes with built-in equipment for categorizing food
and trees, and for distinguishing between them. Food is labeled as such,
as are trees. Edelman, whom we'll meet on a later tour stop, points out
that the real world does not come labeled (1987). Each individual crea-
ture must learn to categorize and to recognize anew. Providing a built-in
labeling to Animai glosses over the difficult problems of perception. An-
imat doesn't have to figure Out what's a tree, what's food, and so forth.
They all come with meanings attached.

I prefer to think of objects as useful constructions of individual agents
rather than as preexisting meaningfully in the outside world. A mite,
crawling on a tabletop, would never construe that table as an object. But,

you say, the table surely exists out there in the world. Of course it exists as

Artificial Life 191

Copyrighted Material



192 Chapter 9

a table to you and me, but not to a mite, nor to a newborn. We construct a
category "table" and sometimes learn a name for it. And sometimes not.
For example, you probably have a category for the plastic sleeve at the
end of a shoelace hut probably don't have a name for it. Names are most
often culturally determined, and may well precede category construction.
But we learn and retain such names only when they denote some category
useful to us. Real objects, to me, are constructs of agents rather than
denizens of a uniquely organized world. The real world comes neither
labeled nor categorized. Animat is given something of an advantage be-
cause its world does come labeled.

Given this advantage, what kinds of things can Animat sense? Not
many. Only food to be eaten and trees as obstacles. Animat and its world
are pretty simple. But keep in mind that most living things sense not much
more than this, since most living things are bacteria.

Animat senses by means of feature detectors. Each feature detector is
Boolean; it produces O or 1. Either it senses that feature or it doesn't. If
there are two detectors, each object (really each adjacent position) in-
duces in Animat a two-bit binary string. A fancier Animat with some
number d>2 of features would induce a d-bit string, one bit for each of
its d detectors. Either a feature is detected or it's not.

So each object (position) induces such a string. A sense vector translates
into an 8 d-bit detector vector. Because the sense vector has eight direc-
tions, each one of which induces d-bits, Animat senses an Sd-bit detector
vector at each instant of time. In our simple case Animat senses a 16-bit
detector vector. Time for Animat, like space, is discrete, proceeding from
one instant to the next.

Wilson encodes Animat's detector vector as follows. Let the first posi-
tion detect edible or not, say a food smell and the second detect
opaqueness (does light shine through?) (Alternatively, you may think of
the second as detecting solidity.) Thus food in a particular direction
would be represented by a i followed by another 1; a tree, by a O followed
by a 1; and an empty location, by two 0's (table 9.1). Thus the string TT
F b b b b b, which we looked at above, translates into the detector vector
01 0111 00 00 00 00 00. Thus Animat senses its world. How does it act
on that world?

Animat can move one square in any one of its eight directions in a
single time step. A move to a blank square produces no response to An-
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Animal feature detectors
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edible opaque

F i i
T O i
b O O

imat from the environment, other than perhaps a change in what he
senses at the next time step from this location. A move into a location
with food in it results in the food being eaten. Animat is a champion
glutton; he never becomes sated. And his gluttony produces no ill health.
The food object in the location moved to is considered to be eaten, and a
reward signal is sent. The view taken here is of the environment in-
structing the agent by providing a reward. I'd much prefer to think of the
environment as totally indifferent, and of the reward as being produced
internally by Animat in response to his meal.

What if Animat moves into a location containing a tree? Such a move
is not permitted, and a collision-like banging is displayed. Later we'll see

that the AckleyLittman agents have rocks against which they can bang
their heads. These agents, more complex than Animat, have a certain
store of health that is diminished with each such bang. When health pas-
ses below a threshold, the agent dies. By comparison, Animat is really
very, very simple. But such a simple agent as Animat seems an ideal place
to start studying artificial life.

Wilson characterizes the situation in which Animat finds himself as

semirealistic. Animat's sensory signals carry partial information about the
location of food, in that he can sense food only if it is right next to it. He
can't sense food at any greater distance. The actions available to Animat
permit exploration and approach to objects. Environmental predictability
can be varied through the choice and arrangement of objects, that is,
where you put the trees and the food. Food always being next to a tree
yields a more predictable environment than food placed at random. Fi-
nally, the number of object types depends only on the number of feature
detectors. If you have d detectors, you can, in principle, have 2d types of
objects. In this simple case we have only trees and food, and of course
Animat itself.
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But even with such a simple environment, Animat must learn to find
food. This he does by means of a classifier system à la Holland.

Animat's Classifier System

Classifier systems use genetic algorithms to evolve rules (Holland et al.
1986). Animat's classifier ru'es consist of a taxon, an action, and a
strength. (A fourth item will be added later.) A taxon is a template capable
of matching any of a certain set of detector vectors. In particular, a taxon
could be a detector vector, and in that case would match itself and noth-
ing else. More commonly, 0's and l's in certain positions in a detector
vector are replaced by the wild card, or I don't care, symbol (#) to create
a taxon. A taxon with a single wild card symbol would match either of
the two detector vectors created by replacing the # with a O or a 1. The
more wild cards a taxon contains, the more detector vectors it matches.
A taxon with only wild cards will match every detector vector.

After the taxon comes an action, that is, one of the eight possible
moves. Moves are labeled 0, 1, 2, 3, 4, 5, 6, 7, with O denoting a move
to the north and the numbering proceeding clockwise. The strength is a
numerical measure of the classifier's value to Animat. Here's an example
of a classifier rule:

0# 01 1# 0# 00 00 0# 0# / 2;

Its taxon matches thirty-two different detector vectors (2g, because it con-
tains five wild cards). Its action is labeled 2, signifying a move to the east.
As yet no strength is assigned. What would this classifier's taxon match?
A matching detector vector would have to be O in the first position, either
o or i in the second, O in the third, i in the fourth and fifth, either O or 1
in the sixth, and so forth. Note that our classifier so far looks exactly
like a condition/action production rule with the taxon playing the role
of condition.

Animat has a population [P] of classifiers. Their number is a fixed pa-
rameter of the system. Initially Animat's classifiers contain taxons ran-
domly filled with 0, 1, and #, and randomly filled with actions. The
population evolves as Animat lives. At first classifiers don't know what
they do. Later, they are pressed into service and modified. All this reminds
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me of Edelman's neuronal groups in the biological world that we'll meet
on a later stop. How does Animat use these classifiers to answer the all-
important question of what to do next? Here's his control algorithm:

Loop forever
Calculate detector vector D
Find the matching set [M] of D in the population [P]
Select a classifier C from [M] with probability depending on strength
Animat moves (or ties to) as indicated by the action of C
The environment responds as indicated earlier.

Let's go over this one carefully, a line at a time. First note that Animat
gets into his living loop and stays there. Living things do just that; we
loop until we die. Here there's no provision for dying, although in actual
computer implementations there'll be some means of stopping the action.
The next line has Animat sensing his world by calculating the detector
vector D. In other words, it looks around and sees what's happening. D
is a detector vector. One hopes some classifiers in the population [PI have
taxons that match. The next line has Animat collecting all such matching
classifiers into the matching set [MI. Think of the matching set as con-

taining all those rules that Animat thinks may be useful in this situation,
that is, in the presence of this detector vector. We'll see in a bit what
happens if there aren't any matching classifiers. (Note here that we're talk-
ing about a single Animat equipped with its own specific population [PI
of classifiers.) Now Animat selects from the matching M some particular
classifier. Those with greater strength have a greater probability of being
chosen. Ah, shades of genetic algorithms, where genotypes are selected
with probability depending on their fitness. Now Animat knows what to
do next. He moves according to the action of the selected classifier. After
the move, either Animat eats and is rewarded, or he bounces off a tree,
or he simply moves into an empty position. We're now at the bottom of
the body of the loop, so we loop back to the top and start anew by sensing
this newly changed world.

In summary, after looking around, Animat asks which classifiers recog-
nize the current sensory situation, which ones might help. He then picks
its next move nondeterministically, with the probability of a given classi-
fier's being chosen increasing with its strength. Animat then makes the
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chosen move. Now we know how Animat chooses to act. But do his ac-
tions vary only via the stochastic nature of the control mechanism? No.
Animat can adapt to particular environments.

Animat adapts by learning. How does he learn? In three different ways
that we'll explore individually. One is by reinforcement of classifier
strength. Second, there are genetic operators that operate on classifiers,
yielding new classifiers. Finally, classifiers are created directly. Let's visit
each of these methods in that order.

Animat is reinforced whenever he eatsby the environment, according
to Wilson; internally, in my view. Since one wants the strength of a classi-
fier to reflect the quality of its performance, those that perform better
should be stronger. Hence it seems reasonable to increase a classifier's
strength after firing if its action has led to a desired result: eating. You
reinforce it, make it stronger, when it has done well. But this leads to a
difficulty. Typically, a desirable result stems not from a single action but
from a sequence of actions. What we've suggested so far results in only
the last classifier of the chain being strengthened, and that really doesn't
do what we want.

Holland and company have devised a way around this problem that
they refer to as the bucket brigade algorithm (Holland et al. 1986). The
idea is to pass the strength along the sequence. Here's a brief summary
of how it works. Classifiers make payments out of their strengths to classi-
fiers that were active on the preceding cycle. Pay off those who helped
you get where you are. Active classifiers later receive payments from
the strengths of the next set of active classifiers. It works sort of like a
Kwakiutl Indian potlatch.8 External reward from the environment, when
food is eaten, goes to the final active classifiers in the sequence. Let's take
a slightly more detailed look.

Given an action A(t) selected at time t, let [A(t)1 denote the set of
matching classifiers pursuing that same action. The bucket brigade algo-
rithm prescribes the following steps:

Remove a fraction of the strength of each classifier in [A(t)j
Distribute this strength among the classifiers in [A(t-1)]
Animat then moves as instructed by A(t)
If external reward is received, distribute it among the classifiers in [A(t)j.
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Every time a classifier becomes active, it loses some strength by paying
off the classifiers that helped it become active. The strength of any individ-
ual classifier estimates its typical payoff. Since the payoff to classifiers in
[A(t)] is shared equally, the more classifiers in [A(tfl, the less each benefits.
Wilson claims that a given amount of external reward will eventually
flow all the way back through a reliable chain." I take "reliable" to refer
to a chain that typically finds food. And the operative word in the quote
is "eventually." When one classifier and its matching set receive external
reward, the redistribution of that wealth doesn't begin until one of these
classifiers becomes active again. Wilson is noncommittal about how ini-
tial strengths are assigned. Small, randomly assigned strengths would
probably do nicely, perhaps even O strengths.

This completes our look at how reinforcement learning takes place in
classifier systems. We still have visits with genetic operators and with the
creation of classifiers. First, genetic operators.

After having visited with genetic algorithms, Animat's genetic opera-
tors will seem quite familiar indeed. Classifier c is selected with probabil-
ity proportional to its strength. Two (later three) types of genetic
operators may be applied. Cloning simply copies e1; the child is identical
to the parent except, possibly, for mutation. Cloning is asexual reproduc-
tion. Sexual reproduction occurs via crossover. This takes two. A second
classifier, c2, is selected, again with probability by strength, from among
those classifiers having the same action as e1. Only two classifiers with the
same actions are allowed to mate. With two compatible classifiers in
hand, the crossover operator randomly chooses two cut points, that is,
two locations along the strings that comprise the taxons of the mating
classifiers. The genetic material between the two cut points is inter-
changed to produce taxons for a pair of offspring. Each is given the com-
mon action of both parents. Both the cloning and the crossover operators
add new classifiers to the population [PI. Since the size of [P] is fixed,
other classifiers must be removed. Deleting at random works well for a
large population. Removing the weakest classifiers does not work well,
that is, is worse than random. (This rather counterintuitive situation
probably resulted from a loss of genetic diversity). Deleting with probabil-
ity proportional to the reciprocal of the strength works best. But enough
of deletion. On to creation.
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Occasionally, Animat may encounter a detector vector matched by no
classifier. The matching set, M, may be empty. No existing classifier looks
as if it might be useful in this situation. What does Animat do? He makes
one up. He creates a new matching classifier whose taxon is derived from
the unmatched detector vector by randomly adding a few # symbols to it,
and whose action is assigned at random.

Well, so much for now on Animat's structure. What does he do? And
how well?

Animat in Action

Figure 9.1 shows a sample environment for Animat. Wilson calls it
WOODS7. Note that in WOODS7 every piece of food is next to a tree,
but in no particular direction from the tree. In some other environment,
things could be quite different. Perhaps food wouldn't grow in the shade
of a tree, and so would be separated from any tree by a space. An environ-
ment could be more regular, say food always to the north of a tree, or
trees occurring in a lattice structure like an orchard. WOODS7, while less
regular, is far from random. It contains ninety-two distinct sense vectors.
That is, Animat can encounter ninety-two distinct situations, not very
many by human standards.

T TT T
TFT F F T F FT

T TT F
T T F T

F TFT TFT F TT F
TT T T

TT T TT T
TFT F TF F TFT F

T
TT T T TT T
F F T FT F TF TFT

T TF
T T T T T
F F F FT F TF
T TT T T

T T
F TFT F F F TF
TT T TT T T

Figure 9.1
WOODS7 (redrawn from Wilson 1985)
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How easy is it for Animat to find food in WOODS7? Starting at a
random location unoccupied by a tree, and moving at random (a random
walk), how long should it take Animat to bump into something to eat by
pure chance? The answer is forty-one steps, on average. Animat might be
pretty hungry by that time. But suppose instead that, again starting at a
random location, Animat this time is endowed with sufficiently Godlike
powers so as always to choose the quickest way to dine. Now how long
should it take him? His time is reduced from 41 steps to only 2.2 steps,
on average. Knowledge clearly pays off. Thus, if Animat learns to find
food in about forty steps, he hasn't done much. On the other hand, if he
learns to find food in something like half a dozen steps or anything close,
he's done a lot.

Technically, a problem instance (food search) for Animat consists of
starting in a randomly selected blank square and moving until food is
found. The meal completes the instance, and the number of steps between
starting and dining is recorded. The next instance starts again at a ran-
domly selected blank square. Animat's performance on a single instance
isn't much of a measure of how smart he is, since so much depends on the
randomly chosen start. So a moving average of the number of steps re-

quired to find food over the last fifty instances is taken as a measure of
performance. Since the environment doesn't change, and food replenishes
itself immediately, Animat's situation is a particularly simple one. How
well does he do?

Since Animat begins learning immediately, before the end of its first
problem instance, he's already much better than chance. His early runs
on this environment typically take eight to ten steps. By 1000 runs its
average is down to about four steps, after which it levels off. (Wilson sees
a continued slight improvement.) Not bad performance, I'd say! Though
able to sense only neighboring squares, Animat learns to find food in only
four steps, with a random walk requiring forty-one and the theoretical
optimum a little over two. I'm impressed!

But what has Animat learned that lets him perform so impressively?
Nothing very arcane. When next to food, Animat nearly always eats it
directly. Occasionally he moves one step sideways before taking it. When
next to a tree with no food in sight, Animat reliably steps around the tree
and finds food if it's there. When out in the open with no information,
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Animat tends to drift in one direction. After several problem instances,
the direction of drift may shift. This emergent behavior works well for
WOODS7. It might not work at all for a different environment.

All of this is impressiveit may seem to be too good to be true. Arid
in fact it is. The preceding account, although accurate, is not complete.
Things weren't so easy.

Trouble in Paradise

The final results obtained with Animat have been described. The initial
results weren't so good. Animat's algorithm didn't distinguish between
long and short paths to food. In particular, even a path that looped before
finding food would lend strength to its classifiers. Penalizing long paths
wasn't a solution because sometimes the long path is the only path, a
minimal long path.

To solve this problem, Wilson added a fourth element, mentioned pre-
viously, to each of Animat's classifiers: a distance to food estimate. Our
tour schedule doesn't allow for a detailed description. Suffice it to say that
with distance estimates in place, selection of a move is based on probabil-
ity proportional to strength divided by distance. A move tends to be se-
lected if it is short as well as strong. Competition is local in that path
length need not be considered directly.

But even more tweaking was needed. Recall that when an action A(t)
was selected at time t, [A(t)I denoted the set of matching classifiers pursu-
ing that same action. Ah, but there may well have been other matching
classifiers that prescribed some different action. This new tweak taxes
each such classifier by some small amount, a kind of lateral inhibition.
Now short classifiers, those with small distance estimates, tend to be
picked even more often; long ones, less often. Wilson claims that this
algorithm doesn't work against minimal long paths.

And additional tweaks. A small tax was imposed on [A(tfl itself to dis-
courage looping. A threshold was set on the total strengths of matching
sets [A(t)I. Being below threshold caused creation of a new classifier. This
also helped suppress looping, and improved performance. Some random
creation was introduced at a very low rate, leading to new directions.
Next a kind of heuristically guided creation of classifiers was used. In-
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stead of randomly picking ari action, an educated guess based on a few
trial steps was used. Finally, a new genetic operator, called intersection,
was included. Parent classifiers were selected as before. A range of loci
(positions) was picked randomly. Outside the range the child's allele was
the same as the mother's. Inside, if the parents' alleles were the same, that
same one was passed on to the child. If they were different, an "I don't
caré" was passed on: By means of these tweaks, paradise was regained.

Some Conclusions

By now Animat's originally simple algorithm has gotten quite complex.
On the other hand, his performance is truly impressive, requiring only
four or so steps, on average, to find food, with forty-one steps needed by
chance and a little over two as best possible. But Animat lives in a particu-
larly simple environment. Animat need concern himself with but a single
drive: to find food. He has no predators, no toxins, no competitors of
his own or another species to worry about, no environmental hazards.
Bumping into trees doesn't seem to hurt. His environment is unchanging.
Yet for all these simplifying advantages, a relatively complicated control
structure seems needed for good performance. How complex must the

control structure be of a creature who faces all the difficulties that Animat
needn't and more, say a bacterium or a paramecium? It's a sobering
thought.

But is it true? How could a single-celled natural agent implement such
complex control? Perhaps individual control is simple, and the species
relies on large numbers for its perpetuation rather than on good individ-
ual performance. Or could it be that biological agents have some inherent
advantage in producing complex controls with which computer-based
agents can't compete? Or perhaps all control mechanisms for autono-
mous agents are destined to be highly complex, with those controlling
natural organisms hiding their complexity under their microscopic size.
On later tour stops we'll visit several control structures at least as sophis-

ticated as Animat's, all of which allow for scaling up to highly complex

systems.
Visiting with Animat provides a preview of Agre and Chapman's work

on indexical-functional representations (1987, 1988). Note that Animat
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doesn't distinguish food at this place from food at that place. He's inter-
ested only in food-next-to-me. And he doesn't care which tree is beside
him. It's just the-tree-I'm-going-around-just-now-searching-for-food. An-
imat has no specific representation of individual trees, TREE, or TREE206,
or of individual food items, FOOD22 or FOOD138. Also, he doesn't learn
paths explicitly. Any such knowledge is emergent,'° and neither pro-
grammed nor explicitly represented. Only reactions to local situations are
programmed into or learned by Animat. Global behavior emerges. Later
we'll encounter the third AI debate, which questions to what extent ex-
plicit internal representation of the environment is needed for intelligence.

As we conclude our visit with Animat, recall Wilson's interpretation of
van Heerden's definition of intelligence. To qualify as intelligent, Animat
must learn to be repeatedly successful in finding food in diverse, observ-
ably different situations, ninety-two of them in this case. From what we've
seen of Animat's abilities, he certainly seems to fulfill the demands of the
definition. Hence, if we accept the definition, we must accord Animat
intelligence. Ah, you say, but the definition isn't stringent enough. That's
what AI researchers have complained about for decades. They say they're
shooting at a moving target, with people moving the definition of intelli-
gence to just beyond what their machines can currently do. But here we
go again, spinning our wheels debating the use of the word "intelligence."
Let's move on to visit populations of artificial creatures with built-in
value systems.

Learning and Evolution

Any tour guide on any tour can be expected to have his or her favorite
sights. I'm no exception. One of my favorites on our mechanisms of mind
tour is surely the work of Ackley and Littman (1992), whose artificial
agents both evolve and learn to deal with an environment that is both
dynamic and complex relative to that of Animat. Of course, one's reaction
to any tour attraction is heavily dependent on the vantage point from
which it's seenfor instance, the Taj Mahal viewed through the archway
in its front gate or Hong Kong seen by night from atop Victoria Peak. In
my view, the ideal vantage point from which first to view the Ackley-
Littman work is via a videotape produced at Bellcore with Dave Ackley
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narrating. This twenty-minute segment is included on a video, "Proceed-
ings of the Second Artificial Life Conference," a companion to the hard
copy proceedings (Langton et al. 1992). If it's available to you, don't
miss it.

Since we're stuck with a less than ideal vantage point, let's ease into
this work slowly by first looking at the environment, compared with An-
imat's. Like Animat's, this world consists of a two-dimensional array of
cells, loo X 100, operating in discrete, synchronous time steps. Unlike
Animat's, it isn't toroidal but is surrounded by walls. Like Animat's, cells
may contain plants (food) or trees. Unlike Animat's, they may also con-
tain walls or carnivores. Animat is replaced by a population of adaptive
agents, the primary objects of study. Walls remain unchanged, and dan-
gerous to bump into, until the end of time, that is, until the end of the
current computer run. Trees also are static but afford a haven to agents,
who can climb them to avoid carnivores. Plants serve as food for agents
and regenerate themselves over time when eaten. Carnivores can move to
a neighboring (north, south, east or west) cell during a single time step,
and can see and recognize the nearest object no further than six cells away
in all cardinal directions. They are hardwired to seek their prey, the
agents, and eat them, and may also scavenge a dead conspecific. Carni-
vores typically die from starvation, or rarely from damage inflicted by an
agent defending itself. They reproduce when sufficiently full of ingested
agents, that is, when their energy level is high enough. They do not evolve;
each carnivore is identical to its single parent.

Agents, as you no doubt anticipated, are more complex and more inter-
esting. Like carnivores, they can move to a neighboring cell during a
single time step, and can see and recognize the nearest object no further
than four cells away in all cardinal directions. Note that carnivores have
a longer range of vision than agents, and that an agent and a carnivore
may occupy diagonally adjacent cells while remaining unaware of one
another. Note also that the difficult problem of perceptionlrecognition is
solved here by the programmer. A few lines of code replace the complex
mechanisms of mind required of natural organisms. Agents gain energy
by eating plants, occasionally dead carnivores, and, rarely, one another.
They can be damaged (lose health) by encounters with carnivores or,
more rarely, with walls or with one another. They can climb trees to avoid
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carnivores. Agents are androgynous, reproducing when sufficiently ener-
geticsexually if another agent is nearby, asexually if need be. Well, you
say, agents do seem slightly more complex than carnivores, but not
enough to make them more interesting. Ah, it's not their range of behav-
iors that makes these agents interesting to me, but how these behaviors
are selected. Agents are adaptive.

Agents adapt on three different time scales. At a specific instant of time,
the action selected by an agent depends on (adapts to) his current sensory
input. During the course of his life, an agent learns. During evolutionary
time, the species of agents evolves. How does all this occur?

Each agent is born with an action selector, unique to the individual,
that chooses a behavior (move north, south, east, or west) at each time
instant, based on what it sees in the four directions. The result of that
behavior is the move and its consequences, which depend on who's occu-
pying the cell. A wall, a carnivore, or another agent in the cell results in
damage. A plant in a cell is eaten, a tree is climbed. A dead carnivore or
agent is fed upon.

An agent's action selector comes in the form of an artificial neural net-
work, called its action network, that learns by altering the strengths of its
synapses (weights). Each agent is born with an action network capable of
probabilistically selecting more or less desirable behaviors immediately.
During the course of its life the agent learns, that is, it adapts its patterns
of behavior. An agent may be born with a tendency to beat its head
against a wall. With luck, he may learn not to do so before the tendency
proves fatal. But how does this learning take place? Agents learn via back-
propagation (which you may recall from our visit with Chalmers's active-
to-passive network). But where do the target behaviors for training come
from? Who's the teacher? The teacher is an inherited evaluation network
that provides reinforcement, positive or negative, after each behavior. But
reinforcement doesn't provide target behavior, you say. No, it doesn't. And
Ackley and Littman's way of solving this problem is pretty slick.

Each agent, in addition to its action network, comes equipped at birth
with a unique evaluation network, again an artificial neural network. An
evaluation network compares the current circumstances in which the
agent finds himself with the situation a moment before, and decides
whether things have improved. No improvement results in a negative rein-
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forcement to the most recent behavior. Technically, the action network
learns by back-propagation, using the complement of the behavior as the
target, or desired, behavior. The complement of a behavior simply moves
in the opposite direction. An agent's evaluation network allows its action
network to learn, but the evaluation network itself remains fixed for life.
However, an agent whose evaluation function likes approaching carni-
vores probably won't live long enough to produce many offspring. Evalua-
tion networks don't learn, but they do evolve. In Ackley and Littman's
words, "the inheritable evaluation function . . . converts long-time-scale
feedback (lifetime-to-lifetime natural selection) into short-time-scale
feedback (moment-to-moment reinforcement signals)" (1992, p. 491).

The genetic code of an agent provides the initial weights for its action
network and the lifetime weights of its evaluation network, as well as
other parameters. An agent who reproduces asexually passes its genetic
code to its offspring intact, except for rare mutations. Sexual reproduc-
tion uses random two-point crossover to combine the genes of the two
parents, again with rare mutation. This procedure differs from the genetic
algorithms we visited earlier in two important ways. First, there's no ex-
plicit fitness function; the environment acts as an implicit fitness function,
deciding who lives long enough and eats well enough to have the energy
to reproduce. This results in a second major difference: the population
size varies.

Birth and death are independent phenomena dependent on internal
health and energy levels and on what's happening in the external environ-
ment. Births can occur with no corresponding deaths, and conversely.
Population size may increase or decrease. In fact, the environment we've
described "is not an overly kind world. Most initial agent populations die
out quite quickly." Some, however, persist for millions of time steps,
eating, mating, fleeing from predators, learning, evolving, doing pretty
much what you'd expect of a living population. After this tour stop, the
term "artificial life" seems much less oxymoronic to me.

Having created this artificial world with its artificial creatures, Ackley
and Littman proceed to seed it with initial agent populations, and care-
fully observe and experiment with the outcome. Experiments allow them
to discover under what circumstances learning and evolution together are
superior to either alone or to a random walk. In one run they observe
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cannibalism rampant in the southwest but making little difference in the
long run. Surprisingly, one population of agents with carefully hand-
crafted evaluation networks optimized to find food, avoid carnivores, and
so on, performed less well than some "naturally" evolved agent popula-
tions. One exceptionally long-lived population lent support for the Bal-
dwin Effect, in which inherited properties (e.g., an initial action network
that avoids carnivores) mimic learned properties (e.g., an action network
that learns to avoids carnivores) without violating the canons of Darwin-
ism. It seems that artificial life may yet influence thinking about still con-
troversial issues in evolutionary biology.

But to me the fascination of the AckleyLittman work lies in the inher-
ited evaluation network that provides a mechanism by which values in-
fluence the learning of behaviors. I suspect that culturally learned values
may be constrained by and subservient to more fundamental (primitive?)
inherited values in all species that learn. After all, the continual, funda-
mental problem of every autonomous agent, including us, is what to do
next. Without some values, one action is as good as another. There's no
basis for a decision. To me this is a fundamental issue. It will arise again
when we visit Edelman's work, and even more vividly on a later encounter
with Sloman's thoughts on motives and goals (1987).

Epilogue

Artificial life is a brand-new field of study whose first conference was held
in 1987 (Langton 1989), and whose first professional journal (Artificial
Life, MIT Press) has just appeared. As yet, there are no degrees in the
field, and certainly no academic departments. It has attracted an interdis-
ciplinary cadre of researchers including physicists and computer scientists
but relatively few biologists. I'm told this trend is changing, and that the
biologists are beginning to take note.

I can't leave artificial life without mentioning Ray's Tierra (1992), al-
though it doesn't properly belong on a mechanisms of mind tour. Ray
has produced a virtual computer environment, within a real computer,
inhabited by snippets of self-reproducing code that evolve in the most
amazing ways. Parasites evolve to infest hosts that evolve to con the para-
sites into reproducing the hosts. After the parasites are driven to extinc-
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tion, the erstwhile hosts, all related, develop a cooperative culture that
flourishes until cheaters evolve to take advantage of their unsuspecting
nature. And so on. Here is artificial evolution of a complexity worthy of
study, and sufficiently swift to allow study in a human lifetime. Although
I can find no convincing connection to mechanisms of mind, a side trip
to visit Tierra is recommended nonetheless.

But for the next stop on this tour, let's consider the issue of one mind
or many per individual.

Notes

Langton organized the first three conferences on artificial life, edited (with
some help) their proceedings (Langton 1989, 1994; Langton et al. 1992), and
edits the first artificial life journal.

Thinking Machines Corporation's CM-2, with 16,000 to 64,000 quite sïmple
processors, has recently become a favorite vehicle for artificial life systems. An
earlier model was excitingly described by Hillis, its designer, in The Connection
Machine (1985).

The most accessible example of a cellular automation is Conway's Game of
Life (Berlekamp et al. 1982; Poundstone 1985).

That's not quite accurate. We briefly tried for a definition of stupidity but gave
that up, too. Let's not hear any remarks about definition by recursion here.

Traditional data structures in computer science include lists, arrays, queues,
stacks, and trees.

As we'll see, Wilson uses the term "Animat" generically to refer to any of a
certain class of artificial creatures. One of his articles is titled "The Animat Path
to AI" (1991). Here, "Animat" will refer to the particular artificial creature de-
scribed by Wilson in "Knowledge Growth in an Artificial Animal" (1985).

The mathematical (topological) name for a doughnut-shaped object is "torus.'
"Toroidal" is its adjectival form.

A festival during which possessions are given away in return for status. Often
possessions are received, in turn, during subsequent potlatches from earlier bene-
factors (Benedict 1934).

In general, drifting may not be the best strategy. A square search, that is,
searching outward in a right-angled spiral, may be better.

David Lee Larom objects at this point, saying, "With such a complicated rule
set in such a simple world, is [Animat's) behavior really emergent? He seems to
me to have been jury-rigged to do what his creators wanted!" Yes, of course.
Every autonomous agent is "jury-rigged," that is, designed andlor evolved to
couple with its environment or to learn to do so.
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Multiplicity of Mind

. we have come to recognize an ever increasing number of semi-separable mech-
anisms within the human brain. They are sensory and motor. There are also mech-
anisms that may be called psychical, such as those of speech and of the memory
of the past stream of consciousness, and mechanisms capable of automatic inter-
pretation of present experience. There is in the brain an amazing automatic sen-
sory and motor computer that utilizes the conditioned reflexes, and there is the
highest brain-mechanism that is most closely related to that activity that men have
long referred to as consciousness, or the mind, or the spirit.

-Wilder Penfield, The Mystery of the Mind

Gazzaniga (1985) erects a straw man about "the strong subjective sense
we all possess of ourselves . . . that we are a single, unified, conscious
agent controlling life's events with a singular integrated purpose" and
goes on to argue against it.1 I don't know whether "we all" possess such
a sense of ourselves, but I certainly do. Well, mostly. Occasionally, there
seem to be two Stans in there with dialogue running something like this:

This is a perfect time to pop over to my office and spend a couple of hours work-
ing on the book. Yeah, but Jeannie wants to take the kids to visit their new cousin.
In the interest of family harmony, I ought to go with them. Well, maybe I'll take
a separate car and stay only for a little while. But that's a twenty-minute drive
each way, and they won't stay long anyway. Why not just go with them? Hanging
out with family is more fun than struggling over writing anyway. Maybe so, but
I've got to finish the book. This project has been hanging over my head for years
now.

We don't seem to be "controlling life's events with a singular integrated
purpose." Note the "we." And sometimes there seem to be even more than

two of us. But maybe I'd best leave this line of thought, before you begin

to suspect me of harboring multiple personalities.
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Although for the most part there seems to be one mind up there run-
ning the show, evidence is mounting for this view being illusory. More
and more, I and many others are coming round to the position outlined
by Penfield above. Gazzaniga (1988, p. 231) talks of "thousands, if not
millions" of "independent modules ... capable of affecting things like
bodily movement as well as more subtle events like mood shifts." Mind is
best thought of as multiple or aggregate, rather than as monolithic.

In this port of call, we'll visit the work of two proponents of this multi-
plicity view of mind, a psychobiologist (Ornstein) and a computer scien-
tist (Minsky). Beginning from an abstract, functional level (Ornstein),
we'll go on to explore various functional mechanisms (Minsky). But that
won't be the last we'll see of multiplicity. Subsequent tour stops will put
us in contact with several other such advocates (John Jackson, Edelman,
Drescher, Calvin, Hof stadter).

Multimind

Ornstein's Multimind (1986) is the first major attraction on our multiplic-
ity tour stop. Ornstein, a respected psychobiologist who has taught at
Stanford, is also a student of Sufism2 as well as a popular author to the
New Age movement. He's a personal advertisement for the ideas he's try-
ing to sell. Some of the major parts of his book are introduced by Sufi
teaching stories that are more than just amusing. Here's a sample.

Nasrudin went into a bank with a cheque to cash.
"Can you identify yourself?" asked the clerk.
Nasrudin took out a mirror and peered into it.
"Yes, that's me all right." he said.

Idries Shah, The Subtleties of the Inimitable Mu/Ia Nasrudin

I'm reminded of the experiments on self-consciousness in apes we en-
countered earlier. Would Nasrudin have convinced Gallup that he was
self-conscious?

Ornstein claims "We are not a single person. We are many." Our
"strong subjective sense" of a "single, unified, conscious agent controlling
life's events with a singular integrated purpose" is only an illusion. It is
illusory to think that a person has a single mind. Rather, we are many.
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We are coalitions or, as my neurophysiologist friend Lloyd Patridge once
said to me, "the mind is more like a commonwealth."

Well, if a single mind is an illusion, what's the truth? The truth la
Ornstein asserts that mind is diverse and complex, composed of a change-
able conglomeration of different kinds of "small minds." "We have lots
of minds that are specialized to handle different chores." Among them are
fixed reactions, talents (procedures), and memories (data). These different
entities are temporarily employed, wheeled into consciousness, then usu-
ally returned to their place after use, and put back on the shelf. Gazzaniga
also postulates "a vast number of relatively independent systems in the
brain that compute data from the outside world." Although the computer
metaphor just expressed is losing adherents, the notion of multiplicity of
minds is rapidly gaining them. Instead of "small minds," we'll hear Min-
sky speak of "agents," Brooks of "competencies," John Jackson of
"demons." Competencies are talents, procedures. Agents and demons can
be either procedures or data.

Ornstein talks about specialized memories for rote learning, for names,
for people, for places, for conversations, and more, each of these a sepa-
rate mental ability. His memories are more like data structures that are
retrieved. We'll soon hear Minsky maintain that whatever memorization
takes place, does so in the procedure that is using it. In his view, and
mind, memory is best viewed as a reconstructive procedure rather than as
retrieval of a static data structure, although a sharp line between the two
is hard to draw.

Ornstein's talents, like his memories, are highly specialized. In addition
to spatial, verbal and intuitive talents, there are talents for feelings, math-
ematics, and personal interactions, and bodily talents such as athletics
and dance. "Talent" should be read not as some God-given superlative
talent, such as Mozart's for music for Gauss's for mathematics, but as
our normal procedures for doing things. Different groups of people, or
segments within a society, or various cultures will put more emphasis on
one skill or another. Thus two of us may have quite different sets of
talents.

As most of us do, Ornstein tends to jump back and forth among the
several meanings of "mind," depending on context to enable disambigua-
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tion. When he talks of the mind wheeling from one condition to another,
from crisis to quiescence, from happiness to concern, he seems to be
speaking of the conscious mind.3 (Even the conscious mind has been split.
Edelman t 19921 talks of primary consciousness and higher-order con-
sciousness, as we'll see on a later tour stop.) The conscious mind wheels
in various small minds, which accomplish quite limited and specific pur-
poses. When a small mind has done its job, it's wheeled out, and another is
wheeled in. We'll postpone posing the obvious question of who's doing the
wheeling, that is, who's deciding on which small mind to wheel in next.

This wheeling in and out of small minds allows for diverse centers of
control. Ornstein speaks of centers of control at lower levels having devel-
oped over millions of years to regulate the body, to guard against danger,
to organize and plan efforts, and so on. These various centers have differ-
ent priorities; some are more important than others. The one that keeps
you breathing, for example, has very high priority. Centers of control are
often at cross-purposes with each other. One might say, "Let's go eat,"
while the other says, "I want to hear the answer to who's doing the wheel-
ing." We humans share some sort of hunger control that gives us a taste
for fats. When our progenitors led very active lives requiring lots of calo-
ries, and food was scarce, such a preference was only prudent. Today, the
fat-loving small mind often conflicts with the stricture-hurling small mind
that says, "That ice cream has too much fat in it."

Patterns of Behavior

Approaching mind from the top-down, analytic corner of psychology,
Ornstein, identifies four strong tendencies, or patterns of behavior, of hu-
man minds. We'll meet them one at a time. He introduces each with a
catchy sentence.

"What have you done for me lately?" This introduces our extreme sen-
sitivity to recent information. For example, an airliner crashes, 240
people are killed, and suddenly people are expressing concern and inter-
est, and there is movement toward improving safety procedures. Within
a few months it's entirely forgotten. It's just gone. Nobody cares anymore.
On the other hand, 80,000 auto accident fatalities over a year's time cause
little comment or concern.
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"Don't call me unless anything new and exciting happens." Unex-
pected or extraordinary events seem to enjoy a fast track into our con-
sciousness. A sudden loud noise behind us will result in an abrupt turn
to inspect. A rabbit may blend into the landscape so as to be essentially
invisible, until it moves. The sentence that begins this paragraph found
my fast track. It caught my attention, since I would have said, "Don't
call unless something new and exciting happens." My expectation in that
context was for "something" rather than "anything." When that expecta-
tion wasn't met, my attention was captured. Other people seem not to
share my expectation. If you don't, perhaps you read right by that sen-

tence and thought nothing of it. And then there's our urge to explain, a
tendency Ornstein didn't mention. Maybe my version of the sentence is
a southernism.

"Compared to what?" We constantly judge by comparisons and rarely
make absolute judgments of any kind. In baseball, a batter swings two
bats in preparation so that one will seem light when he steps to the plate.
This morning (in September), 50-degree weather seemed a bit nippy to
me when I went out for an early morning jog. In midwinter, 50-degree
weather will seem balmy. I'd be quite appreciative of a 5 percent raise-
unless, of course, I was expecting lO percent. I can remember a 6-foot-5
student in one of my classes seeming so tall, but not so when I saw him
as a shooting guard on the basketball team. And self-esteem is often mea-
sured by how I compare myself with others. Almost all of our judgments
are relative to something.

"Getto the point." The meaning of any event, its relevance to the per-
son (or the autonomous agent), is the point. As a police car pulls up be-
hind you with siren blaring, it's not the siren that's frightening, it's the
meaning of the siren. Having just made up, the meaning of a kiss may be
even more pleasurable than the kiss. It's the meaning to the person that
counts. More specifically, it's the meaning to the particular talent that
has most recently been wheeled into consciousness. That talent will use
the information.

Ornstein claims that we "throw out almost all the information that
reaches us," asking how many of the billions of leaves you saw last sum-
mer you remember. At a lower level of abstraction, he claims that "the
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eye . . . transmits less than one trillionth of the information reaching its
surface!"4 At this point I'd like to suggest more discriminating terminol-
ogy. Let's use "data" for the light rays falling on the retina and, at a higher
level, for the leaves. Let's reserve "information" for those meanings cre-
ated by us (or any autonomous agent) because of their relevance to our
current situation, including our needs and goals. In these terms we rapidly
throw out all the data and hold on to the information as long as it's useful
(and, sometimes, much longer).

About now, you may be wondering why I'm regaling you with these
stories that sound more like pop psychology than serious science.
Ornstein's not talking about mechanisms of mind, that's true. But he is
proposing a high-level theory of the functioning of mind that I judge
(comparatively, of course) to be useful. It's a high-level theory that will
give us a framework within which to view the work on mechanisms of
mind of Minsky, Brooks, John Jackson, and others during this and later
tour stops. So let's continue our visit to multimind.

High-level perception produces organization and, thus, simplification.
We extract (I'd say "create") meaning from our sensing. When something
is meaningful, it is organized. When it is organized, it is simplified in the
mind. Ornstein cites the example of the dalmatian. Do you recall having
seen a black and white pointillist picture that at first sight seems like noth-
ing but a bunch of dots? It looks very complex but has no meaning. Sud-
denly, there's an "aha" experience: "There's a dog!" You recognize a
dalmatian. From that moment on, you can't see the complexity. At least I
can't get it back. The feeling of wonder, of bafflement, seems unrecover-
able. The image, instead of being complex, is simple. Meaning leads to
organization leads to simplicity.

All this is in the service of making sense of our worlds. Ornstein main-
tains that we "hold in our minds" a well-organized and simplified version
of our environment, of the nature of other people, of our personal histor-
ies, and of our beliefs. I'd quibble a bit and say "reconstruct" rather than
"hold." I doubt that even a most microscopic examination of my brain
would yield even one encoded picture of a dalmatian. Yet I can recon-
struct one. I'm arguing against the filing cabinet metaphor for memory.
The distinction is identical to the one computer scientists make between
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storing a table of the first fifty prime numbers in memory and storing a
procedure that calculates any one of the first fifty primes on demand.

Ornstein sees the brain as a compendium of circuits piled atop one
another, each developed over past millennia to serve a short-term pur-
pose. Different circuits may have very different ideas behind them, rather
than being guided by some unified conception of cognition. Here,
Ornstein's view seems on the opposite side of the fence from Newell's
unified theory of cognition. Although I tend strongly to the position of
Ornstein and others, as you have seen and will see again, I'm not ready
to rule Newell out. At a sufficiently high level of abstraction, we may yet
discover a unified mechanism of mind. But for now, the picture is one of
separate structures laid on top of each other, like a house being added on
to. This picture is very much like Brooks's subsumption architecture,
which we'll see later in some detail.

Ornstein talks about our having small minds, or talents, for alertness,
for emotions, for danger, for comparing sensory information, for
avoiding scarcity, and so forth. He points out evolutionary influences that
have shaped these talents. We tend to prefer temperatures between 60 and
85 degrees Fahrenheit because our remote ancestors lived on the plains
of East Africa. Similarly for the late afternoon work slump. East African
plains get hot in the late afternoon, so that's a good time to sit under a
tree and not do much. People in Norway in November also experience
this same kind of slump because our archaic nervous system hasn't had
enough evolutionary time to adjust. Another such example is the hackles
that get raised when you're angry or afraid. A lion's mane stands out so
he'll look larger to the encroaching lion he's threatening. Primates, too.
Their hair stands up so they'll look larger and more threatening. I vividly
recall the hair standing up on my wife's neck as we approached a mama
rhino and her calf in southern Nepal.

Sensory experiences are relative. No change, no experience. Sitting in
a room where everything is the same color and texture, no distinction
whatever, you don't see anything. Constant noises disappear. Were you
aware of your breathing until I mentioned it? Or your body against your
chair? If you light a candle outside in the sunlight, it's hardly visible. But
lit in a dark room, it illuminates the whole room. Context is everything.
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The Creation of Information

Ornstein views the sense as filters, not windows. We have no need to re-
flect all occurrences. What difference does the angle between two particu-
lar blades of grass make? Or the fact that a particular leaf is falling? We
want to convey (create) only relevant, important information, say changes
in the state of an object. And only a minute fraction of available informa-
tion is transmitted (or available data transformed into information). And
then there are occurrences in the world for which we have no senses: radio
waves, infrared, ultraviolet, sounds below 20 hertz, and a universe of mi-
croscopic organisms smaller than our best visual resolution. Here's the
point of the matter: we obviously cannot see what is really out there.
There is no point in arguing about it. Essentially, we create our worlds to
meet our own needs.

We're not hallucinating and creating worlds out of whole cloth. Rather,
we're constrained by what is actually out there. But appearances are built
in. "Our world appears to us the way it does because we are built the
way we are" (p. 40). Consider a cat looking at chocolate cake versus me
looking at chocolate cake. I see it as brown, but the cat doesn't see in
color. I can taste it as sweet, but the cat doesn't have any sweet taste buds.
The appearances of chocolate cake are very different for each of us be-
cause we are built differently. It seems to me that dolphins or bats, which
use echolocation, must see a very different world than we do.

The world we create is also affected by internal transformations. Ref er-
ring to the graph in figure 10.1, the x-axis records actual stimulus magni-
tude as measured by instruments, and the y-axis lists the average estimate
of magnitude, that is, what magnitude a person reports perceiving. For
length, there's a linear relationship5 between the actual length and the
perceived length. The longer it is, the longer the person perceives it to be.
Perception of brightness behaves differently. Early on, as an object begins
to brighten, the apparent brightness increases quickly. Later, when the
obiect becomes very bright, the apparent brightness tapers off. The rela-
tionships seems logarithmic.6 Perception of pain behaves differently yet.
Low levels of pain are perceived as being less than it "actually" is, that is,
less than you would measure the magnitude of the stimulus causing the
pain. As the mag' ude of the stimulus increases, the perception of the
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Figure 10.1
Power curves for different stimuli (redrawn from Ornstein 1986)

pain increases much more rapidly, an exponential7 rush. As we sense
through our window on the world, we filter, we transform, we create to
fit our needs.

The Brain à la Ornstein

What do we use to do all this creating? Our brains, which are often parti-
tioned into the brain stem, the limbic system, and the cortex. Our brain
stem, says Ornstein, looks much like the brain of a crocodile. The basic
design is about 500 million years old. It accounts for alertness and the
basic mechanisms of life support, and is not the locus of many of
the activities we heretofore have called mind. It would follow, then, that
the crocodile doesn't have much mind. I would like to broaden the usage
of "mind" to include these activities.

Penfield (1975), a neurosurgeon, says the indispensable substratum of
consciousness lies outside the cerebral cortex, probably in the higher
brain stem. Removal of even large portions of cerebral cortex doesn't af-
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fect consciousness, whereas "injury or interference with function in the
higher brain-stem, even in small areas, abolishes consciousness com-

pletely." If consciousness is mediated by the higher brain stem, and croco-
diles have brain stems, must crocodiles experience consciousness? They
may well do so, but the argument is specious. As my friend Lloyd Par-
tridge pointed out to me, removing the distributor cap from your automo-
bile will turn off your motor, but that doesn't mark the distributor as the
center of movement. There's been a long and unsuccessful search for the
center of human consciousness. Penfield presents evidence that seems to
rule out the cortex. My physician friend Dan Jones takes issue with this
last assertion as follows:

The great preponderance of evidence is that the neocortex is the "locus" of con-
sciousness, but that input from the reticular activating system of the brain stem is
required to activate it. . . . Since the neocortex is large, you have to destroy most
of it on both sides to eradicate consciousness, but small ablations of critical areas
can serious impair the quality of consciousness, e.g., destruction of the color-
perception cortex prevents further "consciousness" (seeing or imagining) of color.
(personal communication)

Dennett, a philosopher, makes a book-length argument that there is no
such center in his immodestly titled Consciousness Explained (1991). I'm
not sure Dennett and Jones would find much to argue about. Having a
center of consciousness dispersed over the neocortex may well be the
same as not having a center of consciousness at all.

Ornstein (1986, p. 48) credits the limbic system "with having presided
over the transition from sea-dwelling animals to land animals." Its 200
million-year-old design regulates body temperature, thirst, hunger, and
weight and controls emotional reactions and responses to emergencies.
"We have pretty much the same basic emotional apparatus as our remote
ancestors had."

In the quiltlike cortex covering the brain, decisions are made, schemes
are hatched, language is produced and understood, music is listened to,
mathematics is created, and so forth. It seems to be the home of the higher
cognitive functions. Penfield (1975, p. 18) views the cortex not as "the
'highest level' of integration" but as "an elaboration level, sharply divided
into distinct areas for distinct functions." But what does he mean by that?
I picture sensory data coming invisual, auditory, olfactory, tactile, pro-
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prioceptive, whatever. Somewhere along the line the data fuse into infor-
mation. I think Penfield is saying that this highest level of integration is
to be found not only in the cortex but also lower down. He proposes the
cortex as an elaboration of a system already capable of fusing data into
information, an elaboration composed of additional pieces with addi-
tional skills like language, that you wouldn't find at lower levels. (We'll
soon meet this piling of skills level upon level in Brooks's subsumption
architecture.)

In Ornstein's terminology, Penfield sees the cortex as composed of
mechanisms for various talents. He also sees the cortex as "sharply di-
vided into areas for distinct functions." Ornstein claims reasonably well
identified areas of the brain associated with most of the following talents:
activating, informing, smelling, feeling, healing, moving, locating and
identifying, calculating, talking, knowing, governing. (I'll soon take issue
with this last.) This question of the localization of function has been hotly
debated. A recent correspondence thread on the connectionist list on the
Internet found neurophysiologists reporting that localization is losing
support.8

Structure of Multimind

Ornstein offers a hierarchy of mental structures as follows. At the lowest
level of organization are the basic neural transformations. I picture these
as groups of neurons acting cooperatively to perform a set function. Later
on this tour stop we'll hear Edelman refer to them as neuronal groups.
Next Ornstein talks of reflexes, set reactions. Then come domain-specific
data-processing modules, the "quick and stupid analytical systems of the
mind," one of which might produce "the consistent perception of red un-

der bright sunlight and dusk." Slower, but smarter, more general, and
more flexible, are the talents. Combinations of talents, useful in particular
situations, comprise small minds. And finally, at the top of the heap, rests
consciousness, into which small minds are wheeled (and wheeled out) as
our goals and environment demand.

Ornstein talks of physiological evidence for many kinds of memory in
many parts of mindmemory for faces, locations, smells, movements,
sights. Further, he identifies memory and perception, saying, "There is
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little reason to think that perceiving and remembering are in any way

different (1986, p. 76)". I think he means to assert that the two "facul-
ties" use the same neural mechanisms, and that perceptions and memo-
ries are not reliably distinguishable. Experimental psychologists test
subjects for recall ("Write down all the words you can remember from
the list.") and for recognition ("Was the word 'hungry' on the list you just
saw?"). Psychological models of memory are often expected to account
for both recall and recognition, that is, for both memory and perception.
But recent neurophysiological evidence casts doubts on the single-
mechanism hypothesis. Here's a quote from the Wall Street Journal (Sep-
tember 30, 1993, p. A13):9

Until C.K. and one other brain-damaged person came along, it was thought that
the brain used the same bunch of neurons for recognizing what the eyes are seeing
and for remembering what things look like. Both abilities, it was thought, cen-
tered in a vast storehouse of images the memory had accumulated.

Recognition, or perception, it was believed, involved matching up the images
flashing in from the retinas with those in the storehouse, while imagery involved
calling up stored images on cue. This one-system idea was reinforced by the obser-
vation that many brain-damaged patients who had trouble recognizing what they
were looking at also had trouble remembering what things look like.

But the case of C.K.'s bafflement with asparagus [he could draw asparagus
nicely from memory but couldn't recognize a picture of one] suggests that visual
perception and visual imagery involve separate patches of neurons. One possibil-
ity is that there are two storehouses of images, one for perception and one for
mental imagery, and C.K.'s access to the first has been damaged but his access to
the second is intact. The alternative is that there are two "routes" to the one
big storehouse.

C.K. seems to have no trouble recognizing human faces, lending another
bit of evidence to the argument for separate memories for faces.

And then there are feelings. Ornstein has us organized by our specific
emotions to feed (hunger), fight (anger), flee (fear), and reproduce (lust),
pointing out that strong emotions fix our memories and amplify our ex-
periences. Sloman, whom we previously met regarding free will and will
meet again on a later stop, believes emotions are essential to intelligent
autonomous agents. More of this later.

Finally, Ornstein takes up the issue of will and volition. Who's minding
the store? This control issue is, of course, central to any theory where
multiple agents form a mind. We'll be concerned with it for much of the
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remainder of our tour. Ornstein doesn't believe that "the separate minds
clamor and fight for control and the strongest wins, with no directing
force" (p. 178). (John Jackson's pandemonium theory says something
much like this. More later.)

Instead, he postulates a 'governing self" that controls the wheeling of
small minds in and out of consciousness: "... it is this component of the
governing self that links many of the separate small minds" (p. 178). Not
that everyone has a governing self, mind you. In most of us, which small
mind gets wheeled in is decided automatically on the "basis of blind
habit." But, says Ornstein, ". . . a person can become conscious of the
multiminds and begin to run them rather than hopelessly watch anger
wheel in once again" (p. 185).

Until now I've been quite taken with Ornstein's multimind theory. Here
I begin to feel some discomfort. It's so easy to explain mind by inadver-
tently postulating a homunculus, a little man," who sits up there and
provides whatever intelligence is needed. This, of course, leaves open the
problem of explaining how the homunculus works. The issue hasn't been
dealt with, but simply pushed back. I fear that Ornstein, by introducing
an unexplained governing self, has allowed the homunculus to sneak un-
der the door.

As Minsky puts it (1985, p. 18), "Unless we can explain the mind in
terms of things that have no thoughts or feelings of their own, we'll only
have gone around in a circle." This introduces us to the next major at-
traction in this port of call.

The Society of Mind

One of the founders of symbolic AI, Minsky has also made seminal con-
tributions to artificial neural networks, robotics, and theoretical com-
puter science. Here we'll visit with his Society in Mind (1985). Minsky
cannot be accused of being unambitious. His first sentence reads, "This
book tries to explain how minds work." Well, surely this is right up our
alley. Let's have at it.

Minsky motivates his theory of mind from evolution: "Each human
cranium contains hundreds of kinds of computers, developed over hun-
dreds of millions of years of evolution each with a somewhat different
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architecture" (1985, P. 66). But whereas Ornstein, as befits a psycholo-
gist, approaches mind from the top-down, analytic direction, Minsky,
wearing his roboticist hat, takes a bottom-up, synthetic route. he wants
to show how "you can build a mind from many little parts, each mindless
by itself." He refers to these little parts as "agents." In Orstein's termino!-
ogy, an agent might be a module, a talent, or a small mind. Minsky's
agents run the gamut from low-level to clearly cognitive: "Each mental
agent by itself can only do some simple thing that needs no mind or
thought at all. Yet when we join these agents in societies . . . this leads to
true intelligence" (1985, p. 17).

Note carefully that each agent can do something, as contrasted to
Ornstein's talents, which can act as static data structures. Minsky's agents
are all processes, even when they empower memory. Note also that Min-
sky is trying to sell the idea of intelligence implemented by a society of
relatively unintelligent agents. (Remember the termite colony as architect
of a remarkable edifice that no one member has any idea how to build.)
Minsky proposes another instance of the multiplicity of mind idea, but
with the term "society" carefully chosen to spotlight the importance of
the interaction of agents.

To have something more concrete in mind, let's look at Minsky's ex-
ample of the agent builder, who knows how to stack blocks into towers.
Builder can call on his high-level buddies begin, add, and end. Begin finds
himself a nice flat space on the table and decides, "We'll build it here."
That is all he does. Add grabs a block and stacks it on top. End says to
add, "Stop, that's enough, don't go any higher." How does add stack
blocks? As builder uses begin, add, and end, so add, in turn, uses find,
get, and put, who do just what you'd think they'd do from their names.
And each of these three agents calls several other, still lower-level agents.
Each of these has a hierarchy under him. Add uses find to find a block,
and find in turn uses see. He wouldn't have to use see. Suppose blocks
were smelly and better found by olfaction. Find could use smell instead.
Once a block is found, add calls get to fetch it. Get then uses move to get
to the block and grasp to get hold of it. Now put takes over, using move
again. And so on.

Agents, according to Minsky, are the primitives of intelligence. Lower-
level agents have no thoughts and no feelings, yet out of them emerge
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intelligent actions. They are mental procedures that do things. They are
similar or equivalent not only to Ornstein's talents, which we've already
met, but also to Brooks's behaviors, John Jackson's demons, Maes's ac-
tions, and Edelman's neuronal groups, all of which we'll visit on the tour.
Agents have very limited abilities, but they can do one thing well. Agents
can call on other agents as procedures can in a programming language.
They have limited bandwidth1° for communicating with other agents. In
fact, it is mostly O bandwidth, because communications between agents
is relatively rare. The chance of picking two agents randomly out of the
human mind and their having anything whatever to say to one another is
vanishingly small. Each agent uses only a small number of others with
whom it can communicate. Typically, one agent doesn't know much about
what another does. This lack of communication between agents seems
biologically plausible. The human brain, with each neuron connected to
10,000 others on average, and with some 1QH synapses total, surely seems
well connected, with plenty of opportunity for communication. But this
is an illusion. Each neuron, or each group of 1000 neurons, for that mat-
ter, can communicate with only a tiny fraction of the remaining
neurons.

Minsky's Mechanisms

True to his promise, Minsky proposes many possible mechanisms of
mind, most of them at a relatively high level of abstraction with many
possible implementations. Let's visit a bit with a small but representative
sample of these mechanisms to get a feeling for what they're like. The
first will involve the use of collections of agents for the representation
of concepts.

Agents can be active or not. Or they may have some activation level
other than off or on. Active agents can represent properties or features,
as illustrated in figure 10.2 Minsky's divisionshape, substance, color,
and sizeare themselves collections of agents and may correspond to
Ornstein's small minds. The gray blobs in the figure indicate inactive
agents; the bold hexagons, active agents. The collection of active agents in

the shape division may represent the shape "round." This representation is
distributed as we've seen before in connectionist models. When attention
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A small white rubber ball

SHAPE SUBSTANCE COLOR SIZE

Some divisions of a mind-society

Figure 10.2
Agents' representation of concepts (adapted from Minsky 1985)

passes to some other object, a different collection within the shape divi-
sion will become active, representing some other shape.

This mechanism employs configurations, patterns of activity, to repre-
sent objects, concepts, and so on (I, and others, have argued that objects
are best viewed as special kinds of concepts rater than as privileged enti-
ties in the world.) Symbolic AI typically employs another familiar mecha-
nism for representing a particular concept, a named data structure such
as a frame (Minsky 1975) or a script (Schank and Abelson 1977). A third,
and biologically motivated, mechanism for representing concepts has
been proposed by Calvin (1992, 1993). Later we'll visit at some length
with yet another mechanism for concepts, representation via attractor ba-
sins of a dynamical system (Skarda and Freeman 1987).

How are these representations retrieved? What is the mechanism for
memory? We've heard Ornstein propose numerous specialized memories
rather than a single all-purpose memory. Still, these many memories may
all employ the same underlying mechanism. Minsky introduces the no-
tion of a K-line as his basic mechanism for memory. He took this notion
seriously enough to publish it in Cognitive Science (1980) instead of in a
computer science journal. A K-line is a mental data structure and also an
agent. What does it do? It connects other agents and awakens them when
appropriate. Think of a K-line as a wirelike structure that attaches itself
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to agents that are active when the K-line is formed. Here is an entertaining
example that Minsky attributes to one of his students. Suppose I am
about to fix my bike. I get out my toolbox. I get out the red paint. I paint
both hands red. In the process of repairing the bicycle, every tool that I
used is marked with red paint. The next time I need to fix my bike, I can
get out just the tools with red paint, thinking that they have a good chance
of being used because they were used in a similar situation once before.
The K-line activates those tools that are marked with red paint. An agent
can be attached to several different K-lines.

K-lines are active agents of memory. We're not talking about declarative
knowledge stored in propositional form but procedures for approxi-
mately reconstructing a prior mental state. And a prior mental state has to
do with which agents are active. Memories, then, are dynamic procedural
agents, not static data structures.

K-lines can be used to construct hierarchical memories. The upper im-
age in figure 10.3 illustrates a K-line for the sentence "Jack flies a kite."
That K-line is attached to many agents, some (male and young) helping
to represent Jack, others (outside, wind, red, and paper) representing kite.
K-lines can be hooked directly to agents in this way, or perhaps to other,
preexisting, K-lines, as illustrated by the lower image. This version pro-
duces a hierarchical memory. It also tends to produce mental states based
more on stereotypes and default assumptions than on actual perceptions,
as also seems true of us humans.

Now that we've seen some of Minsky's mechanisms, lt's reasonable to
ask how they are controlled. (Questions of control will be visited at length
on a later tour stop.) Minsky proposes a B-brain influencing an A-brain
that, in turn, interacts with the world. Picture the A-brain as being com-
prised of agents that sense the outside world and of other, motor agents
that act upon it. Picture the B-brain sitting atop in contact only with A's
agents. The B-brain is composed of executives who direct, or at least in-
fluence, A's activity. Minsky gives several examples. If A seems disordered
and confused, B makes A stop doing whatever it's doing. If A seems to be
repeating itself, caught in an endless loop, B makes it try something new.
If A does something B likes, B makes A remember it. If A is too much
involved with detail, B makes it take a higher-level view, and conversely.
The notion of a B-brain provides a high-level, abstract control mecha-
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Figure 10.3
K-lines (redrawn from Minsky 1985)

nism. Soon we'll visit lower-level control mechanisms. In the context of
one of these, Maes (1990) argues that B-brains, with their executives, are
not needed for low-level minds, say for autonomous moon explorers.

But how are these brains composed? Hierarchically. At the bottom are
the agents with their own hierarchy. At the next level up we find societies,
organizations of agents.12 Up another level you have layers of societies.
Minds, according to Minsky, develop as sequences of layers of societies.
Each new layer begins as a set of K-lines and learns to exploit whatever
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skills have been acquired by the previous layer. When a layer acquires
some useful and substantial skill, it tends to stop learning and changing.13
Suppose I'm a small child learning to walk in a straight line (creating an
agent walker). Since I don't walk very well, if I want something badly, I'll
probably get on my knees and crawl for it (use crawler). The better I get
at walking that straight line, the more useful this skill is going to be, and
the more walker will be called on by other agents that want to do things.
At that point walker ceases to improve. Very carefully walking a very
straight line, one foot in front of the other, would cause too much delay
for all the agents that want to use walker. If a need occurs for that kind
of skill (tightrope walking), it tends to develop as a new separate agent.

Minsky refers to another possible mechanism of mind, at least for some
high-level agents, as a difference engine (see figure 10.4). A comparison
of the current situation with a description of the goal it wants to reach
provides a set of differences. Agents acting on the world so as to minimize
these differences are then activated, thus moving the situation toward the
goal. This strategy is referred to, in symbolic AI, as meansends analysis.
Meansends analysis is a "weak" method in that it requrres little domain
knowledge to accomplish its objective (Laird et al. 1987). The General
Problem Solver is an early symbolic AI program employing meansends
analysis (Simon 1981). You'll also recall our having met meansend anal-
ysis briefly during our earlier visit with SOAR.

Difference engines require goal descriptions. Goals must persist over
some time, and require some image or description of a desired state. Can

Figure 10.4
Difference engine (redrawn from Minsky 1985)
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a machine have a desired state? Does Deep Thought "want" to win at
chess?'4 Does a thermostat "want" the temperature to be at 72 degrees?
Can you feel the mire rising above your ankles? Minsky helps to pull us
free: "We need not force ourselves to decide questions like whether ma-
chines can have goals or not. Words should be our servants, not our mas-
ters. The notion of goal makes it easy to describe certain aspects of what
people and machines can do" (p. 79). I think Minsky is led to this view
not by difference engines requiring goal descriptions but by seeing the
difference engine as a mechanism for goal-seeking behavior. He says,
"The Difference-engine scheme remains the most useful conception of
goal, purpose, or intention yet discovered" (p. 79). Note that the claim is

most useful." I tend to agree. We'll meet the issue of goals again when
we visit Sloman's work once more later on the tour.

A favorite maxim of mine is "if it ain't broke, don't fix it." Minsky offers
his version as a mechanism: if it is broke, don't fix it. Rather, suppress it.
This dictum makes more sense that it seems to at first. Suppose a proce-
dure has failed in a certain situation. What should I do? Fixing it might
introduce errors in other situations where it now works perfectly well.
Here's an example. IBM mainframe computers, the "big iron," employ a
huge operating system, a massive piece of software that performs execu-
tive functions like scheduling tasks, allotting processor time slices, load-
ing and saving files, and communicating with printers. Every year or so
IBM produces a new version of the operating system that, in addition to
offering some new features, fixes a few hundred of its known bugs.'5 In
the process of fixing old bugs (and of introducing new features), they
introduce new bugs. Conventional wisdom maintains that over the years,
the number of bugs is essentially constant.

Well, if I don't fix the bug, what do I do? Minsky suggests inserting
a censor that remembers some abstraction of the situation in which the
procedure doesn't work. When that situation arises again, the censor sup-
presses the misbehaving procedure and calls on some other, special-
purpose, procedure to do the job. This tactic reminds me once again of
Brooks's subsumption architecture, which we'll visit next. I might conjec-
ture that Brooks, a younger colleague of Minsky, was influenced by him,
but I don't know that.
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An autonomous creature,16 like a person or a mouse, or maybe even a
Mars lander, may need to learn some new behavior, say locomotion by
walking or adding a column of figures by using a calculator. Such crea-
tures must continue functioning as they learn. How to bring this about?
You can't turn off a life-support system while learning to do it better. The
trick is to keep the old system intact and operational while building the
new as a detour around the old. Test the new system without letting it
assume control. When satisfied, cut or suppress some of the connections
to the older system. We'll see this approach illustrated in robots during
our visit with subsumption architecture. I first encountered the idea in a
different context. When consulting with small businesses moving to com-
puter systems, one would carefully run the older manual system in paral-
lel with the new computer system until all the bugs were flushed. The
manual system was then discontinued (suppressed) but often remained
available as a backup, at least for a while.

Suppression brings to mind another common mechanism employed by
agents: mutual inhibition, or the winner take all" strategy. In a group of
agents, often only one can reasonably be active at a time, as a single-
bodied organism can typically move in only one direction at a time. One
way of accomplishing this is to have each member of the group send in-
hibitory signals to every other member: mutual inhibition. We encoun-
tered this idea, during our visit with connectionism. Recall that the
connectionist model of word recognition of McCelland and Rumeihart
(1981) made extensive use of the "winner take all" strategy.

Autonomous agents, by definition, pursue their own goals, multiple
goals in all but the simplest cases. Any persistent goal can be expected
eventually to conflict with other goals. Such conflict is likely to cause
problems, since no longer-term project can hope to succeed, or even to
persist, without some defense against these competing interests. Minsky
claims that such conflicts among our most insistent goals produce strong
emotional reactions. These emotions are needed to defend against com-
peting goals. He concludes that "the question is not whether intelligent
machines can have any emotions, but whether machines can be intelligent
without any emotions" (p. 163). We'll hear from Sloman on the use and

necessity of emotions later in the tour.
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Note that real systems, like us, are remarkably robust, meaning that
they perform reasonably well under widely varying circumstances. Min-
sky asks how such systems can be made robust. Duplication or redun-
dancy is one possibility. For example, equipping your computer with two
hard disks so that when you write to one, it writes to the other. Another
techniques is to build your system so that it will repair itself. Some put
this as a necessary condition for life itself. We saw yet another means
during our visit with connectionism. Employ distributed processes so that
each small agent can affect a large society of other agents, but will have
only a mild effect on any one of them. Minsky favors still another way,
accumulation. Each agency will accumulate under it a wide collection of
little agents to do its bidding, so as to have several different ways of get-
ting its job done. Some of these may be more efficient than others. But if
one is lost in a particular circumstance, chances are there will be another
way. This notion of robustness through accumulation is reminiscent of
Edelman's selection of neuronal groups, to be visited at a later port of call.

After this brief sample of Minsky's mechanisms of mind, you may well
conclude it's all a kludge, an ad hoc collection of mechanisms with no
overall theme, no organizing order, no common thread. If so, I, and prob-
ably Minsky, would agree with you.

Perhaps the fault is actually mine, for failing to find a tidy base of neatly ordered
principles. But I'm inclined to lay the blame upon the nature of the mind: much
of its power seems to stem from just the messy ways it agents cross-connect. If so,
that complication can't be helped; it's only what we must expect from evolution's
countless tricks.

Maybe it's just a kludge, but it's a damn powerful one. What else do you
know that's capable of delving into an understanding of its own
mechanisms?

We've spent this tour stop with me trying to sell you, with the help of
Ornstein and Minsky, on the multiplicity theory of mind, mind as aggre-
gate rather than monolithic. Our next stop will focus on how minds can
perform their primary function of choosing the next action. We'll also
garner more support for multiplicity.
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Notes

As did Freud with his ego, id, and superego.

The mystical branch of Islam.

Art Graesser reminds us here that much cognitive activity never reaches
consciousness.

I got so upset by this seemingly outlandish statement that I called my friend
Lloyd Partridge, who, after some effort, convinced me that even though the num-
ber may not be one trillionth, it's a very, very, very small number indeed.

That is, its graph approximates a straight line segment.

That is, it increases rapidly before tapering off and becoming almost flat, as
does the logarithm function.

Exponential functions grow slowly for small values of their argument but ex-

tremely rapidly for large values.

Here's Dan Jones's view of this matter (with which I entirely agree): "I think
at this point the 'localization vs. equipotentiality' debate in neuroscience is about
as bankrupt as the 'nature vs. nuture' debate in developmental biology. There is
now overwhelming evidence both for localization of function and diffuse integra-
tion of function. Any attempt at either/or categorization seems grossly misguided
or naive."

I'm grateful to my friend Paul Byrne for calling this article to my attention.

Two humans sharing a common language and in physical proximity can he
expected to have a broad bandwidth for communications. Without a common
language, the bandwidth is narrowed to carry only gestures and sounds. A human
and a dolphin must struggle with an even narrower bandwidth.

1000 )< 10,000 = lO. But the brain has roughly loll neurons. The fraction
is 1/10,000. Tiny indeed!

More technically of agencies. Builder, thought of as an agent, only knows
how to call three other agents. Builder, thought of as an agency, knows how to
build towers of blocks.

A fascinating evolutionary analogue to this idea is due to Kauffman (1993,
chap. 3). Not very fit organisms tend to live in a very rugged fitness landscape
where large mutations (changes) may well prove helpful. Fitter organisms, having
climbed partway up some fitness peak, are likely to benefit only by quite small
mutations (changes). This note is not intended to explain the idea but to tempt
you to Kauffman's book.

Deep Thought is a computer system, based on symbolic AI and specialized
hardware, that plays better chess than all but a few tens of humans. We met it
briefly during Dennett's refutation of one of Penrose's arguments while touring
the first AI debate.
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In the early days of computing, Grace Murray Hopper, one of its pioneers,
repaired a down computer by removing the corpse of an insect from between the
contacts of a relay. Since then, a misbehaving computing system is said to have a
"bug," the bug being the hardware or software cause of the misbehavior. The
process of removing such bugs is called "debugging." Typically, more time is spent
debugging a program than writing it.

I want to write "autonomous agent," equivocating on the use of the word
agent." An autonomous agent would not be an agent in Minsky's sense but an

agent in that it senses and acts on its environment in pursuit of its own goals. Be
warned. I may well lapse back into this usage.
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What Do I Do Now?

A long while back, we explicitly, if tentatively, embraced the physicalist
assumption that mind is what brain does. We've since devoted our tour
to exploring mechanisms that brains, natural or artificial, may employ.
We've been concerned with the "how" of mind. How does mind, the pro-
cess, arise from brain, the material? For a moment only, I'd like to put the
"how" question aside in favor of a "what for" question. What are minds
for? What is their function? In stark contrast to the complexity and pro-
fundity of replies to the "how" question, the "what for" question is easily
answered: minds choose what to do next.

Well, you might complain, that answer can be so simple because of its
high level of abstraction. At a lower level, complex and profound func-
tions appear. So what's so great about this simple answer? You're quite
right, of course. Nonetheless, I found this high-level, easy answer both
surprising and useful. Minds, particularly human minds, seem almost in-
finitely rich and complex, like some supernatural tapestry. That all this
richness serves a single, easily stated goal amazes me.1

Think of an autonomous agent as a creature that senses its environment
and acts on it so as to further its own agenda. Any such agent, be it a
human or a thermostat, has a single, overriding concernwhat to do
next. And that's what minds are forto address this concern by produc-
ing an appropriate action. In engineering terminology, minds are control
systems. They balance all the mechanisms so that appropriate actions are
continually generated in a timely fashion. (In humans, a jammed system is
called a catatonic state.) And all our internal jabberour feelings, beliefs,
desiressubserve this single function of choosing what to do next.
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Let's leave this brief digression and return to our concern with the
"how" of minds. How do minds go about choosing the next action?
We've already seen several possibilities. Although SOAR doesn't quite
qualify as an autonomous agent, it offers definite possibilities as a control
system. I'm looking forward to Robo-SOAR. Animat used a classifier sys-
tem for control. I recall being astounded at the intricacies required for
Animat to deal well with even the simplest environment. The agents of
Ackley and Littman evolved their values as neural nets, and used them to
train action nets to choose behaviors. Ornstein speculated on the internals
of human control structures, and Minsky offered mechanisms for imple-
menting specific control strategies. So we approach this port of call having
been treated to several related sights that promise to clarify what we see
here.

And what will that be? First we'll visit John Jackson's pandemonium
theory of mind, which lies so close to Ornstein's work and Minsky's work
that it could have well been visited from that port. After that, we'll see
how Maes uses spreading activation to choose among possible symboli-
cally controlled behaviors. Next, we'll visit with Brooks's robots, who
have their behaviors built in, in layers. Finally, we'll think about some-
thing approaching a formal theory of autonomous systems, the work of
Brustoloni. We should finish with a clearer concept of mind as a control
structure.

Pandemonium Model of Mind

Selfridge (1959) proposed a pandemonium theory of perception built on
primitive constructs called demons. What's a demon? It's a rule, a proce-
dure, an agent in Minsky's sense, that responds at once when appropri-
ately stimulated. In computer science, demons are processes that sit
around and watch for something specific to happen, for example, for a
keystroke on the keyboard or for an 'out of paper" signal from the
printer. When the awaited even occurs, POW, the demon jumps up and
does its thing, such as printing a little box on the screen with "The printer
is out of paper" written in it.2

In Seifridge's theory, demons serve to identify objects. On being pre-
sented with an object, a crowd of demons would stand around shouting,
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Figure 11.1
Signal

each with a loudness proportional to how well its favored input matched
the features of the presented object. The demon who shouts loudest is

taken to identify the object. For example, a signal like that in figure iLl
would stimulate the demon for R, because it sort of looks like an R, and
the demon for O. But most of all, it would stimulate the demon for "Q,"
which would probably win out.

John Jackson (1987) wants to extend Selfridge's pandemonium theory
to a theory of mind.3 To this end he invites us to a thought experiment
including not only demons involved with perception but also demons that
cause external actions and demons that act internally on other demons.
These classes need not be disjoint; a single demon may, for example, affect
an action while influencing some other demon as a side effect. Think of
Jackson's demons as abstract versions of Minsky's agents (dressed all in
red and complete with horns, tail, and pitchfork).

Picture these demons living in a stadium, a sports arena of some kind.
Almost all of them are up in the stands; they're the crowd cheering on the
performers. A half dozen or so are down on the playing field, exciting the
crowd in the stands. Demons in the stands respond selectively to these
attempts to excite them. Some are more excited than others; some yell
louder. Here's the punch line: The loudest demon in the stands gets to
go down and join those on the field, displacing one of those currently
performing back to the stands.

But why are some demons yelling louder than others? Are some just
tired? No. A demon must excite other demons to which it is linked. If
the Steelers are playing the Bears, the Steeler players are likely to excite
Pittsburgh fans, the Chicago fans are moved by the Bears, and not so
much vice versa. And individual fans will respond more strongly to favor-
ite players. Stronger links produce louder responses.
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So where do these links come from? The system starts off a certain
number of initial demons and initial, built-in links between them. New
links are made between demons and existing links are strengthened in
proportion to the time they have been together on the field.4 Demons on
the field develop some sort of camaraderie, which results in links between
them. Later, a demon on the field is able to excite his buddy in the stands.

The strength of the link between two demons depends not only upon
the time they're together on the field but also upon the motivational level
of the whole system at the time, the "gain,' as Jackson calls it. You turn
up the gain when things are going well; you turn it down, even to negative,
when things are getting worse. The higher the gain, the more the links
between performing demons are strengthened.

Under such a strategy, demons would tend to reappear on the playing
field if they were associated with improved conditions. Improved condi-
tions result in strengthened links between these demons. When one of
them arrives once again on the playing field, its compatriots tend to be
pulled in, too, because of the added strength of the links between them.
The system's behavior, Jackson claims, would then tend to steer toward
its goals, the goals being the basis on which the system decides things
are improving.

Typically, improved conditions result not from a single action but from
a coordinated sequence of actions. Suppose we make the links from
demons on the playing field to new arrivals stronger than those from new
arrivals to incumbents. Uphill links would tend to be stronger than down-
hill links, as illustrated in figure 11.2.

And suppose we also have demons gradually fade from the playing
field. Instead of suddenly jumping up and heading for the stands, they

Demon on the
Playing-field

Figure 11.2
Dissimilar links
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gradually lose activation as time passes. Habitual sequences could then
be completed from memory simply by presenting an initial segment. Put
the first demon in the sequence on the playing field. He has a strong link
to the next one in the sequence, who, in turn, is strongly connected to the
next, and so on. Once started, the system tends to redo that sequence.

Jackson calls a system of demons recirculating through a playing field,
as we've just described, an association engine. More precisely, an associa-
tion engine is a mechanism that chooses one demon from the stands,
brings him down to the playing field, sends somebody else back up, and
continues in this way. I suppose Jackson chose "association" because the
whole system is based on the association that occurs between demons
when they are together on the playing field. Now comes the tricky part.
How does it work?

Although the spotlight is on the playing field, much of the really im-
portant activity takes place below ground (subconsciously?) in the subar-
ena. What can the subarena do? For one thing, it measures the system's
well-being so that "improved conditions" can be discerned. On this basis,
the subarena adjusts the gain on changes in link strengths through associ-
ation. In terms of how the well-being is doing, it turns the gain up or
down. The subarena performs sensory input by sending demons repre-
senting low-level input to the playing field, providing an interface between
the actual sensory input and whatever the system does with it. Demons
also represent low-level actions that are carried out by the subarena at the
command of action demons on the playing field. Any such system must
come equipped with some primitive sensory capabilities and some primi-

tive actions built in, so it's not surprising that Jackson chooses to postu-
late such.

Just a bit ago I speculated parenthetically that Jackson's playing field
might correspond to the conscious mind, and the subarena acted as the
subconscious. Since both primitive sensory items and primitive actions
take their place at center stage, this conjecture would depend on the level
of primitive sensing and acting. We are not typically conscious of individ-
ual retinal cell firings or motor cell firings. On the other hand, in a pande-
monium-controlled Animat, demons recognizing trees and food, and
demons pushing for movement in the eight directions, would all seem to

be "conscious."
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Concepts via Pandemonium

Jackson also allows for the creation of concepts in his system. Demons
that have appeared together frequentlythat is, those that have very
strong linkscan be merged into a single concept demon. (This calls to
mind chunking à la SOAR.) When concept demons are created, their
component demons survive and continue to do their things. Like the cen-
tral processing unit in a von Neumann computer, the playing field here is
a major bottleneck because so few demons appear on the playing field at
any one time. Concept demons help relieve this bottleneck. Also, when
compacted into a concept demon, higher-level features of one problem
enable the transfer of solutions to another. Jackson notes that this might
give the impression of creativity. (I think he means misimpression, be-
cause all of this is quite mechanical. We won't be so quick to jump to
the conclusion that "mechanical" rules out "creative" after visiting with
Hof stader's work at a later port of call.) Jackson also cautions that ex-
plicit concept demons are not always needed, since similar objects may
well arouse similar responses because of their similar features.

We can have not only concept demons but also compound concept
demons that result from merging concept demons. These again help to
overcome the playing field bottleneck. They also link demons who don't
usually share the playing field, who typically aren't there at the same time.
I think this notion is critical to the whole enterprise. Without it the capa-
bility of the association engine would be relatively trivial. Everything
would depend on sequences of primitive sensations and primitive actions.
Common human abstractions, say mathematics, would be impossible.
With compound concept demons, on the other hand, a hierarchy of con-
cepts at various levels of abstraction is possible. Jackson also suggests that
higher-level concept demons might well linger on the playing field longer
than low-level demons. He doesn't suggest a mechanism for merging
demons. The paper is intended as a high-level outline of his idea for a
mind. On a subsequent stop we'll visit Kanerva's sparse distributed mem-
ory, which might be used to implement compound concept demons.

Meanwhile, can this pandemonium mind think? Jackson talks about
dreaming, but either thinking or dreaming could be accomplished by
much the same mechanism: turn off the subarena interference, especially
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the external sensory channels. Don't allow any sensory input from below;
just let the association engine freewheel above. Demons are then brought
together only by association with other demons, not by association with
external inputs. Links between memory demons will tend to be formed
over longer distances due to additional available space on the playing
field. Without sensory demons crowding the work space, there's more
room for demons that might not normally interact.

Jackson also builds decay into his pandemonium mind. Unused links
decay, or lose strength, at some background rate. Negative links may de-
cay at a different rate. High-level demons enjoy a slower decay rate. As a
consequence, sufficiently rarely used links disappear, and recent associa-
tions count more than older ones. (This reminds me of Ornstein's "What
have you done for me lately?")

Links have strengths. Demons also have their strengths, the strength of
voice of those in the crowd yelling, and the strength of signal of those on
the playing field trying to stimulate the crowd to yell. I think of all this
from a connectionist point of view, the strengths of links being weights
and the strengths of demons being activations. (Don't conclude that Jack-
son's model is implemented as an artificial neural network, but only that
it could be.) Demons enter the playing field with a strength determined
by their strength of summoning. The demon that yells the loudest goes to
the playing field. How strong will he be when he gets there? As strong as
he was when he was summoned.

Typically, the playing field is a small place, harboring only a half-dozen
to a dozen demons at once. One might want to vary its size. For example,
the playing field might shrink to allow a well-learned process to execute
reliably, that is, with less chance of other demons distracting it from its
course.

A Computing Perspective on Pandemonium

Jackson claims that his pandemonium system avoids the major pitfalls of
parallel and serial computing by combining their better features. Serial
machines are often too slow, and at any given time are actively using only
a fraction of their available hardware. As I type this into a microcomputer,
most of the computer's chips are doing nothing at all, except possibly
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refreshing themselves. Parallel machines, on the other hand, can be faster
and can make more efficient use of their hardware. But they often spend
much of their time communicating between one processor and another.
Having more processors working doesn't necessarily mean more output.
(Note that all of the multiple agent systems we've visited postulate narrow
communication bandwidths between the agents. Most pairs don't speak
to one another. Those that do, say very little.) This system, according to
Jackson, captures the best of both worlds. First, it scans the demons in
the crowd in parallel to determine the loudest. In the parallel processing
world, this scanning would be called perfect parallelism. Imagine a proc-
essor for each of the demons in the stands. All that processor has to do is
decide how loud his demon should scream. He doesn't care what his
neighbors are doing; he doesn't have to communicate with them at all.
That's perfect parallelism. The tasks are divided up so that the various
processors can perform them without any communication whatsoever.
Next Jackson talks of spinning the selected demons "into a single thread"
on the playing field, which gives back some of the advantages of the serial
machine. From a computational point of view, it looks like not a bad
system.5

Jackson's pandemonium model can also be seen from a computing
point of view as a database. From this vantage point, it consists almost
entirely of pointers,6 namely, the links. In implementing a pandemonium
model, links will constitute most of the data. From a demon on the play-
ing field, the next demon appears almost immediately. The implementa-
tion has only to look at where the link is pointing. No search is required.
Of course, this assumes that "the system or its trainer, must ensure that
the next demon is an appropriate one." That doesn't come free.

A pandemonium model is an inductive system, an example of machine
learning. It learns rules through repeated observation. The learning pro-
cedure seems connectionist; it strengthens links between demons. With a
half-dozen demons on the playing field at once, thirty such links get ad-
justed per cycle. (Each demon is connected to five others, and there are
six of them.) So a lot of learning goes on. A typical connectionist system
learns a while and then runs a while. If it doesn't run well enough, it gets
stopped and trained some more. A pandemonium model works more like
us, running and learning at the same time. This is clearly an advantage,
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since autonomous agents typically can't afford to stop acting in order to
learn, or to stop learning in order to act.

An Implementation of Pandemonium

We've noted before that no intelligent agent can begin life from a tabula
rasa. Each must come provided from the start with some innate knowl-
edge, be the provider evolution or a designer. A pandemonium model
must come equipped with its association engine. Its subarena must have
built-in abilities to control the links, to control the gain, to control the
sensing mechanisms and the motor mechanisms. From the point of view
of a lot of people, particularly the computational neuroethologists, the
subarena does all the interesting stuff. The system must also have some
initial demons together with their links. Jackson worries that you might
think everything of interest is built in. He responds with "If the feeling
that 'it has too much of a mind of its own' persists, it should be noted
that behavior tends to get less predictable as it becomes more advanced"
(1987, p. 25). It seems to me that even at lower levels it's fairly
unpredictable.7

Jackson tells of a software simulation on a personal computer. The as-
sociation engine required only six pages of Pascal code,8 and each demon
was described in about a thousand characters (1k). Requirements for the
subarena vary greatly, depending on how the system perceives and acts.
Jackson ran his version on a machine with only 500k of memory.

Problems, Comments, and Questions

Jackson is concerned about how his system can distinguish remembered
stimuli or imagined actions from real ones. Perhaps the answer lies with
some mechanism that knows when sensory input is turned off and notes
that stimuli during those periods are imagined, or dreamed, or thought,
rather than real. Any autonomous agent that plans explicitly must face
this problem. Some autonomous agents avoid the problem by planning
implicitly. We'll meet one such at our very next attraction in this port.

Jackson is also concerned about how to control the gain when the sys-
tem is doing, or has done, a purely mental "generate and test" routine.



242 Chapter 11

Suppose lt's creating tentative actions and trying a new sequence to see if
it works. Does the gain control work exactly as if the actions were really
performed and the imagined stimuli were their results? Or must the gain
control behave in some modified fashion in increasing or decreasing con-
nection strengths?

These are only two particular problems. Since Jackson's paper is only
two and a half pages in length, you could probably come up with a dozen
others. I view each of these problems as a design decision to be made
during implementation. I would expect tens, maybe hundreds, of such
design decisions.

Jackson's pandemonium system leaves much room for expansion. For
example, the gain control seems fairly crude. How about a demon for
each of several emotions, each one affecting the gain enforced when a
given link is modified? I think that in humans and animals, emotional
states determine the changes of strengths of these connections. An event
accompanied by rampant emotions is not easily forgotten. The new con-
nections are strong.

Jackson has included many numeric variables that allow for fine-tuning
the system. One is the length of time the demons stay in the arena. The
number of arena occupants could be varied, as could the decay rate of the
links. Some such variable could control the way that dreaming or thinking
is allowed to happen. Or perhaps the parameters themselves cari vary,
but slowly.

Note that pandemonium theory is not about a single system but about
a whole range of systems under a single architecture. Systems with differ-
ent parameters might well exhibit quite different behaviors even when
otherwise begun with exactly the same initial conditions.

Note also that a pandemonium systems combines features of both sym-
bolic AI and connectionist systems. Each demon can be implemented by
a finite-state machine or a production system. On the other hand, each
demon has its own activation that spreads from one to another. (Our next
attraction will present another such hybrid system.) Learning by strength-
ening links also reminds me of connectionist systems.

The pandemonium model is certainly a multiplicity of mind model,
much in the spirit of Minsky's "Society of Mind," but at a higher level of
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abstraction. We'll next visit Maes's model, which lives at a slightly lower
level of abstraction. All of these systems speak to the issue of control-
what shall I do next?

As is typical of a useful theory, Jackson's pandemonium theory seems

to raise as many questions as it answers. Here are a couple to chew on.
How does the system decide when to dream, when to think, or when

to act in its world? (This is a different question than the one we previously
considered, about distinguishing thought products from the world.)
Should there be a demon that acts on the subarena to abort sensory input?
Perhaps two such, one for thinking and one for dreaming? Or could the
amount of attention devoted to external input be an emerging property
of the whole system? Even if attention to externals is an emerging prop-
erty, there's still going to be a mechanism under it. The issue here seems
to be one of providing a local mechanism out of which the global prop-
erty of attention to externals emerges.

A more general form of our original question (if you can remember
what it was) asks how much of the subarena's duties could be taken over
by demons. How much can be accomplished with just the association
engine itself?

My second question concerns the mechanisms for producing new
demons. Pandemonium systems come equipped with initial demons, and
some new ones are obtained by chunking the actions in a sequence (as
we first saw while visiting SOAR). Chunking mechanisms aren't hard to
imagine, even for demons. But what about concept demons? Whenever
you learn something like juggling, or patting your stomach and rubbing
your head at the same time, you're creating a concept demon. And what

about yet higher-level demons?
Another form of this question concerns the possibility of replacing the

notion of producing new demons with one of selecting from existing (pre-
existing) but unassigned demons. Edelman postulates such selection of
neuronal groups.

But here I go jumping ahead again. We won't meet Edelman's work
until our next port of call. These mechanisms of mind just don't seem to
lend themselves well to a linear ordering. Like Jackson's demons, they
seem to be linked to one another in complex ways. Let's go on to view
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another fascinating hybrid (symbolic and connectionist) system, one that
employs multiple agents and has its action selection procedure spelled
out.

Behavior Networksthe Design Criteria

Most often a tour guide must lead his or her group along an itinerary
designed by someone else. On occasion, one is lucky enough to be al-
lowed to choose the itinerary, so that almost every attraction is one of his
or her favorites. On this tour, I'm one of those lucky ones, and I must say
I'm enjoying visiting and displaying many of my favorites immensely. But
even on a tour of favorites, some are more favorite than others. This next
attraction, due to Maes, is one of my most favorite. I'm telling you all this
so that you can defend yourself against any overly euphoric descriptions.

The paper describing this work is titled "How to Do the Right Thing"
(1990). This title is a rephrasing of the major question faced by minds:
what to do next. The "right thing' here refers to the correct action, or
perhaps a correct action, in the current context. This work is about behav-
ior selection, that is, a control system.

To motivate the constraints and objectives of her design, Maes asks us
to imagine an autonomous agent, perhaps a Mars rover used to collect
soil samples,9 with distinct, and maybe independent, global goals. Sup-
pose it's operating in a complex, dynamic environment that's changing all
the time. How should its actions be controlled?

To control actions is too general. The real issue is how to control ac-
tions subject to constraints. Here are the constraints that Maes sets for
her design: It should work well

in a world that's not entirely predictable
with limited computational and time resources.

These are certainly reasonable constraints. Worlds typically aren't predict-
able. I don't know of any that are, except mathematical worlds. And in a
changing environment, you don't have all day to ponder. It's not like my
writing this sentence, which is done off-line. If I cogitate a while to get it
right, nothing drastic happens. A Mars rover must take some decision,
and the consequent action, before it gets to the edge of the cliff. These
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constraints imply that behavior selection cannot be optimal. Optimal ac-
tions are simply impossible in a complex dynamic world under computa-
tional and time constraints. We must settle for actions that are good
enough, that is, good enough to get us by.

Maes also presents a long list of desired characteristics for her autono-
mous agent. It should be goal oriented, opportunistic, persistent, able to
plan ahead, robust, reactive, and fast. These bear some discussion because
there are clearly some trade-offs to be made. Having several goals, our
agent, Rover, should act so as to further these goals, or at least some of
them. If, while pursuing one goal, something happens that makes it easy
to fulfill another, we'd like Rover to stop what he's doing and take advan-
tage of the opportunity. But we'd also like Rover not to flit from goal to
goal, never accomplishing any of them. Imagine an artificial herbivore
who walks to South Lake to slake his thirst. After a couple of swigs, thirst
subsides a little and hunger takes over. He then walks to North Plain,
where, after grazing a few moments, hunger subsides a little and the re-
maining thirst, augmented by the walk to North Plain, takes over. He
then walks to South Lake. After a few times around this loop, our herbi-
vore probably drops dead. Clearly, some persistence is needed. So there's
a trade-off between opportunism and persistence.

Maes sees virtue in Rover's planning ahead. But he must still be reac-
tive, that is, responsive to the current situation, which may well not be
what was planned for. And he must be fast. (Often the alternative is to
be dead.) Here we have two trade-offs, since planning takes time, and
planned actions and unplanned reactions are at opposite ends of the scale.
Finally, Rover should be robust, meaning he ought to behave reasonably
well in circumstances a little different from what he's previously encoun-
tered. He shouldn't be brittle, and just crash.

If all this seem like a tall order to you, it does to me, too. Let's see how
Maes pulls it off.

Behavior Networksthe Mechanism

Maes's system, like those of Ornstein, Minsky, and Jackson, relies on the
multiplicity of mind. She calls her multiple agents (demons, talents) com-

petence modules. They are interactive, mindless agents, each with a spe-
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cific competence. Imagine Rover having competencies called pick-up-

rock, put-rock-in-bag, back-up, turn-left, signal-

base, and so on. Pick-up-rock might rely on grasp and other lower-
level competencies. Or imagine me with the competence ride-a bicy-
cle. Now the question is how to control the behavior of these competen-
cies. When does a competence become active and do its thing?

There are several standard approaches to answering this question. One
possibility is to hardwire or hand-code the control. Whoever designs the
system decides exactly who's in charge and when. Priorities are set by the
designer, who must have anticipated the relevant environmental configu-
rations the system will encounter. Ah, but that anticipation is the rub.
This strategy works well only for systems with simple, nonconflicting
goals in a relatively static and not too complex environment, like a ther-
mostat, an assembly line robot, or a toy AI system playing tick tack toe.

The military, government agencies, and corporations most often rely
on a hierarchical control structure, a decision tree. Symbolic AI systems
sometimes employ this strategy also. Some expert system shells0 imple-
ment algorithms that, given a set of input-output pairs as exemplars, pro-
duce an appropriate decision tree. Even in a multiple agent setting,
Ornstein postulates a governing self, one of his talents who governs as
chief executive from the top of a hierarchy. A hierarchical strategy often
suffers from rigidity, working well until an unusual circumstance is en-
countered, and then crashing. Such systems are said to be brittle)1

In his pandemonium theory, John Jackson suggests a distributed system
of control, in which the authority to act passes from agent (demon) to
agent over time. His control system could be implemented as an inte-
grated symbolic, connectionist algorithm. Individual agents, imple-
mented as finite-state machines, provide the actions, and strengths
(activations) decide who gets to act. Whereas Jackson's work allows this
interpretation, Maes insists on it. She doesn't attempt nearly as much, but
what she does, she fills out in a lot more detail. Let's have a look.

A competence module looks very much like a production rule.12 Each
has some preconditions. You can think of them as statements about the
environment or environmental variables that have to hold before the com-
petence can be performed. Each also contains lists of additions and of
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deletions, that is, statements the module wants to add to the global data-
base or statements it wants to delete. A competence module is distin-
guished from a production rule by the presence of an activation, a number
indicating some kind of strength level. Now competence modules look
more like the classifiers we met while visiting Wilson's Animat.

Think of each competence module as occupying a node of a digraph, a
structure we met during our visit with connectionism. But a digraph must
have links. In this case the links are completely determined by the compe-
tence modules. Here's how they are formed. If a competence module X
will add a proposition b, which is on competence Y's precondition list,
then put a successor link from X to Y (figure 11.3). There may be several
such propositions resulting in several links between the same nodes. Next,
whenever you put a successor going one way, put a predecessor going the
other (figure 11.4). Finally, suppose you have a proposition mon compe-
tence Y's delete list that is also a precondition for competence X. In other
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Activation

Activation
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successor links
predecessor links

Figure 11.4
Predecessor links

words, X wants m and Y wants to get rid of m. In such a case, draw a
conflictor link from X to Y, which is to be inhibitory rather than excit-
atory (figure 11.5). Note that the diagram should also contain a conflictor
link for 1. Sometimes a competence X will want to delete one of its own
preconditions. For example hand-empty may be a precondition for
pick-up-rock but should also appear on the delete list as a result of
the rock's being picked up.

We now know how to construct a digraph corresponding to a collection
of competence modules, but we don't know what it's for. As in connec-
tionist models, the underlying digraph spreads activation. But where does
the activation come from? From activation stored by the competence
modules themselves, from the environment, and from goals.

Every autonomous system must have goals to guide its actions. Some
are built in, and others are created subgoals, as in SOAR. Maes's system
has only built-in global goals. Some are once-only goals to be achieved
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one time, like find-and-test-a-rock sample. Others are perma-
nent goals (drives) to be achieved continuously, like no-self-damage.

We are now ready to describe the sources of spreading activation in the
system. The environment awards activation to a competence module for
each of its true preconditions. The more true preconditions a competence
has, that is, the more relevant it 15 to the current situation, the more acti-
vation it's going to receive from the environment. This source of activation
allows the system to be opportunistic. (At this point you may recall my

discomfort, during our visit with Animat, with reinforcement coming
from the environment. I'm no more comfortable here, again preferring to
think of environmental activation as being supplied by the system in re-
sponse to conditions in the environment.)

Next, each goal awards activation to each competence that, by being
active, will satisfy that goal. In other words, if the competence includes a
proposition on its add list that satisfies a goal, then this goal will send
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activation to that competence. This source of activation tends to make

the system goal-directed. The system also allows for protected goals. A
completed goal inhibits any competence that will undo it.

Finally, activation is spread from competence to competence along
links. Along successor links, one competence strengthens those compe-
tences whose preconditions it can help fulfill. It does so by sending them
activation along successor links. Along predecessor links, one compe-
tence strengthens any other competence whose add list fulfills one of its
own preconditions. A competence sends inhibition along a conflictor link
to any other competence that can delete one of its true preconditions,
thereby weakening it. Every conflictor link is inhibitory.

Thus, a competence that can satisfy some goal gets activation from that
goal, and passes it backward to other competences that can satisfy one
of its preconditions, that is, can help it become active. On the other hand,
a competence that has many of its preconditions satisfied is awarded acti-
vation from the environment and passes some of it forward to other corn-
petences it can help activate. Activation spreads both ways. A fascinating
idea. I like it.

Call a competence module executable if all of its preconditions can be
satisfied. In other words, the competence is ready to shoot, although it
may not. With this last concept in place, we're ready to see Maes's algo-
rithm for the system. Here's a pseudocode version:

Loop forever
1. Add activation from environment and goals
2. Spread activation forward and backward among the competence
modules
3. Decaytotal activation remains constant
4. Competence module fires if

it's executable and
it's over threshold and
it's the maximum such

5. If one competence module fires, its activation goes to O, and all thresh-
olds return to their normal value
6. If none fires, reduce all thresholds by 10%.

The point of such an algorithm is to tell you how the system works. First,
note that, once started, there's no stopping. The system continues to at-
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tempt to choose an action time and time again, just like you and me. Also
note that each step in the algorithm operates in parallel over all compe-
tence modules. The first two steps, and step 5, are local, requiring no
information as to global state.

Let's trace through the cycle of choice from the point of view of a single
competence. First it updates its activation, adding that arriving from the
environment, or from any goal, or from a protected goal that may be
inhibiting it. Then it adds in whatever spreading activation arrives from
other competence modules, including possible inhibition over conflictor
links. Next, its activation decays, that is, it decreases proportionately with
respect to all competences so as to keep the total activation in the system
constant. The decay is to compensate for what the environment and the
goals add in; otherwise, the activation of the system would grow without
bound. The total activation is one of the system's global parameters.

At this point, our competence knows its activation for this particular
cycle. It firesthat is, its action is takenif three conditions hold. First,
it must be executable, that is, all of its preconditions must be met. Second,
its activation must be above threshold. There's a uniform threshold for
the whole system that must be exceeded. And third, this competence must
have the maximum activation among executable competences over
threshold. Ties are broken randomly. If our competence fires, its activa-
tion drops to 0. A competence using all its activation to fire prevents an
action from being repeated over and over. If no competence can fire, re-
duce the threshold by 10 percent. Think of the cycle with no action taken
as the system considering what it wants to do but reaching no conclusion.
Reducing the threshold makes it more likely that some competence can
fire on the next cycle. This reduction prevents the system from thinking
and thinking, and never acting. The normal threshold is a system
parameter.

A comparison with Jackson's pandemonium theory seems in order. The
algorithm we've just described corresponds to choosing a demon to de-
scend to the playing field. Not every demon can perform at a given time.
You can't ride a bicycle when there's no bicycle around. In a pandemo-
nium model, presumably only executable demons are yelling. If there's no
bicycle availablethat is, no bicycle-recognizing demon on the playing
fieldthe bicycle-riding demon won't be excited. Jackson doesn't postu-
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late a threshold for yelling strength. Maes uses the threshold for planning.
Jackson employs some unspecified mechanism to shut down outside sen-
sory input and motor action so that planning (dreaming) can take place.
Perhaps that mechanism could be a threshold on yelling strength. And
the threshold could decrease over time. The last condition for selection,
maximum loudness, seems the same in both systems. One might well use
Maes's behavior network as a mechanism for implementing Jackson's
pandemonium model.

Maes's behavior networks are tunable via global parameters. The nor-
mal activation threshold for a competence to become active is one such.
Raising it makes the system more thoughtful, and lowering makes it more
reactive. Another is the amount of activation added to a competence for
each satisfied precondition. Increasing this one makes the system more
opportunistic. The counterpoint to this parameter is the amount of acti-
vation a competence receives for being able to satisfy a goal. Increasing
this one leads to more goal-oriented behavior. These last two parameters
trade off with one another, since goal orientation and opportunism are at
opposite ends a single scale. The user decides on values for these and
other parameters. The values remain constant during a run. Deciding on
optimal or good enough values for these parameters is a search problem
in parameter space,13 which depends heavily on the problem at hand.

Planning in Behavior Networks

Now that we've seen how behavior networks are implemented, let's take
brief looks at their operating features. Many of these have been intro-
duced before. Here we'll both summarize and add some detail.

Behavior networks can create and follow a plan. Suppose there exists
a sequence of competencies whose actions transform the present situation
into a desired one. In other words, this path solves a problem. (Keep in
mind that there may well be several independent goals, and the system
must decide which one to act toward at any given time.) The sequence
can become highly activated via forward spreading from the current state
and backward spreading from the goal state. If the goal is ride-
bicycle, the sequence of competencies might be find-bicycle,

recognize-bicycle, move-to-bicycle, mount-bicycle,
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ride-bicycle. When the preconditions of find-bicycle are met, activa-
tion begins to spread forward along the sequence while, at the same time,
activation spreads backward from ride-bicycle. Eventually enough
activation may be available to find-bicycle activate it, starting the
plan in motion. Of course, all this may be happening in competition with
other sequences striving toward other goals. With activations under
threshold, the system considers effects before executing a sequence of ac-
tions. The forward spreading of activation promotes situations relevance
and opportunistic behavior. At the same time, the system is biased toward
ongoing plans because of a shorter distance between current state and
goal.

Although this sequence certainly seems like a plan, there is no obvious
representation of such a plan anywhere in the system. An outside observer
might well look at such a sequence and call it a plan, but the system
doesn't use it as a plan to be consulted.'4 Rather, the plan seems to exist
only in the propensity for activation of its competences. Also, no central-
ized preprogrammed search process builds a search tree. This avoids the
typical combinatorial explosion of conventional symbolic planning, re-
suiting in cheaper operation than traditional planning methods. The sys-
tem seems less rational, less brittle, and faster; less rational in that it's
hard to explain its action by rules, less brittle in that getting a bit beyond
what the system is expected to do doesn't crash it. All this, of course, is
meant in the context of controlling autonomous agents.

Behavior Network Features

Let's spend a few minutes summarizing some useful features arising from
Maes's behavior network architecture. Such a system should be goal ori-

ented, situation relevant, adaptive, fault tolerant, biased toward ongoing

plans, thoughtful, and fast. In addition, it should avoid goal conflicts.
Let's take each of these individually.

Given the goal, activation flows to competences that achieve that goal,

and then spreads backward to competences yielding its preconditions,
and so on. Competences contributing to several goals get activation from
each one. Competences contributing to close goals are favored, because

the backward spread of activation dilutes. Competences with little corn-
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petition are favored. Goal orientedness can be tuned via a global variable
controlling how much activation comes from goals. For a more goal-
oriented system, raise its value.

The forward spreading of activation promotes situation relevance.
What's happening in the environment makes a big difference because it
controls a major source of activation. This biases the search for the next
action in favor of those relevant to the current situation. It also allows the
system to exploit opportunities that present themselves. Also, situation
relevance can be tuned by the parameter controlling the activation re-
sulting from true preconditions.

At each step a behavior network reevaluates what's going on, which
allows it to adapt easily to changing or unforeseen circumstances. This
adaptivity presents a trade-off with the bias toward ongoing plans. If one
competence module fails, the system will try to find an alternative solu-
tion. This will happen automatically. A certain amount of fault tolerance
is built in.

A behavior network is biased toward ongoing plans, since distance be-
tween the current state and the goal is typically shorter than that of other
plans. If several competence modules in a sequence have been fired, the
system may be fairly close to its goal, so that backward-spreading activa-
tion will be strong. This property tends to prevent goal conflicts, such as
oscillation between two goals. Note the trade-off between this feature
and opportunism.

There's also a trade-off between thoughtfulness and speed that can be
tuned by the normal threshold parameter. Ideally, thoughtfulness should
vary inversely with the changeableness of the environment. If you're play-
ing chess, the environment that you're interested in doesn't change very
much, only an occasional move. In this case a lot of thoughtfulness seems
called for. On the other hand, if you're leading the fast break in a basket-
ball game, you don't want to think long about anything. That environ-
ment changes very rapidly indeed. Note that a strong argument has just
been made for having this threshold parameter under the control of the
system so that both situations can be accommodated.

Faster action is less thoughtful, less goal oriented, less situation ori-
ented. The speed of the system, however, is enhanced by several features
of its architecture. It evaluates different paths in parallel. Also, it doesn't
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replan at each time step, as symbolic planners are wont to do. For ex-
ample, if ride-bicycle gains some activation, it's not lost until the
module actually fires, at which time it goes to O. There's a kind of memory
in the system that makes it faster.

Maes predicts that real world autonomous agents will be "larger"
rather than "longer." That is, they will need shallow knowledge more
than deep knowledge, and will need a number of different kinds of shal-
low knowledge. In terms of the system architecture, this means that, typi-
cally, lengths of paths to the goal will be relatively short.

Maes also points out that local links and uniform spreading activation
allow for massively parallel implementation of these behavior networks.
On the other hand, she notes some limits. Three are the lack of variables
and of memory, and the difficulty of selecting the global parameters well.

To me, Maes's system has a decided connectionist flavor due to its
spreading activation over an underlying digraph.15 Her links have no
weights (or all have weight 1, if you prefer). In a later paper (1991b), she
adds weights to the links to implement a connectionist form of learning.
This latter implementation also has more of an artificial life flavor.

As a tour guide, I'm often faced with the unpleasant choice of moving
on, or of staying longer with the current attraction and omitting some
subsequent place of interest. In this case, I've reluctantly chosen to leave
Maes's second paper to you as an optional side trip, and to move on to
visit with a fascinating roboticist.

Nouvelle AI

In an article titled "Elephants Don't Play Chess" (1990c), Brooks, a ro-
boticist, takes on the symbolic AI community. Why that title? Because
knowing that elephants don't play chess is no reason to think that they're
not intelligent. It's an argument against the sufficiency of the Turing test.
And it's an argument for a new brand of AI that attempts to simulate the
kind of intelligence exemplified by elephant behavior rather than that of
the more abstract human behaviors (games, speech recognition, problem
solving, etc.) that have been favored by the symbolic AI people.

"Artificial Intelligence research has floundered in a sea of incremen-
talism" (p. 3). As you can see, Brooks is not overly tactful as he argues
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for his new brand of AI. Another example: "the symbol system hypothesis
upon which classical AI is based is fundamentally flawed" (p. 3). If tact-
fulness isn't a problem, neither is modesty: "we believe that in principle
we have uncovered the fundamental foundation of intelligence" (p. 13).

Brooks refers to his alternative brand of AI as "Nouvelle AI," calling it
a strengthened form of situated activity, and bases it on the "physical
grounding hypothesis," of which more in a bit.

Brooks points out that classical AI decomposes intelligence into func-
tional information-processing modules, where each module has a specific
function to carry out. The combination of these modules provides the
overall system behavior. One module, by itself, typically can't do much.
Brook's nouvelle AI, by contrast, decomposes intelligence into individual
behavior-generating modules. Each module, by itself, actually generates
some behavior. The coexistence of these behavior-generating modules and
their cooperation allows more complex behaviors to emerge.

Classical AI systems combine many modules, each one performing
some function that, when combined, produces behavior. System compe-
tence is improved by improving individual modules. Computer programs
are typically written with little procedures, each serving a particular func-
tion and each requiring others in order to act. Brooks, in contrast, wants
each of his modules to operate on its own, and to do something from
start to finish by itself. In such a system, you improve system competence
by adding new modules. This idea initiates his subsumption architecture,
which we'll soon visit in detail.

Again for contrast, Brooks summarizes the symbol system hypothesis
as follows: Intelligence operates by means of a system of symbols. Percep-
tion and motor interfaces are sets of symbols on which central intelligence
acts. The meanings of the symbols are unimportant. Central intelligence
acts on them domain independently. The executive, reasoning engine can
operate equally well in one domain or another. Coherence emerges for
an observer who grounds the symbols within his or her own experience.
Without the observer, the human in the loop, there isn't much meaning.
To the observer, symbols represent entities in the world: individual ob-
jects, properties, concepts, desires, emotions, nations, colors, and so on.
Furthermore, symbols typically represent named entities, such as chair3
or block38.
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Central intelligence must be fed symbols by perception. Creating a cor-
rect symbolic description of the world must be task dependent. Suppose
I want to stack blocks. My concern would be for shape. Is the block a

cube or a rectangular solid or a pyramid? For this task, I'm not concerned
with its surface area. If, on the other hand, the task is to paint blocks,
I will be concerned with surface area, which isn't part of the previous
description. Perception must provide relevant descriptions. Descriptions
are delivered in terms of typed, named individuals and their relationships.
For another task a different representation may be important.

Brooks claims that simple symbols are inadequate. In pure form, sym-
bol systems assume a knowable objective truth. Not only must we assume
that there is a world out there, which we are perfectly willing to do from
our physicalist assumption, but we must also assume that objects exist
per se and relationships exist between them. We also must assume that
some relationships are true and some are not, and that which is which
can be known. Brooks questions these assumptions, as do I, and as will
others whom we'll meet later on the tour. To glean beliefs from partial
views of a chaotic world requires added complexity, such as modal log-
ics16 or nonmonotone logics. Simple methods just don't get it. A commit-
ment to symbol systems requires more and more complex and
cumbersome systems in pursuit of objectivity. This leads to the frame
problem, which, you'll recall, is how to know which propositions remain
true when some fact changes. As we've noted, all proposed solutions leave
much to be desired. Finally, Brooks points out, determining the truth of
a proposition under reasonable conditions is NPhardi7 (Chapman 1987).
As Brooks mentions, this isn't as damaging as it would appear, since
"good enough" solutions may be well be available.

If Brooks doesn't think much of the symbol system hypothesis, what
does he offer instead? The previously mentioned physical grounding hy-
pothesis. "To build a system that is intelligent, it is necessary to have its
representations grounded in the physical world" (p. 5). The symbol sys-
tem hypothesis is "fundamentally flawed" because its symbols are not
thus grounded. As long as the system's representations are not grounded
in the world, it must cope with these complexity problems. Brooks really

means the physical world, since he's building robots. Taking an artificial



258 Chapterll

life point of view, I suspect that grounding representations in the agent's
environment, whatever that is, will do nicely. But why ground representa-
tions in the real world? For one thing, the world is always up to date. For
another, it always contains every detail there is to be known. The trick,
according to Brooks, is to sense it appropriately and often enough. The
idea is clear; if you want to know where you are, look around you. Don't
look at the global database of your production systems.

To build a system based on the physical grounding hypothesis, one must
connect it to the world by its sensors and its actuators. This almost entails
a bottom-up construction. High-level abstractions must grow from con-
crete representations. The system must express all its goals as physical
actions and must extract all its knowledge from physical sensors. Every
known intelligent system, including us, does so. The forms of low-level
interfaces have consequences that ripple through the entire system.

If you're going to build a typical symbolic AI system, what do you do?
You assume that the vision guys are going to give you good vision rou-
tines, and they are going to find objects for you. You also depend on them
to give you relationships between objects. All of this is to arrive as input,
already done. Some would say you've just assumed the hardest part of the
problem, the part that requires the most intelligence. On the other end,
you assume that your output is going to a screen to be interpreted by a
convenient human. So what have we done? We've cut the problem down
to size by palming off these low-level interfaces on some (usually imagi-
nary) colleague, so we don't have to worry about them. It's a reasonable
approach because we're dealing with hard problems. Brooks maintains,
though, that not dealing with these two interfaces undermines the whole
endeavor. Low-level interfaces are so important to what goes on higher
up, that simplifying assumptions about them leave you not really knowing
what you're doing.

Symbol-based mobile robots have not performed well in comparison
with physically grounded robots. Brooks's robots do things that other
people have not been able to get theirs to do. Not that his are that good,
mind you. They are not. But they're a lot better than those based on sym-

bolic AIas autonomous agents, anyway. With a view of Brooks's philos-
ophy in hand, let's see how he deals with low-level interfaces.
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Figure 11.6
Augmented finite-state machine (redrawn from Brooks 1990b)
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Subsumption Architecture

Brooks refers to his key idea as subsumption architecture. It's a computa-
tional architecture that enables a tight connection of perception to action.
This is accomplished by building a series of incremental layers, each layer
connecting perception to action, that is, it has a competence. Each layer,
by itself, does something. Layers are implemented as finite-state machines
with timing elements. Finite-state machines, as the term is used here, are
much like those we've visited several times already. In addition to a finite
input alphabet, a finite set of states, and a transition function, these ma-
chines have a finite output alphabet. The transition function takes a given
state and some input, and returns a (possibly) different state and an
output.

An augmented finite-state machine (AFSM) is the basic building block
for the subsumption architecture (see figure 11.6). An AFSM starts with
a finite-state machine. Add a collection of registers,'8 each of which col-
lects an input for the finite-state machine. Finally, there's a set of timers.
The finite-state machine can change state or emit an output when the
timer goes off. Input messages are delivered to registers. A change of state
may be triggered by a message arriving in a register or by the expiration
of a timer. Messages are generated on the output wires of some AFSM.

Registers are written to by input wires from some AFSM. A message
written to a register replaces its existing contents. Sensors also deposit
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Figure 11.7
AFSM output (adapted from Brooks 1990b)

their values in registers. The finite-state machine reads its registers as
input.

Output from some AFSM can provide input to a register of some
AFSM, possibly itself (figure 11.7). Or it can attach directly to an actua-
tor, turning a motor on or off. Finally, it can attach directly to an input
or an output of some AFSM, inhibiting or suppressing it, as we shall see.

An AFSM seems a rather simple device. What can one do? It can wait
for some event to occur, that is, wait for some specific message to arrive
in one of its registers, or it can wait unti! its timer fires. It can change to
either of two states, depending on the contents of a register. It can per-
form an if-then-else operation,'9 depending on the contents of a register.
Finally, it can compute some function of the registers and deliver it as
output. Not bad for such a simple device.

An AFSM can also inhibit existing outputs and suppress existing inputs
(figure 11.8). What's the difference? Why the two distinct terms? Sup-
pressing messages are gated through to replace the original message,
whereas inhibiting messages only prevent output. When suppression oc-
curs, the original message on the line is waylaid and the suppressing mes-
sage usurps its place. These inhibiting and suppressing messages gate, but
only briefly. They are the essential mechanisms of conflict resolution in
a subsumption architecture. Priorities are hardwired into the system via
suppression or inhibition.
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Figure 11.8
Inhibition and suppression (redrawn from Brooks 1990b)

Brooks imposes some interesting systemwide constraints. AFSMs can-
not share state. One of these machines cannot look inside another and
tell what is gong on. In particular, one can't read another's registers or
timer. Thus, what little information passes back and forth travels over
outputs and inputs. Brooks considers this crucial to keeping things simple
enough to work. Both timers and messages act asynchronously. They act
when they act, and not according to a clock. The timers do share a uni-
form tick period, but only as an artifact of purchasing. It is just easier to
buy all the timers at the same place.

A group of coordinated AFSMs (processes) forms a behavior, for ex-
ample, to-grasp. Message passing, suppression, and inhibition can occur
berween the processes in a behavior or between distinct behaviors. Behav-
iors act as abstraction barriers. Like AFSMs, one behavior cannot reach
inside another. With all this as background, let's look at a couple of
Brooks's robots.

Allen

Let's meet Allennamed after Allen Newell, I assumewho was
Brooks's first physically grounded robot. Allen has sonar range sensors
and an odometer to tell him how far he's gone. He's controlled. via a
cable, by an off-board special-purpose computer, a LISP machine, that
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simulates his subsumption architecture. Allen has three layers of control.
The first layer simply avoids obstacles, either stationary (static) or moving
(dynamic). Allen will happily sit in the middle of a room until ap-
proached, then scurry away, avoiding collisions as he goes. That's what's
to be expected. If your only behavior is to avoid obstacles, what else are
you going to do?

How does Allen work? Each sonar return is taken as a repulsive force
falling off as the square of the distance. A reflex halts Allen when he's
moving forward and something is just in front of him. Rather than bump
into it, he will come right up to it and stop. That's the first layer. It's a
prototypical competence or behavior.

If layer i is working properly, adding a second layer requires no change
to layer i except possibly hooking suppressors and inhibitors onto some
of its wires. Allen's second layer wanders randomly about. The urge to
move in a random direction is generated about every ten seconds. The
obstacle avoidance of layer i is not suppressed or inhibited. The wander
urge couples with obstacle avoidance by vector addition.2° Keep in mind
that Allen has no internal state. He remembers almost nothing, and builds
no models about what is happening out there in the world. He has no
symbolic rules but is simply hardwired. The summed vector suppresses
layer i obstacle avoidance, substituting its own direction.

What happens if layer 2 breaks down? Suppose it just dies. Allen goes
right back to simply avoiding again. He finds the middle of the room and
stays there. Even if layer I breaks down, he'll probably get in front of
something and stop, at least for a while. The halt reflex of layer i operates
autonomously and unchanged. Robustness seems built in.

Layer 3 looks for distant places and heads for them. Whereas layer 2
wanders in some random direction with no goal in mind, layer 3 uses
sonar to look for distant places and odometry to monitor progress. The
sonar tells Allen not only which direction it's in but also how far it is.
Hence the usefulness of the odometer.

That's Allen. I wanted to describe him to you not only because he was
the first but also because he's the most basic in terms of behavior. Let's
meet one of Allen's more complex relatives.
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Herbert

Herbert, presumably named in honor of Herbert Simon, is more sophisti-
cated. He's a one-trick pony who wanders about a typically cluttered of-
fice environment picking up empty soda cans and returning them to his
starting point.

His twenty-four-processor onboard computer, made of 8-bit CMOS
processors,21 is light and requires little onboard battery power. The proc-
essors communicate via serial port22 interfaces that are both slow and
unsophisticated. The connections between processors are along copper
wires. Altogether, Herbert employs a simplistic distributed processing
system.

Sensing is done via 30 infrared ports and a laser light striping system
that looks out at a 60 degree angle over a range of 12 feet and provides
3-dimensional depth data. All this is supported by a high-performance
visual algorithm. His actuators consist of motors driving wheels, and an
onboard manipulator arm with several simple sensors.

Herbert's subsumption architecture demonstrates obstacle avoidance,
wall following, and real time recognition of soda can-type objects. Fifteen
different behaviors drive the arm alone as it searches for a soda can, lo-
cates it, and picks it up.

Herbert uses the world as its own best model, and has no internal com-
munication between behavior-generating modules other than suppression
or inhibition. Each behavior is connected to sensors and to an arbitration
network. The arbitration network decides which of competing actions
are taken. Many simple animals seem to operate in just this kind of way.

Here's a brief description of Herbert in action. While following a wall,
the vision algorithm spots a soda can. Herbert, sometimes with consider-
able effort, squares up in front of it. When the wheels stop moving, arm
motion begins. After several behaviors, the soda can is located with sen-

sors local to the arm (Why is all this needed? To home in on a soda can

requires a great deal more coordination and exact positioning than to
look out and see the can from a distance.) The hand now moves so that
the soda can breaks a beam between two appendages, thus triggering the
grasping reflex.

Brooks claims several advantages for Herbert's architecture. Herbert

Copyrighted Material



264 Chapter ii

has no expectations as to what will happen next, which allows him to he
naturally opportunistic. If Herbert is wandering around looking for soda
cans and someone puts one in his hand, he immediately quits looking and

returns to his starting point. More generally, Herbert easily responds to
changed circumstances. He successfully finds soda cans on a variety of
cluttered desktops, although he may never have seen a particular desktop
before and has no internal knowledge of desktops. Herbert is opportunis-
tic but not that smart.

Brooks doesn't advocate all robots being built this way. Rather, his
point is that a lot more can be done without internal representations than
we have thought. He attempts to do as much as he can without internal
representations, which are costly in both computing time and memory
space. This approach seems perfectly reasonable to me.

Let's wind up our visit with Brooks's robots with his comparison of tradi-
tional vs. nouvelle AI. Traditional AI, he says, demonstrates sophisticated
reasoning in rather impoverished domains and hopes to generalize, or
scale up, to robust behavior in more complex domains. SOAR, for ex-
ample, employs sophisticated reasoning to play tic-tac-toe, an impover-
ished domain compared with navigating around a cluttered room. One
can describe VAX configurations with a thousand or so rules, but can
hardly so describe a cluttered room for navigational purposes. Nouvelle
AI, on the other hand, demonstrates less sophisticated tasks operating
in more complex domains and hopes to generalize, or scale up, to more
sophisticated tasks.

Although this endeavor has enjoyed some success, there are still prob-
lems, as Brooks points out. How can more than a dozen or so behaviors
be combined productively? It may well turn out that the nouvelle AI strat-
egy won't scale up. How can multiple perceptual sources be fused when
necessary? The simple situations explored so far haven't needed fusion,
but more complex situations certainly will. How can we automate the
building of interfaces between behaviors? Handcrafting is difficult and
time consuming.

Recall that during our introductory visit, even before the itinerary was
discussed, I presented a two-dimensional diagram with the synthetic vs.
analytic dimension laid out on the horizontal axis and the top-down vs.
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bottom-up dimension on the vertical. Brooks's approach falls on the
lower right of that diagram, being synthetic and bottom up. Symbolic
AI is synthetic and top down, as is much of connectionism. Cognitive
psychology is analytic and top down, and neuroscience occupies the ana-
lytic and bottom-up slot. I think all of these approaches, including
Brooks's, will be needed to make sense of mind. But for now, let's concen-
trate on making sense of autonomous agents.

Autonomous Agents

Our next visit will be with the work of Brustoloni (1991), who has spent
some time thinking abstractly about autonomous agents and has pro-
duced the beginnings of a theory. First, what are we talking about? What
is an autonomous agent? According to Brustoloni, it's a system capable
of autonomous, purposeful, real world action that responds to external
stimuli in a timely fashion.

Let's pick this definition apart. Certainly an autonomous agent should
be autonomous, that is, not under the control of some other agent. Allen
is under the control of the LISP machine to which it is tethered. Or is that
LISP machine a part of Allen? Since the mobile part of Allen consults the
LISP machine to produce each action, either the LISP machine is part of
Allen or Allen isn't autonomous after all. But consulting can't be all of it.
Suppose I'm assembling a bicycle for one of my twins. For each step, I
consult the directions. Must those directions be part of me before I can
be considered autonomous? Probably not, since I'm pursuing my own
agenda and the paper is consulted only in support of this agenda.

That's the purposeful action Brustoloni talks about. But it must be my
purpose. On a later tour stop, we'll see what Newell and Simon have to
say about purposeful action. In the meantime, let's consider whether a
thermostat has a purpose. Why, of course, I might say. Its purpose is to
maintain room temperature at 68 degree. But, you say, that's the purpose
of whoever set the thermostat, not of the thermostat itself. All right. But
what about me? Aren't all my basic drives decreed by evolution? Aren't
all my goals subsidiary to one or more of these drives? But within the
constraints imposed by these built-in drives, I have my own agenda and
am autonomous. Isn't that the best we can hope of any agent? If so,
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doesn't a thermostat have its own agenda within the confines of its single
built-in drive? But a thermostat's drive isn't built in, you say. It's controlled
from without. Suppose I'm a sex offender whose sex drive is controlled
by drugs under a court order. Am I still autonomous? But I have other
drives, you say, while the thermostat has only the one. What if the thermo-
stat also controlled lighting via motion sensors? What then? As you can
see, the matter of autonomy isn't a simple one. I'm inclined to return to
Sloman's discussion of free will and conclude that there must be degrees
of autonomy, with the thermostat close to one end of the scale and us
closer to the other.

I'm not so sure about Brustoloni's "real world" requirement. I can
imagine artificial life agents that act within a computer world that's

real" for them. And I can image them being reactive, that is, responding
to external stimuli in a timely fashion. "External stimuli" here means
external to the agent but within its computer world environment. With
these caveats, let's provisionally accept Brustoloni's definition.

Agents have drives, such as hunger, thirst, homeostasis (say of tempera-
ture). Drives may be independent of one another. I can be hungry without
being thirsty and vice versa. Perhaps they may be derivativethe drive to
succeed may, for some people, be subsidiary to their sex drive. And drives,
or at least the means of satisfying them, may conflict. When scrumptious
Memphis barbecue is available, my hunger drive may well conflict with
my drive for self-preservation via clear arteries. Where do drives come
from? Do we learn new drives? I doubt it. I suspect drives come with the
hardware or are derived in the service of drives that do.

And agents devote their resources to satisfying their drives. This gives
the appearance of purpose to their actions. Or is it in fact purpose, and
not just appearance? Does the thermostat turn on the furnace purpose-
fully? Do I regulate my heart rate purposely? Purpose can be observed in
the actions of agents. But this is purpose imposed from without, laid on
by an outside observer. The thermostat just does what it is does. Animat
just does what it does. It wanders in search of food, and it eats. Any
purpose that's present seems to come from the outside. If that's the case,
why do we humans seem to have internal purposes? I've often been ac-
cused of having ulterior motives (wrongly, of course). I suspect that our
internal purpose most often results from our being both actor and ob-
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server. Most often, as actor, I just act. And then, as observer, I step outside
of myself and explain my action, often only to myself. All this seems to
be in the service of a drive to explain.

Still, I do at times plan, say, my route along city streets to a particular
destination. It seems only reasonable to call the action of following that
plan purposeful, the purpose being to reach the destination. Here the plan
is conscious. Can I act purposefully but not be conscious of the purpose?
Of course, all this discussion is only about how to use the word "pur-
pose." Perhaps we should agree to refer to any action that serves to satisfy
some drive as being purposeful. Some actions would then be consciously
purposeful.

Which brings us to goals. All goals are ultimately in the service of the
drives, though many are not directly so. Goals have subgoals, subgoals
have sub-subgoals, and so on. At any of the several tops of this hierarchy,23

you'll find a drive. Different goals may satisfy the same drive. Hunger may
be satisfied by eating at a restaurant, by cooking and eating at home, or
need not be satisfied at all if the agent is satiated. Satisfaction of hunger
may be postponed if the house is on fire or if you're on a diet. In this case,
some other drive suppresses the hunger drive, as in Brooks's subsump-
tion architecture.

And the same goal may serve different drives. I may study out of sheer
intellectual curiosity. Or I may udy, thinking it will help me predict the
stock market, thus serving the derivative drive of amassing wealth. Or
maybe I want to impress the young lady sitting next to me, in service of
my reproductive drive. On the other hand, maybe her father is sinfully
rich. Among humans, it's hard to tell which drive is being served. When
this is also true of our artificial agents, we will have made real progress.

Various subgoals and their satisfying actions may accomplish higher-
level goals. At the bottom of the tree are primitive actions supported by
the architecture. There are limits to my free will. I may want to burrow
in the ground, but my architecture doesn't support that action. As a
means of locomotion, I may choose to walk or to run, but not to burrow.

Drives may compete for resources, giving birth to incompatible goals.
I want to stay longer and finish this chapter, but the Steelers are on "Mon-
day Night Football." How can I allocate resources so as to avoid starva-
tion of some drive? In our society some drives often get starved. As
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artificial agents gain in complexity, they'll face allocation of resources"
issues.

So agents achieve goals to satisfy drives. They act to achieve goals. But
how do they know what actions achieve which goals? How do they an-
swer the only question there is: What do I do now? An agent must either
know or find out how to satisfy drives or to achieve goals. Either the
agents is born or constructed knowing how to achieve some goal or it
must search to find a way. It's either reflexes or problem solving. The more

you know, the less you need to search. The less you know, the more you
have to search. We're back once again to the duality between knowledge
and search. Storing values of the sine function in a lookup table is accu-
mulating knowledge; calculating each value anew when needed is search.

But we can't rely solely on search. Some minimal knowledge must be
built in, in the form of primitive actions. In animals, individual muscle
contractions, or even muscle fiber contractions, may be considered primi-
tive actions, whereas those of artificial agents tend to be at a higher level
of abstraction, that is, move one square to the right. An agent can search
for composite actions to achieve goals beyond any simple action. In hu-
mans, as in some robots, walking is a composite action. Of course there
may be no one correct way of assigning primitive actions to a system.
After all, we're building a theory here. It's not a question of what's right
or wrong but of what's useful.

Knowledge can be embedded in an agent either structurally or symboli-
cally. The architecture of an agent uses structurally embedded knowledge
to process a stimulus and generate an action. Real neural networks, arti-
ficial neural networks, and Brooks's subsumption architecture are ex-
amples of structurally embedded knowledge. The stimulus is related
causally to the action it produces. Don't confuse this view with simple
behaviorism. The action depends both on the stimulus and on the internal
state of the agent. If l'in not hungry, I'll likely pass right by that restau-
rant. If I am hungry, I may go in.

With symbolically embedded knowledge, stimuli are first transformed
into symbols, and symbol manipulation leads to the action. SOAR is an
example, as is a human doing long division. Symbolic AI is based on this
paradigm. Structural embedding is often faster and more reactive,
whereas symbolic embedding is often more flexible, says Brustoloni.
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As with so many dichotomies, we face the problem of where to draw
the line. Clearly a thermostat uses embedded knowledge, and SOAR is
based on symbolic knowledge. But drawing the line is difficult. Maes's
behavior networks seem to use both types of embedding. And what of
Allen, where the structural subsumption architecture is simulated sym-
bolically on a LISP machine? Brustoloni asserts that stimuli are always
transferred into some internal representation, be it an electrical pulse, a
voltage, a string of bits or characters. The internal representation of tem-
perature in the thermostat may be the relative lengths of two pieces of
metal. Symbolic and structural representations are functionally equiva-
lent, Brustoloni says, so the problem of drawing the line isn't crucial.

In any nontrivial autonomous agent, one must expect to find much
knowledge structurally embedded in its inputloutput system. That's cer-
tainly true of all the artificial life agents we've encountered so far, and it's
true of us and our animal relations. Our whole world, as opposed to the
"real" world, is determined by the way our senses operate, by built-in,
sensory knowledge of what's important. Cells in our retinas respond most
strongly to line segments at particular angles, to movement, and so on,
all examples of built-in sensory knowledge. Reflex withdrawal from ex-
treme heat demonstrates knowledge built into our output system. Both
sensors and affectors are either designed or evolved for specific tasks.
Having evolved from arboreal insectivores, primates typically have supe-
rior sight but weak olfaction. Apes, being forest dwellers and more or less
arboreal, tend to have large arms and small legs, whereas humans,
evolved as runners in the savannas, have small arms and large legs.

Classification of Agents

The study of autonomous agents, whether real world robots or artificial
life agents, is not yet blessed with a useful taxonomy. Brustoloni makes a
stab in that direction, defining several different types of autonomous
agents.

He first talks about a regulation agent, regulation not in the sense of
rule governed but in the sense of keeping something regulated, as a ther-
mostat regulates temperature. A regulation agent has plenty of built-in
knowledge and typically knows what to do next. Its prescribed actions
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tend to satisfy its drives. Regulation agents are capable of quite complex
actions. Recall from our visit with animal minds the mama wasp per-
forming an elaborate ritual of digging a burrow, closing it with tiny
stones, finding and stinging a suitable cricket, bringing the cricket to the
burrow, opening the burrow, entering and inspecting the burrow, in-
serting the paralyzed cricket, laying her egg, and closing the burrow. How
do we know she's a regulation agent? Interrupting her routine leads to
what seems to us inappropriate actions. If the cricket is moved away a bit
while she's inspecting the burrow, she'll bring it back and then reinspect.
This needless loop has been observed to happen forty times. How does
mama wasp come by this complex sequence of actions? Since she dies
before the new wasp hatches, she never saw her mama do it. She probably

never saw any other wasp do it. She comes equipped with this prescribed
action sequence to help satisfy her reproductive drive.

Mama wasp doesn't have to plan her sequence of actions because she
has a complete plan built in. In principle, on-the-spot planning can be
avoided by a designer, or evolution, providing the agent with complete,
built-in plans. In practice, the sheer number of possible situations and
goals may well preclude this. Prior analysis sufficient to allow recovery
from error may well be impossible. Mama wasp's ancestors never had to
deal with entomologists shoving their crickets away. Still, this is a rare
event. For mama wasp, the built-in sequence works often enough.

Brustoloni asserts that a regulation agent is the implementation of
choice when actions are reliable in their effects. We will hear more of
reliability when we visit Drescher's schema mechanism, and will see ex-
actly what is meant by actions being reliable. But actions are not always
reliable. Sometimes, on saying hello, I'm greeted like a long lost friend.
At another time, the same person may give me a dirty look and walk off.
Actions are often not reliable among social animals.

Brustoloni next introduces the class of planning agents. They are like
regulation agents but have the additional ability to plan a sequence of
actions and execute the plan. He identifies four distinct types of planning
agents: problem-solving agents, case-based agents, OR (operations re-
search) agents, and randomizing agents. We'll meet each of these individ-
ually. Keep in mind that planning is terribly expensive. As was mentioned
earlier, Chapman (1987) has shown planning to be NP-hard under rea-
sonable conditions. It's particularly hard to do in real time.
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Problem-solving agents model each primitive action by pre- and post-
conditions. They are likely to be based on a rule-based system, a produc-
tion system, a classifier system, and so on. The agent searches for a se-
quence of actions, the preconditions of the first action being currently
satisfied and the last action's post-condition satisfying a goal. He searches
for a path to a goal, paths being sequences of actions represented in some
problem space, as we've seen before. Some problem-solving agents may
look for optimal solutions, and others may be satisfied with good enough
solutions. A problem-solving agent may remember its plans and chunk
them into a single complex action. (Recall that Wilson and others, includ-
ing your tour guide, believe that some such capability to combine se-
quences of simple actions into a single complex action is necessary for
any agent with more than modest abilities. Later we'll visit with Agre
and Chapman's routines, a related notion.) Problem-solving agents must
maintain a world model, and so must face the frame problem, nonmono-
tonic logics, and other such hassles. Brustoloni asserts that problem-
solving agents are not well suited as a general model of intelligence.

Of the agents we've visited, SOAR (or at least Robo-SOAR, being au-

tonomous) is surely a problem-solving agent. Agents based on Maes's be-
havior networks also may be problem-solving agents. Although no
internal structure explicitly represents a plan, planning does seem to oc-

cur. The learning version of these agents could remember plans. Whether
or not a behavior network constitutes a model of the world is debatable.
And chunking seems not to be part of their armament as yet. Such consid-
erations suggest possible refinements of Brustoloni's taxonomy.

A case-based agent decides what to do next by search and analogy. It
keeps a library of cases, of plans that have been tried before and that
worked in specific circumstances. If the new situation is sufficiently simi-
lar, perhaps an existing plan will work again. Recall Dreyfus's assertion
that experts simply do what usually works, and it usually works. To solve
a problem, a case-based agent finds the most suitable plan; tweaks it if
necessary, because the conditions may not be exactly the same; and then
uses the tweaked plan. Not a bad strategy. I suspect that you and I do
exactly that most of the time.

We usually have little difficulty in deciding on the most similar case or

one sufficiently similar to use. But computationally, the issue of how to
retrieve the solution to the most similar problem is not yet well studied
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and is likely hard. Brustoloni claims that finding the most similar problem
solution should be computationally less expensive than the kind of search
problem-solving agents do. I think his idea is that consulting a lookup
table should be easier than searching a whole problem space. Somehow,
I'm not completely convinced.

On a later tour stop, we'll visit with Hofstadter and Mitchell's Copycat
program, which reasons by analogy. It might be an example of a control
structure for a case-based agent. None of the agents we've met so far seem

to be case based.
An OR agent uses a mathematical model, such as queuing theory, to

provide its control. This requires an accurate model of both the agent and
the agent's world. Again, such control is not computationally cheap. A
basic principle seems to say that even relatively simple autonomous agents
require vast amounts of computation. Neither Brustoloni nor I know of
any agents of this sort, but he points out that one could readily be built
and experimented with.

Finally, he briefly mentions randomizing agents that simply work by
trial and error. Ackley and Litman (1992) have experimented briefly
with such.

Another major category contains adaptive agents that can acquire do-
main knowledge, allow them to perform actions they were not previously
capable of. Brustoloni contrasts such agents with those that learn by
chunking or similar devices. Making a single complex action out of a
sequence of primitive actions doesn't yield any new domain knowledge.
The agent can't accomplish anything it couldn't have done previously. It
can only speed up its response. Adaptive agents should fare relatively well
in a dynamically changing environment, he says. If such can be developed,
much of the notoriously difficult and tedious knowledge engineering
problem24 would be eliminated.

I'm a little concerned about Brustoloni's claim for this category of
agent. All any agent can do is string together sequences of primitive ac-
tions. Our seemingly infinite possibilities in language production, for ex-
ample, are all based on some finite (and fixed?) number of primitive
muscle fiber contractions. Haven't I learned something new about the en-
vironment when I learn to string together primitive actions so as to ride
a bicycle? Doesn't Animat learn something new if he evolves a classifier
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telling him to eat food when next to it? Certainly, he could have per-
formed the action before, but didn't always know to.

Combining categories yields adaptive planning agents, which discover
and model the results of their primitive actions, thereby forming concepts
for modeling their world. On a later tour stop, we'll meet Drescher's
schema mechanism and Edleman's Darwin III, both of which claim to
create concepts. Adaptive planning agents engage in problem solving-
searching the problem space. Further, they adaptsearch the space
of problem spaces, which Brustoloni refers to as "extraordinarily hard
to do."

He then introduces adaptive case-based agents, which learn by storing
new cases, and speculates that they should be easier to do than adaptive
planning agents. One could go on. And there is certainly much more to
understand as we create a useful taxonomy of autonomous agents. Brus-

toloni's hierarchy of behaviors, which we'll visit next, should prove
helpful.

Hierarchy of Behaviors

Brustoloni also offers a first stab at a potentially useful hierarchy of be-
haviors. Most basic are the instinctive behaviors, which maintain invari-
ants important to the agent. In humans, the endocrine system and much
of the neural system are devoted to instinctive behaviors. At the bottom
of the autonomous agent chain, a thermostat does nothing but maintain a
temperature. Herbert's avoidance of obstacles is a higher-order example.
Instinctive behaviors are implemented by regulation agents. Here, Brusto-
ioni implicitly assumes a multiplicity of mind approach, with internal
agents responsible for various behaviors. Regulation agents performing
instinctive behaviors must operate continuously, and be both reliable and
sufficiently fast.

Next up the behavioral ladder is what Brustoloni calls habitual behav-
ior, the following of patterns previously known to yield desired results.
Examples in humans and other animals include procedures, routines, and
rituals. (Presumably he intends these to be learned, which leaves me in
something of a quandary about the sand wasp's egg-laying behavior. Al-
though clearly a ritual, the behavior appears to be instinctive. A finer cias-
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sification seems called for.) Habitual behavior is implemented by case-
based agents and appears most frequently in a stable environment. Such
behavior is effortless in that it requires no thought. It arises from prob-
lems previously solved, imitation, operant conditioning, and so on.

Less frequent than habitual action is problem-solving behavior. Imple-
mented by problem-solving agents, and requiring longer response time,
it's rarely used in a situation with a habit available. Examples abound in
humans: chess playing, mathematics, route planning, interior decorating,
and so on. Problem-solving behavior is still rare in artificial agents, with
the coming Robo-SOAR the only example that comes to mind. Do other
animals problem solve? I suspect so, but have no convincing example to
offer. Griffin (1984, pp. 134-43) offers support for this position.

Next up in Brustoloni's hierarchy of behaviors is playing, by which he
means experimentation for its own sake. Though relatively rare in adults,
playing occupies a central role in early human development. Once knowl-
edge for habitual and problem-solving behaviors is acquired, playing as-
sumes a less important role. Implemented by randomizing agents, playing
can be "disastrously expensive." Playing has been built into several artifi-
cial creatures, for example, Johnson and Scanlon's Packrat (1987).

At the top of Brustoloni's behavior chain is theory making. This infre-
quent behavior typically takes a long time to produce results and is imple-
mented by adaptive agents. Among humans, one finds theory making
indulged in by mathematicians, philosophers, scientists, social scientists,
historians, literary critics, theologians, screenwriters, astrologers, foot-
ball coaches, and, at a low level, all the rest of us. Theory making seems
to be a quintessential human trait. Do other animals make theories? I
suspect some do, but I have no evidence to support this suspicion. To my
knowledge, no artificial agent has shown signs of theory making. Animat
evolves rules at too low a level to constitute theory. There have, however,

been symbolic AI systems (not agents) that rediscover laws of physics,
Langley's BACON being one such (1977, 1980).

Note the progression in the amount of knowledge embedded in agents
as the level of behavior ascends. For instinctive behavior, all needed
knowledge is built in. At the other end of the chain, theory making, noth-
ing is known.
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Note also that each level of behavior acts through the next lower level,
using it rather than replacing it. This leads Brustoloni to suggest imple-
menting agents as hierarchies of simpler agents, each specialized in its
behavior, with agents on one level acting through those at lower levels.
This is very much in the spirit of multiplicity of mind and smacks of the
philosophy behind Brooks's subsumption architecture, Minsky's society
of mind, and so on.

As we've seen, minds decide what to do now. This continual decision
is based not only on internal state but also on what's going on in the
world. In a sense, though, we create not the world, but our world, our
version of the world. Our next major stop will explore mechanisms for
that creation.

Notes

And reminds me of Simon's parable of the ant (1981, pp. 63-65). Having ob-
served an ant zigzagging across a beach, he observed: "An ant, viewed as a behav-
ing system, is quite simple. The apparent complexity of its behavior over time is
largely a reflection of the complexity of the environment in which it finds itself."
Simon goes on to replace "ant" by "man" and to argue for the same resulting
statement.

I'm tickled at writing about demons Just now. Last night was Halloween. I was
visited by witches, goblins, and, yes, demons. Such a demon responds to the
sound of candy dropping into its bag with a well coached "Thank you."

Though full of fascinating ideas, this paper has hardly been noticed. T have
never seen a reference to it, although, in my opinion, it richly deserves to be well
known.

This sounds a lot like Hebb's rule from our connectionist stop. Recall that
Hebb says the synapse between two neurons is strengthened when they both fire
essentially simultaneously.

S. All this reminds me of an algorithm used on a massively parallel machine (a
connection machine) for retrieving text (Stanfill and Kahle 1986). Each of 16,000
processors is responsible for some news story from Rueters. To retrieve stories
about attacks by pit bulls, first find one such story, using traditional key words.
Then use all the words in that article as key words. Broadcast this list to all the
processors. Each processor checks its text and reports the number of matches.
The processors with the most matches (those that yell the loudest) are allowed to
supply their text. This account is greatly oversimplified, but the idea's right.

6. We met the notion of a pointer (usually the address of the next data item)
during our interlude with the second AI debate.
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Joe Stinnett a student at the University of Memphis is currently working on a
pandemonium controller for an Animat. We'll see how predictable it turns out
to be.

Pascal, in addition to referring to a famous French mathematician, is the name
of a computer language. I'm surprised that such a small program could implement
so complex a structure.

If you're going to do this kind of research, surely you want to find something
fundable to aim it at. Somebody might put up funds for a Mars rover.

Expert systems are most often symbolic AI products that use knowledge, rep-
resented internally by production rules, to solve problems in diagnosis, classifica-
tion, and so on. An expert system shell is a software system Into which knowledge
can be infused to create an expert system.

li. Art Graesser suggests that all systems may be brittle. He may be right.

If you're afflicted with a leaky mind like mine, you might want to reread the
section on production systems in chapter 4.

Points in parameter space are vectors of parameters.

This issues of what's a representation and what's not will return to plague us
when we visit the third AI debate.

Technically, Maes's system is an instance of an automata network (Fogelman
Soulie and Tchuente 1987; Garzon and Franklin 1994), which consists of an un-
derlying digraph whose nodes are populated by finite-state machines. Each finite-
state machine takes its inputs from the incoming links and sends its outputs along
outgoing links. Automata networks are quite general, massively parallel computa-
tion devices; artificial neural networks, cellular automata, and the Boolean net-
works of Kauffman (1993) are special cases.

Modal logics include provisions for reasoning about beliefs, desires, and so
on.

For an NP-hard problem only exponential time solutions are known or are
expected to be known. That is, the length of time required to solve an NP-hard
problem increases exponentially with the size of the problem. As a consequence,
optimal solutions become impossible for reasonably sized problems. Heuristics
must be relied upon to find suboptimal, but good enough, solutions.

Each visible numeral on a pocket calculator occupies a register, for instance.

For example, if the input is an S, then change to state q2 and output a T, else
remain in the current state and output a W.

Think of Allen's direction as being represented by the direction of an arrow
(vector) and his speed by its length. If layer i produces one such vector to avoid an
obstacle, and layer 2 produces another randomly for wandering, vector addition
produces the diagonal of a parallelogram derived from the two vectors.

CMOS refers to a particular process of manufacturing VLSI chips (very large
scale integrated circuits). The internal registers of these processors contain eight
U's or l's; hence 8 bit.

Copyrighted Material



Copyrighted Material

What Do I Do Now? 277

A serial port translates parallel signals (all abreast) into serial signals (single
file) and vice versa.

To a computer scientist, a hierarchy with a single "top" is a tree. A computer
scientist's tree stands on its leaves with its single root in the air. A hierarchy with
several such roots is called a forest.

The most commercially successful product of symbolic AI is the expert sys-
tem, a program that incorporates expert human knowledge of some narrow do-
main, say diagnosing faults in a diesel locomotive, and makes humanlike
decisions. The difficult part of creating an expert system is transferring expert
human knowledge to the system. This process is called knowledge engineering.
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What's Out There?

It is clear that the notion of information preexisting in the world must be rejected.

George N. Reeke, Jr., and Gerald Edelman, "Real Brains and Artificial
Intelligence"

A little mathematics is good for the soul.

Stan Franklin

Several times we've encountered the notion of a paradigm shift for view-
ing mind, intelligence, cognition. This new paradigm includes such
strange ideas as degrees of mind and multiple minds in a single agent.
Perhaps the most unsettling of all notions in this new paradigm is that of
information being created by mind rather than as existing in the outside
world for processing by mind. During this tour stop we'll explore a mech-
anism by which animals can discriminate between stimuli, that is, can
categorize their input. We'll also meet two mechanisms for creating those
categories in the first place, for creating information. But to appreciate
our first major attraction, we need a brief excursion into dynamical sys-
tems theoryfor the sake of our souls, of course.

Dynamical Systems

A decade or so ago I had a systems theorist as a colleague. I asked him to
tell me what a system was. After all, if you're going to study systems
theory, you ought to know what a system is. He replied by asking me to
tell him what a set was. "No one defines a set," I told him. "'Set' is a
primitive undefined term in mathematics." "So it is with a system," he
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told me. If "system" and "set" are undefined terms, how do we come to
know about them? By examples. Here are some examples of systems: the
solar system, an automobile, the weather, your desktop computer, an ani-
mal's nervous system, the secretary's chair I'm sitting on (with all its ad-
justments). Typically systems are composed of parts or subsystems, and
these subsystems generate the behavior of the system.

A system is said to be static with respect to a given time frame if it is
essentially unchanged during that time. The Himalayas, for example, can
be assumed to be static over a human life span. But over geologic eons
they are not static at all. Here we want to meet dynamical systems, sys-
tems that change in significant ways in a given time frame. Examples? All
those of the last paragraph, and so many more. It's hard to find anything
that isn't an example. Essentially everything we think of that's of any in-
terest can be interpreted as a dynamical system. The concept seems so
broad as to be useless. There's not much point in talking about a concept
that doesn't discriminate at all.1 But strangely enough, if you make the
notion precise in a mathematical way, it turns out to be useful. So let's
look at a mathematical formulation of the notion of dynamical system.

An abstract dynamical system is a mathematical object2 consisting of a
set that we'll name X, together with a self-map3 of X that we'll call T X
is called the state space of the dynamical system. Think of a point (ele-
ment) in the state space of a system as a snapshot of the system at a partic-
ular moment in time. Each point of the state space of the solar system
might contain the positions and velocities of each of the nine planets and
of each of their many moons. A point in the state space of your desktop
computer might contain the contents of each of the memory cells and
each of the registers in the central processing unit as well as some addi-
tional items. The self-map, T, is called the dynamics of the system (some-
times the global dynamics). For the moment, let's suppose our dynamical
system is discrete, that is, time passing is measured in discrete steps. If at
a particular moment the system is in state x, its state at the next moment
is T(x). The global dynamics transforms the state of the dynamical sys-
tem.4 During a single time step (clock cycle) of a desktop computer, the
contents of a register or of a memory location may change. In the cases
that will interest us most, X will be a space of vectorsfinite sequences
of numbers, like the three-dimensional space we live in, only with some
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large number of dimensions. In the desktop computer example, there will
he at least as many dimensions as there are registers and memory
locations.

Discrete dynamical systems give rise to iterative systems. Suppose an
initial state, x0, of the system is given. As time passes discretely, the global
dynamics, T, generates a sequence of subsequent states. From x0, the state
of the system at time O, applying T yields T(x0) = x1, the state of the
system at time 1. Another application of T yields T(x) = x2, the state of
the system at time 2. In general, T operating on the state of the system at
time t-1 yields the state of the system at time t. The (possibly infinite)
sequence of systems states so generated, x0, x1, x2, x3, x4, . . . is called the
orbit of the point x0. Orbits are sometimes called itineraries in the discrete
case and tra/ectories in continuous systems, which we'll soon encounter.
Dynamical systems theory is concerned with the long-range behavior of
orbits. How does this sequence of system states develop as you go further
and further out? How will the system behave in the fullness of time? Does
it stabilize on some fixed state? Does it endlessly repeat some small pat-
tern of states? Does it just go off wildly, like an epileptic seizure? Let's
digress a bit to explore possible long-range behaviors.

Our digression takes us to the real numbers between O and 1, that is,
to infinite decimals with nothing to the left of the decimal point. Think
of these numbers as sequences of digits. What's the long-term behavior of
the infinite sequence .33333333 . . . ? This sequence starts at state 3 and
continues in that same state at each time step. Its long-range behavior is
described as converging to a fixed point, as would the sequence
.123333333..., or the sequence .9876543211111.... Converging toa
fixed point is one kind of long-term behavior of a sequence. The latter two
sequences go through a transient time before settling onto a fixed point.

Another type of long-term behavior is illustrated by the sequence
.123123123123. . . . This sequence starts in state 1, goes to state 2, goes
to state 3, returns to state 1, and continues in this fashion forever. Such
behavior is called periodic. This particular sequence has period 3. (Fixed
points can be thought of as periodic with period 1.) A periodic sequence
can also have some transient time. Here is one, .68459012121212 . . .

which starts out doing some wild stuff and then suddenly settles into a
pattern of period 2.
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The sequence .41421256 . . . illustrates yet another type of long-range
behavior. You may recognize it as the decimal expansion of s.J - 1. As

an irrational number, it's never periodic of any period.5 Its long-term be-
havior is, in principle, unpredictable, even though its short-term behavior,
the next digit, is easily gotten by an algorithm. Such behavior is often
called chaotic.6

Thus we have seen three types of long-term behavior: converging to a
fixed state and remaining there (fixed point); continually traversing some
periodic track of states (periodic); and unpredictable (chaotic).

With some of the jargon for long-range behavior in hand, let's talk
about limit points. To make the process more concrete, let's explore the
dynamics of a particularly simple abstract dynamical system. Let the state
space, X, be the real numbers, thought of as the points on a two-way
infinite line, with a point at infinity, 00, on the positive end. A thermome-
ter provides an example of a dynamical system with a single number, the
temperature, as its current state. It would not, however, allow an infinite
value. (My mathematician side is sneaking out again.) With state space
in hand, we must define the global dynamics of the system. Let T be the
function that squares whatever number you give it, that is, T(x) = x2.

Let's look at the behavior of the orbits of various initial states (points)
of this system. Since T(0) = 0, we've found a fixed point. The point i is
also a fixed point. What happens to the orbit of any number greater than
1, say 2? The orbit looks like 2, 4, 16, 256.....It gets arbitrarily large
as you go arbitrarily far out in the sequence; it converges to infinity. If we
start with a point between O and 1, its square is smaller than itself. The
orbit goes downward and converges to 0. Suppose an initial state lies
between 1 and 0, say 0.5. One application of T yields .25 and the
orbit again converges to 0. The orbit of the initial state 1 goes directly
to the fixed point 1. It has a transient of length 1. An initial state less than
lis immediately bounced above i so that its orbit converges to infinity.
Thus 0, 1, and infinity are limit points of this system, that is, states to
which orbits converge.

Notice that O and infinity are attractors in the sense that the orbits of
states close to them converge to them. On the other hand, i is a repeller,
since the orbits of initial states close to i move away from 1.
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The set of all initial states whose orbits converge to a limit point is
called the basin of attraction of that limit point. The basin of attraction
of O in this system includes all real numbers strictly between i and 1.
The basin of infinity includes all points strictly less than 1 or strictly
greater than 1. The limit point 1 has a two-point basin, 1 and 1. Basins
of attractions partition7 the state space. Figure 12.1 gives a visual version
of all this.

So far we have seen only basins of point attractors. Let's look at a peri-
odic orbit as well. Take the state space X to be the real numbers plus

point attractor _____. 0:0
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infinity, as before. Change the global dynamics to be the squaring func-
tion minus 1, that is, T(x) = x2 1. Now we can see some periodic
behavior. T(-1) = O and T(0) = 1. Thus the orbit of 1 looks like 0,
1,0, 1.....while that of O looks like 1,0, 1, 0.....Thus, each
of the initial states O and 1 has a periodic orbit of period 2. The orbit
of the initial state I also has period 2 after a transient time of 1. For those
of you with a mathematical bent, here's the first (and probably the only)
exercise of the tour: What does the orbit of a state close to O look like?
Determine the basins of attraction of this system.

For an example of an orbit with period 4, we can call on our high
school algebra. Let the state space, X, of our new dynamic system be the
set of all complex numbers, z = x + iy, that you met while solving qua-
dratic equations.8 Define the new global dynamics by T(z) = iz. Then
T( 1) = i, T(i) = 1, T( 1) = i and T( i) = 1, so that the orbit of any
of the initial states 1, i, i, - i has period 4, and bounces infinitely often
on each of these four states.

Finally, let's look at chaotic orbits. Let the state space, X, be the real
numbers again, and take T to be defined by the logistic equation, T(x) =
ax(1x), where a is some real number parameter. This time let's pick
some initial state, say 0.1, and fix it. The long-term behavior of this sys-
tem is going to depend on the value the parameter a. Figure 12.2 shows
a graph of the orbits of 0.1 as a varies, roughly between 2.8 and 4.

For a value of a, say 2.9, picked along the x-axis, the vertical line
through 2.9 contains the orbit of our initial state, 0.1, when a is 2.9. In
this case, the orbit is a fixed point near 0.65. The program that drew this
graph throws away the first 100 or so states of the orbit, trying to get past
the transients. It then plots the next 300 states as points, all on the single
vertical line through a. In the case of a = 2.9, these 300 points are plotted
one on top of another; the orbit has converged to a fixed point. If a =
3.2, the 300 points alternate between roughly 0.5 and roughly 0.8, a peri-
odic orbit of period 2. At a = 3.5 we get a periodic orbit of period 4.

For a = 3.7 a chaotic orbit emerges. The 300 points are all different,
and unpredictable. Note carefully that this orbit, although unpredictable,
is completely deterministic. Any state in an orbit can be found by applying
the logistic equation to the preceding state; that's certainly deterministic.
Then in what sense is the orbit unpredictable? In the sense that there is
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Chaotic orbits of the logistic function

no quicker way to determine the behavior of a chaotic orbit than to calcu-
late it state by state. Note also that changing the parameter c just a little
bit results in very different long-term behavior of the orbit. There's much
more of interest to be said about this last dynamical system9 (see Devaney
1987, where it is referred to as the quadratic map).

Think of the state x(t), of a system at time t, as a snapshot of those
important features of the system at that time. If you are defining the sys-
tem, you need to decide what features are relevant to your purposes.1°
Often an individual feature can be described as a real number. In that
case, the state of a system with, say, six salient features can be described
by a list of numbers (a vector) of length 6. In general, the state of a system
is given by an n-vector where n is the number of salient features. The state
space, X, of the systemthat is, the set of all possible statescan then
be represented as a subset of some Euclidean n-space.11 I say "subset"
because of possible constraints on the values that can describe a given

limit point orbit
period two orbit
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feature. Some feature, for example, might take on only the values O and
1, that is, be present or absent. As an example, take an artificial neural
network with N nodes. Consider the vector of activation of the nodes at
some given point in time as the state of the system at that particular time.
We've previously called the state space of such a system its activation
space. For a biological example, take some neural structure in the nervous
system of some animal. A vector containing the firing rates of each of its
neurons at a given time represents a state of that system.

Both artificial and biological neural networks are massively parallel de-
vices. Each little unit, or neuron, is itself a computational device. It com-
putes its next state, or value. These devices update their state locally and
in parallel. One unit or neuron need only know the states of its neighbors
in order to compute its own next state. It doesn't need to know the states
of units or neurons with which it has no direct contact. In that sense the
updating is local. These local dynamics operating in parallel give rise to
the new state of the entire system. Local dynamics of individual units or
neurons, operating in parallel, define the global dynamics of the entire
system. Instead of T being defined by a single equation, as we've seen
before, it's defined by the local updating of each individual feature, in
these cases of units or neurons. These simple local rules frequently give
rise to complex emergent, global properties, which often are not easily
predictable from knowledge of the local activity. Though most of the dy-
namical systems that have interested us are defined locally in this way, not
every dynamical system is. There are theorems, for example, that show
under exactly what conditions a given dynamical system can be produced
locally by some cellular automaton (Richardson 1972) or by some artifi-
cial neural network (Franklin and Garzon 1989; Garzon and Franklin
1990).

To complete our preparation for a visit to Freeman's work, we must
briefly talk about continuous dynamical systems. In the discrete dynami-
cal systems we've seen so far, time is measured in discrete ticks, like a
clock. After each time step there is a next one. The system updates in
discrete steps; the global dynamics are described by difference equations
like x(t + 1) = T(x(t)). SOAR, Animat, and the artificial neural network
we've seen are examples of discrete dynamical systems. In continuous dy-
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namical systems, on the other hand, time is measured continuously. The
system updates continuously, not in a stepwise fashion. The local dynam-
ics are described as solutions of differential equations. The solar system
and biological neural networks are examples of continuous dynamical
systems. Continuous systems are often approximated by discrete systems
by sampling their state every so often. If the sample period is short
enough, a pretty good approximation typically results.

Figure 12.3 represents a continuous dynamical system as a vector field.
The lopsided donut represents the underlying state space of the system.
At each state there is a vector that gives the direction and the velocity of
the instantaneous movement of that state under the global dynamics.
Taken together, these vectors constitute a vector field.

Why do we want to know about vector fields? Because of limit cycle
attractors.

Figure 12.4 depicts a continuous dynamical system with a single limit
cycle attractor denoted by the heavy line. The trajectory (orbit)'2 of any
state eventually ends up on the limit cycle or approaching it arbitrarily
closely. Its basin of attraction is the whole space. A limit cycle is another
kind of attractor that appears only in continuous systems. Think of it as
a continuous version of a periodic attractor.
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Figure 12.4
A limit cycle attractor

Well, so much for our whirlwind tour of some of the fundamental con-
cepts of dynamical systems. Let's see how Freeman and company apply
them to perception.

Perceptual Categories

Chaotic behavior serves as the essential ground state for the neural perceptual
apparatus
Christine Skarda and Walter Freeman, "How Brains Make Chaos .

Yesterday at lunch, the conversation rolled around to our next attraction,
Freeman's theory of basins of attraction as the mechanism for recognition.
My friend Paul Byrne allowed as how (as we are wont to say down South),
for him, the essence of Freeman's work was to make semantics palpable.
(This is my transliteration of Paul's comment.)13 The question of how
symbols relate to their referents becomes no longer a subject of endless
debate among philosophers. Rather, we'll see that it has a surprising and
satisfying answer,14 at least in some important cases.

To a rabbit, for instance, rapid and accurate recognition is often of cru-
cial importance. It can be a matter of life or death that he distinguish
quickly and correctly between the smell of a carrot and the smell of a fox.
And a typical rabbit does so quite nicely. But how does he do it? That's a
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question that has occupied Walter Freeman and his colleagues at Berkeley
for some years (Skarda and Freeman 1987). To understand Freeman's the-
ory, we'll first need a tad of neuroanatomy.

The anatomy of olfaction (figure 12.5) begins with receptors inside the
nose. These receptors send messages to the olfactory bulb. Neurons in the
bulb also communicate with one another. The bulb exchanges informa-
tion with the olfactory cortex. Cells within the cortex exchange informa-
tion with one another, and the cortex exchanges information with the
limbic system (attention, arousal, motivation) and the motor system. The
receptors are chemoreceptor neurons, each with a docking place for a
molecule with a protuberance of a shape complementary to its own. Ap-
parently we are born with receptors keyed to many differently shaped
molecules. Since these receptors inhabit interior surfaces of a nostril, they
can be thought of as occupying a sheet, a two-dimensional array. Odor-
specific data are encoded as patterns of activity, both spatial and tempo-
ral, on this sheet. Receptor cells sensitive to a particular odorant are clus-
tered nonuniformly about the nostril.

With this sketchy picture of olfactory structure, what about its func-
tion? Here's my speculation as to how olfaction might work.'5 Molecules
of smoke, sucked into my nostrils with an incoming breath, dock at some
of the receptors. The pattern of activity on the receptor sheet is changed.
This pattern is forwarded to the olfactory bulb, where it i recognized as

"smoke." A "smoke" signal passes to the olfactory cortex, which may
become alarmed and signal to the motor cortex to "get me out of here."
Let's pick at the pieces of this hypothetical scenario.

Smoke is composed of many types of molecules. Smoke from different

types of fires may differ greatly, stimulating very different receptors. Also,

the pattern of receptors stimulated during a particular inhalation depends
so on the vagaries of air currents and the geometry of nostrils as to appear
random. The particular pattern stimulated would be harder to predict
than numbers resulting from rolling dice. A particular pattern might oc-
cur only once in the lifetime of the individual. In spite of all this variation,

each of the resulting patterns must be recognized as smoke.

Different patterns on the receptor sheet result in different patterns on
the olfactory bulb, where recognition appears to take place. The recogni-
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Figure 12.5
Anatomy of olfaction (adapted from Skarda and Freeman 1987)
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tion problem is transferred from one piece of nervous tissue to another.
So how does it happen? Freeman's answer is via attractor basins. But more
on that later, after we've finished picking.

Once it is recognized, the signal goes on to succeeding areas of cortex,
which presumably decide how to react and send instructions to the motor
cortex. Here context becomes all important. Being awakened from sleep
by smoke would provoke a very different reaction than smelling a little
smoke just after having lit a fire in the fireplace. The internal context also
plays a causal role. I may find the smell of cigarette smoke distasteful, or
nostalgic of my younger days as a smoker. If I'm allergic to cigarette
smoke, I may beat a hasty retreat.

Recall that signals run both ways between several of these structures.
If I'm hungry, the hickory smoke of Memphis barbecue will be easier to
detect. Presumably, this means a change in the olfactory bulb produced
by signals from the olfactory cortex. (Keep in mind that all this is, no
doubt, greatly oversimplified.) Freeman's theory will account for this.
Let's get on with it.

Freeman maintains that odor-specific information must exist in the ol-
factory bulb. Somehow this information must be created. He claims it
appears as spatial patterns of amplitude of an oscillation of EEG poten-

tial16 over the olfactory bulb. Let's see what he's talking about. Consider
a device with an 8 X 8 array of electrodes, 64 all together. Each electrode
is embedded in the olfactory bulb of a rabbit, where it reads an EEG trace.
The presumption is that these sixty-four readings provide a fairly reliable
sample of what is happening all over the bulb. Each lead records an oscil-
lation of EEG potential at its location. The activity at one of these elec-
trodes, over the short time interval of a sniff, appears as a wavy squiggle
on Freeman's oscilloscope (figure 12.6). The average amplitude, or height,
of the squiggle varies from electrode to electrode. A contour map, created
by drawing isobars (lines) connecting neighboring points of equal ampli-
tude, depicts a pattern of activity over the bulb. This pattern of activity,
this spatial configuration, is what, according to Freeman, characterizes
the odor(s) present during the sniff. The contour map displays average
intensity in both a temporal and a spatial sense. Each mapped point re-
cords the average over an event time window measured by the length of
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the corresponding squiggle. Each point also depicts output from one elec-
trode that is measuring average intensity over a group of neurons.

How did Freeman come to this conclusion that patterns of activity over
the whole olfactory bulb encode the needed information? By the hardest!
l-le spent a decade looking for internal representations of odors in phase
variation, amplitude modulation, frequency modulation, and a jillion
other variables that didn't work before discovering the only thing that
counts, the topographical map.

Notice the distributed representation. Every neuron in the bulb partici-
pates in every olfactory discriminative response; each plays its role in cre-
ating the contour map. This is the "distributed representation" we spoke
of during our visit to artificial neural nets. But Freeman doesn't want to
call these patterns representations at all. He maintains this topographical
map is no internal representation. Why not? Because an odorant does not
lead to an odor-specific pattern being formed. A single odorant can pro-
duce different patterns.

For example, the stereotypical patterns of which we've spoken form
only in motivated animals. Some intention, attention, or expectation
must be present before the patterns form. Without such, the bulb re-
mains chaotic.

Odor-specific patterns also depend on behavioral response. A rabbit
that has learned to follow a particular odor with an associated behavior
may reliably produce, under controlled conditions in the lab, a certain
pattern on the bulb. If it is subsequently taught a different behavior to
follow that same odor, the corresponding pattern will be different. Thus,
the patterns seem to be mediated not only by signals from the receptors
but also by feedback from the cortex.

Patterns also differ in the same animal as a result of learning to respond

to new odors. Suppose our rabbit has ten odors in its repertoire, corre-
sponding to ten behaviors and to ten stereotypical patterns on the bulb.
Now you train it to recognize and respond to one more odor. A new ste-
reotypical patterns appears, and all the old ones change. Thought it still
performs the old actions in response to the old odors, the patterns on the
bulb, which had been relatively constant before, are now different. Noth-

ing has been unlearned, but the patterns change.
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Freeman claims this dynamic process isn't representational until an ob-
server intrudes. These patterns may represent specific odors to us but not
to the rabbit. The kinds of things one would want to do with a representa-
tion simply don't workfor example, comparing two patterns to deter-
mine if they represent the same odor. I couldn't agree more.

The existence of andlor the need for internal representation, that is, an
internal model of the world, was discussed during our visit with Brooks
on our last major stop, and will arise several more times before the end
of our tour. Resolution will, of course, depend on our emerging with an
understanding of what it is to be a representation. Typically a symbol is
said to represent ari object. Further, the symbol is assumed to be conven-
tional, somewhat arbitrary, and the object is assumed to exist "out there."
The pattern on the olfactory bulb during a sniff can be an arbitrary point
in some basin of attraction. To me, that's not arbitrary enough to call it
a symbol. And, as you know by now, I view information, including ob-
jects, as being created by autonomous agents for their own use, and not
"out there" at all. This view doesn't conflict with our physicalist assump-
tion that "out there" is both real and causative. Let's see how Freeman
views information and other important concepts.

Information, Order, and Entropy

Information is a difference that makes a difference.
David Chalmers, "Consciousness and Cognition"

Yes, indeed! Information must be useful, must make a difference. And it
must result from some distinction that is created from sensory stimulus.
All this gives rise to a behavioral response. Something is distinguished
sensorially, which makes a difference because it gives rise to a different
behavioral response. Not all sensory stimuli convey information in this
sense. I'm completely ignoring most of what is coming in to me at this in-
stant. Almost all sensory input never achieves informational status; it is ex-
cluded by attention and habituation. That sensory input to which we do
attend, affords the creation of information resulting in an increase in order.

What follows is by Prigogine out of Freeman (Prigogine and Stengers
1984). The second law of thermodynamics insists that everything gets
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more and more disordered (increased entropy). If this is so, how is it that
we see things all around us that seem to get more and more ordered?
Examples abound: atmospheric storms, dividing cells in embryos, neu-
rons comprising the nervous system. When microscopic particles interact
in large numbers, a macroscopic entity forms. Atoms are ordered into
molecules, molecules into cells, cells into insects, insects into hives, nests,
colonies, and so on. Neurons order themselves into nervous systems,
which especially interest us here. How does all this happen in the face of
the second law? "Why, of course," you say, "the second law applies only
to closed systems." Exactly! We don't have a closed system. With a source
of free energy, like our sun, and a sink for entropy (heat), like outer space,
patterns of energy exchange emerge. As long as the sun radiates, and
doesn't expand too much or blow up, we can expect pattern (order) to
emerge. These patterns grow and evolve toward ever-increasing complex-
ity. Material systems in their natural settings tend toward order, not disor-
der. The law of entropy is not repealed, but it is dethroned. Order emerges
without an external prescription (self-organization).

Freeman views our nervous system as an open system with blood sup-
plying free energy, from the brain's point of view, and carrying off waste
heat (entropy). Thus Prigogine's notions lead us to expect emerging order
that grows toward ever increasing complexity.

Conventional wisdom has the environment delivering complete infor-
mation to the nervous system, information that is then degraded by noise.
Not so, says Freeman (and your tour guide as well). Brains are self-
organizing physicochemical machines whose business it is to choose the
next action. In the service of this business, they internally create informa-
tion. Stimuli from this page enter your visual system via your retinas.
Subsequent processing creates information depending partly on what's
printed on the page and, in large measure, on your prior knowledge, ex-
perience, and understanding. Recall Chalmers, on an earlier tour stop,
talking about the duality of pattern and information. Here's a case in
point. These patterns of energy first become stimuli, and then become
information when they make a difference to the sensing agent.

Well, enough of background. Let's see how Freeman thinks this recog-
nition of odors really happens.
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Signals and Chaos

When one first encounters a working brain, I once heard Freeman say,
the ceaseless activity of the background state is astounding. Conventional
wisdom attributes it to noise. Again, not so, says Freeman. The back-
ground state of a neural system is chaotic. Against this chaotic back-
ground, signal starts when the system bifurcates from chaos to "burst
activity." Chaotic activity stops and signal starts. In an alert animal, burst
activity begins with inhalation. Freeman provides us with a diagram
of his view of olfactory dynamics. In figure 12.7, the z-axis represents
the level of arousal of the system, rising from coma (deep anesthesia) to
seizure. In the center we see the exhalation/inhalation cycle depicted.
During exhalation, the bulb remains chaotic. During inhalation, the sys-

tem bifurcates to burst activity in the form of limit cycles, each enabling
a particular classification of an odorant.

ATrRACTORS:
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- SLEEP

- DEEP ANESTHESIA

Figure 12.7
Olfactory dynamics (adapted from Skarda and Freeman 1987)
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Freeman offers us yet another diagram depicting his view of the various
phase portraits" of the system, maps of the basins of attraction, as

arousal increases (figure 12.8). At the coma level we see a point attractor.
Any signal experienced goes nowhere. During exhalation, there's a single
chaotic attractor into which every signal rolls. But during inhalation, the
dynamical landscape is more complex, containing limit cycle attractors
as well as a single chaotic attractor.

But what does all this mean? you ask. What indeed? According to Free-
man, it means recognition. The basin of attraction of each limit cycle is
the set of all those bulb patterns that lead to the recognition of a particu-
lar odor. On inhalation of one of the learned odors, a particular limit
cycle attractor is selected by the input, placing the system within its basin.
Which basin determines which odor. Thus many different patterns of ac-
tivity on the olfactory bulb can result in the recognition of the same
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odornamely, all those in a particular basin. It's a slick way Mother Na-
ture has found to recognize a single odor from any of a multitude of var-
ied inputs.

Now I'm at least a little clear about what role the limit cycles play, you
say, but why chaos? I thought chaos was to be avoided. Freeman offers
several answers. Like muscle cells, neurons wither and die if unused. Cha-
otic activity exercises neurons.

Equally important, chaotic activity doesn't lead to cyclic entrainment
(periodic or oscillatory behavior) or to spatially structured activity. Thus
the system enjoys rapid and unbiased access to every limit cycle on every
inhalation. The entire repertoire of learned smells is always instantly
available. The system doesn't have to search through a memory store.

Finally, chaotic wells provide a catch basin for failure, allowing a
"novel smell" classification. A new odor without reinforcement leads to
habituation followed by a status quo activity. It's simply ignored. The sys-
tem may run into all sorts of new odors, but if they are not a difference
that makes a difference, there is no information, and hence no
reinforcement.

A new odor with reinforcement leads to a chaotic state, allowing avoid-
ance of all previously learned activity. A new activity can take place and,
if successful, can be learned. The chaotic state, by keeping the system
away from learned responses, gives it a chance to come up with a novel
response to a novel smell. This new response may or may not be learned.

But minds are in the business of figuring out what to do next. Control-
ling action is what they are all about. According to Freeman, action comes
via destabilization. Suppose an alert, motivated animal. During exhala-
tion, its olfactory bulb is stabilized in its chaotic attractor. As inhalation
occurs, input from the receptor sheet destabilizes the system, knocking it
out of its chaotic state. If the stimulus is new, it may fall back into the
chaotic attractor. If it's a known smell, the signal will fall into the appro-
priate basin of attraction. The system has bifurcated, and the odorant is
thereby recognized. Convergence to an attractor in one system (the bulb)
may destabilize other systems (the motor system, the olfactory cortex),
leading to further state changes and, ultimately, to action.

What are we to conclude from all this? Freeman proposes a mechanism
of mind accounting for categorization, a mechanism other than the infor-
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mation-processing metaphor that has held sway for so long. He conjec-
tures, far beyond his data, that

the dynamics of basins and attractors can suffice to account for behavior without
recourse to mechanisms for symbol storage and invariant retrieval, "teachers" in
learning devices, error-correcting feedback, comparators, correlators, associators,
and the fine-grain point-to-point topographic connectionism that is required for
their effectuation. (Skarda and Freeman 1987, P. 184)

I suspect, almost believe, he'll be proved right. All this will serve to fuel
the flames of the third Al debate, about the need for representation, which
we'll encounter before ending our tour.

But there are attractions left on this tour stop. Let's now visit another
opponent of the information-processing metaphor and meet Darwin HI.

Neural Darwinism

Among the most relentless pursuers of mechanisms of mind is Edelman.
After winning a Nobel Prize for work in immunology, he successively
took on categorization (1987), morphology of the nervous system (1988),
and consciousness (1989).i8 As you can see, he's not easily deterred by
hard problems. Here we'll visit briefly with his views on categories and
their formation, and later meet their robotic embodiment, Darwin III.

Edelman contrasts the information-processing model of mind with
what he calls the "evolutionary paradigm." Instead of information from
the environment being perceived through the senses, we have stimuli ar-
riving from the environment in "polymorphous sets," that is, in many
different forms and in several sensory modes. While I'm writing this line,
I'm aware not only of the cursor and text on the screen but also of the
boundaries of the screen, the telephone in view to the right, the feel of
depressing the keys, the sound of a fan, the lingering smell of an orange I
ate a little bit ago, and a host of other stimuli less attended to. This last

sentence blurs the distinction Edelman wants to make. The stimuli com-
posed of a mostly black blob surrounding a silver patch embossed with
little squares arrive through the senses, not yet identified as a telephone.
These stimuli result not only from the present condition of the environ-

ment but also from prior action, movement of the head, saccades, fingers

pressing, a hand tracing edges of a tactile pattern, inhalation. The stimuli,
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reflecting both the environmental state and the actions, select among pre-
existing nervous system states. Activity of some states is enhanced, of
others is suppressed. Edelman will refer to the neural substrates of these
"nervous system states" as neuronal groups. We can think of them as
biological embodiments of Minsky's agents, Jackson's demons, Ornstein's
talents, and Maes's competences.

Such stimulus sets constitute information only after selection (recogni-
tion), after we work on them. Information is constructed; we build it.
Sure, my dining room table is an object "out there" for me, but not for
the tiny mite that lives in the carpet beneath it. The mite has no use for
that particular way of partitioning its environment. In the same way, Inuit
languages sport words for snow in many different forms, reflecting real
world distinctions useful in the arctic environment but of no use to me
because I live in an almost snowless clime:

the world, with its "objects," is an unlabeled place; the number of ways in which
macroscopic boundaries in an animal's environment can be partitioned by that
animal into objects is very large, if not infinite. Any assignment of boundaries
made by an animal is relative, not absolute, and depends on its adaptive or in-
tended needs. (Edelman 1992, p. 28)

Not only objects but, more generally, categories are not present in the
environment. Things don't come with bar codes so I can tell that what
I'm sitting on is a chair. Neither do categories such as water, clouds, cal-
culus class, quarks. Categories must be constructed by each individual
according to what is adaptive for its species in its environment. Tools for
categorizationsenses, neuronal groups, bones, and muscle tissue-
evolved with the species. What categories are useful to this individual at
this time depends on the environment. For example, pigeons have learned
to distinguish photographs containing images of water, or of human
faces, from those that don't. Their environment provided both the photo-
graphs and rewards for correct categorization. (See Barber 1993, p. 8, for
an account and further references.) The complexity, the variability, and
the unpredictability of the world preclude generally applicable, a priori
rules of categorization. Categories must constantly change due to new
experiences, and can be validated only by constant coupling to the world
by behavior (shades of Brooks and of the computational neuroetholo-
gists). Each individual must go it alone.
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How does each individual do it? How does a pigeon do it? How do
you and I do it?

How can an animal [or an artificial autonomous agenti initially confront a small
number of "events" or objects" and after this exposure adaptively categorize or
recognize an indefinite number of novel objects (even in a variety of contexts) as
being similar or identical to the small set that it first encountered? How can an
animal, in the absence of a teacher, recognize an object at all? How can it then
generalize and "construct a universal" in the absence of that object or even in its
presence? (Edelman 1992, p. 28)

These are questions Edelman wants to answer by finding and explicat-
ing their mechanisms. Assuming prerecognized and represented informa-
tion, as AI systems typically do, won't satisfy. He wants to start earlier,
with how information comes to exist in an unlabeled world, with the
relationship between signals in the nervous system and the categories it
has constructed. After accomplishing this daunting task to his satisfac-
tion, he wants to know how interactions of those signals yield behavior
without prearranged codes to give them meaning, and without pre-
arranged algorithms to process them. The constraints are no labels in the
world, no external semantics, and no internal, unexplained homunculus
in the loop to provide meaning.

All this certainly explicates the questions, but where are the answers?
Edelman presents his answers, conjectural in my view, in terms of several
key concepts: neuronal groups, mappings, classification couples, global
functions, global mappings.

Neuronal groups are collections of 50 to 10,000 neurons, formed dur-
ing development and prior to experience, whose intraconnections allow
them to respond to particular patterns of synaptic activity. Inputs origi-
nate at the sense organs but may be relayed through other neuronal
groups. My mathematician self bridles a bit at this description. Why
wouldn't any set of an appropriate number of neurons be a neuronal
group? I suspect the answer has to do with proximity and interconnected-
ness. Cells within a group would be relatively close to one another and
should show a high degree of interconnected activity. Two cells picked at
random, on the other hand, would almost never connect.

A primary repertoire of neuronal groups occurs epigenetically (outside
of genetic control) during development. These neuronal groups result
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from several selective mechanical-chemical events that govern morphol-
ogy (Edelman 1988), controlling when a cell divides, how it moves, how
it differentiates (neuron or muscle cell or some other kind). Some cells
die. Connections are formed, and sometimes are lost. No two individual
animals are likely to have identical neural connectivity, not even identical
twins with identical genetic material.

The neuronal groups that process incoming stimuli, although perhaps
algorithmic, are not prearranged in that they are selected by the stimuli
in a way that's not prearranged. A vaguely remembered experiment makes
this more plausible to me. Using probes, the mapping of a monkey's hand
onto a tactile region of its cortex was charted. Everything was as ex-
pected. Next to the thumb area was the forefinger area, next to the fore-
finger was the middle finger, and so on. Nerves serving one of the fingers
were then severed,'9 so that the corresponding area received no signals.
Inspection at a later time found that the area that had served this finger
was now being used for some other purpose. Yet another example is re-
ported in Science News (April 9, 1994, pp. 229-30) under the headline
"Nursing Mother Rats Show Brain Changes." The brain area sensitive to
the underbelly increases in size after nursing commences.

A secondary repertoire forms as a result of this postnatal interaction
with the environment via synaptic modifications both within and between
neuronal groups. Connectivitythat is, where the axons terminate-
doesn't change.2° Selection occurs within the primary repertoire. The pri-
mary repertoire, according to Edelman, contains all the neuronal groups
you are ever going to get.2' Combinations of groups are selected when
their activities are correlated with various signals arising from adaptive
behavior.

We now have all the pieces of what Edelman calls a selective system.
The three requirements are a diverse population from which to select,
opportunities for selection, and differential reproduction or amplification
of selected entities. Sources of variation must be causally unrelated to
subsequent selection. The primary repertoire, evolving into a secondary
repertoire and continuing to evolve, serves as the needed diverse popula-
tion. Interaction with the environment provides opportunities for selec-
tion. Modification of synapses of selected neuronal groups constitutes
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amplification. Edelman concludes that the brain is a selective system op-
erating in somatic time.22

In my view, the function of this particular selective system is to decide
what to do next. In the service of this function, instances of categories
must be recognized. If the recognition system is too specific, makes too
many distinctions, there can't be enough categories for all the stimuli,
and certainly not enough useful categories. If recognition is too broad,
confusion of stimuli with significant differences may occur. The zebra out
on the savanna has to be able to distinguish between a lioness that is
hunting and a lioness that has just eaten. Recognition must occur at an
intermediate level, allowing several neuronal groups to respond more or
less well to any stimulus. Selection is between these groups.

Edelman dignifies the notion of multiple neuronal groups with different
structures, each capable of performing the same function more or less
well, with a name: degeneracy. In this degenerate selective system, with
several neuronal groups responding more or less well to a given set of
stimuli, any perceptual problem has several possible solutions. Context
determines which groups respond and which are selected for synapse en-
hancement or suppression. Note that this system is fail-safe against the
loss of an individual group. If you lose one group to a blow on the head
or to a ruptured capillary, others will do the same job more or less well.

A few paragraphs back we saw described a mapor mapping, as Edel-
man is wont to call itof a monkey's hand into its motor cortex. Such
mappings are building blocks of Edelman's mechanism of characteriza-
tion. Some map the retina into areas of the visual cortex. Locations close
together on the retina have images that are close together in the visual
cortex. Yet another maps motor actuators into areas of the motor cortex.

Edelman speaks of a mapping as being an "ordered arrangement and ac-
tivity of groups of neurons and large fiber tracts projecting onto lami-
nae and nuclei with defined delimitations of functions" (1987, p. 107)

(figure 12.9).
Beside each mapping in one direction typically lies another in the oppo-

site direction. Edelman refers to this as reentry, the exchange of output
signals between repertoires, usually in a mapped arrangement. Connec-

tionists would call such networks recurrent (as opposed to the feed-
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Figure 12.9
Mappings (redrawn from Edelman 1989)

forward nets we've already encountered). Let's take his description apart.
Signals between repertoires? Recall that repertoires are collections of neu-
ronal groups, probably of neuronal groups performing similar functions,
and typically are physically located near one another. Thus a mapping
makes sense. Reentry correlates responses of corresponding positions and
related maps. Information passes back and forth. Each repertoire's re-
sponses depends to some extent on what the other is doing. Reentry is
ubiquitous in the nervous system. Edelman has taken a lot of flack for
introducing "reentry" when "feedback" with its broad meaning would
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Figure 12.10
Classification couple (redrawn from Edelman 1987)

do as well. The notion encompasses feedback but is more general than a
single feedback loop.

Edelman calls his basic mechanism for categorization a classification
couple (see figure 12.10). Input is detected or correlated by distinct initial
processing repertoires, one detecting features, the other correlating fea-
tures, with no reentry between the repertoires. Each outputs to its follow-
ing map, and there's reentry between these maps. Edelman claims that
this sort of mechanism can classify where neither side could do so inde-
pendently. Classification couples are modeled in Darwin III, whom we'll
meet shortly.

Edelman refers to activities leading to categorization, memory, and
learning as global functions enabling adaptation and survival. Such global
functions, he claims, require the concerted functioning of multiple areas
in large parts of the brain and also employ the sensorimotor apparatus.

Implementing a global function requires a global mapping, a dynamic
structure containing multiple reentrant local maps, both motor and sen-
sory. These interact with nonmapped regions to form a "spatiotemporally
continuous representation of objects or events." A global mapping, Edel-
man claims, is the minimal unit capable of such function.
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Feature Correlator
(Abstraction 2)
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Another key point is that perceptual categorization depends upon the
interplay between local cortical sensory maps and local motor maps.
Global mappings permit the definition of objects via continual motor ac-
tivity. This is how, according to Edelman, objects come into existence as
objects. Categorization cannot be a property of one small portion of the
nervous system.

The accepted view postulates independent categorization by the sen-
sory areas. Some sensory information arrives, resulting in activity that
causes some change in the environment. This leads to more sensory infor-
mation, more processing of it, further motor activity, and so on, the whole
process controlled by feedback loops. Edelman is selling a different view:
selection among movements by a reentrant system provides for categori-
zation and motor learning. The results of motor activity are an integral
part of the original perceptual categorization. We'll see this same view
again shortly, when we visit with Drescher's schema mechanism.

Perceptual categorization, memory, and learning are not properties of
molecules, of synapses, or even of small numbers of neurons. Nor are
they species faculties independent of development. Rather, each individ-
ual builds these faculties in somewhat different ways. They reflect the con-

certed workings, in each of us, "of motor and sensory ensembles
correlating neuronal group selection events occurring in a rich and dis-
tributed fashion over global mappings." These global mappings are our
objects and our events.

Edelman has produced a theory. Its utility (correctness?) is an empirical
matter yet to be decided, though he does present evidence in favor in his
various writings. Edelman and company have also produced models of
parts of the theory. One such, Darwin III, will be our next attraction.

Darwin ifi

Edelman and colleagues have constructed a series of computer models
referred to as selective recognition automata. Since they are networks of
simulated neuronlike units, we can think of them as artificial neural net-
works similar to those we've met previously. Selection enables simple cat-
egorization and association in a world full of novelty. Since no categories
are predefined, we have a pure example of the Zen notion of "beginner's
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mind."23 The computer simulates neuronal units, the functions of which
are not programmed. What does that mean? Certainly these units are pro-
grammed to yield specified outputs to particular inputs. Of course, but
there is no built-in connection between the construction of the units and
the role they eventually play vis-à-vis the outside world. The selective rec-
ognition will depend on sensory input from the environment. That's built
in, as receptor organs are built into every animal species, every autono-
mous agent. The key point is that built-ins don't include categories of

objects or of events.
Three such selective recognition automata have been constructed.24

Darwin I dealt with recognition of binary strings. Darwin II recognizes
and classifies two-dimensional patterns based on a retinalike array. Dar-
win III adds motor circuits and effectors to Darwin II, and thus is capable
of autonomous behavior. Ah, it's time to put on our artificial life hats.
Darwin III lives on the edge of a two-dimensional world of moving or
stationary objects of different shapes, contours, and textures. Objects to
the experimenter may differ from objects to Darwin III. A human experi-
menter controls the movement of objects, which makes the "artificial life"
sobriquet more doubtful. Although he can't change his position, Darwin
III has a movable head supporting a single eye, and a multijointed arm.
Figure 12.11 is a drawing of Darwin III in his impoverished world, as it

would appear on the computer's screen.
Darwin III has both peripheral and foveal vision. The motions of his

eye effect only the perceived positions of objects. He senses light touch,
distinguishing textures (light vs. dark) and shapes by tracing their con-
tours. He also has a proprioceptive (kinesthetic) sense; he knows where

his arm is, or at least the angles involved. Darwin III can move his arm,

and thus affect objects, but he doesn't control them.
So what does Darwin III do? He learns to track and fixate particular

objects, watching them move across the screen. He must learn this, since

he doesn't even know what an object is. He will reach out, touch the
object, and trace its outline. Darwin III learns to characterize a set of
stimuli as an object, more or less, if it has a closed contour.

Edelman provides a functional schematic diagram to help us under-
stand how Darwin III does what he does (figure 12.12). Though it won't

take us even near full understanding, it's still useful. Take time for a slow,
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Figure 12.11
Darwin III's world (redrawn from Edelman 1989)

top-down look. Some items to note: First, there's a built-in classification
couple; its feature detector is called Darwin, and its feature correlator is
called Wallace. (Now you know why I've resisted shortening Darwin III
to Darwin in the paragraphs above.) Second, simple motor actions re-
quired for sensing are distinguished from motor actions in response to
the environment. Sensing is not passive reception; it requires active sam-
pling. I suspect this may prove to be a generally useful mechanism of mind
when designing autonomous agents. Third, learning doesn't appear as a
separate module but is incorporated in the neural structure. Fourth, mem-
ory as continual recategorization needs explanation. Think of memory
not as having stored an image somewhere but as an enhanced ability to
react in a certain way to a certain stimulus.25 And finally, Darwin III re-
sponds in Boolean fashion; he grasps the object (how, I'm not quite sure)
if he likes it, and rejects it (knocks it away) if he doesn't. But how does he
know if he likes it or not?
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Figure 12.12
Functional schematic (adapted from Edelman 1989)
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Darwin III has built-in adaptive values, specialized networks that re-
flect what he thinks of actions and sensations, what hurts and what feels
good. These values drive the selection process, the modification of syn-
apses, in a kind of reinforcement learning with internal reinforcement.
Hebb's rule or some other learning mechanism is operating with parame-
ters determined by values. All this reminds me of the evaluation networks
of Ackley and Littman that we visited awhile back. The two architectures
differ in that Darwin III isn't part of an evolving population. I conjecture
that every adaptive autonomous agent must have some such built-in set
of values upon which to base learning and action selection. Values prior
to experience seem necessary.

The Darwin subsystem responds uniquely to individual stimulus pat-
terns. It corresponds loosely to "matching to exemplars" but does not
store feature patterns. How can this be? How do you match exemplars
when there's no stored pattern to match? Here's my speculation. A feature
pattern close to one previously seen has a better chance of being recog-
nized, that is, reacted to more strongly. The pattern with the very best
chance of being recognized could be considered the exemplar. Darwin
behaves as if it were matching exemplars hut consults no data structures
encoding particular patterns. We, as observers, might be tempted to inter-
pret Darwin's pattern of connection weights as such a data structure, but
Darwin doesn't consult it as such.26 What is stored is a tendency to react
in a certain way to a given stimulus pattern.

The Darwin subsystem, by itself, cannot define an object because it is
sensitive only to what it sees now, not to continuity in time or space.
Objects are defined in terms of their contours. Thus, something more is
required. The Wallace subsystem responds in the same way to different
objects in a class by correlating a variety of features, making up classes
as it goes. Its operation corresponds loosely to a probabilistic approach
to categorization, and is dependent on the arm's ability to trace contours
of stimulus objects. This allows objects to be distinguished from the back-
ground by connectedness. Wallace is insensitive to both rigid and nonrigid
transformations of stimulus objects. It cannot distinguish individuals.

Both Darwin and Wallace are made up of neuronal groups, each an
artificial neural network with its own inputs and outputs. One such neu-
ronal group may output to others. A given neuronal group will respond
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strongly when the most active inputs are connected via strong synapses.
Each responds optimally to some particular pattern of inputs, and more
or less well to other patterns. More than one group responds in its own
way to a given input. These overlapping responses provide the variation
needed for selection.

Selective amplification occurs when connection strengths within and
among groups are modified. All this is purely local, depending on parame-
ters that can reasonably influence real synapses. Hebb's rule is the most
common learning algorithm, strengthening a synapse if the neurons lead-
ing to it and from it are active at roughly the same time. Connection
strengths can also be weakened. (Note that the line between selection and
learning is blurred here.)

Categorization in Darwin III involves not naming but similarity of re-
sponse. (I suspect this is what every animal does. We certainly use catego-
ries that we don't name, my favorite example being the paper strips with
holes torn from the sides of computer paper.27) Categories are defined
implicitly by responses to them. Particular categories depend on the kin-
esthetic trace correlations responded to by Wallace's groups. They may or
may not correspond to the experimenter's categories.

Edelman speaks of recognition as the enhancement of meaningful re-
sponse to a previously experienced stimulus. Groups with stronger re-
sponses are strengthened, those with weaker responses are weakened,
those not involved are unchanged. This view of recognition jibes with
categorization by similarity of response.

Darwin III generalizes by responding to novel shapes similarly to pre-
viously encountered shapes in the same class. Wallace is the instigator by
means of feature correlating. Reentrant connections allow Wallace to bias
Darwin's amplification according to class membership. Eventually, Dar-
win's responses become more alike within each class.

Association occurs when individual Darwin responses are linked as dif-

ferent stimuli in the same class via Wallace. Then presentation of one
of these stimuli may evoke in Darwin elements of the response to the
other one.

Much ado has been made about Darwin III not being given objects, as
objects, "out there." How does he come to recognize, or create, objects
at all? As human infants do, Darwin III conceives objects as spatially con-
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nected and continuously movable. Coherent motion provides a critical
clue that the world can be parsed in a useful way into separate objects.

Let's see how Darwin III goes about tracking an object. In the beginning
he doesn't know much because he hasn't had much experience. Imagine
visual layers in his "brain' mapped to the "retina" of his eye, and also
connected to motor layers that control the position of the eye. These con-
nections are to motor neuronal groups capable of eye movements in all
possible directions. Motor skills are not prearranged; he doesn't know
how to track an object, for example. Exploration results from spontane-
ous movements generated by pairs of mutually inhibitory motor layers.
Connections between sensory and motor areas are modified as a result of
values favoring activity in a peripheral vision region and activity in the
central visual region, the fovea. Connections will tend to be strengthened
when motor activity leads to foveation (centering the activity in the visual
field), and weakened otherwise. After experience with moving stimuli,
Darwin III begins to make appropriate saccades and fine motor move-
ments. The value scheme rewards trying to follow something.

After sufficient experience, Darwin III scans at random when no stimu-
lus is visible, saccades rapidly to any stimulus appearing within his visual
field, and finely tracks any successfully foveated stimulus. He categorizes
the now centered object independently of position. After following this
object for a while, he gets bored, and occasionally saccades to other parts
of the visual field. He'll then track a new target if one shows up.

Darwin III learns to do all this. Of course, the motor and sensory mech-
anisms allowing tracking must be built in, as must the values. But they
weren't singled out for that purpose from the beginning. A baby, given a
rattle, may simply hold it and look around until spontaneous movement
results in some sound. A built-in value kicks in, and the baby soon learns
to shake the rattle to make the sound. Similarly, Darwin III learns to
track. How much and how fast Darwin III learns also depends on the
richness of the environment. With lots of things to track, he would learn
quickly.

Next Darwin III learns to reach out and touch someone, or at least
something. His multijointed arm can reach for and touch objects. This
entails coordination of motions involving the joints.28 As with tracking
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moving objects, this requires experience. Well, enough of all this talking
about it. Let's have a look at Darwin III in action (figure 12.13).

What happens? He notices a stimulus in his peripheral vision (1) and
moves his visual field so as to foveate it (2). While tracking the stimulus,
he begins to trace its outline with his arm (1-2). As he goes around, pro-
prioception of the arm joints is interpreted as bumpiness, and visual cues
are construed as stripedness. Thus the stimulus is categorized as a striped,
bumpy object. A built-in value to reject such a thing causes Darwin III
first to pull his arm away (3), and then pop it down (4), swatting the
offending object away (5). At this point Darwin III is still tracking (6).

Darwin III exemplifies a self-organized system; it learns without a
teacher and without external reinforcement. As every self-organized sys-
tem must, its actions are reinforced by built-in, internal values. Its selec-
tive system capitalizes on experience within its environment to develop
functional capabilities. Initially it cannot track, reach, grasp, or swat.
Though equipped with primitive sensing and actions, it lacks prepro-
grammed functions; the machinery doesn't know what it's for.29 Appar-
ently this is also true to some extent of the human nervous system. People
recover from strokes with different parts of the nervous system taking
over functions previously performed by now damaged parts. In Darwin
III, a particular network or neuronal group can accomplish various tasks,
depending upon what is found to be adaptive, that is, depending on value
and circumstance. The necessity of values to any autonomous agent, par-
ticularly to an adaptive agent, becomes ever clearer.

As we conclude our all too brief visit with Edelman's work, I'm left
with tfìe feeling of excitement that is so often engendered by important
work. I'm also left with some frustration, and an image of smoke and
mirrors, brought about by my not having had access to the details of these
particular mechanisms of mind. And the ideas themselves aren't easy. Ah,
well, relativity theory, quantum mechanics, and even my own work in
categorical topology and in neural computability aren't easy going either.

What we've just seen is Edelman's answer to the crucial question of
semantics, of how meaning occurs in agents faced with an unlabeled
world. Let's next look at yet another answer.
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Figure 12.13
Darwin III in action (adapted from Edelman 1989)
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Schema Mechanism

First, a few remarks to set the stage for this visit. Drescher (1986, 1987,
1988, 1991) views his work as a computational model or implementation
of the early stages of Piaget's theory of child development: "I take Piage-
tian development as a working hypothesis: trying to implement it is a way
to test and refine the hypothesis" (1987, p. 290). Sometimes on our tour
it's been hard to identify a mechanism of mind as a mechanism, for ex-
ample, Freeman's basins of attraction as a mechanism for categorizing.
Here we'll encounter no such difficulty. What Drescher proposes is clearly
a mechanism.

It is, however, a computationally expensive mechanism. To this charge,
Drescher retorts, "There is no good reason to be confident that human
intelligence can be implemented with vastly less computational power
than the human brain." He argues, in his 1988 paper, that we have suffi-
cient computational power in our wetware to implement his mechanism.
The later work of Foner and Maes (1994) drastically reduces the compu-
tational needs of Drescher's mechanism by adding selective attention.
Keep your eyes peeled for computational costs during this visit.

One could imply from the last quote that intelligence is inherently corn-
putationally expensive. This certainly seems true to me. Recall that Wil-
son went through all sorts of contortions to get Animat to find food
efficiently in a relatively simple environment. Think of the computational
costs of scaling up that system. Adding an attention mechanism à la Foner
and Maes, however, might well mitigate them.

The quote might also be misread as asserting that sufficient computa-
tional power gives us at least a chance of implementing human intelli-
gence. As we've seen, some would deny that any amount of
computational power would do, and maintain that computation is not
the right model for doing it in any case. Drescher's step toward proving
them wrong is earlier work than some we've visited, beginning in 1986
or before, and is more in the symbolic AI mode.

Let's start our visit with Drescher's take on Piaget's constructivist theory
of mind as it applies to objects. Mental representations are not innately
supplied but must be constructed afresh by each individual, even repre-
sentations of physical objects. It's a do-it-yourself project, for each of us
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must build our own objects. Though I, and perhaps not Drescher or Pia-
get, am seriously questioning the notion that objects are "out there" in
any real sense, the idea is probably less strange to you after encountering
Edelman and Darwin III. Anyway, the basic idea is that we create our
objects by using mental representations. We've argued before, and will
again, about how necessary representations are, even for the creation of
objects.

Drescher samples Piaget's theory in the following scenario. Infants at
first enjoy the world as solopsists, representing it only in terms of sensory
impressions and motor actions. Later they become aware that some ac-

tions effect some sensations. Still later, the infant invents for itself the idea
of a physical object, independent of sensory input. At this point you cover
a ball with a cloth and the kid still knows there is a ball under there.
She constructs this concept of ball gradually. Intermediate representations
become less subjective, less tied to the internal perspective. The ball is still
the ball at a different distance, against a different background, partially
obscured, and even when it rolls behind the couch.

Drescher designed a mechanism that models this behavior. He calls it
the schema mechanism. "Schema," as he uses it, is singular, the plural
being "schemas." His schema mechanism controls a body in a micro-
world, much like Darwin III. The mechanism interacts with this micro-
world, accumulating and organizing knowledge about lt. It uses that
knowledge to select actions in pursuit of goals. One primary goal is to
acquire more knowledge.

The schema mechanism uses three kinds of data structures: items, ac-
tions, and schemas. Items are binary state holders; they're either on or
off. Actions can produce state in the environment. In particular, an action
might turn an item on or off. Schemas designate the effects of actions on
states. Take 'designate" seriously. Schemas designate effects; they don't
perform any actions. Let's meet each of these structures individually and
also look at the relation between them. They will eventually be recursively
intertwined, one defined in terms of another.

What kinds of items are there? To begin with, there are primitive items,
corresponding to sensory inputs. We'll see shortly what senses this thing
has. Later we'll see other synthetic items, autonomously constructed by
the mechanism. The concept of a table might be synthetically constructed
by the mechanism in an appropriate environment and with appropriate
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goals (values). These synthetic items designate states at higher levels of
abstraction.

Actions include primitive actions, motor outputs, and composite ac-
tions constructed autonomously by the mechanism. The latter designate
transitions at higher levels of abstraction. A composite action chains a
sequence of less abstract actions, eventually backing down to primitive
actions. A composite action might reach an arm under a table and lift it.

Schemas are defined in terms of items and actions. We'll see how in a
moment. Synthetic items and composite actions are defined in terms of
schemas. So here we start with some items and some actions, and define
some schemas. These schemas then help define further items and further
actions, and hence also further schemas. Subsequent schemas may have

schemas as elements, a recursive definition.
Such recursive definitions can move from rather simple things to much

more complex entities. Spin-off schemas are constructed each time a rela-

tion between items and actions is discovered. Composite actions are im-
plemented by schemas and coordinated to achieve some goal. A synthetic
item designates a state that may be inexpressible by any combination of
the current state of other items, a new concept, something novel. Syn-
thetic items permit the invention of radically new concepts, for example,

conservation.
What does an individual schema look like? It consists of a context, an

action, and a result. The context is a set of items. The action is an action.
The result is also a set of items. The schema asserts that if the context is
satisfied (all its items are on) and the action is taken, then the result be-

comes more likely (more likely that all its items are on). A schema desig-

nates a possible result of a given action within a given context.
A schema is not a production rule. Rather, it's a statement of likelihood,

a stochastic statement. It asserts that the specified action, taken in this

context, makes the result more likely than if it isn't taken. Perhaps not

very likely, but more likely. The context also is not a precondition; its

action may well be performed in another context, or it may not be per-

formed in this one. A schema is a bit of knowledge of the effects of a

specific action in a specific context. But it's not very reliable knowledge.

The action of a reliable schema makes the result not Just more likely

but likely, that is, more likely than not. Schemas keep track empirically

of their reliability. (This is our first indication of the computational cost
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discussed earlier.) A plan is a set of schemas coordinated to achieve a
specified result. Only reliable schemas are permitted to participate in a
plan. We'll see how unreliable schemas are stepping-stones to finding reli-
able schemas. This schema mechanism is an intricately intermeshed sys-
tem, and so, dear to my mathematician's heart.

Drescher's implementation of his schema mechanism lives in a simple
microworld populated by objects that can be seen, felt, grasped, and
moved. The schema mechanism controls a hand that can feel, grasp, and
move, and an eye that can see.

Primitive items are of four types: visual (input from various places in
the microworld), tactile (input from around the hand), visual propriocep-
tive (the direction the eye is looking), and tactile proprioceptive (how far
Out the hand is reaching and in what direction). Primitive actions are of
three types: the hand can move forward, back, left, and right. Four ac-
tions change the visual field, and the hand can open and close.

Schemas with satisfied contexts compete to have their action per-
formed. How does this happen? Part of the time, schemas compete on the
basis of how well their results contribute to some goal expressed as a set
of items. The mechanism chooses at random among the more qualified
schemas. But most of the time schemas compete via their exploratory
value. Recently activated schemas are likely to be activated again until
habituation occurs, reducing their likelihood of activation. Schemas lead-
ing to undesirable results can be suppressed.

Drescher talks of built-in, mundane goals such as eating, and curiosity-
based goals that appeal to heuristic assessments of a schema's value for
learning. States can become valued as goals because of strategic facilita-
tion of other things of value. I might want a job in order to earn money
in order to eat. I also might lead a tour of the mechanisms of mind in
order to earn money in order to eat, but that's probably not as good an
idea.

Unreliable schemas are not particularly useful in themselves. What you
want is reliable schemas that tell you what to expect if their action is
taken within a certain context. The schema mechanism looks for results
that follow from actions, reliably or not. If a result follows unreliably, the
mechanism looks for conditions (added context) to improve that reliabil-
ity. When successful, the mechanism doesn't simply add new context
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items to the schema to make it more reliable. Rather, it spins off a new
schema, adding the newly discovered context to a copy of the old schema.
A reliable schema usually evolves in this way from a sequence of less reli-
able schemas.

This process gives rise to a "chicken or egg' -type problem. A result
that follows reliably when certain conditions are met rarely happens when
they aren't. If my hand is next to an object to its left, and I move my hand
to my left, I'm likely to touch something. On the other hand, just moving
my hand to the left isn't likely to touch something in some other context.
Even when the result does follow, it is likely to be hidden among hundreds
of other events. All sorts of other things are happening in the environment
besides my touching something to the left. Which ones are relevant? Until
relevant conditions are known, it's hard to recognize what's an appro-
priate result and what isn't. On the other hand, until the result is recog-
nized, the search for conditions can't begin. That's the "chicken or egg"
problem. Drescher intends to tell us how to get around it.

How's he going to do this? One way would be to ignore relevance and
use the British Museum method.3° Keep track of everything. Exhaustively
monitor the result of each action with respect to all conjunctions of items.
Clearly, the computational burden of such a strategy increases exponen-
tially with the complexity of the environment and the number of actions.
It won't scale up. Knowledge engineers building expert systems solve this
problem by incorporating enough prior knowledge to drastically curtail
the search. Another approach, used in many of the microworlds we've
visited, is to simplify the environment so as to reduce the number of possi-
bly relevant conditions to a manageable size. Neither of these is of much
help to an autonomous agent in a complex, dynamic environment. The
dynamic part rules out the first solution. The designer typically can't pre-
dict circumstances well enough to build in behaviors to cope with all of
them. The complex part obviously rules out the second. So what to do?
Let's watch Drescher's solution unfold, but keep in mind the issue of com-

putational burden.
The schema mechanism begins with one primitive schema for each

primitive action. Each such schema sports an empty context and an empty
result, and thus asserts nothing whatever about its action. What earthly
use can this be? It's like the empty set in mathematics, serving as a point
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of departure, in this case for building schemas with context and result.
Out of these schemas, new schemas are spun off by adding new items of
context or result to copies of the existing schema, and continuing the
process recursively. Note that the original schema remains. Once a
schema, always a schema. Think about how that is going to affect
computations.

How will the schema mechanism know when and what new schema to
spin off? Statistically, by keeping track of frequencies. Each schema comes
equipped with both an extended context and an extended result. Each
extended context includes a slot for every item. Every item! So does each
extended result. Every time a new item is created, a slot for it is added to
each extended context and extended result. You might visualize a schema
with its extensions as in figure 12.14.

Each extended result slot keeps track of whether its item turns on more
often if the schema has just been activated or not. Is there some correla-
tion between this action and one of these items as a result? If it finds one,
the mechanism spins off a new schema with that item added to its result.
If an item is more likely to turn off, the spin-off schema is created with
the negative of the item in its result. Keep in mind that a result must only
be more likely after the schema action than without the action. The result
may still be arbitrarily unlikely, may have only a tiny probability of oc-

extended
context

context action result extended
result

Figure 12.14
Schema with extensions

Schema with
Extensions
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curring. A schema may be arbitrarily unreliable. Similarly, each extended
context slot keeps track of whether the schema is more reliable when its
item is on. If so, a new schema spins off with that item as part of its
context. If lt's more reliable with that item off, the context of the spin-off
schema contains the negative of the item.

By now you're no doubt beginning to understand why Drescher asks
for the computational capability of the human brain for his system. He's
going to need it, although the work of Foner and Maes (1994) helps.

Let's see if we can get a better grasp of what's going on by looking once
again at our simple example. Suppose a primitive schema is activated
whose action is glancing to the left. If a frog was noticed to the left before,
the action results in a frog in the center of the field. This result follows
that action infrequently without the condition but frequently with it. But
not always. Maybe the frog jumps right the moment you look left. The
same action in other contexts may have quite different results. If there
was nothing just to your left, glancing left is not likely to find anything.31
But it might. The friendly frog might jump there at just the right moment.
Let's continue. The initial glance-left schema identifies an item, something
in the visual field center. That item is turned on. The mechanism then
identifies this item as a tentative result, prompting a spin-off schema with
an action and a result. Eventually its extended context finds conditions
that yield reliability, that something had been left center just before. A
reliable schema is spun off.

Drescher refers to this statistical learning process as marginal attribu-
tion. It uses built-in and constructed representational elements to express
regularity in the world. It requires no prior knowledge of the world. (It
starts too far back to be a good model of Piaget's theory. Human infants
are born knowing more than this system does.) Drescher allows as how
the exhaustive cross-connectivity between schemas and items seems an
expensive solution to our chicken or egg problem. It certainly does.
He claims it's a bargain compared with searching the space of all expres-
sible schemas. He further argues that it's neurologically possible, if not
plausible (1988), that we've got plenty of neurons to do the job. I'll spare
you the details.

We've seen how schemas yield new schemas. Schemas also give rise to
composite actions. Any newly achievable result can lead to a new corn-
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posite action. A composite action, unlike primitive actions, will have a
goal state. The conjunction of items constituting the new result comprises
the goal state of the new composite action. The composite action identi-
fies schemas that can help achieve its goal state, that is, schemas that
chain to the goal state. Schemas chain when they're in a sequence so that
the results of the first one help to establish the context for the next one,
and so on down the line. When activated, a composite action coordinates
the successive activation of its schemas. These schemas need not compete
independently to become active. Once the composite action is started,
the actions in its sequence of subschemas get performed. (It's a chunking
condition, as we saw when visiting with SOAR, a way of compiling ac-
tions. I suspect every adaptive autonomous agent in a complex dynamic
environment needs some such mechanism.) With a new composite action
in hand, it creates a schema with empty context and result around it. As
before, this bare schema starts the process of finding results of the new
action, and then finding conditions that lead reliably to those results.

The Constructivist's Challenge

At long last we come to what is, in my view, the major achievement of
Drescher's work. We see what all this machinery will yield. Here's how he
puts it: "a constructivist system's greatest challenge is to synthesize new
elements of representation, to designate what had been inexpressible"
(1987, p. 292). I would prefer to say "unrepresentable" rather than "inex-
pressible," since this doesn't have to do with expression in a language or
anything of that sort. Otherwise, I couldn't agree more. We're about to
see a mechanism by means of which concepts are born. We've seen spin-
off schemas. We've seen composite actions. Now we'll see synthetic items,
by means of which objects and, in principle, other concepts can be
constructed.

A synthetic item is based on some schema that essentially suggests how
to recover a manifestation that is no longer present. We're heading toward
object permanence. How do you get the ball back when it rolls behind
the couch? The synthetic item reifies this recoverability. The potential to
recover is construed as a thing in itself. With the introduction of a syn-
thetic item, the ontology of the system changes.
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Let's look at a simple example to motivate this construction. Suppose
the schema mechanism moves its hand away from some object32 directly
in front of it while looking away from it. The object now has no manifes-
tation in the state of any primitive item. Hence the object no longer exists
for the schema mechanism because there is no way to represent it. The
mechanism is oblivious to the possibility of reaching to touch the object
again or of glancing toward it. Now suppose some schema, without con-
text, says, "If I reach directly in front of me, I'll touch something." Its
context is empty; its action is to reach directly forward; its result is touch-
ing something, tactile stimulation. This schema is unreliable. Mostly
reaching forward won't touch anything. It works only when some object
is there.

On the other hand, it is locally consistent. If it reaches out and touches
an object, draws back, and reaches out again, it's likely to touch some-
thing again. If it works once, it's likely to continue to work for the next
little while. Objects tend to stay put awhile. The schema mechanism
tracks the local consistency of each schema. Local consistency provides
the key to building synthetic items. If a schema is unreliable but locally
consistent, the mechanism builds a synthetic item for it. The new item
designates whatever unknown condition in the world governs the sche-
ma's success or failure.

Now that we've got it, what do we do with it? Why, spin off a new
schema, its host schema, from the locally consistent one, with the new
synthetic item as its context. When the synthetic item is on, the mecha-
nism regards it host schema as being reliable, at least for the next little
bit. But when is the new synthetic item on? An item says that something is

true or that something is false. Items are useful only if they are reasonably

accurate, only if their on or off state corresponds correctly to the truth or
falsity of the condition it designates. Hence it's important to get on/off

right. For primitive items, this isn't a problem. Each is hardwired to some

sensory apparatus that maintains its state. But what about synthetic
objects?

Some machinery will be needed to keep the state of synthetic items

updated. Here are the rules the schema mechanism uses. Successful acti-

vation of its host schema turns the synthetic item on; unsuccessful activa-

tion turns it off. A synthetic item turns off after its time period of local
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consistency. The schema mechanism keeps track of this period. A syn-
thetic item turns on or off together with any strongly correlated item.
Again, the schema mechanism must keep track of such. And finally, a
synthetic item can be turned on or off as a result of a subsequently created
reliable schema.

Note that the schema mechanism must learn when a new synthetic item
is on or off. It has constructed a new, and one hopes useful, concept and
must discover the conditions under which it's applicable. Note also that
a synthetic item is not some combination of primitive items. Rather, it's
something fundamentally different from what we started with, "a new
element of representation."

Drescher describes this process of concept formation as one of synthe-
sis and abstraction. A new concept forms as a synthesis of various frag-
ments of itself. At first the fragments include details of a particular
perspective and of particular actions. By abstraction, the synthesis be-
comes independent of these details, producing something that can be used

in another, very different schema. He claims that this process of synthesis
and abstraction is central to constructing concepts that are fundamentally
different from their precursors. In his view, this is how new ideas come
about. His schema mechanism is a mechanism of mind designed to pro-
duce new concepts.

As you no doubt can tell, I'm quite enamored of Drescher's work. My
major concern is for its enormous computational requirements. Yes, it is
a "bargain" compared with a British Museum algorithm. But, in an abso-
lute sense, it keeps track of too much. A partial solution to this problem
is provided by Foner and Maes (1994), who drastically reduce computa-
tional requirements by focusing the attention of the schema mechanism,
both perceptually and cognitively. Their version updates only statistics for
sensory items that have changed recently and only for schemas making
predictions about them. When deciding about spinning off new schemas,
they consider only recently changed sensory items, and only schemas
whose statistics have recently changed.

On this stop we've met basins of attractions offered as mechanisms for
categorization, classification couples proposed as a mechanism for creat-
ing the categories, and the schema mechanism suggested as a means of
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creating the very objects to be categorized. From the constructivist point
of view, all these are mechanisms for constructing our own individual
version of reality, for deciding what's out there. Yes, deciding. The con-
structivist view is very much a part of the new paradigm. It maintains
that we partition our environment in ways that prove useful, creating ob-
jects. From these we iteratively create categories and ever higher-level con-

cepts. Our physicahst assumption postulates a real world out there, but
the semantics of that world lies in our hands, either by species or individ-
ually. And so, says the new paradigm of mind, it must be for any adaptive
autonomous agent.

Suppose we've created our version of the world. Where is it? What's
the mechanism for representing it? Our next major stop will begin with
these questions and move on to higher-level generation of actions.

Notes

This sentence asserts a thoroughly Western point of view. Eastern philosophy
views it differently, talking at length about the Tao, which certainly doesn't dis-
criminate (Lao-Tzu 1988).

Mathematics is best thought of as an art form whose medium is composed of
concepts. A mathematical object is a conceptual structure typically composed of
a set with some additional structure, that is, special subsets, mappings, axioms,
and so on.

A self-map of a set, X, is a function, T, that assigns to each element, x, of X
some other element, T(x), of X. Don't take that "other" too seriously. T(x) may
be x itself, in which case x is called a fixed point of T

What you've just seen is the simplest and most abstract version of a dynamical
system. Typically more constraints are put on X and T, say, assuming that X is a
topological space and that T is continuous, or that X is a manifold and that T is
infinitely differentiable. If these terms are strange to you, please ignore this note
altogether. Doing so won't hinder your understanding of what follows.

S. In the jargon of mathematics, rational numbers are those that can be repre-
sented by fractions. The decimal expansion of any rational number is periodic,
and every periodic decimal represents a rational. Thus the irrational numbers,
those real numbers that are not rational, are represented by decimal expansions
that never repeat themselves. J find it hard not to include a proof that '2 is
irrational.

6. Bob Sweeney reminds me to include a Caution at this point. Chaotic dynamical
systems, though unpredictable in the long run, do have structure, pattern. The
digits of - 1, while exhibiting the unpredictability of a chaotic system, may

well be truly random, with no structure whatever.
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That is, distinct basins have no common points and, together, the basins fill
up the state space.

Recall that i2 = 1.
For example, as a varies, orbits of all possible integer periods occur. Also,

values of a with periodic orbits are dense; between any two a's with chaotic orbits
is another a with a periodic orbit. It's a simply described system that behaves with
incredible complexity.

Such decisions are not easy, and are crucial for biological systems (see S.
Edelman 1993).

li. We live in Euclidean 3-space because the position of a point can be described
by three numbers. Or, taking an Einsteinian point of view, we live in 4-space, with
the fourth dimension being time.

Note that arrows in this diagram represent the beginnings of orbits, whereas
arrows in the previous diagram were vectors giving direction and speed of motion.

I'm sad to report that Paul passed away before having formally taken this
tour. He's sorely missed.

Some philosophers would no doubt retort that I've simply missed the point
of the semantics issue altogether, and perhaps they'd be right.

Remember that it's always amateur night on the artificial minds tour. I'm
particularly conscious of that right now.

"Potential" as in "voltage." EEG stands for electroencephalograph, a ma-
chine that records "brain waves."

Both Brian Rotman and Nick Herbert tell me that this assertion dates back
to Gregory Bateson. (In press, Chalmers also pointed this out to me.)

I found all three of these books hard going. If you're intent on reading Edel-
man, start with his more recent Bright Air, Brilliant Fire (1992), which gives an
abbreviated and more readable account of much of his recent work.

I have decidedly mixed feelings about this experiment.

This is Edelman's assertion, as well as conventional wisdom in the field. How-
ever, I've recently seen speculation that we actually grow new neurons, and cer-
tainly we grow additional axons right along. Some songbirds grow new nervous
tissue in the process of learning new songs.

This is closely analogous to the immune systemyou are born with all the
various kinds of antibodies you'll ever have.

We've encountered, or at least mentioned, three other selective systems: natu-
ral selection à la Darwin, the immune system, and Holland's genetic algorithms.

Zen practitioners cultivate "beginner's mind," pure awareness uncontami-
nated by expectations, judgments, or distractions, as in the phrase "be here now."

l've heard tales of Darwin IV but haven't yet found a reference.

This view blurs the psychologist's distinction between procedural memory
(riding a bicycle) and episodic memory (of what I had for breakfast). I suspect
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Edelman would claim that the underlying mechanism is of the same type for both,
and that episodic memory requires active reconstruction. I certainly lean toward
that view.

This brings us to an issue I have struggled long and hard with, the distinction
between rule-describable behavior and rule-governed behavior. I'd say that Dar-
win's behavior, at the low level of individual units, is rule governed, while at a
higher level it is only rule describable.

Though they are typically unnamed, some call them "perfs."

Remember that Brooks's Herbert required fifteen different motions to grasp
a soda can.

I'm tickled to note how the gender of the pronoun I use for Darwin III has
changed in this paragraph. In prior paragraphs, when he was acting on an envi-
ronment, he was "he." In this one, the discussion is about its self-organization,
and it has become an "it." The difference seems to be one of animate or not.

Rumor has it that the acquisition policy at the British Museum is a simple
one: collect everything. Although no doubt apocryphal, this tale has led AI work-
ers to refer to exhaustive search as the "British Museum method."

I've never experienced glancing left and finding nothing. This can occur in a
microworld but not in our world. On the other hand, I've often glanced left and
found nothing of interest, which leads us once more to the work of Foner and
Maes (1994) on attention.

An object to us, not yet to the schema mechanism.
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There is a popular cliché. . . which says that you cannot get out of computers any
more than you have put in . . . , that computers only do exactly what you tell
them to, and that therefore computers are never creative. This cliché is true only
in a crashingly trivial sense, the same sense in which Shakespeare never wrote
anything except what his first schoolteacher taught him to writewords.
-Richard Dawkins, The Blind Watchmaker

On this tour stop we'll be concerned with getting out of a computeror
a human, for that matterboth what was put in (memory) and more
than what was put in (creativity?). We'll enjoy an extended stay with Kan-
erva's sparse distributed memory (1988a), a brief encounter with Calvin's
Darwin machine (1990) and his hexagonal mosaics (1992), and finally, a

leisurely visit with Hofstadter and Mitchell's Copycat (Hofstadter 1984;
Mitchell 1993).

Our last major stops were designed to sell features of the emerging new
paradigm of mind I've been pushing. One supported mind as a control
device, its function being to produce the next action. Our last stop em-

phasized information as being created internally by minds in the service
of the control function of mind. This one will be concerned with state of
mind, "state" being used in the technical sense of the state of a system as

we've used it before. Think of the mind assuming a certain state in form-
ing some internal model of what's going on outside, or what has gone on.
State (of mind) changes when information is created.

Whereas Brooks's Herbert had state lasting no longer than three sec-
tions, we humans can have statethat is, the ability to rememberlast-
ing almost a lifetime. I can easily conjure up memories of fifty-year-old
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events. How does this magical production of images happen? Do I per-
form the mental equivalent of taking a photograph from a folder in
a filing cabinet and looking at it? That seems to be the way memory is
tacitly thought of. Our newly emerging paradigm proposes that we view
memory, instead, as an active process of reconstruction. It's this proposal,
and its implications about creativity, that the attractions of this stop are
intended to support.

Let's first meet some of Kanerva's assumptions about memory.

Memory

Cognitive scientists work with memory in action, modeling its function.
As scientists, they've had some success explaining and predicting memory,
at least in laboratory contexts. Kanerva takes an engineer's view. He
wants to build a memory. That's not quite right. He doesn't actually want
to make one; he wants to make a theory about making one. A theory?
What for? Here's Kanerva's answer:

The usefulness of a theory is measured by its ability to explain observations, to
simplify old explanations, to predict, and to inspire discovery. . . . A theory can
be beneficial without even being correct, for it can stimulate the discovery of a
better theory.1 (1988a, p. 90)

As I once heard from an unremembered source, "there's nothing so practi-
cal as a good theory."

Kanerva hopes to base his theory of memory on a series of assump-
tions, or high-level design decisions, that will constrain its development.
Here they are, mostly in his own words (1988a, pp. 80-8 1): "appropriate
behavior entails successful prediction. . . . The function of memory is .

to make relevant information available rapidly enough." This of course
resonates with the view of mind as fundamentally a control system and
puts memory in a supporting role. The implied constraints are speed and
relevance, the latter being addressed more explicitly in the following
assumptions:

The present is predicted best by the most recent past and by earlier events similar
to it. . . . memory should allow the present situation to act as a retrieval cue, and,
when presented with a situation that is similar to some previously encountered
situation, it should retrieve the consequences of that previous situation. (1988a,
p. 81)
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That the present is best predicted by the recent past is almost a truism.
If you want to predict the weather without going to a lot of trouble, just
say that tomorrow is going to be like today. More often than not, you are
going to be right. Of course, determining what's recent is an important,
and probably nontrivial, issue.

Predicting by earlier, similar events is even trickier. I might predict snow
tomorrow even though it didn't snow today, if today was similar to an
earlier day preceding a snowfall. But how can one know what's similar?
Well, we do it all the time, and so must Kanerva's memory, at least in
theory. We'll see how he proposes to recognize similarity.

The assumptions made so far have been at a high level of abstraction.
Moving down the abstraction ladder, Kanerva provides a few more, each
constraining his system. Think of all the memory items in your head.
Most pairs of such items are unrelated. However, most pairs can be asso-
ciated via one or two intermediate items. (Kanerva argues convincingly
by example at this point. I'll leave it as an exercise for the reader.) Many
associations between items are learned explicitly; many others occur au-
tomatically. If I describe a tree to you as a "sap pipe," the association
therein probably makes quite good sense, though you may never have
learned it explicitly. Note that this association did not occur automati-
cally until you read the two words on the page. The association was con-
structed automatically. Memory capacity is limited. Certainly this is true
in all the real systems I know about, but it's an arbitrary assumption in a
theoretical memory.2 Kanerva must want his theory to be applicable. Of
course, sequences of events must be remembered. And, further, the system
must be able to find and continue some sequence from a part.

As we proceed further down the abstraction ladder, assumptions blend
more clearly into design decisions:

patterns are to serve as addresses to memoryand not just previously en-
countered patterns, but new patterns as well. In other words, the memory has a
permanent addressing framework that is independent of what we have learned so
far, and the record is stored in and retrieved from the addressed parts of the mem-
ory. (1988a, p. 3)

We'll soon see how all this works. Also, sequences must be stored and
retrieved, and even continued on the basis of some part of the sequence.
In spite of their importance, time and space constraints dictate that we
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meet sequences only briefly. Here's what Kanerva refers to as the "unify-
ing idea of the theory": 'there is no fundamental distinction between ad-
dresses to memory and the data stored in the storage locations; the data
stored in memory are addresses to the memory" (1988a, p. 5).

Having had a preview of this coming attraction, we need, for the sec-
ond time in as many major tour stops, a brief excursion into mathematics.
This time we'll visit Boolean geometry. I hope it continues to be good for
the soul.

Boolean Geometry

Boolean geometry is the geometry of Boolean space. What's Boolean
space?3 It's the set of all Boolean vectors of some fixed length, n, called
the dimension of the space. Points in Boolean space are Boolean vectors.
A few examples should get the idea across. One-dimensional Boolean
space consists of Boolean vectors of length 1. There are only two of them,
(0) and (1). Two-dimensional Boolean space is the four-element set {(0,0),
(0,1), (1,0), (1,1)}. Three-dimensional Boolean space has eight elements,
each of 0-1-vector of length 3. Note that Boolean space of dimension n
contains 2 Boolean vectors of length n. The number of points increases
exponentially as the dimension increases. Though this model of memory
is more general, Kanerva uses 1,000-dimensional Boolean space, the
space of Boolean vectors of length 1000, as his running example. We'll
follow this lead.

Two-dimensional Boolean space can be visualized as the corner points
of the unit square in two-dimensional Euclidean space (figure 13.1). Simi-
larly, three-dimensional Boolean space maps to the corners of the unit
cube in Euclidean three-space. Kanerva's example space maps to the cor-
ners of the unit hypercube in 1000-dimension Euclidean space, a little
harder to visualize.

We could use ordinary Euclidean distance for our foray into Boolean
geometry but will find it more useful to use the Hamming distance, where
the distance between two points is the number of coordinates at which
they differ. Thus d((1,0,0,1,0), (1,0,1,1,1)) = 2. The distance between
two points will measure the similarity between two memory items in Kan-
erva's model, closer points being more similar. Or we might think of these
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Figure 13.1
Two-dimensional Boolean space

Boolean vectors as feature vectors where each feature can be only on (1)
or off (0). Two such feature vectors are closer together if more of their
features are the same.

Kanerva calls a Boolean vector, x, indifferent to another, y, if they differ
at precisely half their coordinates, that is if d(x,y) = n12, where n is the
dimension of the Boolean space. He calls n12 the indifference distance
and proves that almost all of any Boolean space is almost indifferent to
any given point. For n = 1000, 99.9999 percent of the space lies between
distance 422 and distance 578 from a given vector. Almost all the space
is far away from any given vector. Boolean space of high dimension is
thinly populated, an important property for the construction of the
model.

A sphere is defined as usual as the locus of points at some fixed dis-
tance, the radius, from its center. The sphere of radius r with center x is
formally expressed by O(r,x) = {y d(x,y) r}. Spheres in Boolean space
are quite different in one respect from the Euclidean spheres we're used
to. Points of a Euclidean sphere are uniformly distributed throughout.
For r n12 (the indifference distance) most of the points in the sphere
O(r,x) lie close to its boundary. For n13 <r < n/2 most points of O(r,x)
are nearly indifferent to x.

This is enough Boolean geometry to get started. Let's see how Kanerva
uses it to build his model.

(1,0)
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A Sparse Distributed Random Access Memory

An old-fashioned audio turntable, complete with tone arm and record, is
a random access device, whereas a tape deck with head and tape is a
sequential access device. A user can reach any chosen location4 on the
record in essentially the same time it would take to reach any other, sim-
ply by placing the tone arm at the desired location. This essentially con-
stant time to reach any location on the medium is decidedly not true of
the tape deck system, where some locations are much closer to the current
head position than others. To move from one location on the medium to
another, the random access device can "jump over" intervening locations,
whereas a sequential access device must pass by each of them. A memory
is called random access if any storage location can be reached in essen-
tially the same length of time that it takes to reach any other.

Kanerva constructs a model of a random access memory capable, in
principle, of being implemented on a sufficiently powerful digital com-
puter, and also implementable via artificial neural networks. Here, at last,
is how he does it.

This memory, like my city, has an address space, a set of allowable ad-
dresses, each of which specifies a location. A memory address specifies a
storage location; a city address specifies a place. Kanerva's address space
is Boolean space of dimension 1000. Thus allowable addresses are Bool-
ean vectors of length 1000, henceforth to be called bit vectors in deference
to both the computing context and brevity.

This address space is enormous. It contains 2°°° locations, probably
more points than the number of elementary particles in the entire uni-
verse. One cannot hope for such a vast memory. When I first thought
about bit vectors (feature vectors) of length 1000, it seemed a lot of fea-
tures, that a lot could be done with so many features. But thinking about
incoming sensory data made me reconsider. A thousand features wouldn't
deal with human visual input until a high level of abstraction had been
reached. A dimension of 1000 may not be all that much; it may even be
unrealistically small.

Kanerva proposes to deal with this vast address space by choosing a
uniform random sample, size 220, of locationsthat is, about a million
of them. These he calls hard locations. With 220 hard locations out of a
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possible 2°°° locations, the density (ratto) is 2980very sparse indeed.
In addition, 98 percent of the time the distance from a random location
in the entire address space to the nearest hard location will fall between
411 and 430, with the median distance being 424. The hard locations are
certainly sparse.

We've seen in what sense this memory is to be random access, and in
what sense sparse. How is it to be distributed? If many hard locations
participate in storing and retrieving each datum, and if one hard location
can be involved in the storage and retrieval of many data, we call the
memory distributed. This is a very different beast than the store-one-
datum-in-one-location type of memory to which we're accustomed. Let's
see how this is done.

Each hard location, itself a bit vector of length 1000, stores data in
1000 counters, each with range 40 to 40. We now have a million hard
locations, each with a thousand counters, totaling a billion counters in
all. Numbers in the range 40 to 40 will take most of a byte to store.
Thus we're talking about a billion bytes, a gigabyte, of memory. Quite a
lot, but not out of the question. How do these counters work? Writirg a
1 to the counter increments it; writing a O decrements lt. A datum, -rl, to
be written is a bit vector of length 1000. To write -q at a given hard
location x, write each coordinate of q to the corresponding counter in x,
either incrementing it or decrementing it. Thus, if q = (1, 0, 1, 1, 1, 0,

x's first counter will be incremented, its second decremented, its
third incremented, and so on, until a thousand counters are changed.

We now know how to write to one location. But this memory is to be
distributed. To which locations shall we write? Call the sphere of radius
451 centered at location the access sphere of that location. An access
sphere typically contains about a thousand hard locations, with the clos-
est to usually some 424 bits away and the median distance from to

hard locations in its access sphere about 448. Any hard location in the
access sphere of is accessible from . With this machinery in hand, we

can now write distributively to any location, hard or not. To write a
datum q to a location , simply write q to each of the roughly 1000 hard
locations accessible from . Distributed storage.

With our datum distributively stored, the next question is how to re-
trieve it. With this in mind, let's ask how one reads from a hard location,
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x. Compute -q, the bit vector read at x, by assigning its ith bit the value i
or O, according as x's ith counter is positive or negative. Thus, if x's count-
ers look like 1, 1, 4, 14, 3, -5, 2, . . . , then -q = (0, 1, 1, 1, 1, 0, 0,

. .). Thus, each bit of -q results from a majority rule decision of all the
data that have been written on x. The read datum, -q, is an archetype of
the data that have been written to x but may not be any one of them.
From another point of view, -q is the datum with smallest mean distance
from all data that have been written to x.

Knowing how to read from a hard location allows us to read from any
of the 21000 arbitrary locations. Suppose is any location. The bit vector,
-q, to be read at is formed by pooling the data read from each hard
location accessible from . Each bit of -q results from a majority rule deci-
sion over the pooled data. Specifically, to get the ith bit of -q, add together
the ith bits of the data read from hard locations accessible from and use
half the number of such hard locations as a threshold. At or over thresh-
old, assign a 1. Below threshold, assign a O. Put another way, pool the bit
vectors read from hard locations accessible from , and let each of their
ith bits vote on the ith bit of -q.

We now know how to write items into memory and how to read them
out. But what's the relation between the datum in and the datum out?
Are these two bit vectors the same, as we'd hope? Let's first look at the
special case where the datum is written at the location . This makes
sense because both are bit vectors of length 1000. One copy of is then
written at each of approximately 1000 hard locations. Reading from
then recovers archetypes from each of these hard locations and takes a

vote. The voting is influenced by the '-1000 stored copies of and, typi-
cally, by about 10,000 other stored data items. The voting comes out as
we would like it. Since the intersection of two access spheres is typically
quite small, these other data items influence a given coordinate only in
small groups of ones or twos or threes. The thousand copies of drown
out this slight noise and is successfully reconstructed. Kanerva offers a

mathematical proof that the process works.
Thus, items that have been read in (with themselves as address) can be

retrieved (actually reconstructed). That seems to be the very definition of
memory, and not to justify all this mathematical machinery. Ah, but this
memory is content addressable. Not all of the stored item is needed to
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recover it. Let's see what happens if we try to read with a noisy version of
what's been stored or with an arbitrary bit vector.

For this task we'll need iterated reading. Here's how it works. First read
at l to obtain a bit vector t. Then read at to obtain a bit vector
Next read at , to obtain a bit vector , and so on. If the sequence

converges6 to , then is the result of iterated reading at .

Suppose is any test datum, perhaps a noisy version of something al-
ready stored, and suppose is the item retrievable from memory that is
most similar to . If the distance between and is not too great, say
<200 bits, and if the memory is not too full, say <10,000 items stored,
then reading at yields a bit vector closer to than is. Thus iterated
reading at converges to . Again Kanerva provides mathematical proofs.
Since convergent sequences of iterates converge very rapidly, whereas di-
vergent sequences of iterates bounce about seemingly at random, compar-
ison of adjacent items in the sequence quickly tells whether a sequence
converges. Thus, this memory is content addressable, provided we write
each datum with itself as address. In this case, starting with a bit vector,

, if some retrievable item is sufficiently close to , iterated reading will
find it. That is, if the content of some reconstructable item is sufficiently
similar to that of , the item can be recovered by iterated reading starting
at the content of l.

Kanerva lists several similarities between properties of his sparse dis-
tributed memory and of human memory. One such has to do with the
human property of knowing what one does or doesn't know. If asked for

a telephone number I've once known, I may search for it. When asked for

one I've never known, an immediate "I don't know response ensues.

Sparse distributed memory could make such decisions based on the speed
of initial convergence. If it's slow, I don't know. The "on the tip of my
tongue phenomenon" is another such. In sparse distributed memory, this

could correspond to the cue having content just at the threshold of being
similar enough for reconstruction. Yet another is the power of rehearsal,

during which an item would be written many times, each time to a thou-

sand locations. A well rehearsed item would be retrieved with fewer cues.

Finally, forgetting would tend to increase over time as a result of other

writes to memory.
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The above discussion, based on the identity of datum and address, pro-
duced a content addressable memory with many pleasing properties. It
works well for reconstructing individual memories. However, more is
needed. We, and our autonomous agents, must also remember sequences
of events or actions. Kanerva shows how the machinery we've just seen
can be modified to provide this capability. The basic idea is something
like this. The cue for a sequence of patterns serves as the address for the
first pattern of the sequence. Thereafter, the content of each pattern in
the sequence is the address of the next pattern. Due to the finite length of
our tour, we'll skip lightly past this attraction. Any of you who would
like a side trip at this point should consult chapter 8 of Kanerva's Sparse
Distributed Memory (1990). For the rest of our visit with Kanerva's mem-
ory, we'll assume that remembering sequences is possible.

Cognition à la Kanerva

Just a bit back we saw similarities between properties of this memory and
those of human memory. Let's now look at artificial versions of other
cognitive functions. When many similar patterns have been used as write
addresses, individual patterns can no longer be recovered. Rather, an aver-
age of patterns written is reconstructed, an abstraction of what was put
in.

Objects, typically viewed many times from different angles and dis-
tances, produce similar patterns, each written to itself as address. Reading
any of these will yield a composite that recognizes the object. A region
of pattern space, with poorly defined boundaries, represents the object
abstractly. I tend to view objects as particularly simple concepts. Thus
concepts may also be formed by writing similar patterns to themselves as
addresses. A concept, then, is a fuzzy region of pattern space. Memory
will produce aggregate patterns representing the concept, some features
of which will be significant and others unimportant.

Kanerva contends that understanding is to be measured by the ability
to predict.7 In the service of this need to predict, intelligent agents rely on
an internal modeling mechanism that constructs objects and concepts,
and captures and reproduces statistical regularities of the world. This in-
ternal model profoundly affects its (and our) perception of the world,
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relying on sensory scans for overall cues but filling in detail from the
model.

Sparse distributed memory can serve as such an internal model mecha-
nism (figure 13.2). The key item in the figure is the focus, a part of the
modeling mechanism fed by both senses and memory. Sensors extract fea-
tures from incoming environmental signals and pass them to the focus, a
combined address-datum register with additional machinery. Memory is
addressed by the focus and the contents of the focus written to memory.
The current contents of memory at the addressed location, more accu-
rately the reconstructed datum, is simultaneously fed back to the focus.
The way into memory and the way out of memory are through the
focus.

Think of the current contents read from memory into the focus as the
model's prediction of the next sensory input. These contents are then
compared with the actual sensory input, and a resulting new datum is

WORLD FOCUS MEMORY STORE
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Figure 13.2
Sparse distributed memory as an internal model mechanism (redrawn from Kan-
erva 1988)
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created in the focus. If the prediction proves accurate, this new datum is
the same as the previous one. If the prediction is in error at some features,
a corrected datum is created in the focus and afterward written to mem-
ory. The system learns.

The sequence of patterns in the focus comprises the agent's ongoing
experience) When the present situation resembles a past situation, the
senses create patterns in the focus that resemble stored patterns. These
patterns, addressing memory, reconstruct what consequences were in the
past. A comparison of these past consequences with what actually occurs
is the basis for updating the internal world model. Pretty neat. All that's
lacking is the ability to act.

An Adaptive Autonomous Agent

An autonomous agent must not only sense, remember, recall, and predict
but also act upon its environment so as to affect subsequent sensory in-
put. In animals (robots), actions are mostly produced by sequences of
neural (computational) patterns driving muscles (motors). Actions are in-
cluded in the world model by storing these motor sequences in memory.

Kanerva provides for such action by allowing his system's motors to be
driven from the focus. Thus deliberate action becomes part of the system's
experience. How is this implemented?

In figure 13.3, we see that motors have been added whose actions affect
not only the outside world but also the system's sensory mechanism. Per-
ception becomes active, as it should be, instead of passive. The motors
are controlled by signals from the focus. How can this be? By allotting
some portion, say a fifth, of the components of each datum in the focus
to controlling motor activity. (Keep, say, half of the components for sen-
sory data, and the rest for internal activity, including values.) Recon-
structed data from memory in the motor part of the focus result in action.

Kanerva supplies a thought experiment, omitted here, that shows the
power of expectation in his system. "Sometimes a system will respond
properly to a cue only if it is waiting for the cue." The system continually
monitors the effects of its actions. When these effects don't confirm its
expectations, the sequence of actions it has embarked on stops, and it
tries something else.
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WORLD FOCUS MEMORY STORE

n-bit
datum

n-bit
address

Sparse
distributed

memory

Figure 13.3
Sparse distributed memory control for an autonomous agent (redrawn from Kan-
erva 1988)

Since the system's actions and their effects can be part of the internal
model, planning seems possible. Suppose the system shuts down sensory
input but otherwise runs as usual. We could say that "thought" occurs in
the focus and that planning results. We've met this notion of shutting
down sensory input to allow for thought in John Jackson's pandemonium
theory. It also occurs in the work of Johnson and Scanlon on Packrat
(1987). I suspect it must occur in any sufficiently intelligent autono-
mous agent.

Similarly, some sort of initial values (needs, drives, preferences, dislikes,
evaluation function à la Ackley-Littman) must be built in, present "at
birth," for an autonomous agent to learn. In this system some patterns
in the focus must be inherently good, others inherently bad, and most
indifferent. Indifferent patterns must acquire value if they lead to other
desirable or undesirable patterns. We'd want the system to choose actions
leading to desirable patterns and to avoid actions leading to undesirable
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patterns. Learning to act is the process of storing sequences in memory
that are likely to find desirable patterns and to avoid undesirable patterns.

Kanerva proposes to build values into his system by means of a prefer-
ence function that assigns a number to each pattern in the focus. How
will he implement this function? By means of a preference register at each
hard location that reads positive for desirable patterns, negative for unde-
sirable patterns, and O for indifferent patterns. But this memory is distrib-
uted over roughly a thousand hard locations. How is the reconstructed
pattern valued? No problem. Just add up the contents of the preference
registers at those hard locations accessible to the pattern at which we're
reading. Does this mean additional machinery to accommodate prefer-
ence registers? Not at all. Just allot a fixed but small number of compo-
nents of each datum to values. (This ignores some easily managed
technical details.)

Preference registers then have built-in values, the initial values the sys-
tem is born with. Most would be modifiable, but some may not be. The
kung fu master may deliberately lift the dragon pot and thus brand his
forearms, but you can be sure he's never going to like it.

In addition to some built-in initial values, Kanerva postulates some ini-
tial built-in action sequences. Some of these sequences could contain ran-
dom thrashing movements to provide an initial repertoire for selection à
la Edelman. Others may be reflex actions.

Not only must these sequences be stored in memory, but values must
also be stored. Action sequences, as well as patterns, must have their val-
ues. Again Kanerva provides a mechanism. Suppose an action sequence
leads to a desirable pattern in the focus. Positive preference is propagated
back down the sequence with decreasing force. The immediately preced-
ing pattern gets a raise in preference value. The pattern just before that
gets a somewhat smaller raise, and the process continues for a few more
steps. I'm reminded of Holland's bucket brigade algorithm whose ac-
quaintance we made while visiting Wilson's Animat. The algorithm al-
lowed learning in classifier systems.

Kanerva produces hypothetical situations demonstrating the system
learning in various ways: classical conditioning, learning from failure,
learning from meaningful events, and learning by imitation. The first we'll
omit. The second has already been discussedfailure means expectations
weren't met. Let's look at the other two.
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Call an event meaningful if it results in a highly positive or highly nega-
tive preference value. "Emotionally charged" might be another term. A
sequence leading to a meaningful event is stored in memory, and its large
(in absolute value) preference is extended back a few steps. Learning
should be quite rapid in this case. A good prediction, or a bad one, can
be a meaningful event, and thus trigger rapid learning.

Learning by imitation can also take place in a system provided there's
an internal reward mechanism and the ability to model the behavior of
other systems. The idea is to store an image of the other's behavior, then
map this image to one's own actions. The results of one's own actions are
compared with the stored image of the other's behavior, and the internal
value system provides a reward mechanism to perfect the match. Kanerva
speculates that this type of learning is primarily responsible for compli-
cated social learning.

How does a sparse distributed memory agent compare with symbolic
AI systems? Kanerva claims one major advantage: the frame problem
never arises. You may recall the frame problem from an early tour stop.
It's the problem of keeping track of the many side effects of actions. For
example, suppose a mobile robot is built from a cart. It has a tool in its
hand, and a telephone sits on its cart. A symbolic AI database knows that
the robot, the tool, and the telephone are all in this room. Now the robot
rolls itself out the door and down the hall to the next room. What must
the system know to change in the database? Clearly, the position of the

robot must be changed. It must also remember to change the location of

the tool in the robot's hand. This is a side effect. There was no action on

the part of the tool. What about the telephone? Should its location be
changed? That depends on whether it is a cordless phone or is attached

by a cord to the wall and it is now bouncing around on the floor in the

same room. The frame problem is still an unsolved one for symbolic AI.

Kanerva's internal model is built from exposure to the world. The side

effects of an action and its main effect are stored in memory. His system

already knows, automatically, whether the telephone is attached to the

wall. When the system moves, the model is checked against the world.

The frame problem never arises.
All that we've seen thus far of sparse distributed memory is theory and

thought experiment. How does it work in practice? Dimitri Kaznachey,

in work as yet unpublished and in progress, has implemented a small
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version controlling an Animar in the WOODS7 environment we met pre-
viously. Here the bit vector length was chosen as loo rather than 1000,
reflecting the relative simplicity of the environment and of the agent's
single goal, to eat. This choice puts the system at the lower end of the
range for which Kanerva's proofs are valid. How did it work? Not well
at all. The environment was so simple that almost any bit vector that
arose during a run was accessible from any other. The Animat couldn't
reliably distinguish desirable actions from undesirable. Adding artificial
landmarks in the form of integers in the blank squares helped somewhat.
Our impression is that much more complexity of both the environment
and the agent's drives will be needed to adequately test a sparse distrib-
uted controller.

As you've no doubt discerned, your tour guide is inordinately fond of
Kanerva's work. It speaks to me. And not only to me. Hofstadter (Kan-
erva 1988a, p. xviii) wrote:

Pentti Kanerva's memory model was a revelation for me: it was the very first piece
of research I had ever run across that made me feel I could glimpse the distant
goal of understanding how the brain works as a whole. It gave me a concrete sense
for how familiar mental phenomena could be thought of as distributed patterns of
micro-events, thanks to beautiful mathematics.

Hofstadter chose his words carefully. It's only a "glimpse," but a glimpse
nevertheless. Kanerva's mechanisms do evoke in me a "concrete sense" of
how mind, even a sophisticated mind, could arise from a physical system.

Kanerva has provided a mechanism potentially capable of recon-
structing, or perhaps creating, images, actions, plans, narratives, plays,
paintings, concerti, poems, mathematics. The line between memory and
creativity has become blurred. Stepping across this blurry line, let's visit
with Calvin and his Darwin machine.

The Darwin Machine

Darwinism shows that the product of trial and error can be quite fancy, when
shaped by many rounds of selection against memories.

-Calvin, The Cerebral Symphony

During a recent semester, our cognitive science seminar' devoted itself to
creativity in humans, in other animals, and in machines. We were exposed
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to psychological models, anecdotes, philosophical arguments, software
systems purporting to create, and introspection. For me the most vivid
common thread through all this was the notion of generate and test.1°
Using a problem-solving metaphor for creativity, various solutions are
generated, perhaps randomly or with the aid of heuristics, and then tested
against internal values. In humans, these values have emerged from our
genetic makeup, our development, and our culture. Presumably the same
is true of animals. The machines we looked at had their values imposed
by their designers.

We saw one example of generate and test while visiting with sparse
distributed memory. The contents of the focus prodded memory to gener-
ate a pattern that was then tested against incoming sensory data. In this
case, the value was accuracy of prediction. In symbolic AI programs, test-
ing is typically done against some internal criterion. And you'll recall ge-
netic algorithms as an example of parallel generate and test.

Calvin (1990) offers a parallel generate and test "minimalist model for
mind," calling it a Darwin machine (in contrast to a computer model, a
von Neumann machine).11 Shades of Edelman's Darwin III. Calvin's Dar-
win machine is to he our next attraction. Since Calvin is a neurobiologist,
interpret what you see as a high-level description of underlying neural
processes.

In devising this model, Calvin is concerned with sequences: sequences
of words forming a sentence, sequences of notes forming a melody, se-
quences of actions forming a plan, sequences of events forming a sce-
nario, sequences of muscle contractions and relaxations forming a
throwing motion)2 For the most part, he's concerned with the production
of such sequences. How, for example, am I producing this sentence as I
type it into the computer? Let's use Calvin's vivid analogy of a railroad
marshaling yard as a bridge to his answer.

Imagine a dozen or so parallel spurs funneling into a single output
track. Each spur contains a string of cars (words in the sentence sequence)
chosen randomly or heuristically from recently used words (short-term
memory) and from associations with current context (long-term mem-
ory). Assign the contents of each spur a numerical value based on the
utility of similar past utterances in similar context and on appropriate
syntax. Next replace some of the lower-valued sequences with copies of
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higher-valued sequences, with some randomness in the choices and with
some replacement of words by synonyms or by other mutations. When
some level of agreement is reached among the spurs, or when some value

threshold is reached, the winning train rolls onto the single track to con-
sciousness. This winning sentence may only be a thought, or it may be
expressed in speech, sign language, handwriting, or typed into a com-
puter. Voila, a Darwin machine. Similar mechanisms, or perhaps the same
neural mechanism, could produce plans, scenarios, throwing motions,
melodies, and so on.

The likeness to genetic algorithms is striking. Words correspond to
genes, sequences of words to strings of genes, the contents of the spurs to
the population, and value to fitness. Calvin's Darwin machine can be
fairly described as a neural genetic algorithm.

I'm also struck with the analogy between the single output track and
Kanerva's focus. Calvin calls the contents of the single track the contents
of consciousness, whereas Kanerva terms the contents of the focus "sub-
jective experience."13 This analogy tails off rapidly because of two key
issues. Kanerva's model is inherently serial, whereas Calvin's is decidedly
parallel. Further, Kanerva's model explicitly accounts for the current con-
text via sensory input.

Imagine an amalgam of the two systems with a marshaling yard in-
serted between memory output and the focus (= single track). The sparse
distributed memory serves as long-term memory. Some short-term mem-
ory must be added. Many questions arise, seemingly in parallel. How can
memory feed the individual spurs? Or should it feed into short-term
memory as a buffer? These issues might become simpler if we could im-
plement it all by using Boolean geometry. Is that possible? But let's get
back to the Darwin machine.

The brief description of a Darwin machine given above leaves out al-
most all detail. One issue is how to assign values. It's easy for me to visual-
ize assigning a value to a throwing sequence based on past experience
with a projectile of the given size, shape, and weight; on past experience
with targets in the given direction and at the given distance; and on the
intention of the thrower. Assigning a value to a plan, a sequence of ac-
tions, can use past experience with each given action in its updated con-
text, as well as the desirability of the final outcome. Notice how these
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assignments depend on intention and desirability, as must be the case for
an autonomous agent. Assigning a value to a sequence of words on the
basis of grammar seems straightforward enough. Including the utility of
past experiences with such utterances is less clear to me but within the
range of what I may accept provisionally. So let's assume values can in-
deed be assigned.

How will the choice of a copy of one sequence to replace another be
made? Calvin gives us general guidelines but no specifics. How about bor-
rowing the selection procedure from genetic algorithms? That should
work well.

Then there's the issue of when to send a winner to the single track.
Calvin distinguishes several different modes in which a Darwin machine
can function. In its "choral mode," precision is the goal, and a winner
isn't declared until there's virtual unanimity on the spurs. Throwing, he
says, requires this mode. In the "variations-on-a-theme mode," a winner
is sent forward when near-clones of a highly valued sequence have re-
placed most of the lower-valued sequences. The idea here is to maintain
some variation in output. Finally, there's the "random thoughts mode"
characteristic of dreams and daydreams, and perhaps of songwriting or
other creative activity. Here the valuation scheme is changing, and what
comes out is much less predictable.

Among the many questions left, that of how to implement a Darwin
machine stands out. One possibility, as suggested above, is to use Boolean
geometry à la Kanerva. Calvin, as a neurophysiologist should, suggests a
neural approach via hexagonal mosaics of neurons and their axons
(1992, 1993).

Having thought about remembering and sentence building, our next
attraction makes analogies. Our first two attractions of this stop were
about recalling and planning or speaking; the next one is about
understanding.

Copycat

You'll no doubt recall encountering Searle's Chinese Room thought ex-

periment on one of our early tour stops. With it, Searle hopes to make

patently clear the absurdity of a computer understanding anything. As
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you've seen from my 'quadratic understanding" tale, I view understand-
ing as a matter of degree. Therefore, even a computer program that can
solve quadratic equations understands quadratics at a minimal level.
Searle would agree about levels of understanding but would put the level
of such a program at 0.

We'll next visit a program that, in my view, understands the making of
one kind of analogy at a level clearly above 0. Let's have a look at it and
see what you think. To that end we'll visit the Copycat project of Hof-
stadter and Mitchell (Hofstadter 1984; Mitchell and Hofstadter 1990;
Mitchell 1993).

In order to get in the right mood for this visit, why don't you pretend
you're taking an IQ test? Get out paper and pencil, and write your an-
swers to these analogy questions.

ahcabd ijk?
abcabd xyz*?
abc - abd iijjkk - ?

abc -* abd srqp -?
Most people answer question 1 with iji, replacing the rightmost letter

with its successor. There are other possibilities, say ijd, replacing the
rightmost letter by d. Question 2 is a little trickier, since z has no succes-
sor. We could, of course fall back on xyd, but many people prefer to let
the alphabet wrap and answer xya. Question 3 offers several possibilities:
iijjll, iijjkl, iijjkd, iikjkk, at least. Question 4 seems to require a little more
mental agility. Many people respond with srqo by slipping from successor
to predecessor. Again there are other possibilities. What rule would yield
srpp? srqd? srdp? srrp?

And what would you say about a computer program that would some-
times answer question 2 with wyz? Copycat is such a program. Now that
we're in the mood, let's look first at the assumptions underlying Copycat's
design, and then at its architecture and operation.

Hof stadter and Mitchell consider analogy making, along with recogni-
tion and categorization, as an example of high-level perceptionthat is,
a deep, abstract, multimodel form of perception rather than a low-level,
concrete, unimodel form. Copycat is intended to model this kind of high-
level perception. Its design assumes that high-level perception emerges
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from the activity of many independent processes, running in parallel,
sometimes competing, sometimes cooperating. Copycat is the most
fleshed-out example of the multiplicity of mind concept of Ornstein, Min-
sky, and John Jackson that I've encountered. These independent pro-
cesses, here called codelets, create and destroy temporary perceptual
constructs, trying out variations in the spirit of Calvin's Darwin machine,
if not in its form. The codelets rely on an associative network knowledge
base with blurry conceptual boundaries. The associative networks evolve
to the problem by changing activation levels and by changing degrees of
conceptual overlap. There is no central executive, no one in charge. Deci-
sions are made by codelets independently and probabilistically. The sys-
tem self-organizes; analogy making emerges.

Copycat's architecture is tripartite, consisting of a slipnet, a working
area, and a population of codelets. The slipnet, an associative network
comprised of nodes and links, contains permanent concepts and relations
between then. That's what Copycat knows. It does not learn. The slipnet
is its long-term memory. The system has a connectionist flavor by virtue
of spreading activation in the shpnet. All of this is explicitly encoded.
The working areaworking memory, if you likeis where perceptual
structures are built and modified, sometimes by being torn down. The
population of codelets (Ornstein's small minds, Minsky's agents, Jack-
son's demons) are perceptual and higher-level structuring agents. As

demons should, they wait until the situation is right for them to run, and

then jump into the fray.
Let's have a closer look at each of the three pieces. The slipnet is com-

posed of nodes, each the core of a concept, and labeled links, each indi-

cating some relationship between concepts. That relationship is named
by the label. Note that nodes are meant to represent not a concept but

the core of a concept. More on this in a bit. Figure 13.4 diagrams a small

piece of Copycat's slipnet.
Note that each relationship, each type of association, is labeled, and

that each such label is represented by a nodeto some finite depth, of
course, to avoid infinite regress.

How does the slipnet work? Nodes are activated by codelets when they

seem relevant. A codelet whose job its to watch for an "a" in the input
will activate the "A" node in the slipnet if it finds one. Activation decays,
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Figure 13.4
Portion of Copycat's Slipnet (adapted from Mitchell 1993)

and so goes to O over time, if not reactivated. A node may become inactive
as a temporary structure containing it disappears from the work area.
Nodes spread activation to their neighbors, starting with the nearer
neighbors. Thus, concepts closely associated to relevant concepts become
relevant themselves. Decisions about slippagefor example, from succes-
sor to predecessor, as we saw earlierare made probabilistically, as is
almost every decision. Copycat is a highly nondeterministic model.

Perhaps the most important single concept involved with this model is
the notion of fluid concepts. Hofstadter has written about it separately
(1985), arguing that concepts must be fluid to do the things humans do.
In the Copycat model a concept is a region of the slipnet centered at its
core node and has blurry boundaries. Neighboring nodes are included
probabilistically by similarity, which is context dependent. The similarity
between two nodes shrinks or expands according to what's happening
down in the working area. Fluid concepts vary over time. They are emer-
gent phenomena and are not explicitly represented anywhere in the
system.

Perceptual structures are built in the working area. Copycat starts with
three initial strings, say "abc,' abd," and "xyz." It knows the category
of each letter, recognizing that "a" in the working area corresponds to
the core node in the slipnet of the letter "A." More accurately, some code-
let(s) knows this and acts to activate the proper node. Others know about
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leftmost, successor, and so on. High-level perceptual structures are gradu-
ally built of parts (nodes, links, labels) copied from the slipnet by codelets.
At each moment the content of the working area represents Copycat's
current perception of the problem at hand.

The problem-solving process is highly interactive. Low-level perception
of what's going on in the working area exerts bottom-up influence by
activating relevant nodes in the slipnet. Spreading activation identifies
other relevant nodes. This produces top-down influence from the slipnet
that guides low-level perception by enabling additional, appropriate code-
lets. The process continues until some codelets decide on a satisfactory
answer. Don't let this fool you. There really is no top-level executive in
this model.

We've talked of perceptual structures being built in the working area.
Of what do they consist? There are four major components. Objects are
described. The first "a" in figure 13.5 is described as being the leftmost
in its string. The other three are explicitly illustrated in the figure.
Relations between objects are drawn, say the successor arc from "a" to
"b." Objects are grouped together as "jj" and "kk" are in the figure. Such
grouping may or may not emerge. If it doesn't, Copycat might answer
"ijjkl" instead of the more common "iijjll." Finally, correspondences are
drawn between objects, such as that between "e" and the group "kk" in
the figure.

Having viewed the slipnet and the working area, let's move on to the
third section of Copycat's architecture, codelets. Each codelet is a small
piece of code, originally LISP code. I think of them as acting like Jackson's
demons, each hanging around (in the stands) watching the work area,
and jumping into action (into the arena) when the conditions are right.
Each codelet carries out some relatively simple local task. One might esti-
mate the importance of the "a" in the string "abc" as being the alphabetic
first. Is that crucial here, or would starting with "bed" instead do as well?
Another codelet might notice the role of "a" as the first of that string.
Still another might note that the "b" in the string "abc" succeeds its left
neighbor. Yet another one might build the structure representing this last
fact. The idea is to keep the action of a codelet so small and so local
that it doesn't make a great deal of difference whether one acts at a given
moment. Some other one might do a similar job, or the same one might

have a chance later.
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abc a b d
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Figure 13.5
Perceptual structures (adapted from Mitchell 1993)

For each type of structure, musing" codelets consider the possibility
of building such a structure, whereas "building" codelets wait in the
wings ready to construct it. Other codelets calculate the strength of an
existing structure, that is, how well it contributes to an understanding of
the current situation. This strength value serves a decision, by some other
codelet, as to whether to continue the structure. Every structure, then, is
built by a sequence of codelets, some deciding probabilistically to con-
tinue or to abandon it. Such decisions are made according to strength
assigned by other codelets. If the structure is to be continued, another
codelet assigns an urgency value to subsequent codelets. If the structure
is not abandoned, the sequence ends with a builder codelet, which adds it
to the work space, where it possibly competes with existing incompatible
structures, such as a successor link competing with a predecessor link.

How do codelets become active? First, codelets are selected from the
population of codelets and added to a single pool of relevant codelets by
currently running codelets and by active slipnet nodes. A codelet re-
turning a high strength for a given structure might well select a builder of
that structure as relevant. A node in the slipnet that has recently been
the beneficiary of spreading activation may select codelets that evaluate
structures of which it's a part for inclusion in the pool. Codelets are then
chosen from the pool to run, the choice being probabilistically based on
urgency. An active codelet is removed from the pool.
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Copycat begins "life" with an initial population of codelets that does
not change. Codelets are predetermined by the designers. However, the
speed of each codelet, and computational resources, are dynamically reg-
ulated by moment-to-moment evaluations of their relevance to the cur-
rent overall structure. A process, such as one building a particular
structure, consists of many codelets and is not predetermined. Rather, it's
postdetermined, becoming visible to an outside observer. Within Copy-
cat, such processes are emergent entities with no formal representation.

In Copycat, all activity is performed by codelets: "many possible
courses of action are explored simultaneously, each at a speed and to a
depth proportional to moment-to-moment estimates of its promise"
(Mitchell and Hofstadter, p. 328 of reprint). Hofstadter and Mitchell re-
fer to such an operation as a parallel terraced scan.

Only one more key idea is needed. Computational temperature is in-
tended to measure the "disorganization ('entropy') in the system's under-
standing of the situation." Temperature starts high and falls as more and
better structures are built, reflecting a better understanding of the system.
As the total strength of the existing structures increases, the temperature
decreases. The temperature at a particular instant controls the degree of
randomness in the system, both in the choosing of active codelets and in
the decisions of individual codelets. At high temperatures such choices

and decisions are more random; at lower temperatures they are more de-

terministic.14 Note that temperature is a global concept in the midst of an

otherwise entirely local system. To calculate it, strengths must be summed

over all existing structures.
With all this machinery of mind in hand, let's see Copycat in action.

A Copycat Run

Mitchell and Hofstadter (1990) graciously provided sample screen dumps

from a run of Copycat, giving us an opportunity to watch mechanisms of

mind in action. We'll go through the screens, picking out some high

points. I urge you to come back and spend more time exploring. This one

is an exceedingly rich attraction.
The initial input for our sample run (figure 13.6) was "abc > abd"

as "xyz => ?" Keep in mind that what you'll be seeing are sample screen

dumps with much happening in between.
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Figure 13.6
Sample run, screen i (redrawn from Mitchell 1993)

Note that the initial temperature, depicted by the bar at the left, is loo,
reflecting the lack of structure (understanding) in the working area. The
screen shows neither slipnet nor codelets.

In figure 13.7 solid lines reflect identity relations already constructed.
The dotted lines depict relations and one correspondence ("a" to "x")
being considered. Note the competing predecessor and successor rela-
tions between "b" and "c."

In figure 13.8 we see more structure and, hence, a lower temperature.
The "c" to "z" correspondence is in place and labeled (rightmost to
rightmost); the "a" to "x" is still being considered.

For the first time, a group is being considered in figure 13.9.
In figure 13.10 the successor group "abc" has been built, a second cor-

respondence put in place, and a rule proposed, by filling in a template
(Replace by ) This rule describes what Copycat now
thinks is happening on the first line of the input. As a result of the addi-
tional structure, temperature has taken a sizable hit. Note the predecessor
relation "c" to "b" still competing.
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Figure 13.7
Sample run, screen 2 (redrawn from Mitchell 1993)

Figure 13.8
Sample run, screen 3 (redrawn from Mitchell 1993)
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Figure 13.9
Sample run, screen 4 (redrawn from Mitchell 1993)

Replace rmost letter by successor of rmost letter

Figure 13.10
Sample run, screen S (redrawn from Mitchell 1993)
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Replace rmost letter by successor of rmost letter

a b c

p,.

lmost.>Imost mid..mid rmost->rmost

a

Figure 13.11
Sample run, screen 6 (redrawn from Mitchell 1993)
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Copycat is becoming ever more confident in figure 13.11. Another suc-
cessor group has been identified. Three correspondences have been built,
and a group correspondence is being considered. Another hit to
temperature.

Everything is looking rosy in figure 13.12. The correspondences are in
place and are listed ("sgrp => sgrp" says that a successor group corre-
sponds to a successor group.) The listed correspondences are applied to
the top rule to produce the bottom rule, the one Copycat intends to apply
to create an answer. In this case, the rules are the same. Temperature has
dropped almost to O. Now an answer-building codelet goes looking for a
successor to z" and finds none. The slipnet not only has no successor to
"z" but purposely has been given no relation from "z" back to "a." The
bottom has dropped out. This line of reasoning won't work. What to do
now?

Copycat decides that its current understanding of this situation leaves
something to be desired (see figure 13.13). Temperature shoots up, and
as a result, structures begin to break down. Copycat is starting afresh,
but not completely afresh. You may well ask how the temperature can be
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7

Replace rmost letter by successor of rmost letter

Imost->lmost mid->mid rmost->rmost
sgrp->sgrp
right.>right
succ->succ

Replace rmost letter by successor of rmost letter

Figure 13.12
Sample run, screen 7 (redrawn from Mitchell 1993)

loo

Replace rmost letter by successor of rmost letter

a b c

mid->mid rmost->rmost
sgrp->sgrp
right->right
succ->succ

a

Figure 13.13
Sample run, screen 8 (redrawn from Mitchell 1993)
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so high with so much structure left. Remember, it's the total strength of
structure that is inversely related to temperature. The strengths of these
structures suffered mightily when the rule couldn't be applied.

In Figure 13.14 we see more structure down the tubes, along with all
rules. And a possible "a" to "z" correspondence.

The top rule has returned in figure 13.15, and all sorts of structures are
being tried. The "a" to "z" correspondence is in place, and with it a first-
to-last slippage. The temperature is dropping.

Two groups have formed in figure 13.16, a successor group on top and
a predecessor group on bottom. Temperature more than halves, showing
Copycat's confidence in the newly formed structures.

Correspondences are now complete in figure 13.17. The resulting slip-
pages are listed, by means of which the top rule is transformed into the
bottom rule. Answer-building codelets are now able to implement this
last rule, arriving at "wyz' as an answer. Not bad for a computer system.

The rather creative answer arrived at by Copycat during this run hap-
pens occasionally with this input. More often Copycat falls back on the

Figure 13.14
Sample run, screen 9 (redrawn from Mitchell 1993)
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60

Replace rmost letter by successor of rmost letter

lmost->rmost
first->last

a

Figure 13.15
Sample run, screen 10 (redrawn from Mitchell 1993)

Replace rmost letter by successor of rmost letter

Figure 13.16
Sample run, screen 11 (redrawn from Mitchell 1993)
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I

Replace rmost letter by successor of rmost letter

rmost->lmost mid->mid lmost->rmost
sgrp->pgrp
right-> left

15 succ->pred

Replace Imost letter by predecessor of most letter

Figure 13.17
Sample run, screen 12 (redrawn from Mitchell 1993)

more humdrum rule replace rmost letter by "d." Well, none of us can be
creative all the time.

Copycat's parallel terraced scan strategy uses information as it's ob-
tained, thus speeding up convergence to a solution. It biases its choices
probabilistically and never absolutely rules out any path. (Note the simi-
larity to the notion of maintaining genetic diversity in genetic algorithms.)
Mitchell and Hofstadter speculate that this type of strategy "is optimal
in any situation where an intractable number of paths are to be explored
in a limited time." I wouldn't be surprised.

They make a further, perhaps even more ambitious, claim: "tempera-
ture-controlled parallel terraced scan is a plausible description of how
perception takes place in humans" (Mitchell and Hofstadter 1990, p. 329
of reprint). During a talk on Copycat to our cognitive science seminar,
I relayed this assertion to an audience liberally sprinkled with cognitive
psychologists and their students, expecting a howl of protest. To my
amazement, all I saw was a nodding of heads. It seems that, to some at
least, Copycat's architecture embodies plausible mechanisms of mind.
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The Copycat system could be viewed as a more filled-out version of
Calvin's Darwin machine, with the spurs all superimposed on one another
in the working area and the single track corresponding to the answer area
within the working area)5 I suspect that in writing the last sentence, the
idea of comparing the two and of the specific correspondences was pro-
duced in a Copycat-like fashion, whereas my actual sentence was gener-
ated in a Darwin machine-like way. Copycat seems more concerned with
content; a Darwin machine, more with form. For a Darwin machine,
form and content are ultimately determined by assigned values. Could a
Copycat-like architecture take part in this assignment? I suspect so. And,
as long as we're speculating, I can imagine a system integrating sparse
distributed memories with Darwin machines and with Copycat
architectures.

The three attractions of this tour stop, on top of the many other mecha-
nisms of mind we've encountered, tend to support the idea that mind is
enabled by a multitude of disparate mechanisms, one of the tenets of the
new paradigm of mind I'm trying to sell. On our next stop we'll explore
further the idea of situated action, the world as its own best model, that
we met earlier while visiting the work of Brooks.

Notes

When I tried this out on my rieurophysiologist friend Lloyd Partridge, he
promptly explained that no scientific theory is correct.

In my previous incarnation as a topologist, only infinite topological spaces
were of interest to me.

For the mathematically more sophisticated, Boolean space refers to some vec-
tor space over the two-element field Z2.

In this case a location is an almost circular arc of spiral groove.

I will try to adhere to Kanerva's convention of using lowercase Greek letters
for locations and for data, and lowercase Roman letters for hard locations. The
Greek letters will include (xi), q (eta), and (zeta).

"Convergence" here means that for sufficiently large n, = , that is, far
enough out in the sequence all bit vectors are, in fact, .

Although there's certainly truth in this view, it omits a vital aspect of under-
standing, the number and complexity of associative connections. You'll recall our
earlier visit with "quadratic understanding."
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Kanerva uses the term "subjective experience." I've avoided it in order not to
become embroiled in issues of qualia and first-person consciousness.

One of the interdisciplinary seminars sponsored by the Institute for Intelligent
Systems at the University of Memphis.

"Generate and test" is the term commonly used in symbolic AI for this idea.
It denotes a somewhat more sophisticated approach than does "trial and error."

The Hungarian-American mathematician John von Neumann is credited
with the idea of storing programs as well as data in memory. Such computers,
almost all of ours today, are in this sense von Neumann machines.

Calvin has been long concerned with the question of encephalization. What
caused a fourfold enlargement of homind brains in a mere, by paleontological
standards, 2.5 million years? Part of Calvin's answer is projectile predation" en-
abled by sequences of muscle contractions and relaxations forming a throwing
motion (1991).

I'd be interested to hear if Dennett (1991) would consider Calvin's single
track or Kanerva's focus Cartesian Theaters to be avoided. Dennett's multiple
drafts model otherwise seems in line with a Darwin machine.

Temperature seems analogous to learning rate in an artificial neural network,
which, when high, allows large umps, perhaps out of local minima, and when
small, moves steadily toward a solution.

One mustn't carry this analogy too far. Whereas Copycat certainly works in
a parallel fashion, a Darwin machine is more massively parallel, having tens or
hundreds of candidate solutions.

Copyrighted Material



Copyrighted Material



14
Representation and the Third AI Debate

The much greater perspicuity and the inherent thinking advantages of powerful
representations enable progress that would be impossibly difficult with anything
less adequate. . . . [A good representation] makes the important things explicit
[and] exposes the natural constraints inherent in the problem.

-Patrick Henry Winston, Artificial Intelligence

Winston is right. Once an appropriate representation is available, many problems
do become amenable to automatic solution. In our view, however, the problem
requiring intelligence is the original one of finding a representation. To place this
problem in the domain of the system designer rather than in that of the designed
system is to beg the question and reduce intelligence to symbol manipulation

George Reeke and Gerald Edelman "Real Brains and Artificial Intelligence"

Symbolic AI researchers stress the importance of choosing a "powerful"
representation for a computing system to use while solving a problem.
Others maintain that finding a powerful representation is what requires
intelligence in the first place, and that what comes after is only symbol
crunching.' Still others (Agre and Chapman 1987a, 1988) contend that
we often choose the wrong type of representation. And there are those,
several of whom we've met, who think that the need for representations
at all is highly exaggerated (Brooks 1990c; Freeman and Skarda 1990;
Agre and Chapman 1987a). This last is the bone of contention of what I

call the third AI debate.
Let's begin with a brief visit to one powerful representation. I'll present

it in the context of a problem and its solution. Please don't turn the page

until you've read the statement of the problem and thought a few mo-

ments about possible methods of solution.
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The problem: Can an 8 X 8 grid missing two corners, as illustrated in
figure 14.1, be covered exactly by nonoverlapping dominos?2

What, exactly, does the problem ask for? A positive solution would
consist of a pattern of dominoes, nonoverlapping, each covering two
squares, with no square uncovered (or of a proof that such exists).

How might we go about trying to solve this problem? Buy several boxes
of dominoes and proceed by trial and error to find a covering? Unlikely
to work. Try an exhaustive computer search of all possible such cov-
erings? Too time consuming. Use a temperature-controlled, parallel ter-
raced scan à la Hofstadter and Mitchell? That's a lot of machinery to
construct. How about a powerful representation? What?

Well, here a representation. Think of the grid as a checkerboard with
white and black squares (figure 14.2).

It is powerful? You bet. Since each domino covers one square of each
color (a natural constraint exposed by the representation), any exact non-
overlapping covering must cover an equal number of squares of each color
(an important thing made explicit). But white squares number thirty-two,
and black squares only thirty. Hence, there is no such covering of this
board. A powerful representation made the negative solution almost
trivial.

All this is by way of focusing our attention on representations, which
along with goals and motives, provide the conceptual underpinnings of
the attractions of this tour stop. Our first attraction will introduce us to
a different kind of representation.

Figure 14.1
Domino covering problem
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Figure 14.2
A powerful representation

Deictic Representations

Life is a continual improvisation.
Philip Agre and David Chapman, Pengi

state is less necessary and less important than is often assumed.

Philip Agre and David Chapman, Pengi

Our first major attraction of this tour stop introduces us to the work of
Agre and Chapman (1987a, 1988; Chapman and Agre 1987; Chapman
1991; Agre 1995) on deictic representations, sometimes known as

indexical-functional representations.3
Two central themes of this work are set out in the quotes above. "Life

is a continual improvisation." Think about improvising music as opposed
to following the score. We make immediate decisions in response to im-
mediate situations much more often than we follow detailed plans. We
don't plan as much as we improvise.

Equally important is "state is less necessary and less important than is
often assumed." Here "state" is used in the sense of the internal state of
a system, in this case an internal model of the world. We don't have to
use internal representations when we can look out and see the world as

its own best data structure. Agre and Chapman are coming down on one
side of the third AI debate.

Agre and Chapman distinguish between capital-P Planning and little-
p planning. During the former a smart planner constructs a plan, as a
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programmer writes a program, and a dumb executive carries it out me-
chanically. The plan must be readily interpretable by the executive, that
is, no creativity or originality, or even much thought, should be needed
in order to know what to do next. Instructions should be immediately
meaningful to the executive. This kind of Planning entails problem solv-
ing and reasoning with representations, as is common among symbolic
AI systems. There's a large literature on Planning in an artificial intelli-
gence context.

Little-p planning is introduced via prototypes: following a recipe for
spring onion soup, following directions on getting from here to the air-
port, or using a reference manual for Microsoft Word. In this type of
planning, being a dumb executive won't cut it. Some rearrangement might
be called for, doing things in a different order. The task may involve inter-
polation. In going from here to the airport, I might have to stop and inter-
polate the changing of a flat tire. And disambiguation may well be
needed, though ambiguous commands are prohibited by definition in
Planning. And I might substitute skim milk for whole milk in a recipe.
Improvising while following a plan is the essence of planning. Note that
planning doesn't require following someone else's recipe, directions, or
whatever. I may mentally lay out my own rough route to the airport from
an unfamiliar starting point and improvise my way through it. That's
also planning.

Agre and Chapman are critical of Planning, not in all cases but as a
basis for daily activities. Why? Because real situations are complex, un-
certain, and immediate. Planning is combinatorially explosive (Chapman
1987), and thus unlikely to scale up to the complex situations we and
other interesting autonomous agents may face. There are simply too many
details to consider. The complexity also implies that real situations can-
not be completely represented. Again there are too many details. There is
neither time nor space to represent a given real situation completely. Thus
complexity leads to uncertainty, creating difficulties for Planning. Also,
the actions of other agents and processes cannot be predicted. (Etholo-
gists have claimed that the most difficult problem a chimp faces is to pre-
dict what another chimp in the band is going to do next.) One reason is
that we typically don't know enough to predict actions with much confi-
dence. Another is that other agents may well be complex systems exhib-
iting sensitive dependence on initial conditions, and are thus inherently
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unpredictable. Planning can be a problem. Finally, real situations are im-
mediate: Life is fired at you point blank: when the rock you step on
pivots unexpectedly, you have only milliseconds to react. Proving theo-
rems is out of the question." (Agre and Chapman 1987a, p. 268)

Well, if we mostly don't plan, what do we do? Activity, they say, is
mostly derived from simple machinery that exploits regularities in pre-
viously encountered situations similar to the present one. (Shades of Kan-
erva's agent. I'm beginning to detect some convergence of ideas.) This
machinery engages in "complex and apparently planful activity without
requiring explicit models of the world." Agre and Chapman are not op-
posed to internal models of the world. They simply claim, along with
Brooks and others, that a lot can be done without them. But how can
simple machinery produce such complex behavior? Recall Simon's ant
tracing a complex path among the pebbles on a beach, the complexity
due to the pattern of the pebbles. With autonomous agents in general,
complex action likely arises from the situation rather than from the ma-
chinery choosing for the agent.

So much for the general ideas. What have Agre and Chapman actually
done by way of mechanisms of minds? They've played games. At least
one game, Pengo (see figure 14.3).

Pengo is played on a two-dimensional maze of ice blocks. The player
navigates a penguin icon with a joystick. Bees chase and try to kill the
penguin. Both penguin and bees can kick ice blocks, making them slide.
Sliding blocks kill bees or penguin on contact.

But what does Pengo have to do with deictic representation? Agre and
Chapman take Pengo as a simple model of reality because, like reality, it's
complex, uncertain, and immediate. Pengo is complex in that the several

hundred objects would require a thousand propositions, too much for

any current Planner. Bee behavior is not fully predictable because of a
built-in random component. Finally, real-time response is required; if
you're the penguin, you'd better get out of the way. Pengo, then, models

the situation in which real autonomous agents typically find themselves.

And playing Pengo requires certain skills. A player would run to escape

the bees, would hunt down bees when he had an advantage, might build

traps and escape routes, could maneuver bees into corners. So much for

a background in playing Pengo. Let's meet Pengi.
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Figure 14.3
The Pengo Board (redrawn from Agre and Chapman 1987)

Pengi is an autonomous agent, a software agent, who plays Pengo. As
you would expect, given the buildup, he follows no rigid Plan but acts
upon the immediate circumstances. It's situated activity. Pengi uses a set
of goals and a stock of skills. He takes advantage of opportunities and
deals with unexpected contingencies as best he can. He, like you and me,
follows routines.

Routines are patterns of interactions between an agent and its world. I
have a routine for cutting a banana into my cereal, another for toweling
dry after a shower. My routine for each of these is probably different from
those of other people. Don't mistake a routine for a Plan or a procedure.
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Nor for a data structure. An agent doesn't typically represent its routines
at all. Rather, routines emerge from local behavior. Pengi, for example,
when running from a bee, typically runs as far as he can or until he hits
an ice wall. In the latter case he kicks through it and continues running
until he meets the next wall, and continues in this way. Note that "rou-
tine" is a concept useful to us, the observers, but not a concept used by
Pengi.

Since the concept of routine is an important one for this work, let's
look at it a little more closely. The routine of running from a bee seems
as if it were implemented by a pair of rules, the first being to run away
when you are being chased, the second to kick through a wall if you run
into it while running away. When the situation changessay the chasing
bee is crushed by a block kicked by another beethe "being chased"
rules no longer apply. There is no need even to represent that event inter-
nally. Pengi can just forget that bee. He doesn't have to know that
the chasing bee was killed. He doesn't care. Other responses become
applicable. Pengi can do things now that he couldn't do while being
chased by the bee. Routines are opportunistic. Responses can be simple,
allowing real-time activity: "Causality flows into this system from the
world, drives the rules, which choose what to do, resulting in action
which changes the world, and back again into the system, which responds
to the changes." (Agre and Chapman 1987a, p. 269)

OK, if you were going to write a program to implement Pengi, how
would you do it? The obvious way to us old-time procedural program-
mers (or even functional programmers5) would be with object relation
representation.6 A LISP form (AT BLOCK-213 197, 52) would represent

a relation AT holding between BLOCK-213 and a position on the board
given by the pair of numbers 197, 52. The form (IS-A BLOCK-213
BLOCK) would assert that BLOCK-213 is a member of the category
BLOCK. (NEXT-TO BLOCK-213 BLOCK-23) would tell us that two
blocks are neighbors. Keep in mind that a Pengo board contains roughly
25 X 25 squares and over 100 ice blocks. A traditional Planner would

use probably thousands of such forms to represent each board situation,
since it must know where each block is, which ones are its neighbors,
where the bees are, their relations to neighboring blocks, their direction,
and so on. With this type of representation, each form names some indi-
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vidual block or bee or penguin. None refers to the penguin's situation or
goals. They are situation independent and goal independent.

Agre and Chapman want to offer us another way. They introduce the
notion of an indexical-fiinctional entity. Some examples: the-block-I'm-
kicking, the-corridor-I'm-running-along, the-bee-on-the-other-side-of-
the-block-next-to-me, the-block-that-the-block-I-just-kicked-will-collide-
with. Pengi doesn't name these entities and doesn't manipulate them di-
rectly. He doesn't care which block he's pushing. Typically he's pushing
just one block, so that the-block-I'm-pushing really distinguishes a block.
Entities are intermediate between logical individuals and categories.
BLOCK-213 is a logical individual. The set of blocks being pushed is a
category. The-block-I'm-pushing is neither but something in between.
Well, if Pengi doesn't name or manipulate these entities, how are they
used? They are embedded in aspects. What is an aspect?

An indexical-functional aspect is some aspect of the current Pengo situ-
ation in the way we normally use the word. Here are some examples: The-
block-I'm-going-to-kick-at-the-bee-is-behind-me (so I have to backtrack).
I've-run-into-the-edge-of-the-screen (better turn and run along it).

The-bee-I-intend-to-clobber-is-closer-to-the-projectile-than-I-am (danger-
ous). . . . -but-it's-heading-away-from-it (which is OK). I'm-adjacent-to-
my-chosen-projectile (so kick it). Aspects are properties of the situation
in which Pengi finds himself that are relevant to his current goals. He uses
them to help select the next action. They're a mechanism of mind.

We've spoken of indexical-functional entities and aspects. Entities and
aspects are functional representations in that they are relative to Pengi's
purposes, goals, or motives. When running away, Pengi should find the-
bee-that-is-chasing-me and the-obstacle-to-my-flight. Aspects are not de-

fined in terms of specific individuals (BEE 70) but in terms of function
in the current situation. The-bee-that-is-chasing-me may be a different
individual from moment to moment. Pengi can't tell the difference, and
doesn't care. For his current purpose (getting out of harm's way), it doesn't
matter. If a school bus is bearing down on me, I don't stop to ask from
what school but simply get out of the way. A particular object may be
different entities at different times, depending on function. The-bee-
that-is-chasing-me might become the-bee-that-I-am-about-to-kick-a-
projectile-at at a later time. Entities and aspects are indexical representa-
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tions in that they are relative to the agent defining them. They depend on
Pengi's circumstances at the moment.

Since changes propagate slowly over the Pengo board, Pengi can ignore
most of the screen most of the time. To know where something is, Pengi
simply looks at the screen rather than searching through some internal,
and necessarily outdated, database. Hence much of the overhead of
search, reasoning, and representation can be eliminated. Avoiding repre-
sentation of individuals bypasses the binding of constants to variables. In
order to kick some block (say SOME-BLOCK) at some bee (SOME-BEE),
when representing individuals, these variables must be bound to (Instanti-
ated as) say BLOCK-23 and BEE-12. As in much of our moment-to-
moment activity, there's simply no need to keep track of individuals. The
result is simpler mechanisms.

And what do these simpler mechanisms look like? Here's a quick look.
The high-level architecture, as you would expect, consists of peripheral
systems responsible for perception and effector control, and a central sys-
tem responsible for registering and acting on relevant aspects of the situa-
tion. Since entities and aspects avoid representation and reasoning, the
central system can be relatively simple. You don't have to prove theorems
in there. The central system is constructed as a combinational network, a
connectionist-like network composed of digital circuits, each with many
components (Boolean functions, gates). (The choice of this technology
over artificial neural nets was dictated by engineering considerations. Ei-

ther could do the job.) Inputs come from the perceptual system, and Out-
puts go to the motor system. The central network decides on actions
appropriate to the situation. Representation (as we spoke of it in the arti-
ficial neural net context) is distributed; many nodes, in conjunction, regis-
ter particular aspects. As the world changes, perceptual inputs change,

are propagated through the network, and drive appropriate actions. Pengi
does all this without maintaining any internal state (memory) in the cen-
tral system.

Keep in mind that aspects are not data structures but external descrip-
tions of some aspect of the current situation as registered by the activity

over a set of components in the central network. No variables are bound

to symbols that represent objects. Aspects produce actions via output
from the central system to the effector system. These actions, typically
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part of routines, change the world, and thus the perceptual systems, so
that, perhaps, different aspects are seen.

Though the central system is relatively simple, one of the peripheral
systems, the perceptual system, is a little more complex than we've indi-
cated. There, a visual routines processor (VRP) operates in tandem with
the central system, that is, there's input and output both ways between
them (see figure 14.4). They exchange patterns of activity. The early vision
part of the perceptual system produces a two-dimensional sketch of what
it sees. The VRP creates and maintains internal copies of this sketch, each
modified for the needs of its operations. The VRP can, often on command
from the central system, color in regions, trace curves, track locations
with visual markers, index interesting features, detect and track moving
objects. This pretty powerful processor is based on the work of UlIman
(1983).

The central network guides the VRP as to what operator is to be ap-
plied to what image. The outputs of the VRP are inputs to the central
network. The central system gets no input directly from early vision. Dur-
ing a visual routine, the VRP, guided by the central network, finds entities
in its images, registers aspects, and injects them as inputs into the central

vision system

VRP

V

central network

y
motor control

Figure 14.4
The VRP's place in the system
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system. Much of the hard work is done here. This is another reason the
central system gets away with simple machinery. The central network reg-
isters aspects using Boolean combinations of inputs from the VRP. Let's
see an example or two.

Some visual routines run constantly. Pengi always wants to know if
there's a bee chasing him. Some of them run under certain circumstances.
After kicking the-block-that-is-in-my-way, it is useful to find the-block-
that-the-block-I-just-kicked-will-collide-with. The central system directs
the VRP to trace a ray from the kicked block until it hits something
solid (figure 14.5). Then it's to mark that thing, and check to see if it's
a block.

Here is another one.
The penguin is hiding behind a wall of bricks. A bee on the other side

is heading toward the wall. To find the-block-to-kick-at-the-bee, what
should the VRP do? First, extend a ray along the path of the bee and
through the wall (figure 14.6). Then draw a ray along the wall, and drop
a marker at the intersection. Note the necessity for exchange of patterns
of activity between the central system and the VRP.

We've had a fairly good look at Pengi but have yet to encounter the
most important issue: How does he decide what to do next? Each action
is suggested by local plausibility in the current situation. There may be
several plausible actions. Suppose a bee is closing in. Pengi could run

D

Figure 14.5
Finding a collision target (redrawn from Agre and Chapman 1987)
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D

Figure 14.6
Finding the-block-to-kick-at-the-bee (redrawn from Agre and Chapman 1987)

away. Or he could run to a block and kick it at the bee. How does Pengi
choose berween these? He uses aspects of the situation and several levels
of arbitration. There may be a general rule that if you are being chased
by a bee on the other side of a block, and you're closer to the block than
the bee is, run to the block and kick it at him, or else turn tail and flee.
But there may be exceptions to the "or else" clause. If you are in a narrow
passage, then run toward the bee and hope for the best. If you run away
from the bee, it's going to kick the block, and there is no place for you to
go. Your only chance is for something to happen to the bee. It might
randomly stop chasing you. Or some other bee might squash it for you.
A slim chance, but a chance. And the exception may have exceptions. If
there is time, kick a hole in the passage and escape. An action may be
proposed, discarded, resurrected, given up for another, and so onan
example of relatively simple machinery producing complex processes as
a result of what's going on out in the world.

Agre and Chapman think highly of action arbitration, since it doesn't
require internal representations in the usual sense, nor does it require
search and prediction. Thus they claimrightly, I expectthat it's more
efficient than Planning. Action arbitration can produce sequences of ac-
tions and can resolve goal conflicts. Since Pengi's central system does all
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this with no state, they conclude that "state is less necessary and less
important than is often assumed."

There's much for me to learn from this work. As Wilson pointed Out to
us earlier, most animals, and most interesting autonomous agents, exist
in a sea of incoming sensory signals, almost all of which are irrelevant. It
is not only inefficient, but usually impossible, to represent it all in an
internal model. Here I mean objective representation via individual ob-
jects and relations between them. Agre and Chapman offer us deictic rep-
resentations in terms of indexical-functional entities and indexical-

functional aspects, representing not individuals but roles and conditions
with respect to the defining agent. Action selection in real time becomes
possible.

Action selection, at a high level, is emergent. The rules illustrating ac-
tion arbitration, which we met a bit ago, are not written symbolically in
somewhere memory. Rather, they arise in the mind of an observer watch-
ing the output of the circuits comprising the central system. One might
say the rules are hardwired in. Somehow, I'm a little uncomfortable with
that, and would prefer to say they emerge from the hardware. The source
of my discomfort is the belief that more emerges than was intentionally
built in by the designer.

This work also supports the notion of information as created rather
than processed: "Because a deictic representation must be causally con-
nected with its referent, part of its responsibility is to constitute an object.

The real world is not neatly divided into discrete objects with identity
labels on them. What counts as an object depends on the task" (Chapman

1991, p. 32). Chapman gives two examples. A window frame is part of

the window to a carpenter nailing it into a wall, but not part of the win-

dow to a window cleaner squeegeeing it off. Similarly, the top of a can of

paint is part of the paint can when it's being stored in a cabinet but a

separate object when you want to dip a brush in.
Here's a philosopher's voice espousing this view: "'Objects' do not exist

independently of conceptual schemes. We cut up the world into objects

when we introduce one or another scheme of description" (Putnam 1981,

p. 52).
The work of Agre and Chapman provides a perfect introduction to the

notion of structural coupling, which is central to our next attraction.
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The Enactive Paradigm

We'll next visit with the work of Varela, Thompson, and Rosch (1991),
a neuroscientist, a philosopher, and a cognitive scientist. They propound
an enactive paradigm of mind that views mind as embodied action. To
understand just what that means is my purpose for this visit.7 Let's take
a roundabout approach, comparing three different paradigms of mind:
the cognitivist, the connectionist, and the enactive.

The cognitivist paradigm, embraced by symbolic AI and by traditional
cognitive science, is motivated, as we've seen, by the computational model
of mind. Mind can be likened to a virtual, von Neumann-like machine
running on top of underlying neural mechanisms or on top of logic gates
fabricated of silicon. Thought, then, consists of manipulating symbolic
representations of both external and internal objects, concepts, and so
On: "in addition to the levels of physics and neurobiology, cognitivism
postulates a distinct, irreducible symbolic level in the explanation of cog-
nition" (Varela et al. 1991, p.a 41).

Varela et al. (p. 42) summarize the cognitivist view by asking and giving
cognitivist answers to three fundamental questions, as follows:

Question 1: What is cognition?
Answer: Information processing as symbolic computationrule-based
manipulation of symbols.
Question 2: How does it work?
Answer: Through any device that can support and manipulate discrete
functional elementsthe symbols. The system interacts only with the
form of the symbols (their physical attributes), not their meaning.
Question 3: How do I know when a cognitive system is functioning
adequately?
Answer: When the symbols appropriately represent some aspect of the
real world, and the information processing leads to a successful solution
of the problem given to the system.

Note that the first answer, in prescribing rule-based manipulation of
symbols, means rule-governed (rule-driven) rather than rule-describable.
We'll meet this distinction again later. Recall the Horgan and Tienson
contention that although representations are necessary, rule-governed
processing over high-level representations can never produce real-time ap-
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propriate actions. The second answer brings the response from Searle and
others that abstract symbol manipulation can never produce intelligence.
We met some of them on our visit to the first Al debate. Embedded in the
third answer is the assumption of information from the external world
being processed by the system, a view we've seen opposed several times
recently.

One consequence of the cognitivist approach is that "cognition can
proceed without consciousness." It's quite consistent with consciousness
being epiphenomenal, and thus seems unable to account for our intuition
of consciousness being central to our idea of self. Some would reply, So
what? Consciousness is only an illusion (Dennett 1991). The first answer
above also assumes a central processor of some sort that manipulates
symbols according to rules.

The connectionist paradigm, one of the names Varela et al. (p. 99) give
it, dispenses not only with the symbol processor but also with the symbols
themselves. Here, instead of a computer model of mind, we take a brain
model of mind. From this perspective, the answers to the three fundamen-
tal questions look very different.

Question 1: What is cognition?
Answer: The emergence of global states in a network of simple
components.
Question 2: How does it work?
Answer: Through local rules for individual operation and rules for
changes in the connectivity among the elements.
Question 3: How do I know when a cognitive system is functioning
adequately?
Answer: When the emergent properties (and resulting structure) can be
seen to correspond to a specific cognitive capacitya successful solution
to a required task.

All this is, of course, familiar from our visit with artificial neural

networks. To be interesting or useful, the network postulated in the first

answer would typically contain many simple components highly inter-
connected. The emergent global states are patterns of activity of these

components. Both artificial neural networks and the Boolean automata

networks of Kauffman (1993) are examples. Some of the local rules of the

second answer serve to update the activity (state) of the network, either
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synchronously or asynchronously, and others may enable a learning pro-
cess, perhaps via changes in the strengths of connections. In the connec-
tionist paradigm, meaning resides in emergent properties (global states)
rather than in symbols.

As in the cognitivist paradigm, the quality of a connectionist system
is relative to some "required task." Presumably the required task of an
autonomous agent is to choose the next action so as to successfully satisfy
its needs by interactions with its environment. This sounds a lot like Wil-
son's adaptation of van Heerdon's definition of intelligence, especially if
we also require learning from experience, as allowed for in the second
answer. This view leads us directly into the enactive paradigm.

The cognitivist answers to the three fundamental questions resonate
with conventional wisdom in our culture, and so are easy to understand.
The connectionist answers, I hope, present not much more difficulty, since
we have visited with several connectionist or near-connectionist systems.
The enactive answers, on the other hand, are couched in unfamiliar con-
cepts and grounded in an exotic worldview. One possible course would
be to meet the concepts and the worldview in preparation for the answers.
I've chosen a different course: using the initially opaque answers as moti-
vation to meet the concepts and worldview. Please bear with me. I hope
clarity will prove to be an emergent property.

Here are the questions again, and the answers of the enactive paradigm

(p. 206).

Question 1: What is cognition?
Answer: Enaction: a history of structural coupling that brings forth a
world.
Question 2: How does it work?
Answer: Through a network consisting of multiple levels of intercon-
nected, sensorimotor subnetworks.
Question 3: How do I know when a cognitive system is functioning
adequately?
Answer: When it becomes part of an ongoing existing world (as the
young of every species do) or shapes a new one (as happens in evolution-
ary history).

Wow! Where to begin? Let's let the answers guide us. "Enaction" is
defined in terms of structural coupling" and "bringing forth a world."
Let's start with the second of these.
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Our culture's dominant view has minds processing information from
the world out there. I, and others, have tried to sell a different view: that
minds create information for their own uses. Some Eastern religions view
the outside world as maya, illusion created by mind. The enactive para-
digm's "bringing forth a world" includes the view of information as cre-
ated by mind, and goes a little farther: "mutual specification ... enables
us to negotiate a middle path between the Scylla of cognition as the recov-
ery of a pregiven outer world (realism) and the Charybdis of cognition as
the projection of a pregiven inner world (idealism)" (p. 172).

What is this middle path? Let's first consider another question. Which
came first, the world or our experience of the world? Sounds ridiculous,
doesn't it? Of course there has to be a world before I can experience it.
Varela et al. propose an illuminating analogy. As one follows the flight of
a bird, which comes first, a movement of the eyes or the registering of an
image? Well, there must be an image of a bird flying before I can move
my eyes to follow it. But I must move my eyes to a position to register the
bird's image before that can happen. Ah, it seems impossible to say. It's
the chicken or egg problem, each seeming to have the other as a prerequi-
site. Or, we might say, each mutually specifying the other, the image speci-
fying where to look, the action specifying what image is seen: "Perception
and action, sensorium and motorium, are linked together as successively
emergent and mutually selecting patterns" (p. 163).

The enactive paradigm has the agent and its world mutually specifying
each other. Note "its world" instead of "the world." An agent's world is
the world of its experience. I don't experience radio waves per se, and
experience sound rudimentarily. (Remember Dawkins's intelligent bats?)
Both are out there, but the first is a part of my world only indirectly, and
the second in a limited way. As for any autonomous agent, my sensorimo-
tor apparatus specifies my world. Note "sensorimotor" rather than just
"sensory." Could I fly, or swim deep and long in the sea, my world would

be quite different.
But the world out there also specifies stimuli to my senses and con-

straints to my movements. These stimuli and constraints become part of

my world. And I, as any autonomous agent must be, am myself a part
of my world and am specified by it. Thus the circle is closed. Mutual
specification, the middle path of the enactivists.
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Varela et al. call the process that "brings forth a world" structural cou-
pling, the coupling of the agent's structure to the out there. If the structure
is changed, changing its relationship to the out there, the world changes.
Their compelling example, from Sacks and Wasserman (1987), tells of an
auto accident victim who, due to head injuries, lost his color vision. This
change in structure literally changed his world. It became black, white,
and shades of gray. Not only could he not see color, he coundn't imagine
in color or dream in color. Behavior was also affected. Over time he be-

came a "night person."

I love the nighttime. .. . I often wonder about people who work at night. They
never see the sunlight. They prefer it. . . . It's a different world: there's a lot of
spaceyou're not hemmed in by streets, people. . . . It's a whole new world.
Gradually I am becoming a night person. At one time I felt kindly toward color,
very happy about it. In the beginning, I felt very bad, losing it. Now I don't even
know it existsit's not even a phantom. (Varela et al. 1991 p. 164)

Our structure, and how it couples with the out there, determines our
world.

But the first answer talks of a history of structural coupling bringing
forth a world. Exactly. I am what I am because of a history of interactions
with my world. My world is what it is because of its interaction with me,
and with other agents, forces, and such. My world is determined not by
my abstract sensorimotor structure but by the history of that structure's
interaction with my world. There's good evidence that neural connections
in the visual cortex depend on incoming stimuli (Crick 1994, p. 145). But
which came first? Neither. They mutually specify each other.

And how does all this embodied action happen? The second answer
talks of "a network consisting of multiple levels of interconnected, senso-
rimotor subnetworks." Where's the cognitive processor, the central sys-
tem? Nowhere to be found. This is a whole other ball game. But we do
have a model: Brooks's subsumption architecture. Herbert is constructed
just as the second answer requires. And where are the representations?
Again, nowhere to be found.

The third answer talks of the agent becoming "part on an ongoing ex-
isting world." Brooks's robots do just that. Varela et al. go on to talk of
intelligence as the capacity to enter into a shared world of significance."
I presume they mean significance to the agent.
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Significance to the agent triggers the issue of goals, motives, needs,
drives, and so on, the content of our next attractions.

Goals

Human behavior, viewed externally, is clearly goal-directed.
Allen Newell and Herbert Simon, Human Problem Solving

We've encountered before, and will soon again, the issue of rule-governed
vs. rule-describable behavior. A related issue concerns goal behavior vs.
directed behavior. We'll next visit briefly with Newell and Simon's views
on this issue (1972, pp. 806_90).8 In this work, they explicitly subscribe
to the cognitivist view of mind as computation.

Newell and Simon define a goal as a symbol structure satisfying a cou-
ple of other requirements. To them, a goal must be some sort of data
structure (list, string, etc.) populated with symbols, and hence a represen-
tation. It must be explicitly formulated for use within and by the system
itself, and not merely a description of what's going on provided by some
external observer. Recall that SOAR produced symbolic goals for its own
use. Maes's action selection mechanism had built-in goals, but not in the
Newell and Simon sense. Though they were within and used by the sys-
tem, they weren't symbolic.

And what are the other requirements? First, the goal must specify some
state to be attained, and some test to determine whether it has been at-
tained. Second, the goal must have some causal power to evoke patterns
of behavior. Newell and Simon call such behavior goal behavior. They
refer to behavior resulting from other types of control structures as di-
rected behavior. Note that Maes's system satisfies all this except for be-

ing symbolic.
Here's an example illustrating the distinction between goal behavior

and directed behavior in the context of a cryptarithmetic problem. Sup-
pose the system was trying to solve the following:

DONALD

-f- GERALD

ROBERT D = 5
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The system is asked to discover which letters correspond to which digits,
thereby making this an accurate addition. Now suppose the system uses
a production rule like this orle:

Pl: Given a new piece of information about a letter, find an occur-
rence of that letter and attempt to use the new information

To an external observer, the system may appear to have the goal of
using new information; actually, however, no such goal is represented in
the system. The behavior is directed by this single production rule. On the
other hand, suppose the system use a different production rule:

P2: To get the value of a letter, go to a location of an occurrence of
that letter and process the column containing it. The precondition of
this rule is "to get the value of a letter." This condition can be satisfied
only if the system wants to get the value of a letter, that is, if some ex-
plicit goal embodies this desire of the system. A system containing P2
must use goals. The distinction between goal behavior and directed be-
havior can be pretty subtle to an outside observer.

Newell and Simon provide us with a list of named behavioral charac-
teristics of goal behavior to aid us in recognizing it:

Interruptibility. When distracted, the agent later returns to the activity
at the same point.

Subgoaling. Agent interrupts itself to pursue a means to its goal, and
then returns.

Depth-first subgoaling. Several levels of subgoaling provide particu-
larly conclusive evidence.

Equifinality. Failing with one method, the agent will attempt some
other, perhaps quite different, method.

Avoidance of repetition. The agent operates with memory to avoid
repetition of behavior.

Consummation. If the goal situation is attained, effort toward that
goal is terminated.

Let's use a mama sand wasp's egg-laying behavior as a test case for these
characteristics (Griffin 1984, pp. 101-2, 110). The question will be, is
she or isn't she goal directed? Here's how she does it. First she digs a
burrow in sandy ground, constructing an enlarged chamber at the lower
end. Having closed the opening with small stones, perhaps brought from
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some distance, she goes hunting for a juicy caterpillar. After paralyzing
the caterpillar with a sting, she carries it to the burrow, opens the en-
trance, and drags the caterpillar into the chamber. With preparations
complete for feeding the hatchling on the living but immobilized flesh of
the caterpillar, she lays an egg on him. Then she closes the entrance once
again and goes her merry way, never to see her offspring.

Mama sand wasp's behavior certainly appears to be goal directed, but
we've been warned of the subtlety of the distinction. Let's check Newell
and Simon's characteristics of goal-directed behavior against what's
known of the sand wasp's behavior.

Interruptibility. When distracted, the sand wasp later returns to her
activity, but perhaps at a different point in the process.

Depth-first subgoaling. Here, the wasp's behavior apparently includes
several levels of subgoaling. To lay an egg, first close the entrance (in prep-
aration to hunting caterpillar). To close the entrance, bring pebbles. To
bring pebbles, fly to pebbles, pick up pebble, and so on. Seem like particu-
larly conclusive evidence?

Equifinality. When one method fails, the wasp will try again, but typi-
cally will attempt the same method once more.

Avoidance of repetition. If a paralyzed caterpillar is moved after the
wasp has laid it down while opening the entrance, she often drags it back
and repeats the digging even though the burrow is already open. This
repetitious and unnecessary behavior may be repeated many times.

Consummation. When the egg is laid, mama wasp goes about her
business.

What conclusion shall we reach? This may not be goal behavior à la
Newell and Simon, even though a piece of the evidence, multiple subgoa-
ling, is particularly conclusive. The repetition makes me suspicious. Or
maybe mama wasp is indeed goal directed but not very smart.

And how about Maes's action selection system? Interruptibility seems
likely due to the opportunism of the system. Depth-first subgoaling could
well emerge from the spreading activation. Maes claims as much, calling
it sequences of actions." Equifinality is also built into her system. When
one competence dies, a goal will continue to reward whatever other corn-

petences lead toward it. Avoidance of repetition results from the reward
structure itself, and consummation is easily arranged for. It seems plausi-
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ble to me that a system like Maes's could exhibit all the characteristics of
goal behavior without symbolic representation. Some other characteristic
will be needed to distinguish between them. Keep in mind that Newell
and Simon had no system like Maes's to guide them in formulating the
relevant characteristics. Two decades separate the work.

This meeting with goals à la Newell and Simon should warm us up for
another visit with the work of Sloman, whom we met in chapter 2.

Motives and Goals

Our underlying concern during this major tour stop is with representa-
tion. There's been much discussion of representations of objects, of rela-
tions, of concepts. Our visit with Newell and Simon introduced
representations of goals. Sloman (1987) goes even further and offers "a
step towards a computational theory of emotions, attitudes, moods, char-
acter traits, and other aspects of mind so far not studied in Artificial Intel-
ligence" (p. 217).

Yes, Sloman sounds like a cognitivist, but I'm not sure that's accurate.
He explicitly asserts that the computations he postulates need not be
implemented directly in physical processes; they may occur in a virtual
machine9 implemented in lower-level machines, either brainlike or corn-
puterlike. Thus he straddles the cognitivistconnectionist fence. Allowing
for a virtual machine implementation, however, puts him squarely at odds
with the enactive paradigm of mind. Of course, 1987 was a while back.
Sloman may well think differently in light of newer evidence.

Sloman assumes the need for internal representations, saying that a the-
ory of mechanisms of mind should "explain" how internal representa-
tions are created, stored, compared, and used for making inferences,
formulating plans, and controlling actions. As we've seen, representations
appear not to be biologically stored or compared in the sense we usually
use these words. And some maintain we can go far without them; others,
that we use no representations at all. Some of this disparity of opinion
may result from different meanings attached to the word "representa-
tions." But that's a topic for our next attraction, not this one. In the mean-
time, I want to keep an open mind about Sloman's ideas, realizing that
the meaning of "representation" needs to be clarified.
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Sloman speaks of attitudes as dispositions to behave in certain ways.
Love, in any of its incarnations, is an attitude. He sees emotions as epi-
sodes with dispositional elements: "Powerful motives respond to relevant
beliefs by triggering mechanisms required by resource-limited intelligent
systems" (p. 218). No new mechanisms are needed to account for emo-
tions, he claims. Those underlying intelligence suffice. Further, emotions
not only are not uniquely human but also are not confined to animals.
Sloman expects intelligent machines to require emotions.

In addition to requiring emotions, what other constraints must be ob-
served when designing a mind? One must allow for multiple sources of
motivation, both internal and external. (I'm not at all clear about what
constitutes external motivation.) One must count on speed limitations,
on not having enough processing power to be profligate in the use of com-
putation. One must expect gaps and errors to occur in the system's beliefs
about the world. (Note "the world' as opposed to "its world.") One
should build in degrees of urgency associated with motives to help with
conflict resolution. And one must plan for resource limits: speed (as pre-
viously mentioned), memory, and external resources. As a consequence
of limited resources and urgent goals, potentially unreliable heuristic, or
"rule of thumb," strategies become almost mandatory.

Also, one will want to build in reflex actions, both in hardware and in
software. Some may be modifiable by experience, some at least partly
controlled by context-sensitive filters. These filters may rapidly assess pri-
orities; may allow extremely important, urgent, or dangerous activities to
proceed uninterrupted; but also may allow new, especially important, or
urgent motives to interrupt what's going on. These filters implement con-
flict resolution on reflex actions. (In Brooks's robots, all actions are more
or less reflex.) Sloman maintains that all intelligent systems, by necessity,
will have fast but stupid subsystems that will sometimes let in

undesirables.
He also claims that some sort of learning is required in order to cope

with incomplete information and with long-term change in the agent's
social or physical environment. This learning should extend to higher-
level operators, not only the learning of generators and comparators of
motives but also of generators and comparators of the generators and
comparators, and so on. Sloman also advises building in "several inde-
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pendent subsystems that can execute plans in parallel, like eating and
walking" (p. 219). Here Sloman embraces a multiplicity of mind view à
la Minsky, Ornstein, and John Jackson. Though eating and walking may
well result from plans about what to eat and where to walk, neither re-
quires executable Plans. Overlearned, situational routines à la Agre and
Chapman will suffice.

Pointing out that "conflicts among requirements can generate incom-
patible goals necessitating a decision-making mechanism" (p. 219). Sb-
man offers two main options: a democratic voting scheme and a
centralized decision maker. Which to choose?

If subsystems do not all have access to the full store of available information or
not all have equal reasoning powers, a "democratic" organization may be
dangerous.

a specialized central mechanism is required for major decisions (p. 219).

Is there really a central executive in humans? I doubt it. Must there be in
other animals and machines? Not too likely. Other control mechanisms,
such as those of Maes, Brooks, and Jackson, will probably work better.

At last we have seen enough of Sloman's constraints for the design of a
mind to bring us to the issue of central interest to us here. Here's what he
says about goals: "To have a goal is to use a symbolic structure repre-
sented in some formalism to describe a state of affairs to be produced,
preserved or prevented" (p. 220). Sloman's definition is a little broader
than that of Newell and Simon, but it doesn't require a test of completion.
Sloman points out that his symbols need not be physical structures; they
can be virtual, that is, emerging at a higher lever of abstraction from an
underlying machine composed of neurons, or gates, or artificial neurons,
or whatever.

He also points out that the same descriptive formalism, however the
symbols arise, can be used for beliefs, hypotheses, instructions, rules, and
hypothesized situations. They would be differentiated by context, by the
roles they play. He compares goals with beliefs. A goal is a representation
for producing behavior that changes the world to conform to it, whereas
a belief is a representation that perceptual and reasoning processes alter
to conform to the world. But must every goal be a representation? Cer-
tainly at a descriptive level. But what about a hardwired goal such as in
Maes's action selection mechanism? Does a bacterium have goals?
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Sloman distinguishes between a derivative goal, one generated by a
planning process that subserves a prior goal, and a nonderivative goal.
Some derivative goals may be triggered by a thought, an inference, or a
recollection; others may be responses to new information, such as a loud
noise or an awareness of hunger. Derivative goals are more readily aban-
doned and have fewer side effects. Nonderivative goals, when abandoned
in favor of some higher goal, typically continue to clamor for attention.
Some human nonderivative goals are bodily needs, a desire for approval,
curiosity, and a desire to succeed. These, Sloman says, serve higher-level
needs but are not derivative.

But what are these higher-level needs, and how are they implemented?
Perhaps like the Ackley and Littman evaluation function (1992)? Recall
that it evolves as an artificial neural network, is unchanging during the
life of an individual agent, and provides reinforcement for learning by the
agent's action function. Thus, needs must be generators of motives. Ex-
cept for the lack of symbolic representation, the evaluation function
would seem to be a primitive constructor of nonderivative motives.

Sloman views a motive as a disposition to produce certain effects or to
resist changes, either internal or external. He goes on to distinguish sev-
eral different quantitative dimensions, or measures, or motives. A mo-

tive's insistence measures its power to interrupt. A motive's importance
measures its likelihood of adoption, of success in producing action. A
motive's urgency measures the time left in which to act on it. A motive's
intensity measures how vigorously it's pursued, how much energy is de-
voted to the pursuit. An agent's distress at failure to achieve and its plea-
sure at fulfillment can also be quantified.

Although a motive can be urgent (the plane leaves in four minutes), it
need be neither insistent nor important nor intense (I'd rather stay with
the later flight I'm booked on). A motive can be insistent (I'd like to tell
off that guy who slighted me) without being important (I'll probably
never see him again, so I don't want to cause a stir). Sloman, however,
makes no claim that these properties of motives are independent of each
other. He does suggest that motives may be needed in sophisticated robots
and that they might have subjective correlatçs. (Does this mean a con-
scious machine?)
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Sloman offers an extensive list of processes involving motives. On look-
ing at it, my first thought was, What's missing? A brief search turned up
nothing that didn't more or less fit into at least one of his sixteen catego-
ries. Then a second thought hit. Of course, every action is the result of,
among other things, a motive. Motives are, in principle, ubiquitous in the
action selection mechanisms of autonomous agents. These motives need
not be symbolic, as Sloman assumes; they may result from other types of
control structures.

Sloman speaks of emotions as states produced by motives and beliefs,
leading to the production of new motives, and offers anger as an example
"X believes that there is something Y did or failed to do and, as a result,
one of X's motives has been violated [frustratedi" (p. 224). Of course, X
might only be disappointed. Anger, according to Sloman, requires a new
motive to hurt Y. (I'm not sure I agree. In my experience, anger is most
often expressed so as to frighten Y rather than to hurt him.) This new
motive may not be acted on out of inculturation or fear of consequences.
But more is required for anger. X's desire to hurt Y must be insistent,
intense, and nonderivative.

Sloman claims that irrationality is inevitable:

The interruptions, disturbances, and departures from rationality that characterize
some emotions are a natural consequence of the sorts of mechanisms arising from
constraints on the design of intelligent systerris, especially the inevitable stupidity
of resource-limited interrupt filters that have to act quickly. (p. 228)

He goes on to discuss attitudes, moods, and personality, suggesting that
all may be applicable not only to humans but also to animals and even to
machines. Not all of these mechanisms are found in all animals. In some
animals, for example, selection of a motive may always lead to acting on
it. And it doesn't seem likely that all this richness of structure is present
in young children. Learning and cognitive development occur in a frame-
work of a complex and frequently changing collection of motivators. The
complexity of these mechanisms provides enormous scope for bugs: "I
conjecture that many emotionally disturbed people are experiencing . .

software 'bugs" (p. 232).
Sloman has provided us with a rich and varied account of goals, mo-

tives, emotions, and so on as high-level, perhaps virtual, mechanisms of
mind. I suspect these concepts from human "folk psychology" will prove
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useful, and perhaps indispensable, in the design of sophisticated, adap-
tive, autonomous agents.

Sloman embedded his structures within the symbolic paradigm. Is this
constraint critical to their usefulness? I suspect not. It's probably a result
of this work having been done in the mid-1980s, before examples of other
than symbolic control structures were common. Recall, however, that Sb-
man specifically points out the applicability of his theory within either
the cognitivist or the connectionist paradigm. Thus representation,
for him, must include connectionist representations, either local or
distributed.

With the Agre and Chapman work, the enactive paradigm of Varela et
al., and Sloman's theory as additional background, it's time to )oin the
third AI debate.

The Third AI Debate

To represent, or not to represent? That's the question of the third AI
debate.

In the first AI debate, scoffers maintained that the very idea of machine

intelligence is ridiculous, while boosters claimed it's inevitable. The scoff-

ers produced arguments supporting their position; the boosters said,
"Just wait. We'll show you." Arguments were produced by one side, sys-

tems exhibiting some facet of intelligence by the other. In my view, the

jury's still Out, though if I had to bet, I'd side with the boosters.

The second AI debate had a similar form. Cognitivists produced argu-

ments purporting to show that connectionist models can, at best, imple-

ment a virtual symbolic system, and can offer nothing new to the study of

cognition. Connectionists responded that symbolic systems can, at best,

approximate what's really going on in nervous systems and in useful cog-

nitive models at a subsymbolic level. Both sides produced systems, the

cognitivists typically at a more abstract functional level, the connec-

tionists typically at a lower level. Again, I think the jury's still out. If pres-

sured, this time I'd back the connectionists.

The third AI debate exhibits a rather different form. On one side a

small but vocal coterie espouses versions of "representations aren't
needed," or at least "are needed in only a minor way." On the other side
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is the overwhelming body of the culture, cognitive scientists, and AI re-
searchers including connectionists, who, taking the need for representa-
tions as too obvious to talk about, simply ignore their critics. It's a band
of Don Quixotes tilting at windmills. But I think theyre right, Just like
the small group that once tilted with "the Earth is round" banners on
their lances.

Let's visit the cast of characters, several of whom we've already met,
and their ideas in roughly chronological order. (The history may be sus-
pect. Keep in mind that your tour guide is an amateur and is not a
scholar.)

Winograd and Flores (1986, p. 33) speak of the philosopher Martin
Heidegger's "rejection of mental representations," which they paraphrase
as follows:

We do not relate to things primarily through having representations of them.
If we focus on concernful activity instead of on detached contemplation, the sta-
tus of this representation is called into question. In driving a nail with a hammer
(as opposed to thinking about a hammer), I need not make use of any explicit
representation of the hammer. My ability to act comes from my familiarity with
hammering, not my knowledge of a hammer.

Accepting this position forces us to conclude that hammering is not a
rule-governed behavior.

Winograd and Flores also paraphrase the neuroscientist Maturana's ar-
gument against "the fallacy of instructive interaction" (p. 43):

Instructive interaction is [Maturana's) term for the commonsense belief that in
our interactions with our environment we acquire a direct representation of it-
that properties of the medium are mapped onto (specify the states of) structures
in the nervous system. He argues that because our interaction is always through
the activity of the entire nervous system, the changes are not in the nature of a
mapping. They are the results of patterns of activity which, although triggered by
changes in the physical medium, are not representations of it. The correspon-
dences between the structural changes and the patterns of events that caused them
are historical, not structural. They cannot be explained as a kind of reference
relation between neural structures and an external world.

If this view is correct, searching for representations in the nervous system
would be fruitless. As we've seen, Freeman certainly found it so.

Noting a newborn's feeding behaviorscrying for mother's attention,
rooting to position its mouth over a nipple, and sucking to express milk-
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Winograd and Flores (1986, P. 52) assert: "The baby, like every organism,
has a complex set of reflexes whose purposes can be explained in terms
like those above, but whose functioning does not depend on representa-
tions, planning, or analysis." The behaviors may well be organized as pre-
scribed in the enactive paradigm, or according to Brooks's subsumption
architecture.

Earlier we visited with Skarda and Freeman's dynamical systems ap-
proach to understanding olfaction in rabbits. The article describing this
work (1987) appeared in Behavioral and Brain Sciences, a journal whose
enlightened policy allows for open peer commentary on each "target"
article. Among the commentators was Gerhard Werner, who wrote of the
"conceptual implications" of the Skarda and Freeman work as follows
(1987, p. 183):

History is not represented as a stored image of the past; nor is the present a mirror
of the environment. Instead, environmental events are specified by states of neural
activity that are the result of the neuronal system's internal organization and dy-
namics. In this sense, the neural structure uses information to create its own inter-
nal states, which acquire meaning: The internal states are the neuronal system's
own symbols, as these states stand in a regular relation to events in the world and
signify potentials for action. This distinction highlights the departure from cur-
rent cognitivism, for which meaning is assigned to symbols by an observer.

Once symbols are viewed as the system's own creations, any reference to repre-
sentations becomes superfluous; Occam's razor can unburden us of the Tro-
jan horse that was smuggled from the land of Artificial Intelligence into
Neuroscience.

I'd rather say that the neural structure uses stimuli to create its own
internal states, which constitute information. And recall that cognitivism
does assert that a cognitive system interacts only with the form of the
symbols (syntax), not with their meaning (semantics). In their rebuttal,
Skarda and Freeman takes issue with Werner's "neuronal system's own
symbols":

Our point is that the system can produce adaptive, ordered, cognitive behavior
without using functional architecture based on rules and symbol manipulation.
The neural patterns of our model are not symbols for the system because a distrib-
uted network doesn't require symbols to produce behavior. (1987, p. 186)

If anything about the rabbit's olfactory cortex looks like a symbol to
me, it's the basin of attraction that categorizes the odorant. But that basin
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exists only in the mind of a mathematically inclined observer, and so can't
be used as a symbol by the system itself. Unless, that is, it exists for the
system as an emergent entity. Anyway, Werner used the term symbol to
"highlight the departure from current cognitivism." Read "internal
states" for "symbols," and Werner's argument seems cogent.

Freeman and Skarda take their own crack at representations in an ar-
ticle pugnaciously titled "Representations: Who Needs Them?" (1990):

Neural activity patterns in the olfactory bulb cannot be equated with internal
representations of particular odorants to the brain for several reasons. First, sim-
ply presenting an odorant to the system does not lead to any odor-specific activity
patterns being formed. Only in motivated animals, that is, only when the odorant
is reinforced leading to a behavioral change, do these stereotypical patterns of
neural activity take shape. Second, odor-specific activity patterns are dependent
on the behavioral response; when we change the reinforcement contingency of a
[conditioned responsel we change the patterned activity. Third, patterned neural
activity is context dependent: the introduction of a new reinforced odorant to the
animal's repertoire leads to changes in the patterns associated with all previously
learned odorants. Taken together these facts teach us that we who have looked at
activity patterns as internal representations of events have misinterpreted the data.
(p. 376)

If it doesn't look like a representation and doesn't act like a representa-
tion, it's probably not a representation.

Perhaps the most outspoken critic of representations is Brooks. In an
article titled "Intelligence Without Representation" (1991), he castigates
symbolic AI as follows:

Artificial intelligence research has foundered on the issue of representation. When
intelligence is approached in an incremental manner, with strict reliance on in-
terfacing to the real world through perception and action, reliance on representa-
tion disappears. . . . The fundamental decomposition of the intelligent system is
not into independent information processing units which must interface with
each other via representations. Instead, the intelligent system is decomposed in
independent and parallel activity producers which all interface directly to the
world through perception and action, rather than interface to each other particu-
larly much. The notions of central and peripheral systems evaporateeverything
is both central and peripheral. (p. 139)

Disclaiming any particular interest in neuroscience or cognitive science,
in possible applications, or in philosophical implications, Brooks, as an
engineering feat, simply wants to build "completely autonomous mobile
agents [Creaturesi that co-exist in the world with humans, and are seen
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by those humans as intelligent beings in their own right" (p. 145). Ap-
proaching the problem as an engineer, he lays down some requirements.
A Creature must cope appropriately and robustly with its changing envi-
ronment in a timely fashion. It must seek to satisfy multiple goals, switch-
ing among them according to circumstance. And it must do something.
These constraints led Brooks to his subsumption architecture and to Crea-
tures like Herbert, whom we've already met. Building such Creatures led
Brooks to an "unexpected conclusion": "When we examine very simple
level intelligence we find that explicit representations and models of the
world simply get in the way. It turns out to be better to use the world as
its own model" (1991, p. 140).

Brooks claims that his Creatures use no central representation, no
world model, and that this efficiency allows them to react quickly enough
to do their thing in the world. They substitute frequent sensing for an
internal representation. And the individual layers of their structure attend
only to relevant aspects (in the sense of Agre and Chapman) of the envi-
ronment. Each layer has its own purpose, but there is no explicit represen-
tation of goals. The Creature is a "collection of competing behaviors."
This mo representation" policy is carried to the lowest levels:

Even at a local level we do not have traditional AI representations. We never use
tokens which have any semantics that can be attached to them. The best that can
be said in our implementations is that one number is passed from a process to
another. But it is only by looking at the state of both the first and second processes
that that number can be given any interpretation at all. (1991, p. 149)

But isn't the very structure of Brooks's augmented finite-state machines
and their interconnections within a single layer an implicit form of repre-
sentation? Brooks feels they don't act enough like representations to be
representations.

There are no variables . . . that need instantiation in reasoning processes. There
are no rules which need to be selected through pattern matching. There are no
choices to be made. To a large extent the state of the world determines the action
of the Creature. . . . We hypothesize (following Agre and Chapman) that much of
even human level activity is similarly a reflection of the world through very simple
mechanisms without detailed representations. (1991, p. 149)

As to this last conjecture, I wouldn't be at all surprised.
Brooks's Creatures are simply hardwired, that is, causally constructed

so as to do what they do. Their very structure can surely be interpreted
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as consisting of representations of their incoming stimuli, their goals, and
their outgoing actions. (There's not much high-level cognition to require
representation.) Every representation must be of something and to some
agent. These representations are surely representations to an observer do-
ing the interpreting, but are they representations to the Creature? That is,
does the Creature use them as representations? In this last quote, Brooks
argues not.

One way, perhaps the only way, to use representations is to consult
them, say as a computer does its program. Certainly the cognitivist view
leads to this analogy. My friend and colleague Daniel Chan (1994) gives
an in-depth and nontrivial analysis of what it means for a physical system,
say a layer in one of Brooks's Creatures, to consult in this sense. He distin-
guishes between a structure that actually performs an operation, like a
screwdriver transferring torque, and a structure capable of several differ-
ent operations that consults a representation to know which to perform,
like a cook consulting a recipe. To me this seems the right distinction. A
representation is consulted for its content, not simply used for its
structure.

This distinction may be more subtle than it seems. An early model cash
register, where you press the S button and levers open the drawer and
raise the S flag, is to me a prototypical example of a hardwired structure
using no representation in its operation. A computer program that writes
S to the screen when the 5 key is pressed is a prototypical example of the
use of representations, the program. What if I compile the program and
run the machine code directly? Does it still use representations? What if
I burn this compiled program into a PROM (programmable memory) and
use it to build a calculator-type device with the same response? When, if
ever, does it become hardwired? To Chan, the answer lies in the causal
details of the functioning of the device. His article, though a struggle to
read, is convincing. It also settles for me the rule-describable vs. rule-
governed issue. Rule-governed requires consultation in Chan's technical
sense.

Let's end our visit with the third AI debate by looking at the relation
between high-level perception (mostly, but not entirely, missing in
Brooks's Creatures) and representation. These ideas are from the work
(1992) of Chalmers, French, and Hofstadter, two of whom we encoun-
tered earlier on our tour.
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"Representations are the fruits of perception." Here they're talking
about high-level perception, "extracting meaning from the raw material
by accessing concepts, and making sense of situations at a conceptual
level." High-level perception begins with concepts. Examples are recog-
nizing objects, grasping relations, and the even more abstract compre-
hending of situations. A representation is the end product of this high-
level perception. It's a structure that can be consulted, transformed, acted
upon. My youth as a topologist was spent constructing just these kinds
of representations from high-level perceptions about sequential spaces,
quotient maps, epireflective hulls, and other such arcane mathematical
concepts. It's certainly clear to me that representations are needed for
sufficiently conceptual cognitive endeavors.

Chalmers and company take symbolic Alto task for bypassing high-
level perception and taking representations as given. (They are not reply-
ing to the anti-representationists.) They claim, as did Edelman earlier,
that finding the representations is the part requiring intelligence, and that
to skip it amounts to stacking the deck. They go on to propose the Copy-
cat architecture as a mechanism for high-level perception. Hear! Hear!

As with the other two AI debates, I think the jury's still out. Brooks,
Edelman, Freeman, and the rest have convinced me that much of the activ-
ity of an autonomous agent, even one of us, can be accomplished without
representations. On the other hand, my mathematician side refuses to
dispense with them entirely. To what extent they're needed, and when
they're just in the way, will become clearer as we design and build more
autonomous agents. I suspect Chalmers et al. may have pointed to the
dividing line; manipulation of concepts requires representation.

So much for representations. If you think each of our tour stops has
shown a futuristic tinge, wait until you see the next one.

Notes

This calls to mind the very legitimate complaint of symbolic AI people about
always having to shoot at a moving target. A century ago someone who could
accurately and quickly add a column of figures was considered intelligent. But no
more, since computers can do it. It's mere number crunching. The definition of
intelligence is set just beyond what a computer can do.

I'm indebted to my colleague Cecil Rousseau for calling this problem and its
solution to my attention.
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Agre and Chapman originally used the term "indexical-functional representa-
tion," and later switched to "deictic representation." My linguist friend Leo Con-
nolly tells me that deictic,' meaning "pointing to directly," is in fairly common
use among linguists. I'll use both terms.

For the theoretical computer scientists among us, Chapman proved that Plan-
ning, under reasonable conditions, is NP hard. Thus we can never expect better
than an exponential time algorithm. It won't scale up.

Most common programming languages are procedural, based on procedures
that do things. They include FORTRAN, COBOL, C, and Pascal. LISP is a func-
tional language, based on functions that take arguments and return values, and
perhaps side effects as well.

Yes, of course, I'd prefer an object-oriented language (Smaltalk, CLOS, C++),
but the difficulties would be similar and fewer of our fellow tour members would
be familiar with lt.

Let me caution you that our brief visit will be no substitute for a serious pe-
rusal of the work itself. Their purpose is much more than mine: "we propose to
build a bridge between mind in science and mind in experience by articulating a
dialogue between [the] two traditions of Western cognitive science and Buddhist
meditative psychology" (p. xviii). Though I'm much interested in the second of
these traditions also, having meditated regularly for some years, our mechanisms
of mind agenda dictates involvement mostly with the first.

I'm endebted to my friend and colleague Art Graesser for pointing out the
relevance of this work.

A chess-playing program running on your personal computer can be thought
of as a virtual chess-playing machine running on top of your PC. Playing against
it may be another virtual chess-playing machine running on top of a human ner-
vous system.
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Into the Future

Is It possible that consciousness is some sort of quantum effect?

Nick Herbert, Quantum Reality

I believe that robots with human intelligence will be common within fifty years.

Hans Moravec, Mind Children

Perhaps within the next few centuries, the universe will be full of intelligent life-
silicon philosophers and planetary computers whose crude ancestors are evolving
right now in our midst.

Lynn Margulis and Dorion Sagan, Microcosmos

So far we've toured purported mechanisms of mind for which worked-out
theories, or models, or even prototypes exist. Whether these mechanisms
could be useful as mechanisms of actual minds may be doubted, but
there's no doubt that they are mechanisms. On this, our final tour stop,
we'll visit more speculative mechanisms and more speculation about the
future of artificial minds.

The Quantum Connections

Surely the most mysterious theory of science today is quantum mechanics.
Although spectacularly successful at predicting outcomes of experiments
in physics, quantum mechanics is extraordinarily resistant to any kind of
explanatory narrative. Any story that's told to explain it seems not to
make sense somewhere. Some samples: Entities are routinely both parti-
cles and waves, and not waves in a real medium but probability waves.
Parallel universes multiply at every observation, one universe realizing
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each possible outcome. Reality exists only in the presence of an observer.
Reality is created by consciousness. (Note that creating reality is not the
same as the creating of information about reality that I've been pushing.)
My favorite layman's account of quantum mechanics is Herbert's Quan-
tum Reality (1985), which demystifies the subject as much as seems hu-
manly possible, and explores a variety of explanatory narratives, all more
or less weird. The opening quote was taken from this book.

Quantum theory shines in the realm of the almost infinitesimally small,
the world of subatomic entities like protons, neutrons, electrons, photons,
quarks, and a host of others particles with yet stranger names. (I used to
say "subatomic particles," but no more.) Each such quantum entity is
associated with (or is?) its wave function. Suppose a photon is traveling
through some medium toward a detector. Quantum mechanics has that
photon traveling all its possible paths at once, with its wave function rep-
resenting these possibilities. At a given location, the square of the ampli-
tude (height) of the the wave function gives the probability of the photon's
appearing at the location, should an observation be made. The shape of
the wave represents attributes other than position (spin, mass, charge,
momentum, etc.). If our photon's position is detected, say by its striking
a phosphor screen, its wave function is said to collapse and its particle
nature to emerge. All this must happen in relative isolation. If there is a
chance encounter along the way, our photon's wave collapses before it
reaches the screen.

In these days of digital everything, we've almost forgotten analog com-
puting, using natural processes to compute for us directly. The simplest
example I can think of is my old slide rule. By moving the slide appropri-
ately, it would multiply two numbers for me. The speed was admirable,
though the accuracy depended on the length of the rule and wasn't always
what I wanted. Electronic analog computers could integrate in a jiffy,
again with limited accuracy. The idea, like that of the slide rule, was to
construct an electronic device whose operation, viewed mathematically,
performed the operation you want. For example, Ohm's law says that in
an electrical circuit the current flow equals the product of the voltage
applied and the resistance. III build a circuit whose voltage and resistance
I can vary and whose current I can measure, that's an analog computer
for multiplication. To multiply two numbers, a and b, set the voltage to
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a, the resistance to b, close the switch and measure the current, ab, the
product of the two. An analog computer typically performs one specific
task.

Over a decade ago the physicist Richard Feynman proposed building
quantum analog computers for appropriate tasks. In an analog fashion,
such a computer might perform a multitude of calculations in parallel
and in an instant, as the wave function collapses to the desired answer.
No such quantum computer has yet been built,' but the theory has been
advanced (Deutsch 1985; Deutsch and Jozsa 1992). Shor (1994) has
shown that a quantum computer could, in principle, be built to factor
100-digit numbers. Kak (1992) suggests building a quantum neural com-
puter for solving AI problems. Caulfield and colleagues have shown that
some optical processors can be "uniquely and truly quantum mechani-
cal." They use such processors in the design of a quantum optical device
to emulate human creativity.2

Is it Just a short step from quantum computing to quantum conscious-
ness? Can consciousness in humans (and other animals) be the result of
quantum computing on the part of neurons? Recall that we saw such
suggested by Penrose, a serious and respected scientist, who used it as an
argument on the side of the scoffers in the first AI debate (1989). If intelli-
gence is produced by nervous systems using quantum processors, ordi-
nary computers might be hard pressed to duplicate it.

"But," you cry, "neurons aren't in the quantum realm, being several
orders of magnitude too large." True. And this objection, of course, con-
cerned Penrose until he was rescued by Hameroff. Hameroff proposed
that the microtubules that act as an internal skeleton for each neuron
(and any other cell as well) also serve as quantum information-processing
devices (1987, in press; Jibu et al. 1994). He claims that certain properties
of consciousness (unitary self, free will, subjective experience) resist non-
quantum explanation, and that microtubules "are the best bets for struc-
tural bases for consciousness."3 Penrose embraces this view in Shadows of
the Mind (1994). Journalist accounts are also available (Freedman 1994;
Horgan 1994).

As you no doubt expected, the notion of quantum consciousness via
microtubles has been greeted with howls of protest. Microtubules are still
orders of magnitude too large, are by no means isolated, operate at too
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high a temperature, and so on. Most critics are not yet ready to believe
that consciousness, subjective experience, requires quantum explanation.
They view Penrose and Hameroff's proposal as using an elephant gun to
hunt an elusive mouse in a thicket. I suspect the critics might be right.

Right or wrong, quantum microtubles are now hypothesized mecha-
nisms of mind, and thus bear watching. And hypothesized quantum com-
puters are also intended as mechanisms of mind. Who knows what the
future will bring?

Let's next visit with a respected roboticist, who may not know but is
willing to stick his neck out and predict.

Mind Children

Moravec, a roboticist at Carnegie Mellon whom we met during our itiner-
ary run, believes that intelligent robots, our mind children, will outstrip
us.

Unleashed from the plodding pace of biological evolution, the children of our
minds will be free to grow to confront immense and fundamental challenges in
the larger universe.

We humans will benefit for a time from their labors, but sooner or later, like
natural children, they will seek their own fortunes while we, their aged parents,
silently fade away.

Very little need be lost in this passing of the torchit will be in our artificial
offspring's power, and to their benefit, to remember almost everything about us,
even, perhaps, the detailed workings of individual human minds. (1988, p. 1)

A powerful prediction! Moravec is certainly not afraid to stick his neck
out. And what's it based on? Projections, intuition, and an imagination
that would do Robert Heinlein or Arthur C. Clark proud.

Moravec's projections flow from a couple of fascinating figures. The
first plots power against capacity (figure 15.1).

Capacity is memory size measured in bits, and power is processing
speed in bits per second. Note the log scale on each axis. Each labeled
unit is a thousand times greater than the previous one. I'm particularly
intrigued that a bee outperforms the computer I'm writing on, and that a
single human can outdo the national telephone network. This figure sets

the stage for Moravec's projections, and the next opens the curtains.
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Figure 15.1
Computational speed and storage capacity (reprinted from Moravec 1988)

Figure 15.2 plots computing power per dollar against time. The result
is essentially linear, with power per dollar increasing a thousandfold every
twenty years. Extrapolation will yield tools with human computing
power at a reasonable cost in forty years. Thus, Moravec's prediction.
High-level artificial minds are Just over the horizon, he says.

I'm a little skeptical. First, I'm doubtful about predictions in general.
Thomas J. Watson, the founder of IBM, once predicted five machines as
a worldwide market demand for computers. Second, every growth curve
I've ever seen has eventually leveled off. The speed of an electron through
a wire or chip is limited by the speed of light. The amazing development in

recent years portrayed in this figure has resulted from chips more densely
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endowed with components, so that traveling distances are less. But we're
approaching the quantum barrier. Much smaller distances and we're in
the quantum realm, where computations may not be reliable. Maybe this
curve is about to level off. Finally, even if computers as computatlonally
powerful as a human nervous system do emerge, there's no assurance we'll
be able to program human intelligence into them. Don't get me wrong,
though. It's not that I disbelieve Moravec's prediction. It's that I wouldn't
bet on his time frame.

Enough about projections. Let's go on to imagination. What would you
say to a fractal, recursive robot? What? Well, let's take it slowly. Clouds
are fractal in that they look much alike at any scale. A photograph of a

square mile of clouds would be hard to distinguish from one of a square
yard of the same clouds.4 In computing, a recursive procedure is one that
calls itself during its operation. Suppose I want a recursive procedure to
find the length of a string of characters like abc. I might define the proce-
dure so as to return O for the empty string, and to return i + the length
of the rest of the string otherwise. The rest of abc is the string bc. This
length procedure calls itself during its operation. lt's recursive.

For our entire tour, we've visited mechanisms of mind. We'll now visit

a mechanism of body, a fractal mechanism, a recursive mechanism. A
strange body indeed. But why a mechanism of body on a mechanisms of
mind tour? Because, as Varela et al. pointed out to us, minds are always
embodied,5 mind is constrained by structural coupling, that is by body,
and how it meshes with the environment. So bear with me as we visit a
wondrous body and speculate about possible minds for it.

Imagine a meter (yard)-long cylinder, ten centimeters (four inches) in

diameter. Inside are a power supply and a control mechanism. Now imag-

ine four half-length, half-diameter copies of it, including power supply

and control mechanism, two attached at each end. The joints have at least

the freedom of movement of a human wrist, and built-in sensors for posi-

tion and force. Continue this recursive, robot building process twenty

times, creating what Moravec calls a bush robot. Figure 15.3 shows his

conception of what it might look like. After twenty halvings, the roughly

i trillion last cylinders (cilia) would be about a micron (millionth of a

meter) long. And, having so little inertia, they'd move a million times

faster than the largest limbs. But what's the bush robot standing on?
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Figure 15.3
A robot bush (reprinted from Moravec 1988)
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These smallest limbs would be crushed by the weight. Well, it simply folds
under enough sections to get to some strong enough to support it.

Moravec postulates remarkable sensing abilities for his bush robot.
Since each joint can sense forces and motions applied to it, suppose each
of the i trillion cilia senses movement of a tenth of a micron and forces
of a few micrograms, all this at speeds up to a million changers per sec-
ond. By comparison, the human eye distinguishes about a million parts,
registering changes about loo times per second. The bush robot would
"look at" a photograph by caressing it with tiny cilia, sensing height vari-
ation in the developed silver. lt could watch a movie by walking its cilia
along the film as it moved by at high speed. Wild!

Cilia could also be sensitive to heat, light, and so on. An eye could be
formed by holding up a lens and putting a few million cilia in the focal
plane behind it. Or, without a lens, carefully spaced cilia could be used
as a diffraction grating to form a holographic image. Wilder!

But try this one.

The bush robot could reach into a complicated piece of delicate mechanical equip-
mentor even a living organismsimultaneously sense the relative position of
millions of parts, some possibly as small as molecules, and rearrange them for a
near-instantaneous repair. In most cases the superior touch sense would totally
substitute for vision, and the extreme dexterity would eliminate the need for spe-
cial tools. (1988, p. 105)

There's more. Since each branch contains its own power supply and
controller, the bush could break into a coordinated swarm of subbushes.
They could communicate via sound vibrations of a few thousand cilia.
The smaller the subbush, the less intelligent and less powerful it would be.
Perhaps its home branch would send it on some mission. A light enough
subbush would be able to walk on the ceiling, like geckos, using its cilia
to hold to microscopic cracks. A sufficiently small subbush would have
so much surface area for its weight, it would be able to fly like an insect,
beating its cilia to provide propulsion. And what might a swarm of flying
subbushes do? Dealing with killer bees might be one application.

But how might such a bush robot come into being? Moravec views it
as self-constructing. Humans would build a few tiny bushes to start the
process. These would cooperate to build bushes of the same size and one

Copyrighted Material

Into the Future 407



408 Chapter 15

size larger, to which they would join themselves. The process would re-
peat until the largest branch was constructed. And the smallest branches?

It could make the smallest parts with methods similar to the micromachining
techniques of current integrated circuitry. If its smallest branchlets were a few
atoms in scale (with lengths measured in nanometers), a robot bush could grab
individual atoms of raw material and assemble them one by one into new parts,
in a variation of nanotechnology methods. (1988, p. 104)

And what about action selection for this bush robot? How is it to be
controlled? Moravec suggests enough computing power in each branch
to control routine activity, and to appeal one level higher when something
unusual occurs: a hierarchical control structure. This places a severe bur-
den on the largest branch. The buck stops there.

I'd picture each subbush as an autonomous agent with a built-in prefer-
ence for being attached to the larger bush. Each subbush would select its
own actions via some mechanism like those we've visited, say a pandemo-
nium architecture. Such a strategy would make it much more reactive but
might cause other problems. Imagine a subbush, away from the parent
bush, whose own four largest subbushes decided to take a powder.

Why include such a thought experiment on our tour? Because it clearly
highlights how much the action selection (controller) of an autonomous
agent depends on its material form and function, that is, how much the
mind depends on the body.

The Future Supercosm

Having just visited with physicists and roboticists, let's end this tour stop
by visiting briefly with biologists. Margulis and Sagan, in their Micro-
cosmos (1986), convinced me that I'm only an interloper living symbioti-
cally with the bacteria in their domain. It was humbling for me to come
to understand that this is the age of bacteria, that on Earth it's always
been the age of bacteria, and that it's likely to be so until the sun blows.
Unless, that is, it becomes the age of machines.

But let them tell their story:

That machines apparently depend on us for their construction and maintenance
does not seem to be a serious argument against their viability. We depend on our
organelles, such as mitochondria and chromosomes, for our life, yet no one ever
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argues that human beings are not really living. Are we simply containers for our
living organdIes? In the future humans may program machines to program and
reproduce themselves more independently from human beings. (p. 259)

Margulis and Sagan share Moravec's view of the coming dominance of
machines, and are, sacre dieu, even willing to consider including them
among the living. But they do leave a ray of hope.

The most helpful note for human survival may be the fact that we are presently
as necessary for the reproduction of our machines as mitochondria are for the
reproduction of ourselves. But since economic forces will pressure machines to
improve at everything, including the manufacture of machines with a minimum
of human work, no one can say how long this hopeful note will last. (p. 259)

They even speculate on our roles should this ray of hope be realized.

Simply by extrapolating biospheric patterns, we may predict that humans will
survive, if at all recognizably, as support systems connected to those forms of
living organization with the greatest potential for perception and expansion,
namely machines. The descendants of Prochloron, the chloroplasts, retained a
much higher rate of growth inside plant cells than did Prochioron, their free-living
green bacterial relatives patchily distributed in the Pacific Ocean. Analogously,
human beings in association with machines already have a great selective advan-
tage over those alienated from machines. (p. 260)

Viewed globally, domesticated cattle and sheep must be considered bio-
logically successful. Their numbers are large and stable. They've a symbi-

otic relationship with humans by which they are provided food,
reproductive assistance, protection from predators, and medical care.
Nondomesticated cattle and sheep don't do so well by any of these mea-

sures. Perhaps we humans, as a species domesticated by our mind chil-
dren, will do equally well in a world populated, perhaps dominated, by
artificial minds, "silicon philosophers and planetary computers."

Thus our last and most speculative tour stop comes to a close. Before

saying goodbye to the tour, let's recall some of what we've seen, and how

the sights have supported the views of mind mentioned in the itinerary, if

indeed they have.

Notes

My friend John Caulfield tells me that special-purpose quantum computers
have been built, but I haven't yet been able to gather the specifics.

Personal communication.
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From a message posted on Psyche-D, a disscussion group on the Internet,
dated July 8, 1994.

A technical definition of fractal requires concepts that would take us too far
afield, for instance, fractional Hausdorff dimension (Mandelbrot 1983; Barnsley
1988).

S. Moravec holds a diametrically opposite view, taking mind to be independent
of body. Since this biased tour was designed to support a particular paradigm of
mind, I won't take you to visit his speculations about transferring minds from
body to body. But don't let my biases prevent you from making a side trip of your
own to visit these wonders.
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An Emerging New Paradigm of Mind?

The deliberate process we call reasoning is, I believe, the thinnest veneer of hu-
man thought.

Hans Moravec, Mind Children

Alas (or Whew!), our tour of mechanisms of mind is winding down. As
you can tell, your tour guide is both sad and relieved. We've visited with
Alers, artificial lifers, cognitive scientists, computer scientists, connec-
tionists, ethologists, evolutionary biologists, mathematicians, philoso-
phers, physicists, neurophysiologists, roboticists, and probably some
others I've forgotten. We've grappled with the mindbody problem and
glimpsed three AI debates. We've encountered strange and wondrous ar-
chitectures, models, strategiesall purported to be mechanisms of mind
(by me, if not by their designers). Initially ridiculous-seeming ideas gradu-
ally became plausible or at least thinkable (I hope). And all the while,
your tour guide was softly, and sometimes not so softly, selling an emerg-

ing new paradigm of mind. It's time to take stock. Exactly what is this
supposed new paradigm? And is it really emerging?

Before embarking on this journey, I provided you a list of some seven
assertions representing my biases. The attractions along the tour were
chosen to support these biases. These assertions, taken together, consti-
tute what seems to me to be the core of a new way of thinking about
mind, a new paradigm. To begin our process of taking stock, let's review

each of these assertions in the light of the problems, the debates, the archi-

tectures, the ideas we've encountered on our journey.
The most basic assertion of this new paradigm has to do with the func-

tion (purpose?) of mind.
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The overriding task of Mind is to produce the next action. ("Produc-

ing" 'is used here in the sense that a producer "produces" a movie.)

Minds are the control structures of autonomous agents. Note that "ac-

tion" implies an environment on which to act. The agent is situated. The

various cognitive functionsrecognizing, categorizing, recalling, infer-

encing, planningall ultimately serve what to do next. The senses do,

too.
Actions are selected in the service of drives1 built in by evolution or

design. The evaluation nets of Ackley and Littman's agents, and the goals2

to be built into Maes's hypothetical Mars rover illustrate built-in drives

in artificial life agents. Brooks's hardwired subsumption architecture crea-

tures do the same for robots. Examples from the animal world abound.
Question: Do we humans have any built-in drives not found among our
primate cousins, the great apes?

Agents select actions from among those allowed by their structure. I
can't choose to flap my arms and fly. My structure won't allow it. This is

part of what we've heard Maturana, and Varela et al., call structural cou-
pling. Like drives, structure is determined by evolution or design, but un-
like drives, also by interaction with the environment.

Viewing mind as action selection by autonomous agents has, as a corol-
lary, another assertion of the new paradigm.

Mind is better viewed as continuous, as opposed to Boolean. It's more
useful to allow degrees of mind than to demand either mind or no mind.
We're likely to achieve a better and quicker understanding of our own
minds by studying other minds. One can design autonomous agents with
simple or complex control structures, agents with simple minds or com-
plex minds, and a host of others in between. Still others may not be com-
parable with any of these. This assertion should not be interpreted as
insisting on a linear continuum of minds.

This proposed use of "mind" does produce problems at a fuzzy bound-
ary. A thermostat can be thought of as an autonomous agent sensing the

world with its bimetallic strip and responding reflexively by tripping its
relay, certainly a simple control structure. But do we want to call it a
simple mind? Where are its built-in drives? Its single drive is surely to
keep the temperature at a setting specified by the position of its lever or
dial. But no such drive is explicitly represented in the thermostat. True.
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But is my need to be appreciated explicitly represented by the mechanism
my organism uses to try and satisfy it (say by conducting this tour)? I
doubt it. To me, it's OK that this use of "mind" be fuzzy at the edges.
That's in the nature of concepts other than mathematical concepts.

Structural coupling not only constrains actions, it constrains senses. I
have no built-in senses allowing me to view an episode of "Star Trek: The
Next Generation" directly. Yet an autonomous agent with such capability
can surely he built. Senses come with structure that is determined by evo-
lution or design, and by interaction with the environment. This brings us
to the next assertion of the new paradigm.

Mind operates on sensations to create information for its own use. The
widely accepted cognitivist paradigm views a mind as an information-
processing machine, processing information taken in from the environ-
ment through the senses. We've heard Edelman, Freeman, and especially
Varela et al. argue against this view of mind. We've met models of catego-
rization by Edelman, and of prediction by Drescher, that illustrate, to
my mind, the creating of information. Oyama (1985) gives the most thor-
ough and persuasive account of information as created by mind.
Recommended.

Maturana, and Varela et al., go further, arguing that information is
created not from sensory input hut from structural coupling. I agree. The
information-processing view puts input in a three-part sequence: [input
-4 processing - outputl. In the context of animals, this suggests an inde-
pendence of sensory and motor activity that doesn't exist. What I see de-
pends heavily on what direction some set of muscles turns my head, and
in what direction some other set turns my eyes. Sensory activity de-
pending on motor activity. A loud noise off to my left will result in an
almost automatic turning of my head to the left. Motor activity de-
pending on sensory activity. Sensorimotor activity, the essence of struc-

tural couplings, cannot be easily teased into two.
Also, sensing and acting are not easily disentangled from cognition. All

three are intricately interwoven. The phantom limb a person feels after
amputation demonstrates that information (in this case misinformation)
depends not only on what's out there but also what's in there. The Necker
cube, a hologram, and the black and white disk that shows also red, blue,
and green when spun, are other examples of this interconnection. And I
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haven't even mentioned how much expectation affects the information
produced by high-level perception.

Ornstein points out that perception serves to filter, not to window.
Only a minute fraction of available data becomes created information.
Which fraction? That part the mind expects tobe useful. We, as embodied
autonomous agents structurally coupled to our environment, create our

worlds to meet our needs.
An autonomous agent's creation of information is in the service of ac-

tion selection, what to do next. Each such agent is designed or evolved

with useful categories and schemas for action, or creates them as Darwin
III and the schema mechanism did. Recall that Freeman's rabbit learned
categories of odors, the desired response to which got him fed. Even with
built-in categories, recognition is creation of information, as is enactment
of routines à la Agre and Chapman. All these are part of structural cou-
pling. Which categories, schemas, or routines will be useful depends on
the structure of the agent and on the environment, that is, on the struc-
tural coupling of the agent with its environment. In a stable environment,
more can be built in. In a dynamic environment, learning is a decided
advantage. The creation of information from sensorimotor activity is al-
ways a must. And not only from sensorimotor activity, as the next asser-

tion makes specific.
Mind re-creates prior information (memories) to help produce actions.

Both filing cabinets and typical computer memories use a store-a-copy-
and-retrieve-it-via-address strategy. For autonomous agents who must act
on-line in real time, such memories are usually too slow and too costly in
terms of space, especially when an agent doesn't know exactly what it's
looking for and must search. Retrieval becomes problem solving. Acting
on partial information andlor associative cues, a reconstructive strategy,
as illustrated in Kanerva's sparse distributed memory, promises faster,
more reliable action.

Although I do believe the previous statement, it's highly suspect. To
my knowledge, such memory has not so far proved itself in any artificial
autonomous agent. (When my posttour responsibilities are at an end, I
hope to remedy this situation.) And, though I believe that we and many
of our animal relatives use such a reconstructive strategy, hard evidence
for such a view is scarce. And yet, it's beginning to be believed. My cogni-
tive psychologist colleagues, although by no means ready to concur for-
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mally, no longer speak a word of opposition when I propose it or assume
it. To me the appealing, if not convincing, argument comes from visual
images. From either an actual view of my living room, or from a visual
image of that same view, I can reconstruct much the same information.
This includes recognition of objects, their categories, and their spatial
relations. I strongly suspect the same constructive machinery is used in
both cases. My admittedly weak case rests.

And how is this recognition, categorization, and relational machinery
implemented? With dynamical system machinery. I believe that recogni-
tion, categorization, and such happen when some relevant pattern of
(neural) activity falls into a particular basin of attraction in the appro-
priate state space. I'm so tempted to include this answer as another asser-
tion of the new paradigm, but I don't dare. In spite of Freeman's seminal
work, the evidence is too meager. "But," you reply, "that didn't stop you
from making the last new paradigm assertion." Right you are, but there I
was tempted by the tacit consent of colleagues. Here I have less such.
Further, although I suspect it's often true of animals with nervous systems,
I'm not sure it's always true. Probably some grandmother receptor cells
do exist in simple animals, resulting in only a trivial dynamical system.
And how about a single-cell organism? How does a paramecium swim
down a temperature gradient? By the cilia on the warmer side being more
active. Its global behavior emerges from multiple local actions, but not
from a pattern of activity falling into some basin of attraction, as far as I
can see.

The next assertion of our new paradigm, asserts the multiplicity of
mind.

Minds tend to be embodied as collections of relatively independent
modules, with little communication between them. This one is surely
emerging. Its roots go back at least to Freud's id, ego, and superego. Fo-
dot, in his Modularity of Mind (1983), suggests that human minds are
formed of inborn, relatively independent, special-purpose modules. On
our tour we've met such modules: Ornstein's talents, Minsky's agents,
Jackson's demons, Maes's behaviors, Brooks's layers, Edelman's neuronal

groups, Hofstadter and Mitchell's codelets, and probably others.
This assertion offers us a recursive view of mind. It looks as if the mind

of each autonomous agent is composed of independent modules, each of
which might be an autonomous agent itself. An infinite regress looms. It's
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time to remind ourselves of Minsky's warning: "Unless we can explain
the mind in terms of things that have no thoughts or feelings of their own,
we'll only have gone around in a circle" (1985, p. 18). Taking heed, our
multiplicity of mind assertion must be understood as requiring a base of
primitive modules that are not themselves autonomous agents, and hence
have no mind. A mind may well be comprised of a hierarchy of modules,
submodules, sub-submodules, and so on. Many may be autonomous, and
thus have a mind of their own. But supporting the whole structure must
be a collection of mindless waifs with no agenda of their own, doing only
the bidding of others.

We still have the expected problems at the fuzzy boundary of the notion
of an autonomous agent. Taken alone, a thermostat supports some argu-
ment that its action selection embodies a minimally simple mind. But sup-
pose our thermostat is employed as the homeostatic temperature control
of what the military would call an autonomous land vehicle (for the bene-
fit of technical equipment, not humans). In this case, I'd be tempted to
call the thermostat a mindless waif, especially if its temperature setting
could be varied by the control system of the vehicle.

Just as a termite colony can build an amazing nest that no one of them
could possibly know how to build, a collection of mindless modules can,
by synergy, perform feats far beyond the capabilities of any one of them.
As we've heard from Minsky before: "Each mental agent by itself can
only do some simple thing that needs no mind or thought at all. Yet when
we join these agents in societies . . . this leads to true intelligence" (1985,

p. 17). As with termites, control is local, each module doing it own thing.
From competition and cooperation between them, behaviors beyond any
one of them emerge.

Emergent behavior is a corollary of the modularity of mind assertion,
and in turn it implies the diversity of mind assertion.

Mind is enabled by a multitude of disparate mechanisms. Even among
termites, there's a division of labor. At the very least the queen differs
from the soldiers, who differ from the workers. It's hard for me to believe
that much of a mind could be constructed from identical primitive mod-
ules. Edelman gave pride of place to the variability of his neuronal groups.
In all the models of action selection we've visited, the modules have
been diverse.
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"But," the unified theory of cognition people would ask, "why can't
identical modules perform different tasks, just as a computer runs differ-

ent programs?" Here's the mind as computer analogy again, with minds
being composed of a collection of identical modules performing different
tasks. Which is correct, diversity or identity? It's the special-purpose de-
vice vs. the general-purpose device. Almost always, a device designed or
evolved for a particular task can outperform a general-purpose device
executing that same task.3 Why? Because the flexibility of the general-
purpose device comes at some cost. There's no free lunch. That's the
source of my belief in the diversity theory. No designer would want to be

limited, above a certain level of abstraction, to a single mechanism. When
speed became an issue, as it inevitably would, the bottleneck modules
would be replaced by special-purpose versions designed to operate faster.

That's not to say that there's no place for general-purpose devices. The
computer I'm writing with will do much more than run a word processor.
Flexibility is often worth a trade-off in speed. I'm also heavily involved in
producing a general-purpose neurocomputer whose first application may
well be to serve as brain for an artificial insect. But if it turns out to be
too slow at some task, you can bet we'll try to introduce a faster special-

purpose module.
As we've seen, Minsky is a great fan of diversity. Do spend a while with

his Society of Mind (1985). There's much more there than we could visit

on this tour. One mechanism of mind follows another. Diversity is ram-

pant. And fascinating.
And finally, this new paradigm certainly takes sides in the first AI de-

bate. If mind is the action selection mechanism of an autonomous agent,
then surely some of Brooks's robots have simple minds. Thus: Mind, to

some degree, is implementable on machines.
Well, there it is, all laid out in seven assertions. What shall we name

this new infant?4 The key idea seems to be expressed by the first assertion:

mind as the action selection mechanism of an autonomous agent. So, how

about the action selection paradigm5 as a provisional moniker?

As we've seen, Varela et al. compared their enactive paradigms with

two others via three basic questions. I propose to put the action selection

paradigm in that perspective by composing answers to the same three
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questions. Here again, for your convenience and mine, are their answers
to these basic questions for each of three paradigms.

Cognitivist answers
Question 1: What is cognition?
Answer: Information processing as symbolic computationrule-based
manipulation of symbols.
Question 2: How does it work?
Answer: Through any device that can support and manipulate discrete
functional elementsthe symbols. The system interacts only with the
form of the symbols (their physical attributes), not their meaning.
Question 3: How do I know when a cognitive system is functioning
adequately?
Answer: When the symbols appropriately represent some aspect of the
real world, and the information processing leads to a successful solution
of the problem given to the system.

Connectíonist answers
Question 1: What is cognition?
Answer: The emergence of global states in a network of simple
components.
Question 2: How does it work?
Answer: Through local rules for individual operation and rules for
changes in the connectivity among the elements.
Question 3: How do I know when a cognitive system is functioning
adequately?
Answer: When the emergent properties (and resulting structure) can be
seen to correspond to a specific cognitive capacitya successful solution
to a required task.

Enactive answers
Question 1: What is cognition?
Answer: Enaction: a history of structural coupling that brings forth a
world.
Question 2: How does it work?
Answer: Through a network consisting of multiple levels of intercon-
nected, sensorimotor subnetworks.
Question 3: How do I know when a cognitive system is functioning
adequately?
Answer: When it becomes part of an ongoing existing world (as the
young of every species do) or shapes a new one (as happens in evolution-
ary history).
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Though "minds" seems broader to me than cognition," and the action-
selection paradigm is meant as a paradigm of mind, I think "cognition"
as used in the question above was meant to be taken broadly. So I'll stick
with the questions as given. Here are some answers.

Action selection answers
Question 1: What is cognition?
Answer: The process by which an autonomous agent selects actions.
Question 2: How does it work?
Answer: Actions emerge from the interaction of multiple, diverse, rela-
tively independent modules.
Question 3: How do I know when a cognitive system is functioning
adequately?
Answer: When it successfully satisfies its needs within its environment.

With these answers in hand, let's see how the action selection paradigm
relates to the other three paradigms of mind.

Action Selection vs. Cognitivist Paradigm. Actions may certainly be se-
lected by rule-based manipulation of symbols. That's no problem. On the
other hand, action selection requires an autonomous agent with no hu-
man in the loop to provide input and interpret output. Here we're siding
with the computational neuroethologists over symbolic AI. This position
also commits us to a stand on the first Al debate: "real" intelligence is
possible only in an autonomous agent. Disembodied minds are out.

Action Selection vs. Connectionist Paradigm. Actions may, at least
equally well, be selected by connectionist modules, artificial neural nets.
That's exactly what's intended for our proposed artificial insect. But
there's still the need for an autonomous agent, which is required by the
action selection paradigm but not by the connectionist.

The action selection paradigm seems almost to include both cognitiv-
ism and connectionism, but it differs from both of them in limiting mind

to autonomous agents. The situation vis-à-vis enaction is rather different.

I view the action selection paradigm as a further development of the en-

active paradigm.
Action Selection vs. Enactive Paradigm. In Varela et al.'s answer to the

first question, whose history of structural coupling bringing forth a world

are they talking about? The history of an embodied agent, presumably

autonomous. Bringing forth a world is so close to creating information
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as to be almost indistinguishable. If we think of a long sequence of cogni-

tive acts resulting in a history, we get the enactive formulation. If we think
of a short sequence of cognitive acts resulting in selecting an action, we
get the action selection formulation. Thus the first answers jibe, except
for one emphasizing action selection and the other creation of a world
via structural coupling. I'd be willing to expand my first answer to bring
them even closer. Revised answer to question 1: The process by which
an autonomous agent selects actions, including those processes which by
objectification, categorization, and so on create the agent's own world
from its environment. All this is surely part of the action selection
paradigm.

The answers to the second question are a little easier to compare. Both
paradigms embrace multiplicity of mind, with the action selection para-
digm also including diversity and relative independence. Enaction speci-
fies multiple levels, whereas action selection, remembering Maes's
perfectly flat behavior selection network, does not. Also, enaction re-
stricts itself to something like Brooks's subsumption architecture by in-
sisting on sensorimotor subnetworks. Though quite fond of subsumption
architectures, I don't believe they can do it all, and have framed the answer
to question 2 so as to leave room for other types of mechanisms. The
action selection paradigm also explicitly insists on action emerging from
local cooperation and/or competition between these relatively indepen-
dent modules.

The action selection answer to question 3 subsumes the first clause of
the enactive answer; both require that the agent be embedded in its envi-
ronment. To function adequately, the action selection paradigm further
requires the agent to be successful in that environment, 'successful"
meaning "able to satisfy its needs over time.' If our agent also learns, we
may call it intelligent, according to van Heerden's definition as adapted
by Wilson: "Intelligent behavior is to be repeatedly successful in satisfying
one's psychological needs in diverse, observably different, situations on
the basis of past experience" (1985 ). You may recall this definition from
our visit with Wilson's Animat.

To sum up, the action selection paradigm seems to allow for cognitivist
and connectionist mechanisms but to be both more restrictive and less
restrictive, requiring an autonomous agent embedded in an environment
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but allowing a diversity of mechanisms. It takes much of its meat from
the enactive paradigm but changes the emphasis greatly and differs in
how cognition is to be achieved.

Is the action selection paradigm actually emerging, or have I just made
it up? Are we dealing with discovery or invention here? I don't know.
Surely something is emerging. Critiques of the information-processing
model of mind are blowing in the wind like leaves on a willow oak in the
winter. We must have met half a dozen such critiques on this one tour.
Artificial life conferences are held yearly now, and its first scholarly jour-
nal, Artificial Life, has appeared. Books are appearing with titles like
Emergent Computation (Forrest 1991), Designing Autonomous Agents
(Maes 1991a), and Toward a Practice of Autonomous Systems (Varela
and Bourgine 1992). Conferences are springing up with names like
"Adaptive Computing in Engineering Design and Control." Almost with-
out effort I've accumulated several dozen references for an upcoming
course on control of autonomous agents.

The work of ethologists on animal cognition (Griffin 1984; Cheney
and Seyfarth 1990; Gallistel 1992; Barber 1993) lends strong support to
degrees of mind. We've seen the notion of minds creating information
pushed or supported by Maturana, Varela et al., Oyama, and Edelman.
Memory as re-creation seems to have at least tacit support from many
cognitive psychologists. We've seen the multiplicity and diversity of mind
pushed by Fodor, Ornstein, Minsky, John Jackson, Edelman, Hofstadter
and Mitchell, and probably others. This wide-ranging support comes
from such diverse areas as philosophy, psychology, computer science, and
neurophysiology. And we've seen first Moravec and then Margulis and
Sagan predict superintelligent machines.

It's clear to me that the winds of change are blowing. It's not so clear
that I've accurately gauged their directions. But that's not so important.
These assertions, in context, raise a host of questions, and so may direct
my research and that of my students for years to come. And if some prove
false, discrediting them adds to our store of knowledge. I'm happy to have
given the action selection paradigm a push, and will be eager to see if it
flies or crashes. In either event I will have learned something.

Thus our tour of mechanisms of mind has come to an end, as all things

must. For me, it's been rich and rewarding. I've learned a lot and have
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enjoyed almost every moment of it. I'm still awestruck by what we've
seen. Maybe the mindbody problem will prove to have a solution after
all. And maybe some of the attractions on this tour will contribute to it.

I hope you have found the tour entertaining and enlightening as well,
and that it's lived up to its warning by expanding the concept of mind
with which you started. I also hope that for many of you, the end of this
tour is the beginning of further explorations through the references that
follow or via other sources.

Ciao!

Notes

Drives are to he thought of as motivators serving built-in needs.

I've come to use "drive" to refer to built-in tendencies to pursue certain general
ends, and 'goal" as more specific and serving some drive or higher-level goal.
Drives influence strategies, goals influence tactics.

Recall my surprise that general-purpose SOAR could emulate part of Rl, and
VAX configuring expert system, at two-thirds of Ri's speed.

I've struggled mightily to find the right name, consulted others, stewed, stayed
awake. Finally, I've consoled myself by realizing that the name I chose most proba-
bly wouldn't stick even if this newborn paradigm enjoys a long life. No doubt
the PDP group struggled over parallel distributed processing," which was soon
superseded by "connectionism."

My thanks to Phil Franklin for jogging me into this name.
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