
Game Development
UsinG python

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this license
grants permission to use the contents contained herein, including the disc, but does
not give you the right of ownership to any of the textual content in the book / disc or
ownership to any of the information or products contained in it. This license does not
permit uploading of the Work onto the Internet or on a network (of any kind) without
the written consent of the Publisher. Duplication or dissemination of any text, code,
simulations, images, etc. contained herein is limited to and subject to licensing terms
for the respective products, and permission must be obtained from the Publisher or
the owner of the content, etc., in order to reproduce or network any portion of the
textual material (in any media) that is contained in the Work.

Mercury Learning and inforMation (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accompanying
algorithms, code, or computer programs (“the software”), and any accompanying
Web site or software of the Work, cannot and do not warrant the performance
or results that might be obtained by using the contents of the Work. The author,
developers, and the Publisher have used their best efforts to insure the accuracy
and functionality of the textual material and/or programs contained in this package;
we, however, make no warranty of any kind, express or implied, regarding the
performance of these contents or programs. The Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due to
faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book and/or disc, and only at the discretion of the Publisher. The use of
“implied warranty” and certain “exclusions” vary from state to state, and might not
apply to the purchaser of this product.

(Companion files are also available for downloading from the publisher at info@
merclearning.com.)

Game Development
UsinG python

James R. PaRkeR

mercUry learninG anD information

Dulles, Virginia
Boston, Massachusetts

New Delhi

Copyright ©2019 by Mercury Learning and inforMation LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be
reproduced in any way, stored in a retrieval system of any type, or transmitted by any
means, media, electronic display or mechanical display, including, but not limited
to, photocopy, recording, Internet postings, or scanning, without prior permission in
writing from the publisher.

Publisher: David Pallai
Mercury Learning and inforMation

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

James R. Parker. Game Development Using Python.
ISBN: 978-1-683921-80-6

Library of Congress Control Number: 2018964986

The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products. All brand names and product
names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks, etc.
is not an attempt to infringe on the property of others.

181920321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer Service
Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at authorcloudware.com and other digital
vendors. Companion files (figures and code listings) for this title are also available by
contacting info@merclearning.com. The sole obligation of Mercury Learning and
inforMation to the purchaser is to replace the disc, based on defective materials or
faulty workmanship, but not based on the operation or functionality of the product.

For My Mother—
She was a typesetter and lost her job to computers.

She does not blame me.

contents

Preface ..xvii

Chapter 0 Games ..1

Virtual Reality ... 4
Game Genres .. 6

Strategy ... 6
Sports .. 6
Simulation .. 7
Role Playing ... 7
Action ... 8
Adventure ... 8
Other Games .. 8

Common Aspects of Computer Games ... 9
Platforms ... 10

Desktop Computers ... 10
Tablets .. 11
Game Consoles .. 11
Portable Consoles .. 12
Cellular Phones .. 13

Aspects of Interesting Games .. 13
Venue .. 13
Conflict ... 14
Graphics and Sound ... 15
Props ... 15
Interface ... 16
Pace/Scale ... 17
Fidelity ... 18
Accuracy ... 18

Exercises ... 19

viii Game Development UsinG python

Resources .. 19
References .. 20

Chapter 1 Introduction to How Games Work21

Video Game Architecture .. 21
The Graphics System ... 24

Object Level .. 25
Geometric Level .. 26
Rasterization .. 27
Comments on Optimization .. 27

The Audio System .. 27
Game Design .. 28

Mechanics .. 29
Playing the Game by the Rules .. 30

Most of a Computer Game Is Hidden .. 30
The Artificial Intelligence .. 31
Game State ... 32
Global State .. 32
Push/Pull (client server) .. 32
Managers .. 33
Broadcast-listener .. 33
Shared and Global Entities ... 34

Pong .. 35
The Game Design Document ... 39

C2H6O Jet Boat Race ... 40
C2H6O Jet Boat Race Design Document .. 41

Exercises ... 45
References .. 46

Chapter 2 Graphics and Images ...47

Pygame Essentials .. 48
Simple Static Drawing ... 49

Pixel Level Graphics .. 50
Example: Create a Page of Note Paper .. 50
Example: Creating a Color Gradient .. 51

Lines and Curves ... 52
Example: Note Paper Again .. 53

Polygons ... 56
Blitting .. 57
Drawing Text .. 58

contents ix

Transparent Colors... 59
Images .. 61
Pixels ... 62

Example: Negative Image ... 63
Image Transformations .. 64

Rotation .. 65
Pixels and Color .. 67
 The C2H6O Jet Boat Race Game .. 70
Exercises ... 72
Resources .. 73
References .. 73

Chapter 3 The Game Loop ..74

Time and Intervals ... 74
The pygame.time Module ... 76

A Game Loop: Bouncing a Simulated Ball 78
Events ... 79

The Mouse ... 81
The Keyboard... 82
An On-Screen Button .. 84
A Simple Game .. 85
A Better Game ... 86

Randomness in Games ... 87
Randomness Generally .. 88

Randomness in Games: Dice, Cards ... 90
Probability for Beginners ... 92
Probability Calculations ... 93

Generating Random Values ... 96
Pseudorandom Numbers ... 97

Simulating Reality and Intelligence .. 98
Exercises ... 100
Resources .. 101
References .. 101

Chapter 4 Game AI: Collisions ...104

Collision Detection .. 105
Polygonal Objects .. 107

An Example ... 108
Broad Phase Collision Detection ... 109

“Operational” Methods .. 109

x Game Development UsinG python

Geometric Tests ... 110
Using Enclosing Circles ... 112

Sphere VS. Plane Collision (Circle – Line) 113
Circle-Circle Collisions ... 114

Finding the Closest Point on a Line to a Specified Point 115
Using Bounding Boxes ... 116

Object Oriented Bounding Boxes ... 117
Space Subdivision .. 118

Narrow Phase Collision Detection .. 120
Ray/Triangle Intersection .. 121

Collision Detection in the Boat Race .. 123
Ray Casting .. 126

Exercises ... 127
References .. 128

Chapter 5 Navigation and Control ...129

Basic Autonomous Control .. 130
How to Control a Car .. 131

Cruising Behavior .. 132
Avoidance Behavior ... 133
Waypoint Representation and Implementation 135

Finite State Machines .. 136
FSA in Practice .. 137
State and the “What Do We Do Now” Problem 140
Other Useful States .. 141

Pathfinding ... 144
A* Search .. 146
Stochastic Navigation ... 151
Exercises ... 152
Resources .. 155
References .. 155

Chapter 6 Sound ...156

Basic Audio Concepts .. 157
 Introduction to Sound in Pygame... 161

Sound Options ... 162
Sound Volume .. 163
Channels .. 164

Creating Your Own Sounds ... 165
Recording Using Cell Phones and MP3 Devices 166

A Small Studio ... 167
Audio Software .. 168

Positional Audio ... 170
Example: Distance Attenuation .. 171
Example: 2D Positional Sound .. 172

Exercises ... 176
Resources .. 177
References .. 178

Chapter 7 C2H6O Jet Boat Race ...179

Implementing the Game: Prototypes .. 179
Prototype 0 ... 180
Prototype 1 ... 181

Screens ... 181
Buttons ... 182
Start Screen ... 184
Options Screen .. 185
Play Screen .. 186
End Screen .. 186

Prototype 2 ... 186
The Play Screen ... 187
User Control... 190
The Boat Class ... 192
Artificial Intelligence ... 193

Collisions .. 193
Navigation .. 196
Waypoints ... 197
Avoiding a Boat .. 199
Colliding with the Shore ... 200

Sound .. 201
Engine Sounds ... 202
Collisions and Explosions .. 203
Starting Gun .. 203
Finish ... 203

Testing ... 203
Summary ... 206
Exercises ... 206
Resources .. 206

Sound Effects ... 206
Sound Editing .. 207

contents xi

xii Game Development UsinG python

Graphics Editing .. 207
References .. 207

Chapter 8 Animation ...208

Creating Elementary Animations .. 209
Animation Math ... 214

Motion Equations .. 216
Reactive Animations ... 219

Using Real Images ... 224
Ambient Animations .. 225
Character Animation .. 228
Cut Scenes .. 229
Animations in the Boat Race Game .. 231

Wakes.. 231
Summary ... 231
Exercises ... 233
Resources .. 234
References .. 234

Chapter 9 C2H6O – Final Steps ...236

Animations .. 237
Wakes.. 237
Explosions .. 238

Determining a Boat Collision ... 240
Sounds .. 242

Engine Sounds ... 242
Starting Gun ... 243
Finish .. 244
Bing .. 244
Audience .. 244

Gameplay .. 244
Completing the Race ... 244
Start .. 244

Timer .. 245
Intermediate Goals .. 246
Finish .. 247

Mini-Map .. 247
Game Data ... 248

Tuning ... 249
Exercises ... 249

contents xiii

Resources .. 250
References .. 250

Chapter 10 Networking ...251

The Game: Python Pong .. 252
The Paddle Class .. 253
The Ball Class .. 254
Communication between Processes.. 257

Example: Moving a Ball on the Screen .. 257
Network Pong ... 262

The Client .. 262
The Server .. 264
Blocking and Non-Blocking .. 265
Messages .. 267
The Pong Client ... 268
The Pong Server .. 270
Playing the Game ... 271

Resources .. 272
References .. 272

Appendix A: A* in Python ..275

Appendix B: C2H6O Jet Boat Race Game Design Document281

Appendix C: The NPC (Boat) Class for the Example Game291

Index ...295

Thanks to the makers of Audacity for allowing me to include their sound editing
software with the book.

Thanks also to the makers of VideoMach for allowing me to include their
video editing software and providing a key especially for us.

Special thanks to Nigel Gebert for composing and playing a short jazz piano
piece for me to use as an audio example. He even named it “Keys for Jim.”
How nice.

Acknowledgments

xv

This book is about computer games. It’s about how to develop them using the
Python language, but the book also includes some design instruction, ideas
about handling assets, and a host of things that should be useful for a game
developer.

Python is a programmer’s language, in that it provides features that
programmers usually want and often recode again and again in their various
programs. Lists, dictionaries, sets, arbitrary precision integers, dynamic
typing – it’s an encyclopedia of the tools a programmer uses all the time, or
would if it were convenient. Well now it is. PyGame, the module used to help
a programmer create games, adds to that a surface on which to draw, many
graphics primitives, sound, animation, and interaction. It’s a wonderful palette
on which game developers can dip their brushes.

If you look up my name on the Internet you will see that I am a professor of
Art. That’s true, but I feel like a bit of a fraud, and the reason is that I have no
training as an artist. I studied mathematics and computer science at university.
So how did I end up in art?

I was known for work in image processing and vision in the 1990s as an
academic. For some reason the Game Developer’s Conference interested me.
In 1998, I registered and attended, and my life was changed. The energy there
was incredible. People everywhere were completely enthralled by their work.
They were having fun. They were doing things and speaking about things that I
had not heard about in my academic venues, and those things were fascinating.
Moreover, their work had an immediate impact on people.

True, the companies were in competition for a share of the commercial games
market, but the people at the conference were excited about what they knew
and about sharing it. Sharing means, in this context, bringing back something

PrefAce

xvii

xviii Game Development UsinG python

as well as giving something to the others. Moreover, the group contained
computer programmers, musicians and audio specialists, artists, designers, and
business folks. A true meeting of multidisciplinary minds.

This book arose from my experience at GDC and my love of computer
programming. I have written other books on game development, but for a
casual programmer or home developer, I think that Python is a great way to
proceed. Python is easy to learn, and PyGame has everything a 2D developer
needs.

I do presume some proficiency in Python. That’s necessary to keep the book
under 1000 pages; to program games, one first needs to be a programmer. What
the book will teach is still significant. Computer science degrees are useful, but
few degree programs offer any treatment of assets: art, sound, graphics objects.
Handling those is essential to any game, and assets are a key component of
many practical computer programs.

The project in this book is by necessity incomplete. It is a boat race, 2D, and
seen from above; but is has sound, animation, interaction, AI, and everything
that a simple game should have. It could be more fun. It could have more
features. I leave these things to you. As an instructional device I think it has
everything that you need. As a game it still needs your touch.

There is a lot of code in the book. The code is also included in the companion
files, along with the color figures and some very useful tools for asset creation.
The programs are included so that you can play with them, modify them, and
experiment. If you do not, then you are missing an element of the instruction
that this book offers.

Playing games is fun. Making games is fun too, but can also be profitable,
educational, and useful in a great many ways. The information you glean from
studying game development applies also to other digital media. That’s a bonus.
As a marketer, web developer, artist, or app developer, what you can learn by
studying game development is enormous.

And, of course, it’s fun. If you are not having fun then you are doing it wrong.

Jim Parker
December 2018

1

chapter 0
GAmes

For all of recorded history, humans have played games. The earliest board
game is possibly the Royal Game of Ur, named after one of the oldest human
cities, having been established at about 3800 BC. This is what is called a
two-player chase game, similar in basic concept to Parcheesi and likely a prede-
cessor to Backgammon.

Why are people so interested in games? There are likely many reasons: a
need to keep our minds occupied during periods of inactivity, an interest in
social contact, and a desire for achievement are three. For whatever reasons,
games have always been a part of human society.

But what is a game?

By BaBelStoNe (own work), cc0,

httPs://commons.wikimedia.orG/w/index.PhP?curid=10861909,
httPs://commons.wikimedia.orG/wiki/File:British_museum_royal_Game_oF_ur.jPG,
httPs://www.shaPeways.com/Product/le3xnVQQm/knuckleBone-dice-set.

Creating a perfect definition of the word game is not a profitable activity
unless it leads to something practical. Here a game should be defined in a way

FiguRe 0.1(LeFt) The Royal Game of Ur. (Right) Knuckle bone dice.

2 Game Development UsinG python

that leads to a practical design and implementation process, and not more
philosophical concerns. Some things that some people may consider to be a
game may not be included in the definition, but the idea is not to exclude any
particular thing. The idea is to include as many things as possible that we think
of as games, and to provide clues for how one might begin to make one.

A game involves play, another term that is hard to define. Let’s say that a
game is an activity that people engage in voluntarily. A game is a structured
activity, in that a game has rules and at least one goal. A game should involve
variation or chance. Many simple games, like snakes and ladders, are purely
games of chance; such games are often played by children, possibly as an intro-
duction to how to play games. Most games have some chance and some skill,
meaning players develop, over a period of time, a strategy for playing the game.
Games like chess have very little chance. Chess uses chance to select the player
who will move first, but that is all.

A game is entertaining. It can be other things also, but it must at least provide
some degree of engagement for the player. As in other forms of entertainment,
the feelings that a game imparts need not always be happy ones, but the game
must encourage the player to continue playing in some interesting way.

By this definition catch is not a game, as there are no rules. A ball is simply
thrown around. Yet it is an activity, and it is entertaining.

httP://www.Patriciamcconnell.com/theotherendoFtheleash/a-new-look-at-Play-Bows.

Games all use a mutual acceptance of the fact that what is occurring is play.
The implication of this is that there should be no real-world ramifications.

FiguRe 0.2 A play bow.

Games 3

While the game is being played, the players are operating under the game rules
and not the rules of the world or society. Some people refer to this as being in
the magic circle. This explains how a king and a peasant or an employer and
employee can play chess together.

Games are also used to teach. This happens in the animal kingdom, where
games played by cats, for example, teach hunting skills. This appears to contra-
dict the “no consequence” rule, but it is always true that playing a game
frequently makes one better at playing the game. Dogs also play, and that brings
up the magic circle again. When a dog wishes to play with another, they begin
with a play bow where the chest drops to the ground, the forelegs are extended,
and the eyes are looking at the potential partner.

If the invitation is accepted, two dogs of differing status can play, and that
means they can do things not normally allowed: staring, growling, even biting.
The game can end quickly, though, if one of the dogs goes too far, perhaps
biting too hard or taking the wrong toy. Then the magic circle disappears, and
real life has resumed.

There are a few general game classes. Kinetic games are usually played
outdoors with little in the way of equipment and, again, are often played by
children. Tag and hide and seek are examples. However, charades could be in
this category too. Such games involve the motion of the players.

Board games use a set of objects or pieces that are placed on a relatively
small playing surface, a board. Players usually take turns moving the pieces to
locations on the board following a set of rules.

Card games use a collection of paper or wooden chips that are marked in
some way. The chips (cards) are usually handed out randomly at the outset of

FiguRe 0.3 Examples of mathematical games.

4 Game Development UsinG python

the game, and through following the rules they are collected into sets where
some sets are more valuable than others. Dice games and games like dominos
can be placed in this class.

Word games include guessing games, such as Yes and No (also called 20
questions); I Spy; How, When, and Where (from A Christmas Carol); and a host of
others. These games use no props and can be played anywhere.

Mathematical games can use properties of shapes, numbers, or relationships
to create puzzle-like games that can be very complex indeed. They are often
played using a pencil and paper. Nim and Sprouts are two such games.

There are some other classes of games, but one that has developed in the
past few decades is the computer game. These are not merely computer imple-
mentations of the other kinds of games, but they are games that use the specific
characteristics of a computer to engage in play. Those properties include the
ability to do many calculations each second, multimedia capabilities (images
and sound), and many different ways of accepting use input. This means that a
computer can display images and sounds under the control of a user (player).
Objects that do not really exist except as images on a screen can be moved about
and can interact with each other and a player. This opens a whole new range of
possibilities for play.

It has been estimated that 69% of the human beings on this planet have
played a video game. This seems a reasonable number given the popularity and
ubiquity of games as observed in shopping malls, in movies, and in media gener-
ally. It amounts to about five billion people. What these players know about
games varies quite a lot, but common knowledge concerns rules of specific
games, interface issues such as what keys to press or buttons to push, and some
tactical information about game play, like where to hide, when to jump, and so
on. Very few of these people know how the games work at an implementation
level though. The internal actions of the game, from key press to avatar motion,
are a mystery to most people.

VIRTUAL REALITY

The term virtual means “almost” or “nearly.” Virtual reality presents a form
of reality that is not quite real but seems like it. Modern computer games often
present a three-dimensional view of the game area and permit the player to
navigate through this space, encountering friends and obstacles as they go. This
presentation is similar to the virtual reality of books and films such as The Lawn-
mower Man and reached the peak of its form in the Holosuite of Star Trek.
In Star Trek the suite is used for entertainment. Complex games are played

Games 5

and complex characters are created with which to interact in a natural way.
Computer games are not yet at that stage, but they seem to be approaching it.

Both computer games and virtual reality are in some sense simulations. They
are computer programs that present a realistic view of a nonexistent world,
but a world that has the same or similar laws as the real one. This may include
gravity, time, speed, physical contact, sounds, and even human reactions. All of
these aspects of the virtual world must be simulated by the computer program
that implements the game. When a character lets go of its grip on an object, the
object falls to the ground because the software describes that process. When the
object strikes the ground, the computer program plays a sound effect, because
a sound would be produced by the impact. Nothing that happens in a computer
game happens unless a computer program implemented it.

When we play cards or chess, there is really no discussion about how the
game is implemented. Two people set up the board or deal the cards, and away
you go. A computer game, on the other hand, has a very complex underlying
implementation which is really the subject of the entire discussion here. How
are computer games made? The nature of virtual reality gives some idea of what
is needed. A video game needs what virtual reality needs:

– A video (graphical) display
– An audio display (speakers, sound card)
– A way for a player to communicate their moves to the computer
– A way for the computer to remember positions and make moves

If you examine what people do know about games, some internal structure
can be inferred. That players know rules of games implies that games have
a consistent set of rules that will be implemented by a computer program
somehow. The players’ knowledge of the user interface implies a level of
consistency there too. We observe, for example, that the arrow keys, or some-
times the keys “W,” “A,” “S,” and “D,” are used to move the player’s avatar, but
not the keys “R,” “G,” “N,” and “M”; there are conventions for user interfaces.
The video game screens display images that move, and game actions result in
sounds that the player can hear and use as cues. Thus, a video game must be
able to display images and sounds and do so in response to user commands or
internal events in the game.

On the other hand, what we need to know to design and build an orig-
inal game is significantly more than that. There’s only so much that you can
learn from examining a game from the outside. Games are complex systems
involving computer devices and software, art (textures, 3D models, sprites),

6 Game Development UsinG python

music, sound effects, video and animation, story, and a designed structure for
play. There are a great many existing games, and techniques and tools that will
help a game developer in their task have evolved over the last few decades. If
we’re going to build a game, we should become familiar with at least some of
those things.

Not all computer games are high-resolution, immersive (i.e., virtual reality),
real-time games. In fact, each type or genre of game has a preferred style of
representation.

GAME GENRES

Video games can be classified according to how the game is played rather
than what the game is about, just as we did for games in general. A genre is
defined by the kind of challenge the game offers to the player rather than the
story it presents, if any. The games in a genre need not occur in the same loca-
tions, in the same time periods, or even have the same graphical style, although
presentation style is more similar between games within a genre than in general.
There are quite a few genres in the literature, but these are the most common
ones.

Strategy

These games give the player a singular position in the game where they know
nearly everything about the current state. By using plans involving placing and
moving their objects (forces), the player opposes other player-controlled or
game-controlled objects. Objects have specific powers within the game, and by
clever opposition to the objects seen the player achieves a goal, which is usually
domination of the other players. There is often an economy within which the
player can acquire more objects.

Sub-genres include tower defense games, in which the player sets out static
defenses along a path traveled by their opponent and real-time strategy games
in which players act in real time against a dynamic game state (Warcraft, Age
of Empires).

These games often use a medium-level resolution and have a point of view
from above the playing area.

Sports

Sports games are the easiest to understand, because they reflect an activity
that most people already know about, that being sports. Any sport can be made
into a game. Golfing games use the rather clumsy mouse-keyboard interface
to permit a player to control a golfer on a course, which is something of a solo

Games 7

activity. Team sports like football and hockey present more variation to the
player, and often permit the switching of point of view between the individual
team members. The games try to simulate the style of play of actual athletes so
that a player can compete against their favorite individuals.

Racing games fall into this category. Actual racetracks are used in many of
these, as are actual drivers and cars. A number of special interfaces have been
devised to permit players to use a steering wheel and pedals, modeling the way
cars are really driven.

Sports games are the most difficult to create. They tend to use high-reso-
lution graphics to mimic what would be seen on television, which is the way
many people view sports. Sport fans know quite a lot about their sport, so the
game must be quite accurate. The fans in particular know how the real players
actually play, and they will be critical of mistakes in this area. Each year players
move between teams and new ones enter the sport, so the game must be regu-
larly updated. And if that is not enough, the physics involved in sports games is
very sophisticated. Consider the complexity of a collision between two hockey
players skating at high speed (rag doll physics) or how a race car behaves when
it crests a hill, leaves the ground, and then lands in a wet spot on the track.

Simulation

Simulation games have become more popular in the first part of the twen-
ty-first century. While all games contain a simulation at their heart, a simulation
game exposes that simulation and permits a player to manipulate it directly. The
most obvious type of game in this genre is a flight simulator, in which the player
flies an aircraft. As in sports games, flight simulators use real-world features:
real airports, aircraft, and terrain. Air combat can sometimes be an aspect, as
well as the distinct nature of each aircraft. There are also ship simulators and
train simulators.

However, there are more complex simulation games where one simulates an
ecosystem or an entire human or other lifetime. Games like SimCity allow the
player to build and manage an entire city. Tycoon games (Zoo Tycoon, Roller
Coaster Tycoon) are simulations of businesses and economies.

Role Playing

These games are referred to with an abbreviation, RPG. They are in some
sense derived from the original non-computer game Dungeons and Dragons
and cast the player in a role where they can pretend to be one of a number of
characters, each having specialized abilities. There is a storyline and a set of
goals, but the manner with which the player achieves the goals is up to them.

8 Game Development UsinG python

Action RPGs focus on combat and can be solo games (Dragon Slayer),
multiplayer, or massively multiplayer (MMORPG), using the Internet to gather
hundreds or more players into the same game at the same time (Final Fantasy
XI, Elder Scrolls Online).

Action

This genre actually began the video game phenomenon. Action games are
sometimes called twitch games because they require the player to respond
quickly to the visual and auditory stimuli provided by the game. The player’s
viewpoint is central to these games, which often involve fighting of some
kind.

Platformers have a two-dimensional presentation as seen from one side.
The player controls a character who runs and jumps while collecting objects,
fighting, and avoiding traps and enemies. Donkey Kong is the best known
of these games. They require little in the way of complex graphics and can
be played on very small, low-powered computers. Shooters are very popular
because the game play is so obvious: enemies approach and you shoot them.
They, of course, shoot back. Game developers like these because they are
so simple in concept and easy to build, although more modern ones do have
much better graphics and even complex narratives. First-person shooters
(Doom) follow the player precisely, whereas third-person shooters render
the scene from a distance.

Fighting games focus on individual combat. Various key press combinations
correspond to actions that the avatar makes in a combat situation: punches,
kicks, jumps, and so on. Memorizing the key sequences and speedy presses
under real time actions make this style difficult for some.

Adventure

Adventure games use gameplay style that is relatively sedate. The player
has some rather general goals and achieves them by solving puzzles and by
interacting with game elements like other characters, terrain, or objects. These
games use non-confrontation more than violence. Some of the earliest computer
games were text-based adventures (Advent, Zork) that could be played on the
early dumb terminals and telex interfaces. Myst is probably the best known of
these games in the modern era.

Other Genres

There are many other genres in common use: kinetic or rhythm games
(Dance Dance Revolution), horror and survival horror (Silent Hill), casual,
puzzle games, trivia games, and others. Each has a typical implementation

Games 9

style in terms of the interface, and a preferred graphical presentation that is an
advantage for that genre.

COMMON ASPECTS OF COMPUTER GAMES

Computer games have common requirements which have implications for
the design of games. The need for participation and rules implies the existence
of objects. A player manipulates some kind of object according to the rules,
which defines play. The object could simply be the player’s hand, or a ball, or
a stone. There can be multiple objects and multiple object types. An object is
manipulated by the player and can, in turn, affect the player, which provides
interaction.

The way a player manipulates the objects is called mechanics, or game
mechanics. The basic mechanics for basketball is make the ball go through a
hoop from above, for example.

A game designer really designs mechanics.

The existence of objects implies the existence of some kind of playing area,
volume, or space within which the game activity takes place. A game object
needs space within which to act. A game space could be a board, as in checkers,
or a table for card games, or a simulated 3D world for computer games like
Portal, Silent Hill, or Planetside.

The game has a purpose, goal, or end point. The player must manipulate the
objects according to the rules so as to accomplish the goal or reach the end point.
The goal could be temporary, to be replaced by another goal when the old one
is achieved. There could be multiple goals to be achieved, either collectively or
optionally. Or, in some rare but popular instances, the goals could be selected
by the player. That is the case in The Sims, where there is no designer-specified
goal, but the players can manipulate the virtual worlds to achieve goals they
have devised themselves. This the one of the most popular games ever made,
but the concept of the sandbox, a place where players can manipulate the world
freely, has relatively few examples. Most games have designer-specified goals
and a way of keeping score.

A game should have these characteristics. What does this say about how a
game, especially a computer game, should be built? What are the things that
a computer game needs to implement, at a generic level? First, there must be
a way of interacting with the game. How does a player interact? Usually by
manipulating an object, or multiple objects, within the gameplay space. Interac-
tion when using a personal computer usually means using a keyboard or mouse,

10 Game Development UsinG python

although special-purpose game devices do exist. So, a computer game needs a
straightforward way to accept input from those devices and use it to update the
game.

Next, we require an object in an abstract sense. An object is manipulated by
the user, so its location and state must be modifiable. The object might be able
to interact with other objects. For example, it may collide with a wall. It should
be able to create new objects (bullets, missiles, money, food) and destroy or
drop objects (money again, traps, tools).

In the virtual space defined by the game, an object has a location and an
orientation. It will normally have at least one graphical representation within
that space so that the player can see its location and orientation and modify it
as wanted.

While most games have these characteristics, computer games certainly do.
They define the structure of a video game as a piece of software, and that struc-
ture is referred to as the architecture. In order to visualize how a computer
game works, we’ll look at a specific game and then generalize what is learned
there to all video games in the next chapter.

PLATFORMS

Computer games are played using a computer—everyone knows that. But
there are many kinds of computers, and each one presents special advantages
and disadvantages for hosting a game. The features of importance include the
speed of the processor; the nature of the graphics area, including its size, color,
space, and speed of access; the nature of the user interface; speed and cost of
Internet access; and the amount of memory available. Games are usually devel-
oped for a particular platform, but they may expand their range of platforms
with time.

Desktop Computers

PCs and Macs are good devices on which to play games. PCs in particular
have a large variety of devices that can be used to supplement the gaming inter-
faces. Desktops typically have a large amount of memory, run at 3 GHz and
more, and multiple processors and most importantly possess a high-powered
graphics card. Modern graphics cards are much faster than the processors
on the computer and are programmed to respond to a game’s specific needs.
Programming a PC can be done in any of dozens of languages.

PCs have a range of video and audio output devices. Color quality of moni-
tors is now excellent, although each monitor is just a little different from the

Games 11

others. Multiple high-quality speakers can be fed by 5.1 and 7.1 channel sound
cards to create a compelling 3D sound display. By the way, the “.1” in “5.1”
refers to the subwoofer, which is not really a distinct channel. The quality of the
displays places a responsibility on the developers to provide good sound and
images. Defects will be obvious.

Of course, computers are all sold with high-speed Ethernet cards, so Internet
access is not a problem. Also, games are now often downloaded to a PC from
the Internet using services such as Steam. This means that software updates
to games, something that was once impossible, are now done while the player
sleeps.

There are some pitfalls when using desktop computers as gaming devices.
After someone has owned a computer for a few weeks, it is unlike any other
computer in the world, because users always customize them. New programs
are installed, special devices are connected to the bus, security measures
are taken, and a host of small modifications are made. The fact that no two
PCs are the same does make it difficult for developers to guarantee that
their games will work. Then there are software upgrades from the system
vendors and the simple variation in operating system levels and versions.
What can the developer depend on? Not much. So, they must provide it for
themselves.

Tablets

Tablets are not quite computers. They have a smaller, slower processor,
less memory, and no extendability. The screens are small and have small, slow
graphics cards. Their Internet is restricted to wireless. There is no keyboard or
mouse, usually just a touch screen.

This means that the touch screen has to be used for most user input. A
touch screen maps onto a mouse pretty easily in terms of the operations it can
perform, but avatars are usually controlled using the “w,” “a,” “s,” and “d” keys,
which are not available.

Tablets have sound capability but are limited to stereo. Headphones would
be the rule. Some tablet games have been downsized from a desktop, but the
advanced ones simply will not work.

Game Consoles

A game console is a specialized computer designed to run games. The system
is optimized for game performance in every regard. Because a console has no
other job, it has limited customizability and a much smaller range of things it
can do, but it does those things very fast. It generally has multiple processors,

12 Game Development UsinG python

an advanced graphics card, and some disk space so as to store a few games and
high scores. Games can be distributed on disks and on the Internet.

A computer game that executes on a console is sometimes called a video
game, possibly because they used to use the television as a monitor.

Programming a game for a console is actually a quite complex task involving
a lot of specific knowledge of the architecture of the machine and some parallel
programming. The results can be spectacular.

Popular consoles are the PlayStation (now at version 4), Xbox (multiple
versions), and Nintendo Switch.

Portable Consoles

Portable consoles are handheld computers that only play video games. The
king of the portables is the Game Boy by Nintendo. That version has sold
over 118 million units, although it is no longer made. It has an 8-bit computer,
meaning the graphics and sound were very primitive indeed. However, you
could play it on a school bus or in a subway.

The Game Boy has been replaced by the DS and 3DS with 32-bit proces-
sors, which have sold 152 million units. The bestselling game was Super Mario
Bros. at 31 million copies. Financially this would be the device to create games
for, but Nintendo keeps a very tight reign on who can create for these devices.
They keep control partly because they own the patent on the game distribution
device, a small chip that fits into the body of the console. Nobody else can make
those.

Other portables include the PlayStation Vita and the Sony PSP Slim.

FiguRe 0.4 The original Game Boy.

Games 13

Cellular Phones

Cell phones are ubiquitous and have multiple purposes, so it makes sense
that games would be created for them. The problem is that they are really just
very small tablets. This means that the screen size (what developers call “real
estate”) is a limiting factor. Playing a game like Civilization or World of Warcraft
could be tricky. It would certainly be constraining. Yet the advantages are clear.
A phone has Internet access, it has many built-in devices like GPS, tilt sensors,
and accelerometers, and it has sound.

Cellular phones are frequently based on the Android operating system,
although iPhones are not. This means that a developer has some clear choices
to make when building a game, and the Android operating system is upward
compatible for at least a few versions.

Building a game for a phone must take into account the specific constraints,
although there are a few games that can be played on nearly any device; Angry
Birds comes to mind.

ASPECTS OF INTERESTING GAMES

Games that have had an enduring quality tend to have things in common.
Very few games have all of these, and some have only one, but these are things
that should be thought of when designing and building a new game. Genre is an
important consideration when incorporating features, as is the style and quality
level of the graphics, the nature of the sound, and so on.

Venue

Some games take place in interesting locations, often real places that you
may have visited: San Francisco, New York, Paris. People like to see new and
interesting places, and people who have been to those places like to see spots
they can recognize within the game. Of course, many people have seen these
places in movies and on television, so that gives the sites an extra degree of
familiarity. This is important, and not just because the locations are often distant
and exotic to many of us. If we could create a game that would drive through
your own hometown, for instance, that might interest you. The makers of the
Monopoly game have done this by cus tomizing their game for various cities,
and it seems to work.

Naturally, simply placing the action in an exciting place is not good enough—
you must portray that place using graphics and sound well enough so that the
player can identify it. This is an implementation issue more than a design issue,
but is im portant, and it will be discussed in more detail.

14 Game Development UsinG python

If the game is a driving game, then placing it on a racetrack is an obvious
thing to do and can actually take away from the fun unless that track is familiar
to the player. The track at Indi anapolis is well known, for example, and a racing
fan would identify it in a mo ment. In a basketball or hockey game, the designers
and implementers go to some significant efforts to try to make the players look
and act like the real players and to have the venues be accurate representations
of the real thing. Fans know their sport and can be very critical when the game
does not look right.

It is a little unusual to permit the player to get too far away from the path
that the game designers have set out. In some games you can go anywhere in
the simulated world and manipulate objects—this is an essential aspect of play
in The Sims, for instance. Such games are sometimes called sandboxes, because
the player, rather than the designer, defines the way the game is played. It is a
feature of most games that the player appears to have much more free dom than
they really do; they appear to have choices, but for simplicity’s sake the choices
all seem to lead to the same few consequences. This appearance of free dom is
very important to computer games in general, not just racing games. It is neces-
sary because we just can’t simulate the entire universe.

Not yet, anyway.

Conflict

A game most often has winners and losers; games keep score. Clearly the
goal is to win, and any game that does not allow the player to win will not be
popular. This is the mini mum conflict requirement of any game, even ones that
involve collaboration. Perhaps the term challenge should be used in place of
conflict. In any case, a game presents the player with obstacles to be overcome,
and success is a matter of learning how to deal with these obstacles.

There are a variety of conflict sources in games, and variety can be essen-
tial to game play. Indeed, any narrative depends on a degree of conflict to be
interesting. While nar rative in some games is usually there only to provide back-
ground, or an excuse for the action, other times the conflict is fundamental to
the story (World War II, for instance) as it defines both the goals and the means
of achieving them.

So, what kind of conflict are we talking about? First-person shooters have
one of the obvious forms of conflict, where the goals are achieved by shooting
your opponents. Sports games have obvious conflicts, as do racing games: to
defeat an opponent using the rules of the sport. In Crazy Taxi we have customers
re fusing to pay if we get there late, and they berate us for going too fast or slow.
In the Tycoon series of games (e.g., Zoo Tycoon), conflict is created by forcing

Games 15

the player to balance costs and income through building attractions. Not all
games use competition as conflict, but most do. Little Big Planet is a coopera-
tive game in which the players can create new content, but there are still goals
to be achieved that present challenges; it lacks the incentive to defeat an oppo-
nent, and so in that way it is not competitive.

Graphics and Sound

All really good games excel in some aspects of graphics or sound or both.
Graphics do not have to be high resolution and three dimensional, but they do
have to be appropriate for the specific game. Games like Halo offer high-quality
graphics and good animation, but we should not mistake “high resolution” for
“interesting.” The Simpsons Hit & Run offers the players the ability to ex plore
a town that they know fairly well—Springfield, home of the Simp sons. Do not
underestimate the value of sandbox mode; if the world is interesting, then just
looking around can be entertaining.

Sound may be more important than graphics, especially for imparting mood.
This includes excitement, and a fast-moving rock and roll audio background
adds energy to a game in the same way the ethereal themes from Half Life
make its world seem dangerous and spooky. It is not usually a trade-off, and
we can have good graphics and audio if we just have the wherewithal to create
them.

Naturally some games require better graphics, because they need to be
more faithful simulations, whereas others can be very cartoony, like Double
Dash, and still offer a huge degree of entertainment value. As a result of these
considerations, the best games have in common an appropriate level of detail in
graphics, with good audio and appropriate and entertaining objects and back-
drops rendered predictably.

Props

Props are items that can be manipulated in the game. All games have props
of some kind. Sports games in general have fewer props than most games, and
simulation games often have many. A ball is a prop; so is a bullet or a missile,
and they can move on their own. Power-ups and penalty objects are props too.
Props have an immense potential for making a game more interesting. Without
the possibility of picking up weapons and speedups, the Double Dash game is
just a cartoon race game. Being able to slow down an opponent from a distance,
and having him be a threat from behind, adds an element of excitement.

Props also allow a more interesting narrative, since entire missions and
levels can depend on moving props from one place to another. They can

16 Game Development UsinG python

impart important properties that re main from level to level, like magic icons,
fuel, and skill points. This leads to the conclusion that complexity makes
a game more interesting. There is some truth to this, so long as the game
remains playable, but it is more likely that a de gree of unpredictability makes
the game more interesting. The game must be con sistent, but it is best if it
does not repeat itself exactly each time it is played. Props can be used both
to make a game more complex and to make it less predictable. The location
of the props can change along with a repeatable character that otherwise
could become dull. A pattern of play can be useful sometimes, but it’s rarely
entertain ing.

Interface

Games are fundamentally an interactive medium, and interfaces are at the
heart of interaction. There has been a significant effort to standardize some
game interfaces. For exam ple, on consoles we find very similar controls doing
similar jobs, especially on games that run on multiple consoles. Also, games of
a specific genre tend to use consistent control sequences, like arrow keys for
motion. Games vary a little on use of keys/buttons and mouse gestures, and
there is still too much variation generally for identical mechanics.

Some racing games use the mouse to control speed and direction. The
mouse has more degrees of freedom in directional control, and the faster the
car goes, the harder it is to control it with a mouse. One tends to oversteer, and
mouse position is relative, not absolute. Still, given the popularity of games for
tablets and smartphones, the use of the mouse is increasing. The touch gestures
on tablets translate into mouse clicks and motions directly. Anyway, most tablets
and phones don’t have keyboards, so using keys is a bad idea.

There are now many special game interfaces available at low cost, most of
which use the USB interface. This is much better than the old parallel port or,
even older, the “game port” that used to be available on PCs. These were almost
always used to plug in a “joystick,” a curi ous term for a game control.

One such special-purpose interface is the steering wheel-pedal set that
converts wheel and pedal motions into character sequences. The fact that they
can be configured to send any sequence you like means that game interfaces
don’t have to be standard anymore, at least in the long run. More and more
people will acquire the special interfaces until the keyboard becomes old-fash-
ioned. Figure 0.5 shows one particular brand, the Logitech.

Another USB interface device is the flight stick; the idea is to make the
interface look more like that of an airplane by giving it a similar control device.

Games 17

The Logitech Wingman shown in Figure 0.5 is one example, which again can be
configured to provide specific control sequences for any possible action.

A problem is that there is no “feel,” in that the action is from the player to
the game only. In a real airplane or car, the control—wheel or stick—provides
a force that counters the player’s actions, and that can be relative to the speed,
direction, driving surface, or even wind. Few game controllers do this. Some
can vibrate, which gives a limited feedback. The Reactive Grip controller
(Provancher, 2012) simulates responses of various weapons, like swords and
guns, and is probably the best example of a reactive device right now.

There are many other possibilities, and progress is proceeding rapidly. At a
recent Game Developer’s Conference, for example, there was an interface for
sale that input brain waves from a couple of small electrodes attached to the
skull and used the signals to play some simple games. The price? One hundred
dollars. There is university research that includes some work on hand gesture
recognition as applied to controlling games on the PC—hand motions are inter-
preted as re quests to move, pick something up, and so on. Ultimately games will
become an invisible technology, like telephones and TV. They will be anywhere
we like and will require no special knowledge or hardware to play.

Pace/Scale

The driving games that are the most fun typically allow you to go fast.
Submarines move slowly but inevitably and cannot turn or stop in any reason-

FiguRe 0.5 Special-purpose game controllers for specific genres. (Left) A driving controller that
emulates a steering wheel. (Right) A flight stick for aircraft and other vehicle simulations.

18 Game Development UsinG python

able time. The pace of the game must be appropriate (that word again) for the
kind of situation being simulated by the game. In addition, as the player gains
experience, the game should present more and more difficulties. In some
games this means that the game speeds up; other times there are more or
stronger opponents.

An impression of speed can be given by placing objects near the player that
move past at a high speed. Buildings are good for this because they have a lot
of detail that flashes past in a similar way to what we’d see on movies or in real
life. In fact, a variety of objects in a range of distances is effective in conveying
the illusion.

Sound is crucial as well. Play a fast tempo game with the sound off to see the
difference. A fast-moving music track helps a lot, as does a good set of speed
implying sound effects: positional sound, Doppler effects, and so on.

One nice idea that is simple to implement and is now a standard in games
is a backdrop with scenery painted on it. This effect is used in movies too; the
shots of the inside of Borg ships on Star Trek are actors in front of paintings,
and quite a lot of science fiction depends on paintings to convey distance and
strange environments. The use of drops in a game can add depth that is noticed
if absent, but usually draws no comment otherwise.

A 3D game consists of a terrain model on top of which we have both moving
and stationary objects. There is usually a distance beyond which objects will not
be rendered (far clipping plane), and as objects get closer they seem to “pop”
into existence when they pass that distance. In the far distance we have an
image painted on a surface that passes for the horizon. This often has hills and
sky painted on it, or an urban backdrop. In any case, the drop has no real depth.
A game will have the drop rotate as the player turns so as to give the illusion that
the car changes direction.

Fidelity/Accuracy

When we create a game, we create an entire universe. We get to decide
where things are, how big they are, what they eat, and so on. In particular, the
rules of physics as we understand them in the real universe are flexible, and we
decide how they work in our universe. In many kinds of games, the accuracy of
the physics takes a back seat to playability and entertainment value. So, if you
have ever played Doom, you will probably know that the player can seem to run
pretty quickly through a level. You may not know that if you measured it, you
would see the character has a top speed of 60 mph! This does not detract from
the fun; on the contrary, restricting game objects to normal speeds will slow the
game down a lot.

Games 19

Physics includes a variety of topics, including how collisions are handled,
how fuel is consumed, how fast the vehicles can accelerate and what the top
speeds are, how fast cars can enter a turn before they skid, and how a vehicle
can become air borne if it reaches the peak of a hill. Most games do take liberties
with physics to enhance game play, especially the more cartoon-style games. We
will discuss this further after there has been a chance to look at how physics is
imple mented in a game. Just remember that any rule can be violated if it makes
the game more fun.

ExERCISES

The following problems will exercise your knowledge of the material in
this chapter, and they will sometimes require that you do some more research
before you are able to complete them.

1. Describe the venue, conflict, pace, scale, and fidelity of two games that you
currently play. Think about other games you enjoy—do they have common
elements?

2. The game Nim has a known strategy for winning. Any game for which a win
or draw can be forced is said to be strongly solved. What other games are
strongly solved? Name two.

3. A serious game is one that has some function in addition to entertainment,
such as education. Name at least one serious game.

4. Describe the interface to Angry Birds. How does the interface contribute to
the fact that the game can be found on so many different platforms?

5. Art style can be an important aspect of a game. Sketch two possible visual
interfaces for a computer-based Nim game.

6. The game Snakes and Ladders is purely random. There is no strategy that
can be used; it all depends on the throw of the dice. Suggest rules that would
allow some degree of strategy in this game.

7. Consider the kind of materials that can be found in a dollar store or craft
store. Make up a game that uses such easily found materials, write a set of
rules, and play the game with at least two other people. Did the game play
the way that you thought it would?

RESOURCES

Yale Game Theory class, http://oyc.yale.edu/economics/econ-159.

20 Game Development UsinG python

MIT course on Computer Games and Simulations for Investigation and Educa-
tion, https://ocw.mit.edu/courses/urban-studies-and-planning/11-127j-comput-
er-games-and-simulations-for-education-and-exploration-spring-2015/

MIT Game Design course, http://ocw.mit.edu/courses/comparative-media-studies/
cms-608-game-design-fall-2010/.

Raph Koster, Theory of Fun for Game Design, http://www.theoryoffun.com/theo-
ryoffun.pdf.

https://www.archimedes-lab.org/game_nim/play_nim_game.html.

REFERENCES

1. Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. (2001). Winning Ways
for Your Mathematical Plays, Vol. 1–4. A K Peters/CRC Press. Boca Raton,
FLA.

2. Johann Huizinga. (2016). Homo Ludens: A Study of the Play-Element in Culture.
Kettering, OH: Angelico Press.

3. Aki Järvinen. (2008). Games without Frontiers: Theories and Methods for
Game Studies and Design. Tampere, Finland: Tampere University Press.

4. William Provancher. (2011). Multidirectional controller with shear feedback.
US Patent 13/269,948, filed October 10, 2011, and issued August 14, 2013,
Publication number US 2012/0038468 A1.

5. Miguel Sicart. (2008). “Defining Game Mechanics.” The International
Journal of Computer Game Research 8, no. 2 (December).
http://www.gamestudies.org/0802/articles/sicart

6. John von Neumann and Oskar Morgenstern. (1947). Theory of Games and
Economic Behavior, 2nd edition. Princeton, NJ: Princeton University Press.

7. Dan Whitehead. (2018). Game Over: The Games We Loved to Play and the
Consoles Time Forgot. Studio Press.

21

chapter 1
IntroductIon to How gAmes work

Computer games are first of all games, and second computer based. A good
way to begin as a student of game development is to examine a real game to see
how it functions in some detail. We can take it apart and take a look at how a
computer game is structured at the design and implementation level. A simple
game that everyone knows is ideal for this purpose. Pong is one of the first
computer games, and it has all of the elements of other games, except that it is
simple enough to understand completely. First, let’s take a look at how a game
operates at the computer level.

VIDEO GAME ARCHITECTURE

The word “architecture” can be defined as construction or structure
generally; any ordered arrangement of the parts of a system: the architecture of
the universe.1

According to this definition, game architecture should be about the
internal structure of a game, its general organization as a functional system
in terms of the way that the parts are arranged to create a working game.
In order to truly understand the structure of a game, you pretty much have
to know some thing about computer programming, because the computer
is the enabling technology and any computer game is a piece of software at
the core. Without being a programmer, it is only possible to have a general
appreciation of how a game functions. You need to know what the parts are—
not the visible parts like cars and roads, but the structural and functional
parts, like the audio sys tem and the renderer. You need to understand how
the parts communicate with one another and what one part needs to know to
accomplish its task.

22 Game Development UsinG python

A game player cannot be required to know this. The player needs only to
know the rules of the game, the task, the interface; those things needed to
play. In fact, my students have told me that after studying games and writing
one, they never look at a game in the same way. They still play games, but they
find themselves asking, “why did they put that building there?” and “how do
they implement those torches?” So, knowing how games function “under the
hood” can sometimes interfere with, or other times enhance, the experi ence
of playing them.

In a technical sense, a computer game is an interactive real-time simulation
with a graphical and audio display. If you accept this definition, then there are
already a number of identifiable components that comprise the game system:
the graphics system, the audio system, the user, and the scheduler. The only
essential part that is missing is the artificial intelligence (or AI), whose job is to
keep track of the simulated objects in the game.

Figure 1.1 shows a diagram of the basic components and how they are
connected. It is not the only organization, and it certainly does not show too
many details, but it should be good enough for now, and it will form the basis
of this discussion. So, the remainder of this chapter will describe each of these
components of a game and how and what they communicate with each other.
This will give you a much clear er idea of how the overall game functions as a
software system.

A computer game offers the player a world that does not really exist. Without
get ting too philosophical about it, what you see through the computer screen is
a ren dition of data that represents a simulated situation. What you see is a real
screen with real images, but the situation and what is being drawn do not exist
in the real world—it is an analogy, a virtual environment in which you control
the laws that dictate how objects interact (for instance, gravity or the results of
a collision). A significant part of a game, in terms of code and time required to
create it, is the part that displays images and sounds from the imaginary world
for the player to evalu ate.

introDUction to how Games work 23

Before proceeding, it should be noted that there are many types of games
and that each has its own specific needs. This means that the viewpoint, or the
place from which the simulated universe is seen, will vary from game to game
and genre to genre, and so the discussion must be sufficiently general to allow
many perspectives. Many games that are played online, through browsers, are
effectively two-dimensional (2D), and so the discussion will eventually focus on
ways to render 2D games effectively.

In a three-dimensional (3D) environment, we perceive the game universe
from our particular point in space and project the view from that point onto
a 2D plane for display on the screen. What is going on a great distance away
is unlikely to be relevant to us, and so the graphics system might not bother
displaying it. The region ahead for the next few feet or meters or yards is crucial,
and how we respond to that will influence the meters following that. The impor-
tant thing as a game programmer is to display the things that the player needs
to make gameplay decisions and to feel that the simulated world is real. The
display of key data involves two main aspects: visual data, requiring a computer
graphics system, and sound data, which requires an au dio display system. Most
games have both of these things.

FIGURE 1.1 General architecture of a computer game.

24 Game Development UsinG python

The Graphics System

Many people still think that games are all about graphics. They are not, really,
but many games use more CPU time in drawing the scene than for anything
else. An effi cient graphics system can leave a reasonable number of CPU cycles
for use by oth er aspects of the game system, and that is very important. A good
game uses an appropriate level of detail for the application, and that’s important
too. The basic problem addressed by game graphics systems is placing enough
frames (images) on the screen every second to give the illusion of motion and
realism. Movies use 24 frames per second to achieve their degree of realism,
while television uses al most 30 per second. However, a television displays an
image that is about 525 x 525 pixels, while a motion picture has a much higher
resolution.

Another aspect of picture display that must be considered is the number of
distinct colors that can be shown. This is sometimes called quantization, and
television, for example, can display far fewer colors than can a motion picture,
and a computer screen falls in between.

Some simple math: at 24 frames per second, with a computer screen having a
reso lution of 1024 x 768 and using 24-bit colors, we need to be able to calculate
and write out 56 megabytes of data per second. This seems like quite a lot, even
on a modern PC, so we have to use a few little tricks. First, and most impor-
tantly, the video card has been taking a larger role in the calculation of screen
updates for games. Video cards can draw millions of polygons per second and
can do more advanced and esoteric operations like texture mapping, support for
stencil buffers, and mip-mapping. This means that the CPU does not have to do
these things but simply organizes the data for the video card.

The fundamental differences between 2D and 3D games can be summa-
rized by saying that in a 3D game all objects are 3D and need to be viewed
from a particular point in space. The graphics system will flatten the scene
by projecting it onto a flat surface, and this means that some objects will be
hidden by others, some will be too far away to see, some will be behind us
and so not visible, and all objects will be transformed so that the usual visual
cues will apply for the viewer (player). This last item usually means some-
thing called a perspective transformation, in which objects farther away from
us appear to be smaller and parallel lines appear to meet at a distance point.
For example, in a driving game if we are driving a car and looking through the
front windshield, then our field of view is restricted to the region in front of us,
say 60 degrees to each side of dead ahead. Objects that are not in that region
can be ignored and should not require any significant amount of computation.
Also, objects that are too far away are also to be ignored, as they will be too

introDUction to how Games work 25

small to see. Of course, figuring out what can and cannot be seen requires
computational effort.

In a 2D game we usually view all objects from the side or from above. Some-
times the gameplay area is bigger than the screen, and the background scrolls as
the player’s character moves about. Objects in a 2D game are simpler and easier
to draw, and perspective is not an issue.

Some of the work in drawing the views must be done by you as the game
programmer, but much of it can be handled by your graphics card. There are
quite a few such cards out there, and each has its own capabili ties and inter-
faces. If you want your game to run on more than one computer, you cannot
code your graphics system for a specific device. Fortunately, there are soft ware
packages that form a layer between us and the graphics card, hiding the dif fer-
ences between the cards while presenting us with a consistent interface. This
is really essential for a commercial game, and it is pretty important for us too.

The programming language Python has no built-in support for graphics
or game development. It’s a very popular language for teaching introductory
courses and is popular in the programming community, especially the Linux
community. However, associated with Python is a very useful package called
Pygame that provides all of the facilities needed to build almost any computer
game, and that begins with a very usable graphics library. It allows 2D graphics
and a 3D library that looks like OpenGL; this book will rely heavily on what
Pygame supplies for graphics support generally. Since Python runs on all major
operating systems, this means that a game developed using that language is
playable effectively everywhere. The thing to remember about most game
graphics systems is that the 3D systems are based on polygons, since polygons
can be drawn quickly using a graphics card. We can represent any object as a
collection of polygons, as well as shade them, place textures on them, rotate and
scale them, and so on using very fast algorithms.

If you read a lot of game programming books, you will frequently encounter
the phrase graphics pipeline. The idea is that if you can keep a number of soft-
ware modules busy at the same time, you can achieve an increase in the number
of poly gons you can process per second. There are a few ways that the pipeline
can be or ganized, but here the view will be taken that there are three basic
parts: the object level, the geometric level, and the rasterization level.

Object Level

At this stage the objects are still understood as such, rather than as collec-
tions of primitive graphic entities like polygons and lines. We do animation at
this level, as well as morphing and collision detection—basically, any operation

26 Game Development UsinG python

that needs to know about the objects themselves. At the end of this phase, a set
of polygons or lines is sent to the geometric level.

This part of the pipeline is the most sensitive to the game itself. It is imple-
mented in software, most often by the game designers and creators, because it
is they who understand the game objects best.

geometric Level

The geometry part of the pipeline has a variety of functions that can be
broken off into distinct modules, as seen in Figure 1.2. 3D geometry is much
more complex than 2D, and the figure illustrates the more complicated situa-
tion. The first step converts model-based coordinates, which are often based on
an object-centered coordinate system, into a more global system of coordinates
so that objects can interact.

Next, based on the position of the viewer (camera), we compute a coordi-
nate trans formation that aligns the polygons of the objects to a common system
based on the viewer. One result of this is that some polygons become impossible
to see; they may be behind us or too far away.

Now we consider the position and color of the lights and create appro-
priate shading and color transformations of the object’s polygons. The sun, for
example, is positioned a great distance away and is colored yellow-white, while a
nearby head light might be a brighter blue. The color of a pixel is a function of its
own intrinsic color and of the brightness, color, and position of the illumination
sources.

Now we compute the viewing transformation, most often a perspective trans-
form. This gives us the view we would expect of a three-dimensional object,
including the fact that distant objects look smaller than near ones. The view of the
scene will be realistic if it represents what we expect, and we expect a perspective
view. The objects that used to be 3D polygons are now two-dimensional ones.

FIGURE 1.2 The Geometry Pipeline

introDUction to how Games work 27

The polygons that fall outside of the computer screen area, or viewing area,
must be eliminated, or clipped. This is the next stage. Polygons that are too
close or far away would have been clipped in the previous stage. Clipping is a
non-trivial oper ation. For example, a triangle that is partly outside of the screen
area is cut by a vertical or horizontal line, and this often means that it is not a
triangle anymore. Finally, all coordinates of all lines and polygons are converted
in screen (or win dow) X,Y coordinates so they can be drawn quickly.

Rasterization

In this stage, we convert lines and polygons into pixels. The only thing that
a screen can display is pixels, so it is essential that this step be performed accu-
rately as well as quickly. After this is done, we can do any other operations that
need to be done on a per-pixel basis. Much of this is done by the graphics card.

Comments on Optimization

It should be obvious that the code must be efficiently written, because the
graphics system must render a sufficient number of frames per second so that
the game appears to be smooth. The algorithms we choose must able to deal
with the number of polygons likely to appear in the objects, in both space and
time considerations.

The game we are going to create will, first and foremost, have to display
scenes on the screen with the correct positions and colors, follow the game
rules as designed, and play sounds at correct moments. While we will not be
intentionally wasteful, efficiency will not be the most important thing. Why?
Because code optimization can become boring very quickly, and it is not our
main interest. There are many ref erence works on the subject for those inter-
ested, including Game Coding Complete and Core Techniques and Algorithms
in Game Programming.

The Audio System

In general, the purpose of the game’s audio system is to play music and sound
ef fects. This is supposed to be a simplistic view, and yet even after decades of
tech nological changes in game technology and design, the game audio system
still does pretty much what it always did, and still works in a similar way. Huge
steps forward have been made in the area of graphics, but standards are still
weak and there are a lot of ad hoc schemes out there.

Most sounds that we will need, like an engine sound, a door opening and
closing, crash es and scrapes, and even the music, will be read in from files,
usually one file per sound. A very common format for sound files is the WAV

28 Game Development UsinG python

file, basically a Mi crosoft standard that is supported on most platforms. These
can contain com pressed or uncompressed audio, can have mono or stereo, and
can store audio at a variety of sample rates, including the CD standards. It is a
simple file format and very convenient for our purposes.

However, there may be a need for more sophistication on the part of the
audio sys tem. It may be asked to play positional audio, in which each sound
appears to orig inate from a particular point in space. This can be done with
stereo, but it is much better suited to modern 5.1 channel audio systems,
which can be truly impressive. Sound cards have recently been designed with
some capacity for sound synthesis, and some degree of synthetic sound and
music, especially using MIDI, can now be found on games. However, the
basic function of the audio system is simple, and its job is obvious: we need
to play and stop a sound on cue. How this is done will be the subject of
Chapter 3.

GAME DESIGN

Being a game designer is not as cool as many people believe. Yes, the very
best get some attention, but few people know the name or face of the person
who designed their favorite game. Moreover, a game designer’s job mostly
involves creating written design documents. Yes, they must have ideas about
how the game will operate, but the key job of a designer is to communicate
those concepts in detail to the people who will implement them. Not just
programmers, but especially artists, musicians, and other designers such as
level designers and character designers.

Earlier it was said that a game designer really created game mechanics. That’s
true. A designer either creates novel mechanics, as was done in the game Portal,
or fits existing mechanics together into a new game. Really new mechanics are
rare, but they do occur from time to time. The important thing is to incorporate
simple mechanics into a novel and interesting situation. Angry Birds did that
very well. The use of one’s finger to specify the direction and force of a throw
combined with the interesting concept of knocking down a structure made of
blocks made for a compelling game. There’s really no way to specify a formula
for accomplishing that.

Fortunately, that’s not needed. A game programmer has relatively little crea-
tive input to a game. The programmer is given the game design document and
is assigned a part of the game to implement (i.e., write the code for). A game is
a special kind of program, though, and there is a specific set of knowledge that
one needs in order to be good at the task.

introDUction to how Games work 29

Mechanics

The subject of game mechanics is going to arise again and again, so a good
definition would be useful. Unfortunately, this term is more generally under-
stood by designers, but it is hard to define for people who don’t build games,
and it is impossible to explain to people who don’t play them. A commonly
quoted definition, and the one appearing in Wikipedia, is:

A game mechanic is a construct of rules intended to produce a game
or gameplay.

This is a bit circular—games use mechanics and mechanics make a game, as
it were. Also, not everyone would agree than rules must be directly involved in
the definition. Järvinen (2008) defines mechanics as

means to guide the player into particular behavior by constraining
the space of possible plans to attain goals.

This is possibly better because it puts rules into a subservient position to
player actions. There is an instinctive view that a mechanic is something that
a player does, and something that is designed into the game. Another possible
definition (Sicart, 2008) is:

Game mechanics are methods invoked by agents for interacting with
the game world.

By looking at a collection of definitions, we might get an instinctive idea of
mechanics. It is a key concept. The idea appears to be that a game mechanic
is a design feature of a game that allows the player to progress toward the
goal. There can be mechanics that interfere with forward progress too. So,
one example mechanic could be called dodge, in which players must avoid
objects moving toward their avatars. Space Invaders is one example of this.
The shoot mechanic is a common one, where you must hit your opponent
or a target with a thrown missile of some type. The race mechanic involves
a player getting to a particular spot in the game before any opponents, and
so on.

A game mechanic should be interesting to the player and simple to use. A
button press or mouse gesture is usually all that is possible in a game, so these
must be converted into game elements that implement the mechanic—press
space to shoot, up arrow to move ahead. The mechanic is not specifically about
the interface though. One of the better game mechanics in recent memory is

30 Game Development UsinG python

the one used in the game Portal, where the player creates (using a mouse click)
two circular doorways through any floor, ceiling, or wall. Walk the player’s avatar
into one doorway and it exits through the other! This can be used for quite
complex maze puzzles. The mouse click, however, is not the issue—it is about
the possibilities created by the click.

PLAYING THE GAME BY THE RULES

What we have seen of game architecture up to this point is what can be
called the game board, the part that the user sees and manipulates. There are
many programs that have very sophisticated graphical and audio interfaces
that are not games. What’s the difference? A game, the kind of game we are
discussing, works in real time, processing user choices and updating the display
accordingly. A game is a simula tion and, most importantly, is one that has a goal.
To be a game, there must be a way to at least keep score, and usually there is a
way to win. The part of the game program that does this is variously called the
game logic section, the artificial in telligence, and some other things too.

The graphics and audio parts of a game can largely be shared between games
that are quite different from each other. The game logic is what makes each
game what it is. It is the code that reflects the game designer’s intent. Even
here, the structure of this program has a certain consistency from game to
game; it is in the details that the code differs.

Most of a Computer Game Is Hidden

The player actually sees a world drawn by the graphics system, but this world
is particular to the game at hand and changes according to rules that are largely
invis ible to the player, at least at first. Part of the game play is figuring out
what the rules are. For example, how fast can someone drive into that corner
before skidding? That is ac tually a kind of rule. What’s the ratio of brake to gas
pedal for a proper 180-degree turn? Again, this is a rule that is discovered. The
number of damage points you can take before your car blows up is an explicit
rule that is stated up front, a slightly different thing. Most game players don’t
read a lot of rules before starting to play, and instead discover a lot of the explicit
rules as they go along.

So when we say that a lot of the game is hidden, we mean that the rules,
interrelation ships between game objects, goals, and even your particular
progress through the game are saved in code and internal data structures and
are not necessarily dis played. Indeed, their internal representation does not
lend itself to display.

introDUction to how Games work 31

The Artificial Intelligence

The artificial intelligence (AI) subsystem of a game is responsible for many
things that the game does that are not seen directly but are reflected in game
play and re alism aspects. The AI does object management, including physics,
and the direc tion of independent simulated objects like opponents, in our case
opposing drivers. Specifically, the AI keeps track of the current position and
velocity of all objects. Thus, it is the logical place to do collision detection. It
keeps track of attributes of objects, including earned attributes like hit points,
damage, and found objects (am munition, money, etc.).

Artificial intelligence has a connotation among the general population,
supported by movies and TV, of computers that can think. In the movies they
are also fre quently evil, but we’ll leave that for later. Computer scientists and
programmers know more about the details, and they realize that AI is about
making a computer appear to be intelligent. The techniques that computer
professionals use are many and varied, but the truth is that game AI is very
simplistic compared with the tech niques found in research labs, and the goals
are quite different too.

The basic problem is that the game AI has to function in real time, and
it must steal CPU cycles from what is perceived to be really important—the
graphics system. Thus, the really complex and sexy functions of an advanced
real AI system are simply too time consuming for a game. Good thing they are
mostly not required. For example, a voice recognition system would be cool
on some games, but really isn’t needed. Games AI is rarely required to prove
theorems, recognize faces, or in vent novel answers to complex questions. It
is required to decide what to do next and to plan a route through a building
or a forest to a goal. Maybe it will have to decide how best to pass you on a
hairpin curve. Although it is sometimes useful to use an advanced technique
like a neural network to accomplish a game goal, it is unusual.

However, one thing that all AI systems must do is keep track of everything
on the screen and most things that are not. Not only does the game have to
decide when you hit the wall, but it must also keep track of all of the other cars,
even the ones you cannot see, and slow them down when they hit an obstacle.
Most of the AI system is about simple rules implying simple choices. The most
common imple mentation of such a choice is:

if (condition is true) then { do this thing }

This is not especially sophisticated, but it does the job quickly. The same
thing can be implemented as a table or a tree, as you will see in Chapter 5.

32 Game Development UsinG python

Game State

The state of a game is a collection of information that represents the game
at any given time. Given the state, a game can be started from that point. The
information needed in the state includes:

– position, orientation, velocity of all dynamic entities
– behavior and intentions of AI-controlled characters
– dynamic and static attributes of all gameplay entities
– scores, health, power-ups, damage levels, etc.

All subsystems in the game are interested in some aspect of the game state,
be cause the state variables are exactly those things that are essential to the look
of the game and the play options possible from any point. For instance, the
renderer needs to know the position of objects to draw, their damage levels,
and so on.

How is the game state made available to subsystems? As always there are
many options, each with their own advantages and disadvantages, but for a
straightfor ward driving game, there are only a few that make sense. In most
cases an object is coded as an integer.

Global State

This is just what it sounds like. State variables are global, shared by all of the
modules. A lot of programming language design and software engineering has
gone into trying to show why this is a poor idea. After all, imagine every module
having access—complete access, mind you—to every other module’s variables.
Cha os!

On the other hand, there is a certain convenience to this scheme. If the
graphics system wants to know where a tree is, it simply gets it from where it is
stored. The prob lem is that it can change it, of course. Really, if you are writing
a quite small sys tem with pretty clear modules, and you are relatively disci-
plined, then this will work out OK. The more complex the game is, the more
likely this scheme is (ex ponentially!) to result in problems.

Push/Pull (client server)

Here, subsystems have incomplete knowledge of one another, and can
request information from each other in a structured fashion (a pull) or send a
new value to a module (a push). This is what we will use in our sample game,
and it is what we often see in Java and C++ as accessors and modifiers. For
example, if we want to find the location of a ball, we ask for it using a function:

introDUction to how Games work 33

getPosition (BALL, x, y);

which is a pull. If we wish to notify the AI system that an object has been
de stroyed, we do a push:

setExist (object[i], FALSE);

which sets the exist attribute of the object to false.
This scheme is elegant, but it has another big advantage: it can be used

across great distances with equal simplicity. For online multiple player games,
the push-pull scheme operates on a server at a remote site, and one of various
remote invocation schemes can be used, transparently.

Managers

In some sense this is like the push-pull model with an intermediate system
for han dling the requests. The AI system does not own position and orienta-
tion attributes in this scheme, for example. They are owned by a management
subsystem that has the simple task of hiding the variables and structures and
permitting access to them using standard accessor and modifier functions.

So, using this scheme the AI system would have to ask for the position of an
object just like the graphics system, and would also have to request a modifica-
tion to a po sition from the manager:

manager.getPos (OBJECT1, x, y);
manager.setPos (OBJECT1, x+1, y+1);

This is not much more complex than the client server approach, and it has
a similar feel. There are few tools that support this model, and so discipline is
needed to maintain it. There are few situations this scheme would avoid that
the client-server scheme would not also avoid, and so that’s not a distinction
between the two.

Broadcast-listener

For a certain amount of overhead, we can change the client-server model
into one in which modifications to state attributes can be sent to other subsys-
tems by issu ing an event. So, when the position of an opponent changes, for
example, an “oppo nent-change” event can be sent to the graphics system so that
it may be drawn correctly. Given a system similar to the Java interface scheme
that uses listeners, all subsystems interested in this change can be alerted at the
same time! Objects or subsystems interested in a particular event, like position
change of police cars for instance, would register with the listener so that they
would receive the events.

34 Game Development UsinG python

So, using a Java-like syntax, we could have:

public class Z extends q implements BallListener
{
...
 t1.addBallListener(this);
...
}
public void ballMotion (GameEvent e)
{
 if (e.getSource() == t1) ...
}

This shows the three essential parts of the setup: declaring the use of the
BallListener interface in the class header, adding this class instance to the list
of those interested in receiving police motion events, and writing a handler (a
callback, really) named ballMotion that will be called when a police motion
event takes place. There is no direct communication between subsystems in
this scheme. Information is sent to those interested, and only those, and is
queued in the case where there are multiple events occurring simultaneously.

Now, this is pretty clever, and if you can make it work properly in a language
not of fering specific support, it is sure to give you a programmer rush. On almost
all PC systems, a process generally uses only one CPU. We can pretend that
processes are independent if we like, but switching between software processes
takes time on our single CPU, and treating software events like variable modi-
fications as if they were asynchro nous processes is a little wasteful and obscures
the flow of the code. This system works efficiently on a multiple-processor
console like the PlayStation. Still, some systems profit from using threads and
such, and this is the way to deal with state on such systems.

Shared and Global Entities

This uses the inheritance characteristic of the language, object-oriented,
of course, in which the game is implemented. Think of it as global state, but
with references to classes and inheritance. So, both the AI and the graphics
system would have a reference (pointer) to a police car object, and could, by
manipulating the accessor and modifier methods, get and change the object’s
position, orientation, and other attributes. This is the classic object-oriented
way—cleaner than using globals.

Within this scheme there are many options: a single rooted hierarchy, owner-
ship, multiple inheritance, and so on. This kind of thing has, in fact, become the
stan dard practice in many colleges and universities that teach programming

introDUction to how Games work 35

(mine too!), and as a result this method, or family of methods, has become the
most com mon scheme for manipulating game objects and system state.

An important complaint with this set of schemes is that they tend to
become dependent on a particular language, usually C++, and then deci-
sions become “religious.” This is because of many an argument with “soft-
ware engineers” over things like the prop er use of multiple inheritance,
for example. Since C++ is one of the few languages that permits multiple
inheritance, a scheme that depends upon it has limited op tions for imple-
mentation. The problem is that a single rooted class hierarchy does not scale
well, and the inheritance structure starts looking like nonsense after a while.
Therefore, the most complex system (graphics, in general) tends to be able
to specify the structure of the rest. Multiple inheritance scales better, but it
is hard to change later and becomes hard to manage when the system gets
complex enough. There are also performance issues in all of these schemes.

There is no best scheme, but one based on a client-server scheme or
on managers can work well using object-oriented languages like C++ and
Java, and even in C where object orientation is hand coded. Each module
contains a set of variables and data structures that cannot be accessed from
the other modules except through the accessor functions provided by the
module. However, when needed for testing or while merging modules, there
can be globals and shared entities; a log file, for example, for dumping test
information while debugging. There is nothing to prevent the user of this
scheme from using Java or a scripting language like Lua as a tool for creating
small, spe cific-purpose sub-modules—as the controller for an opponent, for
instance.

However we do it, the management and control of the system state in a
complex system like a computer game must be done carefully and with disci-
pline. While the best way has yet to be determined with certainty, it is abso-
lutely clear that modu larity, planning, and discipline must be used if success
is to be achieved. Sitting down in front of the computer and starting to enter
code is sure to fail, later if not sooner. A game design document is essential
so that more than one programmer/developer can work on the game at the
same time.

PONG

Pong is sufficiently old that it’s possible now that some people don’t know
what it is. The idea is to create a basic simulation of table tennis or ping pong.
It is a game by the definition given previously:

36 Game Development UsinG python

The objects each have a graphical rendition that is displayed on the screen
at the location where they are supposed to be in the play area. The paddles are
simply lines, and the ball is just a circle. The program that implements the game
has to keep updating the screen to make it seem as if the ball and paddles are
moving.

FIGURE 1.3 The Pong display.

– It is an activity, certainly.
– It is entertaining by some standard. It has no other purpose.
– It has rules. There is a ball that moves about the screen according to basic

rules of interaction. It bounces off of walls, basically.
– It has objects. There is a ball and two paddles.
– There is a playing area, a window on the screen meant to represent a ta-

ble-tennis table.
– The rules are:
A ball will be created and will be moving in a specific direction.
Each player (there are two) controls a paddle, which is just a vertical line

on the screen near the left or right end of the playing area.
By using keys on the keyboard, the player can make the paddle go up and

down.
The key mechanic is to block the passage of the ball so that it does not

reach the left or right end of the playing area, that is, hitting the ball with
your paddle.

If the ball passes your paddle and gets to the side of the playing area you
are protecting, then your opponent gets a point. A new ball is created when
this happens.

introDUction to how Games work 37

This is an optical illusion much like the one used by motion pictures and
television. If the human visual system is presented with repeated still images
where objects appear in slightly different positions, it has the appearance of
movement.

What the game does is to move the objects to new positions based on the
movements specified by the game and the user and then draw the objects again.
It does this many times each second.

The game software does other things too, of course. It keeps track of events
that happen in the game. When the ball hits a wall, that’s an event. When a ball
hits a paddle, it’s an event. When the ball reaches one end of the table, that’s
an event. These are the basic events in Pong, but the end of the game should
probably be an event, although it can only happen once, and the resetting if the
ball after a point could be thought of as an event.

It should be clear that this computer game is implemented by proper
handling of all of the events that can occur. Let’s make it into a principle:

The software involved in a computer game keeps track of all objects and
implements the interactions between them according to the rules.

A game is really a simulation. In Pong there’s no real ball or paddles, only
a simulation of a ball and paddles. There can be no actual impact between a
ball and a paddle, only an event that indicates their geometry has overlapped
and a response by the game program to do something, in this case change the
velocity of the ball. Pong is a real-time simulation of table tennis with sound and
a graphical display.

It is a willing suspension of disbelief on our part that objects in a game
behave as real objects in the world do. When that fails to happen, we notice
immediately, the game is now flawed, and the fourth wall is broken. The player
is now using a piece of software and is no longer immersed in a game.

Going back to the game Pong, Figure 1.4 shows a potential starting point for
the game. The ball starts at a location (xb, yb) with a velocity (dx, dy). The paddle
locations are also known. This situation (state) can be drawn immediately as the
first image (frame) in the game. The next situation has the ball moved into a
new position. This is done quite simply:

b b x

b b y

x x d
y y d

= +
= +

38 Game Development UsinG python

If the paddles are not being moved, then this will be the only change in
the game, and the next image (frame) will be drawn with the ball in the new
position.

If the left paddle is being moved, it will be because the left player made it
happen by pressing a key. Let the key that moves the left paddle upward be “w”
and the one that moves it downward be “s,” although this is a design decision.
If the left player presses “w,” the left paddle will move up. How much? That’s
another design choice, so let’s call that distance dpy. The program would do this:

1 1 yy y dp= −

If the “s” key had been pressed, then the left paddle would move down by
the same amount:

1 1 yy y dp= +

This works the same way for the right paddle. The up-arrow key will move it
up, and the down-arrow key will move it down. If the up-arrow is pressed:

r r yy y dp= −

and if the down-arrow is pressed then:

r r yy y dp= −

FiguRe 1.4 The objects in the pong game space.

introDUction to how Games work 39

When the new frame is drawn, the paddles will be drawn in their new posi-
tions. This process continues for step after step, frame after frame, until the
ball’s x position become smaller than 0 (went past the left paddle) or greater
than the screen width (went past the right paddle) or the ball collides with some-
thing. Colliding with a wall changes the ball’s y velocity, so it changes direction.
Colliding with a paddle changes its x velocity. That’s basically the game.

Figure 1.5 shows a set of consecutive frames from the game illustrating what
the game software must do between each pair of frames. Things that should
be moved must be moved, collisions must be resolved—velocity changes, for
example. Other things could occur, like a change in score or a new ball, but
the point is clear: the software must look for any possible event that happens
between any two frames and work that into the game display.

THE GAME DESIGN DOCUMENT

A game design document (GDD) should specify everything that can happen
in a game and how it will be resolved. Each interaction between each pair of
objects needs to be defined in a careful manner, and in enough detail so that a
programmer can implement it in the way that the designer anticipated. Each
event must be carefully and fully characterized. It is a software specification and
much more, because it defines sounds and artistic assets as well. Programmers,
artists, musicians, and level designers all have access to this same document. It’s
like a Bible.

A programmer does not create this document; the game designer does. The
programmer needs to know how to read it though. A book about game program-
ming should teach how to read a design document. So let’s do that.

FiguRe 1.5 Sequence of consecutive frames from the game Pong.

40 Game Development UsinG python

c2h6o jet Boat race

A game starts with an idea. Ideas are relatively common in creative indus-
tries, but good ideas are less common. In the games arena, ideas have to be
winnowed down to a very few that may be worth implementing. It’s not clear
that the idea for a game being presented here is in fact a good idea, but for the
purposes of explaining a design document and how to use one, it serves the
purpose.

 The idea concerns a boat racing game. Some number of boats begin at a
wharf and have to round a circuit three times and pass a finish line. There will
be natural hazards—fishing boats, ducks and geese, whales, wind, waves, and so
on. They will have to perform one pit stop, so fuel will be a consideration. There
will be opponents which will be controlled by the game AI system, and which
will be designed to be entertaining.

That’s just an idea though. To turn this into a design, one must define what
the objects are, what the mechanics are, what the events are, what the goals
are, how the events move the player toward the end (goal), and what the
art assets and sound assets are, as well as complete a detailed assessment of
everything that can happen in the game. A game cannot crash. An accounting
program shouldn’t, but sometimes does, and while there are consequences,
the crashing of an accounting program is not seen as so much of an issue as
is the crashing of a game. Games, except online ones, do not usually have
updates or bug fixes, so the interactions and event handling must be carefully
defined.

The game design document (GDD) for the Jet Boat game will be developed
further in each chapter. It is typical for the GDD to evolve as the game devel-
opment progresses, but it is essential that there is only one version of the game
that is current and shared by all of the developers at any given moment, and that
everyone knows where it is. A version control system could be used, but there
are document management and share systems such as Google Docs that work
very well for this purpose.

The following document is incomplete and will be filled in as more is under-
stood about aspects of the game such as pathfinding, collision detection, audio,
and so on. It is clear from the document that artistic assets are a key part of the
game and specialist talent is needed to develop a compelling game. In the final
document some images will be included, as well as file names and locations for
all assets.

introDUction to how Games work 41

C2H6O Jet Boat Race Design Document

1. Game Overview

1.1. Concept – This game will involve the player guiding a jet boat
through a course down a river and around a lake and over a finish
line, while escaping traps, avoiding obstacles, and picking up boosts
and fuel.

1.2. Genre – This is a basic race style game, 2D with overhead view.
1.3. Audience – Any age, but with a younger demographic.
1.4. Game Flow – After moving through the initial screens, the player

is signaled to begin the race. The game begins at a small dock with
three other boats, and initially all move down the river and jockey for
position. A lake is entered that has floating pylons to guide the player,
each having a number and a color. The number indicates the next
pylon to pass in sequence, and the color indicates what side of the
pylon the boat must pass; green means pass on the right, red means
pass on the left. The first boat to pass the final pylon wins the race.

1.5. Visual Style – The view of the playing area is from above, and it
scrolls to follow the player. It is a typical 2D race game in that
aspect. Boats are 21st century jet boats.

2. Gameplay and Mechanics

2.1. Gameplay
2.1.1. Game Progression – There is one level, and one goal.
2.1.2. Mission/Challenge Structure – no specific missions.
2.1.3. Objectives – The overall objective is to cross the finish line

before any of the other (NPC) boats. Other goals include:
- To pick up flags along the route
- To fuel up to avoid running out of fuel
- To interfere, if possible, with the other boats

2.1.4. Play Flow – The game is focused on the human player. Other
boats will attempt to interfere by bumping into the boat,
dropping obstacles, and otherwise getting in the way. The
player must move through the obstacles, pass the markers
correctly, and pass over the finish line.

2.2. Mechanics –

42 Game Development UsinG python

The player can control their boat, making it accelerate or turn left or
right.
Hitting land slows the boat, which will bounce back into the water.
Each boat begins the race with two (2) obstacle floats that can be

deployed in the path of an opponent. When struck by a boat, the boat
slows 50%.

Each boat begins with insufficient fuel to finish the race, so each
boat must stop to refuel (pit stop) at least once. There are two locations
on the lake where that can be accomplished, simply by stopping there.

The race begins on a river, enters a lake where three laps must be
made, and ends on another river where the finish line is.

Small flags are floating near the boat’s path and can be picked up
by driving over them. They are worth random numbers of points, each
point representing an amount of time that will be removed from the
player’s finishing time.

A clock keeps track of the time that the boat has spent on the race
so far. The boat with the smallest time at the finish wins, irrespective of
their physical place in the race.

2.2.1. Physics – The game takes place on the surface of the water,
which is a high friction surface. Acceleration can be quick,
but slacking off on the accelerator will slow the boat quickly.
Turning too quickly can flip the boat over, slowing the player’s
progress.

2.2.2. Movement in the game – The “q” key accelerates the
boat forward, and releasing it will slow the boat. Turns are
performed using the “a” key (left) and the “d” key (right).

2.2.3. Objects – Running over objects enables their action on the
boat (Collision).

2.2.4. Conflict – Other boats can release their obstacles to interfere
with the player’s boat and may collide with it either on
purpose or through alcohol-fueled accidents. This slows both
boats.

2.2.5. Economy – There is no in-game economy.
2.2.6. Screen Flow – A graphical description of how each screen

is related to every other and a description of the purpose of
each screen.

introDUction to how Games work 43

There will be an opening screen (load game assets)
Start screen (play, exit, options, sound)
Options screen – select boats, sound on/off
Play screen
End – win/lose, save score, replay/exit

2.3. Game Options – The player can select a boat that has specific
properties of top speed, acceleration, and maneuverability from a
small list.

2.4. Replaying and Saving – The game can’t be saved, but it can be
replayed, and a list of players and scores can be maintained.

3. Story, Setting, and Character
3.1. Story and Narrative – There is no narrative here, just a race. Cut

scenes before and after the race are real boat racing scenes from
actual jet boat races.

3.2. Game World
3.2.1. General look and feel of world – A 2D plane showing water

and land areas, flags, boats, refueling area, and obstacles.
3.2.2. The start area is a dock along a river. When the game

begins, the player and NPCs accelerate to the left along the
river.

3.2.3. The river opens into a lake that has refueling areas and
colored pylons. The first pylon is red, meaning it is to be
passed on the left side OF THE BOAT. The second pylon
is to the left, meaning that boats will circle the lake in a
clockwise direction.

3.2.4. There are islands in the lake, spectators, other boats, and two
refueling areas, one on each side of the lake.

3.2.5. There is another river entering the lake which contains the
finish line, and it is to be used after three circuits of the lake
have been performed.

3.3. Characters. NPC boats have various colors and shapes.

4. Levels –

4.1. Levels. Only the one
4.2. Tutorial Level – Later

44 Game Development UsinG python

5. Interface

5.1. Windows and Transitions
5.2. Visual Assist. HUD (Head’s Up Display)
5.3. Camera is above the player’s boat.

HUD is in the lower right corner, and shows a wider area with
other boats, pylons, and scene features.

5.4. Control System – Keyboard
5.5. Audio

Music
At the beginning of the game and the end.
sound effects –

sounds of impacts
 other boats
 terrain
 pylons
 flags
water sounds
Starting gun
End indicator

ambiance
engine noises
voice of an announcer (script)
crowd

5.6. Help System – a single help screen can be opened at any time by
typing the “h” key. Contents later.

6. Artificial Intelligence

6.1. Player and Collision Detection – Later
6.2. Pathfinding – later
6.3. Opponent AI – later
6.4. Friendly AI – none

introDUction to how Games work 45

7. Technical

7.1. Target Hardware – Any desktop
7.2. Development hardware and software, including Game Engine –

Python and Pygame
7.3. Network requirements – Later

8. Game Art – Key assets, how they are being developed. Intended
style.
Terrain
4 player boats
NPC boats
Pylons
Flags
Obstacles
Water trail animations

ExERCISES

The following problems will exercise your knowledge of the material in this
chapter, and they sometimes require that you do some research before you are
able to complete them.

1. Give your own definition of fun. Don’t think too long about it—try to be
instinctive. Can fun be measured, using your definition? Is it possible to
predict how much fun something will be, or is it only observable after the
fact? How is engagement different from fun?

2. Explain the conflict/challenge in Tetris, Mortal Kombat, Frogger, and
Defender. How is it maintained?

3. What is the (a) goal of the game Mario Kart? Pac Man? The Sims?
4. Describe, as concisely as possible, the major mechanic of Angry Birds,

Portal, and Space Invaders.
5. Examine ten or more web-based games and list the controls (buttons, sliders)

found on the open (splash) screen and on any options screen. List this in
order of frequency, most common first.

6. Many games are zero-sum games, in which there is a win and a loss for each
choice and situation. Each gain for one player is offset by a corresponding

46 Game Development UsinG python

loss for another. Give three examples of a zero-sum game, and explain why
they fall into this category.

7. Sketch a game loop for Tetris, stating in simple English at each step what
needs to be done for this game in particular.

8. Write a short GDD for any computer game you have played, but do not
name the game. Give this to another person; can they figure out what the
game is?

REFERENCES

1. Pippin Barr. Games Blog. (n.d.). http://www.pippinbarr.com/games/pongs/
Pongs.html

2. Aki Järvinen. (2008). Games without Frontiers: Theories and Methods for
Game Studies and Design. Tampere, Finland: Tampere University Press.

3. Mike McShaffry and David Graham. (2013). Game Coding Complete.
Boston, MA: Course Technology.

4. Katie Salen and Eric Zimmerman. (2004). Rules of Play: Game Design
Fundamentals. Cambridge, MA: MIT Press.

5. Daniel Sanchez-Crespo. (2004). Core Techniques and Algorithms in Game
Pro gramming. Indianapolis, IN: New Riders Publishing.

6. Thomas Schelling. (1980). The Strategy of Conflict, revised edition.
Cambridge, MA: Harvard University Press.

7. Brian Yap. (1999). Analytical Perspectives in Game Design: Architecture.
http:// numbat.sourceforge.net/numbbatV2/architecture.html.

47

chapter 2
grAPHIcs And ImAges

As a game programmer one of the first skills required is to be able to display
renderings of the playing volume. This means that the volume itself and all
objects must be drawn in their correct locations, orientations, and sizes. Each
game object has a distinct set of colors and textures, and consists of a collec-
tion of simpler geometric shapes. Some are drawn as those basic shapes, while
others may be pre-drawn images that are pasted into place. In any case, the
game must be updated many times per second, meaning that every object has
to be drawn that often. A game programmer needs the software tools to accom-
plish that effectively.

Graphics software is organized as a set of levels, with higher levels
allowing the most complex tasks to be performed and lower levels offering
the most detailed modification. At the bottom layer of software are functions
that manipulate pixels. At the next level are lines and curves; these are the
basic components of drawings and sketches. An artist with a pencil uses lines
and curves to represent scenes. At the level above lines are functions that
use lines to create other objects, such as rectangles, circles, and ellipses.
These can be line drawings or can be filled with colors. The next higher
levels can be argued about, but text is probably in the next software layer and
then shading and images followed by 3D objects, which includes perspective
transformation and textures.

Python itself does not have graphics tools, but various modules that are asso-
ciated with Python do. The standard graphical user interface library for use
with Python is tkinter. There are many features of this module, including the
creation of windows, drawing, user interface widgets such as buttons, and a host
of other features. It is free and is normally included in the Python distribution.

Another library that allows graphics programming is called Pygame, and this
is designed for building computer games using Python. Let’s look in detail at

48 Game Development UsinG python

Pygame, as it will allow us to draw pictures, manage interfaces, and do
animations.

PYGAME ESSENTIALS

To start creating computer graphics, it is necessary to understand how
Pygame manages the screen and other resources. There is a distinct set of steps
that must be followed in order for even the simplest Pygame program to work.
After the basic steps are accomplished, we can draw into a graphics window and
have it appear on the screen.

It will be assumed that the Pygame module has been installed correctly on
the computer. For some instruction on doing, this see Appendix A.

The first step in using Pygame in a program is to import the Pygame module.
Assuming that it has been installed correctly, this is a matter of beginning with
the following statement:

import pygame

Next, there are variables that need to be initialized and storage that has to
be allocated for Pygame to work. One example is that fonts must be loaded and
placed into a data structure. This is done with the following statement:

pygame.init()

Nothing seems to happen, but Pygame is now ready to work. Next, we create
a drawing structure called a surface:

surf = pygame.display.set_mode((400, 450))

The variable surf will now contain a reference to a surface object, and in
this case it will be the display surface, because we accessed it through the
display part of the Pygame object. The display surface is the place where
things are drawn if we want them to be visible on the screen; think of it as
the playing area. There are other surfaces that can be drawn on that will
not display by default, so in general a surface in Pygame is a thing that we
can draw into. The method set_mode takes a tuple as a parameter that gives
the size of the surface. This surface will be 400 pixels wide by 450 pixels
high, and it will appear briefly on the screen and will then vanish. Why does
it vanish? Because the program ends after the last statement, taking the
window with it.

How can we keep the drawing area on the screen? Don’t end the program
until told! We could, as one example, read something from the keyboard and

Graphics anD imaGes 49

then terminate the program. Here’s the first full Pygame program, which is
non-standard but functional:

import pygame
pygame.init()
surf = pygame.display.set_mode((400, 400))
pygame.display.update()
input()

The window will stay on the screen until a character is typed in the input
region (not the drawing window!), at which point the program continues to
execute and terminates, taking the window with it. This is not suitable for
playing a game, but it illustrates a problem: we’ll need to execute the game loop
and accept user input somehow while keeping the drawing window open. This
is something Pygame was designed to do.

SIMPLE STATIC DRAWING

Everything drawn on the display surface has a color, and it is a tuple
consisting of the red, green, and blue component of the color. Thus, the
tuple (255,255,255) would be the color white. (0,0,0 would be black.) To
humans, colors have names. Here’s a list of some named colors and their
RGB equivalents:

Color Red Green Blue Color Red Green Blue
Black 0 0 0 Olive 128 128 0
White 255 255 255 Khaki 240 230 140

FiguRe 2.1 An empty Pygame drawing window.

50 Game Development UsinG python

Color Red Green Blue Color Red Green Blue
Red 255 0 0 Teal 0 128 128

Green 0 255 0 Sienna 160 83 45
Blue 0 0 255 Tan 210 180 140

Yellow 255 255 0 Indigo 75 0 130

Magenta 255 0 255 Orange 255 165 0

The background is black by default. Assuming that the display surface is
named surf, then the background color can be changed by a call to the fill
method, passing a tuple specifying the color:

surf.fill ((255, 0, 0))

In this case the background color will be red. Pygame also has a Color
class that has red, green, and blue components and methods for converting to
non-RGB color specifications like HSV. After:

c = pygame.Color(255,0,0)
surf.fill (c)

the color stored in c will be red as well as the background color.

Pixel Level Graphics

The only pixel level operation draws a pixel at a specified location; so, for
example, the call:

surf.set_at ((x, y), c)

will set the pixel at coordinates (x,y) to the color c. Setting a collection of
pixels that are adjacent to each other will create a line.

example: Create a Page of Note Paper

Note paper has blue lines separated by enough space to write or print text
between them. It often has a red vertical line indicating an indentation level, a
place to begin writing. Drawing this is a matter of drawing a set of connected
blue pixels in vertically separated rows and then making a vertical column of red
pixels. Here is one way to code this:

import pygame
pygame.init()
surf = pygame.display.set_mode((400, 400))
c = pygame.Color(0,0,200)

Graphics anD imaGes 51

surf.fill ((255,255,255))
y = 60 # Height at which to start
for n in range (0, 27): # Draw 30 horizontal blue lines
 for x in range (0,400): # Draw all pixels in one line
 surf.set_at ((x, y),c) # Draw a blue pixel
 y = y + 20 # The next line is 20 pixels down
c = (200, 0, 0) # Pixel color red
for y in range (0, 400): # Draw connected vertical pixels
 surf.set_at ((25, y), c) # to form the margin line
pygame.display.update()
input()

The output of this program is shown in Figure 2.2. When pixels are
drawn immediately next to each other they appear to be connected, and
so in this case they form horizontal and vertical lines. This is not easy to
do for arbitrary lines; it is not obvious exactly which pixels to fill for a line
between, say, (10, 20) and (99, 17). That’s why the line drawing functions
exist. Note that we’re still using a call to input() to postpone the end of
the program. This will continue for a few examples, and then the standard
method will be explained.

example: Creating a Color gradient

When creating a visual on a computer, the first step is to have a clear picture
of what it will look like. For this example, imagine the sky on a clear day. The
horizon shows a lighter blue than the sky directly above, and the color changes
continuously all the way from horizon to zenith. If a realistic sky background

FiguRe 2.2 A graphic of a sheet of lined paper. FiguRe 2.3 A color gradient drawn as pixels.

52 Game Development UsinG python

were needed, then it would be necessary to draw this using the tools available.
What would the method be?

First, decide on what the color is at the horizon (y=ymax) and at the highest
point in the scene (y=ymin). Now ask: “how many pixels between those points?”
The change in pixel color will be the color difference from ymax to ymin divided
by the number of pixels. Now simply draw rows of pixels beginning with the
horizon and move up the image (i.e., decreasing Y value), changing the color by
this amount each time.

As an implementation, assume that the color at the horizon will be blue =
(40, 40, 255) and the top of the image will be (40, 40, 128), a darker blue. The
height of the image will be 400 pixels; the change in blue over that range is 127
units. Thus, the color change over each pixel is going to be 255.0/400. A color
can’t change a fractional amount, of course, but what this means is that the blue
value will decrease by approximately 1 unit with every increase of a couple of
pixels in height. Do not forget that the horizon is at the bottom of the image,
which has the greatest Y coordinate value, so that an increase in Y means a
decrease in height and vice versa.

The example program that implements this is:

import pygame
pygame.init()
surf = pygame.display.set_mode((400, 400))
surf.fill ((255,255,255))
blue = 0
delta = 255.0/400
for y in range (0, 400):
 yy = 400-y
 c = (40, 40, blue)
 for x in range(0, 400):
 surf.set_at ((x, y), c)
 blue = blue + delta
pygame.display.update()
input()

Figure 2.3 shows what the gradient image looks like as a grey level image.

Lines and Curves

Straight lines and curves are more complex objects than pixels, consisting
of many pixels in an organized arrangement. A line is actually drawn by setting
pixels though. The fact that a line() function exists means that the programmer

Graphics anD imaGes 53

does not have to figure out what pixels to draw and can focus on the higher level
construct, the line or curve.

A line is drawn by specifying the endpoints of the line. Using Pygame the
call is:

pygame.draw.line (surf, col, (x0, y0), (x1, y1))

where one end of the line is at (x0,y0) and the other is at (x1,y1). The
color of the line is specified by the second parameter col. If any part of the
line extends past the boundary of the window that’s OK; the line will be
clipped to fit.

example: Note Paper Again

The example of drawing a piece of note paper can be done using lines instead
of pixels, and it will be a lot faster. Draw a collection of horizontal lines (i.e., that
have the same Y coordinate at the endpoints) separated by 20 pixels, as before
having a blue color. Then draw a vertical red line for the margin. The program
is a variation on the previous version:

import pygame
pygame.init()
y = 60 # Height at which to start
width = 400
height = 400
surf = pygame.display.set_mode((width, height),
 pygame.SRCALPHA)
surf.fill ((255,255,255))
y = 60 # Height at which to start
for n in range (0, 27): # Draw 30 horizontal blue lines
 pygame.draw.line (surf, (0,0,200), (0, y), (width, y))
 y = y + 20 # The next line is 20 pixels down
c = (200, 0, 0) # Pixel color red
pygame.draw.line (surf, c, (25,0), (25,height))
pygame.display.update()
input()

The output from this program is the same as that for the version that drew
pixels, which is shown in Figure 2.2.

A curve is trickier than a line, in that it is harder to specify. The method used
in Pygame is common: a curve (arc) is defined as a portion of an ellipse from a
starting angle for a specified number of degrees, as referenced from the center
of the ellipse. Here’s a call to arc:

54 Game Development UsinG python

pygame.draw.arc (surf, c, box, start_angle, end_angle)

The parameter surf is the surface to draw on, c is the color, box is an
enclosing bounding box as a tuple (upper left x, upper left Y, width, height),
start _angle is an angle between 0 and 2p radians, and stop_angle is an angle
in the same range. The angle 0 is to the right, 90 degrees is up, 180 degrees
(p radians) is left, and 270 degrees is down. The angle specifies the part of the
ellipse to draw. Figure 2.4 shows some example calls to curve and their results.
The curves are drawn counterclockwise. The value conv is p/180 and converts
an angle in degrees into radians when multiplied.

Before proceeding, we have a few examples of drawing in Pygame now, and
some generalizations can be made about the structure of the module. The vari-
able pygame here is an instance of a class that contains most of the code that
implements Pygame. Within that class can be seen some methods and other
class instances, as follows:

init() Initialize Pygame
SRCALPHA A constant, indicating a pixel

format with an alpha channel
(opacity)

FiguRe 2.4 Examples of the curve method

Graphics anD imaGes 55

init() Initialize Pygame
color A class representing color
display a variable, a class reference
set_mode() Modify display size; Returns

THE display reference
update() Draw this display to the screen
surface A class representing a place one

can draw
fill () Set the color for filling polygons

on this surface
set_at() Set a pixel specified by (x,y) to

the fill color
draw A module for drawing simple

objects
line() Draw a line
arc() Draw a curve

Online documentation for Pygame is extensive, and a quick search
should locate anything that the system can provide. The key web site right
now is https://www.pygame.org. Looking up the draw module on that site
we find:

pygame.draw.rect — draw a rectangle shape

pygame.draw.polygon — draw a shape with any number of sides
pygame.draw.circle — draw a circle around a point

pygame.draw.ellipse — draw a round shape inside a rectangle

pygame.draw.arc — draw a partial section of an ellipse

pygame.draw.line — draw a straight line segment
pygame.draw.lines — draw multiple contiguous line segments

pygame.draw.aaline — draw fine antialiased lines

pygame.draw.aalines —
draw a connected sequence of antialiased
lines

That’s everything that draw can do.

56 Game Development UsinG python

Polygons

For the purposes of discussion, a polygon will include all closed regions,
including ellipses and circles. A rectangle is drawn using the rect method, as
shown in Figure 2.5a.

pygame.draw.rect (surf, ((0,200, 50), (100, 100, 200, 300))

The surf and color parameters are as before, and the box is specified as
the upper left coordinates, the width, and the height. By default, the rectangle
is filled with the specified color. An additional final argument specifies the line
thickness with which to draw the rectangle, and if this is specified then the
rectangle is not filled with color (Figure 2.5b):

pygame.draw.rect (surf, (0,200, 50), (100, 100, 200, 100), 1)

The ellipse method takes the same parameters as does rect, and it
draws an ellipse within the rectangle defined by the third parameter
(Figure 2.5c).

pygame.draw.rect (surf, (230,230, 0), (100, 100, 200, 100), 1)
pygame.draw.ellipse (surf, (0,200, 50), (100, 100, 200, 100), 1)

A circle is an ellipse drawn in a square. This makes the center and radius
rather implicit. There is a circle method also (Figure 2.5d):

pygame.draw.rect (surf, (230,230, 0), (50, 50, 100, 100), 1)
pygame.draw.circle (surf, (0,200, 50), (100, 100), 50)

The third parameter to circle is a tuple defining the center, and the fourth
is the radius. A fifth would be the line thickness, and filling would turn off.
In the case here of a circle at (100,100) and radius of 50, the enclosing

FiguRe 2.5 (a) A Filled Rectangle; (B) Unfilled Rectangle; (C) An Ellipse; (D) A Circle, Filled

Graphics anD imaGes 57

square would be from (100-50, 100-50), which is (50, 50), for (100,100)
pixels.

Blitting

To blit is to combine several graphics or bitmaps into a single one. It is often
accomplished using a Boolean function, and often is very fast due to hardware
assistance. Pygame has one special Surface that is the display Surface, but
it allows us to draw on other surfaces too. To display what is drawn on these
surfaces, we would blit them to the display Surface.

Blitting has consequences and requires specifications that are not usually
appreciated by the definition. Consider the creation of two Surfaces named s1
and s2 in addition to the display surface, and draw into each of those:

s1 = pygame.Surface((400,400)) # New Surface
pygame.draw.rect (s1, (230,230, 0), (50, 50, 100, 100), 1)
s2 = pygame.Surface((400,400)) # New Surface
pygame.draw.circle (s2, (0,200, 50), (100, 100), 50)

The Surface s1 contains a rectangle, and the Surface s2 contains a circle.
Neither appears on the display Surface, which already exists due to a previous
call and is named surf. A blit is a copy from one Surface to another. Some ques-
tions are:

 - Which part of the Surface being blitted is copied?
 - Where (coordinates) is the surface being blitted to?
 - What happens to the pixels that already exist in the region being blitted to?

The method that copies (blits) one surface to another is blit, the simplest
form of which is:

surf.blit (s1, (0,0))

This copies all of Surface s1 to surf so that the upper left of s1 is at (0,0)
of surf. We can copy s1 to any pixel coordinate in surf. To draw a circle and a
rectangle in different Surfaces and then blit them to the display Surface would
involve creating the surfaces, drawing in them, and blitting them:

s1 = pygame.Surface((200,200)) # S1 is 200x200
s1.fill ((255,255,255)) # White background
pygame.draw.rect (s1, (230,230, 0), (50, 50, 100, 100), 1)

s2 = pygame.Surface((200,200)) #s2 is also 200x200 pixels
s2.fill ((255,255,255)) # White background too

58 Game Development UsinG python

pygame.draw.circle (s2, (0,200, 50), (60, 60), 50)

Blit rectangle to (0,0) and circle to (100,100)
surf.blit (s1, (0,0)) # s1 has a rectangle: blit
surf.blit (s2, (100,100)) # s2 has a circle: blit pygame.display.
update()

Here s1 is blitted before s2 (i.e., is drawn first), and there is overlap
between the drawn regions. Thus, the one drawn last (s2) appears to be
drawn over s1. If we think in terms of layers, the last surface drawn is the
top layer and is visible. Layers beneath may be partly or completely covered
by layers above. A Surface is rectangular, so notice that the background
surrounding the circle is also drawn over the square below. Figure 2.6 shows
the result.

The blit function has other parameters that we’ll get into shortly.

Drawing Text

Drawing text is accomplished by loading a font and then drawing (rendering)
a text string to a surface using that font as a guide. An instance of the Font class,
and there is a default for that, can render text onto a surface. That surface is

then blitted to the target surface, possibly the display. A simple example involves
placing the text “Hello there” at location (100,100):

FiguRe 2.6 (a) A filled rectangle; (b) Unfilled rectangle; (c) An ellipse; (d) A circle, filled.

Graphics anD imaGes 59

font = pygame.font.Font(None, 36)
text = font.render(“Hello There”, 1, (10, 10, 10))
surf.blit (text, (100,100))

The method pygame.font.Font selects a font to be used and returns an
instance. A font has a name, in this case None, indicating that we should use
the default, and a size, in this case 36. Each computer system has a different set
of fonts available, so we’ll use the default. Next, the font class can draw (render)
the text onto a surface. The call:

text = font.render(“Hello There”, 1, (0,0,255))

renders the text “Hello there” in the color (0,0,255), which is blue. The
second parameter 1 means to anti-alias, which will yield nice smooth charac-
ters. Finally:

surf.blit (text, (100,100))

will blit the text to the display Surface surf at location (100,100). The coor-
dinates (100,100) are those of the upper left of the text Surface, which will be a
rectangle large enough to enclose the string.

A problem is that this text Surface will write over anything underneath as a
rectangular area. This can be fixed by using a transparent background. The key
things to know about drawing text are that font.render draws a text string into
a Surface and returns that Surface, which then must be blitted to the place it
belongs.

Transparent Colors

When one pixel is drawn over top of (i.e., at the same location as) another,
the one drawn most recently will be visible. This may not always be what is
needed. Background pixels of text images being blitted should be invisible so
that the background can be seen with the text on top.

Transparency is a value that can be numerical. Let’s say that a value of 0
means that the drawn pixel is invisible and a value of 255 means that it is opaque.
Values in between have degrees of transparency. Then we want the background
of a text box to have the value 0 for this parameter, and the text to have a value
of 255. Looking at this value it has the same properties as does a color compo-
nent, and so it is generally implemented as a fourth component called alpha.
A color can be specified as RGBA, which means four components: red, green,
blue, and alpha.

60 Game Development UsinG python

Not all Surface objects can implement transparency. They must have a prop-
erty called 32-bit color and have the SCRALPHA property. Creating a Surface
like this is done as follows:

surf = pygame.display.set_mode((w, h), pygame.SRCALPHA, 32)

where the third parameter means that the Surface can support transparency and
the final one means that it has thirty-two bit colors: four values of eight bits each.

The previous example having a rectangle and a circle drawn and then blitted
to the display Surface can now be implemented using transparency:

import pygame

pygame.init()
surf = pygame.display.set_mode((400, 400))
s1 = pygame.Surface((200,200), pygame.SRCALPHA, 32)
s1.fill ((255,255,255, 0))
pygame.draw.rect (s1, (230,230, 0), (50, 50, 100, 100), 1)
s2 = pygame.Surface((200,200), pygame.SRCALPHA, 32)
s2.fill ((255,255,255, 0))
pygame.draw.circle (s2, (0,200, 50), (60, 60), 50)
surf.blit (s1, (0,0))
surf.blit (s2, (100,100))
pygame.display.update()
input()

The fill color value of (255,255,255,0) yields a fully transparent color that
will comprise the background of the circle and the rectangle Surface, allowing
the background to show through. Notice that the background color is black; this

FiguRe 2.7 Example of transparent colors.

Graphics anD imaGes 61

is the default on the display surface. To change it to white, as an example, call
surf.fill:

surf.fill ((255,255,255))

Images

Unlike the graphical components displayed so far, an image is funda-
mentally a collection of pixels. A camera captures an image and stores it
digitally as pixels, and so it was never anything else. Displaying an image
means drawing each pixel in the appropriate color, as captured. Pygame
can load and display images in files of various formats: JPEG, GIF, BMP,
and PNG.

Unlike languages such as Java, Python has no image class. An image is read
from a file using the function pygame.image.load and is returned as a Surface.
This means that it can be displayed immediately using a blit and that individual
pixels can be accessed using the Surface method get_at().

The file “charlie.gif” is a photo of Checkpoint Charlie in Berlin (Figure 2.8).
It could be read in to a Python program with the call:

im = pygame.image.load (“charlie.gif”)

The variable im now holds the image, and can be displayed using:

surf.blit (im, (0,0))

While the details are not completely relevant, it is good to know that im.get_
width() and im.get_height() give the width and height of the image in pixels.

The complete Python program (using Pygame) that can load and display the
image is thus:

import pygame
pygame.init()

im = pygame.image.load (“charlie.gif”)
width = im.get_width()
height = im.get_height()
surf = pygame.display.set_mode((width, height),
 pygame.SRCALPHA)
surf.fill ((255,255,255))
surf.blit (im, (0,0))
pygame.display.update()
input()

62 Game Development UsinG python

This displays the image in a window that is exactly the correct size.
The module Pygame.image has functions for loading and saving images, but

none for manipulating them. The other important function is one that saves
data into an image file:

Pygame.image.save(Surface, filename)

Pixels
An image is just a Surface after it has been read from a file. Individual pixels

can be accessed using the method get_at passing the x and y coordinates. The
code

pix = im.get_at ((i,j)) # Parameter is a tuple

returns the color of the pixels at (i,j), which is a tuple containing red, green,
blue, and alpha components.

FiguRe 2.8 Checkpoint Charlie image displayed in a Pygame window.

Graphics anD imaGes 63

Changing the value of the pixel at location (x,y) is accomplished by calling
im.set_at()

im.set_at ((x,y), color)

where again, color is a tuple.
Pygame does not have facilities for modifying images directly, but requires

they be placed into a Surface first. Now the pixels can be accessed individually
through that Surface.

example: Negative image

A photographic negative is not something that is encountered much in the
age of digital photography. A negative is the intensity inverse of the image: black
pixels are white in the negative, and white pixels are black. In between pixels
are reversed in value, usually on a scale of 0 to 255. So, if a specific pixel has a
value x, then its value in the negative image will be 255-x.

Using the Checkpoint Charlie image again, let’s create a negative image
using this pixel value range. First, we have to convert the color pixels into grey
values. An easy way to do this is to average the R, G, and B values. For a pixel
value pix:

grey = (pix[0]+pix[1]+pix[2])/3

Now this value is subtracted from 255 and is replaced into the image:

grey = 255 – grey
im.set_at (x, y, grey)

The whole program is:

import pygame
pygame.init()
im = pygame.image.load (“charlie.gif”)
width = im.get_width()
height = im.get_height()

for i in range (0,width):
 for j in range(0,height):
 pix = im.get_at ((i,j))
 grey = (pix[0]+pix[1]+pix[2])/3
 grey = 255-grey
 im.set_at ((i,j), (grey, grey, grey))
surf = pygame.display.set_mode((width, height), pygame.SRCALPHA)

64 Game Development UsinG python

surf.blit (im, (0,0))
pygame.display.update()
input()

The color (grey,grey,grey) is a grey pixel, the same color intensity for each of
red, green, and blue. The for loop is used to examine every pixel in the image.

Image Transformations

An image is read into a Surface prior to display, but it may not be the correct
size for the display window. It’s possible that the display window will be used to
display many images of various sizes consecutively, of display thumbnails of a
collection. It will be necessary to resize images from time to time. Pygame has
a module named transform that can do this and more.

To resize an image named im, a call to scale will do the job:

im = pygame.transform.scale (im, (newx, newy))

where newx is the new width that we want the image to have and newy is the
new height. To create a new image that is 1/4 the area of the old one, reduce the
width and height by a factor of 2:

im = pygame.transform.scale (im, (im.get_width()//2, im.get_
height()//2))

Images have an aspect ratio, the ratio of the image’s width to its height. If this
is changed then the image will look different, perhaps stretched or squashed.
When scaling an image, care should be taken to ensure that the aspect ratio A

FiguRe 2.9 Checkpoint Charlie image: (a) grey; (b) negative (greys reversed).

Graphics anD imaGes 65

stays the same. An easy way to do this is to set one dimension to a needed value
and then compute the other so A is not modified. If you want the width to be
100 pixels, then set the height to 100/A. If you want the height to be 100 pixels,
then set the width to A*100.

Using scale, one can make the image either larger or smaller.

Rotation

An image in a Surface can also be rotated using the transform module.
pygame.transform.rotate (surf, angle) will perform a counterclockwise rotation
of the image in the Surface surf by the specified angle. Angle is in degrees and
is a real number. Rotating an image im by 30 degrees would be coded as:

s = pygame.transform.rotate(im, 30)

The returned image s will have the rotated image centered in a new
Surface large enough to contain it. A rectangle that is rotated will require a
larger bounding box to hold it, so s will inevitably be larger than im (Figure
2.10b).

Rotating an image requires that it be completely resampled. Few if any
pixels will have the same values. An image is seen as a 2D rectangular grid,
and when rotated it becomes a new grid with the new pixels interpolated
from the neighbors of the old image. What this means is that an image
should never be rotated multiple times. If so, each image will be a little
more distorted than the previous one until the result holds no relation to the
original.

Omitting some of the initial setup code, here’s a program that rotates an
image by 2 degrees ten times, and then back:

surf = pygame.display.set_mode((width, height), pygame.SRCALPHA)
im = pygame.transform.scale (im, (width//2, height//2))
for i in range (0,10):
 im = pygame.transform.rotate(im, 2)
for i in range (0,10):
 im = pygame.transform.rotate(im, -2)
surf.blit (im, (0, 0))
pygame.display.update()

The result in Figure 2.10a is quite distorted. The correct way to do multiple
rotations is to rotate the original image by a larger angle each time:

for i in range (0,10):
 s = pygame.transform.rotate(im, 2*i)

66 Game Development UsinG python

Because a game often requires that sprites, represented as small raster
images, be rotated, we need to understand the rotation method pretty well.
Consider a small image of a boat, which will used as a sprite in the boat race-
game. As visualized in Figure 2.11, the boat image initially points to the right,
which is the 0 degree orientation. The boat always moves in the direction it is
facing, so if it makes a change in direction, the sprite will have to be rotated to
face in that direction.

The rotate method will rotate the image about its center. This often makes
the bounding box larger at first, and so the point that is the center of the image
changes. If the image is to be rotated many times, this becomes obvious. Figure
2.11 was created using the code:

boatr = pygame.transform.rotate(boat, angle)
display.blit(boatr, (250, 200))

where the image of the boat is in a Surface named boat. This image is
rotated by the specified angle and is returned as a new Surface boatr, which
is then blitted to the center of the screen. In order to have this rotation
appear to be about the center of the boat, the image must be translated to
the origin. By “the image” we mean the rotated boat image, which changes
in size.

boatr = pygame.transform.rotate(boat, angle)
sx = boatr.get_width()
sy = boatr.get_height()
display.blit(boatr, (250-sx/2, 200-sy/2))

FiguRe 2.10 Checkpoint Charlie image: (a) after multiple rotations; (b) after one 30-degree rotation.

Graphics anD imaGes 67

The values of sx and sy reflect the size of the rotated image, and so (sx/2,
sy/2) would be the center of that image. This places the center of the rotated
boat image at the center of the display. It could, of course, be placed anywhere.

PIxELS AND COLOR

Colors are important in graphics, of course, because lines, shapes, and
regions will be drawn in different colors. On a computer screen and in memory,
graphics are drawn as individual pixels, even if we don’t specify individual pixels
directly. We know that a pixel is a color or intensity value that is measured or
drawn at a particular location in an image. The key to representing a pixel is
to represent the color, and color on a computer is usually specified by its red,
green, and blue components (RGB). The choice of how to implement a pixel
would seem to be made for us: it will be a collection of three values, one holding
the amount of red at that location, one holding the amount of green, and one
holding the amount of blue.

The Pygame color class represents colors as described thus far, and so a
pixel would be of that type. A variable of type color has a red, green, and blue
component, each of which is an unsigned integer. Each component, red for
instance, can have a value between 0 and 255. A value of 0 means that no red is
present in the color, and a value of 255 represents the most red that is possible
(saturated).

The color type in Pygame is really just a tuple with three (or four) values.
Setting a color value is easy:

c = pygame.Color (128, 90, 20)

causes the color in c to be a medium brown. It can now be used to set color
values, such as:

FiguRe 2.11 Rotation of a boat sprite. The bounding box and axis have been added.

68 Game Development UsinG python

surf.fill (c)

The red component of c can be accessed using either c[0], which is the first
component of c, or c.r. The latter is preferred, and it can be used to modify the
color component. The code:

c.r = 255

sets the red component of c to the largest possible value. Similarly, for green
and blue, the components c.g and c.b would be used.

In addition to the red, green, and blue components of a pixel, there is a
fourth property that is of interest. It’s called alpha, and it refers to the degree to
which the pixel is opaque or transparent. A pixel that is completely transparent
would be effectively invisible, since anything drawn before (i.e., underneath) it
would show through. Conversely, a pixel that is opaque would cover anything
beneath it. The use of an alpha value to control the degree of transparency
allows objects underneath any pixel to be visible to a greater or lesser degree.
This usually appears as a color change in overlap areas.

It is important to remember that an alpha of 0 means that the pixel
is completely transparent. An alpha value of 255 means that the pixel
is opaque. This is the opposite of what one would expect if alpha is the
degree of transparency, since 0 transparency would seem to mean it is
not transparent. Figure 2.12 shows the effect of changing the alpha value.
The green (rightmost) circle in each overlapping pair has a specified alpha
value of (left to right) 255, 200, 128, and 96. Note that the color of the
other circle shows through more and more as the alpha of the green circle
gets smaller.

Alpha is a more difficult aspect of color to use in Pygame than in some other
languages and graphics systems. The standard display Surface in Pygame does
not display the alpha color channel, and so trying to draw transparent colors
directly will fail. A Surface can be created that permits transparent colors, and
this could be blitted to the display surface.

Consider the program that created Figure 2.12. The red circles are all
opaque, having an alpha of 255, and can be drawn directly on to the display
surface. So can the first circle. The second circle has an alpha of 200. What
needs to be done is to create a new Surface having the property that it can
display alpha. It needs to be large enough to hold the circle as well. The
code is:

surf = pygame.Surface((60,60), flags=pygame.SRCALPHA)

Graphics anD imaGes 69

The flag SRCALPHA indicates that this new surface must deal correctly
with alpha values. Next, draw the circle in this Surface, specifying the alpha
value as the fourth component in the color:

pygame.draw.circle (surf, (0, 255, 0, 128), (30,30), 30)

In this case the alpha is 128. Notice that the Surface is just large enough to
hold the circle, and that the circle is drawn in the center of the Surface. The
final step is to blit this Surface to the display:

display.blit (surf, (250, 40))

The location to which this surface is blitted dictates where in the display
the circle will appear, so some planning is needed. Drawing the situation using
some graph paper is always a useful measure.

A new Surface should be created each time; that is, for each circle. The code
that creates Figure 2.12 is:

import pygame

pygame.init()

display = pygame.display.set_mode((500, 150), pygame.SRCALPHA,
32)
display.fill ((255,255,255))

pygame.draw.circle (display, (255, 0,0, 255), (50, 50), 30)
pygame.draw.circle (display, (0, 255,0, 255), (75, 75), 30)

surf = pygame.Surface((60,60), flags=pygame.SRCALPHA)
pygame.draw.circle (display, (255, 0,0), (150, 50), 30)
pygame.draw.circle (surf, (0, 255, 0, 200), (30,30), 30)
display.blit(surf,(150,40))

surf = pygame.Surface((60,60), flags=pygame.SRCALPHA)
pygame.draw.circle (display, (255, 0,0), (250, 50), 30)

FiguRe 2.12 The effect of the alpha value on pixel color.

70 Game Development UsinG python

pygame.draw.circle (surf, (0, 255, 0, 128), (30,30), 30)
display.blit (surf, (250, 40))

surf = pygame.Surface((60,60), flags=pygame.SRCALPHA)
pygame.draw.circle (display, (255, 0,0), (350, 50), 30)
pygame.draw.circle (surf, (0, 255, 0, 96), (30,30), 30)
display.blit (surf, (350, 40))

pygame.display.update()
input()

THE C2H6O JET BOAT RACE GAME

Much of the information communicated from a game back to the player is
done visually. Our ability to display images and draw graphics is essential to this
communication, and immediately demonstrates the dependence of a game on
artistic assets and good design. The case of the Jet Boat Game we are devel-
oping is a good example.

FiguRe 2.13 Terrain image for the boat race game.

Graphics anD imaGes 71

The game requires art assets, and those must be described first by the
designer and then placed into the design document for use by artists and devel-
opers. The most significant piece of art is the terrain. This is the stage on which
the game is played, or the board on which checkers or Backgammon is played.
It will show the lake and rivers on which the boats will be raced. Figure 2.13
shows the terrain image that our game will use, but there are many other possi-
bilities. Having a competent artist is essential for this task, and good artists are
worth just as much as good programmers.

The terrain art in Figure 2.13 was created by a programmer, using a terrain
texture generation tool (http://cpetry.github.io/TextureGenerator-Online/).

When the game is executing, a portion of the terrain image is displayed,
usually one within which the player’s avatar (in this case a boat) is found. The
game display is a window within the much larger terrain image, which in this
instance is 8000 x 7000 pixels. The mobile elements of the game, boats for
example, are objects having a position and speed, the speed being specified
ultimately in pixels per frame. These are drawn over the terrain image. The first
image drawn is the one further in the background, and the more recent object
drawn will be on top of this (Figure 2.14). The objects that can move could be
drawn in new positions in each frame.

FiguRe 2.14 Drawing of the game involves drawing sprites and objects over the terrain.

72 Game Development UsinG python

The game thus has a background, static objects (i.e., trees, walls, piers,
rocks), and dynamic objects (i.e., boats, buoys, markers, power-ups). An artist
creates them and places them into an image file, and the programmer must
read those images and draw them where they belong.

ExERCISES

The following problems will exercise your knowledge of the material in this
chapter and sometimes require that you do more research before you are able
to complete them. Solutions to some of these are available.

1. Write a function that will draw a regular hexagon. Assume that the hexagon
has sides of length h, and will be drawn in such a way that the upper left
corner of the bounding box is specific as a parameter pos. The call would be:

hex (display, col, h, pos)

where col is the color and display is the surface on which to draw.
2. Create a program that will display an image that is specified when a user

types the file name of that image on their keyboard.
3. Write a program that draws a target consisting of ten alternating white and

black circles.
4. Write a program that displays an image on the screen. When the mouse is

clicked a rectangle is drawn within which the image appears magnified 2x.
This magnifying window can be dragged around the screen, magnifying the
image beneath it as it moves.

5. Image file formats GIF, JPG, and BMP differ in how they store data and
compress it. Find an image and save it as a GIF, JPG, and BMP file. Using an
image display utility of your choice, examine those images at various degrees
of magnification. What can you observe about the effect of different formats
on the image data? (Not all images will illustrate the likely distortions of each
format.)

6. Create a program that displays an image and allows the user to select a portion
of it using the mouse: click, drag, and release will define a rectangular sub-
image. This sub-image now becomes the whole image, filling the window.
When the RETURN key is pressed, the image being displayed in the window
is saved as a file named “output.jpg.”

7. Make bubbles. Bubbles in a liquid are basically spherical, but get larger as
they rise to the surface, where they eventually burst. Create a sketch that

Graphics anD imaGes 73

makes bubbles that look more or less real. They should rise to the surface
and increase in size as they do. (Look up the function random.)

8. Find an image of a television set and make a copy in a file. Find any other
image you want and display the two images so that it looks like the second
image is being displayed on the television. What did you have to do to make
this appear natural?

RESOURCES

2D Game graphics tutorial: http://gamebanana.com/tuts/11225
Intro to 2D Graphics: http://rbwhitaker.wikidot.com/introduction-to-2d-graphics
Processing documentation: http://processing.org/reference/
Techniques for fancy and lightweight 2d graphics (game producer blog): http://www.

gameproducer.net/2008/03/03/techniques-for-fancy-and-lightweight-2d-graphics/
Sprite Database: http://spritedatabase.net/. Useful information and downloads.
Open Game Art: http://opengameart.org/. Downloadable sprites and 2D art.

REFERENCES

1. Charles Kelly. (2012). Programming 2D Games. Boca Raton, FL: A K
Peters (Taylor & Francis).

2. J. R. Parker. (2011). Algorithms for Image Processing and Computer
Vision, 2nd edition. Indianapolis, IN: Wiley.

3. John Pile Jr.. (2013). 2D Graphics Programming for Games. CRC Press
(Taylor & Francis).

4. Allen Sherrod. (2008). Game Graphics Programming. Boston, MA: Course
Technology (Cengage Learning).

5. Daniel Shiffman. (2008). Learning Processing. Burlington, MA: Morgan-Kaufman.
http://www.learningprocessing.com/.

74

chapter 3
tHe GAme looP

In Chapter 2, all of the Pygame programs ended with an input request. This
was so the window would stay open long enough so that the graphical output
could be seen. This is not the correct way to do this. Pygame has devised a
scheme that not only keeps the graphics on the display window, but repeats
the drawing process as often as needed so that the game can progress frame by
frame and permit the user to interact using the mouse and keyboard.

Because Pygame was specifically designed to be used in making games, it
allows the programmer to easily do what was suggested in Chapter 1: to keep
track of all objects and implement the interactions between them according
to the rules. This means that Pygame allows for fixed-time intervals to pass
between frames and has an implementation of an event.

TIME AND INTERVALS

The game loop is the heart of any game. A high-level abstraction of what it
does is:

Loop forever
 Move objects
 Check for collisions
 Handle Events
 Handle Sounds
 Draw all objects at current positions

A potential problem with this loop is that it will not always take the same amount
of time to execute. This can result in gameplay issues that interfere with parts of the

75 Game Development UsinG python

design. A classic example is the old arcade game Space Invaders. Figure 3.1 shows
how this game could look, although this is not a screen shot for copyright reasons. The
player controls the football shaped icon at the bottom of the screen, which can fire little
square missiles upward when a button is pressed. If the missile hits one of the shapes
(representing spaceships) above, the missile and ship will disappear. The entire array
of ships is moving left, then down, then right, then down, and so on to create moving
targets. The problem was that as the targets were shot and vanished there were fewer
objects remaining in the game, and the game loop would execute a little faster. When
there were only a couple of ships left, they were moving very quickly indeed and were
hard to hit. Although this was in fact a bug, it was kept in the game as a feature.

The game loop should take about the same amount of time no matter how
much work must be done. It’s not possible to speed the execution up, so we’ll
have to slow it down to a steady pace. In the previous game loop sketch, this can
be done by adding one more statement at the beginning, making it look like this:

Loop forever
 Wait until the current fixed time interval is complete
 Move objects
 Check for collisions
 Handle Events
 Handle Sounds
 Draw all objects at current positions

The wait will ensure that a fixed frame rate is assured. If, for example, the
frame rate is set to 30 per second, then each frame will take 0.333 seconds, and
when that period has expired, the move objects step can be done.

FiguRe 3.1 Space invaders had a bug that made the game run faster as objects were removed from play.

the Game loop 76

The pygame.time Module

Pygame has a module named time that monitors the passage of real time.
This is something that most programming classes do not get involved with.
Yet operating systems, networking, and games require close attention to the
passage of time. The time module offers four functions and a class that offer the
programmer a way to keep close track of time, mainly elapsed time or intervals.

The function pygame.time.get_2ticks() returns the number of milliseconds
that have passed since pygame.init was called. This function could be used for
timing the main loop, but it would not be the best choice. If we wanted to print
a message every second, then here’s code that would do it:

import pygame
pygame.init()
t = 1000 # 1000 milliseconds = 1 second
while True: # Loop forever

Other code here Game code

 if pygame.time.get_ticks() < t: # Time since init < t millisecs?
 continue # No. loop again.
 print (t//999) # Print seconds
 t = t + 1000 # Add one second to t
 if t > 10000: # Stop after 10 seconds
 break;

This will print a message each second for ten seconds. The comment that
says “Other code here” could have some Python code that would execute each
second. Changing the constant 1000 to 33 would give the period of time that
would accommodate one frame at 30 frames per second. This would work, but
the problem is that the loop will execute constantly, burning up CPU time doing
nothing at all. This is usually considered to be a bad thing. Other processes on
the computer would suffer.

The function pygame.time.delay() does some of that work for the
programmer. It pauses for the specified number of milliseconds using the same
method—running a loop, executing CPU cycles, until the specified duration
has passed. The previous loop would be executed in the following way:

import pygame
pygame.init()
t = 1000

while True:

77 Game Development UsinG python

Other code here
 delta = t - pygame.time.get_ticks() # Calculate time remaining
 if delta > 0: # Wait for that time period
 pygame.time.delay(delta)
 print (t//999)
 t = t + 1000
 if t > 10000:
 break;

The value of the expression t - pygame.time.get_ticks() will be the time
remaining in the current frame. Each time through the loop this will get
smaller as real time advances. The problem with both of these code snippets is
that the CPU is active during the time delay. It’s eating up CPU cycles for no
reason; a CPU can be made to pause, to switch to another process for a while
and then return. The function pygame.time.wait() makes the process “go
to sleep” to share the processor with other programs. A program that waits
for even a few milliseconds will consume very little processor time, but it is
slightly less accurate than the function pygame.time.delay(). The new code
would be:

import pygame
pygame.init()
t = 1000

while True:
Other code here
 delta = t - pygame.time.get_ticks() # Calculate time remaining
 if delta > 0: # Wait for that time period
 pygame.time.wait(delta)
 print (t//999)
 t = t + 1000
 if t > 10000:
 break;

This is the best version so far. Wait allows other processes like your browser
and email reader to execute while the game is waiting. It does require that the
programmer keep track of the remaining time pretty carefully. There is another
choice, one that is frequently used in Pygame.

The time module has within it a class named Clock. This class has methods
that can return real time values and time intervals, but it has one method that is
exactly what we need for the game loop: it’s called tick(x). It will compute how
many milliseconds have passed since the previous call, but the important thing
is that it will wait for as long as you want and do so in a way that a game program
would find convenient. If a value for the parameter x is passed, the parameter

the Game loop 78

will be considered to be the desired frame rate. The function will delay to keep
the game running slower than the given ticks per second. So, by calling the
method Clock.tick(40) once per frame, the program will never run at more than
40 frames per second. The previous code written to use clock.tick would be:

import pygame
pygame.init()

clock = pygame.time.Clock()
while True:
 clock.tick(1)

Other game code here
 print (t)
 t = t + 1
 if t > 10:
 break;

This snippet is the typical Pygame main loop, but the frame rate is usually
faster, meaning that the parameter to tick would be perhaps 30 or 40 (frames
per second) rather than 1.

game Loop: Bouncing a Simulated Ball

Using clock.tick() a practical game loop can be created. In this case, a ball,
indicated by a circle, will move around the screen. It will change direction when
it reaches the edge of the window.

The position of the ball on the display surface, indicated by a variable named
display, will be indicated by variables x and y. The number of pixels the ball
moves during one frame is indicated by the variables dx and dy. The main action
that takes place each pass through the game loop would be to update the ball’s
position and display it:

x = x + dx
y = y + dy
pygame.draw.circle (display, (200,200,200), (x,y), 20)

Of course, within a very few iterations, the position of the ball will be outside
of the screen and thus will not be visible. Consider the horizontal dimension,
for example. If the value of x becomes larger than the width of the screen,
then the ball should not move any further right. The simple way to do that is to
change the sign on the variable dx so that the x value now decreases with each
frame. If the value of x becomes smaller than 0, meaning it has moved past the
left side of the screen, then the same action, changing the sign of dx, with have

79 Game Development UsinG python

the effect of moving the ball to the right in each frame, again keeping the ball
on the screen. The same can be done for the vertical motion using y and dy.

The game loop would look like this:

import pygame
dx = 3 # Speed in X direction
dy = 4 # Speed in Y direction
x = 100 # X position
y = 100 # Y position
radius = 20
pygame.init()
clock = pygame.time.Clock()
display = pygame.display.set_mode((500, 300), pygame.SRCALPHA, 32)
while True:
 clock.tick(30) # Make sure 1/30 second has passed
 display.fill((100, 100, 100)) # Clear the screen
 x = x + dx # Move objects
 y = y + dy
 pygame.draw.circle (display, (200,200,200), (x,y), radius) # Draw the ball
 if (x< radius or x>500- radius): # Outside of the screen in x?
 dx = -dx # Change the motion direction in x
 if (y< radius) or (y>300- radius): # Outside of the screen in y?
 dy = -dy # Change the motion direction in x
 pygame.display.update() # Update the screen

In the code, checking the x and y values is done, accounting for the radius of
the circle so that it looks like the ball is bouncing off of the sides. A screen shot
from this program appears in Figure 3.2.

This program executes forever, and it requires the user to stop it from the
keyboard. There’s a better way to end a program in Pygame.

EVENTS

As pointed out before in this book, an event can be defined as something that
happens. In Python and Pygame, an event is also a class and a module, each
one representing something specific that can happen while a program executes.

What is meant by something that happens? It’s usually something unpre-
dictable, such as a key press or mouse gesture. Accordingly, one of the most
important uses for events in Pygame is user input.

The pygame.event module contains thirteen functions, but the most
important one is get(). When an event occurs, like a key press, a record of that is
placed into a queue. The get() function returns the list of event objects in that
queue and removes those from the queue. What is returned is a list (actually,

the Game loop 80

an eventlist object reference) of things that have happened since the past time
it was called. Each of these events may need to be handled differently, in a loop
that looks at them all.

The typical event handling loop is (in pseudocode):

FiguRe 3.2 Screenshot of the bouncing ball program.

for event in pygame.event.get():
 if event.type == some event type:
 # do something
 if event.type == some other event type:
 #do something else
…

This gets each event from the list and checks to see what to do with it until
there are no more events. The variable event.type indicates which specific event
has been encountered. There are fifteen of those, but most are not common.
They are:

Event Name What Happened?
QUIT Game is over
ACTIVEEVENT Pygame has been activated or hidden,

perhaps by mouse
KEYDOWN A key has been pressed
KEYUP A key has been released
MOUSEMOTION The mouse has been moved

81 Game Development UsinG python

Event Name What Happened?
MOUSEBUTTONDOWN A mouse button has been pressed
MOUSEBUTTONUP A mouse button has been released
JOYAXISMOTION Joystick was moved
JOYBALLMOTION Joy ball was moved
JOYHATMOTION Joystick hat was moved
JOYBUTTONDOWN A joystick or pad button was pressed
JOYBUTTONUP A joystick or pad button was released
VIDEORESIZE Pygame window was resized
VIDEOEXPOSE Part of the Pygame window was exposed
USEREVENT A user defined event

The names in boldface are the most important ones for most situations.
These are constants inside the event module, so the full name of the QUIT
event would be pygame.QUIT.

The bouncing ball loop complete with a QUIT event handler would be
written:

while True:
 clock.tick(30) # Make sure 1/30 second has passed

 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 exit()

 display.fill((100, 100, 100)) # Clear the screen
 x = x + dx # Move objects
 y = y + dy
 . . .
 pygame.display.update() # Update the screen

This exits the program when the QUIT event is encountered.

The Mouse

The three basic mouse events, MOUSEMOTION, MOUSEBUTTON-
DOWN, and MOUSEBUTTONUP, give all that is needed to deal with mouse
input, and because finger gestures on a touch screen are essentially the same as
mouse gestures, the same events are used for those as well.

the Game loop 82

The QUIT event has no other data connected with it, but other events do.
These are called parameters even though they are variables local to the event
module. In the case of mouse events, the parameters are the position of the
mouse in the display surface, the distance the mouse has moved since the last
event, and which button was pressed or released.

The parameters are named and can be accessed via the object reference
returned by get().

Event.buttons A tuple having an entry for each mouse button.
So, buttons[0] is 1 if the left button is pressed
and 0 otherwise. Buttons[1] is the middle
button and buttons[2] is the right

Event.pos A tuple holding the position of the mouse when
the event occurred as (x,y).

Event.rel A tuple holding the distance the mouse has
moved since the previous mouse event (dx, dy).

The event can be printed, so a program that allows the viewing of the parameters

while a program executes would be:

import pygame
pygame.init()
clock = pygame.time.Clock()
display = pygame.display.set_mode((500, 250), pygame.SRCALPHA, 32)
while True:
 clock.tick(30)
 for event in pygame.event.get():
 print (event)
 if event.type == pygame.QUIT:
 exit()

A typical output line would be:

<Event(4-MouseMotion {‘pos’: (465, 82), ‘rel’: (-31, -1), ‘buttons’: (0, 0, 0)})>
which shows the current mouse position, the motion since the previous event
(to the left), and that none of the buttons are pressed.

The Keyboard

Another important kind of event is a key press. The event KEYDOWN occurs
when any key is pressed, and KEYUP occurs when a key is released. This means

83 Game Development UsinG python

that a key could be depressed for multiple frames (iterations). The key that was
pressed is identified in the event object itself as the variable event.key. This
variable holds a pygame constant that represents the key, and it is not a char-
acter constant. Every character has a corresponding constant within pygame that
identifies it. The character “a” is represented as pygame.K_a, for example (a
complete list can be found at https://www.pygame.org/docs/ref/key.html).

Consider that a game will allow the player to accelerate an object forward
when the “w” key is pressed and slow it down as long as the “s” key is pressed,
which is a standard scheme. A loop that detects these key presses is:

 for event in pygame.event.get():
 if event.type == pygame.KEYDOWN:
 if event.key == pygame.K_w:
 forward = True
 elif event.key == pygame.K_d:
 backward = True
 if event.type == pygame.KEYUP:
 if event.key == pygame.K_w:
 forward = False
 elif event.key == pygame.K_d:
 backward = False

Another way to detect key presses is to use the key_pressed method. This
is a part of the key class of pygame, and it returns a tuple of flags that indicate
the state of every key: False (or 0) means the key is not pressed, and True (1)
indicates that it is pressed. Testing to see if the “w” key is pressed would be
accomplished as follows:

 pygame.key.get_pressed()[pygame.K_w]

This method does not require the use of the event class and can be used
anywhere in the code. It is also interesting to note that the pygame constants for
characters are actually indices into the tuple. Code that is equivalent to that in
the previous event loop could be written, using key_pressed, as:

 z = pygame.key.get_pressed()
 forward = False
 backward = False
 if z[pygame.K_w]:
 forward = True
 elif z[pygame.K_s]:
 backward = True

the Game loop 84

An On-Screen Button

A button, in the user interface sense, is usually a rectangle that is drawn
within a window. When a mouse button is clicked while the cursor is within
this rectangular area, some task is performed. Almost everyone who has used a
computer has “clicked on a button.” Here’s how it works.

The mouse position is tested after each time it is moved to see if the cursor,
which is the icon that represents the mouse position, lies within the rectangular
area defined by the button. The button itself can be defined by its upper left
coordinates ULX and ULY, its width, and its height. If mouseX is the x coordi-
nate of the mouse and mouseY is the y coordinate, then the cursor is within the
button if

(mouseX >= ULX) and (mouseX <= ULX+width) and
 (mouseY >= ULY) and (mouseY <= ULY+height)

If this is true the button is said to be armed, meaning that the button on
the mouse will now cause an action. Let’s assume that the action desired is to
change the background color of the drawing surface to red. The loop will be the
same as the previous one until the event loop is encountered. Then:

for event in pygame.event.get():
 if event.type == pygame.MOUSEBUTTONDOWN:

When the mouse button is pressed, this event will occur and the code that
follows will be executed. Was the mouse button clicked within the rectangular
region defined by the screen button? Let the screen button have an upper left
corner at (100,100), a width of 100, and a height 0f 50. Then:

mouseX = event.pos[0]
mouseY = event.pos[1]
if (mouseX >= ULX) and (mouseX <= ULX+width) and
 (mouseY >= ULY) and (mouseY <= ULY+height):
display.fill ((255,0,0))

because we want to change the color of the display surface to red. When the
screen is updated, the color change will occur:

pygame.display.update() # Update the screen</CODE>

This works, but it is customary to draw the rectangle on the screen so users
can see it and know where to click. This has to be done every time the screen

85 Game Development UsinG python

is refreshed. Somewhere before the call to update should be a line that draws
the rectangle:

pygame.draw.rect(display, (0,255, 255),(100,100,100,50))

A Simple Game

Until now, we could not really build a computer game because input from
the user was not possible. Interaction is essential in a game. Now we have mouse
input, and that’s almost all we need.

Here’s a simple idea: we have a bouncing ball, as we made before. When the
mouse is clicked while the cursor in inside the ball, it disappears and reappears
somewhere else on the screen. This is not much of a game in terms of its being fun,
but it has many of the needed components. Also, a lot of the code already exists.

Beginning with the existing program from earlier in the chapter gives the
bouncing ball part. Adding the mouse interface means testing to see if a mouse
click finds the cursor within the circle on the screen. The circle is drawn at
location x,y and its radius is given by the variable radius, so what we need to do
is to add a mouse click event and then check to see whether the location of that
mouse click is within distance radius of the point (x,y).

for event in pygame.event.get():
 if event.type == pygame.MOUSEBUTTONDOWN:
 mouseX = event.pos[0]
 mouseY = event.pos[1]
 if distance ((mouseX,mouseY), (x,y)) <= radius :
 # do something.

The function distance is simply the Euclidean distance function, and the
two locations between which the distance is to be determined are tuples. The

FiguRe 3.3 The “button.” Left – The button can be seen but has not been pressed. Right – After
pressing the button.

the Game loop 86

comment “do something” is where the ball is removed and placed in a new
location. That can be done simply by changing the values of x and y. Let’s place
the ball at 100,100 again:

for event in pygame.event.get():
 if event.type == pygame.MOUSEBUTTONDOWN:
 mouseX = event.pos[0]
 mouseY = event.pos[1]
 if distance ((mouseX,mouseY), (x,y)) <= radius :
x = 100 # X position
y = 100 # Y position

This program is called game01. It lacks a few things to make it a complete
game. There are no intro and extro screens and no score keeping. It’s basically
a toy.

A Better Game

Score keeping is an important part of a game, but it can sometimes be tricky.
A simple way to do it is to have the player continue until they fail and count the
number of times they succeeded. A better game than the previous one would
allow the player to keep clicking and to make the task harder each time they
are successful. A successful click is a point, and the game is over when they fail.

Making the game harder can be as simple as making the motion of the ball
faster or making the ball smaller. The former is better because it has a more
generous challenge. One can only make the ball so small, after all. Making the
ball move faster means increasing the values of dx and dy by some amount,
which is easy to do.

A problem is that dx and dy can be positive or negative, so just adding a fixed
value to them may slow them down, rather than speed them up. A function
named sign(x) can be used that returns 1 if the sign of x is positive and -1 if it is
negative. Now speeding up the ball is accomplished by:

dx = dx+sign(dx)
dy = dy+sign(dy)

Now we need a score. This is simply an integer count of the number of
successful clicks. It should be displayed on the screen and updated after each
frame. The variable will be named score:

t = font.render (“Score: “+str(score), 1, (255,255,255))

87 Game Development UsinG python

display.blit (t, (20,20))

The final modification to game01 is to quit the game if the user misses the
ball. The event loop is now:

for event in pygame.event.get():
 if event.type == pygame.MOUSEBUTTONDOWN:
 mouseX = event.pos[0]
 mouseY = event.pos[1]
 if distance((mouseX, mouseY), (x, y)) <= radius:
 dx = dx+sign(dx) # X speed
 dy = dy+sign(dy) # Y speed
 score = score + 1
 else:

 exit()

This is game02, and a screen capture of the game being played is shown in
Figure 3.4.

RANDOMNESS IN GAMES

Randomness has a huge role in games, not just computer games but all games.
A deck of playing cards is always shuffled so that the cards are dealt in a random

FiguRe 3.4 Game02, click in on the moving ball to get points.

the Game loop 88

order. Dice are used in many games to create random integers. In computer
games, random numbers are used to resolve battles, to place opponents on a
playing area, to determine how to evaluate a player’s choice, and to provide real-
istic patterns of traffic, movement, and other aspects of realism in a game. Why?
Because a sufficiently complex situation has the appearance of being random.

How often will a bus arrive at a specific stop? Of course, there is a schedule,
but do busses arrive at the stop exactly on time? Always? If they did, would that
seem like a realistic situation? Probably not. So, a game that involved busses
arriving would likely add a random number to the scheduled time to determine
when the next bus would arrive. The variability makes it seem more real.

 If we use a machine (the computer) to generate random numbers, it is
actually not possible to produce truly random numbers. It is however possible
to create a set of equations that when used repeatedly will produce a series of
numbers where no matter how much of the series you see, it is not possible
to predict what the next number in the series is (unless of course you have
access to the set of equations). One very useful aspect of these pseudorandom
number generators is that if you start with the same seed, you are guaranteed
to produce the identical sequence of numbers. Now, this is not good for games
and gambling, but it is extremely useful when testing a program and in some
simulations. When testing a program it is important to be able to reproduce the
identical statement execution sequence.

For other applications, it is just as important that we be unable to reproduce
the sequence. If Video Lottery Terminals or other gambling machines went
through an identical sequence each time they were turned on, it would prob-
ably be a lot less fun and the operators of these machines would no longer be
able to count on the fact that many more people will lose than will win, as is the
case in all gambling (i.e., it wouldn’t be gambling anymore). In these applica-
tions the sequence of numbers used must be as close to random as we can get.

Randomness Generally

When we say that something is random, what do we mean? In everyday life,
things that we call random are things that are unpredictable. Objects that are
moving at random have no identifiable pattern; events that occur at random
cannot be anticipated or predicted. That the event will occur may not be random,
but precisely when it will occur might be. When will the next red pickup truck
pass by? When will the next customer arrive at the bank teller’s window? Who
will win the next civic election? These are things that are commonly thought of
as random events. The technical meaning of random relates to these things, but
it is more specific and less intuitive.

89 Game Development UsinG python

Consider a guessing game in which a player is asked to provide a number
between 1 and 10. If the player guesses correctly, they win some money, perhaps
$8. Otherwise they lose $1. The player chooses the number 7. Is 7 a random
number? How can this be established? One way to look at it is that the random-
ness of that particular number 7 is determined by the process used to get that
7. Perhaps dice were rolled, or maybe the answer is always 7. This is a part of
the common meaning implied when we say something is random, and so it has
some value, but it’s not a technical or mathematical definition, because it cannot
be accurately defined or tested. You may believe that 7 was random, but if you
did not know how that number was arrived at you would have no way of deter-
mining if it was.

Let’s repeat the experiment. The number 7 is chosen again. Is this one
random? The same arguments apply here as applied to the first experiment.
Does anything change if we look at the whole set of experiments (in other words,
both of them together)? It produced a pair of numbers, “7 7”; are these random?
Some might say that they start to detect a pattern (that I am picking only sevens)
and that this is not random. Of course it is easily possible that I selected two
sevens in a row, and that it happened by chance. What if this experiment is
repeated a hundred times and produces a six each time? Now it’s pretty clear that
these numbers are not random and that the pattern can be defined with some
confidence. The point of this exercise is to underscore the idea that numbers,
and things in general, are random relative to one another only. Randomness
exists only in context, as a relative property of sequences of numbers.

What if the 7 that I picked is the result of a die roll and you can watch me
roll it? Does that violate the rule that random things are random in relation to
others? Not at all. Randomness is a property of a collection of events or objects,
preferably a large collection. This is true even if the collection we are using was
produced at another time, as is the case with my die roll. We assume that the
roll in question is like all the other rolls we know, and so we can say this one is
random too. Looking at the properties of large collections of numbers is essen-
tially what statistics is all about.

When we look at human behavior, it is in fact difficult for a human to behave
in a random fashion. People have learned connections between events: things
that are related to each other can’t be random with respect to each other. We
also have misunderstandings about randomness, make correlations between
perceptions and actions, and possess a host of instinctive actions that preclude
random behavior. Individuals can be trained to behave randomly, but we don’t
do it instinctively. The behavior of groups of people can seem random because
it is so complex, but the appearance of randomness does not necessarily imply

the Game loop 90

that something is indeed random. For example, if a large group of people is
asked to pick “heads” or “tails” in a coin toss, it may be that the number of
people selecting “heads” is almost the same as the number selecting “tails.” The
complex patterns of the individual lives that produced the specific decision of
“heads” or “tails” that they made that day would be impossible to analyze and
can seem random. However, if those selecting “heads” are moved to another
room and asked to repeat the selection many times, it is likely that this group
will end up selecting heads more often than chance would dictate. Therefore,
their choice of “heads” was not random.

When implementing things on a computer, it is important to realize that
underneath it all everything is represented using numbers. That’s because the
only things that computers can manipulate directly are numbers. This means
that if we want to create a random color, for example, we first need to come
up with a way to represent colors as numbers and then generate some random
numbers. The first step is easy: you simply create a mapping of numbers and
colors. Often, it doesn’t even matter if you are organized about it so long as the
same number always refers to the same color (5 = red, 8 = blue, 0 = white, etc.).
Once we have our mapping, we can choose random numbers just like we would
for anything else and then “translate” those numbers into their representative
colors. If the numbers are random, then the colors are too. This applies to any
element we want to be able to select at random.

Random can be a tricky word in that it means something to most people but
also has a more specific, technical meaning in science generally, and in simula-
tion in particular. The main purpose of this chapter is to explain what is meant
by the word “random” in the more technical context.

RANDOMNESS IN GAMES: DICE, CARDS

When discussing randomness, many people think of gambling or of games
that involve random selections and actions. Gambling has had an appeal to
humans throughout recorded history and naturally involves chance. No sensible
person would bet against an event that was certain to occur or even for one that
was unlikely. So it is that when discussing randomness, the subject very quickly
turns to gambling.

The simplest example of gambling is that of a coin toss. Two-choice deci-
sions (also called binary decisions) are sometimes made by assigning a decision
to each side and then determining the “winner” by flipping a coin. Football
teams flip a coin to decide which side kicks off. The name for the city of Port-
land, Oregon was chosen based on the toss of a coin (it could have been named

91 Game Development UsinG python

Boston). In 1959, a member of Buddy Holly’s band flipped a coin with Richie
Valens to see who would get the last seat on a small plane flying out of Fargo,
North Dakota after a concert when their bus broke down. Valens won, and he
died when the plane crashed. Because a coin has two sides, and because it is
presumed that the coin is fair and that flipping it creates a random selection
between the two sides, this seems a natural way to make a random choice. Even
the ancient Romans flipped coins as a gambling game Capita vel Navia (heads
or ships). We’ve apparently been deciding things this way for quite a long time.

We all know that a die is a cube with different numbers on each of the six
faces, and it should behave like a six-sided coin. Throwing a die properly, where
the cube tumbles and then bounces off of another surface, should create a
trajectory so complicated that predicting the number that will appear of the top
face would be impossible. The random nature of dice has appealed to human
gamblers since prehistoric times. The oldest die known is 5,000 years old and is
from Iran, but references to gambling with dice are even older than that.

Playing cards are also common gambling tools, and they are thought to have
originated in China in about the eight to tenth century, well after the invention
of paper. Before that devices like dominoes were used to play similar games.
The number of cards in the deck varies with time and geography, but the first
decks appeared to have four suits just like modern decks. Contemporary card
decks have fifty-two cards (plus jokers), and that means that there is a 1 in 52
chance of picking a specific card from the deck and a huge number of different
five-card hands that can be dealt.

The progression from coin to die to cards constitutes an increase in complexity
and an increasing difficulty in predicting the result of simple events. Events that
are very complex in terms of the number of possible combinations provide a
more interesting basis for gambling, at least partly because the results are hard
to predict. In addition, the value of a card drawn from a deck of cards seems
more random than does the result of a coin flip. So, not only are there different
degrees of randomness, but there is a commonly held apprehension of this fact.

The modern discipline that concerns the likelihood of events is called proba-
bility, and it quantifies these degrees of randomness. A coin toss has two possible
outcomes. One outcome is heads, and the probability of heads on any given toss
is 0.5, or 1/2—one out of the two possible outcomes. Similarly, the probability of
rolling a die and having six appear on top is 1/6 (one in six), and the probability
of drawing a King of Clubs from a shuffled deck of cards is 1/52. The proba-
bility of drawing a King from the deck is 4/52, though, or 1/13, because there
are four kings in the deck. Thus, the probability of drawing a heart is 13/52, or
1/4. Another way to express this is to say that a quarter of the time we expect to

the Game loop 92

pick a heart. These simple definitions make sense to most people, but in order
to make use of random numbers in simulations, we need to be able to manipu-
late probabilities, and the rules for manipulating probabilities are less intuitive.

Probability for Beginners

When dealing with complex situations such as are common in the real world
and in simulations, there are many events that occur, and probabilities become
more difficult to determine. Fortunately, there are straightforward rules for
dealing with multiple events. For example, what is the probability of rolling a
die twice and getting a six each time? The probability is 1/6 (one in 6) for each
trial; for both it will be 1/6 * 1/6, or 1/36. The individual probabilities are multi-
plied together to produce the combined probability. Looking at the diagram of
this situation in Figure 3.5, it should be fairly easy to see why this is. For the
first roll, each possible outcome has a probability of 1/6, including the target roll
of “6.” For the second roll, each outcome also has a probability of 1/6, and for
each individual outcome of roll 1 there are six possible outcomes for roll 2. This
means there are thirty-six possibilities for the two rolls, and a six followed by a
six is just one of those. Thus, the probability is 1/36. This is also the probability
of rolling two sixes simultaneously on two dice.

Figure 3.5 shows the possibilities available when rolling a die twice, showing
the specific path that has two consecutive “6” rolls. This is the same as rolling
two dice simultaneously. All possible outcomes are listed on the left, and 6-6 is
one of thirty-six possible outcomes (1/36).

Now let’s look at a gambling game that involves dice to see how the calculation
of probabilities gets more complex. The game of craps is played with two dice
where the numbers on the dice are added together. A player’s turn in craps is a

FiguRe 3.5 The set of outcomes for the tossing of a pair of six-sided dice.

93 Game Development UsinG python

sequence of one or more rolls determined by the rules. If the player (shooter)
throws a 2, 3, or 12, then they lose immediately. If they roll a 7 or 11, then they
win immediately. If a 4, 5, 6, 8, 9, or 10 shows, then that number becomes the
“point,” and the player rolls the dice again until that number is rolled again (win)
or a 7 is rolled (lose). There’s more to it, but that is the basic set of rules. Here’s
your question: what is the probability that the player will lose on the first roll?

This is a harder question to answer than the previous ones, because there is
more than one way to roll a particular number. On two dice, a 3 can be made in
two different ways: by having the first die show a 1 and the second a 2, or the first
die could be a 2 and the second a 1. The probability of rolling a three is therefore
2/36, or 1/18. In general, the probability of a particular sum is found by looking
at the possibilities in Figure 3.5. To find the probability of getting any particular
number, count the number of times the sum of two numbers equals the number
you wish to roll, and divide your count by 36 to give the probability. A “2” can only
be rolled by having both dice be “1,” so the probability is 1/36, and a “12” can be
rolled only as “6” and a “6,” so that’s 1/36. The chances of rolling any one of a “2”
or a “3” or a “12” is the sum of the individual probabilities, which is 1/36 + 2/36 +
1/36 = 4/36 (or 1/9). In craps, this is the probability of losing on the first roll.

On the other hand, there are lots of ways to roll a “7”: 1+6, 2+5, 3+4, 4+3, 5+2,
and 6+1 for a total of 6/36. There are two ways to roll an “11.” The probability of
rolling a “7” or an “11” on the first roll is thus 6/36 + 2/36 = 8/36, or 2/9. This means
that the probability of winning on the first roll is twice the probability of losing on
the first roll. This process of calculating probabilities can be repeated for every
outcome, so it turns out that the likelihood of winning at craps is well known and
can be found on the Internet and in books. These likelihoods, that is of gambling
and day to day activities, are generally expressed not as probabilities but as odds.

Probability Calculations

Probabilities are used both in real life and in simulations to estimate how
likely events are to occur. Simple events, like the flip of a coin, have a simple
interpretation in probability terms. More complicated events, especially combi-
nations of events, require a degree of calculation. In these cases it is sometimes
useful to think of a probability as a special kind of number, a kind that requires
a special arithmetic. Consider two coin tosses, one after another. The proba-
bility of the first coin showing “heads” is 1/2, and the second coin is the same.
What is the probability that both coins show “heads”? The answer is 1/4, which
is the product of the individual probabilities of each coin showing heads. This
is in general the correct way to calculate the overall probability of a series of
events—to multiply the individual probabilities together.

the Game loop 94

There is a simple algebra for this. The letter P means “probability of,” and the
expression P(heads) means the probability of a coin showing heads. The event
involved is inside the parentheses. We get to invent some of our own notation
here so long as it is consistent, so P(H) will be the probability of heads too, P(H1)
will be the probability of heads showing on the first coin, and P(H2) is the same
situation for coin 2. The situation where heads is showing on two tossed coins
will be written as P(H1 and H2), and if the coins are fair the rule can be written:

1 2 1 2() () ()P H and H P H P H= ×

This rule applies to all independent events, and can be expanded to any
number of them, not just two. The probability of three independently tossed
coins all showing “heads,” for example, is

1 2 3 1 2 3() () () ()P H and H and H P H P H P H= × ×

The rule expands in a logical way for any number of events. It works for
mixed events too, of course. The nature of the event is not at all important here,
only that the events do not depend on one another and have known probabili-
ties. So, if P(D=6) is the probability of rolling a 6 on a single die, then

1 1(6) () (6) (1 / 2) (1 / 6) 1 / 12 0.08333P H and D P H P D= = × = = × = =

which is the probability of both tossing heads and rolling a six.

FiguRe 3.6 The complete set of outcomes for the toss of two coins.

95 Game Development UsinG python

The probability that one or the other of two events will occur is a little bit
more difficult to calculate, but it is not past high school math. The simplest
example is the probability that heads will be thrown on any one of two coins.
Using the notation just devised, this could be written as P(H1 or H2), and the
obvious answer, that it is P(H1)+P(H2), must be incorrect. If it were correct
then P(H1 or H2) = P(H1) + P(H2) = 0.5 + 0.5 = 1.0. This can’t be correct
because it means that it is certain that one of the coins would be heads.

In order to sort out a way to calculate the probability of at least one of a spec-
ified set of events occurring, look at Figure 3.6 which shows a diagram of the
possible outcomes of two coin tosses. The top part of the figure shows the two
results possible for the first coin, and below that the results of the second coin
are enumerated based on the first toss. There are four possible outcomes, and
each can be described as one of the paths through the outcomes in the figure.
These outcomes are:

H1 and H2 means that heads is visible on both coin1 and coin2. Recall that H1 is
the symbol that means “heads is showing on coin 1.”

H1 and T2 means that heads is visible on coin1 and tails is visible on coin2.
T1 and H2 means that tails is visible on coin1 and heads is visible on coin2.
T1 and T2 means that tails is visible on both coin1 and coin2.

We want to be able to calculate the probability of at least one head showing
after tossing two coins. From the figure we could simply count the outcomes:
there are four possible, and three of them have at least one head showing, so the
probability is 3/4 that at least one head is showing. However, not all situations
are as easily drawn, and some involve a great many possible outcomes. A simple
formula would be good to have.

With this in mind, look at the outcomes again. The event H1, which is heads
showing on coin 1, is 1/2, and arises through the either of the outcomes (H1
and H2) or (H1 and T2). The probability of this is:

1 1 2 1 2() () () 1 / 4 1 / 4 1 / 2P H P H and H P H and T= + = + =

which is as we would expect. In the same way, the event H2 arises through
either (H1 and H2) or (T1 and H2). This probability is

2 1 2 1 2() () () 1 / 4 1 / 4 1 / 2P H P H and H T and H= + = + =

The formula for the probability of either H1 or H2 occurring in a two-coin
toss starts with P(H1) + P(H2), which would correspond to the events:

the Game loop 96

(H1 and H2) or (H1 and T2) or (H1 and H2) or (H1 and T2)
and has probability P(H1 and H2) + P(H1 and T2) + P(H1 and
H2) + (T1 and H2).

This is wrong, but now notice that (H1 and H2) appears twice! Subtracting
gives us the correct formula:

1 2 1 2 1 2() () () ()P H or H P H P H H and H= + −

This formula is correct for all independent events, that is, events that do not
affect one another. We now have a basic knowledge of how events and their
probabilities are calculated and combined. To be sure, this knowledge is essen-
tial in gambling, and it will come in handy when thinking about randomness in
general and simulation in particular.

GENERATING RANDOM VALUES

The need for a practical source of random numbers dates back to a phys-
icist named Enrico Fermi in the 1930s in the context of problems in particle
physics that could not be calculated analytically. It was suggested that a simu-
lation involving random numbers be created and made to run on an electronic
computer. This was actually done in the 1940s, and one result was the hydrogen
bomb. At that time there was no convenient source of random numbers. Elec-
tronic and physical devices were used to create events having measurable
random properties, and those measurements were in turn used to create tables
of random numbers that could be used repeatedly. The most famous of these
was created by the Rand Corporation using an electronically simulated roulette
wheel. The table was sold as a book, the relatively famous A Million Random
Digits (Rand Corporation, 1955).

Using this book, when you wanted a random number, you would flip to a
page (any page) and read off a set of numbers from any line or column. The
numbers had been tested to assure randomness and were a reliable source for
a long time. The problem was that access to the numbers was slow, needing a
copy of the book and human intervention. Of course, computers were much
slower then too, but even considering that the procedure was arduous.

Of course, people who owned computers in the 1940s and 1950s had a lot
of money at their disposal, so if they really needed a random number, then
they could have their own electronic random number generator built and
connected to their machine. What was used as the basis for these devices was
the essential unpredictability of noise signals obtained from radio or radio-

97 Game Development UsinG python

active sources. If you connect a radio to a device that measures voltages and
tune the radio to a place where no station is broadcasting, the human ear
would hear a hissing sound from the radio. This is what random signals sound
like, and the voltmeter will display this as random electrical voltage levels.
These can then be converted into digital form and used by the computer
as random numbers. Similarly, noise can be created using a vacuum tube or
solid-state device and sampled in the same way as was the radio to produce
random numbers.

Pseudorandom Numbers

Numbers that satisfy tests of randomness can be generated mathematically.
Starting at a particular value called the seed, a sequence is created that will be
the same each time, but that is random with respect to each other. Changing the
seed changes the sequence of numbers.

When using Python, the module named random provides a set of methods
that will generate such numbers, and in a variety of ways. The simplest call is to
the method random:

 random.random()

This returns a random number between 0 and 1, a real number. This can be
used to implement any of the methods that will be discussed here. For example,
a coin flip could be implemented as:

flip = int(random.random () * 2)

If the value of a flip is 0, then “heads” has appeared, otherwise “tails.” Another
way to accomplish this is to use the method randint (a,b), which returns a
random integer between a and b inclusive. The coin toss would be:

flip = random.randint (0,1)

A die roll would be random.randint (1,6), and so on.
The method choice(s) returns a random selection from a tuple or a list.

Thus:

 print (random.choice ((1,2,3,4,5,6)))

returns a random element of the tuple (1,2,3,4,5,6), which would amount to
a die roll. The method random.sample(s,k) returns a list of k unique members
of the sequence s. As an example, the call

the Game loop 98

 random.sample ([1,2,3,4,5,6], 3)

might result in [3,1,5] or [5,6,2], but never [2,1,2].
A very useful method for card games is random.shuffle(x), where x is a list.

It returns a permutation of the items in the list x. Consider:

cards = [“a”,”k”,”q”,”j”,”10”,”9”,”8”,”7”,”6”,”5”,”4”,”3”,”2”]
random.shuffle (cards)

The order of the values in x is now random, and could be [“8”, “10”, “k”, “3”,
“4”, “6”, “7”, “9”, “q”, “a”, “2”, “5”, “j”] as one example.

Setting the seed for the random number generator can be an important
starting point, because otherwise the sequence generated will be the same each
time. The random module does this automatically when it is started, but it can
also be done by the programmer. For example:

random.seed(431)

will set the set to the number 421. Setting the seed to a known value can be
important when debugging. It is hard enough to analyze a program in the first
place, but if it behaves randomly it is much harder. When developing code it
can be useful to set the seed to the same values each time.

SIMULATING REALITY AND INTELLIGENCE

Almost all computer games are a type of simulation. They may not simu-
late a real situation, but they certainly have realistic elements. Reality has
certain characteristics that are hard to represent convincingly, and humans
have a knack for seeing these situations and evaluating their realism. It has
been said that no two snowflakes are alike. They have random characteris-
tics caused by the complex, chaotic way they are formed. Trees are like that
too. All spruce trees seem very similar from a distance, but they are all very
different at a finer scale, having different heights, number and shapes of
branches, colors, bark variations, and so on. People see situations as real if
their assessment of the randomness of the situation corresponds with that
seen in the real world.

If a realistic tree is to be created on a computer, it could be done by using a
detailed and complex simulation of the process of plant growth. Starting from a
seed, the forces of moisture, light, temperature, and chemical gradients could
be applied to the biological processes in the young tree. Over a great deal of
simulated time, a tree could be “grown.” Or, as an alternative to this process,
the number and shape of branches for each tree could be selected at random

99 Game Development UsinG python

using knowledge gained by examining a large number of real trees. This latter
method would be much faster and would not require a detailed knowledge of
how trees grow.

Games and simulations use randomness to simulate reality for two main
purposes: as a modifiable abstraction of the objects being simulated; and as a
way to represent complex processes that are not essential to the simulation, but
that lend a sense of reality, complexity, or presence. The latter aspect is used in
games. We can use randomness to provide accurate ambiance. As a pedestrian
in the game, the way the traffic looks is an essential part of the background, but
it may not be a primary component. If the traffic flow is too regular, too perfect,
it does not seem real, and this detracts from the focus of the player/user of the
game itself.

This use of random numbers gives the appearance of reality in a game or
simulation. When the scenario involves human responses, it is important for
the people involved to feel that the situation is normal, and it is also important
that subjects or participants are not distracted by oddities in the simulated
environment. Complex situations have some random properties that human
observers come to see as “realistic,” and so random behaviors created artifi-
cially can lead an observer to see a simulated situation as more realistic than
it is.

This seems obvious, but there are many video games in which, like an old
Bugs Bunny cartoon, the same car passes the same point repeatedly. The same
is often true of computer-controlled characters in some games, who wander in
exactly the same loop forever. These unnatural visuals detract from the main
activity of the game or simulation.

It is not only visuals or intervals that matter, but it is the entire effect that
should convey the illusion of complexity. Consider rain falling on a window.
The time at which the next drop strikes the glass will be random. The location
at which it strikes will be random. The size of the drop will be random. Even
the sound that the impact makes will vary from drop to drop. This sounds
complicated but is really about making things look or seem right. Looking at
Figure 3.7, we see a pair of renderings of a window with rain on it; which one
looks real? The rendering on the left has drops in random positions and sizes,
much as would be seen in a real scene. The rendering on the right looks artifi-
cial. It shows the same droplet appearing many times in an ordered formation
and would be the cause of some surprise if observed from your apartment
window.

the Game loop 100

ExERCISES

The following exercises will test your knowledge of the material in this
chapter and sometimes require that you do more research before you are able
to complete them.

1. Modify the basic button code, which was used to create Figure 3.3, so that
the text “Change color” appears within the button, and so that only a click of
the left button will cause the color to change. Also change it so that the right
button causes the color to change back (to black) and the middle button
causes the program to end.

2. Create a rendering of a four-lane road with vehicles placed in random positions.
It should be a top view and should use at least four different vehicle images.

3. Modify the bouncing ball program so that the color of the ball changes with
each bounce, as does the speed.

4. Modify the bouncing ball program so that the speed of the ball increases
when the “w” key is pressed and decreases when the “s” key is pressed.

5. Find an image of a television set and make a copy in a file. Create random
noise that will fill the screen and that changes each frame, so it looks like the
TV is not tuned to a working channel.

FiguRe 3.7 Random and non-random rain drops on a window.

101 Game Development UsinG python

6. Draw a rectangle on the drawing area. Have it rotate counterclockwise when
the “a” key is pressed and clockwise when “d” is pressed.

7. Add code to Exercise 7 so that when the “w” key is pressed, the rectangle
moves in its forward direction (i.e., where it is pointed), and have it slow and
stop if the key is released.

RESOURCES

2D Game graphics tutorial: http://gamebanana.com/tuts/11225.
Intro to 2D Graphics: http://rbwhitaker.wikidot.com/introduction-to-2d-graphics.
Processing documentation: http://processing.org/reference/.
Techniques for fancy and lightweight 2d graphics (game producer blog): http://www.

gameproducer.net/2008/03/03/techniques-for-fancy-and-lightweight-2d-graphics/.
Sprite Database: http://spritedatabase.net/. Useful information and downloads.
Open Game Art: http://opengameart.org/. Downloadable sprites and 2D art.

REFERENCES

1. T. M. Cover and J. A. Thomas. Elements of Information Theory. New York,
NY: Wiley & Sons.
This describes some of the basic mathematics involved in randomness and
probability.

2. J. Dwyer. (1995). “Quick and Portable Random Number Generators.” C/
C++ Users Journal 13, no. 6 (June): 33–44.
A discussion of how to implement random number generators in
programming languages.

3. J. Dwyer and K. B. Williams. (1996). “Testing Random Number Generators.”
Dr. Dobb’s Journal (June 1).
An accessible discussion of how to test numbers for randomness.

4. G. S. Fishman and L. R. Moore. (1982). “A Statistical Evaluation of
Multiplicative Random Number Generators with Modulus 231-1.” Journal
of the American Statistical Association 77: 129–136.
An interesting look at a common type of random number generator and how
“good” it is. This is valuable from the perspective of a user of the generator,
and as an example of how to test these generators.

5. T. R. Hopkins. (1983). “A Revised Algorithm for the Spectral Test [in
Fortran].” Applied Statistics 32, no. 3: 328–335.
A discussion of one of the tests of randomness.

the Game loop 102

6. F. James. (1990). “A Review of Pseudorandom Number Generators.”
Computer Physics Communications 60: 329–344.
A general discussion of random number generators from the perspective of
people using them.

7. C. Kenny. (2005, April). “Random Number Generators: An Evaluation
and Comparison of Random.org and Some Commonly Used Generators.”
Dublin, Ireland: The Distributed Systems Group, Computer Science
Department, Trinity College. http://www.random.org/analysis/
Analysis2005.pdf.
A comparison of some of the common random number generators, based on
experiments.

8. D. E. Knuth. (1981). The Art of Computer Programming: Volume 2,
Seminumerical Algorithms, 2nd edition. Reading, PA: Addison Wesley.
The seminal work on random number generation and their evaluation.

9. W. L. Maier. (1991). “A Fast Pseudo Random Number Generator.” Dr.
Dobb’s Journal 16 no. 5 (May): 152–ff.
A description of the R250 random number generator.

10. W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Mech, and P.
Przemyslaw Prusinkiewicz. (2009). “Self-Organizing Tree Models for Image
Synthesis.” ACM Transactions on Graphics 28, no. 3: 1–10.
A discussion of the simulation of tree growth as a means to creating tree
images.

11. Rand Corporation. (1955). A Million Random Digits with 100,000 Normal
Deviates. Glencoe, IL: The Free Press.
The original Rand corporation source for random numbers in the 1950s and
1960s.

12. D. Stirzaker. (1999). Probability and Random Variables: A Beginner’s Guide.
Cambridge University Press. Cambridge, U.K.
A good book from which to learn more about probability.

13. J. von Neumann. (1963). “Various Techniques for Use in Connection
with Random Digits.” von Neumann’s Collected Works, Vol. 5, 768–770.
Pergamon, Oxford.
An early discussion of randomness written by a giant in the world of
computing. Of great historical interest.

103 Game Development UsinG python

14. B. Wichmann and D. Hill. (1987). “Building a Random-Number Generator.”
BYTE Magazine (March), 127–128.
A beginners guide to building (i.e., programming) your own random number
generator.

104

chapter 4
gAme AI: collIsIons

The words “artificial intelligence” bring to mind a host of advanced tech-
nology. Often our first exposure to AI, as it has come to be known, is through
science fiction; the computers on Star Trek can speak fluent English, and the
robots on Star Wars can serve drinks and pilot spacecraft. In truth, AI has not
advanced nearly this far, and although computers can now defeat humans at
chess and checkers, this is a far cry from the scenes we see on television and
movies.

So what is AI really? Historically this subject has been called cognitive simu-
lation, and that is probably a more descriptive phrase for what is happening.
AI is an effort to simulate the actions and responses of an intelligent creature.
Why would a game wish to have simulated intelligent creatures? To simulate
other intelligent creatures, allies and opponents, of course. At a high level, AI
is used in games to implement other people performing intelligent tasks. These
simulated persons, sometimes called bots or simply opponents, are expected
to behave in a manner that would be normal for a person. They do not have to
be actually intelligent, and a discussion of the difference would be interesting
but not profitable here.

At a lower, more practical level, the AI in a game keeps track of things:
cars, people, trees, roads, and such. One of the most important tasks of
the AI system is to determine when two things collide. This is because
collisions are often key points in a game. A missile collides with its target,
and the target is destroyed. A hockey player collides with another player
and loses the puck. A car collides with a concrete bridge support and
takes damage and changes direction. All of these require that collisions
be detected, and that the location of the impact and its exact time be
known.

It is also true that a good portion of the game AI system can be occupied with
performing physics calculations. After a collision takes place, the result is that

105 Game Development UsinG python

something breaks, or changes direction, or falls down. A good approximation of
real-world physics is essential for a realistic looking game, especially a sports or
driving game, and accurately determining the properties of collisions is a crucial
first step in correctly simulating physics.

A professional programmer or engineering student would have some knowl-
edge of “academic” AI, which can be a very exciting subject. However, there is
very rarely enough time to use those methods in a computer game. Yes, there
may be time to use a neural network that has been trained in advance to accom-
plish a particular task; there will not be time to train such a network to handle
changing situations. A game programmer must have a practical view of AI, and
in a game this means speed and simplicity. Most decisions in a game are made
using simple look-up tables or decision trees.

All of the parts of the AI system will be discussed here sooner or later, and
that includes opponents, collisions, plans, and physics simulation. However,
we’ll start with collision detection, because it is the basic thing that we must
get right. If a game includes collisions, then collision detection must be fast
and accurate if that game is to be playable, and we can’t add it on at the last
minute—it will be an integral part of the game from the start. There are pack-
ages that will do the hard work for us, but it is always dangerous to have code in
your program that you don’t understand at least somewhat, so please—at least
skim this part before downloading someone else’s code. Having said this, there
are entire books written on the subject, and this chapter is merely a start on
some of the basic ideas. You should use an existing collision detection system
until you feel you want to do it from scratch.

COLLISION DETECTION

At the outset, the nature of the problem needs to be understood. In the real
world, when two objects collide the result is a physical response: sound, heat,
energy transfer, and so on. In a game, objects are not real; they are numbers
representing how an object looks and where it is in a virtual space. When they
collide, it is a virtual collision with no effect unless we detect that collision and
simulate an effect. This is one way in which computer games are in fact simu-
lations.

There are two major problems associated with collision detection in computer
games. The first is complexity. A small game may have 100 or so objects active
at a time. If they are all moving, we have to look at each pair to see if they will
hit each other, which means about 100 x 100, or 10,000 tests. We do this each
time interval, which is usually the time between two frames—say 24 times per

Game ai: collisions 106

second. This implies a quarter of a million tests for collision per second in a
small game, and over a million in a fair-sized one. Any solution we implement
must be fast.

The second problem is that time in a game is quantized. Let’s say we again
have 24 images per second displayed on the screen, which is the speed of a
motion picture. It is possible, even likely, that two objects approaching each
other fast enough will pass each other in the time between two frames, 1/24
of a second. So they would have collided, but at time T=0.1 they were some
distance apart, and at T=0.2 they had crossed paths and did not overlap at the
new time. We can do two things in this case: look ahead (predict the time at
which they will collide) or look back (to the past time when they did collide).
Even a game can’t easily roll time backward, so the former solution is best. We
must figure out when they would collide, figure out the results of that collision,
and draw only the result at time T=0.2. Figure 4.1 shows an example of this
situation.

Just because two objects have changed places does not mean that they
collided. Each occupies an area, and they collide only if the areas would also
overlap at some time. This suggests a two-step test: first determine whether

FiguRe 4.1 Collisions between moving objects. They can occur between frames.

107 Game Development UsinG python

collision was possible, then determine whether it actually happened. In a real
game, most objects will not be involved in collisions during any particular time
period, so a fast test that rejects most potential collisions would be a good thing.

Polygonal Objects

In some cases we are concerned with moving polygons on a plane, and in
detecting collisions between these. Let’s name two polygons A and B, and give
them positions and velocities at time T. A position is a 2D vector, and so is a
velocity, and each component of a velocity vector is the speed in a direction, X
or Y. Since a polygon contains N vertices and all of them are moving at the same
speed and direction, we can easily define a straight line that corresponds to the
path taken by each vertex in the time between T and T+1. We can also easily
compute the position of all of these vertices at both times. A simple rule that
excludes a collision between A and B is: If we compute a line L that repre-
sents the path of a vertex of A, then a collision cannot have taken place
between that vertex of A and polygon B if B is on the same side of that
line at both time T and T+1.

That doesn’t sound all that simple, does it? So, take a look at Figure 4.2.
Here we see a couple of polygons at two points in time, and with any luck at all
the previous explanation will make sense in the context of the figure.

Basically, if any of the vertices of polygon A cross any of the lines L1 to L3,
then a collision may have taken place. This is the same basic method we used
for the 1D situation, and it has a similar solution.

FiguRe 4.2 Polygons A and B move in the direction of the arrows between times T and T+1. If any
of the vertices of polygon A are on one side of any of the lines L1, L2, or L3 at time T and are on the
opposite side of the same line at time T+1 then a collision is possible.

Game ai: collisions 108

The line called L1 in Figure 4.2 is crossed by the triangle A if any vertex is
on one side of the line at time T and on the other side at T+1. Every line has
an equation that defines it, and this can take one of many mathematical forms.
Let’s use the standard normal form

0ax by c+ + =

A point (x,y) that satisfies this equation is on the line, and there are two
other possibilities: ax+by+c is greater than zero, in which case the point (x,y) is
above the line, and ax+by+c is less than zero, meaning that the point is below
the line. Thus, if any vertex is above L1 at time T and below it at T+1, then there
could be a collision; otherwise there cannot be.

This is an example of broad phase collision detection, the elimination of
objects that cannot possibly collide. The idea is to do this quickly, without using
up too much CPU time. The next step, or the narrow phase, is about accurately
detecting collision events and determining the time and position of the collision.
Breaking the problem into these two parts is about performance. The idea is to
do the detailed and time-consuming narrow phase only if there is a chance the
objects could collide in the first place. This has the effect of making the whole
process more flexible too. There are many ways to solve each problem, and the
solutions that are decided upon can be combined almost arbitrarily.

An example

Imagine two triangular objects, as in Figure 4.2. Triangle A is defined by the
points (100,130), (110,150), (130, 95) and has a velocity of (200, 30). Triangle
B is defined by (300,65), (320,80), (330, 65) and has velocity vector (-190, 200).
Question: could they collide?

Step 1: select a polygon (in this case we select A) and determine the equa-
tion of the lines defined by each vertex and the respective motion.

Let’s take the first point in triangle A. The line it defines will begin at
(100,130) and end at (100+200, 130+30) = (300,230) after adding the motion
vector. The slope of the line is found directly from the velocity vector as dy/dx,
or in this case 30/200 = .15.

The point-slope form of the line equation is y = mx + b,
and we can solve for b:

for the point (100,130) is b y m x= − ∗ 130 0.15 100 130 15 115− ∗ = − =

0.15 115y x= +This makes the equation

109 Game Development UsinG python

and the standard form is
and .15, 1, 115a b c= = =

Step 2: For each vertex in triangle B, plug in the x and y coordinate
to the line equation we just found, before and after the motion of the
triangle. If the sign of the result changes for any vertex, then a collision is
possible.

Point 1: before = (300,65) and after = (110, 265)
Before: .15(300) – (65) + 115 = 45 – 65 + 115 = 95
After: .15(110) – (265) + 115 = 16.5 – 265 + 115 = -133.5

The sign changes, so a collision is possible. None of the other vertices need
to be checked after it is found that a collision could take place.

Note: When finding the coefficients for the standard equation, if the line is
vertical then the slope will be infinite, and that will cause an exception in the
program. This is a special case, and the coefficients are:

BROAD PHASE COLLISION DETECTION

It is in this phase where the greatest saving of time can be created by care-
fully selecting an algorithm and implementing it efficiently. This phase is about
rejecting objects that cannot collide, eliminating collision tests that cost time
but cannot yield fruit.

“Operational” Methods

The phrase operational has been used in a similar context with respect to
security. It represents an examination of how the system operates at a general,
perhaps even superficial level, to see if efficiencies can be created or obvious
flaws found. In operational security, for example, they may determine that a
computer operator’s screen can be seen through a window, and so the first
thing to do in improving system security is to move the monitor away from
the window.

In a game, there are many objects that can be colliding or collided with,
and the general collision problem takes an amount of time to execute that is in
proportion to the square of the number of objects (which a computer scientist
would call O(n2)). However, consider that many objects do not move, as has

15 115 0x y− + =

1 0a b c x= = = −

Game ai: collisions 110

been pointed out before. If there are four cars, a hundred trees, and twenty
buildings, that is 124 objects and up to 15,376 collision tests.

However, testing A for collision with B is the same as testing B for collision
with A, and we never need to test A for collision with A. This reduces to a total
of (N2-N)/2 tests, which is a lot fewer than N2. It is, in fact, 7,626 tests in the
previous example.

Now consider that the trees do not move and so cannot collide with one
another. Same for the buildings—they are static and cannot collide with trees or
other buildings. So the cars need to be tested against all other objects, but that
is all we need to do! This represents 4*3/2 tests between cars (=6) and 4*120
= 480 tests with static objects, for a grand total of 486 tests. Any further efforts
at broad phase detection will almost certainly not yield such significant savings
but could still find more savings. Similarly, objects that are moving away from
each other can’t collide with each other, nor can objects that are very far apart
relative to their speeds.

Most games have many classes of objects, and computation time can be
reduced significantly this way. Alien missiles, for example, need not be checked
against alien spacecraft, and sometimes asteroids or meteors need not be
checked against each other. It’s not as sexy as advanced code optimization, but
a little good sense gives a much greater benefit than almost anything else we
can do.

So, you should always look very carefully to make certain that you are not
making any tests that aren’t needed. Then you do the more difficult things and
combine the two methods for a joint time savings.

Geometric Tests

When we checked to see which side of the line the start and end point of
a polygon vertex was on at times T and T+1, we were using geometry to elim-
inate possible collisions. This is a pretty efficient process, and we can do it in
three dimensions too. In 3D, a line becomes a plane, and the test becomes: is
a particular polygon or node on one side of a plane at time T and on the other
at time T+1? If so, a collision is possible, and if not, one has been eliminated.

In more detail, let us imagine that two objects in our game are to be tested
to see if they collide with each other. We know that we’re going to draw objects
as collections of polygons, since that’s how modeling programs define them,
and it’s how graphics cards draw things. So the question is: do any of the poly-
gons in set A (i.e., object A) collide with any of those in set B (object B)?
Each polygon is, in fact, a part of a plane. A mathematical plane is infinite in
extent and a polygon is not, but in the broad phase we extend a polygon in one

111 Game Development UsinG python

object to become the plane in which it is embedded and ask whether any of the
vertices or polygons in another object are on opposite sides at times T and T+1.
If so, a collision is possible, otherwise one has been eliminated.

This can be done quickly, in a manner similar to that already described in
the previous section of 2D collisions. Two triangles A and B have vertices A0,
A1, A2 and B0, B1, and B2. Both belong to different moving objects, and the
question of collision is at issue. Instead of just plugging coordinates into the
equation of a plane, it is possible to use vector math to do the equivalent thing,
but in a manner that is faster.

First, close your eyes and picture a plane—or a triangle or rectangle—
floating about in 3D space. Three points determine this plane; that is, any three
points must belong to a plane in the same way that any two points are on a line
and can be used to define it. However, consider any point on that plane and a
line not passing through that point; this, too, defines a plane. Most importantly,
so does a point and the normal to the plane. Normal means perpendicular, or
90 degrees to the surface of the plane, and if we can quickly find a vector that
is normal to a polygon, and if we have a point on that polygon, we have the
equation of the plane.

It turns out that a simple-to-calculate operation known as the cross product
takes any two vectors and creates a vector that is perpendicular, or normal, to
the plane on which the two input vectors lie. For two vectors h and j, the cross
product h X j is a vector:

()
y z z y

x z z x

x y y x

h j h j
h j h j h j

h j h j

−
 × = − −
 −

If we have a triangle (or a quad, or course) then we have two such vectors—
any edges will do.

The dot product, another simple operation on vectors, computes the length
of the projection of one vector onto another; for vector a, a.a = the length of a,
and if a and b are perpendicular then a.b = 0. The dot product is defined as:

in n dimensions, and it looks like a simple distance calculation. The usual
form of the equation of a plane is:

1

n

i i
i

a b a b
=

⋅ = ∑

Game ai: collisions 112

Going back to the triangles A and B, note that each vertex of A (i.e., Ai)

has three coordinates, and is therefore a 3D vector. Thus, A0 X A1 = N is a
vector cross product that is a normal to the triangle (plane) A. The dot product
between N and any point in the plane of A, say any vertex, is the equation of the
plane. So, A2 . N is:

which has the same form as the equation of plane. That’s because it is, of
course, and it is the equation of the plane that the triangle A lies in. This is what
we want. We can store the plane as N and d, which are really just the constants
for the equation of the plane, and we do this for every polygon we may want to
test for collision. Testing is a matter of plugging in the (x,y,z) values of the target
(i.e., what we are testing for collision, like another polygon vertex) before and
after motion, and seeing if the target is on opposite sides of the plane. If so we
need to look further, and if not we can ignore this target.

Using Enclosing Circles

Two objects, let’s say cars, may consist of multiple polygons each. If one
of them is Enzo’s car, and he is clever enough to pass yours in our race, it is
possible that many of the polygons in his car will be candidates for collision with
polygons in your car. This could cost a lot of time in detailed tests that are not
needed. One way to avoid this is to process collisions at a higher level at first,
looking at all of the polygons in your car as belonging to a single object that
has a virtual shape—how about a circle? So, if the circle that encloses Enzo’s
car never intersects with the circle that encloses yours, then they can’t have
collided. We could save hundreds of polygon-polygon collision tests!

Better yet, the enclosing circle can be defined along with the car, or whatever
object we’re looking at, once, when the game is created. All we need to do is
find the center of the circle, which would be the centroid of the object, and the
radius, the distance to the most distant vertex. The centroid of the car will be
what we actually move; the car is drawn on the screen relative to that point, and
the collision tests are initially performed on the circle centered on that point too.

The centroid, or center of mass, can be approximated by finding the mean
coordinate of all polygons in each dimension. So, in 2D the X coordinate of the
center of mass is the sum of all polygon X coordinates for the object divided by
the number of polygons, and in the same way the Y coordinate of the centroid is
computed. The distance to the most distant vertex can be calculated at the same
time as we calculate the centroid, which is to say at some time after the object
is created but before the game is distributed.

0 1 2c x c y c z d+ + =

2 2 2x x y y z zd N A N A N A= + +

113 Game Development UsinG python

So now each object has a center of mass and a radius associated with it, in
addition to a set of polygons. The question that faces us now is: for each pair of
objects that could possibly collide, is it possible for the enclosing circles to collide?
If not, we can ignore all of the polygons that are part of those objects, and that will
save us a large amount of time. Of course, if it is possible then we have a lot more
checking to do. Sometimes it is more useful to keep the object as polygons, as in
the case of walls and buildings. Covering them with a circle would be a waste of
time, because it’s easier to keep their relatively few planar faces as lines or planes.

Sphere vs. Plane Collision (Circle – Line)

The first step is to see if the circle changes sides of the line during the time
interval. The situation is diagrammed in Figure 4.3: the circle at time T is
labeled ST, and its center S = (Sx,Sy) is a distance DT from the line and the
positive side. At time T+1 the center of the circle is at DT+1, and the figure is on
the opposite (negative) side of the line. We must make sure that DT > r, or the
sphere is intersecting the line at the beginning.

A sphere is not a point; it has volume. For this reason the test concerning
whether a sphere may have collided with a polygon is a little different from
before: if DT > r, where r is the sphere’s radius, and DT+1<r, then a collision is
possible. A simple way of computing this is

for some point on the plane Z and plane normal N.
If a collision with the plane occurs, when does it happen? We know it is

sometime between T and T+1, but exactly when? We can parameterize time
between T and T+1 to be one unit using a new variable τ:

FiguRe 4.3 Given the position of the sphere at time T and T+1, did the sphere pass through the plane?

()T Td S Z N= − ⋅

Game ai: collisions 114

where τ is between 0 and 1. This ratio is the fraction of the distance differ-
ence between T and T+1 that is represented by the sphere’s radius, and it is the
fraction of the distance traveled in that time by the sphere. So, the location of
the center of the sphere at the time of the collision is

where, as a reminder, SxT is the X coordinate of the center of the sphere at
time T, and similarly for the Y and Z coordinates and time T+1.

Circle-Circle Collisions

It is common for objects in a game to consist of polygons, but it is not
universal. A sprite could be a small raster image, representing a car or a boat
or an Italian plumber. In those cases, a collision would involve any pixel in the
sprite colliding with any other pixel in another object. There could be a lot of
pixel-pixel tests. One way to accommodate this would be to enclose the image
in a polygon, and then test the polygons for collisions. The bounding box or
minimally enclosing rectangle would work; so would a circle, and circles are
easier to implement.

The idea is simple: find the smallest circle that will enclose all of the
pixels. The test for a static collision is now whether the center of the circles
for the two objects is within a distance of the sum of the radii of the circles.
Given that both objects may be moving, the test has to be a bit more compli-
cated.

The problem is diagrammed in Figure 4.4. Temporarily simplify the problem
to assume that one object (A) is moving and the other (B) is stationary; now use
the movement vector for A, using the center of the circle around A, to find the
point on the path of travel that is nearest the center of the circle surrounding B.
This point is labeled c in Figure 4.4. If the distance of this point to the center

1

T

T T

d r
d d

t
+

−
=

−

1

1

1

()
()

()

xT xT xT

yT yT yT

zT zT zT

x S S S
y S S S
z S S S

t
t

t

+

+

+

= + −
= + −

= + −

115 Game Development UsinG python

of B is greater than (or equal to) the sum of the radii of the two circles, then a
collision can’t happen; otherwise, it can.

To do this, it is necessary to calculate the point on a line that is nearest to
a specified point. By nearest, we mean “what is the length of the line that is
perpendicular to a given line and passes through a specific point.”

Finding the Closest Point on a Line to a Specified Point
This is really an extension of the algorithm that finds the point of intersec-

tion of two lines. Begin with a given point (px, py) and a given line segment,
described by endpoints (x1, y1) and (x2, y2).

1. Take the endpoints of the line segment and turn it into an equation of the
form ax + by + c = 0. This we have done before in the previous section.

2. The equation of the line perpendicular to the initial line segment is given
by the negative slope to the original line. Have it pass through the specified
point: Specifically, -b x + a y – d = 0.

3. Solve these two equations simultaneously; that is, find an x and y value that
satisfies both. There are many ways to do this, and any one will do. The result
is:

If (a2 + b2)= 0, then the point is on the line, and thus the closest point on the
line to the point is the point itself.

2 2

2 2

() / ()
() / ()

X ac bd a b
Y ad bc a b

= − +
= − +

FiguRe 4.4 Collisions between two circles. The point c is nearest to the stationary object B. In this case there
is no collision.

Game ai: collisions 116

If the point (X,Y) found is within a distance of the sum of the radii of the two
enclosing circles, then a collision is possible. If B is stationary then a collision
will happen.

Using Bounding Boxes

A bounding box is a rectangle or prism that completely encloses all of the
polygons of an object. The sides are planes, and the volume is relatively close to
that of the object—generally a better approximation than is a sphere. An Axis
Aligned Bounding Box (AABB) has faces that are parallel to the three coordi-
nate axes. This has the advantage of being very simple to calculate: run a plane
through the most distant point in each coordinate axis direction. That is, find
the minimum and maximum X coordinates in the object and construct a plane
though these points that is parallel to the YZ plane; do this for the Y coordinate
(XZ plane) and the Z coordinate (XY plane), thus building a rectangular prism.
This is the AABB.

A really complex calculation is not needed to find the AABB. We simply scan
through all of the polygons for the object and note the minimum and maximum
value found in each dimension—six values in all. Of course, this must be done
using the polygon coordinates in the world domain—that is, as drawn in place
in the scene. Once we have minimum and maximum values, it is a simple task
to use these to detect whether a given point is inside or outside of the box, and
whether two boxes are overlapping. A point is inside the AABB if its coordi-
nates are greater than the minimum and less than the maximum in each
dimension. Two AABBs overlap if any of the vertices of either one lies
inside of the other. Another similar test of overlap is: two AABBs overlap
if their extents overlap in each of the axes. This is quite fast and simple to
compute.

This is, of course, not good enough. The two boxes may pass completely
though each other and not touch either at the beginning or the end.

How do we, as before, determine if a collision has occurred in between the
start and end of the time interval? First consider a one-dimensional problem. A
moving 1D box can be represented as two real numbers, s (start) and e (end),
that describe the position of the box at two times. The set of all intervals can be
represented as a list L of (si, ei) values. It would be best to keep this list sorted
in ascending order. What we need to do is find all values of (si, ei) and (sj, ej)
that overlap.

We create a fresh list, initially empty, that will contain entries for all objects
currently “active”; call this the active list. As we scan the sorted list of intervals
L, a new si being encountered results in the active list being output as a poten-

117 Game Development UsinG python

tial collision in interval i, and the interval i is added to the active list. When a
new ei is seen while scanning L, interval i is removed from the active list.

The great thing about AABBs is this: to expand this to the three-dimensional
case, we simply have a list for each dimension. If all three dimensions report
an intersection between AABBi and AABBj, they intersect, and a collision may
have occurred.

A new AABB must be determined each time the object changes direction.
This is an expense not incurred by using spheres, but we shall see if there is a
compensating trade-off. Another, more minor, problem is that the AABB can
sometimes be a poor fit to the object. Consider a triangle, circle, and rectangle
as in Figure 4.5. As the objects rotate the AABBs fit more or less well in the box.
The closer the fit the more accurately the collision between boxes will predict
an actual collision.

Object Oriented Bounding Boxes

An object oriented bounding box (OOBB) is always aligned along the
primary axes of the object. This box is defined when the object is first
created and is read in along with the polygon coordinates or computed as
it is read in. The box is translated and rotated along with the object, and
so it should be clear that the edges of the OOBB will not necessarily align
with any axis.

Why use these? Well, they hug an object better than an AABB or a sphere,
in general, as seen in Figure 4.6.

This means that a collision can be more accurately determined. On the other
hand, it takes a lot more code and time to determine whether two OOBBs
collide or not.

FiguRe 4.5 Axis oriented bounding boxes for three simple shapes in three orientations. On the right you
can see the boxes alone and compare their sizes.

Game ai: collisions 118

In the boat race game that is the principal example in this book, there is a
need to detect collisions between boats.

There is an interesting thing here. It is true that a new AABB must be computed
each time the object changes direction, and this can be time consuming. However,
a nifty idea is to construct the OOBB at the outset and rotate and translate the box
with the object. This will be done in the boat race game.

Space Subdivision

The process of looking at every pair of objects to see if a collision has
happened is slow, but if the objects are spread out over a large area, we can
break up the entire playing volume into small pieces, each large enough so that
moving objects won’t pass completely through one, but small enough to contain
only a few objects that could possibly collide. The basic idea is to check for colli-
sions only among objects that are within the same piece of space.

The data structure is simple, like the concept. Space is divided into equal-
sized blocks, and an array can be used to represent each. A block contains a
list of objects that reside in it, and at the beginning of each frame these are all
cleared out. The list of objects is run through and each object is placed into the
appropriate list. The blocks that contain objects also have a count of how many
objects are in that block. Now, and finally, we look though the list of all blocks
for those with more than one object—those are tested for collisions.

If a game has a lot of 3D interactions, this method could require a lot of
storage. A game mostly takes place on the ground and on a flat-ish surface,

FiguRe 4.6 Object oriented bounding boxes. (left) As a rectangle is rotated, the bounding box has
more empty space. Orienting to the object’s orientation reduces the error. (right) An axis oriented box
indicates a collision is possible where an object oriented box does not.

119 Game Development UsinG python

which is what we could call 2 1/2 dimensional. By this it is meant that we will
consider squares on the terrain surface and a small volume above and ignore the
rest of the playing volume, which can’t be driven on.

There are a variety of uses and implementations of the block map
method, but in the context of a typical game it can be restricted in the
following ways:

1. An object will be in one block, as a general rule. This will be the block in
which resides the center of mass, or the center of the enclosing sphere.

2. The size of the block will be such that the object, and any other object
with which it can collide, cannot pass through a whole block in one time
interval. This means we only have to check the starting block and the
ending block in the worst case, and in most cases the object will stay in
one block.

3. We want a reasonable number of blocks, so they must be big enough that
there are fewer blocks than objects.

4. There must not be more than a few (4–5 max) objects in any block.

So, let’s say that the playing area is 2 x 2 kilometers. Let the maximum speed
of any object be a highly reasonable 100 km/hr. At 24 frames per second a frame
takes 1/24 second, or about 42 milliseconds. 100 km/hr is 28 meters/second, or
0.28 meters per millisecond, or 1.176 meters/frame. The previous rules give us
the following limits:

1. The block should be at least the size of the object. A car is rarely more than 3
meters long, and a person is only 1 meter. Let’s say the block must be at least
3 m.

2. In one frame an object will pass through 1.176 m, so 3 m is large enough that
it cannot pass through a block in one frame at 24 fps. If we get to 60 fps, we’ll
have to make it 2.94 m. 3m is still big enough.

3. There will be about 250 objects in the game at most. 3m is too small—at this
size there will be over 100,000 blocks. At 250 objects, the block size will be
about 125 meters.

4. At a block size of 125 meters, we still want there to be fewer than 4–5 objects
per block that can be interacted with. In some games an opponent will
sometimes be very close. If we are careful about how we place objects, a
block size of 100 meters should be fine. This size gives us a little less room,
and it lets us put objects closer together.

Game ai: collisions 120

At a block size of 100 x 100 meters, a fast object can pass though in about 4
seconds, but objects can be placed far enough apart that it takes a while to get
to one. How many blocks are there then? 10 blocks per km is 20 x 20 blocks, or
400 blocks all together. This is a bit large but small enough to be reasonable to
search. Most, after all, will be empty.

Another advantage of using a block map is that only the moving objects need
to be updated every frame. Everything else is placed in its block at the begin-
ning of the game and it will remain there. A moving object can be quickly placed
in a block by mapping the coordinates of the object center onto block map grid
coordinates. For the previous 2 x 2 km map, we first map the object’s (x, y, z)
coordinates onto block indices. An easy way: X coordinate in Kilometers/100 =
column index = J and the same for the Y coordinate, which we will call I.

Each block is represented by a structure stored in a 2D array, indexed by
(I,J). Each structure contains the number of objects in that block and indi-
cators that allow access to each object. These could be pointers or indices to
an array of objects. If a complex structure is used to store them, it would be
no worse than a simple linear list. Let’s have a maximum of six (6) objects per
block and have a fixed-size array of indices of objects within each block struc-
ture. To speed things up even more, create a global list of all blocks containing
more than one object. This, too, could be a fixed-size array. Whenever an object
moves, we check to see if it stays in the same block. If not, decrease the object
count for the old block and increase the count for the new one. Remove the old
block from the global list if it has less than two objects, and add the new one if
it has more than one.

Before starting collision detection, add the blocks at which objects will end
up after motion to the global list. Next, looking only at the global list, check for
collisions between objects within every block in that list. Finally, update the
global list to remove the blocks no longer having more than one object.

NARROW PHASE COLLISION DETECTION

Once we determine that a collision is possible, the next stage answers “does
a collision occur?” If one does, at what point on the surface and in which
polygon on the model? This question can rarely be answered as fast as we’d like,
and never as fast as the broad phase question. And, as always, the more accu-
rately we need the answer, the more expensive it will be. The hope is that this
detailed and expensive calculation will not have to be done very often.

There is a wide variety of narrow phase algorithms, and an entire book could
be written on this alone. However, we must restrict what is discussed here, so

121 Game Development UsinG python

only the most obvious methods will be examined. When a narrow phase algo-
rithm is invoked, it is because a collision could occur between two objects that
consist of polygons. These objects were enclosed by spheres or boxes, but now
we must look at the details. Let’s assume that the polygons are triangles—each
has three vertices, and if the object consists of 1,000 triangles, then there will
be 300 vertices, right?

No, because in an object most of the vertices are shared. An estimate would
be 1,000 distinct vertices in this object. Each vertex will move in a known
direction by a known amount, the so-called movement vector. This means that
there are 1,000 rays, or directed line segments, that we need to examine. It can
be assumed that the second object is still, because if it were moving then we’d
subtract its movement vector from both objects to give a net movement vector
on the object being tested, as previously described where we checked for colli-
sions using spheres.

So we have 1,000 rays and a similar number of polygons in the other object
we are testing against. This would be a million tests, each ray against each
polygon. It’s possible to eliminate some rays and some polygons though. Only
polygons that are on the side of the object facing the other object need to be
tested, so we have perhaps 500 x 500 tests. This is still a significant number, but
1/4 of the previous value.

Ignoring the back-facing polygons can be done using something called
back-face culling. Each polygon (triangle) has a normal associated with it, or
we could compute one every time we need it. Now, back-face culling is really a
visibility algorithm. The question is: can you see that polygon from where
you are now? We use the dot product between the normal to the triangle and
a vector from the viewer’s position to get the angle between these vectors; if it is
between 90 and 270 degrees, then the polygon is facing the viewer; otherwise,
it is not and can be ignored. In this case, replace the viewer with the centroid of
the object being tested against, and the method is the same. Of course this must
be done from both objects involved in the collision, each taking turns being the
viewpoint. There are tricky ways to speed this method up too.

Ray/Triangle Intersection

The meat of the collision test is determining which polygons intersect,
where, and when. From the previous discussion, we have selected some poly-
gons (perhaps all of them) to test against each other, we have determined what
the movement vector is, and we know that object A is moving while B remains
still, or at least has been made still by computing a relative movement vector.
Now we will select vertices in A and determine their positions before and after

Game ai: collisions 122

movement, then see if that line segment or ray intersects a polygon in B. If so,
it is simple to determine when and where this happens. So, step by step here is
what we must do.

1. The movement vector expresses relative movement, so by adding it to a
point we find where the point moves. Vertices in A will be named VA. They
are numbered from 0 to n, so they are VA0 to VAn; finally they have x, y, and z
coordinates named VA0x, VA0y, VA0z, and so on. The point V’ is the same point as
V, but it is a position after the motion is complete.

The ray associated with a vertex VAi, given the movement vector M, would
be a vector R from VAi to VAi+M. This is to say that

The line that needs to be tested runs from VAi to R. Call this line L, and it is:

where t runs from 0 to 1 to give any point on the line segment.
2. Now compute the equation of the plane in which the selected triangle in
object B resides. Recall that we need the normal N and a point in the plane P to
get the plane:

Nx(x-P0x) + Ny(y-P0y) + Nz(z-P0z) = 0

3. Substitute the line L into the plane equation for (x,y,z) to solve for t, the time
at which the collision will occur.
4. Use the value of t found in 3 to plug into the line equations to find the point
(x,y,z) at which the collision will occur.
5. Finally, determine whether the point found in 4 resides inside the triangle.
This can be done in a few simple ways.

x Aix x

y Aiy y

z Aiz z

R V M

R V M
R V M

= +

= +

= +

()
()

()

x Aix x

y Aiy y

z Aiz z

L V tR
L V tR
L V tR

= +
= +

= +

123 Game Development UsinG python

The interior angle test: compute the angle between the point and all three tri-
angle vertices, in order. The sum of the angles should be 360 degrees, within
rounding error, if the point is inside the triangle.

The odd intersections test: draw a line from the point being tested to a faraway
point. If this line intersects exactly one edge exactly once, then it is inside the
triangle. If through some bad luck the intersection is a vertex, then select a new
direction and draw another line—a vertex is part of two edges and can’t be used
in this test.

Area test: Make all triangles between the point being tested and consecutive points
on the triangle—there are three. If the sum of the areas of these triangles equals
the area of the big triangle, the point is inside. This test is approximate, partly
again due to vagaries of floating point arithmetic.

All of the five previous steps can be accomplished in a remarkably small time
period and are actually done in many games. You can implement any or all of
the collision detection schemes that have been described using what has been
said here, combined with a few details found on the Web.

Or, you could use someone else’s code. There are quite a few packages that
can be downloaded from the Internet in a few minutes, and almost any of them
will save you a huge amount of time, but they will require a degree of adapta-
tion. A particular game might not be able to use just any such package.

COLLISION DETECTION IN THE BOAT RACE

The Jet Boat Race presents a few difficulties that have not been discussed,
the main one being that the boats are raster sprites and not polygonal objects.
Imagine two small images of boats moving at known angles—the object oriented
bounding box can be created by knowing the size of the image and drawing

FiguRe 4.7 The three tests for determining whether a point is inside a polygon.

Game ai: collisions 124

lines around it. These lines must be drawn at an angle that is related to the
orientation of the boat.

Consider that the boats are raster images that are NxM pixels in size, and that the
angle that the boat is facing is θ (to the horizontal, which is 0 degrees, facing right).
Then the boat and the associated bounding box has to be rotated by θ degrees. The
bounding box for the basic image is easy to find, starting from the upper left as
(0,0), then to (width,0), (width, height), and (0, height). When this box is rotated
by θ degrees, it can be seen as four line segments that are not necessarily oriented
in the X or Y axis. Each boat has such an object oriented bounding box.

Now every boat has a velocity vector, which is added to the current position
to yield the next position. This vector, when extended in length, gives a ray (a
line segment) in the direction that the boat is facing. If that ray intersects with
another boat’s bounding box, then a collision could occur. It means that the boat
should change direction to avoid a collision.

If any of the sides of the bounding boxes of any two boats intersect, then
those boats have collided. This means checking each of the line segments of the
bounding box of boat A against each of the line segments of the bounding box
of boat B. An intersection means a collision (Figure 4.8). This means testing
sixteen line segments to see if they intersect.

The bounding boxes are found by locating the corners of the boat image and
then rotating those to correspond with the orientation of the boat. The upper
left (ul), upper right (ur), lower right (lr), and lower left (ll) corners for boats are:

FiguRe 4.8 Intersecting axis-oriented bounding boxes indicate a collision.

125 Game Development UsinG python

ul = rotate((boats[i].x, boats[i].y),
 (boats[i].x - 42, boats[i].y - 13), -boats[i].angle)
ur = rotate((boats[i].x, boats[i].y),
 (boats[i].x + 42, boats[i].y - 13), -boats[i].angle)
lr = rotate((boats[i].x, boats[i].y),
 (boats[i].x + 42, boats[i].y + 13), -boats[i].angle)
ll = rotate((boats[i].x, boats[i].y),

 (boats[i].x - 42, boats[i].y + 13), -boats[i].angle)

These points (each is a point having an X and a Y component as a tuple) now
have to be converted to screen coordinates:

ul = terrain_to_screen (ul)
ur = terrain_to_screen (ur)
lr = terrain_to_screen (lr)
ll = terrain_to_screen (ll)

A box consists of four points, specifically these points:

box.append([ul,ur,lr,ll,ul])

A function named box_intersect (b1, b2) checks for the intersection of
the two boxes passed as parameters. It does so by doing the sixteen intersection
tests, each of which is determined by the function line_intersect (a,b,c,d),
where each parameter is a point and (a,b) and (c,d) are lines specified by
endpoints. A fast method for determining whether two segments intersect has
been devised that warrants exposure [1].

The segments (a,b) and (c,d) intersect if the points a and b are separated
by the segment cd and also c and d are separated by the segment ab. If that
is true, then the three points acd should have a different orientation than the
points bcd, where orientation is defined as clockwise or counterclockwise. This
is shown in Figure 4.9. Thus, determining the intersection is a matter of:

def line_intersect (p1, p2, p3, p4):
 r1 = ccw(p1, p3, p4) != ccw (p2, p3, p4)
 r2 = ccw(p1, p2, p3) != ccw (p1, p2, p4)
 if r1 and r2:
 return True
 return False

where the ccw function returns True if the points passed as parameters
have a counterclockwise orientation with respect to each other. This is remark-
ably fast. By the way, the function ccw is:

def ccw(a, b, c):
 return (c[1]-a[1])*(b[0]-a[0]) > (b[1]-a[1])*(c[0]-a[0])

Game ai: collisions 126

Ray Casting

If it can be assumed that each object that moves is associated with a move-
ment vector (dx, dy), then this vector can be used to project motion into the
future. A vector or ray can be drawn from the object’s center forward, and the
greater the length of this ray, the greater the amount of time that is being exam-
ined. The ray looks into the future to where the object might be. If it happens
that this ray intersects some other object, then it would seem a collision is
possible, and perhaps the object should alter its trajectory to avoid the obstacle.

Given a movement vector V, the first step in building a ray that points in the
movement direction is normalizing it, which means scaling it so its length is 1. The
length of V is L = 2 2×x yv v so the normalized vector V’ is

2 2 2 2,
× ×

 x y x y

yx vv
v v v v

.

Given that we want to look ahead by a distance D, now multiply

this vector by D, giving the vector 2 2 2 2,
× ×

= x y x y

yx DD vvR
v v v v

. The ray is (x,

y) to R, where (x,y) is the position of the object concerned. If this ray intersects

any object’s bounding box, then a collision is possible in the future and action

should be taken, such as steering away from the obstacle involved.
If the object is located at P= (x,y), then the ray is the line segment from P

to P+R. The function line_intersect defined in the previous section can be
used to determine whether the ray intersects with some other object, like the
bounding box of an NPC.

Rays can be used for more things than this though. It is common to use ray
casting to ensure that an object is in contact with the ground, for example. Cast

FiguRe 4.9 The idea behind the fast line segment intersection method ([1]).

127 Game Development UsinG python

a ray that is 1/2 of the height of the target object down from the object’s center.
It should intersect with the ground or a supporting platform. In driving games,
a vehicle could leave the ground for a few moments, rendering it unable to
brake or steer; in platformers, characters leap from platform to platform. Ray
casting can be a simple way to deal with these issues.

ExERCISES

The following problems will exercise your knowledge of the material in this
chapter, and they will sometimes require that you do more research before you
are able to complete them.

1. In circle-circle collision detection, the distance between the two circles is
calculated, and if it is less than the sum of the radii, then a collision is in
progress. Simple code would be:

d = sqrt((x1-x0)*(x1-x0)+(y1-y0)*(y1-y0))
if (d < (radius1+radius)) // Collision

where (x0,y0) and (x1,y1) are the coordinates of the sphere centers. A square
root calculation is expensive—what is the code that does this without a call to
sqrt?
2. Write a program that has two balls (circles) bouncing in a box. Use the code

in exercise 1 to determine when the balls collide with each other, and have
them react to the collision.

3. Write code that will check for a collision between two moving cubes in a 3D
space.

4. Use the code in Exercise 3 to create a stack of four cubes and hurl a fifth
cube at the stack. The sketch should detect collisions between the cubes and
have them respond. Approximate bounces are OK.

5. Some games, like snooker, are all about collisions. Write a sketch that allows
a white (cue) ball to be shot in any direction on a table and collide with one
of a set of (at least) two other balls. The collisions should result in correct-
seeming bounces.

Idea: When the mouse is pressed, draw a line from the cue ball to the mouse
coordinates. When released, the cue ball will follow the line at a fixed speed until
it collides with a cushion or another ball.
6. Using a circle for a ball and a line for a bat, construct a bat and ball

simulation. The bat will be rotating, not moving linearly, and the ball will
move toward the bat. You need only determine the point of collision and
time and need not determine the line along which the ball will move.

Game ai: collisions 128

Note: The point to line distance is key here, but the line is a segment, and
a bounds test is important.

REFERENCES

1. Bryce Boe. (2006). Line Segment Intersection Algorithm. http://bryceboe.
com/2006/10/23/line-segment-intersection-algorithm/.

2. A. Bowyer and J. Woodwark. (1983). A Programmer’s Geometry. Newton,
MA: Butterworth-Heinemann. https://www.amazon.com/Programmers-
Geometry-Adrian-Bowyer/dp/0408012420.

3. E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. (1988). “A Fast Procedure for
Computing the Distance between Complex Objects in Three-Dimensional
Space.” IEEE Journal of Robotics and Automation 4: 193–203.

4. Gino van den Bergen. (2004). Collision Detection in Interactive 3D
Environments. Morgan-Kaufman /Elsevier.

5. M. Lin and J. Canny. (1992). Efficient Collision Detection for Animation.
Third Eurographics Workshop.

6. Brian Mirtich. (1998). “V-Clip: Fast and Robust Polyhedral Collision
Detection.” ACM Trans. Graph. 17, no. 3 (July): 177–208.

7. Jeff Erickson, Leonidas J. Guibas, Jorge Stolfi, and Li Zhang. (1999).
Separation-Sensitive Collision Detection for Convex Objects.
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, 327–336.

8. Julien Basch, Jeff Erickson, Leonidas J. Guibas, John Hershberger, and
Li Zhang. (1999). Kinetic Collision Detection between Two Simple
Polygons. Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, 102–111.

9. Joe van den Heuvel and Miles Jackson. (2002). “Pool Hall Lessons: Fast,
Accurate Collisions between Circles or Spheres.” Gamasutra, January 18,
2002.

10. Wolfram Research. (n.d.). Point-Line Distance, 3-Dimensional. http://
mathworld.wolfram.com/Point-LineDistance3-Dimensional.html.

129

chapter 5
nAvIgAtIon And control

For the purposes of this discussion, navigation will be defined as the
process of getting from one location in a game to another. There are many
differences between navigating the real world versus a virtual world, but
a basic rule of game AI programming is: cheat! Remember that it is only
important that the simulated characters (we’ll call them non-player charac-
ters or NPCs) appear to behave more or less like a real person. The program
that controls the opponents does not have to navigate using vision, and it
has advance knowledge of everything that is in the game. In addition, there
are markers that can be placed all through the terrain that the AI can use to
guide the NPCs. These markers are not visible to the players because they
are not rendered as objects—they are merely points in 3D space that are
used to create a path.

The opponents will, in fact, either take the same path at the same
speed each time through a course or will at most have a finite number
of variations, each one taken with a particular probability when encoun-
tered. We can even change those probabilities each time a choice is
made, but that too is programmed and well defined. Most opponents do
not act in an intelligent way but are guided by quite simple and quick
algorithms.

130 Game Development UsinG python

BASIC AUTONOMOUS CONTROL

The word autonomous implies independent or alone. Autonomous
control of opponent characters in a game is essential for making the
game fun and exciting, partly because it gives a sense of competition, and
partly because other characters or objects are obstacles and have to be
avoided, thus creating a more complex problem to solve. If the opponents
are autonomous, then they are controlled by software, and so we treat
the problem as one of software design. The first question is: what is the
problem?

Another way of asking this is what is the goal? This is a question we
can answer in general, at least partly. The goal of a player in a game is to
have fun, and this means winning, doesn’t it? Oddly, the answer is “no.”
Winning a game regularly amounts to beating it, which frequently means
that it is time to purchase another game! The entertainment value is in the
game play, the puzzle, or the contest; beating a game too easily is the kiss
of death, at least for a commercial game. Word will get out, and the game
will not sell.

On the other hand, if a game is impossible to beat, then it is just as bad.
Players simply give up, and again word gets out that the game is impossible. We
start to find them in garage sales.

Thus, we will state a carefully worded high-level goal for the opponent in a
game:

Goal 1- Since a main goal of a game is to provide entertainment and en-
gagement, the opponents should provide a challenge to the player without
being impossible to defeat.

This goal is vague enough to be a guide for any game, but too vague to
implement as is. However, it leads to a logical set of sub-goals that can be imple-
mented:

Goal 1.a If at all possible, the human player should beat some opponents if there
are many. The player should not be humiliated by a computer if they are still
actually playing.

Goal 1.b Some opponents should decrease their skill level as they get a distance
ahead of the player, allowing a chance to catch up.

Goal 1.c The goal of an opponent is not to win, but to provide entertaining compe-
tition. If the game involves objects, like weapons, the opponent must be able to
use them. It should play the game much as a human would.

naviGation anD control 131

Goal 1.d When there are many opponents, they should not all be the same. They
should have variable skill levels and should in some sense respond to the dis-
played skill of the player.

Goal 1.e The player should be offered a choice of difficulty when starting the game,
so that easy opponents are available as well as hard ones. They can find their skill
level and strive to improve it.

Most of these rules or goals are probably not a big surprise. You may not
know that the AI system actually “dumbs down” to let you have a better
chance, but you probably suspected as much. We will add to this set of goals,
but for now we have enough to get started. Since the precise nature of the
game we are discussing is unknown, we’ll keep things at a high level for the
moment.

How to Control a Car

Let’s use the example of a car in the discussion. There are similar movement
controls and navigation features for cars and other NPCs, but vehicles have navi-
gation as one of the principal issues. The user controls a car using the keyboard
or mouse or game pad. Basically, there is something that can be treated as char-
acter input and that can be interpreted by the game as a command; left arrow
means turn left, forward arrow means go forward faster, for instance. We could
control an opponent in the same basic way, except that we don’t need input. So,
we could have a function

def turnLeft (CHARACTER x)

that would turn the opponent represented by x left by the standard turn
angle, in the same way that the player’s car would turn by angular incre-
ments. Or, we could enhance the opponents by allowing arbitrary relative
angles

def turnRelative (CHARACTER x, float delta)

and even absolute angles, for instance:

def turnAbsolute (CHARACTER x, float angle)

The idea is that a car is controlled using a set of very obvious primitive oper-
ations that can be combined into higher and higher level operations. We also
need accessor functions that return key values to the AI system, like a car’s
current speed, position, and direction, so that a high-level goal can be specified
in terms of low-level operations and current parameters.

132 Game Development UsinG python

The high-level goals will be expressed in terms of minor goals, which may
in turn be expressed in terms of local goals, and so on until at some level the
goal is “go left,” which can be done with a primitive. The design would be from
the high level downward, keeping in mind that the lowest level is pretty much
defined at the outset. Let’s take a detailed look at one of the possible interme-
diate goals: something called cruising behavior.

Cruising Behavior

The goal of this behavior is to maintain a set speed, more or less, while
following a set track towards a geometric goal. It may also be important to avoid
collisions too. The “set track” mentioned is a piecewise linear path drawn along
the game’s terrain, perhaps along the middle of the road or racetrack. Figure 5.1
shows an example of this and labels a couple of interesting objects and locations.

The track can be identified as a connected sequence of straight line segments,
AB, BC, CD ... FG. Points A and B are points in 3D space (Ax,Ay,Az) and
(Bx,By,Bz) that define the ends of a line segment. The vehicle being controlled
is at a known position P=(x,y,z). It is, in the figure, the vehicle is moving toward
the point B; it is at a distance d from the track and has a known speed S and
desired speed SAB. How do we keep the car on track?

So long as the vehicle is moving in a straight line, things are relatively simple.
The program must try to keep the car as near to the line as possible, and it will
attempt to keep the speed as near to SAB as possible.

s = getSpeed (THISCHARACTER)
if (s < Sab): # vehicle going too slow
 a = fmin(amax, k*(Sab-S))
elif (s > Sab): # vehicle going too fast

FiguRe 5.1 The simple set track and a set of line segments that allow driving behaviors to be defined.

naviGation anD control 133

 a = fmax (amin, k*(Sab-S))
else:
 a = 0.0
s = a*dt + s

d = linePointDist (A, B, P)
if (d < RIGHTTHESHOLD):
 turnLeft (THISCAR)
elif (d > LEFTTHRESHOLD)
turnRight(THISCAR)

This code does the following: there is a maximum and minimum accelera-
tion, and if we are going too slow, we increase the acceleration a little, up to the
max; if we are going too fast, we decrease the acceleration (increase the decel-
eration) with the limit being the minimum. We then compute a new velocity
based on the calculated acceleration and the time since we last did this. The
constant k is used to apportion acceleration between time frames, and it should
be determined by experiment.

Then we pay attention to the steering. If we are right of the center line by a
large enough distance, the car is turned by one unit to the left. If we are left of
the center line by a large enough distance, we turn to the right by a unit. The
system will straighten the steering angle automatically over the next few frames,
but there is a risk of oversteer. We could fix that by only adjusting the steering
angle every few frames.

Avoidance Behavior

While cruising it is possible to encounter an obstacle. In a race it would not
usually be a wall or tree or the like, because the set track would not be placed
where there were natural hazards like this, but in an urban driving game or
when using characters who are walking it would be common. An obstacle on the
track will usually be another vehicle on the track ahead, presumably not moving
as quickly. Avoidance behavior is what the AI vehicle does when it comes upon
this situation.

The first thing to note is that other AI vehicles will be following the track,
more or less. That’s a reason that there’s one in your way. So, the first solution is
to create another set track to be followed in order to pass a car on the existing
track—let’s call the original set track the A-track and the new one the B-track.
Some game developers would call the A-track the driving line and the B-track
the overtaking line. Figure 5.2 shows this arrangement.

So, as a vehicle V1 approaches another vehicle V0 from behind, it detects
the potential collision, not by traditional collision detection, but by noting

134 Game Development UsinG python

another vehicle ahead on the driving line. V1 switches to the overtaking
line and steers toward that line, thus avoiding the vehicle V0. If another
AI vehicle is already on the B-track, then we simply slow down until it is
gone. In a game like Mario Kart we could also simply speed up and hit the
other car, letting the collision sort things out—unless V0 is the player’s car,
of course.

If V0 is the player’s car, then its behavior is not predictable. If V1 changes to
the overtaking line, the player may just move over to block, but it could speed
up, slow down, or hit something. Rather than having a fixed overtaking line in
this case, we could create a new line by placing a target point in the middle of
the largest gap, either left or right, between the player’s car and the boundaries
of the road. This point will move from frame to frame, but it does present a
target to steer at until V1 gets very close.

The speed of V1 needs to be controlled too. In principle V1 must slow down
a bit until a gap opens up that is big enough to take advantage of. The AI could
compute the trajectory of the player based on the current parameters and figure
out where the player would be in 3–5 frames. If the gap is big enough at that
time, V1 could speed up to fill that gap and force the player to decide whether
to collide with it or to avoid it.

This is partly illustrated in Figure 5.3.
The use of the nodes or points that connect to create a path is generally

referred to as waypoint pathfinding. The waypoints can be saved as coordinates in

FiguRe 5.2 Section AB of the road defined in Figure 5.1, showing the driving line and the overtaking
line.

naviGation anD control 135

a special structure, in which there is a next and a previous waypoint. Every vehicle
saves the current waypoint that it is using, the one immediately ahead, in its own
structure so that we don’t have to search for the point closest to it. When the
vehicle passes that waypoint, the next one becomes current. The use of waypoints
eliminates the need for pathfinding algorithms in general, and it simplifies the
task of keeping the AI cars on the road and moving in the right direction.

In fact, there are a few ways to determine the path that an autonomous
vehicle will use to traverse the race course. One is to create a driving and an
overtaking line as we have described. The other is to create a different line
for each AI car that can be on the track at the same time. Each car then has a
relatively simple task—to keep as near to its driving line as possible. If another
car is in its way, they simply collide, and the collision resolves the problem. The
creation of many driving lines requires some effort up front, but it simplifies the
game as it plays; the cars just don’t have to be as smart, because the designers
have done the work. Most game players don’t recognize that there is only one
line per car, especially if the lines are assigned at random at the beginning of
the race.

Also, the driving lines can be associated with other information, like speed
at each point. As a result, the line that is assigned to a car determines how well
the car will do in the race. This practically eliminates the need for advanced
computations while the game is going on.

Waypoint Representation and implementation

The first thing to remember about waypoints is that they are, basically,
points in 3D space. So the first thing we need to keep track of is their X, Y, and

FiguRe 5.3 How to react if you come up on the player’s car from behind. (a) The new overtaking line
uses the largest gap between the player and the side of the road. (b) If the player moves over to block, it
merely changes where the overtaking line is.

136 Game Development UsinG python

Z coordinates. We also need a previous and next point, which can be stored as
waypoints. Oh, and in general we may have multiple previous and next points.
Let’s assume that we will have at most two of each; this will be explained later.

It has been pointed out that we may want to specify a speed. This will be the
desired speed at that specific waypoint. If the point is approaching a turn, it will
be in a decreasing sequence, and it will increase on straight sections. It should
be mentioned that the actual AI vehicle may not travel at that exact speed when
passing though that waypoint. The specified speed is a goal.

A class structure that could hold this information is:

class waypoint:
 floating point variables x, y, z, 3D position
 float point variable speed
 list of waypoints next
 list of waypoints previous
 list of floats Dnext holding the desired speed at the

waypoints.

The simplest way to use waypoints is to direct the vehicles toward straight
lines that run through them. If we do, then the cars will always pass through the
waypoints, and will turn sharply whenever each one is encountered.

A different way to manage waypoint traffic is to approximate a path between
them and to look ahead more than one point.

FINITE STATE MACHINES

The idea that an NPC can be cruising, chasing, or avoiding is not especially
profound, and clearly different behavior can be assigned to each mode or state.
It is also convenient from the perspective of design to be able to break up the
different behaviors into distinct parts, which can then be implemented inde-
pendently. The use of the traditional computer science tool, the finite state
machine, is a pretty natural way to deal with this kind of situation. Finite state
machines, also called FSAs, are used in programming languages, computability,
control systems, and artificial intelligence, and because they have been widely
used, their properties are well known and efficient implementations abound.

We have seen the basic idea of an FSA when implementing the game states in
Hockey Pong, for example. The basic idea of an FSA is a collection of states and
of transitions between these states upon some input or calculation. The states
have numbers, used in the implementation, and names, used by the designers
and programmers as meanings of the states. In the situation described in the
previous section, the AI vehicle starts out in the cruising state. If it encoun-

naviGation anD control 137

ters another AI car on the road ahead, it enters the overtake_AI state, and if it
encounters the player’s car, it enters the overtake_player state. The behavior of
the AI is quite different in each state, and its goals and methods of achieving
them are distinct. Figure 5.4 shows a diagrammatic representation of an FSA,
specifically one for the previous three states. It is essential to have a clear mech-
anism for moving between states and a clear plan for what to do while in each
state.

Mathematically, an FSA is a simulated machine or mathematical construc-
tion consisting of a set of states, which are usually integers, a special state called
the start state, a collection of input symbols or events, and a transition function
that takes an input symbol and the current state and decides what the next state
will be. The FSA begins a computation in the start state and enters states based
on input symbols/events and the transition function. There can be a special
state called the accept state that can be used to decide when the calculation is
complete.

So, if we are in the cruising state (state 0) and an AI vehicle appears in front
of us, we enter the overtake_AI state (1); if we are in the cruising state and the
player’s car appears in front of us we enter the overtake_player state (2). These
are the only state transitions out of state 0 in Figure 5.4.

While in the overtake_AI state, there are a couple of events that could take
place. We could pass the AI car, or we could be blocked further. If we pass the
car, we can go back to the cruising state again. If we are blocked—well, perhaps
we need another state called delay in which we slow down and look for a change
in the situation. The delay state will be state 3.

The delay state can mean different things to different vehicles, if we
choose. Some cars will in fact slow down and look for a gap through which
they can sneak. Other instances of cars might aggressively try to push their
way through, colliding with their opponents if they refuse to move. Still
others might leave the road, if that were allowed, to try to find a way around.
Any of these options could be associated with the same state, depending on
the actual vehicle.

FSA In Practice

Implementing a Finite State Machine is a simple matter, so here are some
good ideas about style and convention. Figure 5.4 will be used as an example, as
it is simple and on the topic.

First thing to notice is that the states are integers, from zero to some
maximum. They also have meanings and so can be given names. Thus, one
generally defines states as integer values. For example:

138 Game Development UsinG python

 STATE_CRUISE = 0
 STATE_OVERTAKE_AI = 1
 STATE_OVERTAKE_PLAYER = 2
 STATE_DELAY = 3

Now we can define a state transition function. This function takes two param-
eters: the current state and a state transition event. It results in the current state
changing as defined by this particular FSA. This normally means that state tran-
sition events, however complex detecting one might be, need to be assigned
integer labels and names, just like states:

 TE_AI_CAR_AHEAD = 0
 TE_PASSED_AI_CAR = 1
 TE_2_CARS_AHEAD = 2
 TE_PASSED_PLAYER = 3
 TE_PLAYER_AHEAD = 4
 TE_ERROR_XXX = 9

The error state TE_ERROR_XXX is representative of many possible
error states, for example TE_ERROR_103, which means that some transi-
tions are actually illegal and result in some remedial action on the part of
the program. Also notice that the transitions are context sensitive; the event
TE_PASSED_AI_CAR does different things depending on what state you
are in.

FiguRe 5.4 A finite state machine for AI vehicles.

naviGation anD control 139

The actual machine can be implemented in a number of ways. A particularly
good way, from the point of view of efficiency, modularity, and portability, is
to use a table. Transitions are integers, and these can be used to index into an
array. States are integers too and can also be used as indices. So, a state transi-
tion table for the FSA in Figure 5.4 could be:

 State
 0 1 2 3
 0 1
 1 0 2
Transition 2 3 3
 Event 3 0 1
 4 2

This table contains state numbers, and it is indexed by both the current state
and a transition event. So if we are in state 1 (Overtake_AI) and we pass the
AI car (event 1=PASS_AI_CAR), then we enter state 0 (Cruise), that is,
an assignment of the form:

new_state = transition_ table[TE_PASSED_AI_CAR][STATE_OVERTAKE_
AI]

The missing entries in the table would be filled with either error states or a
null transition meaning “don’t change the state.”

This is an effective implementation of an FSA, but it relies on a correct
initialization of the table. If the table is read in from a file, it consists of integers
that have no symbolic form, and this is somewhat error prone. If the table is
initialized from a declaration, it is less simple to modify, but we can now use
the declared state names. Either way we do it, the code is less clear than some
options and needs good documentation.

Another way to implement an FSA is to do so in discrete code. The usual
situation is to just use if and switch statements. The first two columns of the
previous transition table could be implemented in the following way:

 switch (state)
 {
if state == STATE_CRUISE:
 if (transition_event == TE_AI_CAR_AHEAD):
 new_state = TE_PASSED_AI_CAR
 elif (transition_event == TE_PLAYER_AHEAD):
 new_state = STATE_OVERTAKE_PLAYER
elif state == STATE _OVERTAKE_AI:
 if (transition_event == TE_PASSED_AI_CAR:
 new_state = STATE_CRUISE
 elif (transition_event == TE_2_CARS_AHEAD)

140 Game Development UsinG python

 new_state = STATE_DELAY
elif state == STATE_OVERTAKE_PLAYER:
 if (transition_event == TE_2_CARS_AHEAD:
 new_state = STATE_DELAY
 elif (transition_event == TE_PASSED_PLAYER):
 new_state = STATE_CRUISE
elif state == STATE_DELAY:
 if (transition_event == TE_PASSED_AI_CAR):
 new_state = STATE_OVERTAKE_PLAYER
 elif (transition_event == TE_PASSED_PLAYER):
 new_state = TE_PASSED_AI_CAR
else:
 error()

In this case there are no anonymous integers being used. All names are
symbolic, and it is a simple matter to read through the code to see what the
transitions are. This improves the maintainability of the code and allows it to be
more easily checked for correctness on a casual basis.

Both of the previous implementations could be encapsulated within a simple
function like:

def transition (int state, int event)

which would return the next (new) state given the current state and the
nature of the last event that occurred. The implicit assumption is, by the way,
that two events cannot occur within the relatively small time interval between
two consecutive frames. This is pretty standard, and what happens in practice
is that we sometimes get two state transitions in quick succession if two events
happen more or less at the same time.

State and the “What Do We Do Now” Problem

We now know how to move from one state to another, how to implement
this, and what the states mean. What do we do when in a particular state? Well,
this is not a matter for the FSA to deal with. What needs to be done is to deter-
mine what kinds of activities are associated with each state and then execute
code that performs those activities when in the correct state. Oh, and we need
also to execute code that determines whether any of the transition events has
occurred.

Here is a general sketch of how the FSA-based AI would function:

if state == STATE_CRUISE:
 cruise ()
elif state == STATE_OVERTAKE_AI:

naviGation anD control 141

 overtake_AI ()
elif state == STATE_OVERTAKE_PLAYER:
 overtake_player ()
elif state == STATE_DELAY:
 delay ()
event = test_all_transition_events(state)
state = transition (state, event)

This program causes the game to change between the feasible states as
controlled by the events that have been defined by the designers and tested for
in the function test_all_transition_events. By the way, this func-
tion can be quite complex, and it would probably be a good idea to test only for
those events that are significant from the current state. This is why the state is
a parameter.

Other Useful States

It is impossible to describe the states that a driving game can be in without
knowing the detailed context of the game being discussed. However, there
are certain options that can be seen to be commonly useful. This includes the
following states:

Start:

In driving games, it is common to have a race begin with all of the cars in prede-
termined start positions. The cars are not moving, and in fact may not move until
the starter fires a gun or waves a flag. They then accelerate to the desired speed
and select a driving track. This describes a state we could call the Start state.
In some games there is an actual countdown to the start, and if the player starts
within a specified time of the actual start time, he gets a speed boost for a few
moments. This can be done for AI cars as well, but because the AI system knows
exactly when the start will take place it could easily cheat—actually, it’s hard not
to. So, a random time is generated at the start, and any AI vehicle with a start
time below the threshold is given a boost.
Normally the Start state would change to Cruise when a certain speed had
been achieved or a specific time interval had expired and the car had been as-
signed a track.

Air:
A car that hits a big bump or crests a hill at a high speed may actually leave the
ground for a few seconds. This has a few consequences: the engine usually revs
up to a high value, causing the engine sound to change. The accelerator pedal
has no practical effect—the car cannot accelerate forward nor brake. The car
cannot change direction, as the wheels are not in contact with the ground, and it
cannot be steered. This could be described as the Air state.

142 Game Development UsinG python

There should be a specific sound that is played when leaving the Air state, that
of the wheels hitting the pavement while spinning—a combination bump and
screech. Then we enter the state we were in before entering the Air state.

Damaged:
Vehicles can become damaged in many ways. The simplest way is to collide with
another car or with a stationary object, but some games involve weapons that can
inflict damage or processes that can cause the vehicle to deteriorate. Damage
can result in an inability to perform normal tasks, like steering or braking. It can
reduce the top speed or the ability to switch tracks. So there may be many dam-
aged states, perhaps even one for every other “undamaged” state. That is, there
should in some cases be a cruise state and a cruise_damaged state, an
Air and an Air_damaged state, and so on. In the cruise_damaged state
the car may not be able to reach the prescribed speed, but it should still behave
in the same basic way as in the cruise state.
Being damaged may also restrict the states that the vehicle can change into.
For example, from cruise_damaged it may not be possible to move into the
overtake_ai or overtake_player states or their damaged equivalents.
Perhaps a damaged car should not try to pass another vehicle in the race or at
least one that is not also damaged.
From a damaged state the car should change into the equivalent non-damaged
state when it is repaired; so, we go from cruise_damaged to cruise, for
example.
Attacking:
In combat or combat driving games, an attack can take a number of forms, from
simply firing missiles to an intentional collision or an attempt to push another
car off of the road. The attacking state corresponds to the AI’s effort to damage
another car, perhaps another AI car or the player. The difference in behavior
between attacking and cruise can be profound, since the attacking car has
a quite specific goal—to destroy an opponent.
The attacking state may require that a vehicle actually chase a car, be it the
player or another AI car. This is quite a distinct change from the usual cruise
or Overtake_AI state in which the goals are simply to make geometric pro-
gress.
Defending:
If an AI realizes that it is being attacked or chased, and there must be a carefully
defined set of circumstances that determine when that is, then its car can adopt
a strategy of avoidance, hiding, and perhaps high-speed escape. These actions
characterize defending mode in those games where such conflicts are possi-
ble. The goal is obviously to hide from or destroy the attacker, and the previous
goal indicated by the previous state is temporarily forgotten.
So, when the conflict is resolved, the vehicle should return to its previous state.
Unfortunately, the chase could result in the vehicle being quite a large distance

naviGation anD control 143

from where the chase began, moving in the wrong direction for the original goal.
So, it may be best to move from defending to cruise and then have the
system move between states based on the new local conditions.
Searching:
Some games have objects that must be retrieved during the course of the game,
and in other cases the opponents are moving about and you must find them.
Searching behavior is like that of the cruise state, but the goals are a bit
different. There is often no geographic goal in the searching state, only an
objective one—to locate something. Thus, the driving behavior would result in
large areas being covered and a minimum of backtracking or revisiting.
It would be reasonable to define searching tracks as a design feature of the game.
Like a driving track, these would be defined by waypoints and would have the
goals of the search built into the layout of those waypoints. The AI would then
have less “thinking” to do, needing only to follow the waypoints blindly.
Patrolling:
Patrolling behavior is very much like searching; indeed, patrolling can be called
searching for trouble. Think of a police car on watch, driving the city at night.
This is patrolling, an organized random route through an area. It should be ran-
dom in practice so that bad guys cannot predict where you will be, of course.
Whether it is truly random in the game is up to you, the game creator.
The nature of what is being sought is also a bit different from that seen in
searching behavior. It is possible that a patrol is seeking a particular per-
son, in which case it may be the same as searching. It may also be that the pa-
trol seeks complex behaviors that indicate a crime in progress or some form of
enemy activity. This is harder to identify, and it requires some careful definition
of the goals in advance. For example, speeding is simple to spot since the AI al-
ways knows how fast all objects are moving. An illegal lane change by the player
may be more difficult to spot.
Skidding:
When a car tries to turn a corner too fast, the wheels slide on the road. They try
to keep moving in their original direction as indicated by Newton’s law. We call
this a skid, and it may be useful to define a skidding state. This state is charac-
terized by a lack of control, so steering will work differently than in other states.
Turning into the skid may tend to align the axis of the car with the direction of
motion, but the car continues in much the same direction as before. Turning
away from the direction of the skid will tend to give the car a rotational velocity
about its center, again without changing the direction of motion of the car very
much. Braking may make the skid worse, but slowing down would permit the
wheels to grab the pavement and give control back. It is a complex situation, but
anyone who has been in a skid knows one thing—the original driving plan, be it
going to the store or getting to work, goes out the window in favor of just staying
out of the ditch and getting control back.

144 Game Development UsinG python

Stopping:
The AI might need to stop the car from time to time, perhaps to pick up passen-
gers or to collect an object. A car cannot stop instantly, and it may be necessary
to pull over to the side of the road to avoid being smashed into. This stopping
behavior is certainly needed in some games, including the one we are going to
discuss and build later.
It is necessary to enter the stopping state well ahead of the point where the
car wishes to stop. The goal is to stop at a particular place to conduct an activity,
and so that place must be identified in advance, and the car needs time and
space in which to slow down. Again, we’ll need rules to dictate how far away to
change states given the current velocity and direction.

PATHFINDING

Until this point the assumption has been that an NPC exhibits a specific
behavior based on what is happening in the game, but sometimes an NPC has
a specific destination, and sometimes the NPC behavior is expressed in terms
of a destination. Patrolling behavior, for example, may well consist of a set of
waypoints to be visited in sequence. In static situations this can be handled by
fixed waypoints, but if obstacles can be placed in the way, then the situation
becomes more complex.

A full AI solution would be to discover a path to the next waypoint on
the NPC’s path. There are many such path-finding algorithms, including
the famous A* algorithm that we’ll mention soon. If the NPC is blocked by
a movable object but is still relatively near its path, it might be possible to
simply move to a nearby location and then back to the path. A* attempts
to find the “best” route according to some heuristic, usually based on the
shortest distance. As a result, A* can be more time-consuming than we might
like, given that a game executes in real time and has rather a lot to do. What
would be acceptable is a less than optimal but still feasible route that takes
less time.

One practical idea is to use a predefined grid of directions, indexed by using
the vehicle’s current position. This grid could be relatively coarse, containing
perhaps a few thousand entries, and it should map onto the terrain of the game.
Entries in this grid, easily implemented as a two-dimensional array, would be
directions: either vectors or simply compass angles. The game designer would
have to fill in the values at each location in the grid with the direction to steer
to get back to the road or path. This is the usual trade-off: to make the machine
seem clever, a person has to do a lot of work in advance, just as we did with
waypoints. The other traditional trade-off in computer work is that of space

naviGation anD control 145

versus time, and that can be seen here too. In order to speed up the pathfinding
in this situation, a bunch of extra storage space is used (the grid).

If this method is used, the sequence of steps is:

1. Find the grid element that corresponds to the current location of the
vehicle. If the playing area is 1000 x 1000 yards, for example, we could
break up this area into 25 x 25 grid elements, each being 40 yards square.
Locating the grid is a matter of dividing the (x, z) coordinates by 40 and
truncating.

2. Steer in the direction saved in the grid entry. This could be a byte value to
save space and could be in fairly crude terms, since we simply have to get
back to the path, not find the best route.

3. Use a low speed, since we’re out of the race for the moment anyhow. The
only obstacles that are a problem are moving ones, since the grid will be
designed to avoid stationary objects. We could store a suggested speed along
with the direction, again crudely quantized.

4. Grid elements that are near a path could contain a special value to
indicate to the AI that the car should now be allowed to continue in its
usual mode.

Figure 5.5 shows such a grid in a small example, and this example actually
has obstacles so that it is easy to see how the grid is built—directions are chosen
to steer the car toward the path, not always directly at it, but sometimes around
static objects. As the car moves from one grid to another, it adjusts its steering
direction to the new grid direction.

FiguRe 5.5 Use of a directional grid to find a route back to a road.

146 Game Development UsinG python

Thus, anywhere that the vehicle ends up after a collision will have a grid
entry that directs the AI how to control the car.

A* SEARCH

The A* algorithm is a method for searching through a set of states for a good
one, one that should lead to the solution of a problem. This is a pretty vague
statement, but A* can be used for quite a few distinct kinds of problem in AI, so
it makes sense to be vague. In terms of finding a path, a state will be a situation
that has a position identified that is unique and is associated with a positional
goal, a target position we are trying to get to. We also need a way to determine
a cost associated with positions; in terms of paths, a cost may be how long it will
take to get to the goal, or how much fuel it will take. The cost of moving from
one position to another may well be connected to the terrain. Mud will cost
more, and so will steep inclines, while paved roads will probably cost the least.
The idea behind A* is to create a method for determining which route costs
least without exploring all of the possibilities, which could be quite expensive.

It is important to realize that in order to use the A* algorithm, the playing
area must be divided up into a grid, like we did before when using the direc-
tional grid. Each grid element corresponds to a discrete state and has a value
that is related to the start and goal states. Each of these grid elements is called
a node in A* terms. Each node has a cost associated with it, which is related to
how far it is from the goal or how expensive the route is from that point.

There are a couple of obvious things to notice before we get too far into
the description of the method. The first thing is that it is logical to reduce the
amount of computation that is done by remembering the cost associated with
each node, and not re-computing it. Next, we wish to keep a collection of nodes
that are candidates for the next one in a path. A good way to do this is to have
a set of nodes which are possible next ones: this is the open list or open set. We
will also have a list of nodes that do not need to be considered, possibly because
they have already been examined. This is the closed set.

The A* algorithm is important enough in games and AI to spend a few pages
on, and a picture can be very valuable in explaining how things work. So, let’s
walk through an example that illustrates the method. Here is the grid that gives
the situation:

The first thing to do is to add the node S to the open list, since we need to
consider it as the 0th step in the path to the goal. The open list should be sorted
so that the node with the smallest value of the total cost function (which we will
call F) is first. The function F is a score traditionally composed of the sum of the

naviGation anD control 147

function G, which is how much it cost to get to this node, and H, the estimated
cost for the remaining nodes between here and the goal. So F = G+H, and it
seems as if H is impossible to calculate.

G is easy—each time we move horizontally or vertically to get to a node we
add 1 to the value of H for that route, and we add the square root of 2 for diag-
onal steps if they are allowed. To make the calculations a bit faster, we multiply
by 10 and convert to integers, since integer math is much faster than floating
point math—so horizontal or vertical steps cost 10 and diagonal steps cost 14.

How do we determine H? A common way is to use the 4-distance or
Manhattan distance between that node and the goal. This is simply the
number of rows between the nodes added to the number of columns
between them.

After S has been added to the open list and F is computed, here is the result:

Next: we take one of the nodes from the open list—the one with the smallest
F value. Right now there’s only one node in the open list, S, so no problem. Now
add all of the nodes that neighbor S to the open list and move S to the closed
list. Compute F for all of the new open list entries.

FiguRe 5.6 Initial situation in the A* example.

FiguRe 5.7 Initialization for step 1 of A*.

148 Game Development UsinG python

Remember, left-right and up-down neighbors are a distance of 10 from S,
and diagonal neighbors are a distance of 14. A sample calculation of F for the
node at B7 is:

We do this for all eight neighbors in the open list to arrive at:

One more thing. Whenever a node is added to the open list, we make
a note of how we got there—it is the neighbor of a node that was on the
path, and that node is the parent. We always remember the parent of a node,
because that’s how we trace the route back to the start when the method
is done.

Let’s do the next step. We pick the node in the open list that has the smallest
value of F—in this case the C7 node—and put it into the closed list. The we
start examining its neighbors. We must ignore squares that can’t be traveled on,
so the black ones that represent an obstacle are ignored. Also ignore nodes in
the closed list. Clearly there are just four nodes that are legal neighbors of C7:
C8, B7, B6, and D8. Add these to the open list if they are not already there. C8
and B7 are already there, so we don’t add then, but we do check to see if the
value of F for these nodes is smaller than it was before; that is, is the path that
goes through the node C7 better than the one that has been computed already?
If so, change their parent to C7 and their F value to the new one; otherwise, do
nothing. For the new nodes B6 and D8, add them to the open list and compute
F values.

FiguRe 5.8 After step 1 of A*.

= = + =
= =
= + = + =

10 *(6 7) 130

10

130 10 140

H distanceto goal

G accumulated distance fromS

F G H

naviGation anD control 149

Now do it again. The node in the open list with the smallest F is B7. Move
it to the closed list and place its eligible neighbors into the open list. There are
only two nodes of interest here: node A6 is new and is added to the open list.
The node at B6 is one that is already in the open list, but the exciting thing
about it is that the value of F computed through the new parent is smaller than
the old. Therefore, we change parents to B7 and adjust its F value to the new
one, 140. The new situation is:

And so we continue, pulling out the open node with the smallest F, putting it
into the closed list, and putting its neighbors into the open list.

When do we stop? First, when the open list is empty. This means that the
goal cannot be reached. The other termination condition is that we add the goal
node to the open list. We trace the path of parents back from the goal node to
read off the sequence of nodes in the “optimal” route.

The algorithm, in summary, is:
1. Create start and goal nodes.
2. Place the start node into the open list.

FiguRe 5.9 Step 2 of A*.

FiguRe 5.10 Step 3.

150 Game Development UsinG python

3. Repeat while there are nodes in the open list.
4. Select the node P from the open list with smallest F value.
 Place P in the closed list.
5. if P=goal then we quit with the solution.
6. for each neighbor Ni of P
7. if Ni is unusable or in the closed list then continue from 6.
8. Let the cost of Ni = H(Ni)+ distance to P.
9. If Ni is not in the open list then add it
10. else if Ni is on the open list and the path has a lower F
11. then change F to the new value, change the parent of Ni to P.
12. end of FOR
13. end of repeat
14. If the open list is empty, there is no path to the goal.

Did you forget what we were doing? Now we have a path from the AI vehicle
that was knocked far off of its path by a collision to a waypoint that is on the
original path the car was following. In other words, we have a way to get back
to the “normal” situation after being knocked off the path. The path found in
the example is:

Path Costs

The cells marked “.” were never used. The path runs from the cell marked 0
to the one marked 158 and follows the lighter grey values.

naviGation anD control 151

STOCHASTIC NAVIGATION

The word “stochastic” means “having a random component or element,” and
that’s really what is wanted from ambient traffic. If you look at traffic from the top
of a building, the individual vehicles behave both predictably and randomly—
they predictably obey traffic rules but follow what looks like a random route.
That’s because we don’t know where the cars are going. They all have a desti-
nation, but without knowing what it is we don’t really know what a car will do
at the next intersection, and especially at the intersection three blocks down.
We want the traffic to look natural, and we do not want all cars to turn left at
5th street or have the same cars go around the same block for the whole game.

So, each car should have a plan for at least the next choice. If a car is going
to turn left, it makes sense that it should get into the left lane before the inter-
section. Each vehicle in traffic should have a short-term plan which is updated
every time it executes a planned move like a turn. The plan is random, so it is
based on the drawing of random numbers. The most likely event is to drive
straight through an intersection, but left or right turns have a finite non-zero
probability. For example, we could have:

Straight through 80% chance
Left turn 9 % chance
Right turn 9 % chance
Right next alley 1 % chance
Turn into next access 1 % chance

Now draw a random number x between 0.0 and 1.0. The code for the
previous is:

if (x < 0.8):
 plan = GO_STRAIGHT
elif (x<0.89):
 plan = TURN_LEFT
elif (x<0.98):
 plan = TURN_LEFT
elif (x < 0.99):
 plan = NEXT_ALLEY
else:
 plan = NEXT_ACCESS

If the car enters a parking lot, it should park. This activity is likely initiated
by a finite machine state change.

152 Game Development UsinG python

It is important to realize that the traffic needs only to behave properly so
long as the player is watching. Indeed, it takes time for the AI to move the
vehicles sensibly, and if we can avoid taking this time it would be good. Should
we create traffic when it becomes visible? That is, when the player’s car turns a
corner, do we need to invent some cars and plans for them?

That is certainly an option, but it would cause a problem in cases where the
player chooses to explore the environment, especially if he does so by following
ambient traffic. Imagine turning a corner to find that the cars you just saw have
vanished. No, it is probably better to have more of the traffic be inactive (not
moving) until is within a specific radius of the player. Naturally, if the player stays
in one place too long, the traffic in his neighborhood could vanish—as it leaves
the active radius it stops, and nothing can start up until the player moves closer.

Things are getting complicated. So, what may work is to give some CPU time
to moving ambient traffic once in a while, each few frames. If the player is idle,
there is going to be a lot of free time to give to this task. So, if traffic is within a
radius of, say, five blocks of the player’s car, it will get a “turn” (a few cycles) each
frame for movement control. Otherwise, it will get a turn based on its position in
a queue and the number of free cycles. As the frame rate increases, we have extra
time to give to the traffic, unless the player is engaged in combat or something.
So, the distant vehicles are places in a queue, and the front few are given move-
ment control each frame and are then placed at the end of the queue. This is fair,
and it will automatically give as much spare time as possible to traffic motion.

Navigation is the process of getting from one location to another. Sometimes
there is a final destination which is arrived at in stages, and sometimes there are
predefined routes to known destinations that are defined by the game developer.
A waypoint is an intermediate destination along a route, and it is defined by a set
of 3D coordinates and actions to take upon arriving. A character moves from one
waypoint to another on its way to its final destination. For characters that don’t
have predefined destinations, we use pathfinding methods like the A* algorithm.

Characters may have a set of states that control their movement and naviga-
tional behavior as a function of what is going on at the moment (current state).
It is also common to have characters simply moving around to create some form
of traffic, essentially providing ambiance.

ExERCISES

The following problems will exercise your knowledge of the material in this
chapter, and they will sometimes require that you do more research before you
are able to complete them.

naviGation anD control 153

1. Create a simple elliptical track on an 800 x 600 image and use it to
implement a basic driving simulation. One car should drive around the
track completing at least five laps before stopping. Use no fewer than eight
waypoints to guide the vehicle.

For the next exercises use Figure 5.11, which shows an 800 x 600 image that is to
be used in pathfinding. Presume that a character’s avatar, represented by a small
blue circle, is to move from the small house in the upper right of the image to the
larger house in the lower left. Presume also that this dot may not pass through
the river or through the brick barriers.
2. Mark passible and impassible squares on the image, creating what we call a

mask. Have the avatar move toward the destination when possible and back
up and try a new path when not. Turn at random when a decision has to be
made, toward the destination when possible. Does the avatar find a path? If
so, how long does it take?

3. Find a set of paths to the destination manually and mark them either in a
same-sized image or as arrays of individual pixel x and y movements. Create
at least four paths that branch from the starting point and are selected at
random. Does the behavior look realistic?

Idea: A program has been written that allows the developer to use the wasd
keys to move from the source to destination and record the path. The path was
written to a file and read in and used by the problem solution. You could write
such a program too or use the one provided.
4. Repeat Exercise 3 using waypoints. In what ways is this solution better and

in what ways is it not better than the ones previously tried?
5. Add a new NPC avatar to the solution of Exercise 4, a red circle, which will try

to prevent the player’s blue avatar from reaching the destination. It will start in
the upper left and move toward the blue avatar when it “sees” it; that is, when
there is a clear line of sight between the red and blue circles that does not pass
through a brick wall. If the red avatar gets to within 12 pixels of the blue one,
then it succeeds and red wins. If the blue avatar gets to the destination, then
blue wins. Who wins this game and under what circumstances?

6. Navigation is not only connected with existing paths and physical obstacles
but sometimes by more abstract things like traffic rules. Describe the rules
for behavior when a car arrives at a stop sign on a typical city street. Sketch
a plan for the behavior of a vehicle from the approach to a stop sign until
the moment that it is decided the vehicle can proceed.

7. Streetwise navigation can be complicated by road closures, one-way streets,
and other features of modern life. In computer science terms, street
intersections can be considered to be nodes on a graph. An entity called an

154 Game Development UsinG python

adjacency matrix is used to represent which nodes are connected to which
others. An element j in row i of the matrix is a 1 if there is a way to get to
node j from i in one step. Here is an example:

There is an algorithm to determine if a path exists between any two nodes
and how long that path is—it is referred to variously as Warshall’s algorithm, the
Floyd-Warshall algorithm, or the WFI algorithm. Look up this algorithm and
describe it; then discuss its usefulness in finding routes in urban contexts. How
is a one-way street represented?

FiguRe 5.11 Sample 2D pathfinding image for the exercises.

naviGation anD control 155

RESOURCES

Path Finding Tutorial: http://wiki.gamegardens.com/Path_Finding_Tutorial.
Useful tutorial description of A*.
Gamasutra tutorial on realistic pathfinding: http://www.gamasutra.com/view/fea-

ture/3096/toward_more_realistic_pathfinding.php.
Very good video game context.
Video demonstration of Dijkstra’s algorithm: http://www.youtube.com/watch?v=8Ls-

1RqHCOPw.
Pathfinding concept, the basics (Michael Grenier): http://mgrenier.me/2011/06/path-

finding-concept-the-basics/.

REFERENCES

1. E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. (1988). “A Fast Procedure for
Computing the Distance between Complex Objects in Three-Dimensional
Space.” IEEE Journal of Robotics and Automation 4: 193–203.

2. Dan Higgins. (2002). Generic A* Pathfinding. AI Game Programming
Wisdom, Charles River Media. Hingham, Mass

3. James Matthews. (2002). Basic A* Pathfinding Made Simple. AI Game
Programming Wisdom, Charles River Media. AI Game Programming
Wisdom, Charles River Media. Hingham, Mass

4. J. Pearl. (1984). Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison & Wesley, Boston, MA, USA.

5. Anthony Stentz. (1996). Map-Based Strategies for Robot Navigation in
Unknown Environments. Proceedings of the AAAI Spring Symposium on
Planning with Incomplete Information for Robot Problems. http://www.aaai.
org/Press/Reports/Symposia/Spring/ss-96-04.php.

156

chapter 6
sound

Here is an interesting experiment: play a first-person shooter, such as Halo
or Half-Life, with the sound off. It is amazing how much of the energy and
emotional content is contained in the audio part of a game. The tempo of the
music gets the blood racing, and the sounds of weapon fire and nearby explo-
sions can guide you away from trouble or into situations where points can be
won. It’s not just shooters: play any of your favorite games with the sound off if
you need convincing.

1. Computer games use sound for four basic things:
2. Music. A great deal of emotional content is contained in the music alone.

Alfred Hitchcock knew this very well.
3. Sound effects. If a car crashes or a gun fires, we expect to hear that.
4. Speech. Many games tell a story by allowing you to listen in on

conversations or even participate. Your side is often typed in and is not
really understood, but the characters in the game speak and expect to be
heard.

5. Ambient sound. This is background noise, such as a river, or rain, or even the
sound of coffee shop.

It is interesting that many programmers, even those with many years of expe-
rience and who know graphics and event-based programming, know almost
nothing about how to manipulate and play sounds on a computer. It is especially
interesting because sound programming is in many ways much like graphics
programming: the goal is to display something, there is object positioning and
rendering to be done, the listener’s (viewer) position affects the result, there
are colors (frequencies) to be handled, and a special device is at the heart of
everything (sound card/video card).

157 Game Development UsinG python

So it is with some excitement that we begin a trek into the dark, unknown
world of computer audio. Like graphics, there can be a lot of math asso-
ciated with sound; unlike graphics, some of it is not necessary to perform
simple reproduction of sound using a computer. You see, most games do
not create sounds on the fly, but merely read sounds from files and play
them at an appropriate moment. Games would be very dull indeed if the
approach to graphics was the same. Graphical objects need to be moved,
rotated, transformed, and tested for visibility and collisions. Audio objects
basically turn on and off, get louder or softer, and perhaps move from the
left to the right stereo channel. Display of sounds is in fact simpler than
display of graphics. Expect this to change as more options present them-
selves.

Processing has no built-in scheme for audio display; that is done by a
downloadable add-on. The fact that Processing is based on Java means that
the add-on is coded in Java and uses the JavaSound API, and could be used
with other purely Java code. This also means that later on, when we discuss
HTML5, we’ll have to revise the audio display scheme. Additionally, there are
a few choices for audio systems, and you might be interested in trying some
of them. For the purposes of this book we’re going to use Minim, the most
common option.

BASIC AUDIO CONCEPTS

Although there are similarities between our sense of vision and our
sense of hearing, the differences are significant. Most important is the
concept that objects that are seen normally reflect light from another
source, rather than generating light on their own. Thus, we see by reflected
light. Audio, on the other hand, is usually produced by the object that is
being sensed; that is, an object that we hear is generating the sound, not
reflecting it.

Of course sound reflections can be important, and they contribute to
the ambiance of the sounds. The idea that sound sources are spatially
localized is key to positional audio generation, but it is less important
in stereo and web-based games. In graphics, what would it look like if
we could only observe light sources and not reflections? Things would
be much simpler and vastly less interesting. Also, we don’t really have
an audio image, a two-dimensional pattern that can be interpreted.
Instead, we have two sound receptors (ears), each of which perceives
the sum of the sounds that reach them at any particular moment.

soUnD 158

This can also be thought of as another way that audio is simpler than
graphics.

Sounds are essentially vibrations of the air. The intensity of the vibra-
tions is called the volume or loudness of the sound. The duration between
two consecutive peaks of the vibratory motion is called the period, and the
number of peaks that occur in a second is called the frequency or pitch1

(Figure 6.1).

The unit of frequency is Hertz (shortened as Hz), which was named after a
person. This name will sound familiar; your computer has an execution speed
that is also measured in Hertz—well, megahertz (MHz = million cycles) or
gigahertz (GHz = Billion cycles)—and this refers to the number of clock cycles
per second.

A typical human can hear sounds that have frequencies between 40 Hz
and 15,000 Hz (1,000 = 1 kiloHertz or KHz). Some people can hear 20
KHz sounds and even higher, but as we get older our ability to hear high-
pitched sounds declines. In any case, frequencies above 15 KHz are not as
important as the lower ones in computer games, as computer speakers are
generally not able to reproduce these sounds, and many people cannot hear
them.

1 Frequency and pitch are not precisely the same thing. Pitch is a subjective psychoacous-
tic characteristic of sound, or how a frequency is perceived by the auditory system and
brain.

FiguRe 6.1 A sound wave viewed as a graph of intensity VS time. The wavelength W is the distance
between two peaks; the period is the time between two peaks. The amplitude A is the distance between
the peak and the trough (lowest point). The frequency is the number of peaks that pass by a stationary
point in one second. High-pitched sounds have a higher frequency than do lower pitched ones.

159 Game Development UsinG python

We have two ears, and normally any sound presents itself at both of them.
There will normally be a slight time difference between the arrival at the left
and right ears caused by the distance to the object and the distance between
your ears. Essentially, it takes time for the sound to travel the short distance
represented by the width of your skull. This is how you locate a sound. Most
people can determine a fairly precise location for a sound even with their eyes
closed, but only if both ears function properly. This fact is important in a game,
because an object that looks like it is at the left side of the screen should also
sound like it is to our left.

In day-to-day life we are surrounded by sound, and we can actually detect
much of it. What we hear is really the sum of all of the sounds that reach us
at each moment in time. This makes audio rendering simpler than graphical
rendering, because the screen requires that we compute the intensity and/or
color of at least 640 x 480 pixels (places). For audio, we need to compute only
two audio “pixels,” one for each ear. However, we need to compute these audio
points more often than graphical ones. Twenty-four frames per second is usually
enough to realistically represent moving objects on a screen. To render audio
realistically, we need to generate a new intensity value at a rate that is at least
twice the frequency being created, or up to 30,000 times per second! Fortu-
nately, the sound card can do a lot of the work.

In order to store a sound on a computer, it has to be digitized, or sampled.
A standard sound card can do this if you plug a microphone or other sound
source into it. Sound is represented as electrical signals, which can actu-
ally look like Figure 6.1 when viewed on an oscilloscope. Sampling a signal
involves making a measurement at a regular and frequent interval. An elec-
trical signal can be measured as voltages, for example, so to store a sound we
could measure the voltage being sent to the speakers every millisecond and
store this measurement as a binary number on a file. Playing the sound back
requires that we can convert binary numbers into voltages again and send
them to an output device.

Without getting into too much detail, because signal processing is a whole
subject unto itself, we need to sample a sound at a rate that is at least twice
the highest frequency that we want to reproduce. For example, if we want to
be able to hear 15KHz sounds, we have to sample the signal 30,000 times per
second. If a sample is an integer (16 bits), this means that a four-minute song
requires 4 * 60 * 30000*4 bytes to store (28 MB), and 56 MB if the song is
stereo. Of course, there are compression schemes and such to reduce the size as
saved on disk. In any case, what we need is to store these samples as numbers,
either integers or floats, and have a means to send them to the sound card.

soUnD 160

A standard PC sound card can perform sampling at a high rate, and it does
so from both the line input and the microphone input. The device that does
this is called an analog to digital (A to D) converter or ADC, and the sound
card has some of these. The way the ADC works is much less relevant than is
the result and the implications. Figure 6.2 shows an example of the sampling
process for the sine wave of Figure 6.1. After each sample interval the sound is
converted into a voltage measurement and converted into a binary number for
storage. Since these numbers are digital, they can’t be saved perfectly and so are
rounded to the nearest integer, which necessarily creates a small error in each
sample (sampling error).

The sound card can reverse the process too, taking a sequence of digital
samples and converting them into voltages that can be sent to speakers or an
amplifier for playback. Sounds in numeric form can be, and most often are,
stored on files, retrieved, and played back as needed. The sound card is a
complex and clumsy thing to program directly, and so a software library that
does this is essential when developing a game.

This is where Pygame comes in. We can create reasonable sounds for a typical
game without needing to know too much of the math or physics of sound. We

FiguRe 6.2 Sampling of a sine wave by an analog to digital converter. After each fixed interval s the
sound is measured as a voltage and converted into a number for storage. Numbers at the bottom show
the numeric values of the sound at each sample point.

161 Game Development UsinG python

also won’t need to know too much about our sound card. What we do need to
do is understand the paradigm used by the developers of Pygame.

INTRODUCTION TO SOUND IN PYGAME

The key module in Pygame for displaying audio is mixer. It defines
objects that represent sounds and allows the programmer to load them and
play them. Within the mixer module is a class named Sound, which is an
essential audio interface for Pygame, and another called channel which is
equally important. The mixer module is designed to allow multiple sound
sources to be mixed (combined at various levels of intensity) into a stereo
or mono output, possibly for real-time playback. By default, it permits eight
channels, but complicated code can create more sophisticated output. The
Sound class is the sound object in Pygame, associating a sound with a file
and allowing it to be loaded and played, and controlling volume, pan, and
other properties.

The simplest thing to do with sounds is to load and play them. A program
that does this would first initialize Pygame and create a display. This must be
done even if the display will not be used for displaying anything. Then the
Sound class is used to create an object, specifying the name of the sound file to
be associated with the object:

m = pygame.mixer.Sound(“song.wav”)

The variable m is a handle or access variable to the sound. To play it, use the
play method:

m.play()

Now the standard Pygame loop must be entered or the sound will not play:

while True:
 pygame.display.update()

This program is a basic WAV file player. Pygame does not play MP3 files by
default, but it is possible using other modules. The entire previously described
program is (sound.py):

import pygame
pygame.init()
canvas = pygame.display.set_mode((200, 100))
m = pygame.mixer.Sound(“song.wav”)
m.play()

soUnD 162

while True:
 pygame.display.update()

Sound Options

In the real audio world, a mixer is a device that accepts some number of
input sounds and combines them into a single sound that is a combination of
all of the inputs (Figure 6.3). The input sounds could be from microphones or
CDs, tapes, or vinyl. The degree to which each sound will be a part of the final
mixture is set by using a volume control, sometimes a sliding one or sometimes
a rotating one. Each sound is assigned to a channel, which is a single path the
sound takes from the input to the output. A channel can be mono or stereo, with
stereo channels counting as two. The mixer in Figure 6.3 has eight channels,
two mono and three stereo.

Pygame has a mixer class that simulates a real mixer to some degree. Within
that class there is a Sound class that represents a sound, as stored on a file,
and Pygame has a channel class. When using the mixer class, there are some
controls for the overall sound, and in addition each channel and Sound have
controls that apply to them. By default, a Pygame mixer has eight channels. The
previous example did not explicitly use channels, and that is completely accept-
able if there are only a few sounds and control of them is simple. The sound
being played was assigned a channel by default. If a programmer states m.play()
where m is a sound object, then the mixer can perform the following operations:

m.play() – Start playing the sound

FiguRe 6.3 A ten-channel audio mixer.

163 Game Development UsinG python

m.stop() – Stop playing the sound
m.pause() – Temporarily stop playback of all channels

There are other controls, but what should be understood is that the previous
operations are not normally available on a real mixer. Assume that the actual
sound being played is a song from a CD player. The player can be started,
stopped, paused, and so on. The mixer does not do these things; it accepts sound
into it when the sound is playing and manipulates it. Each sound has a volume,
which in the example is the volume of the CD player. The Pygame mixer class
does have a global stop operation that stops all sounds entering the mixer.

Sounds are assigned to channels, and the channel has a volume control too,
which is the relative level of the specific sound within the overall mixer output
(usually just called the mix).

Sound Volume

Each sound can have its volume set to a value between 0 (off) to 1.0 (Full
volume). Moreover, the volume setting on each sound can be retrieved, and the
length of the sound in seconds can be found. The length is known because the
sound is actually a sound file, and the length can be calculated from the size of
the file and the sample rate.

The essential methods from Sound are:

set_volume (v) Set the volume level, between 0 and 1
get_volume() Return the current volume setting
get_length() Return the length of the sound in seconds.

A program that plays a sound and allows the user to control the volume
spends most of the code handling the keyboard events. Let’s say that the up
arrow key turns the volume louder and the down arrow key turns the volume
lower. The initialization is the same as before, but the main loop is more compli-
cated because the key presses need to be captured and parsed. Let the volume
be set to a level controlled by the variable v, which can take a value between 0.0
and 1.0. The program (sound0.py) is:

Volume set

import pygame

pygame.init() # Initialization
canvas = pygame.display.set_mode((200, 100))
m = pygame.mixer.Sound(“song.wav”) # Read the sound
file
m.play() # Begin playing

soUnD 164

the sound

v = 1.0 # Initial volume is maximum (1.0)
while True:
 for event in pygame.event.get():
 if event.type == pygame.KEYUP:
 if event.key == pygame.K_DOWN: # Down key lowers the volume
 v = v - 0.1 # Decrease the volume by the
standard amount
 if v < 0: # Check bounds
 v = 0
 m.set_volume (v) # Set the volume to v

 if event.key == pygame.K_UP: # The Up key increases the
volume
 v = v + 0.1 # Increase the volume by the
standard amount
 if v > 1: # Check bounds
 v = 1
 m.set_volume(v) # Set the volume to v
print (v, m.get_volume(), m.get_length())
 pygame.display.update()

Each time a key is pressed, this program also prints the volume level and the
length of the sound.

Channels

A channel is assigned using a call to the find_channel() method of the mixer
object. This locates a free (unassigned) channel and returns it. When using
channels, instead of playing the Sound, one assigns a Sound to a channel and
plays the channel. So, if m represents a Sound then:

 chan = pygame.mixer.find_channel() # Get a channel that’s
not being used
 chan.play(m) # Play the Sound m on the
channel chan

Each channel has a volume control too. A channel can be mono or stereo
though. If it is stereo then it is really two channels, and setting the volume
would mean setting the volume of each channel. This allows the idea of
panning the sound, setting a different volume level on each of the left and
right stereo channels, thus positioning it in space. Setting the volume is done
using the channel:

 chan.set_volume(1, 1)

165 Game Development UsinG python

This call sets the volume to the maximum on both the left and right. Panning
is a little more complicated. Assuming that, as before, the variable v holds the
current overall volume (between 0 and 1), let’s add a new variable a that is 1.0
for full volume on the right channel and 0 for no volume on the right. The left
channel volume will be 1-a, and a is a positioning of the sound between channels:
1 for full right and 0 for full left. A function pan(a) can be written as follows:

def pan (a):
 global leftAmp, rightAmp, chan, v

 if a < 0: a = 0
 if a > 1: a = 1
 leftAmp = (1 - a)*v
 rightAmp = a*v
 chan.set_volume(leftAmp, rightAmp)

Now the program sound0.py can be modified to also allow the user to change
the pan value using the left and right keys. The main loop would be (sound1.py):

while True:
 for event in pygame.event.get():
 if event.type == pygame.KEYUP:
 if event.key == pygame.K_DOWN:
 v = v - 0.1
 if v < 0: v = 0
 pan(p)
 if event.key == pygame.K_UP:
 v = v + 0.1
 if v > 1: v = 1
 pan(p)
 if event.key == pygame.K_LEFT:
 p = p - .1
 if p<0: p = 0
 pan(p)
 if event.key == pygame.K_RIGHT:
 p = p + .1
 if (p>1): p = 1
 pan(p)

 print (leftAmp, rightAmp, p)
 pygame.display.update()</CODE>

Creating Your Own Sounds

Sounds, especially pieces of music, are protected information. If you wish
to use the property of someone else, you are generally expected to pay for it.

soUnD 166

That’s perfectly reasonable. After all, people are expected to pay for games,
right? As is the case with art, sounds that someone else creates and posts on
the Internet would have a value, and a game developer is expected to pay for
such resources.

On the other hand, it is possible to create your own sound effects, voices, and
ambient sounds in many instances. Music may be a more significant problem,
as it requires composition and playing skills that not everyone has. It’s impor-
tant to understand that music used in a game must attribute and pay both the
composer and the artist. The only exceptions are music that has been placed into
the public domain by the artist and music that is old enough that the copyright
has expired. One must make quite certain that the assets being used, music in
this instance, have been given the proper legal consideration.

Having said that, many sound effects can be recorded using equipment that
many people already possess. In that case the sounds are your property, unless
you record someone singing a proprietary song, of course. Recording is very
simple using a PC, with some very good software available for free or little
cost. Recordings can be done using cellular phones and most mp3 players. Of
course, there are dedicated high-quality recording devices available for profes-
sional quality work.

Recording using Cell Phones and MP3 Devices

Android IPhone
Use the voice recorder app in the Tools
folder. Open the app and press the red
button to record and the blue square
to stop recording.

Use the voice memos app.

Sound files will be saved in the My
Files/Audio folder.

Open the app and begin
recording by pressing the red
button. Press the same button
to stop recording.

The quality achieved by a cell phone is good enough for most sound effects,
but not for voice or music. The problem is the microphone, which is tiny and
cheap. It’s possible to connect a better mic to some phones, and that is to be
recommended.

MP3 players usually have a record mode, which is intended for voice
memos. They suffer from the same problem as telephones with respect to

167 Game Development UsinG python

the microphone. For iPods or Sony players, select the settings mode and
then record.

A Small Studio

The small mixer shown in Figure 6.3 is sufficient for many small game devel-
opers and costs around $100. A sound studio would require four microphones,
and decent (but not brilliant) mics can be purchased for $100 each. Stands for
the microphones are $35, and cables are $12–$20. The computer will be the
recording device, and a laptop will work, but to properly record outdoor sounds,
a portable recorder is valuable. The Zoom H1 and similar recorders run about
$100.

The total cost of the sound studio described here would be about $700. Do
not skimp on quality; many audio enthusiasts would claim that you can’t get a
good microphone for $100, and while that’s not really true and technology has
gotten a lot better in the past twenty years, it’s better to have fewer good mics
than a lot of bad ones.

There may be other bits and pieces that would be useful—a CD or
DVD player, maybe a turntable, and other sources of sound. All of these are
connected to their own channel of the mixer, and the main outputs of the mixer
are connected to the computer line input. You can monitor the mix from the
mixer or the computer using headphones.

FiguRe 6.4 The Zoom H1 recorder.

soUnD 168

Some special purpose software is needed now to capture the sound and
store it.

Audio Software

The CD that comes with this book provides a copy of the music editor named
Audacity. For most small games this is the only software that is needed to record
and edit sounds for a game.

Like most sound editors, Audacity shows the sound as a graphic. In most
cases a left and right channel are shown, one atop the other. Simple editing
is done using the mouse, where sections of the sound can be selected with
a click and drag. The section selected will appear in a different color, and
can be deleted, copied, or both. Once copied it can be inserted in another
location.

Audacity has an impressive set of operations it can perform on a sound. It
can change volume, filter by frequency, fade in and out, crossfade, reverb and
tremolo, reduce noise, echo, and perform dozens of other operations. It can
also load multiple tracks and mix them as desired.

Rather than simply describe this program, let’s use it to create a sound effect.
Consider that the boat race game will need an engine noise sound for each boat.
An engine is a constant low-frequency noise that has some variation in volume.

FiguRe 6.5 A typical screen from Audacity.

O

N THE CD

169 Game Development UsinG python

It can’t be too regular though. A sine wave would not sound right. But it may
be a start.

Using Audacity with no tracks present, select “Generate” and then “Tone.”
Select 75 Hz and “OK.” A new stereo track will appear containing a 75 Hz sine
wave. Audacity looks like this:

When played (the green triangle button) it sounds like a low musical note.
Now we need to add some random changes. Select “Generate” and “Noise.”
The drop-down menu will offer a noise type (select “Pink”) and amplitude
(select 0.8). Click on “OK” and a second stereo track will appear containing the
noise. The Audacity window will look like this:

FiguRe 6.6 Audacity showing a generated 75 Hz tone.

FiguRe 6.7 The 75 Hz tone on one track and a pink noise sound on a second track.

soUnD 170

Playing these two together now sounds more like an engine. Select both
tracks (Shift and click) and then choose “Tracks” and “Mix and Render to New
Track.” The two tracks will be combined into a third. You can now delete the
other two tracks (click on the “x” in the upper left of the track display). We can
now see the mixed track.

As a last step, select “Effect” and “Tremolo.” Choose the parameters: sine,
Wet level = 30%, frequency = 8.7, then OK. We now have a passable boat
engine sound. Obviously, one should experiment with the parameters of the
effects so as to get a feel for what they do, and to permit better effects to be
created.

This activity is very much like creating art from scratch with Paint or Photo-
shop. It is also possible to record sounds and incorporate them into the effects.
For example, one could record the sound of a flowing water tap into the engine
sound. A finger snap or thump on a table could be recorded and slowed down
to sound like an explosion.

Of course, another option is to purchase sound effects from producers,
either as CDs or downloadable MP3 files.

FiguRe 6.8 The tone and the noise track mixed to one stereo track.

Positional Audio

The concept of positional audio is relatively simple, although the implemen-
tation is not. You, as a human, almost certainly have two ears. Sound from any
source reaches them at slightly different times, because your ears are a few
inches apart. That time differential can be used to roughly locate the sound
source in space: if the source is to your left, then the sound reaches your left
ear first, for example. This can be simulated in systems that have stereo sound
display capability.

171 Game Development UsinG python

It’s also true that a sound that occurs nearby seems louder than one occur-
ring a distance away, all other things being equal. We use this fact instinctively
when judging the distances in real life, and it should be true in games as well.
This is a basic aspect of positional audio, one that everyone perceives on a daily
basis, and it requires only distance to the source and not the precise position.

What is needed for positional sound to be possible is the position of the
sound event, which is to say the location within the game space of the thing
that generates the sound. Collisions, for example, happen at a precise location.
The position and facing direction of the player, or the avatar at least, is also
known, and the relative intensities of the sound at each ear can be calculated
and displayed at each speaker. It is clear that what’s needed is the position of
the sound, the position of the player (listener), and the direction the player is
facing in the game.

We can assume that the player’s position is known, since it is being updated
by the game each frame. The sound position is also known, as most events have
a known position within the game. The player’s facing direction can be assumed
to be the direction of motion, or if stationary then the last known direction of
motion.

Example: Distance Attenuation

In computer graphics, clipping is the act of removing lines and polygons
that are outside of the viewing volume. This includes lines that are too near
the camera and lines that are too far away. The near and far clipping planes are
defined as distances; we shall do the same with sounds. At some sufficiently
far distance d, a sound can no longer be heard and will be attenuated (i.e.,
reduced in intensity) completely (100%). At some sufficiently near distance the
sound will be attenuated not at all (0%), and at every distance in between the
sound will be attenuated by some function of distance. In real life the function
is related to 1/d2; that is, the sound gets fainter as the square of the distance to
it. The important thing in a game is that things seem correct rather than being
correct, and this degree of attenuation may be too great. A linear function may
seem more realistic.

Let’s define variables maxSoundDistance and minSoundDistance to be
the 100% and the 0% attenuation distances respectively. Then, if d is the actual
distance to the sound, the attenuation a can be calculated as:

where a will have a value between 0.0 and 1.0. Every sound will have a
natural or intrinsic volume at which it is played, as well as a minimum and

= − −(min)/(min min)a d SoundDistance SoundDistance SoundDistance

soUnD 172

maximum, and this intrinsic volume will be modified by multiplying by the
attenuation before it is played.

In Pygame, each Sound/channel has a predetermined volume setting that
applies to it. The attenuation will be used to set the gain to the proper value
between these two points. Volume has a minimum value of 0 and a maximum
value of 1. The volume setting would be some value between 0 and 1 as deter-
mined by the distance between the listener and the sound-creating object. If a
variable maxSoundDistance was the distance at which a sound could not be
heard, then the volume setting for the channel displaying that sound would be:

 g = distance/maxSoundDistance

Setting the volume could be done as follows for a listener at (lx,ly) and a
source at (x,y):

(x,y) is sound position; (lx, ly) is avatar position
def playDistance (int x, int y, int lx, int ly, channel player):
 global maxSoundDistance
 d = sqrt ((x-lx)*(x-lx) + (y-ly)*(y-ly)) # Distance
 a = d/maxSoundDistance #
Attenuation
 v = 1-a # Volume
 if v > 1:
 v = 1
 player.setVolume (v)

Example: 2D Positional Sound

Humans have the ability to approximately locate the physical location of a
sound. Most people know this and believe that it has something to do with the
volume at each ear. It does, somewhat, but it’s really more about the time at
which the sound arrives at each ear—the time difference, that is. Your ears
are about eight inches apart, or about 0.6 milliseconds at the speed of sound.
Your brain combines the time difference between the two ears with any volume
difference, takes into account the attenuation due to your head and the shape
of the pinnae (the shaped part of your external ear), and calculates the position
of the sound.

A computer game does not have to do that. The game knows where the
sound source is, and what it attempts to calculate is how that should sound at
your ears. It then sends those sounds to the left and right channels of a stereo
sound system (or the N speakers of a 5 or 7 channel sound system, but we’ll
stick with stereo here). The game sound system depends on the spatial sepa-

173 Game Development UsinG python

ration of the electronic sound system and the ability to set volume levels on
the left and right channels to simulate how the event should sound. We have
to calculate those two sound levels. It is not possible to use time as a positional
factor, because it is not possible to know where the player is with respect to the
speakers (unless headphones are used).

To figure out how to do a positional sound calculation, we need to decide
how to tell where the sound location is relative to the player’s avatar and the
direction that it is facing. We will find the angle between the player and the
sound and use that to adjust the pan control. The player’s location is known;
the facing direction must be known too, and it will be an angle in the same
coordinate system. Recall that the Python math class uses a system that has 0
radians/degrees as screen right, and p/2 radians (90 degrees) as the screen up
direction. With the player at position (X, Y), we’ll define a point (faceX, faceY)
that corresponds to an imaginary point to which the player is facing. This point
will be:

The value of d is a distance from the player, and it can be anything that
provides a long distance; the value d=1000 works pretty well.

Figure 6.9 shows something of the geometry of the situation. The left part
of Figure 6.9 shows a diagram of a player in two extreme situations—one where
the sound is precisely to the right, the other where the sound is directly ahead.
In the first case the sound is at maximum loudness in the right ear and the
minimum in the left, and in the second the loudness should be the same in both
ears. As the sound moves along an imaginary curve from the first point to the
second, the pan between the right and left channel also changes. This describes
what we want to do. Figure 6.9 (right) shows a more abstract geometry, where
the player and the facing direction are used to determine the relative angle to
the sound.

The math and the programming is a bit complicated (See Appendix A for the
relevant mathematics), but the basic steps for determining a pan value from the
positions of the sound source and the listener are:

1. Calculate the angle between the facing point, the listener, and the source.
In the code provided on the web site for this chapter, the function that does
this is

float angle_3pt (x1, y1, x2,y2, x3, y3);

(int)(cos()*)

(int)(sin()*

faceX X facingDirection d

faceY Y facingDirection d

= +
= +

soUnD 174

It is passed the coordinates of the three points that define the angle, with the
listener being the center, and returns an angle in degrees.

2. Determine what side of the line is defined by the listener and the facing point
the sound source is on. This is done using the line equation and plugging in
the x,y values of the source: if the result is positive it’s on one side, negative
and it’s on the other. The function that does this is called:

int whichSide (x1, y1, x2,y2, x3, y3);

It returns +1 if the source is on the left, -1 if on the right.
The product of these two values tells everything we need to know about

the orientation of the listener with respect to the source. This value has to be
mapped onto a pan value between -1 and +1; a sourceAngle value of -90 is a
pan value of -1; a sourceAngle value of 0 is a pan of 0; sourceAngle value of
180 is a pan of 1; and sourceAngle value of 360 is a pan of 0 again. Values in
between can be interpolated, but the use of a pre-computed table can eliminate
repeated calculation (the computation is done many times a second).

The table of left and right channel volumes can be built by starting at 0
degrees, where both sides will be in balance (equal) with a value of 1. As the
angle increases, the sound should move to the left channel until an angle of
90 degrees, where the left is at a medium volume (0.6) and the right is at
minimum. Minimum should never be quite 0, as it is always possible to hear
the sound from both ears. The table is indexed by angle and need not have
a large number of elements. Breaking the angle between 0 and 90 degrees
into 10 parts yields 20 volume levels for that range (10 per channel) and
a total of 80 for the entire table. Interpolation is done to find the volume
levels at any particular angle, assuming that the change in volume is linear.
As an example:

Index Angle Left Right Index Angle Left Right
0 0 0.6 0.6 11 99 0.96 0.15
1 9 0.64 0.55 12 108 0.92 0.20
2 18 0.68 0.50 13 117 0.88 0.25
3 27 0.72 0.45 14 126 0.84 0.30
4 36 0.76 0.40 15 135 0.80 0.35
5 45 0.80 0.35 16 144 0.76 0.40
6 54 0.84 0.30 17 153 0.72 0.45

175 Game Development UsinG python

Index Angle Left Right Index Angle Left Right
7 63 0.88 0.25 18 162 0.68 0.50
8 72 0.92 0.20 19 171 0.64 0.55
9 81 0.96 0.15 20 180 0.6 0.6
10 90 1.0 0.1

Note that the process reverses as we move from 90 degrees to 180 degrees
(facing away). From 180 degrees back to 0, the left and right volume levels
exchange places in the table, so the right channel becomes the loudest. The
values change in the same ratio.

Index Angle Left Right Index Angle Left Right
20 180 0.6 0.6 31 279 0.15 0.96
21 189 0.55 0.64 32 288 0.20 0.92
22 198 0.50 0.68 33 297 0.25 0.88
23 207 0.45 0.72 34 306 0.30 0.84
24 216 0.40 0.76 35 315 0.35 0.80
25 225 0.35 0.8 36 324 0.40 0.76
26 234 0.30 0.84 37 333 0.45 0.72
27 243 0.25 0.88 38 342 0.50 0.68
28 252 0.20 0.92 39 351 0.55 0.64
29 267 0.15 0.96 40 360 0.60 0.60
30 270 0.1 1.0

Using the table involves first computing the angle between the source and
the listener (using angle_3pt()). Make sure this angle is between 0 and 360
degrees, and change it into that range if need be. For example, if the angle is
-40 degrees, then add 360 to give a positive angle of 320 within the range 0 to
360. Divide this angle by 9 to get the index into the table.

The program named soundPositional.py is an illustration of how this works.
It displays a green circle, which is the source of a short jazz piano piece written
for inclusion in this book by Nigel Gebert. It also displays a white circle, indi-
cating the position of the listener, and a blue line that shows the direction the
listener is facing. Clicking the mouse in the window changes the listener’s posi-
tion, and pressing “a” or “d” rotates the listener to face a new direction. It is best

soUnD 176

to listen to the sound displayed by this program using headphones. It clearly
displays the sound positioned in 2D space as the graphic indicates. It also shows
attenuation by distance.

ExERCISES

The following problems will exercise your knowledge of the material in this
chapter, and they will sometimes require that you do more research before you
are able to complete them.

FiguRe 6.9 (left) The listener geometry of positional sound. The ear that faces the source most directly
gets a larger fraction of the sound. (right) The more technical geometry of that situation. We need to
determine the angle ϕ-ϕ and need to know what side (left or right) the source is on.

FiguRe 6.10 Demo program soundPositional.py.

177 Game Development UsinG python

1. You have 5 minutes of stereo recording, sampled at 11025 KHz and 16 bits
per sample, uncompressed. How big is the file?

2. Given any mp3 file, Write a program that will read and play the file. Display
the time played so far on the screen.

3. Implement a pan control for the solution to Exercise 2: when the mouse is
on the left side of the screen, the sound will play only on the left speaker, and
as the mouse is moved to the right, the sound is shared between the speakers
and then moves right.

4. Create a simple keyboard that plays the basic notes starting at A (440 Hz).
Each note will be played when an appropriate key is pressed: a, b, c, and so
on. The note frequencies are: A (440) B(493.9) C(523.3) D(587.3) E(659.3)
F(698.5) G(784.0).

5. Finish the sound recorder example. When the “r” key is pressed, begin
recording, and when pressed again, stop recording. Save the recorded sound
to a file when the “s” key is pressed. Indicate that recording is taking place
with a message or other obvious sign.

6. Construct a visual/auditory demo of distance attenuation. Let the sound
source be represented by a circle and the position of the listener be
represented by a second circle, drawn at the current mouse position. The
volume with which the sound will be played (any file you like) is to be a
function of the distance between the two circles.

7. Construct build a sketch similar to that of exercise 6, but now have two sound
sources indicated by two circles drawn a few hundred pixels apart. Both sounds
are playing simultaneously, and the volume of each is a function of the distance
between the mouse position and the circle representing that sound. You can
“mix” the sound levels relative to each other by moving the mouse about.

8. (Sound editing) Locate a recording of a hockey game on the Internet or record
the sound from your television. Using Audacity, GoldWave, or a similar sound
editor, locate a clean instance of a puck hitting the boards. Extract this into its own
file, and clean it up using whatever filters you choose so that you think it sounds
good. Edit the beginning and end so that the sound clip plays immediately when
the file is started. Save this file for the problems in the next chapter.

RESOURCES

Where to download Minim:
http://code.compartmental.net/tools/minim/
http://processing.org/reference/libraries/
Top-level Minim documentation:

soUnD 178

http://code.compartmental.net/minim/javadoc/
Javasound Documentation:
http://docs.oracle.com/javase/6/docs/technotes/guides/sound/programmer_guide/

contents.html
Minim audio signal documentation:
http://code.compartmental.net/minim/javadoc/ddf/minim/AudioSignal.html
 Audacity:
http://audacity.sourceforge.net/download/
 GoldWave:
http://www.goldwave.ca/
Free sound effects: http://www.grsites.com/archive/sounds/

REFERENCES

1. K. Collins. (2008). Game Sound: An Introduction to the History, Theory, and
Practice of Video Game Music and Sound Design. Cambridge, MA: MIT
Press.

2. C. Crawford. (1984). The Art of Computer Game Design. Berkeley, CA:
McGraw-Hill/Osborne Media [out of print but available as an eBook or
download at http://www.vic20.vaxxine.com/wiki/images/9/96/Art_of_Game_
Design.pdf].

3. Johnny Friberg and Dan Gärdenfors. (2004). Audio Games: New
Perspectives on Game Audio. ACE ’04 Proceedings of the 2004 ACM
SIGCHI International Conference on Advances in Computer Entertainment
Technology.

4. 4. J. Heerema and J. R. Parker. (2013). Music as a Game Controller.
IEEE International Games Innovation Conference 2013, Vancouver, BC,
September 23–25.

5. Ben Long. The Insiders Guide to Music and Sound for Mobile Games
[eBook]. http://www.amazon.com/Insiders-Guide-Music-Sound-Mobile-
ebook/dp/B0077QMKNU.

6. J. R. Parker and John Heerema. (2008). “Audio Interaction in Computer
Mediated Games.” International Journal of Computer Game Technology.
Pp 1-8

7. Richard Stevens and Dave Raybould. (2011). The Game Audio Tutorial: A
Practical Guide to Sound and Music for Interactive Games. Burlington, MA:
Focal Press (Elsevier).

8. Nigel Gebert (2018) Keys for Jim, musical composition. https://soundcloud.
com/seeking-satellites/keys-for-jim

179

chapter 7
c2H6o Jet BoAt rAce

Having looked at the internal structure of a game, some basic graphics, and
audio, we now have the tools at our disposal to build a complete 2D game.
We began a game design document for the Jet Boat Race in Chapter 1, so let’s
complete that game as an example. One should never jump right into coding
at the very onset of a project, because we don’t know at that time where we are
going. On the other hand, a degree of organization and discipline are needed,
and iterative prototyping is a good way to structure a project in game develop-
ment: create a playable game as soon as possible and then play it, taking note
of deficiencies and exciting parts. Then use that information to make a second
improved version and play it again, repeating until it is excellent or until you
run out of time.

Game developers work from documents. The high concept was a sales
device, not a working development document. The most important thing to
have when building a game is the game design document (GDD), which is
really a blueprint of what the proposed game will be. There are many forms
of GDD but all have some basic things in common. It must describe the game
in enough detail to implement it unambiguously. In most game development
companies there is a team building a game, and that team will each work from
the same GDD. It defines the goal.

So, we should now add to the GDD for Jet Boat and then stick to it when
building the game, just as is done in real life. This is a simple game and the
document will be short, but the GDD for a major game can be hundreds of
pages long.

IMPLEMENTING THE GAME: PROTOTYPES

In traditional software development it is not uncommon to have a
complete design document before starting the coding part of the project.

180 Game Development UsinG python

“Don’t write any code until you have a spec” is what they teach at school.
When developing a game, it can be very useful to have a malleable set of
executable prototypes right at the very beginning. These are executable but
not functional, if that makes sense; the game implemented is a primitive one
that has only the main feature or two working. The purpose is manyfold, but
first it allows the client, the person contracting for the game, to get a visual
feel for what is being proposed. It’s very well to say that we’re building a
Mario Kart variant in the style of a boat race, but it is quite another to see
it on the screen.

Next, it gives us an idea of how complex the project is. Many devel-
opers have the ability, after decades of practice, to conceptualize this
in their heads. However, seeing the game surface, the size of the parts,
the speed of the objects, the colors—this can give new ideas, can iden-
tify places where things could get difficult, and generally helps get the
project off to a good start. Later prototypes allow testing of new ideas,
addressing efficiency matters, and trying out new art and music. Final
versions are play tested so as to ensure that the final product is as much
fun as possible.

Prototype 0

This first tentative version is mainly for an initial evaluation in-house. In this
particular case the basic code only required about thirty minutes to create. It
gives only a basic feel: the gameplay area is displayed,

Does this look like what we want? Is the window big enough? The boat, is it
too small? There is no sound yet, no interaction.

This is pretty impressive, really. In C or even Java it would have been very
difficult to create this in under an hour, and the number of lines of code would
grow enormously. The things that pygame gives us are the things that are not
interesting to code and that take a lot of time: window management, graphics,
animation, and interaction.

Prototype 0 only displays the terrain and a boat. The terrain moves
as the “wasd” keys are used, with the boat staying in the same relative
position in the window. From this prototype, it was noticed that the back-
ground image was too small or the boats were too large (Figure 7.1). As
a result, the background image was increased in size, and the rivers were
widened.

c2h6o Jet Boat race 181

1600x1350 3200x2700

Prototype 1

This is the prototype that was first shown to the client. It has the suite of
screens that will be used in the final game, if not the actual art that will be in
place. It has boats that can be drawn and some intermediate graphics. This is
a better example of how the game will look, and it can be given to someone
outside of the development group for comments.

The art for the screens exists, even if it is preliminary. The buttons on the
screens work, so transitions between screens can be illustrated. The game itself
has not progressed much, but the entire system seems more finished. The
amount of code needed to implement the screens and the buttons is significant:
prototype 1 has about eleven times the amount of code as did the previous
version. It took over eighteen hours to build, including the art. It turns out that
the artwork and positioning buttons took the lion’s share of the time involved.

Screens

According to the game design document, there are to be four different
screens used in the game: a start screen, an options screen, a play screen, and
an exit screen. The consequences for the code are that each screen corresponds
to a different state in the display and enables distinct activities in the game code
itself. The keyboard, for instance, has no effect on any of the screens except
the play screen, where it controls the paddles. The mouse has no impact on
the play screen, but it is used on the other screens to select an option or screen
transition. And of course, quite different graphics are displayed in each screen.

FiguRe 7.1 The first prototype game screen.

182 Game Development UsinG python

A simple finite state machine can be used to keep track of things. The state is
the screen being displayed, and the transitions are controlled by the mouse and
the game play itself. The start screen takes you to the options, end, or play
screen. From each of those you can return to the start screen.

So, the screens can be numbered: startState=0, optionState=1, playState=2,
and endState =3. These are state numbers, and the function we use to draw the
screen uses the state number to display the correct screen. Each screen will be
displayed by a distinct function (startScreen(), optionScreen(), etc.)
so the body of the main loop will look like this:

while True:
 for event in pygame.event.get():
 if screenState == STARTSTATE:
 startScreen (event)
 elif screenState == OPTIONSTATE:
 optionScreen (event)
 elif screenState == PLAYSTATE:
 playScreen (event)
 elif screenState == ENDSTATE:
 endScreen (event)
 else:
 print (“ERROR: Bad state in main loop.”)
 exit()
 pygame.display.update()

In this way the state we’re in is used to draw the screen each time a new
frame is drawn. Screen transitions are done in the mouse handler mouseRe-
leased, and the code looks very much like the previous code. If the mouse is
clicked in a button on a screen, the value of screenState is changed.

Buttons

A “button” is not a thing that pygame gives us, so we have to implement
it ourselves. It’s really just a region, usually rectangular, that responds in a
particular way to a mouse click. The button has a label that reflects its function,
so we speak of “start” or “play” buttons. When the mouse is pressed or released,
pygame calls a function named mousePressed or mouseReleased respec-
tively, if those functions are defined. So, if mouseReleased is called and the
coordinates of the mouse are within the bounds of the rectangle defined by the
button, then the button was said to have been pressed.

The start screen has three buttons—“Options,” “Play,” and “Quit.” The
“Options” button has upper left window coordinates (300,250) and width and
height (100, 30). The Python/pygame code that implements a button is best

c2h6o Jet Boat race 183

implemented as a class button, which can be used generally to create buttons
on any game screen. This class has the description:

 class button:
 def __init__ (self, x, y, w, h):
 self.posx = x # Coordinates of upper left
 self.posy = y
 self.width = w # Width and height
 self.height = h
 self.text = “” # Text displayed in the button
 self.size = 34 # Text size
 self.font = None # Text font
 self.color = (255, 255, 0) # Normal color (Yellow)
 self.col = self.color # Current color
 self.armed = (255,0,0) # Armed color
 self.family = None # Font family

 def setText (self, t):
 def isArmed (self):
 def draw (self):
 def setfont(s):
 def textsize(self, n):
 def drawText(self, s, x, y):
 def setcolor(r, g=1000, b=1000, a=255):
 def setarmed(r, g=1000, b=1000, a=255):

Creating a button involves an initialization that mainly specifies the
location and size of the rectangle the button contains. Creating a button
is a matter of using the constructor. For the Options button on the start
page:

 optionButton = button (300,250,100, 30)

This places the upper left corner of the button at (300, 250) and makes it 100
pixels wide by 30 pixels high. Next some text is placed in the button:

 optionButton.setText (“Options”)

The default color for the text is color = (255,255,0), which is yellow. The
color changes to the armed color of (255, 0,0) or red when the mouse is over the
button region. Releasing the mouse button when the button is armed should
cause the action indicated by the mouse to be performed.

Displaying the button is accomplished by calling the draw method of the
button. The Options button is displayed only on the start screen, so in the func-
tion startScreen of the game program we place the code:

184 Game Development UsinG python

optionButton.draw()
if event.type == pygame.MOUSEBUTTONUP and optionButton.isArmed():
 screenState = OPTIONSTATE
 optionScreen(event)
 return

This draws the button and checks to see if the mouse button was released
while the button was armed; if so, it changes the current screen to the Options
screen. Then the Options screen is displayed. The method isArmed returns
True if the button is currently armed. The startScreen function must also draw
and activate the Play and Quit buttons. Setting the variable screenState to the
value OPTIONSTATE means that the next time the main loop is executed, the
Options screen will be redrawn.

Start Screen

When a player starts running the game, the Start screen appears. This
screen is illustrated in Figure 7.2. It shows a graphic background and three
“buttons” that allow transitions to the other screens. Many games and other
interactive software that have buttons display when the button is armed (i.e.,
the mouse is over the button and a click will activate it) by changing the
color or the font, or by showing the fact graphically somehow. In order to
accomplish that, the buttons should be small images rather than simple text
drawn on the screen. Each button has two images to represent it—one for

FiguRe 7.2 The Start screen. https://commons.wikimedia.org/wiki/File:Shotover_Jet,_Jet_Boating_the_
Shotover_River_Canyons,_Queenstown,_New_Zealand.jpg.

c2h6o Jet Boat race 185

the normal button, and one for the armed button. In Figure 7.2, no button
is armed.

When the mouse button is pressed while the coordinates of the cursor are
inside of one of these buttons, a transition is made to another window simply by
assigning a new value to the screenState variable.

Options Screen

When the player selects Options, the game makes the transition to the
Options screen (screenState == optionState). This screen presents the player
with the set of user selected parameters that can be chosen. This includes the
ability to turn the sound off, but in other games there could be more options,
such as a choice of a one- or two-player game, or the ability to select a home
team or the avatar for the player.

Again, the buttons that allow a choice are small rectangular regions imple-
mented as images. When the user clicks on the “Single Player” button, it is
replaced by “2 Players” and back if clicked again, so that the current selection
is visible on the screen at all times. This does not work in the case of the team
selection, because all teams have to be visible to make a choice, so the selected
team’s logo will be the first one in the list. Clicking the button labeled “Back”
takes the player back to the Start screen (screenState == startState).

FiguRe 7.3 The Options screen. https://commons.wikimedia.org/wiki/File:Fjordn_surface_wave_boat.
jpg.

186 Game Development UsinG python

When the sound is turned off, another flag is set (to false), which means that
all calls to functions that play sounds are disabled. In this prototype there are no
sounds yet, so no actual implementation details are available.

Play Screen

The Play screen is pretty much as shown in Figure 7.1. No visible change has
been made to the play of the game as implemented even though the design has
advanced, because the changes have taken place in the subsidiary aspects—art
and screens for the most part. However, this is the screen that displays when
the Play button is selected, where it was the only screen available in the initial
prototype.

end Screen

The End screen is simply informative, giving game credits and contact
information. A click anywhere in this window will terminate the game program
(Figure 7.4).

Prototype 2

After prototype 1 has been assessed and agreed to by the client or the
design team, then next step is to develop the game features in detail. This
means that the screen development is considered to be complete, and all
changes will be seen on the game screen only. There are three major issues

FiguRe 7.4 The End screen, showing game credits.

c2h6o Jet Boat race 187

to be addressed in this prototype: user control, sound (including score), and
the game AI.

Usually there will be intermediate benchmarks that the producer will insist
on, and at those points in the development a play test or demo will be conducted
to ensure that sufficient progress is being made. It is essential at all points in the
development that a current working version of the game is always maintained,
and that a demo of the more recent version can be conducted at any time.

The Play Screen

The play area is much larger than the viewing area, or the display surface in
pygame terms. The play area is 3200 x 2700 pixels (see Figure 7.1) whereas the
surface is 500 x 400. Think of the surface as a window into the complete play
area. There are three important coordinate systems that have to be reconciled
if we wish to only display the smaller window and always have the boat in the
scene.

The first coordinate system involves the play area, the 3200 x 2700 pixel
background image. The window and the boats will all have (x,y) coordinates
within this area. Specifically, the player’s boat will be at coordinate (bx, by).
Simplistically this would seem to solve all of the other problems: the upper left
corner of the viewing area is (x,y) = (bx-250, by-200) because the boat should
be centered in this area. The background image must be translated by (-x,-y) so
that the viewing area is drawn properly. That is, the code would be:

 display.blit(background, (-x, -y))

where display is the display surface and background is the background
image. Where is the boat drawn in this example? It’s supposed to be in the
center of the viewing area, or at (250, 200) in coordinates relative to that system.
That is in ideal circumstances.

FiguRe 7.5 (Left) The entire playing area (terrain) showing the size of the display area. (Right)
Close-up of the display area.

188 Game Development UsinG python

The values of x and y should never become smaller than zero; other-
wise, there will be parts of the display area that do not have a terrain
image covering them. These will be displayed in a background color, and
it looks bad. It takes away from the fantasy of the game. There is a similar
problem at the right side and bottom of the play area. The display is 500
pixels wide, so x must not be larger than 3200 – 500, or 2700; otherwise,
it will exhaust the background image. In the y direction the limit is 2700
– 400 = 2300.

The code that does this is:

(bx,by) are the game space coordinates of the boat
x = bx – 250 # Upper left x of window
if x<0: # Can’t be less that 0
 x = 0
elif x > 2700: # Can’t be larger than 2700
 x = 2699

y = by-200 # Upper left Y of window
if y < 0: # Again, must be positive
 y = 0
elif y > 2300: # y can’t be larger than 2300
 y = 2299

xx = 250 # Boat will be draw at screen (250,200)
yy = 200 # Which is the center of the screen

Draw terrain image, shifted so that upper left is at (x,y)
display.blit(background, (-x, -y))

Draw the boat at (xx,yy) at approximately its centre
display.blit (pygame.transform.rotate(boat2, angle),
 (xx-boat2.get_width()/2, yy-
boat2.get_height()/2))

The result is that the player’s boat can never get closer than 250 pixels to
a left or right boundary, or closer than 200 pixels to the top and bottom. This
works fine if the terrain would also forbid this, that is, if there are no water
areas in those boundary regions of the terrain. That’s not true here. That means
that in some cases the boat will either not be able to reach all of the reasonable
locations on the map, or we’ll have to modify the positioning of the boat in some
specific cases.

Consider a case where the boat is at location (250, 200), as in Figure 7.6.
Here, x = bx-250, which is 0. The background can’t be drawn any further
to the right, or down for that matter. Allowing the boat to be drawn in the

c2h6o Jet Boat race 189

correction position means repositioning it within the window. If it moves
one more pixel to the left, the value of x must stay at 250, bx decreases by
1, and so the boat must be redrawn one pixel to the left (smaller x) within
the window. The variable xx would be 250 – 1. Doing it again draws the
boat at 250 – 2, and so on. In general, it is drawn at 250 –- dx for dx equal
to the number of pixels smaller bx is than 250, or in other words, dx =
250-bx. There is a global limit that bx can never be smaller than 0; other-
wise, it would vanish off of the screen. The same scheme works for the y
coordinate.

As the boat moves to the right, the x coordinates increase until a value of
2700 is reached. This is the maximum value for x, since it is one window width
to the left of the right edge, or 3200 – 500. In the y direction the maximum
value is 2300. When x is 2700, because x = bx-250, it means that bx must be
2950. The boat will now move within the window to the right by 1 pixel each
time bx increases, or dx = 2900 – bx. Similarly for y, dy = 2500 – by after y
becomes greater than 2300.

Finally, a check is made to ensure that (bx,by) is within the play area. All of
this can be encompassed within a function move():

FiguRe 7.6 The boat cannot move any further to the upper left in this case because it is at (250,200).

190 Game Development UsinG python

def move ():
 global speed, angle, x, y, xx, yy,

 bx, by, background, boat2
 speed = speed - 0.001 # Slow down
 if speed < 0:# Can’t move backward
 speed = 0
 dx = 0
 dy = 0
 else:
 dx = speed * math.cos(math.radi-
ans(angle))
 dy = -speed * math.sin(math.radi-
ans(angle))

 bx = bx + dx # New boat position

 # on map is(bx,by)
 if bx>3200: # Keep the boat

 # on the play area
 bx = 3199
 speed = 0
 elif bx<0:
 bx = 1
 speed = 0
 by = by + dy
 if by>2700:
 by = 2699
 speed = 0
 elif by<0:
 by = 1

speed = 0

dx = 0
dy = 0

x = bx - 250 # Boat is far left.
if x<0:
 x = 0
 dx = 250-bx # dx is offset from

 # centre of window
elif x > 2700: # 3200 - 500 is 2700
 x = 2700
 dx = 2950-bx
y = by-200
if y < 0:
 y = 0
 dy = 200-by
elif y>2300:
 y = 2300
 dy = 2500-by

xx = 250-dx
yy = 200-dy

display.blit(background, (-x, -y))
display.blit (pygame.transform.
rotate (boat2, angle),
 (xx - boat2.get_width() / 2,

 yy - boat2.get_height() / 2))

This will deal with any boat position specified by (bx, by). To generalize this
for use with multiple boats, we can create two lists, boats_x and boats_y, that
hold the coordinates of all boats, and always have the player’s boat as the zero
index. That means that bx = boats_x[0]. Now we’ll look at how that position is
controlled by the user.

User Control

User control involves making the software connection between the
key presses and the position of the boat. It appears to be a simple

c2h6o Jet Boat race 191

matter, but there are important issues to resolve. Specifically: what do
key presses mean, how fast can the boat move, and how quickly can it
accelerate?

The motion is implemented using the event pygame.KEYDOWN.
Pressing the “w” key, for instance, begins moving the user’s boat forward,
essentially increasing speed; the “s” key will slow the boat, but will not move
it backward. The direction that amounts to forward is indicated by an angle,
where 0 degrees is increasing x. Pressing the “a” key will increase the angle
by 5 degrees, and pressing the “d” key will decrease the angle by the same
amount.

Program control of the player’s boat uses two variables: speed and
angle. Each time the “w” key is pressed, the speed increases up to a limit,
and when “s” is pressed it decreases. If the boat is moving and no key is
being pressed, the boat will slow down and stop due to friction with the
water. Thus:

if event.type == pygame.KEYDOWN:
 k = pygame.key.get_pressed()
 if k[pygame.K_s]:
 speeds[0] = speeds[0] - .1
 if k[pygame.K_w]:
 speeds[0] = speeds[0] + .1

Why not use:
if event.key == pygame.K_s:
 speed = speed - .1

because the player may wish to hold down the “w” and the “a” keys at the
same time. The get_pressed method returns all of the keys that are being
pressed.

The variable angle refers to the boat’s direction of travel. Zero degrees is
to the right, 90 degrees is up, and so on. Each time the “a” key is pressed,
the angle increases by 5 degrees, and when the “d” key is pressed, the angle
decreases by 5 degrees. This means that “a” rotates the boat counterclockwise.
This angle-speed control scheme is typical of driving games, where “forward”
always means “in the direction you are facing,” and player control involves
changing the facing direction and the speed of the avatar. The control of the
angle is accomplished by:

if k[pygame.K_a]:
 angles[0] = angles[0] + 5
if k[pygame.K_d]:
 angles[0] = angles[0] - 5

192 Game Development UsinG python

Given the speed and the angle, a change is position is computed. The boat
is now at (bx, by). Its change in position is going to be (dx, dy), so that the
new position is simply (bx+dx, by+dy). Some simple trigonometry gives the
answer:

dx = speed * math.cos(math.radians(angle))
dy = -speed * math.sin(math.radians(angle))

The variable dy has a sign reversal because “up” is the -y direction, unlike
on a mathematical coordinate axis. Displaying the boat in its rotated orientation
uses the function pygame.transform.rotate(boat, angle), where boat is an
image of the boat pointing right (zero degrees). Hence the code for displaying
the boat could be:

display.blit (pygame.transform.rotate(boat2, angle),
 (xx-boat2.get_width()/2, yy-boat2.get_height()/2))

The Boat Class

There will be three boats in this game: the player’s boat and two NPCs. It
seemed clear from the outset that a boat should be implemented as a class, but
until the user control and AI sections were designed, the structure of that class
was fuzzy. Now it is fairly obvious. All boats, including the player’s boat, have
the same structure.

First, the important parameters of the boat upon creation are: the (x,y) posi-
tion, the speed, and the course or angle. Variables local to each boat will include:
the sound to be played for the engine, the current volume for the engine sound,
the sprite to be drawn to represent this boat, the target speed, the target angle
(i.e., when the boat changes course, these define the endpoint), the current
destination on the map, and a name for the boat for debugging purposes.

class npc :
 def __init__(self, x, y, sprite, speed, angle):
 self.x = x
 self.y = y
 self.speed = speed
 self.angle = angle
 self.index = 1
 self.sound = False # Engine sound.
 self.volume = 0
 self.targetSpeed = 0 # How fast does the boat want to
go?
 self.targetAngle = 90 # What is the course setting?

c2h6o Jet Boat race 193

 self.sprite = sprite # The image of the boat
 self.wpt = None # Next waypoint
 self.name = “NPC 1”</CODE>

The class has the following methods at this point in its development:

def setSpeed (self, s): # Change the speed to s
def setCourse (self, a): # Change the course (angle) to a
def setWaypoint (self, w): # Change the current waypoint to w
 # (see below – AI section
def setName (self, s): # Change the name of the boat to s
def adjustAngle (self): # Make another step towards the target
angle
def adjustSpeed (self): # Make another step towards the target
speed
def distance (self, a, b): # Distance between two points
def nextStep(self): # Make one step: move the boat and
draw.

Note that the code written previously uses an array speeds[i], angles[i],
and so on. Using a class this will be boats[i].angle and boats[i]].speed, where
boats is a tuple of all boats. The item boats[0] is the player’s boat. Where bx and
by were used, the values are now boats[0].x and boats[0].y.

After each iteration of the game loop, the method nextStep for each boat is
called. It moves the boat, and if a change of direction or speed has been called
for, then a step is made to achieve that goal. Each change is broken into indi-
vidual steps so that a boat cannot accelerate too quickly. Speed, for instance,
can increase by 0.1 units per iteration and the angle by 1 degree. Changing the
angle by 20 degrees will thus need 20 steps, as implemented by adjustAngle,
which is called by nextStep if needed.

The boat class will be modified further as required, to add sound and anima-
tions and other new features.

Artificial Intelligence

The artificial intelligence portion of this game determines collisions and
controls the non-player boats in a single player game.

Collisions

There are only two kinds of collision that can happen in this game so far,
and both can be determined using simple geometry rather than needing more
complex collision-detection methods. The boat can collide with the shore,
which is the effective boundary of the game, or the boat can collide with a
second boat.

194 Game Development UsinG python

Collisions with the shore involve an irregular collision surface that follows
the shoreline, which can be difficult to deal with. One way to deal with this is to
create a set of boundaries as connected line segments that follow the shorelines,
beyond which the bounding box of any boat cannot pass through any of these
line segments and should in fact bounce off of them. This is a very general solu-
tion, but it is pretty complex and may take a lot of time. For this game it should
be sufficient to use the background to determine whether the boat is grounding
or not.

If the boat is in the water, then the color beneath it will be blue; that is, the
color on the terrain map at the boat location will be blue. The simple way to
detect grounding is to see if the color at the front of the boat and on each side
is the color of water. If so, no grounding has taken place; otherwise, it has. A
function shoreCollide will do the work and will return True or False as the
boat is grounded or not. It works as follows: obtain the the pixel (color) value
at the four points that define the bounding box for the boat. Water has a red
component of 33. If any of the three sampled points does not, then the boat has
collided with something that is not water.

The method nextStep in the NPC class updates the screen position of the
bounding box at each game step. These are stored in four tuples: ul, ur, ll, and
lr. This is the object oriented bounding box, of course, and it is exactly what is
needed for the purpose.

The shoreCollide function takes one parameter, the index of the boat being
tested. It could have been a part of the NPC class, in which case the index param-
eter would not be needed. The first step is to convert the screen coordinates of
the bounding box into terrain coordinates (function screen_to_terrain).

Now we use the corners of the box to retrieve the terrain pixel at those
points. The red component must be 33 or that point is over a shore pixel. The
function sets a corresponding Boolean variable to True each time such a pixel
is found, and the function returns True if any of those variables are true. Other-
wise, it returns False.

This seems like more work than needed, but it would be possible to
define a new target angle for the boat knowing which of the four corners is
grounded. The game does not do this right now, but it is on a list of improve-
ments. The following code simply returns as soon as it becomes aware of any
grounded point:

def shoreCollide (i):
 global background
 boat = boats[i]
 ulx, uly = screen_to_terrain (boat.ul)

c2h6o Jet Boat race 195

 lrx, lry = screen_to_terrain (boat.lr)
 urx, ury = screen_to_terrain (boat.ur)
 llx, lly = screen_to_terrain (boat.ll)

 pygame.draw.line(display, (0, 255, 0), (boat.ul[0], boat.
ul[1]),
 (boat.ur[0], boat.
ur[1]), 3)
 pygame.draw.line(display, (255, 0, 0), (boat.ur[0], boat.
ur[1]),
 (boat.lr[0], boat.
lr[1]), 3)

 c = background.get_at((int(ulx), int(uly)))
 if c[0] != 33:
 return True
 c = background.get_at((int(llx), int(lly)))
 if c[0] != 33:
 return True
 c = background.get_at((int(urx), int(ury)))
 if c[0] != 33:
 return True
 c = background.get_at((int(lrx), int(lry)))
 if c[0] != 33:
 return True
 return False

Note that two lines are drawn by this function. These correspond to the
upper edge of the bounding box, drawn in green, and the right edge, which is

FiguRe 7.7 The upper edge of the bounding box is the long line on the left side of the boat (Green in the
color image) and the right edge of the box is the short line near the front of the boat (Red in the color image).

196 Game Development UsinG python

drawn as red. It is interesting to see this because the boat image in the original
file shows the boat facing right. This means that the left side of the boat is really the
upper edge of the bounding box. This is clear from a screen capture of the boat in
the test program.

Navigation

In this game there will be two other boats against which the player can race.
If the game is to be entertaining, these boats have to put up a challenge to the
player. They can’t simply wander the lake aimlessly but must complete the same
route as the player does, avoid the shore and other boats, and cross the finish
line. Also, because the point of an NPC is to be entertaining, the NPC boats
should not be so good that they always win. The player must have a chance.

The NPCs will use waypoint navigation, as explained in Chapter 5. This
means building a system of waypoints and associated data manually, a time-con-
suming process. Only some of this process will be explained, because much of
it is repetitive.

Boat 1, as shown in Figure 7.8, has 15 waypoints. Each specifies the location
of the next waypoint and gives a speed and direction to maintain. The direction
can change, of course, based on collisions and avoiding obstacles.

Initially, boat 1 is destined for waypoint 1. When it arrives, it will be assigned
waypoint 3 and a new speed. Boat 1 uses the odd-numbered waypoints only,
and boat 2 uses the even-numbered ones. If a boat is knocked off course, it will
try to reach its assigned waypoint. The waypoint paths assigned to boat 1 are
shown in Figure 7.8.

FiguRe 7.8 The initial positions of all boats, and the first waypoint.

c2h6o Jet Boat race 197

A boat can change course (facing angle) by two means. First, a boat tries
to avoid other boats. It will change angle to avoid either of the other two. In
addition, if a boat collides with the shore, it will change angle again so as to get
back on track.

Let’s examine this navigation issue in a very practical and detailed manner.

Waypoints

As a data structure, a waypoint is a tuple holding the data needed to complete
the next phase of the boat’s journey. When the boat arrives at a waypoint, as
indicated by the distance of the boat to the waypoint being sufficiently small,
then the new waypoint becomes the next one. Each post has a next waypoint,
which is an intermediate destination. Every waypoint holds the following data:

Coordinates of this waypoint (x,y).
The number (index) of the next waypoint.
The speed that the boat should try to maintain along this path.

In Python this could be a tuple:

 (x, y, index, speed)

FiguRe 7.9 The course followed by a boat, connecting the waypoints.

198 Game Development UsinG python

Each boat steers to the coordinates (x,y) of the next waypoint, whose angle is
simple to calculate. The course (angle) to the next waypoint is a good start, and
it is stored in the waypoint itself. Two consecutive waypoints define a course,
and if nothing interferes it is all that’s needed. The coordinates of the next
waypoint can be used in the case where the boat collides with something or
avoids another boat.

The waypoint data was created by using the terrain map and plotting courses
on it as line segments, with each segment starting and ending at a waypoint.
These data are stored in a file named params.txt, which the program reads at
the beginning of the game.

Within the program, a waypoint is implemented as a small class so as to avoid
the use of a list of tuples, something some people find awkward:

class waypoint:
 def __init__ (self, x, y, index, speed):
 self.posx = x
 self.posy = y
 self.index = index
 self.speed = speed

The collection of all waypoints is a tuple waypoints consisting of these class
objects. Now consider an NPC boat as it executes from the start to the end of
the race. Initially its waypoint is #1 if we’re using boat 1. When the game begins
this boat must be given a course (angle) that will take it to waypoint 1 at (432,
2391). When the race begins the speed is 0 and the angle is 90 degrees, because
that is its initial state. The game loop calls the move function, which moves the
player’s bot and then ultimately calls otherBoats, which moves the NPC boats.
It first calls the nextStep method of the NPC class, the one that moves the
NPCs, and then draws the boats in their new locations. The nextStep function
is the focus here.

A waypoint is a destination and specifies a speed. The method nextStep
first adjusts its speed to account for friction. Then it determines what the new
(x,y) position on the terrain will be, given its speed and course, and moves
the boat to that location. It checks for a shore collision, as was done with the
player’s boat.

Now it checks to see if it has reached the waypoint. If so, it changes the
target to the next waypoint in the path. The it adjusts the speed (adjustSpeed)
and its course (adjustAngle) to make sure it is traveling at the correct speed
and course for the waypoint. It steers to the next waypoint using the code:

self.targetAngle = math.degrees (math.atan2
 (self.wpt.posy-self.y, self.x-self.wpt.posx) + math.pi)

c2h6o Jet Boat race 199

It then draws the boat if it is located within the window.

Avoiding a Boat

Detecting collisions between boats is more critical, because such an event
will destroy both boats. A broad phase detection could be done using enclosing
circles. The boats are much longer than they are wide, though, and this will be
misleading much of the time. Using bounding boxes is better, but they would
have to be aligned with the axes of the boats.

The boat images are 84 x 26 pixels, and the base image has the boat facing
right (0 degrees). Finding an axis-oriented bounding box starts with the
bounding box of the base image, which consists of four points in the terrain
image coordinate system. Now rotate these points by the same angle as the boat
is facing. A function rotate is given that does this for a point and returns a new
point. The rotation should be done about the center of the boat. Now convert
these points from the terrain system to the screen coordinate system, for which
a function terrain_to_screen has been provided. The bounding box is defined
by the original four bounding box points, rotated and converted in this way.

Two boats have collided if the ray projected by one of the boats intersects
with the bounding box of the other. In Figure 7.10, the simulated black boat is
showing the ray that is used to determine a potential collision, which is repre-
sented by the green line. The potential collision results in a movement by the
black boat away from the other.

FiguRe 7.10 The ray projected by the black boat intersects the bounding box of the other (left) causing
it to change course to avoid it, in this instance by rotating clockwise.

200 Game Development UsinG python

def avoid (self, i, ddx, ddy):
 self.state = self.AVOID
 zangle = math.degrees(math.atan2(ddy-self.y, ddx-self.x)-
 math.radians(180.0))
 if zangle < 0:
 zangle = zangle + 360.0
 elif zangle > 350:
 zangle = zangle - 360

 if self.angle < zangle*1.3:
 self.angle = self.angle + 1
 else:
 self.angle = self.angle - 1
 return

The variable zangle is the angle between the two boats. It is used to deter-
mine the direction in which the avoiding boat will turn. Also note that the boat
that has decided to avoid the other is in a new state, AVOID. A boat in this state
does not change its angle or speed in the usual way but lets the avoid function
determine its course.

It is to be expected that in many cases one of the two boats involved will
be the player’s boat, because the NPCs have been given courses that avoid
collisions in the first place. This particular strategy has the NPCs take a rather
passive stance, and the player can push them around by being aggressive. Of
course, this presents the risk of forcing a collision if the NPC cannot respond
properly.

Colliding with the Shore

When a boat collides with the shore it must try to escape. Moving on land
should not be possible. Its actions must be reasonable based on the situation in
a real boat race.

So, if an NPC boat collides with the shore, it stops abruptly and must try to
escape. This amounts to yet another state, which will be called COLLIDED.
In this case the waypoint will cease to be the immediate destination until the
boat steers away from the shore. The only way that an NPC can ground is if
another boat pushes it, because in most cases it will move from waypoint to
waypoint.

There are many ways the boat could try to escape, but an obvious one is to
back up a bit and then turn. Then it will resume course. If it hits the shore again,
it will repeat the process. The shoreline has been designed so that it should not
be possible to get trapped in a loop while trying this maneuver. While in the

c2h6o Jet Boat race 201

COLLIDED state, the boat will first attempt to back up. A count will be kept
of the number of steps the boat has made doing this, and after a fixed number
(20 in this game), it will then try to turn. Again, 20 steps are performed, and
each one turns the boat by 2 degrees. At this point the boat attempts to resume
course to the current waypoint.

The method that does this is called escape and looks like this:

 def escape (self):
 if self.estate < 20: # Back up
 ddx = self.speed * math.cos(math.radians(self.angle))
 ddy = -self.speed * math.sin(math.radians(self.angle))
 self.x -= ddx*2
 self.y -= ddy*2
 elif self.estate < 40: # Change the angle by 2 degrees
 self.angle += 2.0
 else: # 40 steps. Exit COLLIDED state
 self.state = self.NORMAL
 self.speed = 1
 self.estate = self.estate + 1 #estate is the current
step number

There are other ways to accomplish this that take more effort but could be
better:

1. Another set of waypoints running down the center of the track and closely
spaced to be used as targets, and a nearby one would be selected when the
boat grounded.

2. The path just followed could be stored, and the boat could back away along
that path when it hits the shore.

3. The distance to the center of the water area for each point could be found,
and the boat could move toward that point.

Sound

Now that the user control system is being implemented, it makes sense to
assign audio events to events in the game. There are only a few audio events in
this game, but it is important to give them sensible sound effects, ones that a
boat racing fan would recognize. In particular:

- There will be the sound of the boat engine(s) whenever the en-
gine is running, that is to say, when the boat is moving in the forward
direction.

202 Game Development UsinG python

- There could be sound effects of bounces against the shore.
- There will be sound effects of explosions when boats are destroyed.
- There is a gun that indicates the start of the game, and one that indicates the

end.
- There could be extra audience sounds, like cheers, which can be played at ran-

dom.

engine Sounds

Some time was spent in Chapter 6 showing how engine sounds could
be created using Audacity. The sounds created in this way have been saved
as mp3 files named engineBoat1.mp3 through engineBoat5.mp3. Each
engine sound is distinct, and each should be assigned to a different boat
in the game. The sound should play as long as the associated boat is under
power. For example, the player’s engine should play as long as the “w” key
is pressed.

A simple modification to the previous control code will do this. Add a global
variable engine_on that has the obvious meaning. Now if any of the “a,” “s,”
“d,” or “w” keys are pressed, a local variable eon will be set to True, indicating
that the player wants to move the boat (turn the engine on). If it is already on,
no problem. Otherwise, turn it on (start the sound):

if eon and not engine_on:
 start_engine()
elif not eon and engine_on:
 stop_engine()

Each check of the keys that are depressed now looks like this:

if k[pygame.K_s]:
 speeds[0] = speeds[0] - .1
 eon = True

Each time through the event loop, the variable eon is first set to False so
that if the player releases the keys, the engine will shut off. The functions that
do the work are:

def start_engine():
 global engine_on,sound_on,engine1
 engine1.play(1000)
 engine_on = True

def stop_engine ():
 global engine_on,sound_
on,engine1
 engine1.stop()
 engine_on = False

c2h6o Jet Boat race 203

There are other sounds, and those will be implemented in more detail after
we know more about animation and when more of the game rules have been
implemented.

Collisions and explosions

When a boat collides with another boat, an explosion takes place. The sound
of the explosion has been created using Audacity, and there are three variants:
expl00.mp3, expl01.mp3, and expl02.mp3. One of these should be selected at
random and played when an explosion takes place. This reduces the repetitive
nature of sound. The same event rarely sounds exactly the same twice in real
life, but frequently a game uses only one sound file for a particular event. One
should always have multiple sounds for any event that occurs frequently.

Starting gun

This is only used at the beginning of the game, so there is only one file:
start.mp3. This is played when all of the NPC boats are allowed to begin their
motion, and it allows the player to manipulate their boat. It was created by
recording a pencil pounding on a desk and extending the duration and adding
a reverb. It would be better to record an actual gunshot or use a pre-recorded
sound effect.

Finish

There is a sound that plays when the winning boat passes the finish line. This
sound is finish.mp3.

TESTING

When testing any game, as with testing many human-built objects, there
are really two aspects to be considered. The first is “does this object meet
the criteria for being functional?” The second can be expressed as “is this
object a good example of its type?” or in the words of a game designer, “is it
art?” The former kind of testing for a game is often just called game testing,
but it is largely about testing the software that implements the game. The
latter is called playtesting, and it is intended to answer the question “is it
fun?”

Software testing is a tedious process. The program is executed again and
again in an attempt to execute every line of code and make certain that it
executes as designed. Code is tested against the design document and against a
set of standards. The design document answers questions about what the game
should do at any particular point. The standards indicate correctness criteria:

204 Game Development UsinG python

does this code do the correct thing when a file is not found or when converting a
real to an integer? Does it divide by zero? Are there any off by one errors in the
loops? These are more technical questions, and ones that arise in any software.

Game testing is performed by the Q/A (Quality assurance) department
in some development companies, and sometimes by people outside of the
company hired as testers. You might think that being hired to play computer
games is a great job, but it is mostly a grind. The tester must play through
the game quite analytically, and when a problem is found, the nature of that
problem must be carefully defined. The precise circumstances of the error have
to be found by trial and error and given to the developer for correction. Then,
after being fixed, the tester must make certain that the error is in fact gone, and
that the process of correcting it did not create any new problems.

Playtesting is a different process. It is like other kinds of product testing,
where people are hired to try the product and are then asked questions. In
game testing, players are recruited to play the game. They are asked questions
before play to characterize their demographic identity, they play the game, and
they are later asked questions about it. Players are often recorded on video
while playing to identify emotional reactions. All of the data collected goes to
answer questions about whether the game is enjoyable, where it is fun, and
where it is not. Iterations of this testing can be done, making design changes
between each test, involving six to twelve people each time.

Beta testing is the final stage. Unlike beta testing for software systems, a
game continues to have the code testing as something of a distinct process from
that of the game play. The beta test involves a release of the game to the public,
or a subset of the public, so many people can play it. They will find problems
in the code if any remain, but the key element is play. Many people are playing
and report on their experience. Final tweaking can be done before the ultimate
release of the game, which we hope will be the best we can do.

Playtesting can and should be done from the early stages of development,
from the first playable if possible. It can prevent the game from going too far in
the wrong direction, which would cost a lot of time and money to fix. It is easier
to fix a game in the early stages, of course.

Here’s how you do it. First, select a small group of players to test your game.
They must not be selected from the developer group or their families. The best
choice is a group selected from the game’s target group. Five or six is sufficient.

The testers are given instructions: they are to play the game according to the
rules that are provided for a fixed time, usually fifteen or twenty minutes. Then
they are allowed to proceed. The testers are observed carefully during the test
to see what that are doing, which paths they select, where they have difficulty,

c2h6o Jet Boat race 205

and where they seem to be having fun. The observers should not be on the
actual development team. It’s common to record these sessions on video, and
the team can watch those, but developers tend to have opinions and the players
should not be exposed to them.

It is of special interest where they are looking on the screen and when they
make any verbal utterance. Verbalization is an indication of an extreme reac-
tion, one way or another. Growling and cursing are signs of frustration, whereas
cheering and laughing are signs of fun. What is happening when utterances are
made is very important.

The observers should not offer assistance unless asked for help. Obviously,
any assistance given should be noted so that the game or the rules can be modi-
fied to fix the problem. Assistance must be limited to the questions asked; the
observers should never volunteer information. Indeed, sometimes one should
repeat the question back to the player. For example:

Player: How do I fire this gun?
Observer: How do you think you should fire the gun?

This not only indicates a possible problem but also suggests a solution. One
should not do this too often or it will become irritating.

After the play session is complete, the players should rest and sometimes fill
out a questionnaire. Some of these are long, some are brief, but one of the best
is found on Schell Games’ web site (https://www.schellgames.com/blog/insights/
the-definitive-guide-to-playtest-questions):

1. What was the most frustrating moment or aspect of what you just played?
2. What was your favorite moment or aspect of what you just played?
3. Was there anything you wanted to do that you couldn’t?
4. If you had a magic wand to wave, and you could change, add, or remove

anything from the experience, what would it be?
5. What were you doing in the experience?
6. How would you describe this game to your friends and family?

This information is used to give feedback to the developers about what should
be changed, and why. Such a test can be done at almost any phase of develop-
ment once some of the basic mechanics are working. There is a tendency to
wait until the art is in place, but that could be a mistake. It is critical to catch
problems while they are still easy to fix.

206 Game Development UsinG python

There is a lot more to say about play testing, entire volumes in fact, but these
are the key items.

SUMMARY

In this chapter, we almost finish the design and implementation of the boat
race game. The player’s boat moves under player control, NPC boats follow
pre-defined paths, and collisions are identified.

ExERCISES

RESOURCES

Sound Effects

The sounds from SoundBible.com (http://soundbible.com/about.php) that
are labeled “public domain” or “creative commons” can be used without fee in
games. Attribution should be given.

1. Select a web-based game of your choice and document the following
aspects:

 a. Identify all screens and transitions.
 b. Characterize all interface actions (key presses and mouse clicks).
 c. Does the game possess internal states? Identify them.
2. Discuss the pros and cons of using the mouse as an interaction

mechanism instead of keys on the keyboard.
3. There are multiple sound effect files for many of the effects used in the game,

and as described the system chooses one at random every time a sound is
needed. This could result in the same sound being played many times in a
row, defeating the purpose. Devise a scheme that makes it impossible for the
same sound to be played twice in a row. Implement that scheme.

4. Create or download a sound effect that represents a typical audience
sound, such as clapping, pounding, or a horn blowing. Edit the sound
so that it is acceptable in the context of the game (i.e., adjust the pitch
or duration, reduce noise). Then have this sound played at random
moments during game play.

5. Write a short voiceover to begin the race—something like “Racers
prepare for the start.” Record using any equipment available, such as
a VOIP microphone; then add ambiance such as echo. Play this at the
beginning of the race.

c2h6o Jet Boat race 207

Some of the sound effects were downloaded from freesfx.co.uk or are based
on those effects (http://www.freesfx.co.uk).

Sound Editing

Audacity – This is freely downloadable editing software with a high degree of func-
tionality. If saving as an MP3 is needed, you’ll have to download the LAME MP3
encoder and install it (http://audacity.sourceforge.net/).

Goldwave – Freely downloadable sound editor with a large set of audio formats in
which sounds can be saved (http://www.goldwave.com/).

LAME – MP3 encoding software. (http://lame.sourceforge.net/).

Graphics Editing

Paint – Comes with Windows and is a highly underestimated tool for putting to-
gether 2D images.

LView – An image editor that is a valuable addition to Paint. It is especially useful
for making backgrounds in GIF images transparent. Free download, but you
should send them money if you like it (http://www.lview.com/).

REFERENCES

1. Fernando Bevilacqua. (2013). Understanding Steering Behaviors: Collision
Avoidance. https://gamedevelopment.tutsplus.com/tutorials/understanding-
steering-behaviors-collision-avoidance--gamedev-7777.

2. Jeremy Gibson Bond. (2014). Introduction to Game Design, Prototyping,
and Development. Addison-Wesley Professional.

3. Bryce Boe. (2006). Line Segment Intersection Algorithm. http://bryceboe.
com/2006/10/23/line-segment-intersection-algorithm/.

4. Tracy Fullerton, Chris Swain, and Steven Hoffman. (2004). Game Design
Workshop: Designing, Prototyping, & Playtesting Games. CMP Books, San
Francisco.

5. Zack Hiwiller. (2015). Players Making Decisions: Game Design Essentials
and the Art of Understanding Your Players. New Riders.

6. Shawn Patton. (2017). The Definitive Guide to Playtest Questions. https://
www.schellgames.com/blog/insights/the-definitive-guide-to-playtest-
questions.

208

chapter 8
AnImAtIon

Animation is a discrete art by necessity. There is no technology that permits
the recording of the motion of real-world objects precisely; such motion
is continuous. In between two positions of a moving object there is always
another position, and recording all of them is impossible. Video recordings
capture still pictures every 1/30 of a second, and when these are played back
at the same speed, they look good enough to seem like they are moving. It is
an illusion caused by persistence of vision. The human eye takes some time
to process an image and keeps it for a fraction of a second while processing it.
Still images displayed fast enough can give the appearance of motion because
our eye-brain combination can’t process the images any faster than that in
real life.

Animation uses drawings, human or computer generated, to simulate a
video scene. The objects in an animation don’t exist except as renderings.
Consecutive images in an animation, or frames, show motion as a change in
position, size, and/or orientation of the drawn objects. With its main loop
running at 30 frames per second, Pygame could have been designed specif-
ically to display animations. A programmer could simply display the next
frame in sequence each time it is called, a simple program of about two dozen
lines including the reading of the image files. This program is Animation01.
py on the accompanying disc. It reads eleven files of a person walking. It
displays them in intervals of 1/10 of a second and then starts over again. The
essential code is:

O

N THE CD

209 Game Development UsinG python

i = 0
while True:
 clock.tick(10) # Make sure 1/30 second has passed
 display.fill((100, 100, 100)) # Clear the screen
 display.blit(images[i], (0, 0)) # Write current frame
(image) to screen
 i = (i+1)%11 # Index for the next frame
 pygame.display.update() # Update the screen

If that was all there was to it, then this chapter would be done.
In a game, animations serve many purposes, but it is only in cut scene that

we display the animation as a full screen sequence of frames. In all other cases,
animations form a part of the scene: perhaps a character is walking and the gait
is a sequence of frames; perhaps a display on a video screen can be seen by the
player; sometimes an effect, like an explosion, results from a collision. Games
are a special case for an animator.

Animation forces an artist or designer to think in terms of time and motion.
Game design makes a designer think in terms of story, image, and—again—
time. As has been said in previous chapters, a game need not be real, but it
has to look real, so the animations that are used in a game must contribute to
the look and feel of the game, in that they make the game seem more real, but
they should not take valuable computing time away from the rendering or AI
components. The motion intrinsic to the animations can make the game much
more appealing and lifelike.

Very high-quality games spend a huge amount of time, energy, and money
on high-quality animations. The characters in games like Grand Theft Auto are
nearly perfect in their lifelike qualities at times. What will be discussed here will
be just the basics, and the references are intended to lead you to more details if
animation is a special interest.

CREATING ELEMENTARY ANIMATIONS

It is probably a good idea to do something first and then discuss the theory
later. Animations consist of a sequence of drawn frames, so we’ll need some
drawing software. The most commonly available drawing program on a PC is
Paint, and although it offers only elementary drawing functionality, it is perfectly
usable, ubiquitous, and free. As a first project it is important to select something
simple to do and yet having some complexities and growth potential. One idea
is billiards.

animation 210

The animation should be linear and two dimensional, and billiards fits the
bill. The game has two white (cue) balls and a red one. Each of two players uses
one of the cue balls and strikes it with the cue stick, hoping to hit both of the
other two balls. What will be animated is one stroke. For a first draft we will
need:

- a billiard table drawing, which is a pool table with no pockets
- renderings of the three balls

The Paint program can be used to create the images. The balls can be
circles; the table is a green rectangle with markings and a wide boundary.
An initial scenario needs to be set up: the ball that will be struck and the
direction in which it will move. Once that is done the significant events in
the animation need to be determined. A significant event occurs whenever
something new happens: in this case when a collision occurs. All of these
events are a consequence of the initial configuration, which is what makes
this a “simple” animation.

Figure 8.1 shows the renderings of the table and the balls and outlines a
plan for the action in the animation. The plan is this: ball 1 is truck by the cue
stick and moves along the path indicated by the line until it strikes ball 2. It will
bounce off of ball 2, again following the line, until it strikes ball 3. It will bounce
off of ball 3 into the corner and bounce out again. Ball 2 will start to move when
ball 1 strikes it, moving toward the bottom cushion and bouncing off of it. Ball
3 will also move when struck by ball 1, moving toward and bouncing off of the
left cushion.

In animation, as in life, the events occur in a particular order, and it is
important to get it right. The events are collisions, and in this animation,
they are:

1. Ball 1 collides with ball 2. Ball 2 starts moving.
2. Ball 2 collides with the cushion, bounces.
3. Ball 1 collides with ball 3, ball 3 stars moving.
4. Ball 3 collides with the cushion, bounces
5. Ball 1 collides with the cushion, bounces.

211 Game Development UsinG python

The animation will be constructed based on these events, which are the basis
for what we call key frames. The key frames will be drawn as the first task in
the construction process. Then the animation frames that represent times in
between the key frames are drawn—these are called tweens.

The first key frame is the initial setup and will be called key frame 0. The
second, key frame 1, represents the collision of ball 1 with ball 2, and will
show the contact between the two balls. From this frame can be determined
the directions the balls will take for the next few frames. As shown in Figure
8.2 the bounces can be determined geometrically from the motion of ball 1
and the precise point of contact. We don’t have to do any math; just make the
angles look right. The rule is the struck ball will move along a line that joins
the centers of the two balls. The striking ball moves away along a line that is
90 degrees to that of the struck ball. This situation is diagrammed in Figure
8.2 also.

The second key frame will show ball 2 striking the cushion. Ball 1 will have
moved toward ball 3 during this time too. Ball 2 will rebound with an outgoing
angle equal to the incoming angle.

Key frame 3 will show ball 1 striking ball 3. The rules for this impact are the
same as for the previous (and all) ball-ball collisions. Ball 2 will have to move
farther along its track also. The remaining collisions are ball-cushion collisions
and are just like the previous one.

The next step, now that all key frames exist, is to determine the timing. First,
let the overall animation take three seconds. We need to determine how much
the ball slows down during each time period and how speed is transferred during
collisions. If the speed is divided equally for any ball-ball collision and none is
lost on a cushion bounce, neither of which is strictly true, then the timings can

FiguRe 8.1 Initial configuration and plan for the billiards animation. The lines indicating the
paths are approximate at this point.

animation 212

be approximately determined and all key frames can be put in their places.
Time 0 is the beginning of motion for ball 0 and is the time of key frame 0.

Between the points a and b, ball 1 is moving at full speed (call it speed = 1).
At that point ball 1 and ball 2 move at half of that speed. Ball 2 moves at that
speed from then on, but ball 1 again shares its speed when it hits ball 3 (point c).
Now balls 1 and 3 are moving at 0.25 speed, and ball 2 is moving at 0.5 speed.

If we get a ruler and measure the distances of the paths, we’ll be able to
determine a time frame for the key frames. Figure 8.3a shows the speeds
of the ball and the lengths of each path, while Figure 8.3b shows the time
needed at the given speeds to travel the path. All distances are relative to the
a-b distance, which will be treated as 1. It does not matter which portion we
choose to be equal to 1; everything works out the same. The longest path in
terms of time is a-b-c-f, which sums to 9.4 time units. Let’s make the total
number of time units a nice round 10 and have all of the balls bounce a short
distance off of the cushion. This means that 10 time units is three seconds;
3 seconds at 24 frames per second is 68 frames, or 6.8 frames per time unit.
Thus, the number of frames between a and b will be 6.8 (we can round to
7), between b and c will be very nearly 30, and so on. That is the last critical
thing that we need to finish the animation—the number of frames between
each key frame.

A table of key frame times and frames between them would look like this:

Key Frame Time Frame Delta

0 0 0 0

1 1 7 7

2 3.8 26 19

FiguRe 8.2 (Left) Key frame 1, showing the first collision. (Right) The geometry of a ball to ball
collision: ball2 moves along a line joining the ball centers and ball 1 moves away at 90 degrees to that
line.

213 Game Development UsinG python

Key Frame Time Frame Delta

3 5.4 37 30

4 7.8 53 13

5 9.4 64 27

The column labeled delta tells us how many frames are between key frames
and allows us to do the drawings. So between key frames 0 and 1 there are 7
frames in all.

Now we simply draw the correct number of frames showing balls on the
correct background (the table) separated by the correct amount of space;
that is, for key frames 0 and 1, the tweens are drawings of the cue ball moved
1/7 of the distance each time. Using Paint, one way to do this is to use a
ruler to measure the line on the screen, divide the distance by the number
of frames, and mark the positions along the paths with colored dots or lines.
Move the ball to the mark, remove the rest of the marks, and save the frame;
repeat this.

Numbering the marks is a good idea, because it allows recovery from
program crashes, power failures, and other disasters. Figure 8.4 shows the
marks used for part of the billiards animation. Note that the rule markers don’t
have to be precise. The tweens between any pair of key frames can be assigned
to teams of artists, and because the action has been carefully scripted, the result
should be acceptable. A lot of famous cartoons (Bugs Bunny, for instance) were

FiguRe 8.3 (Left) Distances between key frame events and the speed along the path segments. (Right)
The relative time spent on each path segment.

animation 214

constructed using key frames drawn by the director, usually the best animator
available, and then assigning the tweens to less senior people.

Paint has some serious limitations as an animation tool. It has no timing facil-
ities at all, does not handle transparency, and can’t even rotate objects except by
90 degrees. Photoshop can deal with transparency and rotation and has much
more advanced image editing facilities; it can be expensive though. Flash is
designed to do animations and can do everything you might want, but it is also
costly and is disappearing from the Web.

The other way to conduct an animation is called the straight ahead method,
in which the artist draws the first frame, then the next, and so on in order. Using
this method is fine if the entire thing is done by a single artist and if no serious
errors are made. It’s quite hard to fix a single frame, and it would be likely that
the animation would have to be redone from the point of the error. We’ll look at
this method later in the chapter.

The complete billiards animation can be found on the disk, and it is available
as a GIF, MP4, and AVI file. The GIF is the original and is cleanest.

ANIMATION MATH

In order to be good at animation, an artist must have an understanding of
how things move. Living things move in a different way from non-living things,
and all have a “natural” motion from the perspective of a human viewer. Viewers
tend to be uncritical of the math and physics and more critical of the general
quality of the perceived motion, but movement that is technically incorrect is

FiguRe 8.4 Marking the points on an image where the balls will be when frames are captured. Move the
balls to the locations for each frame (1, 2, 3…) and then erase the markers and save the frame.

215 Game Development UsinG python

less likely to be acceptable. Let’s look at simple cases of movement of inanimate
objects.

Balls and rocks and feathers move in the environment as described by
Newton’s Laws of Motion, of which there are three:

1. Inertia. Every object that has weight will remain in its current state of motion
until a force is applied to it.

2. Constant acceleration. An object accelerates in the direction of the force
applied to it. The greater the force, the greater the acceleration given
to the object. For a given force, the greater the mass of the object, the
smaller will be the acceleration. The famous equation that describes this
is F = m*a.

3. For every action there is an equal and opposite reaction. If a force is applied
to an object, the object reacts with an equal and opposite force on whatever
applied the force. For instance, if your kick a ball, it pushes back on your
foot.

What do all of these rules mean in the context of animation? They define
what is meant by reality and reasonableness in terms of object motion. The first
law has been observed by everyone mainly as friction. We don’t expect that a
box that has been pushed will move forever, because that’s not what we see. We
do expect it to slow and stop because of friction, and that force is present in
all motion observed before the twentieth century. If we’d been living in outer
space our whole lives, then the first law would appear to us in a more literal
fashion—objects that move do tend to continue to move. Friction is not a major
issue in space, at least not for basic linear motion.

The second law defines how things move when they are pushed or pulled,
and again our interpretation of motion that we see is defined by what we have
seen before. This law is most obvious in falling objects. An object thrown into
the air slows, stops, and falls back because the force of gravity acts on it. An
object thrown up and horizontally moves in a parabola, the vertical motion
behaving as previously described and the horizontal motion behaving according
to the first law. Of course, there are other equations that relate speed, position,
and acceleration, and those are essential to determining object positions, but
they are almost always related to forces applied.

The third law is more subtle and is illustrated in day-to-day life as reac-
tion to collisions. Objects that collide don’t generally just stop moving, they
bounce. An obvious example is the game of pool. The cue ball strikes another
ball and imparts some of its speed to the other ball, making it move. The other

animation 216

ball kicks back and slows the cue ball and nearly always makes it change direc-
tion. Cartoon animations exaggerate this effect and sometimes have the objects
distort in shape during a collision and then return to normal form.

Motion Equations

The elementary math that describes motion is known to most people intui-
tively. Distance, velocity, and time are related in an obvious way. When driving
a car at 60 miles per hour (MPH) for one hour, we end up driving for 60 miles.
It seems simple enough, and all drivers know this. The equation is:

or

Physicists use the letter v to represent speed very often. It stands for velocity
and is different from speed technically, but for now it will be treated the same.
Objects in an animation must adhere to this relationship, or they will look
strange.

Acceleration is less intuitive. It is the change in velocity as a function of time,
and we do see it every day: a car starting to move when a light changes from red
to green is accelerating. Elevators accelerate when the door closes and start to
move up or down. Dropped objects accelerate downward and then again when
they strike the ground and stop moving. In general, an object having accelera-
tion a for a time period t satisfies:

If the object has a speed v0 before it starts to accelerate, then that has to be
considered, and the relationship becomes:

Finally, we can find the distance traveled by an accelerating object:

= *distance speed time

*d v t=

* *speed acceleration time orV a t= =

0*v a t v= +

2
0

1
2d at v t= +

217 Game Development UsinG python

This is very important, because it provides the way to compute the position
of an accelerating object at any time. Falling and bouncing objects are accel-
erating and are the most common examples, so let’s consider an object, a ball,
which is falling; the acceleration due to gravity is a=32 ft/sec2. Assume that it is
dropped, so v0 = 0. At intervals of 1 second we have:

time distance (ft)

1 16

2 64

3 144

4 256

5 400

6 576

Clearly the distance between consecutive positions of the ball is not
equally spaced. An animation of the falling ball would have to be drawn with
this fact in mind. Now consider the situation of a ball being thrown upward.
There is now an initial velocity, and the acceleration opposes that velocity;
that is, the velocity starts as negative (meaning moving upward), against the
force of gravity. A fastball can be thrown with a speed of up to 106 MPH, but
let’s reasonably assume that the ball is thrown upward at 35 MPH, which is
103 ft/sec. This velocity opposes the acceleration given by gravity and so will
be positive while acceleration is negative. Again, at intervals of 1 second we
have:

time 1/2at2 v0t distance (ft)

1 -16 103 87

2 -64 206 142

3 -144 309 165

2 2
0

1 162d at v t t= + =

2 2
0

1 16 1032d at v t t t= + = −

animation 218

time 1/2at2 v0t distance (ft)

4 -256 412 156

5 -400 515 115

6 -576 618 42

7 -784 721 -63

According to this table, the ball moves upward for a little over 3 seconds
and then falls back. At time t=7 the ball is 63 feet below where it was originally
thrown. At what time does the ball stop moving upward? When the velocity
becomes zero, and using v = a*t + v0, that time is:

Figure 8.5 shows this ball-throwing example as points drawn on a grid. A
critical thing to notice is that when the ball is moving its fastest, the distance
between consecutive drawn points is the greatest. That’s because in the fixed

= −
=

= =

0 32 * 103

103 32 *

103 3.21 .32

t

t

t seconds

FiguRe 8.5 Ball-throwing experiment. The position of the ball at selected points in time.

219 Game Development UsinG python

interval between calculation times, the ball moves farther when it moves quickly.
This is quite a simple idea, but it is critical in an animation, where only fixed
interval samples are seen.

One more bit of theory and then we can draw something else. A question
of some interest is where is the ball in the middle of any time interval? At time
t=1.5 the ball will have a height of between 87 and 142 feet, but where exactly
is not known from the graph. We can use the equation to figure it out, but as
animators we are interested in the position relative to the other two points. Is it
in the center? No.

Let’s look at the dropping ball again. The equation covering this was d =
1/2at2, and we know that at time t=1 it has fallen 16 feet and at t=2 it has fallen
64 feet. At t=1.5, half of the time between those two points, d=8*1.5)2 = 36 feet.
This is 20 feet from the first point (t=1) and 28 feet from the second, or 20/48
of the distance between the two points, or almost 0.4 of that distance. So, when
drawing the tweens, the tween in the middle in terms of time should be drawn
40% of the distance between the two key frames. This process can be repeated
for other tweens; although it is not exact it will be close enough. As a result, the
distance between the balls in successive frames will increase, which is correct
according to intuition.

In summary, basic physics can be used to calculate the positions of objects
in frames. In particular, the tweens can be generated using the fundamental
motion equations for objects undergoing simple motion: falling, rolling, and so
on.

REACTIVE ANIMATIONS

What will be called reactive animation is likely the most common sort to be
found in a video game. Simply put, it is an animation that represents a reaction
to an event in the game: for example, an explosion or fire after a collision, or
the shattering of a brittle object that has fallen. These tend to be quite brief
and not necessarily easily modeled by physics. A car crashing and exploding is
an example. The animation is short, often has a random component, and can be
accompanied by an external sound effect.

Many such animations are built with simple tools using a straight-ahead
methodology. That works pretty well because they tend to be very short,
running between 1–2 seconds, which is 24–60 frames. Each drawing is a vari-
ation, sometimes a slight one, of the previous frame. Using computer tools it
is possible to start drawing a particular frame using the previous one by just
moving parts of it around.

animation 220

Consider an animation of a balloon popping. Start with a balloon, as shown
in Figure 8.6. In each successive frame parts of the balloon from the previous
frame are erased and moved. Because the balloon is exploding, the parts should
be moved away from the center. The explosion itself takes frames 15 through
23, which are the ones shown in the figure. It should be clear how successive
frames have been built. The Paint tools erase and select are used to remove parts
of the balloon and move other parts away from the center, giving an expanding
volume of smaller balloon parts.

The same technique can be used to build short animations of explosions,
impacts, rocket exhaust, and other event-based visuals. Each frame is a random
variation of the previous one, and this works well so long as the animation is
short and not repeated. If played in a loop the animation loses its randomness,

and the viewer can see details not intended. These are like sound effects; if they
are played too often they lose their impact, so multiple short animations could
be the solution.

Reactive animations will occupy a small portion of the screen for a very short
time. It is important to place the frames in the correct spot in each frame.
Consider an animation of a small explosion, perhaps a hand grenade. This must
be seen at the location where the grenade was located just before it explodes,
meaning that it could be drawn anywhere on the screen depending on the play
in the game.

FiguRe 8.6 Drawn frames for the balloon-popping sequence. Each frame is a variation of the one
before, created by a random edit with the overall plan in mind.

221 Game Development UsinG python

In terms of software, the need for animations in specific locations implies
the need for software that will manage the animation, just as we had software
to manage the sound clips. An animation not only consists of a set of frames but
also a current frame being displayed, a location, a frame rate, and possibly an
orientation, in the case of 3D games. We need a way to start and stop anima-
tions too, and some might be linked to a sound that is to be played simultane-
ously; sound can be a part of an animation, but for reactive animations it is never
an integral part of it.

Let’s design an animation manager for games, starting with what we know
right now. It will possess an array of frames (images) and a way to read them
in. Included will be a way to normalize the frames; they should clearly all be
the same size. We’ll need a way to play and stop the display of frames, and
they will be displayed at a specified point on the screen. Sound will also be
managed. Here is what an outline of this, implemented as a class, would
look like:

class animate:
 def __init__ (self,xx, yy):
 self.xpos = xx # Position to place the animation
 self.ypos = yy
 self.frames = () # Images for this animation
 self.nextFrame = 0 # Next frame to be played
 self.Nframes = 0 # Total number of frames
 self.soundName = “” # Name of the sound file for this
animation
 self.playing = False

 def play (self):
 def stop (self):
 def pause (self):
 def setPosition (self, x, y):
 def getPosition (self):
 def setSoundName (self, s):
 def addFrame (self, p):
 def draw (self):</CODE>

To use an animation in a game, an instance of the animation class would
first be declared. The frames would then be read in. It is common to have a
pattern in the file names of the frames that can be recognized by a program
and read in automatically. We will have a text name ending in digits and then
“.” and the suffix that defines the image file type (“jpg,” “gif,” etc.). For the
balloon animation the files are “balloon00.png,” “balloon01.png,” and so on
in an obvious sequence. The animation class is given each of the animation

animation 222

frames in proper order, and it saves them in an internal tuple. The animation
will be drawn starting at the x and y coordinates provided when the class was
instantiated, but this position can be changed using the getPosition and
setPosition methods.

To play an animation, instantiate it and set the initial position, then add
the frames. Call the play method to start playing it, and ensure that a call to
its draw method occurs someplace within the main loop. The draw method
causes the current frame to be rendered into the graphics window. The
animation frames will be displayed in order and will loop until either stop or
pause is called.

Example:

 ac = animate (20, 30) # Instantiate
 . . .
 for i in range(1,N): # Read the images that represent the
animation
 im = pygame.image.load(“ image file name N “)
 ac.addFrame (im)
 . . .

 ac.play()

 while True:
 . . .
 ac.draw()

As a complete example of the use of this class, imagine that we have a game
that uses an initial screen with a small animated feature—a jet of gas or steam.
The screen will consist of a graphic, and on top of this will be played our anima-
tion. Figure 8.6 shows the screen with the animated section outlined. The
frames of the animation are played sequentially, in this case as a loop, after
being translated to window coordinates (28, 156), the area corresponding to the

FiguRe 8.7 Animating a portion of a screen. The steam jet is translated to the correct position before
display.

223 Game Development UsinG python

box. After initialization, each frame is displayed there in succession using the
following code that uses the animate class:

import pygame
import animateClass

pygame.init()
clock = pygame.time.Clock()
display = pygame.display.set_
mode((800, 512), pygame.SRCALPHA,
32)

ac = animate (28, 156)
background = pygame.image.load(“002.
jpg”)

for i in range(0, 17):
if i<10:
im = pygame.image.load

(“b00”+str(i)+”.jpg”)
else:
im = pygame.image.load

(“b0”+str(i)+”.jpg”)
ac.addFrame (im)

ac.play()

while True:
clock.tick(10)
display.blit(background, (0, 0))
ac.draw()
pygame.display.update()

This animation software object seems reasonable given what we know right
now. It may change a little as more requirements are seen to be needed by
other types of animations. The frames of the jet animation are built starting
with a small image cut from the screen. This image has the steam added to it
and is saved, then the steam is varied a bit and it is saved as a successive frame,
and so on until enough frames (in this case 17 in all) are created. In that way
the background remains constant and compatible with the rest of the existing
background. Another way to do a similar thing is to use steam frames having a
transparent background color.

The animation is placed into the background where it belongs. There is no
reason that there could not be many animations playing at the same time, as will
be seen later in this chapter.

animation 224

Using Real Images

Until now the animations have consisted of drawn images linked together in
a sequence. There is no reason why a real image cannot be used at the starting
point. There are two main ways to do this: to vary a real image a bit, as we’ve
been doing with drawings, or to use a short video that has been converted into
a still-image sequence.

If a single real image is to be used as a starting point, the process is similar to
the one we’ve used before: manipulate the original image to become a second
frame, then the third, and so on. It’s a bit trickier to edit captured images and
keep them looking real. Part of the problem is light and shading, which in real
images is continuous, and part is boundaries between objects in the scene,
which in captured images are not precise.

Consider the example of a candle. Some images of a burning candle
could be taken using a cellphone camera. Taking enough to be used as
consecutive frames in an animation is possible in this specific case, because
candles don’t change much between two images a few seconds apart. The
flame may not behave as we wish in these frames, and so editing one or two
into a sequence of twenty-four to forty-eight is probably a more practical
idea. These images can be used as the basis for a set of animation frames:
each one can be edited, shearing the flame, changing its shape and color,
and so on.

Using real video data is another viable alternative. The first step is to extract
the still frames from a video image, and this requires special software tools. An
excellent video creation/extraction tool is VideoMach, which has a free down-
loadable version and which is very inexpensive in its paid form. A usable copy of
this software is included on the accompanying CD.

Extracting frames is exceptionally simple: load the video and save as (for
instance) jpg. The result is a collection of JPEG files in the save directory that
are consecutive frames from the video, and these are named “00.jpg,” “01.jpg,”
and so on. These files can be played as if they were an animation, and it will look
just like a video so long as the frame rate is the same as in the original video,
usually 30 frames per second.

VideoMach can also take a set of frames and create a video in one of a dozen
formats, including gif and avi, and this is a valuable facility for previewing the
animations before inserting them into the game. Simply create and play an
AVI file or use the built-in preview facility to see how smooth the frame tran-
sitions are, whether the lighting is good, and if there are artifacts. Figure 8.8
shows VideoMach being used to make an avi version of the balloon-popping
animation.

O

N THE CD

225 Game Development UsinG python

Microsoft’s MovieMaker tool can similarly create a video from still frames,
but it requires the user to specify the duration of the frames manually, so it is
somewhat less convenient, and it can’t save in the same variety of formats. Mac’s
iMovie can also export still frames from a video.

AMBIENT ANIMATIONS

Ambient animations are used to provide interesting background activity.
An animation of a computer screen or data display that appears on a control
panel in the background would be an example. So would smoke or sparks from
damaged equipment. These very frequently have to loop, and so they cannot
represent an obvious pattern if that can be avoided. They also are required to be
playable in many locations simultaneously. A control console can use the same
animation in many positions as digital readouts so long as they are not identical
simultaneously; they may need to be played out of sync. They also may need to
be rescaled, skewed, or rotated too.

Making such animations is similar to making a reactive animation. It’s the
playback that can be distinctive. The needs of such animations will be impor-
tant in continuing the design of the animate class. Consider, as a practical
example, the creation of a control room for a spacecraft launch. In practice
there will be scores of active screens visible, but let’s limit it to five. The image
that will be used for the background is shown in Figure 8.9, and it is in fact a
still photo of the Russian control room for the International Space Station. The
three large screens at the front and a couple of smaller ones will have animated
displays. The screens will be the location of the animated displays, and they are

FiguRe 8.8 Using VideoMach to create an AVI video file from individual frames.

animation 226

colored green in the original image. The green simply marks the locations and
is not needed for the display; this is not green screen technology.

The two small screens in the lower part of the image are essentially rectan-
gular and can be overwritten with an animation as we’ve done before. Since the
screens look like computer terminals, we can make a set of frames that show
text, images, and windows scrolling past and popping up. Making a large set of
such animations, one for each display in the image, would be time consuming
and not worth the effort just for an effect. What can be done instead is to
display the same sequence of frames in each location but start from a different
point and maybe at different speeds. This idea requires modifications to the
animate class.

The ability to play the same animation in more than one place implies the
need for an operation that makes a copy of an animation. Each copy could be
placed at a distinct location in the scene. The animate class does this through
a method called copy in a module named copy that returns a reference to
a new animate object having the same properties as the one cloned. So, the
assignment:

ad = copy.copy (ac)

creates a copy of ac that can be located elsewhere and displayed sepa-
rately. The frames are the same. The code simply creates a new animate
instance and initializes all of its local variables to those of the instance being
cloned.

FiguRe 8.9 The control room background image showing “green screen” areas where animations will
play (background image from NASA).

227 Game Development UsinG python

That solves part of the problem. Next, we need the ability to slow down the
display of frames for an animation, and to begin playing the sequence of frames
anywhere we choose. For sequencing a new procedure named setNext() has
been created which simply sets the value of the next frame to be played. Play
normally starts at frame 0, but a call to setNext(12) will begin play at frame
12. Now, two adjacent screens can play the same animation and seem as if they
are distinct.

The procedure setRate slows down play of the animation; setRate(1) is
the default, which plays frames at a rate of 1 per call to display(). A call to
setRate(2) means that two calls to display() will be needed to change the
frame displayed, and setRate(4) means that four calls to display() will result in
a change to the frame. The larger the parameter to setRate(), the slower will
be the rate at which frames will be displayed.

The three large screens in the scene present a new problem: they are not
actually rectangular. They are in real life, naturally, but they are being observed
from above and to the side, so perspective has given them irregular shapes.
How can we play a rectangular image frame in such a space? By using texture
mapping.

In the animation frame in Figure 8.9, the large green screens are not rectan-
gles. Each pixel in each of those screens must be drawn from a pixel in a rectan-
gular image, so we need to define a mapping between the quadrilateral on the
screen and the rectangle that is the image, or texture, to be drawn. There are
many ways to do that, including perspective transformations, bilinear interpola-
tion, polynomial warping, and so on. Most graphics systems will do this mapping
automatically if the coordinates that correspond to the corners of the quad and
the image are provided. Pygame does not offer that facility, so in the animation
class, a method named setSize is provided that gives the corners of the image in
screen coordinates. When draw is called a mapping of pixels to the screen takes
place so that irregular shapes can be filled with images.

When calling setSize a list of x,y coordinates is provided, beginning at the
upper left and moving clockwise. It only maps images onto quadrilaterals, so
there will be eight parameters. For example, the large green screen in the
center of Figure 8.9 has screen coordinates (267, 73) (478, 73) (471, 225) (276,
224). Setting this up as an animate class animation would be:

ac = animateClass.animate (0, 0, display) # Create the instance
for i in range(0,35): # Read the images
 if i<10:
 im = pygame.image.load(“screen1/00”+str(i)+”.jpg”)
 else:

animation 228

 im = pygame.image.load(“screen1/0”+str(i)+”.jpg”)
 ac.addFrame (im)
ac.setSize (267, 73, 478, 73, 471, 225, 276, 224) # Set the
location

In Figure 8.9, there are five green screens that are intended to hold anima-
tions. All can be played in their proper places at the same time: simply create
the five instances and read the images, call setSize for each one specifying
their location and shape, play them, and then call draw() for each one within
the main loop. A program that does this is named control.py on the accom-
panying CD.

CHARACTER ANIMATION

Creating animations of living creatures is among the hardest tasks in
video games, and animating humans is the most difficult. It’s because living
things move in very complex ways, and viewers are very familiar with how
that motion should look and are therefore quite critical of flaws. Character
animation is a specialized subject, and we will look at the most commonly
needed type here: gait.

If your game has a human character, it will need at the very least to walk
around the game space. The legs and arms must behave as we human observers
expect them to. We will need to build a short animation of the character taking
a single complete step, and then this can be played whenever the character
moves. Of course, the avatar may need to jump, shoot, reach, crouch, or do
many other tasks, but character animation is a complex skill that depends to a
great extent on the artist’s abilities.

Animating gait is a matter of creating a sequence of drawings that shows
the arms and legs of the character walking in a normal way. From the illus-
tration in Figure 8.10, a set of workable steps is shown. First (top) is a set
of key frames, in this case showing the right arm and leg of a stick figure
during a single full step. Next the left arm and leg are added and tweens are
created (middle). Finally, the character can be fleshed out over the skeleton
and colors or textures added. The final sequence here has just enough detail
to be useful both as an example and as an avatar. This avatar is carrying a pack
of some kind on his back.

When the avatar is moved, for example by pressing the right arrow or the “d”
key, the frames are played in sequence and the position of the avatar is moved to
the left, giving the desired effect. The frames can be redrawn or simply flipped
horizontally to allow the avatar to move to the left.

O

N THE CD

229 Game Development UsinG python

This discussion of character animation is intentionally trivial. Although the
actual display of frames is simple and uses methods that have been discussed
in detail, the creation of the frames can be profoundly complex. If you have
the ability to create realistic motions in a frame sequence, then your games will
profit from this skill. If not, it can be learned or (perhaps better) people with
that skill can be engaged to work for you. The cost is small, and the improve-
ment in the quality of the result can be priceless.

CUT SCENES

A cut scene or full motion video (FMV) is an animated narrative that
explains a part of the game’s story or background. It is played on the full
screen like a movie. There is often one at the beginning of the game, and
often one that serves as a transition between levels. They are made obvious
by a change in aspect ratio to a more cinematic 1.85:1 from the standard
computer screen value of 1.6:1. No interaction with the game is possible
during a cut scene.

These can be made in any way one chooses, even with live action video. The
issue again is how to play it. Cut scenes can have a much higher image quality
than the game proper, and to read and display single frames would take far too
much time and memory to be practical. What you must do is create an anima-
tion, save it as a video file, and play that file at the proper place in the game.
This section of the book could be called “How to use Python video classes and
functions to display video in a game.” To play videos we use a trick.

FiguRe 8.10 (top) Key frames for a gait, right side only. (Center) Tweens for the gait. (Bottom) A set
of frames for a single stride.

animation 230

Pygame used to have a movie class but is was removed. It apparently
caused more trouble than it was worth. So, how can we play a cut scene?
It must again be done frame by frame. However, it is not necessary to read
all of the frames into memory first, which could use a great deal of space.
Instead we can read the frames just before we display them and reuse the
same image for each frame. Playing a video in this way means playing the
sound concurrently, so the cut scene video would have to be processed in the
following way:

1. Each of the frames would have to be extracted into a distinct file.
2. The audio track needs to be extracted into a .wav or .mp3 file.

Here’s some code that will do this:

import pygame

pygame.init()
clock = pygame.time.Clock()
display = pygame.display.set_mode((800, 512), pygame.SRCALPHA,
32)

pygame.mixer.music.load(“xx.mp3”) # Read the sound track as an
MP3 file

i = 0
pygame.mixer.music.play(0) # Start playing the sound
while i<=253:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 exit()

Read the next frame

 if i<10:
 im = pygame.image.load(“screen1/00”+str(i)+”.jpg”)
 elif i<100:
 im = pygame.image.load(“screen1/0”+str(i)+”.jpg”)
 else:
 im = pygame.image.load(“screen1/” + str(i) + “.jpg”)
 i = i + 1

 display.blit(im, (200,140)) # Display the frame

 pygame.display.update()

231 Game Development UsinG python

 clock.tick(30)

pygame.quit()

There are other modules that can accomplish this. They include moviepy,
pygame-vlc, PyMedia, and others. Each must be downloaded and installed
before use.

ANIMATIONS IN THE BOAT RACE GAME

There are not very many animations in the boat race, and fortunately they
are all brief. They include:

1. The wake of a boat under power
2. Birds
3. An explosion
4. Flags

WAKES

This will be a white trail behind a boat when it is moving under power. It
should move in somewhat random ways so as to seem like a water wave. There’s
no need for key frames here; straight ahead animation is fine. Start with one of
the boats and a background of blue water from the terrain map. Copy the boat
into the image and then draw a set of white and grey extensions from the rear
of the boat, saving each one as a separate numbered file. Paint or any drawing
program can be used; this is a relatively low-resolution game. Figure 8.11 shows
a part of this process.

The final step is to isolate the wake animations. Simply clip them out
of the Paint image, making certain that all are the same size and that the
entire wake is captured each time. Figure 8.12 shows some of the indi-
vidual wake frames. When the boats are under power, these will be drawn
behind them.

SUMMARY

In key frame animation the frames that define the motion are created
first, and then the frame in between those (tweens) are drawn. This lends

animation 232

itself to a production line system that uses multiple animators. In addition,
we can more easily synchronize key moments in the action with specific
frames. However, the use of many artists can lead to inconsistent drawings.
In straight-ahead animation we create the first frame, then the second,
then the third. This leads to artistically exciting images and is good when
there is a lot of action. On the other hand, there is a lot of pressure on the
animator, as this method requires a great deal of concentration. It’s also
hard to correct, and some kinds of specific timing are hard to do (e.g., lip
synch).

Basic physics can be used to calculate the positions of objects in frames. In
particular, the tweens can be generated using the fundamental motion equa-
tions for objects undergoing simple motion: falling, rolling, and so on.

A reactive animation is likely the most common sort to be found in a video
game, and it represents a reaction to an event in the game: an explosion after
a collision, for example. Ambient animations are used to provide interesting
background activity. An animation of a computer screen or data display that

FiguRe 8.11 Creating animation frames for a boat wake using Paint. (a) A boat. (b) Water
background. (c) Random white areas drawn to represent the wake.

FiguRe 8.12 Sample frames from the wake animation.

233 Game Development UsinG python

appears on a control panel in the background would be an example. A cut scene
is an animated narrative that explains a part of the game’s story or background.
It is played on the full screen like a movie.

Creating animations of living creatures is among the hardest tasks in
video games and should be avoided if possible or hired out to a profes-
sional if not. Avatar motions depend on character animation and need to
be good.

ExERCISES

1. Make a short (<10 second) animation of a ball bouncing. A basic solution
could be a loop, but really it should bounce to a lower height each time and
finally end up resting on the ground.

2. Make a short animation of a ball bouncing down some stairs. You may use
the animation from exercise 1 as a start.

3. Create a video file from one of the animations in exercises 1 or 2. Use any
tool you like, but document the process you used in a brief (< 5-page)
document.

4. Take some images of water flowing from a faucet. Create a short animation
of this flow and display the frames as an animation. Using any tool you like,
create a video file of this animation.

5. Make a video of water flowing from a faucet and extract the frames.
Select twenty-four or so and play them in random order in a small
window as an animation. How does it look different from a video of the
water flowing?

6. Observe the gait of any animal. Try to create an animated gait for this
creature. Play it back and try to find flaws—keep a written description of the
process and what you found.

7. An entertaining way to make an animation is the stop motion or stop frame
technique, in which actual objects in an actual scene are moved a bit,
photographed, and moved again. Miniatures are often used. Make a stop
frame animation using any material at your disposal and turn it into a video
file. Plan the animation using key frames.

8. A common tool used in the creation of animations and films is the storyboard.
This is a sequence of drawings, usually including sketches of the key frames,
that tells the story of the animation. It helps with the design, and it is used
to present the idea to the production group. Make a storyboard for any 30
seconds of animation you choose: a cartoon, perhaps. Part of the value of a

animation 234

storyboard is in its presentation so, if you can, present your storyboard to a
small group.

RESOURCES

Wideo: An online animation creation tool. You must sign up, but it is free. http://
wideo.co/.

How to animate flames: http://www.youtube.com/watch?v=f_cNlQocaV8.
Site for downloading inexpensive images for use as textures: http://www.dreams-

time.com/.
VideoMach video creation tool: http://gromada.com/videomach/.
UnFREEz tool for making animated GIFs: http://www.whitsoftdev.com/un-

freez/.
Macintosh iMovie: http://www.macworld.com/product/412943/imovie-09.html.
MovieToImage for getting stills from an iPhone. It’s a $1 app. http://www.macworld.

com/product/599549/movietoimage.html.
GOM Media Player can save stills from a video too: http://player.gomlab.com/eng/

download/.
Apple’s QuickTime: http://support.apple.com/kb/dl837.
GSvideo: http://gsvideo.sourceforge.net/.
Storyboard That, an on-line storyboard creation tool. http://www.storyboardthat.

com/.
Gaits of a horse for animation:
https://www.youtube.com/watch?v=2f2oSAqvrsg
https://www.youtube.com/watch?v=sF2h5Enyaos

REFERENCES

1. Garry Faigin. (1990). The Artist’s Complete Guide to Facial Expression.
Toronto, Canada: Watson-Guptill Publications.

2. Maureen Furniss. (2008). The Animation Bible. New York, NY: Abrams.3.
Kit Laybourne. (1998). The Animation Book. New York, NY: Three Rivers
Press.4. Brian Lemay. (2006). Layout and Design Made Amazingly Simple.
Oakville, Ontario: Animated Cartoon Factory. http://www.brianlemay.com/
Books/layout.html.

3. Lynn Pocock and Judson Rosebush. (2002). The Computer Animator’s
Technical Handbook. San Francisco, CA: Morgan Kaufmann.6. Chris
Webster. (2005). Animation: The Mechanics of Motion. Burlington, MA:
Focal Press.

4. Tony White. (2006). Animation from Pencils to Pixels. Burlington, MA:
Focal Press.

235 Game Development UsinG python

5. Tony White. (1986). The Animator’s Workbook. New York, NY: Watson-
Guptill Publications.

6. Richard Williams. The Animator’s Survival Kit: A Manual of Methods,
Principles, and Formulas. London, UK: Faber and Faber.

236

chapter 9
c2H6o – fInAl stePs

The Jet Boat Race game requires a few more systems and components in
order to be complete. First, it is not yet a game! The boats have to follow a
specific path in order to successfully pass the finish line and score. The game
must track that. It is more fun to track the times of each boat and display them
in real time. This has not been done. There is no official start of the game, and
no record is kept of passing the finish line, or of the winner.

Most of the sounds are not being played. The animations are not either,
so when two boats collide a message is printed; there is supposed to be an
explosion.

A mini-map would be fun too, and it is not too difficult to implement. It’s
common in race games to be able to see where all of the boats are.

Finally the game should be tuned a bit so that it does not give an advantage
to any boat, and so that play moves along quickly.

237 Game Development UsinG python

ANIMATIONS

There are two main animations in this game: the explosions and the wake
from each boat. These were created in Chapter 8 but have not been used yet.

Wakes

All of the animation frames can be stored in a single image, and the game
will extract the needed frame just before it is displayed.

The wakes.png image includes eighteen frames where each frame is 83x35
pixels. To draw a frame in position i of row j:

display.blit(im, (100, 100), (i*83, j*35, 83, 35))
There are 18 frames, we can generate a random frame number and
then convert it into a pair of (i,j) indices:
k = int(random.random()*18)
i = k//9
j = k%9

There is another step needed, because the boats are rarely oriented along
a vertical or horizontal axis. The frame, which is a surface in pygame, must be
rotated so that it aligns with the axis of the boat, and must be translated so that it
is positioned at the rear of the boat before it can be blitted to the main surface.
In Chapter 2, there, was an explanation of how to orient the boat sprite, which

FiguRe 9.1 The animation frame image for boat wakes.

c2h6o – final steps 238

was used in Chapter 7. Now we have to add the animation to the back end of the
boat, but when the boat changes direction it should still rotate about the boat’s
center, not the combined center of the boat and the wake.

Accomplishing this is pretty simple. Use a new Surface (named r in the
code) that is wider than the combined images of the wake and the boat by
1/2 the size of the boat (40 pixels). Copy (blit) the boat image into r at loca-
tion 83, the size of the wake, and copy the wake image at 0. Then rotate and
display r at the needed location. Code to render at the center of the display
Surface is:

 r = pygame.Surface ((251, 35), pygame.SRCALPHA)
 . . .
 k = int(random.random() * 18) # Which wake image?
 i = k // 9
 j = k % 9

 r.blit (boat, (83,6) # Copy boat to r
 r.blit (wakes, (0,6), (i*83, j*35, 83, 35)) # Copy wake
 boatr = pygame.transform.rotate(r, angle) # Rotate
 sx = boatr.get_width()
 sy = boatr.get_height()
 display.blit(boatr, (250-sx/2, 200-sy/2)) # Display

This code draws the wake using random frames.

Explosions

When a boat collides with the shore, it tries to find a way off of the beach
using a method discussed in Chapter 7. When two boats collide with each other,
they destroy each other. They are carrying a lot of fuel and their engines are hot.
There will be an explosion and the boats will disappear. They will reappear at
the starting position, where their chance of winning is small.

A small collection of explosion animations was generated using a program,
and this provides a selection that can be used for collisions. Players can tell if
the same one is used over and over. When a collision happens the first step is to
select an explosion animation at random. There are five animations.

Next the animation should start to play along with the sound of the explosion.
Each animation has sixteen frames, and these should be displayed in sequence
in place of the boats that collided. A new state called EXPLODING will be
added to the NPC class that will result in the next frame in the animation being
displayed instead of the boat sprites. The display method must be modified to
test whether the state is EXPLODING and, if so, display the animation instead
of the sprite.

239 Game Development UsinG python

After the final frame is displayed, the two boats involved must be placed at
their original starting positions. This is a simple matter of setting their position
and orientation to the initial values. If one of the boats is the player’s boat then,
of course, the screen view will change and remain centered on that boat.

Playing the explosion animation is the same as playing the wake animation.
The frame of the explosion is extracted from a larger image that contains all of
the frames; in this case the explosion frames are 64 x 64 pixels and there are
sixteen frames in each sequence. In addition, when the animation starts a corre-
sponding sound is played.

There are five different animation sequences for the explosion, named
explode1.gif to explode4.gif, and explode5.png (Figure 9.2). The sound
files are exp01.wav and exp02.wav. When an explosion occurs one of the five
sequences is selected for use so that all explosions don’t look the same. There
is a test program named explode.py that tests the animation and sound code
outside of the game. This is a common practice. The program sets off an explo-
sion at a point where the user clicks the mouse. This works fine, so it can be
added to the game.

In the game itself the explosion will take the place of the two colliding boats.
The boats will not be drawn, and the frames of the explosion will replace them.
When the collision is detected, the boats enter the EXPLODING state and the
sound begins to play. In the EXPLODING state the boats are not drawn, and
instead the current explosion frame is displayed. When all frames have been
drawn, the two boats are placed at the starting line again and the game resumes.

FiguRe 9.2 The animation frame image for an explosion sequence, explode3.gif. These are in GIF
format because they have a transparent background.

c2h6o – final steps 240

Inside of the draw method for a boat we see:

if self.state == self.EXPLODING:
 self.showNextExFrame(ccx, ccy)
else:
 display.blit(pygame.transform.rotate
(self.r,self.angle),(ccx,ccy))

so that if the boat is exploding, the boats are not drawn. ShowNextExFrame
displays the explosion:

def showNextExFrame (self, x, y):
 global im, s1, kimage

 i = self.frame/4
 j = self.frame%4
 display.blit(im[kimage], (x-32, y-32),
 (i*64, j*64,64,64))
 self.frame = self.frame + 1
 if self.frame >= 16:
 self.state = self.NORMAL
 self.reset()

The class variable self.frame represents the number of the current frame to
display, and kimage is the index of the explosion. Finally, when the last frame
is displayed, the boat is reset by putting it back in the state it was in at the start
of the game. The method that does this is reset.

Determining a Boat Collision

The boat class (npc) has a method that determines whether a collision is
pending (boatCollision), and this has been discussed in depth. What it lacks is

FiguRe 9.3 An explosion happens when two boats collide.

241 Game Development UsinG python

a method that determines if a collision has actually occurred, which is a precon-
dition for an explosion.

Each boat has a bounding box computed and saved for each iteration. A
simple collision detection method would be to determine if the boxes of any
two boats overlap—these are object-oriented boxes, so it will work okay. The
game should allow for some degree of “bumping,” so this may be too severe a
condition. The box can be made smaller to permit some overlap.

The object-oriented bounding box for each boat is stored as four points: ul,
ur, lr, and ll (upper left, etc). These points are determined for each iteration
using a call to the method update_box in the npc class. A global function
box_intersect does the math to determine whether the boxes intersect each
other, and if so then the explosion, sound, and state change are done. In the
main game, loop we check all boats against each other:

if screenState == PLAYSTATE:
 move()
 for i in range (0,3): # Check boat collisions
 for j in range (i+1,3):
 if boatCollided (i,j): # Boom
 boats[i].savedx = boats[i].x
 boats[i].savedy = boats[i].y
 boats[j].savedx = boats[j].x
 boats[j].savedy = boats[j].y
 boats[i].state = boats[i].EXPLODING # Change boat
states
 boats[j].state = boats[j].EXPLODING
 boats[i].frame = 0
 boats[j].frame = 0

FiguRe 9.4 Determining when two boats collide.

c2h6o – final steps 242

 snd[int(random.random()*2)].play() # Play sound

If the boats are already in the COLLIDING state, then no more has to be
done, or should be. Collision is done like this:

def boatCollided (a, b):
 if boats[a].done or boats[b].done:
 return False
 boat1 = boats[a]
 if boat1.state == boat1.EXPLODING:
 return False
 boat2 = boats[b]
 if boat2.state == boat2.EXPLODING:
 return False
 return box_intersect (
 (boat1.ul, boat1.ur, boat1.lr, boat1.ll),
 (boat2.ul, boat2.ur, boat2.lr, boat2.ll))

While in the EXPLODING state, the npc class draw method will replace
the rendering of the boat with the next animation frame:

if self.state == self.EXPLODING:
 if self.frame == 0:
 self.savedx = ccx
 self.savedy = ccy
 self.showNextExFrame(self.savedx, self.savedy)
else:
 display.blit(pygame.transform.rotate

 (self.r, self.angle), (ccx, ccy))

SOUNDS

After building more of the gameplay aspects, the need for more sounds is
apparent. Right now, the player’s boat has an engine sound and an explosion.
However:

- We still need sound effects of bounces against the shore.
- We still need explosions when boats are destroyed.
- We need a starting sequence.
- We need a finish sequence.

Engine Sounds

Some time was spent in Chapter 6 showing how engine sounds could
be created using Audacity. The sounds created in this way have been saved

243 Game Development UsinG python

as mp3 files named engineBoat1.mp3 through engineBoat5.mp3. Each
engine sound is distinct, and each should be assigned to a different boat
in the game. The sound should play as long as the associated boat is under
power. For example, the player’s engine should play as long as the “w” key
is pressed.

A simple modification to the previous control code will do this. Add a global
variable engine_on that has the obvious meaning. Now if there are any of the
“a,” “s,” “d,” or “w” keys pressed, a local variable eon will be set to True, indi-
cating that the player wants to move the boat (turn the engine on). If it is already
on, no problem. Otherwise turn it on (start the sound):

if eon and not engine_on:
 start_engine()
elif not eon and engine_on:
 stop_engine()

Each check of the keys that are depressed now looks like this:

if k[pygame.K_s]:
 speeds[0] = speeds[0] - .1
 eon = True

Each time through the event loop, the variable eon is first set to False so
that if the player releases the keys, the engine will shut off. The functions that
do the work are:

def start_engine():
global engine_on,sound_on,engine1
engine1.play(1000)
engine_on = True

def stop_engine ():
global engine_on,sound_on,engine1
engine1.stop()
engine_on = False

There are other sounds, and those will be implemented in more detail after
we know more about animation and when more of the game rules have been
implemented.

Starting Gun

This is only used at the beginning of the game, and so there is only one
file: start.wav. This is played when the starting countdown is completed:
gun.wav.

c2h6o – final steps 244

Finish

There is a sound that plays when the winning boat passes the finish line. This
sound is cheer.wav, and is an audience cheering.

Bing

When the player reaches a checkpoint, this sound plays to indicate this fact:
bing.wav.

Audience

There is a background audience sound playing while the race is running:
audience.wav.

GAME PLAY

The idea of a timer is to determine a time duration between events. In this
game it could be used to show the players the elapsed time from the start of the
game until someone passes the finish line.

Completing the Race

When the game begins, as specified by the user pressing the start button
on the initial page, a timer can count down to the actual start. Let that happen
10 seconds after the game begins. After 10 seconds the gameplay timer will
begin, but the same timer can be used to count down the 10 seconds at
the beginning. The game can be in one of three states: Initial (countdown),
playing, and end.

In the initial state the countdown timer is displayed on the play screen, going
from 10 to 0. At zero the starting gun is fired, and the game begins. The play
screen must now be divided into three states. The countdown state is:

Start

When the Play button is pressed on the opening screen, the game enters the
play state and the game can begin. The start of the race should not be imme-
diate; the player should have a few seconds to adapt. A second mouse press
could be used to start the game, but another option is to do a countdown to the
start, perhaps five seconds. After that time has passed, the player’s controls will
operate and the NPC boats will start moving.

The countdown should appear on the screen after the play button is pressed.
The numbers “10,” “9,” “8,” and so on will appear, followed by the traditional
gunshot to start the game.

245 Game Development UsinG python

The countdown can be implemented as a new state that is entered at the
beginning of the game, after the Play button is selected. In this starting state
none of the controls will operate. Five seconds after the state is entered the
countdown will begin, and at the “0” count the race begins.

timer

There are two ways to keep track of time using Python. Likely the best one
would be to use the time function, located in the time module. It returns the
execution time for your program in seconds. So, to time any differential one
could do the following:

import time
start = time.time()
… code
end = time.time()
time_difference = end - start

When the play button on the start screen is selected the code

initialTime = time.time()

is executed and the variable starting is set to true. Now a function named
countdown is called each iteration, and it returns the current number of
seconds since the play button was pressed, but backward from 10. When 0
is reached this function sets starting to False and plays the starting sound
effect.

Code in move function

if starting:
 k = countdown()
 player.display()
 boat3.display()
 boat4.display()
 pygame.draw.rect(display,

 (0, 0, 0), (500, 0, 200, 400), 0)
 text(“Start in “ + str(k) + “ sec-
onds”, 520, 100)
 return

def countdown ():
 global initialTime, starting,

 global start
 diff = time.time()-initialTime
 if 10-diff <= 1:
 starting = False
 initialTime = time.time()
 gun.play()
 ambiance.play(loops = -1)
 ambiance.set_volume (0.1)
 return 0
 else:
 return int(10-diff)

c2h6o – final steps 246

Notice that when the countdown reaches 0, the initialTime is set to the current
time again, meaning that now the difference between this and the time() value will
be the number of seconds the game has been running. This is the game timer.

The countdown is shown in Figure 9.5.

Intermediate Goals

In order to ensure a fair game, all boats must pass certain checkpoints
during the race. The route moves up the initial fjord, moves right to the
final island, around that island and left to the first island, and around
that and back to the fjord at the far right. The finish line is at the end of
that fjord. How can it be ensured that all of the checkpoints have been
reached?

There are a couple of possibilities. A boat could reach a checkpoint if it
comes within a specified distance of a specific location on the map. There is
only one such checkpoint at a time, like waypoints, and when one is reached
the next one is selected. Another idea would be to place invisible objects
along the path that the boat must collide with. A collision simply marks the
relevant portion of the track as having been completed and begins a new
section.

The checkpoints are to be marked on the screen with little flags or buoys, and
the boats must pass between these flags. They must also pass through them in
the correct order. The function drawWaypoints draws the flags on the screen,
and it is called for each iteration.

One of the NPC boats uses the blue flags, and the other uses the red ones.
The player uses the blue flags also.

FiguRe 9.5 The starting timer.

247 Game Development UsinG python

Finish

The winner of the race is the first boat to cross the finish line, located in the
lower right of the terrain map. It corresponds to waypoints 29 and 30, the final
NPC waypoints, and when it is reached their position in the race (first, second,
or third) and the time needed to complete the race should be displayed. There
is a cheer from the crowd after a finish.

MINI-MAP

A mini-map is a much smaller version of the playing area arranged so that it
can all be seen in its entirety, or at least so that most of the play area can be seen.
This means that the locations of your opponents can be seen even when they

FiguRe 9.6 The marker flags, which happen to be at the same position as the waypoints.

FiguRe 9.7 The play area of the game SMV Rainbow showing a mini-map.

c2h6o – final steps 248

are far ahead or behind you. Other game objects can also be seen with respect
to your current position. It’s a very common game feature. An example is shown
in Figure 9.7 from a game named SMV Rainbow, but many driving and combat
games have this feature.

To create a mini-map we start with the original terrain image and reduce
it in size. In this game the size reduction is 16x, meaning that the mini-map
is 200 pixels across. A problem is that there’s no place to put it in the
drawing area. Anywhere this map goes it will possibly block some valuable
game real estate. The answer is to make the drawing area 200 pixels wider,
and to draw the mini-map in the lower part of that area. Now the creation
of the display is:

display = pygame.display.set_mode((700,400),pygame.SRCALPHA,32)

The map itself is a copy if the background (terrain) map reduced in size:

bk2 = pygame.transform.scale(background, (200,169))

This image is drawn at location (500, 220) during each iteration. The boats
must be drawn on this map too, for the map to be useful. Take the position of
each boat on the big map and simply divide by 16, the map scale. Then draw it
relative to the upper left of the mini-map (500,220). The player, for example,
would be:

pygame.draw.circle (display, (255, 0, 0),
 (int(500+player.x/16), int(220+player.y/16)), 2, 0)

The player is drawn as a red circle and the NPC boats are blue.

Game Data

The mini-map only uses the lower portion of the expanded area. This leaves
some empty space that can be used for other things. Why not display some of
the game data here, such as the boat positions, speeds, and courses? It adds
more interest to the game. A game timer would be good too. This is a clock
showing how far into the race we are at the moment. All of those things will be
drawn into the region to the right of x=500 and above the mini-map. Sample
code is:

249 Game Development UsinG python

text (“Player “+str(int(player.x))+” “+str(int(player.y)),
 520,100)
text (“ Speed: “+ str(int(player.speed*10))+ “ Course: “+
 str(int(player.angle)), 520,115)</CODE>

TUNING

The concept of tuning a game involves adjusting the parameters of all of the
objects so as to make the game more fun. Fun is impossible to define, but we
know when we’re having fun, so this should be possible. What are the tuning
parameters of this game? Each waypoint has a speed parameter. These can be
varied to make the game more or less competitive. In fact, there could be a
different set of waypoints for easy, medium, and difficult versions of the game.
The location of the waypoints can be changed also. All of the waypoint data
resides on a file, so these are easy to modify.

The acceleration and turning speed can change too. These values are
constants in the code, but they are easy to change if you have the source. The
locations of the checkpoints can be modified, and the required path can be
made more or less constrained.

ExERCISES

1. The play testers noted that the passages from the start to the lake and at the
end of the game were too narrow. Describe how this could be improved.

2. The wake animations will play over top of other boats and the shore if the
situation is right. How could this be changed?

FiguRe 9.8 The new play screen showing the mini-map and playing data.

c2h6o – final steps 250

3. The end of the game is unfinished. Add the necessary code to name the
finishers and their times and make use of the end screen.

4. There is a file named flags.png that contains the images of the two sets
of waypoint marker flags. In the current implementation these images are
drawn onto the terrain background. Modify the game to display these flags
as animations.

5. What would happen to the game if, instead of the flags being drawn onto
the terrain as the game is being played, they were a part of the background
image? Is that a better way to do this?

6. Use a Python profiler to determine which of the code sections is using the
most time. Is it possible to improve that?

RESOURCES

Steering: https://gamedevelopment.tutsplus.com/tutorials/understanding-steer-
ing-behaviors-collision-avoidance--gamedev-7777.

Pygame animation: http://usingpython.com/animation/.
Pygame animation using Spritesheets: https://codehackersblog.blogspot.

com/2015/06/explosion-animation-using-spritesheets-in-pygame.html.

REFERENCES

1. alter spielend-programmieren. (2011). The Python Game Book: Scrolling
and Minimap. https://www.youtube.com/watch?v=DusPphBj98A.

2. Bryce Boe. (2006). Line Segment Intersection Algorithm. http://bryceboe.
com/2006/10/23/line-segment-intersection-algorithm/.

3. Tracy Fullerton, Chris Swain, and Steven Hoffman. (2004). Game Design
Workshop: Designing, Prototyping, & Playtesting Games CMP Books, San
Francisco.

4. Zack Hiwiller. (2015). Players Making Decisions: Game Design Essentials
and the Art of Understanding Your Players. New Riders.

5. Shawn Patton. (2017). The Definitive Guide to Playtest Questions. https://
www.schellgames.com/blog/insights/the-definitive-guide-to-playtest-questions.

6. Eric Meythaler. (2009). “2D Rotated Rectangle Collision.” Gamedev.net.
https://www.gamedev.net/articles/programming/general-and-gameplay-
programming/2d-rotated-rectangle-collision-r2604.

7. Charles P. Schultz. (2016). Game Testing All in One, 3rd edition. Mercury
Learning & Information. Dulles, Virginia

251

chapter 10
networkIng

A networked game allows many players to participate at one time, and these
players need not be in the same room. Multiplayer games are distinct from
networked games in that a basic multiplayer game permits multiple people (up
to N players, usually no more than four) to use the same computer on which the
game software is executing. A networked game allows many more players, as a
general rule, and they can be in quite diverse locations. Communications takes
place using the Internet.

The usual situation has a special computer somewhere, the game server,
which takes logins and moves from players using Internet protocols. A program
on each player’s computer, called the client, sends the user’s actions to the server
and displays the actions on the player’s computer. It also receives information
from the server about the actions of the other players and their locations.

This means that each player can “see” the other players, at least in the sense
that all of the avatars are visible on each player’s screen. Reality dictates that
there must be a small time difference between what a player sees and what the
actual situation is as defined by the server, but in an ideal situation this would
be small. The time difference is often referred to as latency. If this grows too
large, then the game becomes unplayable, since each client has a very different
idea of where the other players are.

Consider a game where two players were involved, and one was in New York
and the other in Chicago. Imagine that the server is in Seattle. The game is a
first-person shooter, and both players are in the same region of the game. The
server mediates all interactions by the players, but the client on each computer
can see what the local player is doing and will update the view very quickly,
faster than the server can. Why? The local client can do graphics in microsec-
onds, but the server is limited by the transmission speed between the client and
the server.

252 Game Development UsinG python

So, the client-side program of a network game renders the scene, plays
sounds, and handles the input from one player. It also receives updates from a
server on where all of the objects are in the game and what their state is. In fact,
it usually only does so for a small region of the game. It gets updated positions
and orientations of objects from the Internet so they can be rendered, and it
is informed of new creations and deletions of objects. Finally, it sends player
position and orientation data, new creations, and new deletions from the local
computer to the server so they can be shared with all of the other players.

In this chapter we’ll look at the networking facilities that are easily accessible
from Python and use them to build a simple game, a computer version of tennis
that resembles the arcade game Pong, released by Atari in 1972.

THE GAME: PYTHON PONG

For the few people who are not familiar with the original Pong, the game
consists of a rectangular play area, a moving ball, and two “paddles.” The ball
can bounce off of the top and bottom of the play area and also off of the paddles.
The paddles are moved up and down by the players so as to prevent the ball
from moving past them and exiting the play area from either end. If the ball
moves past the left edge of the screen, the right player scores a point, and if the
ball exits the right side then the left player gets a point. Balls restart from the
middle of the screen someplace.

The basic game can be played by two players, each using a different pair
of keys: the left player uses “w” and “s” to move their paddle up and down

FiguRe 10.1 Background for the parallel pong game.

networkinG 253

respectively, and the right player uses the up and down arrows. This game will
be implemented first, and then it can be converted into one where each player
has their own computer.

This is a very simple game, indeed, although it has all of the ingredients of
a computer game. There are three objects: two paddles and a ball. The player
uses only two keys and controls one object in only one dimension. The play area
is 640 by 480 pixels. It can be coded in about 225 lines of Python using a ball
class and a paddle class.

The Paddle Class

A paddle is a simulation of a ping-pong paddle. In the game it is represented
by a simple vertical line. It has the following properties:

xpos - The horizontal position. The left paddle has xpos = 100, and the right
paddle has xpos = 540.

ypos - The vertical position. Can be anywhere in the vertical span of the play
area. The ypos value specifies the position of the center of the paddle.

color - The color with which the paddle is drawn. In the default game it is white
(255,255,255).

size - 1/2 the length of the line the represents the paddle, in other words the
length of the line from the center to either end.

disp - The display on which the paddle will be drawn. A Pygame Surface.
sx - The width of the display surface (640).
sy - The height of the display surface (480).
score - The score for the player of this paddle.

The class can tell if it is a left or right paddle by the value of posx.

The left player uses the “w” key to cause the paddle to move upward, and the
“s” key to make it move down. The paddle continues to move while the key is
held down. So, as a code example consider the left paddle: the main loop deter-
mines whether the “w” or “s” key is depressed and sets a flag lup or ldown,
depending on whether the paddle should be moving up or down:

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 exit()
 if event.type == pygame.KEYDOWN: # Right paddle
 if event.key == pygame.K_UP:
 rup = True
 if event.key == pygame.K_DOWN:

254 Game Development UsinG python

 rdown = True
 if event.type == pygame.KEYUP: # Left paddle
 if event.key == pygame.K_w:
 lup = False
 if event.key == pygame.K_s:
 ldown = False

Then, if the paddle is to be moved, it is done by a method named changey()
in the paddle class:

if lup: # Move left if needed
 pleft.changey(-1)
if ldown:
 pleft.changey(1)

The parameter indices the direction of motion (-ve is up, +ve is down) and
the degree of motion (number of pixels). The changey method does not draw
the paddle. This is done in the main game loop by calling the draw method of
each paddle. A somewhat simplified version of draw is:

def draw (self):
 pygame.draw.line (self.disp, self.color, (self.posx, self.
posy),
 (self.posx, self.posy-self.size),3)
 pygame.draw.line (self.disp, self.color, (self.posx, self.
posy),
 (self.posx, self.posy+self.size),3)
 font = pygame.font.Font(None, 36)
 text = font.render(str(self.score), 1, (100, 100, 100))
 if self.posx<320:
 self.disp.blit (text, (100, 40))
 else:
 self.disp.blit(text, (550, 40))

This version draws the score as well.

The Ball Class

The ball is a more complicated object than the paddle. It moves continu-
ously, bounces off of other objects, and is responsible for the score in the game.
It is represented as a small circle. When it moves off the end of the playing area
there is a small pause, and then the ball is drawn somewhere in the middle of
the play area and starts moving again.

The ball object has the following properties:

xpos - The horizontal position.
ypos - The vertical position.

networkinG 255

color - The color with which the ball is drawn. In the default game it is white
(255,255,255).

size - Size of the bounding box of the ball (5).
disp - The display on which the paddle will be drawn. A Pygame Surface.
sx - The width of the display surface (640).
sy - The height of the display surface (480).
speed - Speed with which the ball moves (pixels per frame).
dx - Change in x position each frame (initially 1).
dy - Change in y position each frame (initially 1).
countdown - The number of frames remaining before a new ball is drawn.
resetDelay - Number of frames of pause after a score is made.
left - The left paddle (an object reference).
right - The right paddle (an object reference).

The ball is drawn using a call to the draw method:

def draw (self): # Draw the ball at the current position
 pygame.draw.circle (self.disp, self.color, (int(self.posx),
 int(self.posy)), self.size, 0)

It is just a filled circle. Ball movement is more complicated. It changes
position by (dx, dy) each iteration. If it bounces off of the upper or lower
edge of the display area, the value of dy changes sign. If the ball moves
past the left (x=0) or right (x=640) ends of the play area, a point is scored
and a countdown is started until the ball starts moving again from the
center of the play area. Finally, if the ball hits a paddle, the value of dx
changes sign.

This code also changes the score for the relevant paddle, and it introduces a
small variation in movement after a paddle collision so that movement is some-
what less predictable. Collision with a paddle is tested by the method collision,
which checks to see where the ball is relative to each paddle. For example, for
the left paddle:

 if self.posx <= self.left.posx and \
 self.posy<self.left.posy+self.left.size \
 and self.posy>self.left.posy-self.left.size:
 if self.posx < self.left.posx-2:
 return False
 self.dx = -self.dx
 return True

256 Game Development UsinG python

def move (self):

Move the ball one step. Check
collisions

 if self.countdown > 0:
#delay post goal
 self.countdown -= 1
 return
 if self.countdown == 0:
 self.posx = 240
 self.posy = random.ran-
dom()*100+200
 self.countdown = -1

 self.posx = self.posx + self.dx
 self.posy = self.posy + self.dy

 # A goal
 if self.posx > self.sx:

 self.left.score += 1
 self.countdown = self.
resetDelay
 if self.posx < 0:
 self.right.score += 1
 self.countdown = self.
resetDelay

 # bounce off of the wall
 if self.posy > self.sy:
 self.posy = self.sy
 self.dy = -self.dy
 if self.posy < 0:
 self.posy = 0
 self.dy = -self.dy

 if self.collision(): #
Paddle collision?
 self.dx = self.dx + \

 (random.random
()-0.5)*0.2

A slight change after bouncing

 self.dy = self.dy+(random.
random()\

 -0.5)*0.2
 d = math.sqrt (self.dx*self.
dx + \

 self.dy*self.dy)
 self.dx = (self.dx/d)*self.
speed
 self.dy = (self.dy/d)*self.
speed

Without the inner if statement, the ball could “bounce” if it moved behind
the paddle without colliding with it. This has unfortunate consequences as can
be seen if this statement is removed.

These two classes implement the game. When one paddle or the other
reaches a certain score value, the game is over.

Now let’s see how communication is done in Python between computers on
a network.

networkinG 257

Communication Between Processes

Communication between programs on a network is conducted very much
like a conversation. One person (program), the client, initiates the conversation
(“Hi there!”). The other (the server) responds (“Hello. Nice to see you.”). Now
it is the client’s turn again. They take turns sending and accepting messages
until one says “goodbye.” These messages might contain email, or FTP data, or
TV programs. The communications system does not care what the data is; none
of its business, really. Its job is to deliver it.

Data are delivered in packets, with each containing a certain amount.
In order for the client to deliver the data, there must be a server willing to
connect to it. The client needs to know the address of a server, just as an FTP
address or email destination was required before, but now all that is needed
is the host name and a port number. A port is really a logical construction,
something akin to an element of a list. If two programs agree to share data by
having one of them place it in location 50001 of a list and the other one read it
from there, it gives an approximate idea of what a port is. Some port numbers
are assigned and should not be used for anything else; FTP and email have
assigned ports. Others are available for use, and any two processes can agree
to use one.

A module named socket, based on the interprocess communication scheme
on UNIX of the same name, is used with Python to send messages back and
forth. To create an example, two computers should be used, one being the
client and one the server. The IP address of the server is required.

example: Moving a Ball on the Screen

The client will open a communications link (socket) to the server, which has
a known IP address. The server will engage in a short handshake (exchange of
strings) and then expect to receive a number for the client. The client will send
an integer, the server will receive it, square it, and send back the answer. This
simple exchange is really the basis for all communications between computers:
one machine sends information, the other receives it, processes it, and returns
a reply based on the data it received.

The client: will begin the conversation. It creates a connection, called a
socket, to the server using the socket() function of the socket module. Proto-
cols must be specified, and the most common ones will be used:

import socket

HOST = ‘19*.***.*.***’ # The remote host
PORT = 50007 # The same port as used by the server

258 Game Development UsinG python

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))

The client must identify the host computer that is the machine running the
server. Anyone who plays an online game has downloaded the client software
that makes that possible, and this software has the server IP address built into
it. To test this program we need two computers and we need to know the IP
address of the server. This can be found, for the test, by executing the ipconfig
program on your PC. Figure 10.2 shows a possible result.

Port 50007 is used because nothing else is using it. Now the client starts the
conversation, just as it appears at the beginning of this section, by sending a
message. In this case the message is a string:

s.send(b’Hi there!’)

The send() function sends the message passed as a parameter. The string (as bytes)
is transmitted to the server through the variable s, which represents the server. The
client now waits for the confirmation string from the server, which should be “Hello.
Nice to see you.” To receive the message, the client calls another socket function:

data = s.recv(1024)

which waits for a response from the server. This response will be 1024 bytes
long at most, and it will wait only for a short time, at which point it will give up
and an error will be reported. If this client gets the response, it proceeds to the
next step in the communication process. In this case it should be to receive the
(x, y) position of an object on the screen.

FiguRe 10.2 Output from ipconfig showing your IP address.

networkinG 259

Now let’s say that we have agreed that the received data will be a pair of inte-
gers. The client could read the string, convert it into integers, and use them as
screen (window) coordinates at which to draw a ball. Then the client will draw
the ball, read another pair, draw again, and so on. The nature of the communi-
cation is agreed on in advance and must be followed exactly.

When the exchange of data is complete, the client closes the connection:

s.close()

The Server: is always listening. It creates a socket on a particular port so
that the operating system knows something is possible there, but because the
server cannot predict when a client will connect or what client it will be, it
simply listens for a connection, by calling a function named listen():

import socket
from random import *

HOST = ‘’ # A null string is correct here.
PORT = 50007
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind ((HOST, PORT))

s.listen()

AF_INET and SOCK_STREAM are constants that tell the system which
protocols are being used. These are the most common, but see the documentation
for others. The bind() and the listen() functions are new to this discussion. Asso-
ciating this connection with a specific port is done using bind(). The tuple (HOST,
PORT) says to connect this host to this port. The empty string for HOST implies
this computer. The listen() call starts the server process, this program, accepting
connections when asked. A process connecting on the port that was specified in
bind() will now result in this process, the server, being notified. When a connection
request occurs, the server must accept it before doing any input or output:

conn, addr = s.accept()

In the tuple (conn, addr) that is returned, conn represents the connection, like
a file descriptor returned from open(), and is used to send and receive data; addr
is the address of the sender, the client, and is a string. If the addr were printed:

print (“Connected to “, addr)

It would look like an IP address:

Connected to 423.141.12.911

260 Game Development UsinG python

Now the server can receive data across the connection, and does so by calling recv():

data = conn.recv(1024)
print (“Server heard ‘”, data, “’”)

The parameter 1024 specifies the size of the buffer, or the maximum number of
bytes that can be received in one call. The variable data is of type bytes, just as the
parameter to send() was in the client. The client was the first to send, and it sent the
message “Hi there!” That should be the value of the data now, if it has been received
properly. The response from the server should be “Hello, nice to see you.”:

conn.send (b’Hello. Nice to see you.’)

The same connection is used for sending and receiving. Now the real data
gets exchanged. The server will accept integers, sent as bytes. It can draw the
ball at the specified position:

while True:

 data = conn.recv(1024) # Read the incoming data
 if data:
 xpos,ypos = convertData(data) # Convert it to integers
 print (“Received “, i)

 drawBall (xpos,ypos) # Draw the ball

The server can tell when the connection is closed by the client, but it is also
polite to say “Goodbye” somehow, perhaps by sending a particular code. If the
loop ever terminates, the server should close the connection:

 conn.close()

This is a pretty good example of a data exchange and a contract, because
there are specified requirements for each side of this conversation which will
result in success if done correctly and failure if messed up. Failure is some-
times indicated by an error message, often a timeout where the client or server
was expecting something that never arrived. In other cases, failure is not
formally indicated at all; the program simply “hangs” there and does nothing.
For example, if at any time both processes are trying to receive data, then the
program will fail. This is a failure in the implementation of the protocol.

Figure 10.3 shows the communication between the client and the server as
a diagram. If the client and the server are at any time both trying to accept data
from the connection, then the program will fail. In the diagram all data transfers
can be seen as transmit-accept pairs between the two processes, and as read-
write pairs within the server and write-read pairs within the client.

networkinG 261

The client
import socket

The remote host
HOST = ‘19*.***.*.***’
The same port used by the server
PORT = 50007

s = socket.socket(socket.AF_INET,\
 socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(b’Hi there!’)
data = s.recv(1024)
for i in range (0, 100):
 data = str(i).encode()
 s.send (data)
 data = s.recv(1024)
s.close()

The server
import socket

HOST = ‘’ # A null string is ok here.
PORT = 50007
s = socket.socket(socket.AF_INET, \
 socket.SOCK_STREAM)
s.bind ((HOST, PORT))
s.listen()
conn, addr = s.accept()
data = conn.recv(1024)
print (“Server heard”, data, “’”)
conn.send (b’Hello. Nice to see you.’)
while True:
Read the incoming data
 data = conn.recv(1024)
 if data:
Convert it to integer
 i = int(data)
 print (“Received “, i)
Square it and convert to bytes
 data = str(i*i).encode()
Send to the client
 conn.send (data)
 conn.close()

FiguRe 10.2 Typical communication between the client and the server processes.

262 Game Development UsinG python

NETWORK PONG

The networked client-server version of this game is played on two computers
by two players, with a third computer as the intermediary for communication.
Each client program gathers user interface information and sends it to the
server. The server shares the result of this information with the clients, in that a
keystroke in one client results in a move of the paddle which is sent to the other
client as a change in the paddle position. The client has no user interface, and
simply acts as an intermediate.

The Client

The game client has a few major tasks:

There is a problem that should be kept in mind, but it can be neglected
in implementation until later. That is the question of where the ball really is.
Each of the three processes may have a slightly different view of that fact.
What this means is that the ball’s bounces may occur at different moments in
real time on each of the three computers. We’ll wait to see if this becomes a
serious issue.

We’ve seen how to establish a connection to the server. The client may have
to wait, because the server in this chapter will allow only two clients at a time. A
third client trying to connect will have to wait its turn to play.

The client will receive a message indicating which player it is, left or right.
That is again something that we’ve seen before. It waits until the client sends it
a message. When the server gets two players who wish to play, as indicated by its
receiving messages from two different computers, then it sends a message to both
clients saying that the game has begun. It sends the clients the position of the ball.

1. Establish a connection to the server.
2. Determine which paddle it controls using communication to the server.
3. Wait to be told the game has started.
4. Play the game as follows:

 Identify movement of the paddle by the player and transmit this to the
server.
Determine where the ball is and display it at the correct place.
Tell the server when a point is scored.
Get from the server the points for each side and display them.
Get from the server a notice when the game is over.

networkinG 263

The client accepts information from the player about paddle motion of the
paddle it controls, which it translates into positions and sends to the server. It
asks the server for the position of the opponent’s paddle and the ball, and then
renders the new scene. The paddles need not move, but the ball does, and it
is updated each frame. Thus, the ball position updates can be used as a means
to time the screen updates: each time a ball update is received amounts to one
“clock tick,” which triggers a new frame to be rendered by the client.

This is the core of the client code, and a sketch of an implementation would
consist of a loop:

initialize()
while True: void keyReleased ()
 get a message m if move paddle up key
 if m is a paddle position send server a new
paddle position
 move the paddle if move paddle down key
 if m is a ball position send server a new
paddle position
 move the ball
 render the frame

From this sketch it can be seen that the client does not update its own paddle
directly, but waits to hear from the server. The delay on the network could be such
that the local paddle position was far ahead of where the server and other client
had most recently recorded. This means that a player could see their paddle in
one place while the server saw it in another, resulting in points or bounces being
recorded that the player could not see. It would be frustrating. Anyone who has
played an online game understands the problems that lag can bring.

We can also see that a message has a specific meaning or type, and each type
has parameters. According to the sketch there are at least two types: paddle
position and ball position. There are more, of course. The format of each
message can be specific to the content. So:

Message ID Code Param 1 Param 2

Paddle position
(PPOS)

01 Position y
x position is fixed

Which paddle(0 or 1)

Ball position
(BPOS)

02 Position x Position y

In the initialize section of code, there is a message sent that identifies the
client’s designation, left or right:

264 Game Development UsinG python

 Designation 00 0=left, 1=right
 (DESI)

This will be the first message received. The messages consist of four integers
(128 bits), the ID code that identifies the kind of message, and three parameters.
Each code will have only one bit sent at most. Parameters are 32-bit integers. A
message can be sent by calling a function named sendMessage(a, b, c, d).

The Server

The server has the bulk of the communication responsibility. It must wait
for a connection to two clients to be established. It tells each client what paddle
they control and then sits in the middle of the game, collecting data from each
and sending it to both. When the server receives a paddle position from one
client, it must send the resulting position to both clients. That is because the
server is the ultimate arbiter of paddle position. It determines what the ball
position is at each iteration and transmits that position to each client. That is
because the server is the ultimate arbiter of the ball position. Because of this,
the server determines when a goal is scored and when the game is over. It is
responsible for sending these data to the clients.

The server waits for two clients to connect and then assigns each of them a
paddle, sending them a DESI message. It then delays for a few seconds to give
the players time to get ready and then sends a BPOS message, placing the ball
at a random starting position. It then moves the ball as is done in the standalone
game, sending a BPOS message after each movement. After each ball movement
the server looks for PPOS messages from the clients and updates the paddle
positions if any are encountered, passing paddle positions to both of the clients
as well. When a PPOS is received from the left client, the server sends it to both
clients—they do not update their paddles until they hear from the server.

When a score occurs, a message is sent to both clients to that effect so that
the correct score can be displayed on their respective screens. The server then
waits for a few seconds and starts the game again with the ball in a random start
position. When one client has scored 21 points, it has won the game, and the
server sends a message to that effect to both clients.

We have two new messages:

Message ID Code Param 1 Param 2

Goal
(GOAL)

04 Left score Right score

Game over
(OVER)

08

networkinG 265

After the game is over, the communication channels are closed. The server
can start over, getting two new clients and beginning a new game.

Blocking and Non-Blocking

There are a great many options, protocols, and possibilities when building a
communication system using sockets. One important option is whether to use
blocking or non-blocking send and receive operations.

When reading from a socket using recv, the default is a blocking read,
meaning that the function recv does not return until it has obtained some
data. The program can do nothing else until the data has been received. If
the return value is 0, it means that the process at the other end has closed
and will never again send any data. A send operation will not return until the
data has been sent; sending data means writing it into a buffer in the receiver,
and if space is not available, then the sender waits until it is. Blocking can be
a problem if it is not known which of multiple processes will send a message.
In the current example that’s true of paddle positions. Either client can send
a paddle position update at any time. These updates must be dealt with as
soon as possible, and using a blocking read on the left paddle will delay until
a message is set by the left client; meanwhile, the right client could have sent
many PPOS messages.

A solution would be to ensure that each client sends one PPOS message each
iteration, and then awaits a BPOS message from the server. This constrains the
reaction of the paddle movement and sends many more messages than needed.
Another would be to collect paddle movements so that they could all be sent in
a single message after each ball movement was received. Both solutions mean
that the sequence of send-receive is predictable, and so the blocking would not
cause too much trouble.

A non-blocking receive always returns right away, whether or not any data
was sent. If data exists the call works as it has before. If there is no data, then
the call will throw a socket.error exception with the error number (errno) of
either EAGAIN or EWOULDBLOCK. Reading from a socket is now a little
more complex:

def readf (s):
 msg = “error “
 try:
 msg = s.recv(8)
 except socket.error as err:
 if err == socket.errno.EAGAIN or err == socket.errno.
EWOULDBLOCK: # No data

266 Game Development UsinG python

 return “”
 else:
 print (err)
 return msg # an error occurred
 else:
 return msg # Data was received

In the previous code, if no data is received then the program could wait for
some time and try again.

Causing the socket to be non-blocking is accomplished by a call:

mysocket.setblocking (0)

Dealing with non-blocking channels can be a problem, because many condi-
tions have to be tested for any attempted communication. All recv calls need to
be embedded within tests for errors and content, as previously. There may also
be many clients that are in communication at the same time as well. A module
named select has been constructed which enables non-blocking communica-
tion to be dealt with very effectively.

The method select take three lists as arguments and returns a subset of each
of those three lists as a value. In the call:

select (a, b, c)

a is a list of objects to be checked for incoming data, b is a list of objects to
which data will be sent, and for which buffer space will be needed, and c is a list
of objects that may have resulted in an error. Most often, c consists of all of the
objects in a and b. The call returns three lists, so:

x, y, z = select (a, b, c)

returns x as a list of objects that are readable, in that they have incoming data
that can be accessed using a recv call; y is a list of objects that have space in
their buffer and can be written to; and z is a list of objects that have indicated
an error. The game server would have within it, using this scheme, the following
code:

inputs = [ls, rs]
outputs = [ls, rs]
queues = {}
while True:
 readable, writable, exceptional = select.select(inputs,

networkinG 267

outputs, inputs)
 for s in readable:
 print (“Reading”)
 m1 = readf (s)
 if m1 != “”:
 print (“[............. “, m1)
 # now update and send ball position
 . . .

The game can’t do very much except wait for a response from a client
if one is not immediately available, so there is no real penalty for using the
blocking send and receive. At this point we have a strategy for organizing the
communication portion of the network game. We are almost ready to code
the game.

Messages

We have defined five distinct messages that the game requires: PPOS,
BPOS, DESI, GOAL, and OVER. The connections transmit characters over
the sockets, so each message will be a character string. There will be at most
two parameters, and each of these will be at most three digits, because they are
usually screen coordinates. Thus, eight characters is enough for a message.

Sending a message means taking the message type code and two parameters
and converting that into a string that can be sent. The easiest message to format
is game over, which has no parameters. It will always be “08000000.”

DESI has only one parameter, and that’s either 0 or 1. A left DESI is
“00000000” and a right DESI is “01000000.”

PPOS has only one parameter as well, but there are two paddles. It is sensible
to send both the left and right paddle positions in a single message. The imple-
mentation of PPOS will have the first parameter represent the left paddle posi-
tion and the second parameter be the right.

Let’s assume that if a parameter is not needed, it will be set to 0. Then any
8-byte message can be formatted using:

‘{:02d}{:03d}{:03d}’.format(code, p1, p2)

So, for some examples:

DESI left is 00 000 000
DESI right is 01 000 000
OVER is 08 000 000
PPOS 121,255 is 01 121 255 Left paddle=121, right
=255
BPOS 671,330 is 02 671 330

268 Game Development UsinG python

Decoding the messages is pretty simple too. Any string has a 2-character
code and two 3-character integers. So, a string s can be decoded as:

code = int(s[0:2])
p1 = int(s[2:5])
p2 = int(s[5:8])

Now we can begin to separate the client and server parts of the game code.

The Pong Client

The client code is most similar to the standalone game code in that it accepts
commands from the keyboard and displays the playing area on the screen. The
client begins by establishing a connection with the server.

The implementation of the client uses a communications class to do a lot
of the data transmission to and from the server. It holds the message codes, the
server address, and importantly has a method called initClient that establishes
the link to the server. The first thing the client does is create an instance of
the communications class that tries to connect. This class also contains the
following:

def readf(self): Read a message from the
server
def makeMessage(code, p1, p2): Construct a message string
def getMessage(s): Decode a message
def readMessage (self): Read and decode a message
def sendPPos(self, yl, yr): Send paddle positions

After the connection is made, the client receives a DESI message
from the server telling it which side (left or right) the client is playing.
Only the key presses appropriate to the client will be processed. If
the client is the left side, then the arrow keys will have no effect. The
functions IAMLEFT() and IAMRIGHT() can be used by the client
to determine what side it is playing. The two sides also differ in the
following ways:

- The paddle being played by each client will be drawn in green.
- The paddle position for the paddle being played is sent to the server.

The game loop for the client is the same up to the point where the paddle
motion has to be implemented. Then we have the following code:

First, send the current paddle position to the server.

 if IAMLEFT():

networkinG 269

 coms.sendPPos (pleft.posy, 0)
 else:
 coms.sendPPos (pright.posy, 1)

Now get the position of the ball from the server and place the ball in that
position.

--------------- Get ball position -------------------
 m1 = coms.readMessage() # m1 is a string
 xlst = coms.getMessage (m1) # xlst is a tuple
 ball.move(xlst[1], xlst[2])

Read the paddle positions that the server has. These are really the current
positions, because the server determines collisions.
------------ Get other paddle position --------------
 m1 = coms.readMessage() # m1 is a string
 xlst = coms.getMessage (m1) # xlst is a tuple
 pright.posy = xlst[2]
 pleft.posy = xlst[1]

Now read the score from the server. This is used to display on the screen,
and to determine when the game is over.

------------ Get the score --------------------------
 m1 = coms.readMessage() # m1 is a string
 xlst = coms.getMessage (m1) # xlst is a tuple
 pright.score = xlst[2]
 pleft.score = xlst[1]

The rest is nearly as before. Draw the background, the ball, and the paddles.
In this version the maximum score is 3, which makes debugging easier.

display.blit (background, (0,0)) # Display the background
if pright.score > 3:
 gameover = True
if pleft.score > 3:
 gameover = True

 pleft.draw() # Draw the left paddle
 pright.draw() # Draw the right paddle
 ball.draw() # Draw the ball
 pygame.display.update() # Refresh the screen

And that’s the game. The client does not determine paddle collisions, wall
bounces, or scores. The server does this because it is always the owner of all
current positions. This means that the server may be a key press or so behind a
client due to latency, but it still is the authority concerning the game state.

270 Game Development UsinG python

The code for the client is on the book's disc.

The Pong Server

The server does not display the game. It runs on a computer, perhaps in
the background with other processes, and simply arbitrates the two clients.
It has the actual ball class and paddle class, determines bounces and scores,
and sends messages back and forth. It has no user interface. Paddle positions
are sent from each client and are sent back to the clients after the server
processes them.

This means that the entire section of the game loop that handles the user
interaction is not needed. The game loop is, in fact, very brief:

while True:
 clock.tick(50)
 for event in pygame.event.get(): # Only event should be
QUIT.
 if event.type == pygame.QUIT:
 exit()

------------------ Get Paddle positions -----------------------

 m1 = readMessage(rs) # Read paddle message sent by
RIGHT client.
 pright.changey(m1[1]) # Also change the position of the
paddle
 m1 = readMessage(ls) # Read paddle message sent by
Left client.
 pleft.changey(m1[1]) # Also change the position of the
paddle

--------------------------- Move ball, send position ----------

 ball.move() # Move the ball
 sendBPos(ls, int(ball.posx), int(ball.posy))
 sendBPos(rs, int(ball.posx), int(ball.posy))

----------------------------- Send paddle pos to clients ------

 ls.send(bytes(makeMessage(PPOS, pleft.posy, pright.posy),
‘utf-8’))
 rs.send(bytes(makeMessage(PPOS, pleft.posy, pright.posy),
‘utf-8’))

----------------------------- Send score to both clients ------

O
N THE CD

networkinG 271

 sendScore(ls, pleft.score, pright.score)
 sendScore (rs, pleft.score, pright.score)

The messages passed between the server and the client have be synchro-
nized or one of the blocking reads will simply hang, waiting for data. The game
loop for the server must have a send whenever the game loop for the client has
a receive, and vice versa. In this case the protocol is:

Server Client
Get the paddle positions Send paddle position
m1 = readMessage(rs) coms.sendPPos (pleft.
posy, 0)
m1 = readMessage(ls)

Send the ball position Get ball position
sendBPos(ls, int(ball.posx), int(ball.posy)) m1 = coms.
readMessage()
sendBPos(rs, int(ball.posx), int(ball.posy))

Send the paddle positions Get paddle positions
 m1 = coms.readMessage()
ls.send(bytes(makeMessage(PPOS, pleft.posy, pright.posy), ‘utf-
8’))
rs.send(bytes(makeMessage(PPOS, pleft.posy, pright.posy), ‘utf-
8’))

Send the score Get the score
sendScore(ls, pleft.score, pright.score) m1 = coms.
readMessage()
sendScore (rs, pleft.score, pright.score)

Playing the Game

Three computers are used to play this game. First run the server program
on the computer having the server’s IP address, as used by the clients. Then
run a client on each of the other two computers. One will be assigned the left
paddle, the other the right. Note that the ball has the same position on each
game screen, and when the left player moves their paddle, the movement shows
up on the right player’s screen.

272 Game Development UsinG python

RESOURCES

Python Socket – Network Programming Tutorial
https://www.binarytides.com/python-socket-programming-tutorial/
Getting Started with Processing for Android http://createdigitalmotion.com/2010/09/

getting-started-with-processing-for-android/
Socket - Low-Level Networking Interface
 https://docs.python.org/3.6/library/socket.html
Python - Network Programming
https://www.tutorialspoint.com/python/python_networking.htm
http://realmike.org/blog/2010/12/11/sound-playback-in-processing-for-android/

REFERENCES

1. Todd Barron and LostLogic. (2002). Multiplayer Game Programming, 1st
edition. Course Technology PTR.

2. A. Freier, P. Karlton, and P. Kocher. (2011). The Secure Sockets Layer (SSL)
Protocol Version 3.0. Internet Engineering Task Force (IETF). https://tools.
ietf.org/html/rfc6101?ref=driverlayer.com.

3. Warren Gay. (2000). Linux Socket Programming by Example, 1st edition.
Que Publishing.

4. Josh Glazer and Sanjay Madhav. (2015). Multiplayer Game Programming:
Architecting Networked Games, 1st edition. Addison-Wesley Professional.

5. John Goerzen and Tim Bower. (2010). Foundations of Python Network
Programming: The Comprehensive Guide to Building Network Applications
with Python, 2nd edition. Apress.

FiguRe 10.4 Live screen from the pong game.

networkinG 273

6. Alberto Leon-Garcia and Indra Widjaja. (2003). Communication Networks,
2nd edition. McGraw-Hill Education. Boston.

7. Andrew S. Tanenbaum and David J. Wetherall. (2010). Computer Networks,
5th edition [Indian International edition]. Prentice Hall.

275

appeNDix a
A* In PytHon

class node:
 def __init__ (self, a, b):
 self.i = a
 self.j = b
 self.parent = None
 self.bestf = 100000
 self.unusable = False
 self.g = 100000
 self.seen = False
 self.mark = False;

 def Mark (self):
 self.mark = True
 def unMark(self):
 self.mark = False

 def updateF (self, f, p):
 if f < self.bestf:
 self.bestf = f
 self.parent = p

 def setUnusable (self):
 self.unusable = True

def initialize ():
 global z

 for i in range (0,10):
 for j in range (0,10):
 z[i][j] = node(i,j);
 “”” First maze
 z[2][1].setUnusable() # Set up the grid
 z[3][1].setUnusable()
 z[4][1].setUnusable()

276 Game Development UsinG python

 z[5][1].setUnusable()
 z[5][2].setUnusable()
 z[6][2].setUnusable()
 z[6][3].setUnusable()
 z[7][3].setUnusable()
 z[7][4].setUnusable()
 z[8][4].setUnusable()
 z[8][5].setUnusable()
 z[8][6].setUnusable()

 z[1][6].setUnusable()
 z[2][6].setUnusable()
 z[3][6].setUnusable()
 z[3][7].setUnusable()
 z[3][8].setUnusable()
 “””
 for i in range (0,9):
 z[2][i].setUnusable()
 for i in range (1,10):
 z[5][i].setUnusable();
 printGrid()

def printGrid(): # Print the scene
 for i in range(10):
 for j in range(10):
 if i==1 and j==5:
 print(“S”, end=””)
 elif i==7 and j==5:
 print (“E”, end=””)
 elif z[i][j].mark:
 print (“^”, end=””)
 elif z[i][j].parent != None:
 print (“.”, end=””)
 elif z[i][j].unusable:
 print (“#”, end=””)
 else:
 print (“.”, end=””)
 print ()

def h (p):
 return (abs(p.i-goalx) + abs(p.j-goaly)) * 10

def g(p):
 return p.g

def f (p):
 return h(p) + g(p)

appenDix a 277

def inList(p, l):
 for ll in l:
 if ll.i==p.i and ll.j==p.j:
 return ll
 return None

def smallestOpenList ():
 q = openList[0]
 for p in openList:
 if p.bestf < q.bestf:
 q = p
 return q

def neighbors (p):
 nlist = [] # Create a list of neighbors of p
 for i in range(-1, 2):
 for j in range(-1, 2):
 if i == 0 and j == 0:
 continue
 ii = p.i + i
 if (ii < 0 or ii >= 10): # Range check
 continue
 jj = p.j + j
 if (jj < 0 or jj >= 10):
 continue
 nlist = nlist + [z[ii][jj]]
 return nlist

def unMarkAll ():
 for i in range(0,10):
 for j in range(0,10):
 z[i][j].unMark()

def printCost ():
 for i in range(0,10):
 for j in range(0,10):
 if z[i][j].g>300:
 print (“xxx “, end=””)
 else:
 print (z[i][j].g,” “, end=””)
 print()

z = [[None for j in range(10)] for i in range(10)]
initialize()
startNode = z[1][5] # Where to begin the path
goalNode = z[7][5] # The place we are trying to reach

278 Game Development UsinG python

openList = [] # Open list; a list of points
closedList = [] # Closed list; a list of points
goalx = 7
goaly = 5

startNode.g = 0
print (“Starting f is “, startNode.bestf)
openList.append(startNode)
print (openList[0].bestf)

while (len(openList) > 0): # While open list not empty
 p = smallestOpenList() # Select a node from the open list
 if (p == goalNode): # We have reached the goal.
 print (“Done.”)
 printGrid()
 break

 closedList.append(p) # Add to closed list
 openList.remove(p) # remove from open
 nlist = neighbors(p) # Find all neighbors

 for c in nlist: # Examine each neighbor, named ‘c’
 if c.unusable: # If unusable or
 continue
 if inList(c,closedList) != None: # if it is in the closed
list,
 continue # ignore it

 if p.i == c.i or p.j == c.j: # Distance c to p
 d = 10
 else:
 d = 14
 cost = p.g + d # New cost of c is old cost + d

 if inList (c,openList) == None: # c not in the open
list
 openList.append(c)
 if cost >= f(c):
 continue
 c.g = cost
 c.parent = p # Set the parent
 c.bestf = f(c)

 printCost()
 print (“---
----”)

appenDix a 279

unMarkAll()

p = z[goalx][goaly]
while (p != startNode):
 print (“< “, p.i,”,”,p.j)
 p.Mark()
 p = p.parent

printGrid()
printCost()

281

appeNDix B
c2h6o jet BoAt rAce GAme desIgn document

1. Game Overview
1.1. Concept – This game will involve the player guiding a jet boat through a

course down a river and around a lake and over a finish line, while escaping
traps, avoiding obstacles.

1.2. Genre – This is a basic race style game, 2D with overhead view.
1.3. Audience – Any age, but with a younger demographic.
1.4. Game Flow – After moving through the initial screens, the player is signaled

to begin the race. The game begins at a small dock with three boats, and
initially all move down the river and jockey for position. A lake is entered
that has floating pylons to guide the player, each having a number and a
color. The number indicates the next pylon to pass in sequence, and the
color indicates which boat must pass near to the pylon. The first boat to pass
the final pylon wins the race.

1.5. Visual Style – The view of the playing area is from above, and it scrolls to
follow the player. It is a typical 2D race game in that aspect. Boats are 21st
century jet boats.

2. Gameplay and Mechanics
2.1. Gameplay
2.1.1. Game Progression – There is one level, and one goal.
2.1.2. Mission/challenge Structure – no specific missions.
2.1.3. Objectives – The overall objective is to cross the finish line before any of

the other (NPC) boats. Other goals include:
- To pass near flags along the route
- To fuel up to avoid running out of fuel (canceled)
- To interfere, if possible, with the other boats

282 Game Development UsinG python

2.1.4. Play Flow – The game is focused on the human player. Other boats will
attempt to avoid the player. The player must move through the obstacles,
pass the markers correctly, and pass over the finish line.

2.2. Mechanics –
The player can control their boat, making it accelerate or turn left or right.
Hitting land slows the boat, which the player must guide back into

the water.
The race begins on a river, enters a lake where one lap of a circuit must be made,

and ends on another river where the finish line is.
Small flags are floating near the boat’s path, and these must be encountered in

the correct order so that the player may win. Missing a flag means having to
go back.

A clock keeps track of the time that the boat has spent on the race so far. The boat
with the smallest time at the finish wins, irrespective of their physical place
in the race.

2.2.1. Physics – The game takes place on the surface of the water, which is a high
friction surface. Acceleration can be quick, but slacking off on the accelerator
will slow the boat quickly. The boat cannot turn too quickly, so moving too
fast when a turn is needed slows the player’s progress.

2.2.2. Movement in the game – The “q” key accelerates the boat forward, and
releasing it will slow the boat. Turns are performed using the “a” key (left)
and the “d” key (right).

2.2.3. Economy – There is no in-game economy.

2.2.4. Screen Flow – A graphical description of how each screen is related to
every other and a description of the purpose of each screen.

There will be an opening screen (load game assets)
Start screen (play, exit, options, sound)
Options screen – select boats, sound on/off
Play screen
End – win/lose, save score, replay/exit

appenDix B 283

2.3. Game Options – The player can select a boat that has specific properties of
top speed, acceleration, and maneuverability from a small list.

2.4. Replaying and Saving – Game can’t be saved but can be replayed and a list of
players and scores can be maintained.

3. Story, Setting, and Character
3.1. Story and Narrative – There is no narrative here, just a race. Cut scenes

before and after the race are real boat racing scenes from actual jet boat
races.

3.2. Game World
3.2.1. General look and feel of world – A 2D plane showing water and land areas,

flags, boats, refueling area, and obstacles. The terrain background image is
xx.png.

284 Game Development UsinG python

3.2.2. The start area is a dock along a river. When the game begins, the player and
NPCs accelerate to the left along the river.

3.2.3. The river opens into a lake that has colored flags and islands to avoid. Blue
pylons are needed by the player and one of the NPC boats, the red ones by
the other NPC.

3.2.4. There is another river entering the lake which contains the finish line, and
it is to be used after circuits of the lake have been performed.

3.3. Characters. NPC boats have various colors and shapes.
Boat3 (NPC3) is boat2a.gif as a file.

Boat4 (NPC4) is boat5a.gif.
Each is 88x27 pixels with a transparent background.
4. Levels –

4.1. Levels. Only the one.
4.2. Tutorial Level – Later

5. Interface
5.1. Windows and Transitions

When the game begins the START screen is displayed. (startScreen.jpg)

appenDix B 285

There are three buttons on this screen: Play, Quit, and Options.
When the Options button is pressed, the Options screen is displayed

(optionsScreen.jpg):
The Options screen has a button that turns the sound on or off, and a back

button that returns the player to the Start screen.
When the Quit button is pressed the quit screen is displayed, which shows

the credits. Any mouse click will terminate the game program.

When the Play button is pressed the Play screen is displayed. This is the main
play area and is where all of the remaining game aspects occur. The game
screen is 700 by 400 pixels. 500 x 400 show the game play, and 200 x 400 show a
mini-map and other game data on the right side of the screen.

286 Game Development UsinG python

5.2. Visual Assist. HUD.
Camera is above the player’s boat.

HUD (mini-map) is in the lower right corner and shows a wider area with
other boats and scene features. Above that is a text area showing the current
position, speed, and course of each boat.

5.3. Control System – Keyboard
The “q” key moves the player’s boat forward. The “a” key turns it left, and

the “d” key turns it right. The described actions continue as long as the key is
depressed.

5.4. Audio
Music
No music
Starting gun – gun.wav
End indicator – People cheering. finish.wav
Flag indicator – a “bing” noise sounds when the player reaches a new flag.

(bing.wav)
Engine noise – Plays while the player has depressed a motion key (engine1.

wav)
Ambiance – crowd noise plays once the game starts (audience.wav)

5.5. Help System – a single help screen can be opened at any time by
typing the “h” key. Contents later.

appenDix B 287

6. Artificial Intelligence
6.1. Player and Collision Detection

A boat can collide with another boat or with the shore.

BOAT-BOAT COLLISION

When two boats collide they explode and start over from the beginning. An
explosion animation plays and an explosion sound is started.

Collisions are based on object-oriented box intersections. These boxes are
somewhat smaller than the bounding box (size to be determined by play test).

There are five different explosion animations, selected as a sequence
during play. They are represented as sprite sheets (explode1.gif, explode4.gif,
explode5.png).

These have 16 individual frames that are 32 x 32 pixels. The sound of the
explosion is exp1.wav or exp2.wav, and is selected at random.

BOAT-SHORE COLLISION

A collision with the shore is detected by using the corner points of a boat’s
bounding box. If any of these fall on a terrain pixel that is not the same color as
water (33,174,173), then a collision is indicated.

288 Game Development UsinG python

6.2. Pathfinding

The NPC boats each have a set of waypoints to follow. NPC3 (boat3) follows the
odd waypoints, and NPC4 follows the even-numbered ones. These are found
on the file paramets.txt, where each line of text contains:

1. The waypoint number
2. Waypoint X coordinate
3. Waypoint Y coordinate
4. Target speed of the boat at that waypoint

Example:
1 340 2391 .4
2 325 2385 .6
3 369 1849 .6
4 377 1713 .7

 . . .
When the boat reaches a waypoint (within a distance of 100), it selects the next
waypoint and slowly adjusts its speed to the next suggested speed and the course
to intersect with the next waypoint. The final waypoints (29 and 30) represent
the finish of the game.

6.3. Opponent AI

NPC boats will attempt to avoid the other boats, especially the player’s boat.
NPC boats are guided by waypoints, but sometimes when attempting to evade
the player’s boat they will run aground. When the shore is intersected by an
NPC boat, it attempts to reverse course for 30 iterations, and then attempts to
rotate counterclockwise for another 40 iterations. It then resumes its course to
the next waypoint.

AVOIDING THE PLAYER

The NPC boats project a ray in front of them for 200 pixels. If that ray intersects
with another boat (using the bounding box), then a collision is imminent. The
boat enters the AVOID state and turns away from the collision. This is done in
a set of 100 steps. It then leaves the AVOID state and resumes a course to its
waypoint.

6.4. Friendly AI None

appenDix B 289

7. Technical
7.1. Target Hardware – Any desktop

7.2. Development hardware and software, including Game Engine – Python and
Pygame

7.3. Network requirements – Later

8. Game Art – Key assets, how they are being developed. Intended style.
 Game has been seen except for:

Pylons (flags)

Animations

1. Boat wake. To be drawn behind any boat that is under power (engine on and
boat is moving). Can be drawn in a random order. Images are 34 x 83 pixels
and include a water background. wakes.gif

All wake frames.

290 Game Development UsinG python

2. Explosion. When boats collide. http://www.positech.co.uk/content/
explosion/explosiongenerator.html to create the frames.

See 6.1 for sprite sheets.

9. Game progression

Start – When the player presses the START button on the start screen, the play
screen is displayed with no mini-map. Text will count down from 10 to 1 to
allow the player to prepare for the start. At the end of the countdown sequence
(1 second per step), the full game screen is displayed and the boats can now
move.

The NPC boats follow their waypoints until a collision or the end. After a
collision they resume following waypoints.

The player may navigate as they choose, but collisions will be detected and dealt
with.

- Colliding with another boat results in an explosion and a restart.
- Colliding with the shore stops the boat. The player can turn until the boat is

free.

Whenever the player reaches a waypoint, a “bing” sound is played.
Whenever the player holds down the “q” key, the engine sound plays and the
boat accelerates to its maximum speed.
Whenever the “a” or “d” key is depressed, the engine sound plays and the boat
turns.

291

 # A boat ..
class npc : # All class ,local variables
 def __init__(self, x, y, sprite, speed, angle, index):
 self.x = x # Current X position
 self.y = y # Current Y position
 self.speed = speed # Current speed
 self.angle = angle # Current course
 self.index = index # Index in boats tuple
 self.sound = False # Engine sound playing?
 self.volume = 0 # Sound volume
 self.targetSpeed = 0 # How fast does the boat want
to go?
 self.targetAngle = 90 # What is the course setting?
 self.sprite = sprite # The image of the boat
 self.wpt = None # Next waypoint
 self.name = “NPC 1” # Name of this boat
 self.NORMAL = 0 # NORMAL state.
 self.AVOID = 1 # State where the boat is
avoiding another
 self.COLLIDED = 2 # State where boat has
collided with the shore
 self.EXPLODING = 4 # State where the boat is
exploding
 self.state = self.NORMAL # Current state
 self.ccount = 0 # Current step in AVOID (0 ..
100)
 self.estate = 0 # Current step in COLLIDED
 self.delta = 0 # Angle step in the AVOID
process
 self.frame = 0 # Current explosion frame
 self.r = None # Temp surface for rotating
the boat image
 self.player = False # Is THIS boat the player’s?
 self.ul = [1,1] # Upper left corner of bounding

appeNDix c
tHe nPc (BoAt) clAss For tHe exAmPle GAme

292 Game Development UsinG python

box
 self.ur = [1,1] # Upper right corner of
bounding box
 self.lr = [1,1] # Lower right corner of
bounding box
 self.ll = [1,1] # Lower left corner of bounding
box
 self.sternx = 0 # X coordinate of the stern
 self.sterny = 0 # Y coordinate of the stern
 self.prowx = 0 # X coordinate of the prow
 self.prowy = 0 # Y coordinate of the prow
 self.centrex = 0 # X coordinate of the boat
center
 self.centery = 0 # Y coordinate of the boat
center
 self.done = False # Has this boat finished the
race?
 self.kimage = int(random.random ()*5) # Which explosion
image to use
 self.savedx = x # Last x location of the boat
(for explosion)
 self.savedy = y # Last x location of the boat
(for explosion)
All methods
 def display(self): # Display this boat or
its explosion animation
 def showNextExFrame (self, x, y): # Display the next
explosion animation frame
 def reset (self): # Restart this boat at
its original position

Course and speed will change
gradually to the target
 def setSpeed (self, s): # Set the target speed
 def setCourse (self, a): # Set the target course

 def setWaypoint (self, w): # Set the current target
waypoint
 def setName (self, s): # Set the text5 name of
this boat
 def adjustAngle (self): # Adjust the boat course
a step to target
 def adjustSpeed (self): # Adjust speed a step to
target
 def escape (self): # Do one step to escape
from a shore collision

appenDix c 293

 def normalize (self, vec): # Normalize a vector
(make is length 1)

Could a boat collision
between I and j occur?
 def boatCollision(self, i, ddx, ddy):

 def avoid(self, i, ddx, ddy): # Perform a step in
avoiding another boat
 def update_box(self): # Update the bounding box
for this boat, step
 def playerStep(self): # Move the player’s boat
one step, all tests
 def nextStep (self): # Move an NPC boat a
step, all tests

295

Index

A
AABB. See Axis Aligned Bounding Box
Accuracy, 18–19
Action games, 8
ADC. See Analog to digital converter
Advent, 8
Adventure games, 8
Age of Empires, 6
AI. See Artificial intelligence
Ambient animations, 225–228
Analog to digital converter (ADC), 160
Angry Birds, 13, 28
Animation01.py, 208–209
Animations, 208–233

ambient, 225–228
in boat race game, 231
character, 228–229
C2H6O Jet Boat Race, 237–242
cut scenes, 229–231
elementary, creation of, 209–214
math, 214–219
reactive, 219–225
wakes, 231

Arc, 53–54, 55
Architecture, 10

Area test, 123
Artificial intelligence (AI), 31, 104–127, 136–137,

143–146
C2H6O Jet Boat Race, 193–201

Aspect ratio, 64–65
A*search, 146–150
Audacity, 168–170
Audio concepts, 157–161
Audio software, 168–170
Audio system, 27–28
Autonomous control, 130–136
Avoidance behavior, 133–135
Axis Aligned Bounding Box (AABB)

collision detection using, 116–117, 118

B
Back-face culling, 121
Backgammon, 1
Ball clause, 254–256
Beta testing, 204
Bind, 259
Blitting, 57–58
Block map method, 119
Board games, 3
Boat race game

296 Game Development UsinG python

animations in, 231
collision detection in, 123–127
C2H6O Jet Boat Race, 40–45, 70–72, 179–206,

236–250
Bots, 104
Bouncing a simulated ball, 78–79
Bounding boxes, collision detection using, 114,

116–118
Broadbase collision detection, 108, 109–120

geometric tests, 110–112
operational methods, 109–110
space subdivision, 118–120
using bounding boxes, 116–118
using enclosing circles, 112–116

Broadcast-listener, 33–34
Buttons

C2H6O Jet Boat Race, 182–184

C
Capita vel Navia, 91
Car, controlling, 131–136

avoidance behavior, 133–135
cruising behavior, 132–133
waypoint Representation and Implementation,

135–136
Card games, 3–4

randomness in, 90–96
Casual games, 8
Cellular phones, 13
Channels, 161, 162, 164–165
Character animation, 228–229
A Christmas Carol, 4
Circle, 56
Circle-circle collisions, 114–116

closest point on a line to a specified point,
finding, 115–116

Civilization, 13
clock.tick, 77–78
Cognitive simulation, 104
Collision detection, 104–127

in boat race, 123–127, 240–242
broadbase collision detection, 108, 109–120
C2H6O Jet Boat Race, 193–196
narrowbase collision detection, 120–122

Color(s)
class, 55
gradient creation, 51–52
pixels and, 67–70

transparent, 59–61
Computer games, common aspects of, 9–10
Conflict, 4–15
Copy, 226
Core Techniques and Algorithms in Game

Programming, 27
Crazy Taxi, 14
Cross product, 111
Cruising behavior, 132–133
C2H6O Jet Boat Race, 40–45, 70–72, 179–206,

236–250
animations

explosions, 238–242
wakes, 237–238

artificial intelligence
boat, avoiding, 199–200
colliding with the shore, 200–201
collisions, 193–196
navigation, 196–197
waypoints, 197–199

boat class, 192–193
design document, 41–45
game play, 244–247

completing the race, 244
finish, 247
intermediate play, 246
start, 244–246
timer, 245–246

mini-map, 247–249
game data, 248–249

play screen, 187–190
prototype 0, 180–181
prototype 1, 181–187

buttons, 182–184
end screen, 186
options screen, 185–186
play screen, 186
screens, 181–182
start screen, 184–185

prototype 2, 186–187
sound, 201–203, 242–244

audience, 244
bing, 244
collisions and explosions, 203
engine sounds, 202–203, 242–243
finish, 203, 244
starting gun, 203, 243

testing, 203–206

inDex 297

tuning, 249
user control, 190–192

Cut scenes, 229–231

D
Dance Dance Revolution, 8
Desktop computers, 10–11
Dice, randomness in, 90–96
Display, 55, 227
display.blit, 69
Distance attenuation, 171–172
Donkey Kong, 8
Doom, 8, 18
Dot product, 111
Double Dash, 15
Dragon Slayer, 8
Draw, 55, 222, 228, 240
Drawing text, 58–59

E
Elder Scrolls Online, 8
Enclosing circles, broadbase collision detection

using, 112–116
Entertaining, 2
Events of game loop, 79–87

better game, 86–87
keyboard, 82–83
mouse, 81–82
on-screen button, 84–85
simple game, 85–86

Explosions
boat collisions, determination of, 240–242
C2H6O Jet Boat Race, 237–242

F
Fermi, Enrico, 96
Fidelity, 18–19
Fighting games, 8
Fill, 55
Final Fantasy XI, 8
Finite state machines, 136–144

air state, 141–142
attacking state, 142
damaged state, 142
defending state, 142–143
patrolling state, 143
in practice, 137–140
searching state, 143

skidding state, 143
start state, 141
state and “what do we do now” problem, 140–141
stopping state, 144

Flash, 214
Flight simulator, 7
FMV. See Full motion video
font.render, 59
For loop, 64
Frequency, 158
Friction, 215
FSAs. See Finite state machines
Full motion video (FMV). See Cut scenes

G
Gambling, 90–92
Game, definition of, 1–2
Game Boy, 12
Game Coding Complete, 27
Game consoles, 11–12
Game design, 28–30

mechanics, 29–30
Game design document (GDD), 39, 40, 179

C2H6O Jet Boat Race, 41–45
Game Developer’s Conference, 17
Game genres, 6–9

action, 8, 9
role playing, 7–8
simulation, 7
sports, 6–7
strategy, 6

Game loop, 74–100
events, 79–87
randomness, 87–96
random value generation, 96–98
reality and intelligence, simulation of, 98–100
time and intervals, 74–79

Game state, 32
Game testing, 203, 204
GDD. See Game design document
Gebert, Nigel, 175
Geometric level of graphics system, 26–27
Geometric tests, for collision detection, 110–112
getPosition, 33, 222
get_pressed, 83, 191
GHz. See Gigahertz
Gigahertz (GHz), 158
Global entities, 34–35

298 Game Development UsinG python

Global state of the game, 32
Golfing games, 6–7
Google Docs, 40
Graphics, 15, 47–72

pipeline, 25
system. See Graphics system

Graphics system, 24–27
geometric level, 26–27
object level, 25–26
optimization, 27
rasterization level, 27

H
Half Life, 15, 156
Halo, 15, 156
Hertz (Hz), 158
Hidden computer games, 30
Hitchcock, Alfred, 156
Hockey Pong, 136
Horror games, 8
Hz. See Hertz

I
Image transformations, 64–67

rotation, 65–67
Images

negative image, 63–64
pixels, 62–63
Pygame, 61–64

im.get_at, 62
im.get_height, 61
im.get_width, 61
iMovie, 225
im.set_at, 63
Intelligence and reality, simulation of, 98–100
Interaction, 9
Interesting games, aspects of, 13–19

conflict, 14–15
fidelity/accuracy, 18–19
graphics and sound, 15
interface, 16–17
pace/scale, 17–18
props, 15–16
venue, 13–14

Interface, 16–17, 33
Interior angle test, 123
Intervals of game loop, 74–79
isArmed, 184

K
Key frames, 211
Keyboard events, 82–83
Key_pressed method, 83
KHz. See KiloHertz
KiloHertz (KHz), 158
Kinetic games, 3, 8

L
Latency, 251
The Lawnmower Man (film), 4
Line, 52–53, 55
Listen, 259
Little Big Planet, 15

conflict, 15
Logitech Wingman, 17
Loudness, 158
Lua, 35

M
Mac

iMovie, 225
Macs, 10
Managers, 33
Mario Kart, 134
Mathematical games, 3, 4
Mechanics, 9, 29–30
Megahertz (MHz), 158
MHz. See Megahertz
Microsoft

MovieMaker, 225
A Million Random Digits (book), 96
Mini-map, 247–249
Mixer, 161, 162
Monopoly, 13
Motion equations, 216–219
Mouse button events, 81–82
mousePressed, 182
mouseReleased, 182
MovieMaker, 225
Moviepy, 231
Multiple inheritance, 35
Myst, 8

N
Narrowbase collision detection, 120–122

ray/triangle intersection, 121–123
Navigation and control, 129–152

inDex 299

A*search, 146–150
basic autonomous control, 130–136
C2H6O Jet Boat Race, 196–197
finite state machines, 136–144
pathfinding, 144–146
stochastic navigation, 151–152

Negative image, 63–64
Networking, 251–272

See also Pong
Newton’s Laws of Motion, 215–216
nextStep, 198
Nim, 4
Nintendo, 12
Nintendo Switch, 12
Non-player characters (NPCs), 129, 131, 144, 192,

196, 198, 200, 206, 245, 248
Note paper page creation

lines and curves, 53–55
pixel level graphics, 50–51

NPCs. See Non-player characters

O
Object level of graphics system, 25–26
Object oriented bounding box (OOBB)

collision detection using, 117–118
Objects, 9, 10
Odd intersections test, 123
On-screen button, 84–85
OOBB. See Object oriented bounding box
Open, 259
Opponents, 104, 105
Options button, 183–184
optionScreen, 182

P
Paddle class, 253–254
Paint, 210, 214, 220
Parcheesi, 1
Pathfinding, 144–146
Pause, 222
Photoshop, 214
Pitch, 157, 158
Pixel level graphics, 49–52

color gradient creation, 51–52
note paper page creation, 50–51

Pixels, 62–63
and color, 67–70
See also Pixel level graphics

Planetside, 9
Platforms, 10–13

cellular phones, 13
desktop computers, 10–11
game consoles, 11–12
portable consoles, 12
tablets, 11

Play, 2, 9, 222
Playing the game, by rules

artificial intelligence, 31
broadcast-listener, 33–34
game state, 32
global state, 32
hidden computer games, 30
managers, 33
push/pull (client server), 32–33
shared and global entities, 34–35

PlayStation, 12
Playtesting, 203, 204
Polygonal objects, collisions in, 107–109
Polygons, 56–57
Pong, 35–39, 252–271

ball clause, 254–256
communication between processes

moving a ball on the screen, 257–261
network, 262–272

blocking and non-blocking, 265–267
client, 262–264, 268–269
messages, 267–268
playing the game, 271
server, 264–265, 270–271

paddle class, 253–254
Portable consoles, 12
Portal, 9, 28, 30
Positional audio, 170–176

2D positional sound, 172–176
distance attenuation, 171–172

Probability, 92–93
calculations, 93–96

Props, 15–16
Pseudorandom numbers, 88, 97–98
Push/pull (client server), 32–33
Puzzle games, 8
Pygame, 47

blitting, 57–58
drawing text, 58–59
essentials, 48–49
game loop, 74–100

300 Game Development UsinG python

image transformations, 64–67
images, 61–64
lines and curves, 52–55
pixel level graphics, 49–52
pixels and color, 67–70
polygons, 56–57
sound in, 161–176
transparent colors, 59–61

pygame-vlc, 231
pygame.draw.circle, 69–70
pygame.event, 79–87
pygame.event.get, 82
pygame.font.Font, 59
pygame.image, 62
pygame.image.load, 61
pygame.init, 54, 55, 76
pygame.KEYDOWN, 82, 83, 191
pygame.key.get_pressed, 83
pygame.KEYUP, 82, 83
pygame.QUIT, 81, 82
pygame.Surface, 68
pygame.time, 76–78
pygame.time.delay, 76, 77
pygame.time.wait, 77
pygame.transform.rotate, 65, 66
PyMedia, 231

Q
Quantization, 24

R
Racing games, 6–7
Rag doll physics, 7
Rand Corporation, 96
Random value generation, 96–98

pseudorandom numbers, 97–98
Randomness, 87–96

dice and cards, 90–96
Rasterization level of graphics system, 27
Ray casting, 126–127
Ray/triangle intersection, 121–123
Reactive animations, 219–225

using real images, 224–225
Reactive Grip controller, 17
Real-time strategy games, 6
Reality and intelligence, simulation of, 98–100
Rect, 56
Rhythm games, 8

Role playing games (RPG), 7–8
Roller Coaster Tycoon, 7
Rotate, 199
Rotation of images, 65–67
Royal Game of Ur, 1
RPG. See Role playing games

S
Sandbox, 9, 15
Scale, 17–18
Schell Games, 205
SCRALPHA, 60
screenState, 182, 184
screen_to_terrain, 194
Send, 258, 260
set_at, 55
setExist, 33
set_mode, 48, 55
setNext, 227
setPosition, 222
setRate, 227
Shared entities, 34–35
Shooters, 8
shoreCollide, 194
showNextExFrame, 240
Sign, 86
Silent Hill, 8, 9
SimCity, 7
The Simpsons Hit & Run, 15
The Sims, 9, 14
Simulation

cognitive, 104
of reality and intelligence, 98–100

Simulation games, 5, 7
Small studio, 167–168
SMV Rainbow, 247, 248
Socket, 257–258
Software testing, 203–204
Sony PSP Slim, 12
Sound, 15, 156–176

C2H6O Jet Boat Race, 201–203
options, 162–165
own sounds, creation of, 165–170
positional audio, 170–176
in Pygame, 161–176
recording, using cell phones and MP3 devices,

166–167
volume, 163–164

inDex 301

Space Invaders, 29, 75
Space subdivision, collision detection using,

118–120
Sphere vs. plane collision, 113–114
Sports games, 6–7
Sprouts, 4
SRCALPHA, 60
Star Trek (film), 4, 18
startScreen, 182, 184
Stochastic navigation, 151–152
Stop, 222
Straight ahead method, 214, 219
Strategy games, 6
Super Mario Bros, 12
surface, 55
surf.fill, 61, 68
Survival horror games, 8

T
Tablets, 11
Terrain texture generation tool, 71
terrain_to_screen, 125, 199
Testing, 203–206
3D games, 18, 23–25

animations, 221
Timing of game loop, 74–79
tkinter, 47
Tower defense games, 6
transform, 64–67
Transparent colors, 59–61
Trivia games, 8
Tuning, 249
Tweens, 211
Twitch games. See Action games
Two-player chase game, 1
2D game, 23–25

2D positional sound, 172–176
Tycoon games, 7

conflict, 14

U
Update, 55
USB interface, 16

V
Venue, 13–14
Video game architecture, 21–28

audio system, 27–28
graphics system, 24–27

Video Lottery Terminals, 88
VideoMach, 224–225
Virtual reality, 4–6
Vita, 12
Volume, 158

W
Wakes, 231, 237–238
Warcraft, 6
Waypoint

C2H6O Jet Boat Race, 197–199
implementation, 135–136
pathfinding, 134–135
representation, 135–136

Word games, 4
World of Warcraft, 13

X
Xbox, 12

Z
Zoo Tycoon, 7, 14
Zork, 8

