
Introduction to
3D Game Programming

with DirectX® 12

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right of
ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading of the
Work onto the Internet or on a network (of any kind) without the written consent of the
Publisher. Duplication or dissemination of any text, code, simulations, images, etc.
contained herein is limited to and subject to licensing terms for the respective products,
and permission must be obtained from the Publisher or the owner of the content, etc.,
in order to reproduce or network any portion of the textual material (in any media)
that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in
the creation, writing, or production of the companion disc, accompanying algorithms,
code, or computer programs (“the software”), and any accompanying Web site or
software of the Work, cannot and do not warrant the performance or results that
might be obtained by using the contents of the Work. The author, developers, and the
Publisher have used their best efforts to insure the accuracy and functionality of the
textual material and/or programs contained in this package; we, however, make no
warranty of any kind, express or implied, regarding the performance of these contents
or programs. The Work is sold “as is” without warranty (except for defective materials
used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profi t, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book, and only at the discretion of the Publisher. The use of “implied warranty”
and certain “exclusions” vary from state to state, and might not apply to the purchaser
of this product.

Companion disc fi les are available for download from the publisher by writing to info@
merclearning.com.

Introduction to
3D Game Programming

with DirectX® 12

Frank D. Luna

MERCURY LEARNING AND INFORMATION

Dulles, Virginia
Boston, Massachusetts

New Delhi

Copyright ©2016 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way,
stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning,
without prior permission in writing from the publisher.

Publisher: David Pallai
MERCURY LEARNING AND INFORMATION

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

Frank D. Luna. Introduction to 3D GAME PROGRAMMING WITH DIRECTX 12
ISBN: 978-1-942270-06-5

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as
a means to distinguish their products. All brand names and product names mentioned in this book are
trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of
service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2015957713

161718321 This book is printed on acid-free paper.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at authorcloudware.com and other digital vendors.
Companion fi les for this title are available by contacting info@merclearning.com. The sole
obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the book or disc,
based on defective materials or faulty workmanship, but not based on the operation or functionality
of the product.

To my nieces and nephews,
Marrick, Hans, Max, Anna, Augustus, Presley, and Elyse

CONTENTS

Dedication v

Acknowledgments xxii

Introduction xxv
Intended Audience xxvi
Prerequisites xxvi
Required Development Tools and Hardware xxvii
Using the DirectX SDK Documentation and SDK Samples xxvii
Clarity xxix
Sample Programs and Online Supplements xxix
Demo Project Setup in Visual Studio 2010 xxix

Download the Book’s Source Code xxx
Create a Win32 Project xxx
Linking the DirectX Libraries xxxi
Adding the Source Code and Building the Project xxxii

PART I MATHEMATICAL PREREQUISITES

Chapter 1 Vector Algebra 3

1.1 Vectors 4
1.1.1 Vectors and Coordinate Systems 5
1.1.2 Left-Handed Versus Right-Handed Coordinate Systems 6
1.1.3 Basic Vector Operations 7

1.2 Length and Unit Vectors 9
1.3 The Dot Product 10

1.3.1 Orthogonalization 13
1.4 The Cross Product 14

1.4.1 Pseudo 2D Cross Product 16
1.4.2 Orthogonalization with the Cross Product 16

viii INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

1.5 Points 17
1.6 DirectX Math Vectors 18

1.6.1 Vector Types 19
1.6.2 Loading and Storage Methods 21
1.6.3 Parameter Passing 21
1.6.4 Constant Vectors 23
1.6.5 Overloaded Operators 24
1.6.6 Miscellaneous 24
1.6.7 Setter Functions 25
1.6.8 Vector Functions 26
1.6.9 Floating-Point Error 30

1.7 Summary 31
1.8 Exercises 33

Chapter 2 Matrix Algebra 37

2.1 Defi nition 38
2.2 Matrix Multiplication 40

2.2.1 Defi nition 40
2.2.2 Vector-Matrix Multiplication 41
2.2.3 Associativity 42

2.3 The Transpose of a Matrix 42
2.4 The Identity Matrix 43
2.5 The Determinant of a Matrix 44

2.5.1 Matrix Minors 45
2.5.2 Defi nition 45

2.6 The Adjoint of a Matrix 47
2.7 The Inverse of a Matrix 47
2.8 DirectX Math Matrices 49

2.8.1 Matrix Types 50
2.8.2 Matrix Functions 52
2.8.3 DirectX Math Matrix Sample Program 53

2.9 Summary 54
2.10 Exercises 55

Chapter 3 Transformations 59

3.1 Linear Transformations 60
3.1.1 Defi nition 60
3.1.2 Matrix Representation 60
3.1.3 Scaling 61
3.1.4 Rotation 63

CONTENTS ix

3.2 Affi ne Transformations 66
3.2.1 Homogeneous Coordinates 66
3.2.2 Defi nition and Matrix Representation 67
3.2.3 Translation 67
3.2.4 Affi ne Matrices for Scaling and Rotation 70
3.2.5 Geometric Interpretation of an Affi ne

Transformation Matrix 70
3.3 Composition of Transformations 72
3.4 Change of Coordinate Transformations 73

3.4.1 Vectors 74
3.4.2 Points 74
3.4.3 Matrix Representation 75
3.4.4 Associativity and Change of Coordinate

Matrices 76
3.4.5 Inverses and Change of Coordinate Matrices 77

3.5 Transformation Matrix versus Change of
Coordinate Matrix 78

3.6 DirectX Math Transformation Functions 79
3.7 Summary 80
3.8 Exercises 82

PART II DIRECT 3D FOUNDATIONS

Chapter 4 Direct3D Initialization 89

4.1 Preliminaries 90
4.1.1 Direct3D 12 Overview 90
4.1.2 COM 90
4.1.3 Textures Formats 91
4.1.4 The Swap Chain and Page Flipping 93
4.1.5 Depth Buffering 93
4.1.6 Resources and Descriptors 96
4.1.7 Multisampling Theory 98
4.1.8 Multisampling in Direct3D 99
4.1.9 Feature Levels 101
4.1.10 DirectX Graphics Infrastructure 101
4.1.11 Checking Feature Support 105
4.1.12 Residency 107

4.2 CPU/GPU Interaction 107
4.2.1 The Command Queue and Command Lists 108
4.2.2 CPU/GPU Synchronization 112

x INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

4.2.3 Resource Transitions 114
4.2.4 Multithreading with Commands 116

4.3 Initializing Direct3D 116
4.3.1 Create the Device 117
4.3.2 Create the Fence and Descriptor Sizes 118
4.3.3 Check 4X MSAA Quality Support 119
4.3.4 Create Command Queue and Command List 119
4.3.5 Describe and Create the Swap Chain 120
4.3.6 Create the Descriptor Heaps 122
4.3.7 Create the Render Target View 123
4.3.8 Create the Depth/Stencil Buffer and View 125
4.3.9 Set the Viewport 129
4.3.10 Set the Scissor Rectangles 131

4.4 Timing and Animation 131
4.4.1 The Performance Timer 132
4.4.2 Game Timer Class 133
4.4.3 Time Elapsed Between Frames 134
4.4.4 Total Time 136

4.5 The Demo Application Framework 139
4.5.1 D3DApp 139
4.5.2 Non-Framework Methods 142
4.5.3 Framework Methods 143
4.5.4 Frame Statistics 145
4.5.5 The Message Handler 146
4.5.6 The “Init Direct3D” Demo 149

4.6 Debugging Direct3D Applications 153
4.7 Summary 155

Chapter 5 The Rendering Pipeline 159

5.1 The 3D Illusion 160
5.2 Model Representation 162
5.3 Basic Computer Color 163

5.3.1 Color Operations 164
5.3.2 128-Bit Color 165
5.3.3 32-Bit Color 165

5.4 Overview of the Rendering Pipeline 167
5.5 The Input Assembler Stage 168

5.5.1 Vertices 168
5.5.2 Primitive Topology 169

5.5.2.1 Point List 170

CONTENTS xi

5.5.2.2 Line Strip 170
5.5.2.3 Line List 170
5.5.2.4 Triangle Strip 170
5.5.2.5 Triangle List 171
5.5.2.6 Primitives with Adjacency 171
5.5.2.7 Control Point Patch List 172

5.5.3 Indices 172
5.6 The Vertex Shader Stage 175

5.6.1 Local Space and World Space 175
5.6.2 View Space 179
5.6.3 Projection and Homogeneous Clip Space 182

5.6.3.1 Defi ning a Frustum 183
5.6.3.2 Projecting Vertices 184
5.6.3.3 Normalized Device Coordinates (NDC) 185
5.6.3.4 Writing the Projection Equations

with a Matrix 186
5.6.3.5 Normalized Depth Value 187
5.6.3.6 XMMatrixPerspectiveFovLH 189

5.7 The Tessellation Stages 190
5.8 The Geometry Shader Stage 191
5.9 Clipping 191
5.10 The Rasterization Stage 193

5.10.1 Viewport Transform 193
5.10.2 Backface Culling 194
5.10.3 Vertex Attribute Interpolation 195

5.11 The Pixel Shader Stage 196
5.12 The Output Merger Stage 197
5.13 Summary 197
5.14 Exercises 198

Chapter 6 Drawing in Direct3D 203

6.1 Vertices and Input Layouts 203
6.2 Vertex Buffers 207
6.3 Indices and Index Buffers 212
6.4 Example Vertex Shader 216

6.4.1 Input Layout Description and Input
Signature Linking 219

6.5 Example Pixel Shader 222
6.6 Constant Buffers 224

6.6.1 Creating Constant Buffers 224

xii INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

6.6.2 Updating Constant Buffers 227
6.6.3 Upload Buffer Helper 227
6.6.4 Constant Buffer Descriptors 230
6.6.5 Root Signature and Descriptor Tables 232

6.7 Compiling Shaders 235
6.7.1 Offl ine Compilation 237
6.7.2 Generated Assembly 239
6.7.3 Using Visual Studio to Compile

Shaders Offl ine 241
6.8 Rasterizer State 242
6.9 Pipeline State Object 243
6.10 Geometry Helper Structure 247
6.11 Box Demo 249
6.12 Summary 259
6.13 Exercises 260

Chapter 7 Drawing in Direct 3D Part II 265

7.1 Frame Resources 266
7.2 Render Items 269
7.3 Pass Constants 270
7.4 Shape Geometry 273

7.4.1 Generating a Cylinder Mesh 275
7.4.1.1 Cylinder Side Geometry 275
7.4.1.2 Cap Geometry 278

7.4.2 Generating a Sphere Mesh 279
7.4.3 Generating a Geosphere Mesh 279

7.5 Shapes Demo 281
7.5.1 Vertex and Index Buffers 282
7.5.2 Render Items 286
7.5.3 Frame Resources and Constant Buffer Views 288
7.5.4 Drawing the Scene 290

7.6 More on Root Signatures 293
7.6.1 Root Parameters 293
7.6.2 Descriptor Tables 295
7.6.3 Root Descriptors 297
7.6.4 Root Constants 298
7.6.5 A More Complicated Root Signature Example 299
7.6.6 Root Parameter Versioning 300

7.7 Land and Waves Demo 301
7.7.1 Generating the Grid Vertices 302

CONTENTS xiii

7.7.2 Generating the Grid Indices 304
7.7.3 Applying the Height Function 305
7.7.4 Root CBVs 307
7.7.5 Dynamic Vertex Buffers 309

7.8 Summary 311
7.9 Exercises 313

Chapter 8 Lighting 315

8.1 Light and Material Interaction 316
8.2 Normal Vectors 318

8.2.1 Computing Normal Vectors 319
8.2.2 Transforming Normal Vectors 321

8.3 Important Vectors in Lighting 323
8.4 Lambert’s Cosine Law 323
8.5 Diffuse Lighting 325
8.6 Ambient Lighting 326
8.7 Specular Lighting 327

8.7.1 Fresnel Effect 328
8.7.2 Roughness 330

8.8 Lighting Model Recap 333
8.9 Implementing Materials 334
8.10 Parallel Lights 339
8.11 Point Lights 339

8.11.1 Attenuation 340
8.12 Spotlights 341
8.13 Lighting Implementation 342

8.13.1 Light Structure 342
8.13.2 Common Helper Functions 344
8.13.3 Implementing Directional Lights 346
8.13.4 Implementing Point Lights 346
8.13.5 Implementing Spotlights 347
8.13.6 Accumulating Multiple Lights 348
8.13.7 The Main HLSL File 349

8.14 Lighting Demo 351
8.14.1 Vertex Format 352
8.14.2 Normal Computation 352
8.14.3 Updating the Light Direction 354
8.14.4 Update to Root Signature 356

8.15 Summary 356
8.16 Exercises 357

xiv INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

Chapter 9 Texturing 359

9.1 Texture and Resource Recap 360
9.2 Texture Coordinates 362
9.3 Texture Data Sources 364

9.3.1 DDS Overview 365
9.3.2 Creating DDS Files 366

9.4 Creating and Enabling a Texture 367
9.4.1 Loading DDS Files 367
9.4.2 SRV Heap 368
9.4.3 Creating SRV Descriptors 368
9.4.4 Binding Textures to the Pipeline 370

9.5 Filters 373
9.5.1 Magnifi cation 373
9.5.2 Minifi cation 375
9.5.3 Anisotropic Filtering 376

9.6 Address Modes 376
9.7 Sampler Objects 378

9.7.1 Creating Samplers 379
9.7.2 Static Samplers 381

9.8 Sampling Textures in a Shader 384
9.9 Crate Demo 385

9.9.1 Specifying Texture Coordinates 385
9.9.2 Creating the Texture 386
9.9.3 Setting the Texture 386
9.9.4 Updated HLSL 387

9.10 Transforming Textures 389
9.11 Textured Hills and Waves Demo 390

9.11.1 Grid Texture Coordinate Generation 391
9.11.2 Texture Tiling 392
9.11.3 Texture Animation 393

9.12 Summary 393
9.13 Exercises 394

Chapter 10 Blending 397

10.1 The Blending Equation 398
10.2 Blend Operations 399
10.3 Blend Factors 400
10.4 Blend State 401
10.5 Examples 404

10.5.1 No Color Write 404

CONTENTS xv

10.5.2 Adding/Subtracting 405
10.5.3 Multiplying 405
10.5.4 Transparency 406
10.5.5 Blending and the Depth Buffer 407

10.6 Alpha Channels 408
10.7 Clipping Pixels 408
10.8 Fog 410
10.9 Summary 416
10.10 Exercises 417

Chapter 11 Stenciling 419

11.1 Depth/Stencil Formats and Clearing 420
11.2 The Stencil Test 421
11.3 Describing the Depth/Stencil State 422

11.3.1 Depth Settings 423
11.3.2 Stencil Settings 423
11.3.3 Creating and Binding a Depth/Stencil State 425

11.4 Implementing Planar Mirrors 426
11.4.1 Mirror Overview 426
11.4.2 Defi ning the Mirror Depth/Stencil States 429
11.4.3 Drawing the Scene 430
11.4.4 Winding Order and Refl ections 431

11.5 Implementing Planar Shadows 432
11.5.1 Parallel Light Shadows 433
11.5.2 Point Light Shadows 434
11.5.3 General Shadow Matrix 435
11.5.4 Using the Stencil Buffer to Prevent Double Blending 436
11.5.5 Shadow Code 437

11.6 Summary 438
11.7 Exercises 439

Chapter 12 The Geometry Shader 445

12.1 Programming Geometry Shaders 446
12.2 Tree Billboards Demo 451

12.2.1 Overview 451
12.2.2 Vertex Structure 453
12.2.3 The HLSL File 454
12.2.4 SV_PrimitiveID 458

12.3 Texture Arrays 459
12.3.1 Overview 459

xvi INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

12.3.2 Sampling a Texture Array 460
12.3.3 Loading Texture Arrays 461
12.3.4 Texture Subresources 462

12.4 Alpha-to-Coverage 463
12.5 Summary 464
12.6 Exercises 465

Chapter 13 The Compute Shader 469

13.1 Threads and Thread Groups 471
13.2 A Simple Compute Shader 472

13.2.1 Compute PSO 473
13.3 Data Input and Output Resources 474

13.3.1 Texture Inputs 474
13.3.2 Texture Outputs and Unordered Access Views (UAVs) 474
13.3.3 Indexing and Sampling Textures 477
13.3.4 Structured Buffer Resources 479
13.3.5 Copying CS Results to System Memory 482

13.4 Thread Identifi cation System Values 485
13.5 Append and Consume Buffers 486
13.6 Shared Memory and Synchronization 487
13.7 Blur Demo 489

13.7.1 Blurring Theory 489
13.7.2 Render-to-Texture 493
13.7.3 Blur Implementation Overview 495
13.7.4 Compute Shader Program 501

13.8 Further Resources 505
13.9 Summary 506
13.10 Exercises 508

Chapter 14 The Tessellation Stages 513

14.1 Tessellation Primitive Types 514
14.1.1 Tessellation and the Vertex Shader 515

14.2 The Hull Shader 516
14.2.1 Constant Hull Shader 516
14.2.2 Control Point Hull Shader 518

14.3 The Tessellation Stage 520
14.3.1 Quad Patch Tessellation Examples 520
14.3.2 Triangle Patch Tessellation Examples 521

14.4 The Domain Shader 521
14.5 Tessellating a Quad 522

CONTENTS xvii

14.6 Cubic Bézier Quad Patches 526
14.6.1 Bézier Curves 527
14.6.2 Cubic Bézier Surfaces 529
14.6.3 Cubic Bézier Surface Evaluation Code 530
14.6.4 Defi ning the Patch Geometry 532

14.7 Summary 534
14.8 Exercises 536

PART III TOPICS

Chapter 15 Building a First Person Camera
and Dynamic Indexing 539

15.1 View Transform Review 540
15.2 The Camera Class 541
15.3 Selected Method Implementations 543

15.3.1 XMVECTOR Return Variations 543
15.3.2 SetLens 543
15.3.3 Derived Frustum Info 544
15.3.4 Transforming the Camera 544
15.3.5 Building the View Matrix 546

15.4 Camera Demo Comments 547
15.5 Dynamic Indexing 548
15.6 Summary 555
15.7 Exercises 556

Chapter 16 Instancing and Frustum Culling 557

16.1 Hardware Instancing 557
16.1.1 Drawing Instanced Data 558
16.1.2 Instance Data 559
16.1.3 Creating the Instanced Buffer 564

16.2 Bounding Volumes and Frustums 566
16.2.1 DirectX Math Collision 566
16.2.2 Boxes 566

16.2.2.1 Rotations and Axis-Aligned Bounding Boxes 568
16.2.3 Spheres 570
16.2.4 Frustums 571

16.2.4.1 Constructing the Frustum Planes 571
16.2.4.2 Frustum/Sphere Intersection 574
16.2.4.3 Frustum/AABB Intersection 575

xviii INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

16.3 Frustum Culling 576
16.4 Summary 579
16.5 Exercises 580

Chapter 17 Picking 583

17.1 Screen to Projection Window Transform 585
17.2 World/Local Space Picking Ray 588
17.3 Ray/Mesh Intersection 589

17.3.1 Ray/AABB Intersection 591
17.3.2 Ray/Sphere Intersection 591
17.3.3 Ray/Triangle Intersection 592

17.4 Demo Application 594
17.5 Summary 596
17.6 Exercises 596

Chapter 18 Cube Mapping 597

18.1 Cube Mapping 597
18.2 Environment Maps 599

18.2.1 Loading and Using Cube Maps in Direct3D 601
18.3 Texturing a Sky 602
18.4 Modeling Refl ections 606
18.5 Dynamic Cube Maps 609

18.5.1 Dynamic Cube Map Helper Class 610
18.5.2 Building the Cube Map Resource 611
18.5.3 Extra Descriptor Heap Space 612
18.5.4 Building the Descriptors 613
18.5.5 Building the Depth Buffer 614
18.5.6 Cube Map Viewport and Scissor Rectangle 615
18.5.7 Setting up the Cube Map Camera 615
18.5.8 Drawing into the Cube Map 617

18.6 Dynamic Cube Maps with the Geometry Shader 620
18.7 Summary 623
18.8 Exercises 624

Chapter 19 Normal Mapping 627

19.1 Motivation 628
19.2 Normal Maps 629
19.3 Texture/Tangent Space 631
19.4 Vertex Tangent Space 633

CONTENTS xix

19.5 Transforming Between Tangent Space and Object Space 633
19.6 Normal Mapping Shader Code 635
19.7 Summary 639
19.8 Exercises 640

Chapter 20 Shadow Mapping 643

20.1 Rendering Scene Depth 644
20.2 Orthographic Projections 646
20.3 Projective Texture Coordinates 649

20.3.1 Code Implementation 651
20.3.2 Points Outside the Frustum 651
20.3.3 Orthographic Projections 652

20.4 Shadow Mapping 653
20.4.1 Algorithm Description 653
20.4.2 Biasing and Aliasing 654
20.4.3 PCF Filtering 657
20.4.4 Building the Shadow Map 660
20.4.5 The Shadow Factor 665
20.4.6 The Shadow Map Test 667
20.4.7 Rendering the Shadow Map 667

20.5 Large PCF Kernels 668
20.5.1 The DDX and DDY Functions 669
20.5.2 Solution to the Large PCF Kernel Problem 669
20.5.3 An Alternative Solution to the Large

PCF Kernel Problem 671
20.6 Summary 673
20.7 Exercises 674

Chapter 21 Ambient Occlusion 675

21.1 Ambient Occlusion via Ray Casting 676
21.2 Screen Space Ambient Occlusion 680

21.2.1 Render Normals and Depth Pass 680
21.2.2 Ambient Occlusion Pass 681

21.2.2.1 Reconstruct View Space Position 682
21.2.2.2 Generate Random Samples 683
21.2.2.3 Generate the Potential Occluding Points 685
21.2.2.4 Perform the Occlusion Test 685
21.2.2.5 Finishing the Calculation 686
21.2.2.6 Implementation 686

xx INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

21.2.3 Blur Pass 690
21.2.4 Using the Ambient Occlusion Map 694

21.3 Summary 695
21.4 Exercises 695

Chapter 22 Quaternions 697

22.1 Review of the Complex Numbers 698
22.1.1 Defi nitions 698
22.1.2 Geometric Interpretation 699
22.1.3 Polar Representation and Rotations 700

22.2 Quaternion Algebra 701
22.2.1 Defi nition and Basic Operations 701
22.2.2 Special Products 702
22.2.3 Properties 703
22.2.4 Conversions 703
22.2.5 Conjugate and Norm 704
22.2.6 Inverses 705
22.2.7 Polar Representation 706

22.3 Unit Quaternions and Rotations 707
22.3.1 Rotation Operator 707
22.3.2 Quaternion Rotation Operator to Matrix 709
22.3.3 Matrix to Quaternion Rotation Operator 710
22.3.4 Composition 712

22.4 Quaternion Interpolation 713
22.5 DirectX Math Quaternion Functions 718
22.6 Rotation Demo 719
22.7 Summary 723
22.8 Exercises 724

Chapter 23 Character Animation 727

23.1 Frame Hierarchies 728
23.1.1 Mathematical Formulation 729

23.2 Skinned Meshes 731
23.2.1 Defi nitions 731
23.2.2 Reformulating the Bones To-Root Transform 732
23.2.3 The Offset Transform 732
23.2.4 Animating the Skeleton 733
23.2.5 Calculating the Final Transform 735

23.3 Vertex Blending 737

CONTENTS xxi

23.4 Loading Animation Data from File 740
23.4.1 Header 740
23.4.2 Materials 741
23.4.3 Subsets 741
23.4.4 Vertex Data and Triangles 742
23.4.5 Bone Offset Transforms 743
23.4.6 Hierarchy 743
23.4.7 Animation Data 743
23.4.8 M3DLoader 746

23.5 Character Animation Demo 747
23.6 Summary 750
23.7 Exercises 751

Appendix A: Introduction to Windows Programming 753

A.1 Overview 754
A.1.1 Resources 754
A.1.2 Events, the Message Queue, Messages,

and the Message Loop 754
A.1.3 GUI 755
A.1.4 Unicode 757

A.2 Basic Windows Application 757
A.3 Explaining the Basic Windows Application 761

A.3.1 Includes, Global Variables, and Prototypes 761
A.3.2 WinMain 762
A.3.3 WNDCLASS and Registration 763
A.3.4 Creating and Displaying the Window 765

 A.3.5 The Message Loop 767
 A.3.6 The Window Procedure 768
 A.3.7 The MessageBox Function 770
A.4 A Better Message Loop 770
A.5 Summary 771
A.6 Exercises 772

Appendix B: High Level Shader Language Reference 773

Variable Types 773
Scalar Types 773
Vector Types 773

Swizzles 774
Matrix Types 775
Arrays 776

xxii INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

Structures 776
The typedef Keyword 777
Variable Prefi xes 777
Casting 777

Keywords and Operators 778
Keywords 778
Operators 778

Program Flow 780
Functions 781

User Defi ned Functions 781
Built-in Functions 782
Constant Buffer Packing 785

Appendix C: Some Analytic Geometry 789

C.1 Rays, Lines, and Segments 789
C.2 Parallelograms 790
C.3 Triangles 791
C.4 Planes 792

C.4.1 DirectX Math Planes 793
C.4.2 Point/Plane Spatial Relation 793
C.4.3 Construction 794
C.4.4 Normalizing a Plane 795
C.4.5 Transforming a Plane 795
C.4.6 Nearest Point on a Plane to a Given Point 795
C.4.7 Ray/Plane Intersection 796
C.4.8 Refl ecting Vectors 797
C.4.9 Refl ecting Points 797
C.4.10 Refl ection Matrix 797

C.5 Exercises 799

Appendix D: Solutions to Selected Exercises 801

Appendix E: Bibliography and Further Reading 803

Index 809

ACKNOWLEDGMENTS

I would like to thank Rod Lopez, Jim Leiterman, Hanley Leung, Rick Falck, Tybon
Wu, Tuomas Sandroos, Eric Sandegren, Jay Tennant and William Goschnick for
reviewing earlier editions of the book. I want to thank Tyler Drinkard for building
some of the 3D models and textures used in some of the demo programs available
on the book’s website. I also want to thank Dale E. La Force, Adam Hoult, Gary
Simmons, James Lambers, and William Chin for their assistance in the past. In
addition, I want to thank Matt Sandy for getting me on the DirectX 12 beta, and
the rest of the DirectX team that helped answer questions for beta users. Finally,
I want to thank the staff at Mercury Learning and Information, in particular,
David Pallai, the publisher, and Jennifer Blaney, who guided the book through
production.

xxiii

INTRODUCTION

Direct3D 12 is a rendering library for writing high-performance 3D graphics
applications using modern graphics hardware on various Windows 10 platforms
(Windows Desktop, Mobile, and Xbox One). Direct3D is a low-level library
in the sense that its application programming interface (API) closely models
the underlying graphics hardware it controls. The predominant consumer of
Direct3D is the games industry, where higher level rendering engines are built
on top of Direct3D. However, other industries need high performance interactive
3D graphics as well, such as medical and scientific visualization and architectural
walkthrough. In addition, with every new PC being equipped with a modern
graphics card, non-3D applications are beginning to take advantage of the GPU
(graphics processing unit) to offload work to the graphics card for intensive
calculations; this is known as general purpose GPU computing, and Direct3D
provides the compute shader API for writing general purpose GPU programs.
Although Direct3D 12 is usually programmed from native C++, the SharpDX
team (http://sharpdx.org/) is working on .NET wrappers so that you can access
this powerful 3D graphics API from managed applications.

This book presents an introduction to programming interactive computer
graphics, with an emphasis on game development, using Direct3D 12. It teaches
the fundamentals of Direct3D and shader programming, after which the reader
will be prepared to go on and learn more advanced techniques. The book is
divided into three main parts. Part I explains the mathematical tools that will be
used throughout this book. Part II shows how to implement fundamental tasks

xxv

xxvi INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

in Direct3D, such as initialization; defi ning 3D geometry; setting up cameras;
creating vertex, pixel, geometry, and compute shaders; lighting; texturing;
blending; stenciling; and tessellation. Part III is largely about applying Direct3D
to implement a variety of interesting techniques and special effects, such as
working with animated character meshes, picking, environment mapping, normal
mapping, real-time shadows, and ambient occlusion.

For the beginner, this book is best read front to back. The chapters have been
organized so that the diffi culty increases progressively with each chapter. In this
way, there are no sudden jumps in complexity leaving the reader lost. In general,
for a particular chapter, we will use the techniques and concepts previously
developed. Therefore, it is important that you have mastered the material of a
chapter before continuing. Experienced readers can pick the chapters of interest.

Finally, you may be wondering what kinds of games you can develop after
reading this book. The answer to that question is best obtained by skimming
through this book and seeing the types of applications that are developed. From
that you should be able to visualize the types of games that can be developed based
on the techniques taught in this book and some of your own ingenuity.

INTENDED AUDIENCE

This book was designed with the following three audiences in mind:

1. Intermediate level C++ programmers who would like an introduction to 3D
programming using the latest iteration of Direct3D.

2. 3D programmers experienced with an API other than DirectX (e.g., OpenGL)
who would like an introduction to Direct3D 12

3. Experienced Direct3D programmers wishing to learn the latest version of
Direct3D.

PREREQUISITES

It should be emphasized that this is an introduction to Direct3D 12, shader
programming, and 3D game programming; it is not an introduction to general
computer programming. The reader should satisfy the following prerequisites:

1. High School mathematics: algebra, trigonometry, and (mathematical)
functions, for example.

2. Competence with Visual Studio: should know how to create projects, add files,
and specify external libraries to link, for example.

INTRODUCTION xxvii

3. Intermediate C++ and data structure skills: comfortable with pointers,
arrays, operator overloading, linked lists, inheritance and polymorphism, for
example.

4. Familiarity with Windows programming with the Win32 API is helpful, but
not required; we provide a Win32 primer in Appendix A.

REQUIRED DEVELOPMENT TOOLS AND
HARDWARE

The following are needed to program Direct3D 12 applications:

1. Windows 10.

2. Visual Studio 2015 or later.

3. A graphics card that supports Direct3D 12. The demos in this book were
tested on a Geforce GTX 760.

USING THE DIRECTX SDK DOCUMENTATION AND
SDK SAMPLES

Direct3D is a huge API and we cannot hope to cover all of its details in this one
book. Therefore, to obtain extended information it is imperative that you learn
how to use the DirectX SDK documentation. The most up to date documentation
will be available on MSDN:

https://msdn.microsoft.com/en-us/library/windows/desktop/
dn899121%28v=vs.85%29.aspx

Figure 1 shows a screenshot of the online documentation.
The DirectX documentation covers just about every part of the DirectX API;

therefore it is very useful as a reference, but because the documentation doesn’t go
into much depth or assumes some previous knowledge, it isn’t the best learning
tool. However, it does get better and better with every new DirectX version released.

As said, the documentation is primarily useful as a reference. Suppose you
come across a DirectX related type or function, say the function ID3D12Device::C
reateCommittedResource, which you would like more information on. You simply
do a search in the documentation and get a description of the object type, or in
this case function; see Figure 2.

In this book we may direct you to the documentation for further details from
time to time.

Note:

xxviii INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

Figure 1. Direct3D Programming Guide in the DirectX documentation.

Figure 2. Getting documentation of a function.

We would also like to point out the available Direct3D 12 sample programs that
are available online:

https://github.com/Microsoft/DirectX-Graphics-Samples

INTRODUCTION xxix

More samples should come in the future, and also be on the lookout for
Direct3D 12 samples on NVIDIA’s, AMD’s, and Intel’s websites.

CLARITY

Although we strive to write efficient code and follow best Direct3D 12
programming practices, the main goal of each sample program is to demonstrate
Direct3D concepts or graphics programming techniques. Writing the most
optimal code was not the goal, and would likely obfuscate the ideas trying to be
illustrated. Keep this in mind if you are using any of the sample code in your own
projects, as you may wish to rework it for better efficiency. Moreover, in order
to focus on the Direct3D API, we have built minimal infrastructure on top of
Direct3D. This means we hardcode values and define things in the source code
that might normally be data driven. In a large 3D application, you will likely
implement a rendering engine on top of Direct3D; however, the topic of this book
is the Direct3D API, not rendering engine design.

SAMPLE PROGRAMS AND ONLINE SUPPLEMENTS

The website for this book (www.d3dcoder.net and www.merclearning.com) plays
an integral part in getting the most out of this book. On the website you will find
the complete source code and project files for every samples in this book. In many
cases, DirectX programs are too large to fully embed in a textbook; therefore, we
only embed relevant code fragments based on the ideas being shown. It is highly
recommended that the reader study the corresponding demo code to see the
program in its entirety. (We have aimed to make the demos small and focused for
easy study.) As a general rule, the reader should be able to implement a chapter’s
demo(s) on his or her own after reading the chapter and spending some time
studying the demo code. In fact, a good exercise is trying to implement the
samples on your own using the book and sample code as a reference.

DEMO PROJECT SETUP IN VISUAL STUDIO 2010

The demos for this book can be opened simply by double clicking the
corresponding project file (.vcxproj) or solution file (.sln). This section describes
how to create and build a project from scratch using the book’s demo application
framework using Visual Studio 2015 (VS15). As a working example, we will show
how to recreate and build the “Box” demo of Chapter 6.

xxx INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

Download the Book’s Source Code
First, download the book’s source code to some folder on your hard drive. For
the sake of discussion, we will assume this folder is C:\d3d12book. In the source
code folder, you will see a list of folders for each chapter. Each folder contains the
code projects for the given chapter. Note also a folder called Common; this folder
contains shared source code that is reused in all of the demo projects. Now, in
the source code folder, create a new folder where you want to store your demos.
For example, C:\d3d12book\MyDemos. This folder is where you will create new
projects based on the book’s sample framework.

This directory structure is not completely necessary, but it is the structure the
book demos follow. If you are comfortable with setting additional include paths,
you can put your demo projects anywhere so long as you direct Visual Studio
how to fi nd the source code in the Common directory.

Create a Win32 Project
First launch VS15, then go to the main menu and select File->New->Project, as
shown in Figure 3.

The New Project dialog box will appear (Figure 4). Select Visual C++ > Win32
from the Visual C++ Project Types tree control on the left. On the right, select
Win32 Project. Next, give the project a name and specify the location you wish
to store the project folder. Also uncheck Create directory for solution, if it is
initially checked by default. Now hit OK.

A new dialog box will appear. On the left, there are two options: Overview and
Application Settings. Select Application Settings, which produces the dialog box
shown in Figure 5. From here, be sure that Windows application is chosen, and
the Empty project box is checked. Now press the Finish button. At this point, you
have successfully created an empty Win32 project, but there are still some things
to do before you can build a DirectX project demo.

Note:

Figure 3. Creating a new project.

INTRODUCTION xxxi

Figure 4. New Project settings.

Figure 5. Application settings.

Linking the DirectX Libraries
We link the necessary library files through the source code using #pragmas in
Common/d3dApp.h like so:

// Link necessary d3d12 libraries.
#pragma comment(lib,"d3dcompiler.lib")
#pragma comment(lib, "D3D12.lib")
#pragma comment(lib, "dxgi.lib")

xxxii INTRODUCTION TO 3D GAME PROGRAMMING WITH DIRECTX® 12

For making demo applications, this saves us from the additional step of
opening the project property pages and specifying additional dependencies under
the Linker settings.

Adding the Source Code and Building the Project
Finally, our project setup is complete. We can now add our source code files to the
project and build it. First, copy the “Box” demo source code (d3d12book\Chapter 6
Drawing in Direct3D\Box) BoxApp.cpp and the Shaders folder to your project’s
directory.

Figure 6. Solution Explorer after adding the required source code files for the “Box” demo.

After you copy the files, follow these steps to add the code to your project.

1. Right click on the project name under the Solution Explorer and select Add
> Existing Item… from the dropdown menu, and add BoxApp.cpp to the
project.

INTRODUCTION xxxiii

2. Right click on the project name under the Solution Explorer and select Add >
Existing Item… from the dropdown menu, navigate to where you placed the
book’s Common directory code, and add all the .h/.cpp files from that directory
to the project. Your solution explorer should look like Figure 6.

3. Right click on the project name under the Solution Explorer and select
Properties from the context menu. Under Configuration Properties >
General tab, make sure the Target Platform Version is set to version 10.x to
target Windows 10. Then click Apply.

4. The source code files are now part of the project, and you can now go to
the main menu, and select Debug->Start Debugging to compile, link, and
execute the demo. The application in Figure 7 should appear.

Figure 7. Screenshot of the “Box” demo.

A lot of the code in the Common directory is built up over the course of the book.
So we recommend that you do not start looking through the code. Instead, wait
until you are reading the chapter in the book where that code is covered.

Note:

1

Part

Video games attempt to simulate a virtual world. However, computers,
by their very nature, crunch numbers. Thus the problem of how to
convey a world to a computer arises. The answer is to describe our

worlds, and the interactions therein, completely mathematically. Consequently,
mathematics plays a fundamental role in video game development.

In this prerequisites part, we introduce the mathematical tools that will be
used throughout this book. The emphasis is on vectors, coordinate systems,
matrices, and transformations, as these tools are used in just about every
sample program of this book. In addition to the mathematical explanations,
a survey and demonstration of the relevant classes and functions from the
DirectX Math library are provided.

Note that the topics covered here are only those essential to understanding
the rest of this book; it is by no means a comprehensive treatment of video
game mathematics, as entire books are devoted to this topic. For readers
desiring a more complete reference to video game mathematics, we recommend
[Verth04] and [Lengyel02].

“For the things of this world cannot be made
known without a knowledge of mathematics."

Roger Bacon, Opus Majus part 4 Distinctia Prima cap 1, 1267.

1 MATHEMATICAL
PREREQUISITES

2 MATHEMATICAL PREREQUISITES

Chapter 1, Vector Algebra: Vectors are, perhaps, the most fundamental mathematical
objects used in computer games. We use vectors to represent positions, displacements,
directions, velocities, and forces, for example. In this chapter, we study vectors and the
operations used to manipulate them.

Chapter 2, Matrix Algebra: Matrices provide an efficient and compact way of
representing transformations. In this chapter, we become familiar with matrices and
the operations defined on them.

Chapter 3, Transformations: This chapter examines three fundamental geometric
transformations: scaling, rotation, and translation. We use these transformations
to manipulate 3D objects in space. In addition, we explain change of coordinate
transformations, which are used to transform coordinates representing geometry from
one coordinate system into another.

Chapter

3

1Chapter

VECTOR
ALGEBRA

Vectors play a crucial role in computer graphics, collision detection, and physical
simulation, all of which are common components in modern video games. Our
approach here is informal and practical; for a book dedicated to 3D game/graphics
math, we recommend [Verth04]. We emphasize the importance of vectors by
noting that they are used in just about every demo program in this book.

Objectives:
1. To learn how vectors are represented geometrically and numerically.

2. To discover the operations defined on vectors and their geometric applications.

3. To become familiar with the vector functions and classes of the DirectXMath
library.

4 MATHEMATICAL PREREQUISITES

1.1 VECTORS

A vector refers to a quantity that possesses both magnitude and direction. Quantities
that possess both magnitude and direction are called vector-valued quantities.
Examples of vector-valued quantities are forces (a force is applied in a particular
direction with a certain strength—magnitude), displacements (the net direction
and distance a particle moved), and velocities (speed and direction). Thus, vectors
are used to represent forces, displacements, and velocities. In addition, we also use
vectors to specify pure directions, such as the direction the player is looking in a 3D
game, the direction a polygon is facing, the direction in which a ray of light travels,
or the direction in which a ray of light reflects off a surface.

A fi rst step in characterizing a vector mathematically is geometrically: We
graphically specify a vector by a directed line segment (see Figure 1.1), where the
length denotes the magnitude of the vector and the aim denotes the direction
of the vector. We note that the location in which we draw a vector is immaterial
because changing the location does not change the magnitude or direction (the
two properties a vector possesses). Therefore, we say two vectors are equal if and
only if they have the same length and they point in the same direction. Thus, the
vectors u and v drawn in Figure 1.1a are actually equal because they have the same
length and point in the same direction. In fact, because location is unimportant
for vectors, we can always translate a vector without changing its meaning (since a
translation changes neither length nor direction). Observe that we could translate
u such that it completely overlaps with v (and conversely), thereby making them
indistinguishable—hence their equality. As a physical example, the vectors u and v
in Figure 1.1b both tell the ants at two different points A and B to move north ten

Figure 1.1. (a) Vectors drawn on a 2D plane. (b) Vectors instructing ants to move 10 meters north.

N
S

W E

10 m

() ()

VECTOR ALGEBRA 5

meters from where they are. Again we have that u  v. The vectors themselves are
independent of position; they simply instruct the ants how to move from where
they are. In this example, they tell the ants to move north (direction) ten meters
(length).

1.1.1 Vectors and Coordinate Systems
We could now define useful geometric operations on vectors, which can then
be used to solve problems involving vector-valued quantities. However, since
the computer cannot work with vectors geometrically, we need to find a way of
specifying vectors numerically instead. So what we do is introduce a 3D coordinate
system in space, and translate all the vectors so that their tails coincide with the
origin (Figure 1.2). Then we can identify a vector by specifying the coordinates
of its head, and write v  (x, y, z) as shown in Figure 1.3. Now we can represent a
vector with three floats in a computer program.

If working in 2D, then we just use a 2D coordinate system and the vector only
has two coordinates: v  (x, y) and we can represent a vector with two fl oats in
a computer program.

Consider Figure 1.4, which shows a vector v and two frames in space. (Note
that we use the terms frame, frame of reference, space, and coordinate system to
all mean the same thing in this book.) We can translate v so that it is in standard
position in either of the two frames. Observe, however, that the coordinates of
the vector v relative to frame A are different than the coordinates of the vector v
relative to frame B. In other words, the same vector v has a different coordinate
representation for distinct frames.

Note:

+

+

+ = (, ,)

Figure 1.3. A vector specified by coordinates relative
to a coordinate system.

+

+

Figure 1.2. We translate v so that its tail coincides with
the origin of the coordinate system. When a vector’s
tail coincides with the origin, we say that it is in standard
position.

6 MATHEMATICAL PREREQUISITES

The idea is analogous to, say, temperature. Water boils at 100° Celsius or 212°
Fahrenheit. The physical temperature of boiling water is the same no matter the
scale (i.e., we can’t lower the boiling point by picking a different scale), but we
assign a different scalar number to the temperature based on the scale we use.
Similarly, for a vector, its direction and magnitude, which are embedded in the
directed line segment, does not change; only the coordinates of it change based
on the frame of reference we use to describe it. This is important because it means
whenever we identify a vector by coordinates, those coordinates are relative to
some frame of reference. Often in 3D computer graphics, we will utilize more
than one frame of reference and, therefore, we will need to keep track of which
frame a vector’s coordinates are relative to; additionally, we will need to know how
to convert vector coordinates from one frame to another.

We see that both vectors and points can be described by coordinates (x, y, z)
relative to a frame. However, they are not the same; a point represents a location
in 3-space, whereas a vector represents a magnitude and direction. We will have
more to say about points in §1.5.

1.1.2 Left-Handed Versus Right-Handed Coordinate Systems
Direct3D uses a so-called left-handed coordinate system. If you take your left
hand and aim your fingers down the positive x-axis, and then curl your fingers
towards the positive y-axis, your thumb points roughly in the direction of the
positive z-axis. Figure 1.5 illustrates the differences between a left-handed and
right-handed coordinate system.

Observe that for the right-handed coordinate system, if you take your right
hand and aim your fi ngers down the positive x-axis, and then curl your fi ngers
towards the positive y-axis, your thumb points roughly in the direction of the
positive z-axis.

Note:

Figure 1.4. The same vector v has different coordinates when described relative to different frames.

= (,)

= (,)

Frame

Frame

VECTOR ALGEBRA 7

1.1.3 Basic Vector Operations
We now define equality, addition, scalar multiplication, and subtraction on vectors
using the coordinate representation. For these four definitions, let u  (ux, uy, uz)

and v  (vx, vy, vz).

1. Two vectors are equal if and only if their corresponding components are
equal. That is, u  v if and only if ux  vx, uy  vy, and uz  vz.

2. We add vectors component-wise: u  v  (ux  vx, uy  vy, uz  vz). Observe that it
only makes sense to add vectors of the same dimension.

3. We can multiply a scalar (i.e., a real number) and a vector and the result
is a vector. Let k be a scalar, then ku  (kux, kuy, kuz). This is called scalar
multiplication.

4. We defi ne subtraction in terms of vector addition and scalar multiplication.
That is, u  v  u  (1  v)  u  (v)  (ux  vx, uy  vy, uz  vz).

☞ Example 1.1
Let u  (1, 2, 3), v  (1, 2, 3), w  (3, 0, 2), and k  2. Then,

1. u  w  (1, 2, 3)  (3, 0, 2)  (4, 2, 1);

2. u  v;

3. u − v  u  (v)  (1, 2, 3)  (1, 2, 3)  (0, 0, 0)  0;

4. kw  2(3, 0, 2)  (6, 0, −4)

The difference in the third bullet illustrates a special vector, called the zero-vector,
which has zeros for all of its components and is denoted by 0.

Figure 1.5. On the left we have a left-handed coordinate system. Observe that the positive z-axis goes into
the page. On the right we have a right-handed coordinate system. Observe that the positive z-axis comes
out of the page.

+ +

+ + +

+

8 MATHEMATICAL PREREQUISITES

☞ Example 1.2
We will illustrate this example with 2D vectors to make the drawings simpler. The
ideas are the same as in 3D; we just work with one less component in 2D.

1. Let v  (2, 1) How do v and 1
2 v compare geometrically? We note that

 1 1
2 21,    v . Graphing both v and 1

2 v (Figure 1.6a), we notice that
1
2 v is in the direction directly opposite of v and its length is 1/2 that of

v. Thus, geometrically, negating a vector can be thought of as “flipping" its
direction, and scalar multiplication can be thought of as scaling the length of
a vector.

2. Let  1
22,u and v  (1, 2). Then  5

23, u v . Figure 1.6b shows what

vector addition means geometrically: We parallel translate u so that its tail
coincided with the head of v. Then, the sum is the vector originating at the
tail of v and ending at the head of the translated u. (We get the same result if
we keep u fixed and translate v so that its tail coincided with the head of u. In
this case, u  v would be the vector originating at the tail of u and ending at
the head of the translated v.) Observe also that our rules of vector addition
agree with what we would intuitively expect to happen physically when we
add forces together to produce a net force: If we add two forces (vectors) in
the same direction, we get another stronger net force (longer vector) in that
direction. If we add two forces (vectors) in opposition to each other, then we
get a weaker net force (shorter vector). Figure 1.7 illustrates these ideas.

3. Let  1
22,u and v  (1, 2). Then  3

21, .  v u Figure 1.6c shows what

vector subtraction means geometrically. Essentially, the difference v − u gives
us a vector aimed from the head of u to the head of v. If we instead interpret
u and v as points, then v − u gives us a vector aimed from the point u to
the point v; this interpretation is important as we will often want the vector

Figure 1.6. (a) The geometric interpretation of scalar multiplication. (b) The geometric interpretation of vector
addition. (c) The geometric interpretation of vector subtraction.

1/2 = (1, 1/2) +

+

= (2, 1)
+

+

= (1, 2)

= (2, 1/2)

= (1, 3/2) +

+

= (1, 2)

= (2, 1/2)
+ = (3, 5/2)

(a) (b) (c)

VECTOR ALGEBRA 9

aimed from one point to another. Observe also that the length of v − u is the
distance from u to v, when thinking of u and v as points.

1.2 LENGTH AND UNIT VECTORS

Geometrically, the magnitude of a vector is the length of the directed line
segment. We denote the magnitude of a vector by double vertical bars (e.g., ||u||
denotes the magnitude of u). Now, given a vector u  (x, y, z), we wish to compute
its magnitude algebraically. The magnitude of a 3D vector can be computed by
applying the Pythagorean theorem twice; see Figure 1.8.

First, we look at the triangle in the xz-plane with sides x, z, and hypotenuse a.

From the Pythagorean theorem, we have 2 2 . a x z Now look at the triangle
with sides a, y, and hypotenuse ||u||. From the Pythagorean theorem again, we
arrive at the following magnitude formula:

  2
2 2 2 2 2 2 2 2|| || y a y x z x y z       u (eq. 1.1)

For some applications, we do not care about the length of a vector because
we want to use the vector to represent a pure direction. For such direction-only

Figure 1.7. Forces applied to a ball. The forces are combined using vector addition to get a net force.

1

2

1 + 2

2 1

2+ (1)

Figure 1.8. The 3D length of a vector can be computed by applying the Pythagorean theorem twice.

+

+

+

= (, ,)

|| ||

10 MATHEMATICAL PREREQUISITES

vectors, we want the length of the vector to be exactly 1. When we make a vector
unit length, we say that we are normalizing the vector. We can normalize a vector
by dividing each of its components by its magnitude:

 ˆ , ,
|| || || || || || || ||

yx z 
   

 

u
u

u u u u
 (eq. 1.2)

To verify that this formula is correct, we can compute the length of û :

2 2 2 2 2 2

2

|| ||
ˆ|| || 1

|| || || || || || || |||| ||

x y zyx z       
          

     

u
u

u u u uu

So û is indeed a unit vector.

☞ Example 1.3
Normalize the vector v  (1, 3, 4). We have  2 2 2|| || 1 3 4 26.    v Thus,

1 3 4

ˆ , , .
|| || 26 26 26

    
 

v
v

v

To verify that v̂ is indeed a unit vector, we compute its length:

2 2 2

1 3 4 1 9 16
ˆ|| || 1 1.

26 26 2626 26 26

                  
     

v

1.3 THE DOT PRODUCT

The dot product is a form of vector multiplication that results in a scalar value; for
this reason, it is sometimes referred to as the scalar product. Let u  (ux, uy, uz) and
v  (vx, vy, vz), then the dot product is defined as follows:

    x x y y z zu v u v u vu v  (eq. 1.3)

In words, the dot product is the sum of the products of the corresponding
components.

The dot product defi nition does not present an obvious geometric meaning.
Using the law of cosines (see Exercise 10), we can fi nd the relationship,

 || || || || cos  u v u v  (eq. 1.4)

VECTOR ALGEBRA 11

where  is the angle between the vectors u and v such that 0     ; see Figure 1.9.
So, Equation 1.4 says that the dot product between two vectors is the cosine of the
angle between them scaled by the vectors’ magnitudes. In particular, if both u and v
are unit vectors, then u  v is the cosine of the angle between them (i.e., u  v  cos ).

Equation 1.4 provides us with some useful geometric properties of the dot
product:

1. If u  v  0, then u  v (i.e., the vectors are orthogonal).

2. If u  v > 0, then the angle  between the two vectors is less than 90 degrees
(i.e., the vectors make an acute angle).

3. If u  v < 0, the angle  between the two vectors is greater than 90 degrees (i.e.,
the vectors make an obtuse angle).

The word “orthogonal" can be used as a synonym for “perpendicular."

☞ Example 1.4
Let u  (1, 2, 3) and v  (−4, 0, 1). Find the angle between u and v. First we
compute:

 (1, 2, 3) (4, 0, 1) 4 3 7         u v

 2 2 2|| || 1 2 3 14   u

    2 22|| || 4 0 1 17     v

Now, applying Equation 1.4 and solving for theta, we get:


7

cos
|| || || || 14 17

 
  

u v

u v

 1 7
cos 117

14 17
 

   

Note:

Figure 1.9. In the left figure, the angle  between u and v is an acute angle. In the right figure, the angle 
between u and v is an obtuse angle. When we refer to the angle between two vectors, we always mean the
smallest angle, that is, the angle  such that 0  .

12 MATHEMATICAL PREREQUISITES

☞ Example 1.5
Consider Figure 1.10. Given v and the unit vector n, find a formula for p in terms
of v and n using the dot product.

First, observe from the fi gure that there exists a scalar k such that p  kn;
moreover, since we assumed ||n||  1, we have ||p||  ||kn||  |k|||n||  |k|. (Note
that k may be negative if and only if p and n aim in opposite directions.) Using
trigonometry, we have that k  ||v|| cos; therefore, p  kn  (||v|| cos)n. However,
because n is a unit vector, we can say this in another way:

      || || cos || || 1cos || || || ||cos ()        p v n v n v n n v n n

In particular, this shows k  v  n, and this illustrates the geometric interpretation
of v  n when n is a unit vector. We call p the orthogonal projection of v on n, and it
is commonly denoted by

 proj () np v

If we interpret v as a force, p can be thought of as the portion of the force v that
acts in the direction n. Likewise, the vector w  perpn(v)  v – p is the portion of
the force v that acts orthogonal to the direction n (which is why we also denote
it by perpn(v) for perpendicular). Observe that () ()proj ,perp   n nv p w v v
which is to say we have decomposed the vector v into the sum of two orthogonal
vectors p and w.

If n is not of unit length, we can always normalize it fi rst to make it unit length.
Replacing n by the unit vector || ||

n

n gives us the more general projection formula:

 2
proj

|| || || || |

()

|
)

||
(

  
    

 
n

n n v n
p v v n

n n n

Figure 1.10. The orthogonal projection of v on n.

+ +

+ +

=

=

VECTOR ALGEBRA 13

1.3.1 Orthogonalization
A set of vectors {v0, …, vn-1} is called orthonormal if the vectors are mutually
orthogonal (every vector in the set is orthogonal to every other vector in the set)
and unit length. Sometimes we have a set of vectors that are almost orthonormal,
but not quite. A common task is to orthogonalize the set and make it orthonormal.
In 3D computer graphics we might start off with an orthonormal set, but due to
numerical precision issues, the set gradually becomes un-orthonormal. We are
mainly concerned with the 2D and 3D cases of this problem (that is, sets that
contain two and three vectors, respectively).

We examine the simpler 2D case fi rst. Suppose we have the set of vectors
{v0, v1} that we want to orthogonalize into an orthonormal set {w0, w1} as shown
in Figure 1.11. We start with w0  v0 and modify v1 to make it orthogonal to w0;
this is done by subtracting out the portion of v1 that acts in the w0 direction:

 01 1 1proj ()  ww v v

We now have a mutually orthogonal set of vectors {w0, w1}; the last step to
constructing the orthonormal set is to normalize w0 and w1 to make them unit
length.

The 3D case follows in the same spirit as the 2D case, but with more steps.
Suppose we have the set of vectors {v0, v1, v2} that we want to orthogonalize into
an orthonormal set {w0, w1, w2}as shown in Figure 1.12. We start with w0  v0 and
modify v1 to make it orthogonal to w0; this is done by subtracting out the portion
of v1 that acts in the w0 direction:

 01 1 1proj ()  ww v v

1

0 = 0

1

proj 0(1)

Figure 1.11. 2D orthogonalization.

1

2

0 = 0

1

2

+

+ +

proj 1(
2) proj 0(2)

proj 0(1)

Figure 1.12. 3D orthogonalization.

14 MATHEMATICAL PREREQUISITES

Next, we modify v2 to make it orthogonal to both w0 and w1. This is done by
subtracting out the portion of v2 that acts in the w0 direction and the portion of v2

that acts in the w1 direction:

 0 12 2 2 2proj () proj ()  w ww v v v

We now have a mutually orthogonal set of vectors {w0, w1, w2}; the last step to
constructing the orthonormal set is to normalize w0, w1 and w2 to make them unit
length.

For the general case of n vectors {v0, ..., vn1} that we want to orthogonalize into
an orthonormal set {w0, ..., wn1}, we have the following procedure commonly
called the Gram-Schmidt Orthogonalization process:

 Base Step: Set w0  v0

For
1

0

1 1, Set proj ()




     j

i

i i i
j

i n ww v v

 Normalization Step: Set
|| ||

i
i

i


w

w
w

Again, the intuitive idea is that when we pick a vector vi from the input set to
add to the orthonormal set, we need to subtract out the components of vi that
act in the directions of the other vectors (w0, w1,…, wi1) that are already in the
orthonormal set to ensure the new vector being added is orthogonal to the other
vectors already in the orthonormal set.

1.4 THE CROSS PRODUCT

The second form of multiplication vector math defines is the cross product. Unlike
the dot product, which evaluates to a scalar, the cross product evaluates to another
vector; moreover, the cross product is only defined for 3D vectors (in particular,
there is no 2D cross product). Taking the cross product of two 3D vectors u and v

yields another vector, w that is mutually orthogonal to u and v. By that we mean w
is orthogonal to u, and w is orthogonal to v; see Figure 1.13. If u  (ux, uy, uz) and
v  (vx, vy, vz), then the cross product is computed like so:

 (, ,)     y z z y z x x z x y y xu v u v u v u v u v u vw u v (eq. 1.5)

If you are working in a right-handed coordinate system, then you use the
right-hand-thumb rule: If you take your right hand and aim the fi ngers in the
direction of the fi rst vector u, and then curl your fi ngers toward v along an angle
0 ,    then your thumb roughly points in the direction of w  u × v.

Note:

VECTOR ALGEBRA 15

☞ Example 1.6
Let u  (2, 1,3) and v  (2, 0, 0). Compute w  u × v and z  v × u, and then verify
that w is orthogonal to u and that w is orthogonal to v. Applying Equation 1.5 we
have,

 w  u × v
  (2, 1, 3) × (2, 0, 0)

 (10  30, 32  20, 20  12)
  (06, 2)

And
 z  v × u

  (2, 0, 0) × (2, 1, 3)
 (03  01, 02  23, 21  02)
  (0,  6, 2)

This result makes one thing clear, generally speaking u × v  v × u. Therefore, we
say that the cross product is anti-commutative. In fact, it can be shown that u × v
 − v × u. You can determine the vector returned by the cross product by the left-
hand-thumb rule. If you first aim your fingers in the direction of the first vector,
and then curl your fingers towards the second vector (always take the path with
the smallest angle), your thumb points in the direction of the returned vector, as
shown in Figure 1.11.

To show that w is orthogonal to u and that w is orthogonal to v, we recall from
§1.3 that if u  v  0, then u  v (i.e., the vectors are orthogonal). Because

      0, 6, 2 2,1,3 0 2 6 1 2 3 0           w u

= ×

Figure 1.13. The cross product of two 3D vectors u and v yields another vector w that is mutually orthogonal
to u and v. If you take your left hand and aim the fingers in the direction of the first vector u, and then curl
your fingers toward v along an angle 0   , then your thumb roughly points in the direction of w u v ;
this is called the left-hand-thumb rule.

16 MATHEMATICAL PREREQUISITES

and

      0, 6, 2 2, 0, 0 0 2 6 0 2 0 0           w v

we conclude that w is orthogonal to u and that w is orthogonal to v.

1.4.1 Pseudo 2D Cross Product
The cross product allows us to find a vector orthogonal to two given 3D vectors. In
2D we do not quite have the same situation, but given a 2D vector u  (ux, uy) it can
be useful to find a vector v orthogonal to u. Figure 1.14 shows the geometric setup
from which it is suggested that v  (uy, ux). The formal proof is straightforward:

 (,) (,) 0x y y x x y y xu u u u u u u u       u v

Thus u  v. Observe that () 0x y y xu u u u    u v , too, so we also have that
u  v.

1.4.2 Orthogonalization with the Cross Product
In §1.3.1, we looked at a way to orthogonalize a set of vectors using the Gram-
Schmidt process. For 3D, there is another strategy to orthogonalize a set of vectors
{v0, v1, v2} that are almost orthonormal, but perhaps became un-orthonormal
due to accumulated numerical precision errors, using the cross product. Refer to
Figure 1.15 for the geometry of this process:

1. Set
||

.

2. Set 0 1
2

0 1| || |





w v

w
w v

3. Set w1  w2 × w0 By Exercise 14,||w2 × w0||  1 because w2  w0 and ||w2|| 
||w0||  1, so we do not need to do any normalization in this last step.

+�

+�

� = (�� , ��)

� = (−�� , ��)

Figure 1.14. The 2D Pseudo Cross Product of a vector u evaluates to an orthogonal vector v.

VECTOR ALGEBRA 17

At this point, the set of vectors {w0, w1, w2} is orthonormal.

In the above example, we started with 0
0 | 0 |||


v

v
w which means we did not change

the direction when going from v0 to w0; we only changed the length. However, the
directions of w1 and w2 could be different from v1 and v2, respectively. Depending
on the specifi c application, the vector you choose not to change the direction of
might be important. For example, later in this book we represent the orientation
of the camera with three orthonormal vectors {v0, v1, v2} where the third vector v2
describes the direction the camera is looking. When orthogonalizing these vectors,
we often do not want to change the direction we are looking, and so we will start
the above algorithm with v2 and modify v0 and v1 to orthogonalize the vectors.

1.5 POINTS

So far we have been discussing vectors, which do not describe positions. However,
we will also need to specify positions in our 3D programs, for example, the
position of 3D geometry and the position of the 3D virtual camera. Relative to
a coordinate system, we can use a vector in standard position (Figure 1.16) to
represent a 3D position in space; we call this a position vector. In this case, the
location of the tip of the vector is the characteristic of interest, not the direction or
magnitude. We will use the terms “position vector" and “point" interchangeably
since a position vector is enough to identify a point.

One side effect of using vectors to represent points, especially in code, is that
we can do vector operations that do not make sense for points; for instance,
geometrically, what should the sum of two points mean? On the other hand, some
operations can be extended to points. For example, we defi ne the difference of two
points qp to be the vector from p to q. Also, we defi ne a point p plus a vector v to

Note:

1

2

1 2

+

+ +

0 0

Figure 1.15. 3D orthogonalization with the cross product.

18 MATHEMATICAL PREREQUISITES

be the point q obtained by displacing p by the vector v. Conveniently, because we
are using vectors to represent points relative to a coordinate system, no extra work
needs to be done for the point operations just discussed, as the vector algebra
framework already takes care of them; see Figure 1.17.

Actually there is a geometric meaningful way to defi ne a special sum of points,
called an affi ne combination, which is like a weighted average of points.

1.6 DIRECTX MATH VECTORS

For Windows 8 and above, DirectX Math is a 3D math library for Direct3D
application that is part of the Windows SDK. The library uses the SSE2 (Streaming
SIMD Extensions 2) instruction set. With 128-bit wide SIMD (single instruction
multiple data) registers, SIMD instructions can operate on four 32-bit floats or
ints with one instruction. This is very useful for vector calculations; for example,
if you look at vector addition:

 (, ,)x x y y z zu v u v u v    u v

Note:

+

+

+

= (, ,)

Figure 1.16. The position vector, which extends from the origin to the point, fully describes where
the point is located relative to the coordinate system.

+

+

+

+

= +

() ()
Figure 1.17. (a) The difference q p between two points is defined as the vector from p to q.
(b) A point p plus the vector v is defined to be the point q obtained by displacing p by the vector v.

VECTOR ALGEBRA 19

we see that we just add corresponding components. By using SIMD, we can do
4D vector addition with one SIMD instruction instead of four scalar instructions.
If we only required three coordinates for 3D work, we can still use SIMD, but we
would just ignore the fourth coordinate; likewise, for 2D we would ignore the
third and fourth coordinates.

Our coverage of the DirectX Math library is not comprehensive, and we only
cover the key parts needed for this book. For all the details, we recommend the
online documentation [DirectXMath]. For readers wishing to understand how
an SIMD vector library might be developed optimally, and, perhaps, to gain
some insight why the DirectX Math library made some of the design decisions
that it did, we recommend the article Designing Fast Cross-Platform SIMD Vector
Libraries by [Oliveira2010].

To use the DirectX Math library, you need to #include <DirectXMath.h>,
and for some additional data types #include <DirectXPackedVector.h>. There
are no additional library fi les, as all the code is implemented inline in the
header fi le. The DirectXMath.h code lives in the DirectX namespace, and the
DirectXPackedVector.h code lives in the DirectX::PackedVector namespace.
In addition, for the x86 platform you should enable SSE2 (Project Properties
> Confi guration Properties > C/C > Code Generation > Enable Enhanced
Instruction Set), and for all platforms you should enable the fast fl oating point
model /fp:fast (Project Properties > Confi guration Properties > C/C > Code
Generation > Floating Point Model). You do not need to enable SSE2 for the
x64 platform because all x64 CPUs support SSE2 (http://en.wikipedia.org/wiki/
SSE2).

1.6.1 Vector Types
In DirectX Math, the core vector type is XMVECTOR, which maps to SIMD hardware
registers. This is a 128-bit type that can process four 32-bit floats with a single
SIMD instruction. When SSE2 is available, it is defined like so for x86 and x64
platforms:

typedef __m128 XMVECTOR;

where __m128 is a special SIMD type. When doing calculations, vectors must be
of this type to take advantage of SIMD. As already mentioned, we still use this
type for 2D and 3D vectors to take advantage of SIMD, but we just zero out the
unused components and ignore them.

XMVECTOR needs to be 16-byte aligned, and this is done automatically for local
and global variables. For class data members, it is recommended to use XMFLOAT2
(2D), XMFLOAT3 (3D), and XMFLOAT4 (4D) instead; these structures are defi ned
below:

20 MATHEMATICAL PREREQUISITES

struct XMFLOAT2
{
 float x;
 float y;

 XMFLOAT2() {}
 XMFLOAT2(float _x, float _y) : x(_x), y(_y) {}
 explicit XMFLOAT2(_In_reads_(2) const float *pArray) :
 x(pArray[0]), y(pArray[1]) {}

 XMFLOAT2& operator (const XMFLOAT2& Float2)
 { x  Float2.x; y  Float2.y; return *this; }
};

struct XMFLOAT3
{
 float x;
 float y;
 float z;

 XMFLOAT3() {}
 XMFLOAT3(float _x, float _y, float _z) : x(_x), y(_y), z(_z) {}
 explicit XMFLOAT3(_In_reads_(3) const float *pArray) :
 x(pArray[0]), y(pArray[1]), z(pArray[2]) {}

 XMFLOAT3& operator (const XMFLOAT3& Float3)
 { x  Float3.x; y  Float3.y; z  Float3.z; return *this; }
};

struct XMFLOAT4
{
 float x;
 float y;
 float z;
 float w;

 XMFLOAT4() {}
 XMFLOAT4(float _x, float _y, float _z, float _w) :
 x(_x), y(_y), z(_z), w(_w) {}
 explicit XMFLOAT4(_In_reads_(4) const float *pArray) :
 x(pArray[0]), y(pArray[1]), z(pArray[2]), w(pArray[3]) {}

 XMFLOAT4& operator (const XMFLOAT4& Float4)
 { x  Float4.x; y  Float4.y; z  Float4.z; w  Float4.w; return

*this; }
};

However, if we use these types directly for calculations, then we will not take
advantage of SIMD. In order to use SIMD, we need to convert instances of
these types into the XMVECTOR type. This is done with the DirectX Math loading
functions. Conversely, DirectX Math provides storage functions which are used to
convert data from XMVECTOR into the XMFLOATn types above.

VECTOR ALGEBRA 21

To summarize,

1. Use XMVECTOR for local or global variables.

2. Use XMFLOAT2, XMFLOAT3, and XMFLOAT4 for class data members.

3. Use loading functions to convert from XMFLOATn to XMVECTOR before doing
calculations.

4. Do calculations with XMVECTOR instances.

5. Use storage functions to convert from XMVECTOR to XMFLOATn.

1.6.2 Loading and Storage Methods
We use the following methods to load data from XMFLOATn into XMVECTOR:

// Loads XMFLOAT2 into XMVECTOR
XMVECTOR XM_CALLCONV XMLoadFloat2(const XMFLOAT2 *pSource);

// Loads XMFLOAT3 into XMVECTOR
XMVECTOR XM_CALLCONV XMLoadFloat3(const XMFLOAT3 *pSource);

// Loads XMFLOAT4 into XMVECTOR
XMVECTOR XM_CALLCONV XMLoadFloat4(const XMFLOAT4 *pSource);

We use the following methods to store data from XMVECTOR into XMFLOATn:

// Loads XMVECTOR into XMFLOAT2
void XM_CALLCONV XMStoreFloat2(XMFLOAT2 *pDestination, FXMVECTOR V);

// Loads XMVECTOR into XMFLOAT3
void XM_CALLCONV XMStoreFloat3(XMFLOAT3 *pDestination, FXMVECTOR V);

// Loads XMVECTOR into XMFLOAT4
void XM_CALLCONV XMStoreFloat4(XMFLOAT4 *pDestination, FXMVECTOR V);

Sometimes we just want to get or set one component of an XMVECTOR; the
following getter and setter functions facilitate this:

float XM_CALLCONV XMVectorGetX(FXMVECTOR V);
float XM_CALLCONV XMVectorGetY(FXMVECTOR V);
float XM_CALLCONV XMVectorGetZ(FXMVECTOR V);
float XM_CALLCONV XMVectorGetW(FXMVECTOR V);

XMVECTOR XM_CALLCONV XMVectorSetX(FXMVECTOR V, float x);
XMVECTOR XM_CALLCONV XMVectorSetY(FXMVECTOR V, float y);
XMVECTOR XM_CALLCONV XMVectorSetZ(FXMVECTOR V, float z);
XMVECTOR XM_CALLCONV XMVectorSetW(FXMVECTOR V, float w);

1.6.3 Parameter Passing
For efficiency purposes, XMVECTOR values can be passed as arguments to functions
in SSE/SSE2 registers instead of on the stack. The number of arguments that

22 MATHEMATICAL PREREQUISITES

can be passed this way depends on the platform (e.g., 32-bit Windows, 64-bit
Windows, and Windows RT) and compiler. Therefore, to be platform/compiler
independent, we use the types FXMVECTOR, GXMVECTOR, HXMVECTOR and CXMVECTOR
for passing XMVECTOR parameters; these are defined to the right type based on
the platform and compiler. Furthermore, the calling convention annotation XM_
CALLCONV must be specified before the function name so that the proper calling
convention is used, which again depends on the compiler version.

Now the rules for passing XMVECTOR parameters are as follows:

1. The first three XMVECTOR parameters should be of type FXMVECTOR;

2. The fourth XMVECTOR should be of type GXMVECTOR;

3. The fifth and sixth XMVECTOR parameter should be of type HXMVECTOR;

4. Any additional XMVECTOR parameters should be of type CXMVECTOR.

We illustrate how these types are defined on 32-bit Windows with a compiler
that supports the __fastcall calling convention and a compiler that supports the
newer __vectorcall calling convention:

// 32-bit Windows __fastcall passes first 3 XMVECTOR arguments
// via registers, the remaining on the stack.
typedef const XMVECTOR FXMVECTOR;
typedef const XMVECTOR& GXMVECTOR;
typedef const XMVECTOR& HXMVECTOR;
typedef const XMVECTOR& CXMVECTOR;

// 32-bit Windows __vectorcall passes first 6 XMVECTOR arguments
// via registers, the remaining on the stack.
typedef const XMVECTOR FXMVECTOR;
typedef const XMVECTOR GXMVECTOR;
typedef const XMVECTOR HXMVECTOR;
typedef const XMVECTOR& CXMVECTOR;

For the details on how these types are defined for the other platforms, see “Calling
Conventions" under “Library Internals" in the DirectX Math documentation
[DirectXMath]. The exception to these rules is with constructor methods.
[DirectXMath] recommends using FXMVECTOR for the first three XMVECTOR
parameters and CXMVECTOR for the rest when writing a constructor that takes
XMVECTOR parameters. Furthermore, do not use the annotation XM_CALLCONV for
constructors

Here is an example from the DirectXMath library:

inline XMMATRIX XM_CALLCONV XMMatrixTransformation(
 FXMVECTOR ScalingOrigin,
 FXMVECTOR ScalingOrientationQuaternion, .
 FXMVECTOR Scaling,
 GXMVECTOR RotationOrigin,
 HXMVECTOR RotationQuaternion,
 HXMVECTOR Translation);

VECTOR ALGEBRA 23

This function takes 6 XMVECTOR parameters, but following the parameter passing
rules, it uses FXMVECTOR for the first three parameters, GXMVECTOR for the fourth, and
HXMVECTOR for the fifth and sixth.

You can have non-XMVECTOR parameters between XMVECTOR parameters. The
same rules apply and the XMVECTOR parameters are counted as if the non-XMVECTOR
parameters were not there. For example, in the following function, the fi rst three
XMVECTOR parameters are of type FXMVECTOR as and the fourth XMVECTOR parameter
is of type GXMVECTOR.

inline XMMATRIX XM_CALLCONV XMMatrixTransformation2D(
 FXMVECTOR ScalingOrigin,
 float ScalingOrientation,
 FXMVECTOR Scaling,
 FXMVECTOR RotationOrigin,
 float Rotation,
 GXMVECTOR Translation);

The rules for passing XMVECTOR parameters apply to “input" parameters. “Output"
XMVECTOR parameters (XMVECTOR& or XMVECTOR*) will not use the SSE/SSE2 registers
and so will be treated like non-XMVECTOR parameters.

1.6.4 Constant Vectors
Constant XMVECTOR instances should use the XMVECTORF32 type. Here are some
examples from the DirectX SDK’s CascadedShadowMaps11 sample:

static const XMVECTORF32 g_vHalfVector  { 0.5f, 0.5f, 0.5f, 0.5f };
static const XMVECTORF32 g_vZero  { 0.0f, 0.0f, 0.0f, 0.0f };

XMVECTORF32 vRightTop  {
vViewFrust.RightSlope,
vViewFrust.TopSlope,
1.0f,1.0f
};

XMVECTORF32 vLeftBottom  {
vViewFrust.LeftSlope,
vViewFrust.BottomSlope,
1.0f,1.0f
};

Essentially, we use XMVECTORF32 whenever we want to use initialization syntax.
XMVECTORF32 is a 16-byte aligned structure with a XMVECTOR conversion operator;

it is defi ned as follows:

// Conversion types for constants
__declspec(align(16)) struct XMVECTORF32
{
 union

24 MATHEMATICAL PREREQUISITES

 {
 float f[4];
 XMVECTOR v;
 };

 inline operator XMVECTOR() const { return v; }
 inline operator const float*() const { return f; }
#if !defined(_XM_NO_INTRINSICS_) && defined(_XM_SSE_INTRINSICS_)
 inline operator __m128i() const { return _mm_castps_si128(v); }
 inline operator __m128d() const { return _mm_castps_pd(v); }
#endif
};

You can also create a constant XMVECTOR of integer data using XMVECTORU32:

static const XMVECTORU32 vGrabY  {
0x00000000,0xFFFFFFFF,0x00000000,0x00000000
};

1.6.5 Overloaded Operators
The XMVECTOR has several overloaded operators for doing vector addition,
subtraction, and scalar multiplication.

XMVECTOR XM_CALLCONV operator (FXMVECTOR V);
XMVECTOR XM_CALLCONV operator- (FXMVECTOR V);

XMVECTOR& XM_CALLCONV operator (XMVECTOR& V1, FXMVECTOR V2);
XMVECTOR& XM_CALLCONV operator- (XMVECTOR& V1, FXMVECTOR V2);
XMVECTOR& XM_CALLCONV operator* (XMVECTOR& V1, FXMVECTOR V2);
XMVECTOR& XM_CALLCONV operator/ (XMVECTOR& V1, FXMVECTOR V2);

XMVECTOR& operator* (XMVECTOR& V, float S);
XMVECTOR& operator/ (XMVECTOR& V, float S);

XMVECTOR XM_CALLCONV operator (FXMVECTOR V1, FXMVECTOR V2);
XMVECTOR XM_CALLCONV operator- (FXMVECTOR V1, FXMVECTOR V2);
XMVECTOR XM_CALLCONV operator* (FXMVECTOR V1, FXMVECTOR V2);
XMVECTOR XM_CALLCONV operator/ (FXMVECTOR V1, FXMVECTOR V2);
XMVECTOR XM_CALLCONV operator* (FXMVECTOR V, float S);
XMVECTOR XM_CALLCONV operator* (float S, FXMVECTOR V);
XMVECTOR XM_CALLCONV operator/ (FXMVECTOR V, float S);

1.6.6 Miscellaneous
The DirectX Math library defined the following constants useful for approximating
different expressions involving :

const float XM_PI  3.141592654f;
const float XM_2PI  6.283185307f;
const float XM_1DIVPI  0.318309886f;
const float XM_1DIV2PI  0.159154943f;

VECTOR ALGEBRA 25

const float XM_PIDIV2  1.570796327f;
const float XM_PIDIV4  0.785398163f;

In addition, it defines the following inline functions for converting between
radians and degrees:

inline float XMConvertToRadians(float fDegrees)
{ return fDegrees * (XM_PI / 180.0f); }
inline float XMConvertToDegrees(float fRadians)
{ return fRadians * (180.0f / XM_PI); }

It also defi nes min/max functions:

template<class T> inline T XMMin(T a, T b) { return (a < b) ? a : b; }
template<class T> inline T XMMax(T a, T b) { return (a > b) ? a : b; }

1.6.7 Setter Functions
DirectX Math provides the following functions to set the contents of an XMVECTOR:

// Returns the zero vector 0
XMVECTOR XM_CALLCONV XMVectorZero();

// Returns the vector (1, 1, 1, 1)
XMVECTOR XM_CALLCONV XMVectorSplatOne();

// Returns the vector (x, y, z, w)
XMVECTOR XM_CALLCONV XMVectorSet(float x, float y, float z, float w);

// Returns the vector (s, s, s, s)
XMVECTOR XM_CALLCONV XMVectorReplicate(float Value);

// Returns the vector (vx, vx, vx, vx)

XMVECTOR XM_CALLCONV XMVectorSplatX(FXMVECTOR V);

// Returns the vector (vy, vy, vy, vy)

XMVECTOR XM_CALLCONV XMVectorSplatY(FXMVECTOR V);

// Returns the vector (vz, vz, vz, vz)

XMVECTOR XM_CALLCONV XMVectorSplatZ(FXMVECTOR V);

The following program illustrates most of these functions:

#include <windows.h> // for XMVerifyCPUSupport
#include <DirectXMath.h>
#include <DirectXPackedVector.h>
#include <iostream>
using namespace std;
using namespace DirectX;
using namespace DirectX::PackedVector;

// Overload the "<<" operators so that we can use cout to
// output XMVECTOR objects.

26 MATHEMATICAL PREREQUISITES

ostream& XM_CALLCONV operator<<(ostream& os, FXMVECTOR v)
{
 XMFLOAT3 dest;
 XMStoreFloat3(&dest, v);

 os << "(" << dest.x << ", " << dest.y << ", " << dest.z << ")";
 return os;
}

int main()
{
 cout.setf(ios_base::boolalpha);

 // Check support for SSE2 (Pentium4, AMD K8, and above).
 if (!XMVerifyCPUSupport())
 {
 cout << "directx math not supported" << endl;
 return 0;
 }

 XMVECTOR p  XMVectorZero();
 XMVECTOR q  XMVectorSplatOne();
 XMVECTOR u  XMVectorSet(1.0f, 2.0f, 3.0f, 0.0f);
 XMVECTOR v  XMVectorReplicate(-2.0f);
 XMVECTOR w  XMVectorSplatZ(u);

 cout << "p  " << p << endl;
 cout << "q  " << q << endl;
 cout << "u  " << u << endl;
 cout << "v  " << v << endl;
 cout << "w  " << w << endl;

 return 0;
}

Figure 1.18. Output for the above program.

1.6.8 Vector Functions
DirectX Math provides the following functions to do various vector operations.
We illustrate with the 3D versions, but there are analogous versions for 2D and
4D; the 2D and 4D versions have the same names as the 3D versions, with the
exception of a 2 and 4 substituted for the 3, respectively.

XMVECTOR XM_CALLCONV XMVector3Length(// Returns ||v||
 FXMVECTOR V); // Input v

VECTOR ALGEBRA 27

XMVECTOR XM_CALLCONV XMVector3LengthSq(// Returns ||v||2

 FXMVECTOR V); // Input v

XMVECTOR XM_CALLCONV XMVector3Dot(// Returns v1v2

 FXMVECTOR V1, // Input v1

 FXMVECTOR V2); // Input v2

XMVECTOR XM_CALLCONV XMVector3Cross(// Returns v1 × v2

 FXMVECTOR V1, // Input v1

 FXMVECTOR V2); // Input v2

XMVECTOR XM_CALLCONV XMVector3Normalize(// Returns v/||v||
 FXMVECTOR V); // Input v

XMVECTOR XM_CALLCONV XMVector3Orthogonal(// Returns a vector orthogonal to v
 FXMVECTOR V); // Input v

XMVECTOR XM_CALLCONV
XMVector3AngleBetweenVectors(// Returns the angle between v1 and v2

 FXMVECTOR V1, // Input v1

 FXMVECTOR V2); // Input v2

void XM_CALLCONV XMVector3ComponentsFromNormal(

 XMVECTOR* pParallel, // Returns projn(v)
 XMVECTOR* pPerpendicular, // Returns perpn(v)

 FXMVECTOR V, // Input v
 FXMVECTOR Normal); // Input n

bool XM_CALLCONV XMVector3Equal(// Returns v1  v2

 FXMVECTOR V1, // Input v1

 FXMVECTOR V2); // Input v2

bool XM_CALLCONV XMVector3NotEqual(// Returns v1  v2

 FXMVECTOR V1, // Input v1

 FXMVECTOR V2); // Input v2

Observe that these functions return XMVECTORs even for operations that
mathematically return a scalar (for example, the dot product k  v1  v2). The
scalar result is replicated in each component of the XMVECTOR. For example, for the
dot product, the returned vector would be (v1  v2, v1  v2,v1  v2,v1  v2). One reason
for this is to minimize mixing of scalar and SIMD vector operations; it is more
effi cient to keep everything SIMD until you are done with your calculations.

The following demo program shows how to use most of these functions, as well as
some of the overloaded operators:

#include <windows.h> // for XMVerifyCPUSupport

Note:

28 MATHEMATICAL PREREQUISITES

#include <DirectXMath.h>
#include <DirectXPackedVector.h>
#include <iostream>
using namespace std;
using namespace DirectX;
using namespace DirectX::PackedVector;

// Overload the "<<" operators so that we can use cout to
// output XMVECTOR objects.
ostream& XM_CALLCONV operator<<(ostream& os, FXMVECTOR v)
{
 XMFLOAT3 dest;
 XMStoreFloat3(&dest, v);

 os << "(" << dest.x << ", " << dest.y << ", " << dest.z << ")";
 return os;
}

int main()
{
 cout.setf(ios_base::boolalpha);

 // Check support for SSE2 (Pentium4, AMD K8, and above).
 if (!XMVerifyCPUSupport())
 {
 cout << "directx math not supported" << endl;
 return 0;
 }

 XMVECTOR n  XMVectorSet(1.0f, 0.0f, 0.0f, 0.0f);
 XMVECTOR u  XMVectorSet(1.0f, 2.0f, 3.0f, 0.0f);
 XMVECTOR v  XMVectorSet(-2.0f, 1.0f, -3.0f, 0.0f);
 XMVECTOR w  XMVectorSet(0.707f, 0.707f, 0.0f, 0.0f);

 // Vector addition: XMVECTOR operator 
 XMVECTOR a  u  v;

 // Vector subtraction: XMVECTOR operator -
 XMVECTOR b  u - v;

 // Scalar multiplication: XMVECTOR operator *
 XMVECTOR c  10.0f*u;

 // ||u||
 XMVECTOR L  XMVector3Length(u);

 // d  u / ||u||
 XMVECTOR d  XMVector3Normalize(u);

 // s  u dot v
 XMVECTOR s  XMVector3Dot(u, v);

 // e  u x v
 XMVECTOR e  XMVector3Cross(u, v);

VECTOR ALGEBRA 29

 // Find proj_n(w) and perp_n(w)
 XMVECTOR projW;
 XMVECTOR perpW;
 XMVector3ComponentsFromNormal(&projW, &perpW, w, n);

 // Does projW  perpW  w?
 bool equal  XMVector3Equal(projW  perpW, w) ! 0;
 bool notEqual  XMVector3NotEqual(projW  perpW, w) ! 0;

 // The angle between projW and perpW should be 90 degrees.
 XMVECTOR angleVec  XMVector3AngleBetweenVectors(projW, perpW);
 float angleRadians  XMVectorGetX(angleVec);
 float angleDegrees  XMConvertToDegrees(angleRadians);

 cout << "u  " << u << endl;
 cout << "v  " << v << endl;
 cout << "w  " << w << endl;
 cout << "n  " << n << endl;
 cout << "a  u  v  " << a << endl;
 cout << "b  u - v  " << b << endl;
 cout << "c  10 * u  " << c << endl;
 cout << "d  u / ||u||  " << d << endl;
 cout << "e  u x v  " << e << endl;
 cout << "L  ||u||  " << L << endl;
 cout << "s  u.v  " << s << endl;
 cout << "projW  " << projW << endl;
 cout << "perpW  " << perpW << endl;
 cout << "projW  perpW  w  " << equal << endl;
 cout << "projW  perpW ! w  " << notEqual << endl;
 cout << "angle  " << angleDegrees << endl;

 return 0;

}

Figure 1.19. Output for the above program.

30 MATHEMATICAL PREREQUISITES

The DirectX Math library also includes some estimation methods, which are
less accurate but faster to compute. If you are willing to sacrifi ce some accuracy
for speed, then use the estimate methods. Here are two examples of estimate
functions:

XMVECTOR XM_CALLCONV XMVector3LengthEst(// Returns estimated ||v||
 FXMVECTOR V); // Input v

XMVECTOR XM_CALLCONV XMVector3NormalizeEst(// Returns estimated v/||v||
 FXMVECTOR V); // Input v

1.6.9 Floating-Point Error
While on the subject of working with vectors on a computer, we should be
aware of the following. When comparing floating-point numbers, care must
be taken due to floating-point imprecision. Two floating-point numbers that
we expect to be equal may differ slightly. For example, mathematically, we’d
expect a normalized vector to have a length of 1, but in a computer program,
the length will only be approximately 1. Moreover, mathematically, 1p  1 for
any real number p, but when we only have a numerical approximation for 1,
we see that the approximation raised to the pth power increases the error; thus,
numerical error also accumulates. The following short program illustrates these
ideas:

#include <windows.h> // for XMVerifyCPUSupport
#include <DirectXMath.h>
#include <DirectXPackedVector.h>
#include <iostream>
using namespace std;
using namespace DirectX;
using namespace DirectX::PackedVector;

int main()
{
 cout.precision(8);

 // Check support for SSE2 (Pentium4, AMD K8, and above).
 if (!XMVerifyCPUSupport())
 {
 cout << "directx math not supported" << endl;
 return 0;
 }

 XMVECTOR u  XMVectorSet(1.0f, 1.0f, 1.0f, 0.0f);
 XMVECTOR n  XMVector3Normalize(u);

 float LU  XMVectorGetX(XMVector3Length(n));

 // Mathematically, the length should be 1. Is it numerically?

Note:

VECTOR ALGEBRA 31

 cout << LU << endl;
 if (LU  1.0f)
 cout << "Length 1" << endl;
 else
 cout << "Length not 1" << endl;

 // Raising 1 to any power should still be 1. Is it?
 float powLU  powf(LU, 1.0e6f);
 cout << "LU^(10^6)  " << powLU << endl;
}

Figure 1.20. Output for the above program.

To compensate for fl oating-point imprecision, we test if two fl oating-point
numbers are approximately equal. We do this by defi ning an Epsilon constant,
which is a very small value we use as a “buffer." We say two values are approximately
equal if their distance is less than Epsilon. In other words, Epsilon gives us some
tolerance for fl oating-point imprecision. The following function illustrates how
Epsilon can be used to test if two fl oating-point values are equal:

const float Epsilon  0.001f;
bool Equals(float lhs, float rhs)
{
 // Is the distance between lhs and rhs less than EPSILON?
 return fabs(lhs - rhs) < Epsilon ? true : false;
}

The DirectX Math library provides the XMVector3NearEqual function when
testing the equality of vectors with an allowed tolerance Epsilon parameter:

// Returns
// abs(U.x – V.x) < Epsilon.x &&
// abs(U.y – V.y) < Epsilon.y &&
// abs(U.z – V.z) < Epsilon.z
XMFINLINE bool XM_CALLCONV XMVector3NearEqual(
 FXMVECTOR U,
 FXMVECTOR V,
 FXMVECTOR Epsilon);

1.7 SUMMARY

1. Vectors are used to model physical quantities that possess both magnitude and
direction. Geometrically, we represent a vector with a directed line segment.

32 MATHEMATICAL PREREQUISITES

A vector is in standard position when it is translated parallel to itself so that
its tail coincides with the origin of the coordinate system. A vector in standard
position can be described numerically by specifying the coordinates of its
head relative to a coordinate system.

2. If u  (ux, uy, uz) and v  (vx, vy, vz), then we have the following vector operations:

(a) Addition: u  v  (ux  vx, uy  vy, uz  vz)

(b) Subtraction: u − v  (ux − vx, uy − vy, uz − vz)

(c) Scalar Multiplication: ku  (kux, kuy, kuz)

(d) Length: || 2 2 2|| x y z  u

(e) Normalization: ˆ , ,
|| || || || || || || ||

yx z 
   

 

u
u

u u u u

(f) Dot Product: || || || || cos x x y y z zu v u v u v     u v u v

(g) Cross Product: (, ,)y z z y z x x z x y y xu v u v u v u v u v u v    u v

3. We use the DirectX Math XMVECTOR type to describe vectors efficiently in
code using SIMD operations. For class data members, we use the XMFLOAT2,
XMFLOAT3, and XMFLOAT4 classes, and then use the loading and storage methods
to convert back and forth between XMVECTOR and XMFLOATn. Constant vectors
that require initialization syntax should use the XMVECTORF32 type.

4. For efficiency purposes, XMVECTOR values can be passed as arguments to
functions in SSE/SSE2 registers instead of on the stack. To do this in a
platform independent way, we use the types FXMVECTOR, GXMVECTOR, HXMVECTOR

and CXMVECTOR for passing XMVECTOR parameters. Then the rule for passing
XMVECTOR parameters is that the first three XMVECTOR parameters should be of
type FXMVECTOR; the fourth XMVECTOR should be of type GXMVECTOR; the fifth and
sixth XMVECTOR parameter should be of type HXMVECTOR; and any additional
XMVECTOR parameters should be of type CXMVECTOR.

5. The XMVECTOR class overloads the arithmetic operators to do vector addition,
subtraction, and scalar multiplication. Moreover, the DirectX Math library
provides the following useful functions for computing the length of a vector,
the squared length of a vector, computing the dot product of two vectors,
computing the cross product of two vectors, and normalizing a vector:

 XMVECTOR XM_CALLCONV XMVector3Length(FXMVECTOR V);
 XMVECTOR XM_CALLCONV XMVector3LengthSq(FXMVECTOR V);
 XMVECTOR XM_CALLCONV XMVector3Dot(FXMVECTOR V1, FXMVECTOR V2);
 XMVECTOR XM_CALLCONV XMVector3Cross(FXMVECTOR V1, FXMVECTOR V2);
 XMVECTOR XM_CALLCONV XMVector3Normalize(FXMVECTOR V);

VECTOR ALGEBRA 33

1.8 EXERCISES

1. Let u  (1, 2) and v  (3, −4). Perform the following computations and draw
the vectors relative to a 2D coordinate system.

(a) u  v

(b) u − v

(c) 1

2
2 u v

(d) 2u  v

2. Let u  (1, 3, 2) and v  (3, 4, 1). Perform the following computations.

(a) u  v

(b) u − v

(c) 3u  2v

(d) 2u  v

3. This exercise shows that vector algebra shares many of the nice properties
of real numbers (this is not an exhaustive list). Assume u  (ux, uy, uz),
v  (vx, vy, vz), and w  (wx, wy, wz). Also assume that c and k are scalars. Prove
the following vector properties.

(a) u  v  v  u (Commutative Property of Addition)

(b) u  (v  w)  (u  v)  w (Associative Property of Addition)

(c) (ck)u  c(ku) (Associative Property of Scalar Multiplication)

(d) k(u  v)  ku  kv (Distributive Property 1)

(e) u(k  c)  ku  cu (Distributive Property 2)

Just use the defi nition of the vector operations and the properties of real numbers.
For example,

 (ck)u  (ck)(ux, uy, uz)
  ((ck)ux, (ck)uy, (ck)uz)

  (c(kux), c(kuy), c(kuz))
  c(kux, kuy, kuz)
  c(ku)

4. Solve the equation 2((1, 2, 3) – x) − (2, 0, 4)  2(1, 2, 3) for x.

5. Let u  (1, 3, 2) and v  (3, −4, 1) . Normalize u and v.

6. Let k be a scalar and let u  (ux, uy, uz). Prove that ||ku||  |k|||u||.

7. Is the angle between u and v orthogonal, acute, or obtuse?

(a) u  (1, 1, 1), v  (2, 3, 4)

(b) u  (1, 1, 0), v  (2, 2, 0)

Hint:

34 MATHEMATICAL PREREQUISITES

(c) u  (1, 1, 1), v  (3, 1, 0)

8. Let u  (1, 3, 2) and v  (3, −4, 1). Find the angle  between u and v.

9. Let u  (ux, uy, uz), v  (vx, vy, vz), and w  (wx, wy, wz). Also let c and k be
scalars. Prove the following dot product properties.

(a) u  v  v  u
(b) u(v  w)  u  v  u  w
(c) k(u  v)  (ku)  v  u  (kv)

(d) vv  ||v||2

(e) 0  v  0

Just use the defi nitions, for example,

 
2 2 2

2

2

2 2 2

|| ||

x x y y z z

x y z

x y z

v v v v v v

v v v

v v v

   

  



  

v v

v

10. Use the law of cosines (c2  a2  b2 – 2abcos), where a, b, and c are the lengths
of the sides of a triangle and  is the angle between sides a and b) to show

 || || || || cosx x y y z zu v u v u v   u v

Consider Figure 1.9 and set c2  ||u − v||, a2  ||u||2 and b2  ||v||2, and use the dot
product properties from the previous exercise.

11. Let n  (2, 1). Decompose the vector g  (0, −9.8) into the sum of two
orthogonal vectors, one parallel to n and the other orthogonal to n. Also, draw
the vectors relative to a 2D coordinate system.

12. Let u  (2, 1, 4) and v  (3, −4, 1). Find w  u × v, and show w u  0 and
w v  0.

13. Let the following points define a triangle relative to some coordinate system:

A  (0, 0, 0), B  (0, 1, 3), and C  (5, 1, 0). Find a vector orthogonal to this
triangle.

Find two vectors on two of the triangle’s edges and use the cross product.

14. Prove that || || || || || || sin  u v u v .

Hint:

Hint:

Hint:

VECTOR ALGEBRA 35

Start with || || || ||sin ||u v and use the trigonometric identity

2 2 2cos sin 1 sin 1 cos ,        then apply Equation 1.4.

15. Prove that || ||u v gives the area of the parallelogram spanned by u and v; see
Figure 1.21.

Figure 1.21. Parallelogram spanned by two 3D vectors u and v; the parallelogram has base || v || and
height h

16. Give an example of 3D vectors u, v, and w such that     .    u v w u v w
This shows the cross product is generally not associative.

Consider combinations of the simple vectors i  (1, 0, 0), j  (0, 1, 0), and

k  (0, 0, 1).

17. Prove that the cross product of two nonzero parallel vectors results in the null
vector; that is, u × ku  0.

Just use the cross product defi nition.

18. Orthonormalize the set of vectors {(1, 0, 0), (1, 5, 0), (2, 1, −4)} using the
Gram-Schmidt process.

19. Consider the following program and output. Make a conjecture of what each
XMVector* function does; then look up each function in the DirectXMath
documentation.

#include <windows.h> // for XMVerifyCPUSupport
#include <DirectXMath.h>
#include <DirectXPackedVector.h>
#include <iostream>
using namespace std;
using namespace DirectX;
using namespace DirectX::PackedVector;

// Overload the "<<" operators so that we can use cout to
// output XMVECTOR objects.
ostream& XM_CALLCONV operator<<(ostream& os, FXMVECTOR v)
{
 XMFLOAT4 dest;

Hint:

Hint:

Hint:

36 MATHEMATICAL PREREQUISITES

 XMStoreFloat4(&dest, v);

 os << "(" << dest.x << ", " << dest.y << ", "
 << dest.z << ", " << dest.w << ")";
 return os;
}

int main()
{
 cout.setf(ios_base::boolalpha);

 // Check support for SSE2 (Pentium4, AMD K8, and above).
 if (!XMVerifyCPUSupport())
 {
 cout << "directx math not supported" << endl;
 return 0;
 }

 XMVECTOR p  XMVectorSet(2.0f, 2.0f, 1.0f, 0.0f);
 XMVECTOR q  XMVectorSet(2.0f, -0.5f, 0.5f, 0.1f);
 XMVECTOR u  XMVectorSet(1.0f, 2.0f, 4.0f, 8.0f);
 XMVECTOR v  XMVectorSet(-2.0f, 1.0f, -3.0f, 2.5f);
 XMVECTOR w  XMVectorSet(0.0f, XM_PIDIV4, XM_PIDIV2, XM_PI);

 cout << "XMVectorAbs(v)  " << XMVectorAbs(v) << endl;
 cout << "XMVectorCos(w)  " << XMVectorCos(w) << endl;
 cout << "XMVectorLog(u)  " << XMVectorLog(u) << endl;
 cout << "XMVectorExp(p)  " << XMVectorExp(p) << endl;

 cout << "XMVectorPow(u, p)  " << XMVectorPow(u, p) << endl;
 cout << "XMVectorSqrt(u)  " << XMVectorSqrt(u) << endl;

 cout << "XMVectorSwizzle(u, 2, 2, 1, 3)  "
 << XMVectorSwizzle(u, 2, 2, 1, 3) << endl;
 cout << "XMVectorSwizzle(u, 2, 1, 0, 3)  "
 << XMVectorSwizzle(u, 2, 1, 0, 3) << endl;

 cout << "XMVectorMultiply(u, v)  " << XMVectorMultiply(u, v) <<
endl;

 cout << "XMVectorSaturate(q)  " << XMVectorSaturate(q) << endl;
 cout << "XMVectorMin(p, v  " << XMVectorMin(p, v) << endl;
 cout << "XMVectorMax(p, v)  " << XMVectorMax(p, v) << endl;

 return 0;
}

Figur e 1.22. Output for the above program.

Chapter

37

2Chapter

MATRIX
ALGEBRA

In 3D computer graphics, we use matrices to compactly describe geometric
transformations such as scaling, rotation, and translation, and also to change the
coordinates of a point or vector from one frame to another. This chapter explores
the mathematics of matrices.

Objectives:
1. To obtain an understanding of matrices and the operations defined on them.

2. To discover how a vector-matrix multiplication can be viewed as a linear
combination.

3. To learn what the identity matrix is, and what the transpose, determinant, and
inverse of a matrix are.

4. To become familiar with the subset of classes and functions provided by the
DirectX Math library used for matrix mathematics.

38 MATHEMATICAL PREREQUISITES

2.1 DEFINITION

An m × n matrix M is a rectangular array of real numbers with m rows and n
columns. The product of the number of rows and columns gives the dimensions
of the matrix. The numbers in a matrix are called elements or entries. We identify
a matrix element by specifying the row and column of the element using a double
subscript notation Mij, where the first subscript identifies the row and the second
subscript identifies the column.

☞ Example 2.1
Consider the following matrices:

  
11 12

21 22 1 2 3

31 32

3.5 0 0 0 1

0 1 0 0 2
 , ,

0 0 0.5 0 3

2 5 2 1

B B

B B u u u

B B

   
    
           
            

A B u v

1. The matrix A is a 4 × 4 matrix; the matrix B is a 3 × 2 matrix; the matrix u is a
1 × 3 matrix; and the matrix v is a 4 × 1 matrix.

2. We identify the element in the fourth row and second column of the matrix A
by A42  5. We identify the element in the second row and first column of the
matrix B by B21.

3. The matrices u and v are special matrices in the sense that they contain a
single row or column, respectively. We sometimes call these kinds of matrices
row vectors or column vectors because they are used to represent a vector in
matrix form (e.g., we can freely interchange the vector notations (x, y, z) and
[x, y, z]). Observe that for row and column vectors, it is unnecessary to use
a double subscript to denote the elements of the matrix—we only need one
subscript.

Occasionally we like to think of the rows of a matrix as vectors. For example, we
might write:

11 12 13 1,*

21 22 23 2,*

31 32 33 3,*

A A A

A A A

A A A

   
       
       

A

A

A

where    1,* 11 12 13 2,* 21 22 23, , , , , ,A A A A A A A A and  3,* 31 32 33, , A A AA . In
this notation, the first index specifies the row, and we put a ‘*’ in the second index

MATRIX ALGEBRA 39

to indicate that we are referring to the entire row vector. Likewise, we like to do the
same thing for the columns:

11 12 13

21 22 23 *,1 *,2 *,3

31 32 33

A A A

A A A

A A A

    
      
        

A A A

where

11 12 13

*,1 21 *,2 22 *,3 23

31 32 33

, ,

A A A

A A A

A A A

     
            
          

A A A

In this notation, the second index specifies the column, and we put a ‘*’ in the first
index to indicate that we are referring to the entire column vector.

We now defi ne equality, addition, scalar multiplication, and subtraction on
matrices.

1. Two matrices are equal if and only if their corresponding elements are equal;
as such, two matrices must have the same number of rows and columns in
order to be compared.

2. We add two matrices by adding their corresponding elements; as such, it only
makes sense to add matrices that the same number of rows and columns.

3. We multiply a scalar and a matrix by multiplying the scalar with every element
in the matrix.

4. We define subtraction in terms of matrix addition and scalar multiplication.
That is, A  B  A  (1·B)  A  (B).

☞ Example 2.2
Let

1 5 6 2 1 5 2 1 3

, , ,
2 3 5 8 2 3 6 3 0

       
                    

A B C D

Then,

(i)  
1 6 5 21 5 6 2 7 7

2 5 3 82 3 5 8 3 5

       
                     

A B

40 MATHEMATICAL PREREQUISITES

(ii) A  C

(iii)
 2 1 3 6 3 93 2 3(1) 3(3)

3
6 3 0 18 9 03(6) 3(3) 3(0)

     
           

3D

(iv)
 

1 6 5 21 5 6 2 5 3

2 5 3 82 3 5 8 7 11

        
                     

A B

Because addition and scalar multiplication is done element-wise, matrices
essentially inherit the following addition and scalar multiplication properties
from real numbers:

1. A  B  B  A Commutative law of addition

2. (A  B)  C  A  (B  C) Associative law of addition

3. r(A  B)  rA  rB Scalar distribution over matrices

4. (r  s)A  rA  sA Matrix distribution over scalars

2.2 MATRIX MULTIPLICATION

2.2.1 Defi nition
If A is a m × n matrix and B is a n × p matrix, then the product AB is defined and
is a m × p matrix C, where the ijth entry of the product C is given by taking the dot
product of the ith row vector in A with the jth column vector in B, that is,

 ,* *,ij i jC  A B (eq. 2.1)

So note that in order for the matrix product AB to be defined, we require that
the number of columns in A equal the number of rows in B, which is to say, we
require that the dimension of the row vectors in A equal the dimension of the
column vectors in B. If these dimensions did not match, then the dot product in
Equation 2.1 would not make sense.

☞ Example 2.3
Let

2 6
1 5

 and 1 3
2 3

3 0

 
           

A B

MATRIX ALGEBRA 41

The product AB is not defined since the row vectors in A have dimension 2 and
the column vectors in B have dimension 3. In particular, we cannot take the dot
product of the first row vector in A with the first column vector in B because we
cannot take the dot product of a 2D vector with a 3D vector.

☞ Example 2.4
Let

2 1 0
1 5 4

 and 0 2 1
3 2 1

1 2 3

 
             

A B

We first point out that the product AB is defined (and is a 2 × 3 matrix) because
the number of columns of A equals the number of rows of B. Applying Equation
2.1 yields:

           
           

2 1 0
1 5 4

0 2 1
3 2 1

1 2 3

1, 5, 4 2, 0, 1 1, 5, 4 1, 2, 2 1, 5, 4 0,1 , 3

3, 2,1 2, 0, 1 3, 2,1 1, 2, 2 3, 2,1 0,1 , 3

2 19 7

5 1 5

 
            
           

       
  

  
 

AB

Observe that the product BA is not defined because the number of columns in
B does not equal the number of rows in A. This demonstrates that, in general,
matrix multiplication is not commutative; that is, AB  BA.

2.2.2 Vector-Matrix Multiplication
Consider the following vector-matrix multiplication:

   
11 12 13

21 22 23 *,1 *,2 *,3

31 32 33

, , , ,

A A A

x y z A A A x y z

A A A

    
      
        

uA A A A

42 MATHEMATICAL PREREQUISITES

Observe that uA evaluates to a 1 × 3 row vector in this case. Now, applying
Equation 2.1 gives:

 *,1 *,2 *,3     uA u A u A u A

  11 21 31 12 22 32 13 23 33, ,xA yA zA xA yA zA xA yA zA      

      11 12 13 21 22 23 31 32 33, , , , , , xA xA xA yA yA yA zA zA zA  

      11 12 13 21 22 23 31 32 33, , , , , , x A A A y A A A z A A A  

 1,* 2,* 3,*x y z  A A A

Thus,

 1,* 2,* 3,*x y z  uA A A A (eq. 2.2)

Equation 2.2 is an example of a linear combination, and it says that the vector-
matrix product uA is equivalent to a linear combination of the row vectors of
the matrix A with scalar coefficients x, y, and z given by the vector u. Note that,
although we showed this for a 1 × 3 row vector and a 3 × 3 matrix, the result is
true in general. That is, for a l × n row vector u and a n × m matrix A, we have
that uA is a linear combination of the row vectors in A with scalar coefficients
given by u:

  
11 1

1 1 1,* ,*

1

, ,
m

n n n

n nm

A A

u u u u

A A

 
    
  

L

M O M

L

A A (eq. 2.3)

 2.2.3 Associativity
Matrix multiplication has some nice algebraic properties. For example, matrix
multiplication distributes over addition: A(B  C)  AB  AC) and (A  B)
C  AC  BC). In particular, however, we will use the associative law of matrix
multiplication from time to time, which allows us to choose the order we multiply
matrices:
 (AB)C  A(BC)

2.3 THE TRANSPOSE OF A MATRIX

The transpose of a matrix is found by interchanging the rows and columns of the
matrix. Thus the transpose of an m × n matrix is an n × m matrix. We denote the
transpose of a matrix M as MT.

MATRIX ALGEBRA 43

☞ Example 2.5
Find the transpose for the following three matrices:

1

2 1 8 2
, ,

3 6 4 3

4

a b c

d e f

g h i

 
                     

 

A B C

To reiterate, the transposes are found by interchanging the rows and columns, thus

  
2 3

1 6 , , 1 2 3 4

8 4

T T T

a d g

b e h

c f i

   
         
      

A B C

The transpose has the following useful properties:

1. (A  B)T = AT  BT

2. (cA)T  cAT

3. (AB)T  BTAT

4. (AT)T  A

5. (A1)T  (AT)1

2.4 THE IDENTITY MATRIX

There is a special matrix called the identity matrix. The identity matrix is a square
matrix that has zeros for all elements except along the main diagonal; the elements
along the main diagonal are all ones.

For example, below are 2 × 2, 3 × 3 and 4 × 4 identity matrices.

1 0 0 0
1 0 0

1 0 0 1 0 0
, 0 1 0 ,

0 1 0 0 1 0
0 0 1

0 0 0 1

 
                   

 
The identity matrix acts as a multiplicative identity; that is, if A is an m × n matrix,
B is an n × p matrix, and I is the n × n identity matrix, then

 AI  A and IB  B

44 MATHEMATICAL PREREQUISITES

In other words, multiplying a matrix by the identity matrix does not change the
matrix. The identity matrix can be thought of as the number 1 for matrices. In
particular, if M is a square matrix, then multiplication with the identity matrix is
commutative:

 MI  IM  M

☞ Example 2.6

Let
1 2

0 4

 
  
 

M and let
1 0

0 1

 
  
 

I . Verify that MI  IM  M.

Applying Equation 2.1 yields:

     
       

1 2 1 0 1,2 (1,0) 1,2 0,1 1 2

0 4 0 1 0,4 1,0 0,4 0,1 0 4

       
               

MI

and

       
       

1 0 1 2 1,0 1,0 1,0 2,4 1 2

0 1 0 4 0,1 1,0 0,1 2,4 0 4

       
               

IM

Thus it is true that MI  IM  M.

☞ Example 2.7

Let  1, 2 u and let
1 0

0 1

 
  
 

I . Verify that uI  u.

Applying Equation 2.1 yields:

            
1 0

1, 2 1,2 1,0 , 1,2 0,1 1, 2
0 1

 
            

 
uI

Note that we cannot take the product Iu because the matrix multiplication is not
defined.

2.5 THE DETERMINANT OF A MATRIX

The determinant is a special function which inputs a square matrix and outputs
a real number. The determinant of a square matrix A is commonly denoted
by det A. It can be shown that the determinant has a geometric interpretation
related to volumes of boxes and that the determinant provides information on

MATRIX ALGEBRA 45

how volumes change under linear transformations. In addition, determinants are
used to solve systems of linear equations using Cramer’s Rule. However, for our
purposes, we are mainly motivated to study the determinant because it gives us an
explicit formula for finding the inverse of a matrix (the topic of §2.7). In addition,
it can be proved that: A square matrix A is invertible if and only if det A  0. This
fact is useful because it gives us a computational tool for determining if a matrix
is invertible. Before we can define the determinant, we first introduce the concept
of matrix minors.

2.5.1 Matrix Minors
Given an n  n matrix A, the minor matrix ijA is the (n − 1) × (n − 1) matrix

found by deleting the ith row and jth column of A.

☞ Example 2.8
Find the minor matrices 11 22, ,A A and 13A of the following matrix:

11 12 13

21 22 23

31 32 33

A A A

A A A

A A A

 
   
  

A

For 11A we eliminate the first row and first column to obtain:

22 23

11
32 33

A A

A A

 
  
 

A

For 22A we eliminate the second row and second column to obtain:

11 13

22
31 33

A A

A A

 
  
 

A

For 13A we eliminate the first row and third column to obtain:

 21 22
13

31 32

A A

A A

 
  
 

A

2.5.2 Defi nition
The determinant of a matrix is defined recursively; for instance, the determinant
of a 4  4 matrix is defined in terms of the determinant of a 3  3 matrix, and
the determinant of a 3  3 matrix is defined in terms of the determinant of a
2  2 matrix, and the determinant of a 2 × 2 matrix is defined in terms of the

46 MATHEMATICAL PREREQUISITES

determinant of a 1 × 1 matrix (the determinant of a 1 × 1 matrix A  [A11] is
trivially defined to be det [A11]  A11).

Let A be an n × n matrix. Then for n > 1 we defi ne:

 1
1 1

1

(det 1 d t) e
n

j
j j

j

A 



 A A (eq. 2.4)

Recalling the definition of the minor matrix ijA , for 2 × 2 matrices, this gives the
formula:

    11 12
11 22 12 21 11 22 12 21

21 22

det det det
A A

A A A A A A A A
A A

 
    

 
For 3 × 3 matrices, this gives the formula:

11 12 13

21 22 23

31 32 33

22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

det

det det det

A A A

A A A

A A A

A A A A A A
A A A

A A A A A A

 
 
 
  

     
       

     
And for 4 × 4 matrices, this gives the formula:

11 12 13 14
22 23 24 21 23 24

21 22 23 24
11 32 33 34 12 31 33 34

31 32 33 34
42 43 44 41 43 44

41 42 43 44

21 22 24

13 31 32 34 14

41 42 44

det det det

det d

A A A A
A A A A A A

A A A A
A A A A A A A A

A A A A
A A A A A A

A A A A

A A A

A A A A A

A A A

 
    
          
        

 
 
   
  

21 22 23

31 32 33

41 42 43

et

A A A

A A A

A A A

 
 
 
  

In 3D graphics, we primarily work with 4 × 4 matrices, and so we do not need to
continue generating explicit formulas for n > 4.

☞ Example 2.9
Find the determinant of the matrix

2 5 3

1 3 4

2 3 7

 
   
  

A

MATRIX ALGEBRA 47

We have that:

 22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

det det det det
A A A A A A

A A A
A A A A A A

     
       

     
A

  
3 4 1 4 1 3

det 2det 5 det 3det
3 7 2 7 2 3

     
              

A

        2 3 7 4 3 5 1 7 4 2 3 1 3 3 2             

      2 9 5 15 3 9  

 18 75 27  

 120

2.6 THE ADJOINT OF A MATRIX

Let A be an n × n matrix. The product  1 det
i j

ij ijC
  A is called the cofactor of

Aij. If we compute Cij and place it in the ijth position of a corresponding matrix CA
for every element in A, we obtain the cofactor matrix of A:

11 12 1

21 22 2

1 2

n

n

n n nn

C C C

C C C

C C C

 
 
 
 
 
 

A

L

L

M M O M

L

C

If we take the transpose of CA we get a matrix that is called adjoint of A, which we
denote by

 * T AA C (eq. 2.5)

In the next section, we learn that the adjoint enables us to find an explicit formula
for computing matrix inverses.

2.7 THE INVERSE OF A MATRIX

Matrix algebra does not define a division operation, but it does define a
multiplicative inverse operation. The following list summarizes the important
information about inverses:

1. Only square matrices have inverses; therefore, when we speak of matrix
inverses, we assume we are dealing with a square matrix.

48 MATHEMATICAL PREREQUISITES

2. The inverse of an n × n matrix M is an n × n matrix denoted by M1.

3. Not every square matrix has an inverse. A matrix that does have an inverse is
said to be invertible, and a matrix that does not have an inverse is said to be
singular.

4. The inverse is unique when it exists.

5. Multiplying a matrix with its inverse results in the identity matrix: MM1 
M1M  I. Note that multiplying a matrix with its own inverse is a case when
matrix multiplication is commutative.

Matrix inverses are useful when solving for other matrices in a matrix equation.
For example, suppose that we are given the matrix equation p  pM. Further
suppose that we are given p and M, and want to solve for p. Assuming that M is
invertible (i.e., M1 exists), we can solve for p like so:

p  pM

pM1  pMM1 Multiplying both sides of the equation by M1

pM1  pI MM1  I, by definition of inverse.

pM1  p pI  p, by definition of the identity matrix.

A formula for finding inverses, which we do not prove here but should be proved
in any college level linear algebra text, can be given in terms of the adjoint and
determinant:

*

1

det
 

A
A

A
 (eq. 2.6)

☞ Example 2.10
Find a general formula for the inverse of a 2 × 2 matrix 11 12

21 22

A A

A A

 
  
 

A , and use

this formula to find the inverse of the matrix
3 0

1 2

 
   

M
We have that

 11 22 12 21det A A A A A

   
   

1 1 1 2
11 12 22 21

2 1 2 2
12 1121 22

1 det 1 det

1 det 1 det

A A

A A

 

 

             
A

A A
C

A A

MATRIX ALGEBRA 49

Therefore,

22 12

21 1111 22 12 21det det

A A

A AA A A A

 
    

 A A

Now we apply this formula to invert
3 0

1 2

 
   

M :

  
1 2 0 1/ 3 01

1 3 1/ 6 1/ 23 2 0 1
    
           

M

To check out work we verify MM1  M1M  I:

3 0 1/ 3 0 1 0 1/ 3 0 3 0

1 2 1/ 6 1/ 2 0 1 1/ 6 1/ 2 1 2

         
                    

For small matrices (sizes 4 × 4 and smaller), the adjoint method is computationally
effi cient. For larger matrices, other methods are used like Gaussian elimination.
However, the matrices we are concerned about in 3D computer graphics have
special forms, which enable us to determine the inverse formulas ahead of time,
so that we do not need to waste CPU cycles fi nding the inverse of a general
matrix. Consequently, we rarely need to apply Equation 2.6 in code.

To conclude this section on inverses, we present the following useful algebraic
property for the inverse of a product:

 (AB)1 = B1A1

This property assumes both A and B are invertible and that they are both square
matrices of the same dimension. To prove that B1A1 is the inverse of AB, we
must show (AB)(B1A1)  I and (B1A1)(AB)  I. This is done as follows:

 (AB)(B1A1)  A(BB1)A1  AIA1  AA1  I

 (B1A1)(AB)  B1(A1A)B  B1IB  B1B = I

2.8 DIRECTX MATH MATRICES

For transforming points and vectors, we use 1 × 4 row vectors and 4 × 4 matrices.
The reason for this will be explained in the next chapter. For now, we just
concentrate on the DirectX Math types used to represent 4 × 4 matrices.

Note:

50 MATHEMATICAL PREREQUISITES

2.8.1 Matrix Types
To represent 4 × 4 matrices in DirectX math, we use the XMMATRIX class, which is
defined as follows in the DirectXMath.h header file (with some minor adjustments
we have made for clarity):

#if (defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM)) &&
defined(_XM_NO_INTRINSICS_)
struct XMMATRIX
#else
__declspec(align(16)) struct XMMATRIX
#endif
{
 // Use 4 XMVECTORs to represent the matrix for SIMD.
 XMVECTOR r[4];

 XMMATRIX() {}

 // Initialize matrix by specifying 4 row vectors.
 XMMATRIX(FXMVECTOR R0, FXMVECTOR R1, FXMVECTOR R2, CXMVECTOR R3)

 { r[0]  R0; r[1]  R1; r[2]  R2; r[3]  R3; }

 // Initialize matrix by specifying 4 row vectors.
 XMMATRIX(float m00, float m01, float m02, float m03,
 float m10, float m11, float m12, float m13,
 float m20, float m21, float m22, float m23,
 float m30, float m31, float m32, float m33);

 // Pass array of sixteen floats to construct matrix.
 explicit XMMATRIX(_In_reads_(16) const float *pArray);

 XMMATRIX& operator (const XMMATRIX& M)
 { r[0]  M.r[0]; r[1]  M.r[1]; r[2]  M.r[2]; r[3]  M.r[3];

return *this; }

 XMMATRIX operator () const { return *this; }
 XMMATRIX operator- () const;

 XMMATRIX& XM_CALLCONV operator (FXMMATRIX M);
 XMMATRIX& XM_CALLCONV operator- (FXMMATRIX M);
 XMMATRIX& XM_CALLCONV operator* (FXMMATRIX M);
 XMMATRIX& operator* (float S);
 XMMATRIX& operator/ (float S);

 XMMATRIX XM_CALLCONV operator (FXMMATRIX M) const;
 XMMATRIX XM_CALLCONV operator- (FXMMATRIX M) const;
 XMMATRIX XM_CALLCONV operator* (FXMMATRIX M) const;
 XMMATRIX operator* (float S) const;
 XMMATRIX operator/ (float S) const;

 friend XMMATRIX XM_CALLCONV operator* (float S, FXMMATRIX M);
};

MATRIX ALGEBRA 51

As you can see, XMMATRIX uses four XMVECTOR instances to use SIMD. Moreover,
XMMATRIX provides overloaded operators for matrix arithmetic.

In addition to using the various constructors, an XMMATRIX instance can be
created using the XMMatrixSet function:

XMMATRIX XM_CALLCONV XMMatrixSet(
 float m00, float m01, float m02, float m03,
 float m10, float m11, float m12, float m13,
 float m20, float m21, float m22, float m23,
 float m30, float m31, float m32, float m33);

Just as we use XMFLOAT2 (2D), XMFLOAT3 (3D), and XMFLOAT4 (4D) when storing
vectors in a class, it is recommended, by the DirectXMath documentation to use
the XMFLOAT4X4 type to store matrices as class data members.

struct XMFLOAT4X4
{
 union
 {
 struct
 {
 float _11, _12, _13, _14;
 float _21, _22, _23, _24;
 float _31, _32, _33, _34;
 float _41, _42, _43, _44;
 };
 float m[4][4];
 };

 XMFLOAT4X4() {}
 XMFLOAT4X4(float m00, float m01, float m02, float m03,
 float m10, float m11, float m12, float m13,
 float m20, float m21, float m22, float m23,
 float m30, float m31, float m32, float m33);
 explicit XMFLOAT4X4(_In_reads_(16) const float *pArray);

 float operator() (size_t Row, size_t Column) const { return m[Row]
[Column]; }

 float& operator() (size_t Row, size_t Column) { return m[Row]
[Column]; }

 XMFLOAT4X4& operator (const XMFLOAT4X4& Float4x4);
};

We use the following method to load data from XMFLOAT4X4 into XMMATRIX:

inline XMMATRIX XM_CALLCONV
XMLoadFloat4x4(const XMFLOAT4X4* pSource);

We use the following method to store data from XMMATRIX into XMFLOAT4X4:

inline void XM_CALLCONV
XMStoreFloat4x4(XMFLOAT4X4* pDestination, FXMMATRIX M);

52 MATHEMATICAL PREREQUISITES

2.8.2 Matrix Functions
The DirectX Math library includes the following useful matrix related functions:

XMMATRIX XM_CALLCONV XMMatrixIdentity(); // Returns the identity matrix I

bool XM_CALLCONV XMMatrixIsIdentity(// Returns true if M is the identity matrix
 FXMMATRIX M); // Input M

XMMATRIX XM_CALLCONV XMMatrixMultiply(// Returns the matrix product AB
 FXMMATRIX A, // Input A
 CXMMATRIX B); // Input B

XMMATRIX XM_CALLCONV XMMatrixTranspose(// Returns MT

 FXMMATRIX M); // Input M

XMVECTOR XM_CALLCONV XMMatrixDeterminant(// Returns (det M, det M, det M, det M)
 FXMMATRIX M); // Input M

XMMATRIX XM_CALLCONV XMMatrixInverse(// Returns M1

 XMVECTOR* pDeterminant, // Input (det M, det M, det M, det M)
 FXMMATRIX M); // Input M

When we declare a XMMATRIX parameter to a function, we use the same rules we
used when passing XMVECTOR parameters (see §1.6.3), except that an XMMATRIX
counts as four XMVECTOR parameters. Assuming there are no more than two
additional FXMVECTOR parameters in total to the function, the first XMMATRIX should
be of type FXMMATRIX, and any other XMMATRIX should be of type CXMMATRIX. We
illustrate how these types are defined on 32-bit Windows with a compiler that
supports the __fastcall calling convention and a compiler that supports the newer
__vectorcall calling convention:

// 32-bit Windows __fastcall passes first 3 XMVECTOR arguments
// via registers, the remaining on the stack.
typedef const XMMATRIX& FXMMATRIX;
typedef const XMMATRIX& CXMMATRIX;

// 32-bit Windows __vectorcall passes first 6 XMVECTOR arguments
// via registers, the remaining on the stack.
typedef const XMMATRIX FXMMATRIX;
typedef const XMMATRIX& CXMMATRIX;

Observe that on 32-bit Windows with __fastcall, a XMMATRIX cannot be passed
through SSE/SSE2 registers because only three XMVECTOR arguments via registers
are supported, and a XMMATRIX requires four; thus the matrix is just passed on
the stack by reference. For the details on how these types are defined for the
other platforms, see “Calling Conventions” under “Library Internals” in the
DirectXMath documentation [DirectXMath]. The exception to these rules is
with constructor methods. [DirectXMath] recommends always using CXMMATRIX
for constructors that takes XMMATRIX parameters. Furthermore, do not use the
annotation XM_CALLCONV for constructors.

MATRIX ALGEBRA 53

2.8.3 DirectX Math Matrix Sample Program
The following code provides some examples on how to use the XMMATRIX class and
most of the functions listed in the previous section.

#include <windows.h> // for XMVerifyCPUSupport
#include <DirectXMath.h>
#include <DirectXPackedVector.h>
#include <iostream>
using namespace std;
using namespace DirectX;
using namespace DirectX::PackedVector;

// Overload the "<<" operators so that we can use cout to
// output XMVECTOR and XMMATRIX objects.
ostream& XM_CALLCONV operator << (ostream& os, FXMVECTOR v)
{
 XMFLOAT4 dest;
 XMStoreFloat4(&dest, v);

 os << "(" << dest.x << ", " << dest.y << ", " << dest.z << ", " <<
dest.w << ")";

 return os;
}

ostream& XM_CALLCONV operator << (ostream& os, FXMMATRIX m)
{

 for (int i  0; i < 4; i)
 {
 os << XMVectorGetX(m.r[i]) << ″\t";
 os << XMVectorGetY(m.r[i]) << "\t";
 os << XMVectorGetZ(m.r[i]) << "\t";
 os << XMVectorGetW(m.r[i]);
 os << endl;
 }
 return os;
}

int main()
{
 // Check support for SSE2 (Pentium4, AMD K8, and above).
 if (!XMVerifyCPUSupport())
 {
 cout << "directx math not supported" << endl;
 return 0;
 }

 XMMATRIX A(1.0f, 0.0f, 0.0f, 0.0f,
 0.0f, 2.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 4.0f, 0.0f,
 1.0f, 2.0f, 3.0f, 1.0f);

 XMMATRIX B  XMMatrixIdentity();

54 MATHEMATICAL PREREQUISITES

 XMMATRIX C  A * B;

 XMMATRIX D  XMMatrixTranspose(A);

 XMVECTOR det  XMMatrixDeterminant(A);
 XMMATRIX E  XMMatrixInverse(&det, A);

 XMMATRIX F  A * E;

 cout << "A  " << endl << A << endl;
 cout << "B  " << endl << B << endl;
 cout << "C  A*B  " << endl << C << endl;
 cout << "D  transpose(A)  " << endl << D << endl;
 cout << "det  determinant(A)  " << det << endl << endl;
 cout << "E  inverse(A)  " << endl << E << endl;
 cout << "F  A*E  " << endl << F << endl;

 return 0;
}

Figure 2.1. Output of the above program.

2.9 SUMMARY

1. An m × n matrix M is a rectangular array of real numbers with m rows and
n columns. Two matrices of the same dimensions are equal if and only if
their corresponding components are equal. We add two matrices of the same
dimensions by adding their corresponding elements. We multiply a scalar and
a matrix by multiplying the scalar with every element in the matrix.

MATRIX ALGEBRA 55

2. If A is a m × n matrix and B is a n × p matrix, then the product AB is defined
and is a m × p matrix C, where the ijth entry of the product C is given by taking
the dot product of the ith row vector in A with the jth column vector in B, that
is, ,* *,ij i jC  A B .

3. Matrix multiplication is not commutative (i.e., AB  BA, in general). Matrix
multiplication is associative: (AB)C  A(BC).

4. The transpose of a matrix is found by interchanging the rows and columns
of the matrix. Thus the transpose of an m × n matrix is an n × m matrix. We
denote the transpose of a matrix M as MT.

5. The identity matrix is a square matrix that has zeros for all elements except
along the main diagonal, and the elements along the main diagonal are all
ones.

6. The determinant, det A, is a special function which inputs a square matrix and
outputs a real number. A square matrix A is invertible if and only if det A  0.
The determinant is used in the formula for computing the inverse of a matrix.

7. Multiplying a matrix with its inverse results in the identity matrix: MM1 
M1M  I. The inverse of a matrix, if it exists, is unique. Only square matrices
have inverses and even then, a square matrix may not be invertible. The inverse
of a matrix can be computed with the formula: 1 * / det A A A , where *A is
the adjoint (transpose of the cofactor matrix of A).

8. We use the DirectX Math XMMATRIX type to describe 4  4 matrices efficiently in
code using SIMD operations. For class data members, we use the XMFLOAT4X4
class, and then use the loading (XMLoadFloat4x4) and storage (XMStoreFloat4x4)
methods to convert back and forth between XMMATRIX and XMFLOAT4X4. The
XMMATRIX class overloads the arithmetic operators to do matrix addition,
subtraction, matrix multiplication, and scalar multiplication. Moreover,
the DirectX Math library provides the following useful matrix functions for
computing the identity matrix, product, transpose, determinant, and inverse:

 XMMATRIX XM_CALLCONV XMMatrixIdentity();
 XMMATRIX XM_CALLCONV XMMatrixMultiply(FXMMATRIX A, CXMMATRIX B);
 XMMATRIX XM_CALLCONV XMMatrixTranspose(FXMMATRIX M);
 XMVECTOR XM_CALLCONV XMMatrixDeterminant(FXMMATRIX M);
 XMMATRIX XM_CALLCONV XMMatrixInverse(XMVECTOR* pDeterminant,

FXMMATRIX M);

2.10 EXERCISES

1. Solve the following matrix equation for X:
2 0 2 0

3 2 2
1 3 1 3

     
     

    
X .

56 MATHEMATICAL PREREQUISITES

2. Compute the following matrix products:

(a) 2 1
2 0 3

0 6
4 1 1

2 3

 
   
       

,

(b) 1 2 2 0

3 4 1 1

   
   
   

(c) 2 0 2 1

0 1 3 2

0 0 1 1

   
       
      

3. Compute the transpose of the following matrices:

(a)  1, 2, 3 ,

(b) x y

z w

 
 
 

,

(c) 1 2

3 4

5 6

7 8

 
 
 
 
 
 

4. Write the following linear combinations as vector-matrix products:

(a) v = 2(1, 2, 3) − 4(−5, 0, 1) 3(2, 2, 3)

(b) v = 3(2, −4)  2(1, 4) 1(2, 3)  5(1, 1)

5. Show that

11 12 13 11 12 13 1,*

21 22 23 21 22 23 2,*

31 32 33 31 32 33 3,*

A A A B B B

A A A B B B

A A A B B B

     
           
           

A B

AB A B

A B

6. Show that

11 12 13

21 22 23 *,1 *,2 *,3

31 32 33

A A A x

A A A y x y z

A A A z

   
         
     

Au A A A

MATRIX ALGEBRA 57

7. Prove that the cross product can be expressed by the matrix product:

0

0

0

z y

x y z z x

y x

u u

v v v u u

u u

 
      
  

u v

8. Let

2 0 1

0 1 3

0 0 1

 
    
  

 . Is

1/ 2 0 1/ 2

0 1 3

0 0 1

 
    
  

B the inverse of A?

9. Let
1 2

3 4

 
  
 

A . Is
2 1

3 / 2 1/ 2

 
  
 

B the inverse of A?

10. Find the determinants of the following matrices:

21 4

10 7

 
 
 

2 0 0

0 3 0

0 0 7

 
 
 
  

11. Find the inverse of the following matrices:

21 4

10 7

 
 
 

2 0 0

0 3 0

0 0 7

 
 
 
  

12. Is the following matrix invertible?

1 2 3

0 4 5

0 0 0

 
 
 
  

13. Show that (A1)T  (AT)1, assuming A is invertible.

14. Let A and B be n × n matrices. A fact proved in linear algebra books is that
det(AB)  det A  det B. Use this fact along with the fact that det I  1 to prove

1 1
det

det
 A

A
, assuming A is invertible.

58 MATHEMATICAL PREREQUISITES

15. Prove that the 2D determinant
x y

x y

u u

v v

 
 
 

 gives the signed area of the

parallelogram spanned by u  (ux, uy) and v  (vx, vy). The result is positive if u
can be rotated counterclockwise to coincide with v by an angle   (0, ), and
negative otherwise.

+ܺ

+ܻ

 ܝ

ߠ ܞ ℎ

16. Find the area of the parallelogram spanned by:

(a) u  (3, 0) band v  (1, 1)

(b) u  (1, 1) and v  (0, 1)

17. Let 11 12 11 12

21 22 21 22

,
A A B B

A A B B

   
    
   

A B , and 11 12

21 22

C C

C C

 
  
 

C . Show that

A(BC)  (AB)C. This shows that matrix multiplication is associative for
2 × 2 matrices. (In fact, matrix multiplication is associative for general sized
matrices, whenever the multiplication is defined.)

18. Write a computer program that computes the transpose of an m × n matrix
without using DirectX Math (just use an array of arrays in C).

19. Write a computer program that computes the determinant and inverse of
4 × 4 matrices without using DirectX Math (just use an array of arrays in
C).

Chapter

59

3Chapter

TRANSFORMATIONS

We describe objects in our 3D worlds geometrically; that is, as a collection of
triangles that approximate the exterior surfaces of the objects. It would be an
uninteresting world if our objects remained motionless. Thus we are interested in
methods for transforming geometry; examples of geometric transformations are
translation, rotation, and scaling. In this chapter, we develop matrix equations,
which can be used to transform points and vectors in 3D space.

Objectives:
1. To understand how linear and affine transformations can be represented by

matrices.

2. To learn the coordinate transformations for scaling, rotating, and translating
geometry.

3. To discover how several transformation matrices can be combined into one
net transformation matrix through matrix-matrix multiplication.

4. To find out how we can convert coordinates from one coordinate system to
another, and how this change of coordinate transformation can be represented
by a matrix.

5. To become familiar with the subset of functions provided by the DirectX
Math library used for constructing transformation matrices.

60 MATHEMATICAL PREREQUISITES

3.1 LINEAR TRANSFORMATIONS

3.1.1 Defi nition
Consider the mathematical function (v)  (x, y, z)  (x, y, z). This function
inputs a 3D vector and outputs a 3D vector. We say that  is a linear transformation
if and only if the following properties hold:

(u  v)  (u)  (v)
 (ku)  k(u)

(eq. 3.1)

where u  (ux, uy, uz) and v  (vx, vy, vz) are any 3D vectors, and k is a scalar.

A linear transformation can consist of input and output values other than 3D
vectors, but we do not need such generality in a 3D graphics book.

☞ Example 3.1
Define the function (x, y, z)  (x2, y2, z2); for example, (1, 2, 3)  (1, 4, 9). This
function is not linear since, for k  2 and u  (1, 2, 3) we have:

(ku)  (2, 4, 6)  (4, 16, 36)

but

k(u)  2(1, 4, 9)  (2, 8, 18)

So property 2 of Equation 3.1 is not satisfied.
If  is linear, then it follows that:

    
   
     

a b c a b c

a b c

a b c

      

    

     

u v w u v w

u v w

u v w

 (eq. 3.2)

We will use this result in the next section.

3.1.2 Matrix Representation
Let u  (x, y, z). Observe that we can always write this as:

u  (x, y, z)  xi  yj  zk  x(1, 0, 0)  y(0, 1, 0)  z(0, 0, 1)

The vectors i  (1, 0, 0), j  (0, 1, 0), and k  (0, 0, 1), which are unit vectors that
aim along the working coordinate axes, respectively, are called the standard basis

Note:

TRANSFORMATIONS 61

vectors for 3. (3 denotes the set of all 3D coordinate vectors (x, y, z)). Now let 
be a linear transformation; by linearity (i.e., Equation 3.2), we have:

          x y z x y z          u i j k i j k (eq. 3.3)

Observe that this is nothing more than a linear combination, which, as we learned
in the previous chapter, can be written by a vector-matrix multiplication. By
Equation 2.2 we may rewrite Equation 3.3 as:

        x y z      u i j k

  
 
 
 

 
11 12 13

21 22 23

31 32 33

, , , ,

A A A

x y z x y z A A A

A A A

    
           
        

i

uA j

k

 (eq. 3.4)

where (i)  (A11, A12, A13), (j)  (A21, A22, A23), and (k)  (A31, A32, A33). We call
the matrix A the matrix representation of the linear transformation .

3.1.3 Scaling
Scaling refers to changing the size of an object as shown in Figure 3.1.
We define the scaling transformation by:

S(x, y, z)  (sxx, syy, szz)

This scales the vector by sx units on the x-axis, sy units on the y-axis, and sz units on
the z-axis, relative to the origin of the working coordinate system. We now show
that S is indeed a linear transformation. We have that:

         , , x x x y y y z z zS s u v s u v s u v    u v

  , , x x x x y y y y z z z zs u s v s u s v s u s v   

Figure 3.1. The left pawn is the original object. The middle pawn is the original pawn scaled 2 units on the
y-axis making it taller. The right pawn is the original pawn scaled 2 units on the x-axis making it fatter.

62 MATHEMATICAL PREREQUISITES

    , , , , x x y y z z x x y y z zs u s u s u s v s v s v 

    S S u v

    , , x x y y z zS k s ku s ku s kuu

  , , x x y y z zk s u s u s u

  kS u

Thus both properties of Equation 3.1 are satisfied, so S is linear, and thus there
exists a matrix representation. To find the matrix representation, we just apply
S to each of the standard basis vectors, as in Equation 3.3, and then place the
resulting vectors into the rows of a matrix (as in Equation 3.4):

     

     
     

1, 0, 0 , 0, 0

0, 1, 0 0, , 0

0, 0, 1 0, 0,

x y z x

x y z y

x y z z

S s s s s

S s s s s

S s s s s

    

    

    

i

j

k

Thus the matrix representation of S is:

0 0

0 0

0 0

x

y

z

s

s

s

 
   
  

S

We call this matrix the scaling matrix.
The inverse of the scaling matrix is given by:

 1

1/ 0 0

0 1/ 0

0 0 1/

x

y

z

s

s

s


 
   
  

S

☞ Example 3.2
Suppose we have a square defined by a minimum point (4, 4, 0) and a maximum
point (4, 4, 0). Suppose now that we wish to scale the square 0.5 units on the
x-axis, 2.0 units on the y-axis, and leave the z-axis unchanged. The corresponding
scaling matrix is:

0.5 0 0

0 2 0

0 0 1

 
   
  

S

TRANSFORMATIONS 63

Now to actually scale (transform) the square, we multiply both the minimum
point and maximum point by this matrix:

       
0.5 0 0 0.5 0 0

4, 4, 0 0 2 0 2, 8, 0 4, 4, 0 0 2 0 2, 8, 0

0 0 1 0 0 1

   
           
      

The result is shown in Figure 3.2.

3.1.4 Rotation
In this section, we describe rotating a vector v about an axis n by an angle ; see
Figure 3.3. Note that we measure the angle clockwise when looking down the axis
n; moreover, we assume ||n||  1.

()
= proj (

()

proj(
)

×

()

cos()

sin(
×

n
Figure 3.3. The geometry of rotation about a vector n.

(4, 4, 0)

(4, 4, 0)
+

+

+

+

(2, 8, 0)

(2, 8, 0) Scaling:

Figure 3.2. Scaling by one-half units on the x-axis and two units on the y-axis. Note that when looking down
the negative z-axis, the geometry is basically 2D since z  0.

64 MATHEMATICAL PREREQUISITES

First, decompose v into two parts: one part parallel to n and the other part
orthogonal to n. The parallel part is just projn(v) (recall Example 1.5); the
orthogonal part is given by v  perpn(v)  v – projn(v). (Recall, also from Example
1.5, that since n is a unit vector, we have projn(v)  (n  v)n.) The key observation
is that the part projn(v) that is parallel to n is invariant under the rotation, so we
only need to fi gure out how to rotate the orthogonal part. That is, the rotated
vector Rn(v)  projn(v)  Rn(v), by Figure 3.3.

To fi nd Rn(v), we set up a 2D coordinate system in the plane of rotation. We
will use v as one reference vector. To get a second reference vector orthogonal
to v and n we take the cross product n  v (left-hand-thumb rule). From the
trigonometry of Figure 3.3 and Exercise 14 of Chapter 1, we see that

 || || || |||| || sin || || sin || ||     n v n v v v

where  is the angle between n and n. So both reference vectors have the same
length and lie on the circle of rotation. Now that we have set up these two reference
vectors, we see from trigonometry that:

    cos sinR      n v v n v

This gives us the following rotation formula:

      projR R  n n nv v v

    cos sin      n v n v n v

      cos sin        n v n v n v n n v

    cos (1 cos) sin        v n v n n v

(eq. 3.5)

We leave it as an exercise to show that this is a linear transformation. To find the
matrix representation, we just apply Rn to each of the standard basis vectors, as in
Equation 3.3, and then place the resulting vectors into the rows of a matrix (as in
Equation 3.4). The final result is:

     
     
     

2

2

2

1 1 1

1 1 1

1 1 1

c c x c xy sz c xz sy

c xy sz c c y c yz sx

c xz sy c yz sx c c z

      
 

       
        

nR

where we let c  cos and s  sin.
The rotation matrices have an interesting property. Each row vector is unit

length (verify) and the row vectors are mutually orthogonal (verify). Thus the
row vectors are orthonormal (i.e., mutually orthogonal and unit length). A matrix
whose rows are orthonormal is said to be an orthogonal matrix. An orthogonal

TRANSFORMATIONS 65

matrix has the attractive property that its inverse is actually equal to its transpose.
Thus, the inverse of Rn is:

     
     
     

2

1 2

2

1 1 1

1 1 1

1 1 1

T

c c x c xy sz c xz sy

c xy sz c c y c yz sx

c xz sy c yz sx c c z



      
 

        
        

n nR R

In general, orthogonal matrices are desirable to work with since their inverses are
easy and efficient to compute.

In particular, if we choose the x-, y-, and z-axes for rotation (i.e., n  (1, 0, 0),
n  (0, 1, 0), and n  (0, 0, 1), respectively), then we get the following rotation
matrices which rotate about the x-, y-, and z-axis, respectively:

1 0 0 0 cos 0 sin 0 cos sin 0 0

0 cos sin 0 0 1 0 0 sin cos 0 0
, ,

0 sin cos 0 sin 0 cos 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

         
                
         
     
     

x y zR R R

☞ Example 3.3
Suppose we have a square defined by a minimum point (1, 0, 1) and a
maximum point (1, 0, 1). Suppose now that we wish to rotate the square 30
clockwise about the y-axis (i.e., 30 counterclockwise). In this case, n  (0, 1, 0),
which simplifies Rn considerably; the corresponding y-axis rotation matrix is:

   

   

3 1
0cos 0 sin cos 30 0 sin 30 2 2

0 1 0 0 1 0 0 1 0

sin 0 cos sin 30 0 cos 30 1 3
0

2 2

 
                                    

yR

Now to actually rotate (transform) the square, we multiply both the minimum
point and maximum point by this matrix:

       

3 1 3 1
0 0

2 2 2 2
1, 0, 1 0 1 0 0.36, 0, 1.36 1, 0,1 0 1 0 0.36, 0,1 .36

1 3 1 3
0 0

2 2 2 2

   
   
   

        
   
          

The result is shown in Figure 3.4.

66 MATHEMATICAL PREREQUISITES

3.2 AFFINE TRANSFORMATIONS

3.2.1 Homogeneous Coordinates
We will see in the next section that an affine transformation is a linear
transformation combined with a translation. However, translation does not
make sense for vectors because a vector only describes direction and magnitude,
independent of location; in other words, vectors should be unchanged under
translations. Translations should only be applied to points (i.e., position vectors).
Homogeneous coordinates provide a convenient notational mechanism that enables
us to handle points and vectors uniformly. With homogeneous coordinates, we
augment to 4-tuples and what we place in the fourth w-coordinate depends on
whether we are describing a point or vector. Specifically, we write:

1. (x, y, z, 0) for vectors

2. (x, y, z, 1) for points

We will see later that setting w  1 for points allows translations of points to work
correctly, and setting w  0 for vectors prevents the coordinates of vectors from
being modified by translations (we do not want to translate the coordinates of a
vector, as that would change its direction and magnitude—translations should
not alter the properties of vectors).

The notation of homogeneous coordinates is consistent with the ideas shown in
Figure 1.17. That is, the difference between two points q  p  (qx, qy, qz, 1) 
(px, py, pz, 1)  (qx  px, qy  py, qz  pz, 0) results in a vector, and a point plus a
vector p  v  (px, py, pz, 1)  (vx, vy, vz, 1)  (px  vx, py  vy,pz  vz, 1) results
in a point.

Note:

+ +

Rotation:+ +

(1, 0, 1)

(1, 0, 1)

(0.36, 0, 1.36)

(0.36, 0, 1.36)

Figure 3.4. Rotating 30 clockwise around the y-axis. Note that when looking down the positive y-axis, the
geometry is basically 2D since y  0.

TRANSFORMATIONS 67

3.2.2 Defi nition and Matrix Representation
A linear transformation cannot describe all the transformations we wish to do;
therefore, we augment to a larger class of functions called affine transformations.
An affine transformation is a linear transformation plus a translation vector b;
that is:

       u u b

Or in matrix notation:

     
11 12 13

21 22 23

31 32 33

, , , , , ,x y z

A A A

x y z A A A b b b x y z

A A A

 
             
  

u uA b

where A is the matrix representation of a linear transformation.
If we augment to homogeneous coordinates with w  1, then we can write this

more compactly as:

   

11 12 13

21 22 23

31 32 33

0

0
, , , 1 , , , 1

0

1x y z

A A A

A A A
x y z x y z

A A A

b b b

 
 
    
 
 
  

(eq. 3.6)

The 4  4 matrix in Equation 3.6 is called the matrix representation of the affine
transformation.

Observe that the addition by b is essentially a translation (i.e., change in
position). We do not want to apply this to vectors because vectors have no position.
However, we still want to apply the linear part of the affi ne transformation to
vectors. If we set w  0 in the fourth component for vectors, then the translation
by b is not applied (verify by doing the matrix multiplication).

Because the dot product of the row vector with the fourth column of the above
4  4 affi ne transformation matrix is: [x, y, z, w][0, 0, 0, 1]  w, this matrix does
not modify the w-coordinate of the input vector.

3.2.3 Translation
The identity transformation is a linear transformation that just returns its
argument; that is, I(u)  u. It can be shown that the matrix representation of this
linear transformation is the identity matrix.

Note:

68 MATHEMATICAL PREREQUISITES

Now, we defi ne the translation transformation to be the affi ne transformation
whose linear transformation is the identity transformation; that is,

 ()    u uI b u b

As you can see, this simply translates (or displaces) point u by b. Figure 3.5
illustrates how this could be used to displace objects—we translate every point on
the object by the same vector b to move it.
By Equation 3.6,  has the matrix representation:

1 0 0 0

0 1 0 0

0 0 1 0

1x y zb b b

 
 
 
 
 
  

T

This is called the translation matrix.
The inverse of the translation matrix is given by:

1

1 0 0 0

0 1 0 0

0 0 1 0

1x y zb b b



 
 
 
 
     

T

☞ Example 3.4
Suppose we have a square defined by a minimum point (8, 2, 0) and a maximum
point (2, 8, 0). Suppose now that we wish to translate the square 12 units on
the x-axis, 10.0 units on the y-axis, and leave the z-axis unchanged. The
corresponding translation matrix is:

1 0 0 0

0 1 0 0

0 0 1 0

12 10 0 1

 
 
 
 
  

T

+

Figure 3.5. Displacing the position of the ant by some displacement vector b.

TRANSFORMATIONS 69

Now to actually translate (transform) the square, we multiply both the minimum
point and maximum point by this matrix:

   

1 0 0 0

0 1 0 0
8, 2, 0, 1 4, 8 0, 1

0 0 1 0

12 10 0 1

 
 
   
 
  

   

1 0 0 0

0 1 0 0
2, 8, 0, 1 10, 2, 0, 1

0 0 1 0

12 10 0 1

 
 
   
 
  

The result is shown in Figure 3.6.

Let T be a transformation matrix, and recall that we transform a point/vector
by computing the product vT  v. Observe that if we transform a point/vector
by T and then transform it again by the inverse T1 we end up with the original
vector: vTT1  vI  v. In other words, the inverse transformation undoes the
transformation. For example, if we translate a point 5 units on the x-axis, and
then translate by the inverse -5 units on the x-axis, we end up where we started.
Likewise, if we rotate a point 30° about the y-axis, and then rotate by the inverse
30° about the y-axis, then we end up with our original point. In summary, the
inverse of a transformation matrix does the opposite transformation such that
the composition of the two transformations leaves the geometry unchanged.

Note:

+

+

+

+Translation:

(8, 2, 0)
(2, 8, 0)

(4, 8, 0)
(10, 2, 0)

Figure 3.6. Translating 12 units on the x-axis and 10 units on the y-axis. Note that when looking
down the negative z-axis, the geometry is basically 2D since z  0.

70 MATHEMATICAL PREREQUISITES

3.2.4 Affi ne Matrices for Scaling and Rotation
Observe that if b  0, the affine transformation reduces to a linear transformation.
Thus we can express any linear transformation as an affine transformation with
b  0. This, in turn, means we can represent any linear transformation by a 4  4
affine matrix. For example, the scaling and rotation matrices written using 4  4
matrices are given as follows:

0 0 0

0 0 0

0 0 0

0 0 0 1

x

y

z

s

s

s

 
 
 
 
 
 

S

     
     
     

2

2

2

1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 1

c c x c xy sz c xz sy

c xy sz c c y c yz sx

c xz sy c yz sx c c z

      
 

              
  

nR

In this way, we can express all of our transformations consistently using 4  4
matrices and points and vectors using 1  4 homogeneous row vectors.

3.2.5 Geometric Interpretation of an Affi ne
Transformation Matrix

In this section, we develop some intuition of what the numbers inside an affine
transformation matrix mean geometrically. First, let us consider a rigid body
transformation, which is essentially a shape preserving transformation. A real
world example of a rigid body transformation might be picking a book off your
desk and placing it on a bookshelf; during this process you are translating the book
from your desk to the bookshelf, but also very likely changing the orientation of
the book in the process (rotation). Let  be a rotation transformation describing
how we want to rotate an object and let b define a displacement vector describing
how we want to translate an object. This rigid body transform can be described by
the affine transformation:

          , , , ,x y z x y z x y z          b i j k b

In matrix notation, using homogeneous coordinates (w  1 for points and w  0
for vectors so that the translation is not applied to vectors), this is written as:

TRANSFORMATIONS 71

 

 
 
 

 , , , , , ,x y z w x y z w

  
       
   
 
  

i

j

k

b

 (eq. 3.7)

Now, to see what this equation is doing geometrically, all we need to do is graph the
row vectors in the matrix (see Figure 3.7). Because  is a rotation transformation
it preserves lengths and angles; in particular, we see that  is just rotating the
standard basis vectors i, j, and k into a new orientation (i), (j), and (k). The
vector b is just a position vector denoting a displacement from the origin. Now
Figure 3.7 shows how the transformed point is obtained geometrically when (x,
y, z)  x(i)  y(j)  z(k)  b is computed.

The same idea applies to scaling or skew transformations. Consider the linear
transformation  that warps a square into a parallelogram as shown in Figure 3.8.
The warped point is simply the linear combination of the warped basis vectors.

Figure 3.7. The geometry of the rows of an affine transformation matrix. The transformed point, (p), is
given as a linear combination of the transformed basis vectors (i) ,(j), (k), and the offset b.

+

+

+

+

() ()

() = () + () = +

Figure 3.8. For a linear transformation that warps a square into a parallelogram, the transformed point
(p)  (x, y) is given as a linear combination of the transformed basis vectors (i), (j).

72 MATHEMATICAL PREREQUISITES

3.3 COMPOSITION OF TRANSFORMATIONS

Suppose S is a scaling matrix, R is a rotation matrix, and T is a translation matrix.
Assume we have a cube made up of eight vertices vi for i  0, 1, …, 7, and we wish
to apply these three transformations to each vertex successively. The obvious way
to do this is step-by-step:

      for 0,1 , , 7i i i i i      vv S R T v R T T v

However, because matrix multiplication is associative, we can instead write this
equivalently as:

   for 0,1 , , 7i i i  v SRT v

We can think of the matrix C  SRT as a matrix that encapsulates all three
transformations into one net transformation matrix. In other words, matrix-
matrix multiplication allows us to concatenate transforms.

This has performance implications. To see this, assume that a 3D object
is composed of 20,000 points and that we want to apply these three successive
geometric transformations to the object. Using the step-by-step approach, we
would require 20,000  3 vector-matrix multiplications. On the other hand, using
the combined matrix approach requires 20,000 vector-matrix multiplications and
2 matrix-matrix multiplications. Clearly, two extra matrix-matrix multiplications
is a cheap price to pay for the large savings in vector-matrix multiplications.

Again we point out that matrix multiplication is not commutative. This is
even seen geometrically. For example, a rotation followed by a translation,
which we can describe by the matrix product RT, does not result in the same
transformation as the same translation followed by the same rotation, that is,
TR. Figure 3.9 demonstrates this.

Figure 3.9. (a) Rotating first and then translating. (b) Translating first and then rotating.

Note:

TRANSFORMATIONS 73

3.4 CHANGE OF COORDINATE
TRANSFORMATIONS

The scalar 100°C represents the temperature of boiling water relative to the Celsius
scale. How do we describe the same temperature of boiling water relative to the
Fahrenheit scale? In other words, what is the scalar, relative to the Fahrenheit scale,
that represents the temperature of boiling water? To make this conversion (or
change of frame), we need to know how the Celsius and Fahrenheit scales relate.

They are related as follows:
9

32 .
5F CT T   Therefore, the temperature of boiling

water relative to the Fahrenheit scale is given by  9
100 32 212 .

5FT F    

This example illustrates that we can convert a scalar k that describes some
quantity relative to a frame A into a new scalar k that describes the same quantity
relative to a different frame B, provided that we knew how frame A and B were
related. In the following subsections, we look at a similar problem, but instead
of scalars, we are interested in how to convert the coordinates of a point/vector
relative to one frame into coordinates relative to a different frame (see Figure
3.10). We call the transformation that converts coordinates from one frame into
coordinates of another frame a change of coordinate transformation.

It is worth emphasizing that in a change of coordinate transformation, we
do not think of the geometry as changing; rather, we are changing the frame of
reference, which thus changes the coordinate representation of the geometry. This
is in contrast to how we usually think about rotations, translations, and scaling,
where we think of actually physically moving or deforming the geometry.

In 3D computer graphics, we employ multiple coordinate systems, so we need
to know how to convert from one to another. Because location is a property of

= (,)
= (,)

Frame Frame
Figure 3.10. The same vector v has different coordinates when described relative to different frames.
It has coordinates (x, y) relative to frame A and coordinates (x, y) relative to frame B.

74 MATHEMATICAL PREREQUISITES

points, but not of vectors, the change of coordinate transformation is different for
points and vectors.

3.4.1 Vectors
Consider Figure 3.11, in which we have two frames A and B and a vector p.
Suppose we are given the coordinates pA  (x, y) of p relative to frame A, and we
wish to find the coordinates pB  (x, y) of p relative to frame B. In other words,
given the coordinates identifying a vector relative to one frame, how do we find
the coordinates that identify the same vector relative to a different frame?

Frame

++ = (,)

+

+

Frame

= (,)

Figure 3.11. The geometry of finding the coordinates of p relative to frame B.

From Figure 3.11, it is clear that

 p  xu + yv

where u and v are unit vectors which aim, respectively, along the x- and y-axes of
frame A. Expressing each vector in the above equation in frame B coordinates we get:

 pB = xuB + yvB

Thus, if we are given pA  (x, y) and we know the coordinates of the vectors u and
v relative to frame B, that is if we know uB  (ux, uy) and vB  (vx, vy), then we can
always find pB  (x, y).

Generalizing to 3D, if pA  (x, y, z), then

 pB = xuB + yvB + zwB

where u, v, and w are unit vectors which aim, respectively, along the x-, y- and
z-axes of frame A.

3.4.2 Points
The change of coordinate transformation for points is slightly different than it is
for vectors; this is because location is important for points, so we cannot translate
points as we translated the vectors in Figure 3.11.

TRANSFORMATIONS 75

Figure 3.12 shows the situation, and we see that the point p can be expressed by
the equation:
 p = xu + yv + Q

where u and v are unit vectors which aim, respectively, along the x- and y-axes of
frame A, and Q is the origin of frame A. Expressing each vector/point in the above
equation in frame B coordinates we get:

 pB = xuB + yvB + QB

Thus, if we are given pA  (x, y) and we know the coordinates of the vectors u and
v, and origin Q relative to frame B, that is if we know uB  (ux, uy), vB  (vx, vy), and
QB  (Qx, Qy), then we can always find pB  (x, y).

Generalizing to 3D, if pA  (x, y, z), then

 pB = xuB + yvB + zwB + QB

where u, v, and w are unit vectors which aim, respectively, along the x-, y- and
z-axes of frame A, and Q is the origin of frame A.

3.4.3 Matrix Representation
To review so far, the vector and point change of coordinate transformations are:

(x, y, z)  xuB  yvB  zwB for vectors
(x, y, z)  xuB  yvB  zwB  QB for points

If we use homogeneous coordinates, then we can handle vectors and points by
one equation:

 (x, y, zw)  xuB  yvB  zwB  wQB (eq. 3.8)

If w  0, then this equation reduces to the change of coordinate transformation
for vectors; if w  1, then this equation reduces to the change of coordinate
transformation for points. The advantage of Equation 3.8 is that it works for both

+

+

++

Frame
Frame

= (,)

Figure 3.12. The geometry of finding the coordinates of p relative to frame B.

76 MATHEMATICAL PREREQUISITES

vectors and points, provided we set the w-coordinates correctly; we no longer
need two equations (one for vectors and one for points). Equation 2.3 says that we
can write Equation 3.8 in the language of matrices:

   

 

, , , , , ,

0

0
, , ,

0

1

B

B

B

B

x y z

x y z

x y z

x y z

B B B B

x y z w x y z w

u u u

v v v
x y z w

w w w

Q Q Q

x y z w

  
      
  
   
 
 
 
 
 
  

   

u

v

w

Q

u v w Q

 (eq. 3.9)

where QB  (Qx, Qy, Qz, 1), uB  (ux, uy, uz, 0), vB  (vx, vy, vz, 0), and wB  (wx, wy, wz,
0) describe the origin and axes of frame A with homogeneous coordinates relative
to frame B. We call the 4  4 matrix in Equation 3.9 a change of coordinate matrix
or change of frame matrix, and we say it converts (or maps) frame A coordinates
into frame B coordinates.

3.4.4 Associativity and Change of Coordinate Matrices
Suppose now that we have three frames F, G, and H. Moreover, let A be the change
of frame matrix from F to G, and let B be the change of frame matrix from G to H.
Suppose we have the coordinates pF of a vector relative to frame F and we want the
coordinates of the same vector relative to frame H, that is, we want pH. One way to
do this is step-by-step:

 (pFA)B = pH

 (pG)B = pH

However, because matrix multiplication is associative, we can instead rewrite
(pFA)B  pH as:

 pF(AB)  pH

In this sense, the matrix product C  AB can be thought of as the change of frame
matrix from F directly to H; it combines the affects of A and B into a net matrix.
(The idea is like composition of functions.)

This has performance implications. To see this, assume that a 3D object is
composed of 20,000 points and that we want to apply two successive change of
frame transformation to the object. Using the step-by-step approach, we would

TRANSFORMATIONS 77

require 20,000  2 vector-matrix multiplications. On the other hand, using the
combined matrix approach requires 20,000 vector-matrix multiplications and
1 matrix-matrix multiplication to combine the two change of frame matrices.
Clearly, one extra matrix-matrix multiplication is a cheap price to pay for the
large savings in vector-matrix multiplications.

Again, matrix multiplication is not commutative, so we expect that AB and BA
do not represent the same composite transformation. More specifi cally, the order
in which you multiply the matrices is the order in which the transformations are
applied, and in general, it is not a commutative process.

3.4.5 Inverses and Change of Coordinate Matrices
Suppose that we are given pB (the coordinates of a vector p relative to frame B),
and we are given the change of coordinate matrix M from frame A to frame B; that
is, pB  pAM. We want to solve for pA. In other words, instead of mapping from
frame A into frame B, we want the change of coordinate matrix that maps us from
B into A. To find this matrix, suppose that M is invertible (i.e., M1 exists). We can
solve for pA like so:

pB  pAM

pBM1  pAMM1 Multiplying both sides of the equation by M1

pBM1  pAI MM1  I, by definition of inverse.

pBM1  pA pAI  pA, by definition of the identity matrix.

Thus the matrix M1 is the change of coordinate matrix from B into A.
Figure 3.13 illustrates the relationship between a change of coordinate matrix

and its inverse. Also note that all of the change of frame mappings that we do in this
book will be invertible, so we won’t have to worry about whether the inverse exists.

Figure 3.13. M maps A into B and M1 maps from B into A.

Note:

78 MATHEMATICAL PREREQUISITES

Figure 3.14 shows how the matrix inverse property (AB)1  B1A1 can be
interpreted in terms of change of coordinate matrices.

3.5 TRANSFORMATION MATRIX VERSUS CHANGE
OF COORDINATE MATRIX

So far we have distinguished between “active” transformations (scaling, rotation,
translation) and change of coordinate transformations. We will see in this section
that mathematically, the two are equivalent, and an active transformation can be
interpreted as a change of coordinate transformation, and conversely.

Figure 3.15 shows the geometric resemblance between the rows in Equation 3.7
(rotation followed by translation affi ne transformation matrix) and the rows in
Equation 3.9 (change of coordinate matrix).

Figure 3.15. We see that b  Q, (i)  u, (j)  v, and (k)  w. (a) We work with one coordinate system,
call it frame B, and we apply an affine transformation to the cube to change its position and orientation
relative to frame B: (x, y, z, w)  x(i)  y(j)  z(k)  wb. (b) We have two coordinate systems called frame
A and frame B. The points of the cube relative to frame A can be converted to frame B coordinates by the
formula pB  xuB  yvB  zwB  wQB, where pA (x, y, z, w). In both cases, we have (p)  (x, y, z, w)  pB
with coordinates relative to frame B.

Frame Frame e Frame

1

1

1 1

Frame

Figure 3.14. A maps from F into G, B maps from G into H, and AB maps from F directly into H. B1
maps from H into G, A1 maps from G into F and B1A1 maps from H directly into F.

TRANSFORMATIONS 79

If we think about this, it makes sense. For with a change of coordinate
transformation, the frames differ in position and orientation. Therefore, the
mathematical conversion formula to go from one frame to the other would
require rotating and translating the coordinates, and so we end up with the
same mathematical form. In either case, we end up with the same numbers; the
difference is the way we interpret the transformation. For some situations, it is
more intuitive to work with multiple coordinate systems and convert between the
systems where the object remains unchanged, but its coordinate representation
changes since it is being described relative to a different frame of reference (this
situation corresponds with Figure 3.15b). Other times, we want to transform an
object inside a coordinate system without changing our frame of reference (this
situation corresponds with Figure 3.15a).

In particular, this discussion shows that we can interpret a composition of
active transformations (scaling, rotation, translation) as a change of coordinate
transformation. This is important because we will often defi ne our world space
(Chapter 5) change of coordinate matrix as a composition of scaling, rotation,
and translation transformations.

3.6 DIRECTX MATH TRANSFORMATION
FUNCTIONS

We summarize the DirectX Math related transformation functions for reference.

// Constructs a scaling matrix:
XMMATRIX XM_CALLCONV XMMatrixScaling(
float ScaleX,
float ScaleY,
float ScaleZ); // Scaling factors

// Constructs a scaling matrix from components in vector:
XMMATRIX XM_CALLCONV XMMatrixScalingFromVector(
FXMVECTOR Scale); // Scaling factors (sx, sy, sz)

// Constructs a x-axis rotation matrix Rx:
XMMATRIX XM_CALLCONV XMMatrixRotationX(
 float Angle); // Clockwise angle  to rotate

// Constructs a y-axis rotation matrix Ry:
XMMATRIX XM_CALLCONV XMMatrixRotationY(
 float Angle); // Clockwise angle  to rotate

// Constructs a z-axis rotation matrix Rz:
XMMATRIX XM_CALLCONV XMMatrixRotationZ(
 float Angle); // Clockwise angle  to rotate

Note:

80 MATHEMATICAL PREREQUISITES

// Constructs an arbitrary axis rotation matrix Rn:

XMMATRIX XM_CALLCONV XMMatrixRotationAxis(
 FXMVECTOR Axis, // Axis n to rotate about
 float Angle); // Clockwise angle  to rotate

Constructs a translation matrix:
XMMATRIX XM_CALLCONV XMMatrixTranslation(
float OffsetX,
float OffsetY,
float OffsetZ); // Translation factors

Constructs a translation matrix from components in a vector:
XMMATRIX XM_CALLCONV XMMatrixTranslationFromVector(
FXMVECTOR Offset); // Translation factors (tx, ty, tz)

// Computes the vector-matrix product vM where vw  1 for transforming points:
XMVECTOR XM_CALLCONV XMVector3TransformCoord(
FXMVECTOR V, // Input v
CXMMATRIX M); // Input M

// Computes the vector-matrix product vM where vw  0 for transforming vectors:
XMVECTOR XM_CALLCONV XMVector3TransformNormal(
FXMVECTOR V, // Input v
CXMMATRIX M); // Input M

For the last two functions XMVector3TransformCoord and XMVector3TransformNormal,
you do not need to explicitly set the w coordinate. The functions will always use
vw  1 and vw  0 for XMVector3TransformCoord and XMVector3TransformNormal,
respectively.

3.7 SUMMARY

1. The fundamental transformation matrices—scaling, rotation, and
translation—are given by:

1 0 0 00 0 0

0 1 0 00 0 0

0 0 1 00 0 0

10 0 0 1

x

y

z

x y z

s

s

s

b b b

  
  
   
  
  
    

S T

     
     
     

2

2

2

1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 1

c c x c xy sz c xz sy

c xy sz c c y c yz sx

c xz sy c yz sx c c z

      
 

              
  

nR

TRANSFORMATIONS 81

2. We use 4  4 matrices to represent transformations and 1  4 homogeneous
coordinates to describe points and vectors, where we denote a point by setting
the fourth component to w  1 and a vector by setting w  0. In this way,
translations are applied to points but not to vectors.

3. A matrix is orthogonal if all of its row vectors are of unit length and mutually
orthogonal. An orthogonal matrix has the special property that its inverse
is equal to its transpose, thereby making the inverse easy and efficient to
compute. All the rotation matrices are orthogonal.

4. From the associative property of matrix multiplication, we can combine
several transformation matrices into one transformation matrix, which
represents the net effect of applying the individual matrices sequentially.

5. Let QB, uB, vB, and WB describe the origin, x-, y-, and z-axes of frame A with
coordinates relative to frame B, respectively. If a vector/point p has coordinates
pA  (x, y, z) relative to frame A, then the same vector/point relative to frame
B has coordinates:

 (a) pB  (x, y, z)  xuB  yvB  zwB For vectors (direction and magnitude)
 (b) pB  (x, y, z)  QB  xuB  yvB  zwB For position vectors (points)

 These change of coordinate transformations can be written in terms of
matrices using homogeneous coordinates.

6. Suppose we have three frames, F, G, and H, and let A be the change of frame
matrix from F to G, and let B be the change of frame matrix from G to H. Using
matrix-matrix multiplication, the matrix C  AB can be thought of as the
change of frame matrix F directly to H; that is, matrix-matrix multiplication
combines the effects of A and B into one net matrix, and so we can write:
pF(AB)  pH.

7. If the matrix M maps frame A coordinates into frame B coordinates, then the
matrix M1 maps frame B coordinates into frame A coordinates.

8. An active transformation can be interpreted as a change of coordinate
transformation, and conversely. For some situations, it is more intuitive to
work with multiple coordinate systems and convert between the systems
where the object remains unchanged, but its coordinate representation
changes since it is being described relative to a different frame of reference.
Other times, we want to transform an object inside a coordinate system
without changing our frame of reference of reference.

82 MATHEMATICAL PREREQUISITES

3.8 EXERCISES

1. Let : 3  3 be defined by (x, y, z)  (x  y, x – 3, z). Is  a linear
transformation? If it is, find its standard matrix representation.

2. Let : 3  3 be defined by (x, y, z)  (3x  4z, 2x – z, x  y  z). Is  a linear
transformation? If it is, find its standard matrix representation.

3. Assume that : 3  3 is a linear transformation. Further suppose that (1,
0, 0)  (3, 1, 2), (0, 1, 0)  (2, -1, 3), and (0, 0, 1)  (4, 0, 2). Find (1, 1, 1).

4. Build a scaling matrix that scales 2 units on the x-axis, 3 units on the y-axis,
and keeps the z-dimension unchanged.

5. Build a rotation matrix that rotat es 30° along the axis (1, 1, 1).

6. Build a translation matrix that translates 4 units on the x-axis, no units on the
y-axis, and -9 units on the z-axis.

7. Build a single transformation matrix that first scales 2 units on the x-axis, 3
units on the y-axis, and keeps the z-dimension unchanged, and then translates
4 units on the x-axis, no units on the y-axis, and -9 units on the z-axis.

8. Build a single transformation matrix that first rotates 45° about the y-axis and
then translates 2 units on the x-axis, 5 units on the y-axis, and 1 unit on the
z-axis.

9. Redo Example 3.2, but this time scale the square 1.5 units on the x-axis, 0.75
units on the y-axis, and leave the z-axis unchanged. Graph the geometry
before and after the transformation to confirm your work.

10. Redo Example 3.3, but this time rotate the square −45° clockwise about the
y-axis (i.e., 45° counterclockwise). Graph the geometry before and after the
transformation to confirm your work.

11. Redo Example 3.4, but this time translate the square 5 units on the x-axis,
-3.0 units on the y-axis, and 4.0 units on the z-axis. Graph the geometry before
and after the transformation to confirm your work.

12. Show that Rn(v)  cosv  (1 − cos) (nv)n  sin(n  v) is a linear
transformation and find its standard matrix representation.

13. Prove that the rows of Ry are orthonormal. For a more computational intensive
exercise, the reader can do this for the general rotation matrix (rotation matrix
about an arbitrary axis), too.

14. Prove the matrix M is orthogonal if and only if MT  M1.

TRANSFORMATIONS 83

15. Compute:

  

1 0 0 0

0 1 0 0
, , ,1

0 0 1 0

1x y z

x y z

b b b

 
 
 
 
 
  

 and  

1 0 0 0

0 1 0 0
, , , 0

0 0 1 0

1x y z

x y z

b b b

 
 
 
 
 
  

 Does the translation translate points? Does the translation translate vectors?
Why does it not make sense to translate the coordinates of a vector in standard
position?

16. Verify that the given scaling matrix inverse is indeed the inverse of the scaling
matrix; that is, show, by directly doing the matrix multiplication, SS1  S1S
 I. Similarly, verify that the given translation matrix inverse is indeed the
inverse of the translation matrix; that is, show that TT1  T1T  I

17. Suppose that we have frames A and B. Let pA  (1, 2, 0) and qA  (1, 2, 0)
represent a point and force, respectively, relative to frame A. Moreover, let

QB  (6, 2, 0),
1 1

, , 0
2 2

B
   
 

u ,
1 1

, , 0
2 2

B
   
 

v , and wB  (0, 0, 1)

describe frame A with coordinates relative to frame B. Build the change of
coordinate matrix that maps frame A coordinates into frame B coordinates,
and find pB  (x, y, z) and qB  (x, y, z). Draw a picture on graph paper to verify
that your answer is reasonable.

18. The analog for points to a linear combination of vectors is an affine
combination: p  a1p1  …  anpn where a1  …  an  1and p1, …, pn are points.
The scalar coefficient ak can be thought of as a “point” weight that describe
how much influence the point pk has in determining p; loosely speaking, the
closer ak is to 1, the closer p will be to pk, and a negative ak “repels” p from pk.
(The next exercise will help you develop some intuition on this.) The weights
are also known as barycentric coordinates. Show that an affine combination
can be written as a point plus a vector:

    1 2 2 1 1n na a    p p p p p p

19. Consider the triangle defined by the points p1  (0, 0, 0), p2  (0, 1, 0), and p3 
(2, 0, 0). Graph the following points:

(a) 1 2 3

1 1 1

3 3 3
 p p p

(b) 0.7p1  0.2p2  0.1p3

84 MATHEMATICAL PREREQUISITES

(c) 0.0p1  0.5p2  0.5p3

(d) 0.2p1  0.6p2  0.6p3

(e) 0.6p1  0.5p2  0.1p3

(f) 0.8p1 − 0.3p2  0.5p3

 What is special about the point in part (a)? What would be the barycentric
coordinates of p2 and the point (1, 0, 0) in terms of p1, p2, p3? Can you make
a conjecturer about where the point p will be located relative to the triangle if
one of the barycentric coordinates is negative?

20. One of the defining factors of an affine transformation is that it preserves
affine combinations. Prove that the affine transformation (u) preserves
affine transformations; that is,      1 1 1 1n n n na a a a     p p p p
where a1  …  an  1.

21. Consider Figure 3.16. A common change of coordinate transformation in
computer graphics is to map coordinates from frame A (the square [1, 1]2)
to frame B (the square [0, 1]2 where the y-axes aims opposite to the one in
Frame A). Prove that the change of coordinate transformation from Frame A
to Frame B is given by:

   

0.5 0 0 0

0 0.5 0 0
, , 0 1 , , 0 1

0 0 1 0

0.5 0.5 0 1

x y x y

 
    
 
 
 

+

+ +

+
(1, 1)

(1,1)

(1,1)

(0,0)

(,) (,)
Figure 3.16. Change of coordinates from frame A (the square [1, 1]2) to frame B (the square [0, 1]2

where the y-axes aims opposite to the one in Frame A)

TRANSFORMATIONS 85

22. It was mentioned in the last chapter that the determinant was related to
the change in volume of a box under a linear transformation. Find the
determinant of the scaling matrix and interpret the result in terms of volume.

23. Consider the transformation  that warps a square into a parallelogram given
by:

    , 3 , 2x y x y x y   

 Find the standard matrix representation of this transformation, and show
that the determinant of the transformation matrix is equal to the area of the
parallelogram spanned by (i) and (j).

+

+

+

+

() ()

Figure 3.17. Transformation that maps square into parallelogram.

24. Show that the determinant of the y-axis rotation matrix is 1. Based on the
above exercise, explain why it makes sense that it is 1. For a more computational
intensive exercise, the reader can show the determinant of the general rotation
matrix (rotation matrix about an arbitrary axis) is 1.

25. A rotation matrix can be characterized algebraically as an orthogonal matrix
with determinant equal to 1. If we reexamine Figure 3.7 along with Exercise 24
this makes sense; the rotated basis vectors (i) , (j), and (k) are unit length
and mutually orthogonal; moreover, rotation does not change the size of the
object, so the determinant should be 1. Show that the product of two rotation
matrices R1R2  R is a rotation matrix. That is, show RRT  RTR  I (to show R
is orthogonal), and show det R  1.

26. Show that the following properties hold for a rotation matrix R:
(a) (uR)  (vR)  u  v Preservation of dot product
(b) ||uR||  ||u|| Preservation of length
(c) (uR, vR)  (u, v) Preservation of angle, where (x, y)
 evaluates to the angle between x and y:

   1, cos
|| || || ||

 
 

x y
x y

x y

Explain why all these properties make sense for a rotation transformation.

86 MATHEMATICAL PREREQUISITES

27. Find a scaling, rotation, and translation matrix whose product transforms the
line segment with start point p  (0, 0, 0) and endpoint q  (0, 0, 1) into the
line segment with length 2, parallel to the vector (1, 1, 1), with start point
(3, 1, 2).

28. Suppose we have a box positioned at (x, y, z). The scaling transform we have
defined uses the origin as a reference point for the scaling, so scaling this box
(not centered about the origin) has the side effect of translating the box (Figure
3.18); this can be undesirable in some situations. Find a transformation that
scales the box relative to its center point.

Change coordinates to the box coordinate system with origin at the center of the
box, scale the box, then transform back to the original coordinate system.

+

+

(1,1)
(3,3)

+

+

(2,1)
(6,3)

+

+

(1,1)
(3,3)

+

+

(2,2) (4,3)
()

() (0,1)
Figure 3.18. (a) Scaling 2-units on the x-axis relative to the origin results in a translation of the rectangle.
(b) Scaling 2-units on the x-axis relative to the center of the rectangle does not result in a translation (the
rectangle maintains its original center point).

Hint:

87

Part

In this part, we study fundamental Direct3D concepts and techniques
that are used throughout the rest of this book. With these fundamentals
mastered, we can move on to writing more interesting applications. A brief

description of the chapters in this part follows.

Chapter 4, Direct3D Initialization: In this chapter, we learn what Direct3D is
about and how to initialize it in preparation for 3D drawing. Basic Direct3D
topics are also introduced, such as surfaces, pixel formats, page flipping, depth
buffering, and multisampling. We also learn how to measure time with the
performance counter, which we use to compute the frames rendered per
second. In addition, we give some tips on debugging Direct3D applications. We
develop and use our own application framework—not the SDK's framework.

Chapter 5, The Rendering Pipeline: In this long chapter, we provide a
thorough introduction to the rendering pipeline, which is the sequence of
steps necessary to generate a 2D image of the world based on what the virtual
camera sees. We learn how to define 3D worlds, control the virtual camera, and
project 3D geometry onto a 2D image plane.

Chapter 6, Drawing in Direct3D: This chapter focuses on the Direct3D API
interfaces and methods needed to define 3D geometry, configure the rendering
pipeline, create vertex and pixel shaders, and submit geometry to the rendering
pipeline for drawing. By the end of this chapter, you will be able to draw a 3D
box and transform it.

2 DIRECT3D
FOUNDATIONS

88 DIRECT3D FOUNDATIONS

Chapter 7, Drawing in Direct3D Part II: This chapter introduces a number of drawing
patterns that will be used throughout the remainder of the book. From improving
the workload balance between CPU and GPU, to organizing how our renderer draws
objects. The chapter concludes by showing how to draw more complicated objects like
grids, spheres, cylinders, and an animated wave simulation.

Chapter 8, Lighting: This chapter shows how to create light sources and define the
interaction between light and surfaces via materials. In particular, we show how to
implement directional lights, point lights, and spotlights with vertex and pixel shaders.

Chapter 9, Texturing: This chapter describes texture mapping, which is a technique
used to increase the realism of the scene by mapping 2D image data onto a 3D primitive.
For example, using texture mapping, we can model a brick wall by applying a 2D brick
wall image onto a 3D rectangle. Other key texturing topics covered include texture
tiling and animated texture transformations.

Chapter 10, Blending: Blending allows us to implement a number of special effects
like transparency. In addition, we discuss the intrinsic clip function, which enables us
to mask out certain parts of an image from showing up; this can be used to implement
fences and gates, for example. We also show how to implement a fog effect.

Chapter 11, Stenciling: This chapter describes the stencil buffer, which, like a stencil,
allows us to block pixels from being drawn. Masking out pixels is a useful tool for a variety
of situations. To illustrate the ideas of this chapter, we include a thorough discussion on
implementing planar reflections and planar shadows using the stencil buffer.

Chapter 12, The Geometry Shader: This chapter shows how to program geometry
shaders, which are special because they can create or destroy entire geometric primitives.
Some applications include billboards, fur rendering, subdivisions, and particle systems.
In addition, this chapter explains primitive IDs and texture arrays.

Chapter 13, The Compute Shader: The Compute Shader is a programmable
shader Direct3D exposes that is not directly part of the rendering pipeline. It
enables applications to use the graphics processing unit (GPU) for general purpose
computation. For example, an imaging application can take advantage of the GPU to
speed up image processing algorithms by implementing them with the compute shader.
Because the Compute Shader is part of Direct3D, it reads from and writes to Direct3D
resources, which enables us integrate results directly to the rendering pipeline.
Therefore, in addition to general purpose computation, the compute shader is still
applicable for 3D rendering.

Chapter 14, The Tessellation Stages: This chapter explores the tessellation stages of the
rendering pipeline. Tessellation refers to subdividing geometry into smaller triangles
and then offsetting the newly generated vertices in some way. The motivation to
increase the triangle count is to add detail to the mesh. To illustrate the ideas of this
chapter, we show how to tessellate a quad patch based on distance, and we show how to
render cubic Bézier quad patch surfaces.

Chapter

89

4Chapter

DIRECT3D
INITIALIZATION

The initialization process of Direct3D requires us to be familiar with some basic
Direct3D types and basic graphics concepts; the first and second sections of this
chapter address these requirements. We then detail the necessary steps to initialize
Direct3D. Next, a small detour is taken to introduce accurate timing and the time
measurements needed for real-time graphics applications. Finally, we explore the
sample framework code, which is used to provide a consistent interface that all
demo applications in this book follow.

Objectives:
1. To obtain a basic understanding of Direct3D’s role in programming 3D

hardware.

2. To understand the role COM plays with Direct3D.

3. To learn fundamental graphics concepts, such as how 2D images are stored,
page flipping, depth buffering, multi-sampling, and how the CPU and GPU
interact.

4. To learn how to use the performance counter functions for obtaining high-
resolution timer readings.

5. To find out how to initialize Direct3D.

6. To become familiar with the general structure of the application framework
that all the demos of this book employ.

90 DIRECT3D FOUNDATIONS

4.1 PRELIMINARIES

The Direct3D initialization process requires us to be familiar with some basic
graphics concepts and Direct3D types. We introduce these ideas and types in this
section, so that we do not have to digress when we cover the initialization process.

4.1.1 Direct3D 12 Overview
Direct3D is a low-level graphics API (application programming interface) used to
control and program the GPU (graphics processing unit) from our application,
thereby allowing us to render virtual 3D worlds using hardware acceleration.
For example, to submit a command to the GPU to clear a render target (e.g., the
screen), we would call the Direct3D method ID3D12CommandList::ClearRenderT
argetView. The Direct3D layer and hardware drivers will translate the Direct3D
commands into native machine instructions understood by the system’s GPU;
thus, we do not have to worry about the specifics of the GPU, so long as it
supports the Direct3D version we are using. To make this work, GPU vendors
like NVIDIA, Intel, and AMD must work with the Direct3D team and provide
compliant Direct3D drivers.

Direct3D 12 adds some new rendering features, but the main improvement
over the previous version is that it has been redesigned to signifi cantly reduce
CPU overhead and improve multi-threading support. In order to achieve
these performance goals, Direct3D 12 has become a much lower level API than
Direct3D 11; it has less abstraction, requires additional manual “bookkeeping”
from the developer, and more closely mirrors modern GPU architectures. The
improved performance is, of course, the reward for using this more diffi cult API.

4.1.2 COM
Component Object Model (COM) is the technology that allows DirectX to be
programming-language independent and have backwards compatibility. We
usually refer to a COM object as an interface, which for our purposes can be
thought of and used as a C class. Most of the details of COM are hidden to
us when programming DirectX with C. The only thing that we must know is
that we obtain pointers to COM interfaces through special functions or by the
methods of another COM interface—we do not create a COM interface with the
C new keyword. In addition, COM objects are reference counted; when we are
done with an interface we call its Release method (all COM interfaces inherit
functionality from the IUnknown COM interface, which provides the Release
method) rather than delete it—COM objects will free their memory when their
reference count goes to 0.

DIRECT3D INITIALIZATION 91

To help manage the lifetime of COM objects, the Windows Runtime Library
(WRL) provides the Microsoft::WRL::ComPtr class (#include <wrl.h>), which can
be thought of as a smart pointer for COM objects. When a ComPtr instance goes
out of scope, it will automatically call Release on the underlying COM object,
thereby saving us from having to manually call Release. The three main ComPtr
methods we use in this book are:

1. Get: Returns a pointer to the underlying COM interface. This is often used
to pass arguments to functions that take a raw COM interface pointer. For
example:

 ComPtr<ID3D12RootSignature> mRootSignature;

 ...

 // SetGraphicsRootSignature expects ID3D12RootSignature* argument.

 mCommandList->SetGraphicsRootSignature(mRootSignature.Get());

2. GetAddressOf: Returns the address of the pointer to the underlying COM
interface. This is often used to return a COM interface pointer through a
function parameter. For example:

 ComPtr<ID3D12CommandAllocator> mDirectCmdListAlloc;
 ...
 ThrowIfFailed(md3dDevice->CreateCommandAllocator(
 D3D12_COMMAND_LIST_TYPE_DIRECT,
 mDirectCmdListAlloc.GetAddressOf()));

3. Reset: Sets the ComPtr instance to nullptr and decrements the reference count
of the underlying COM interface. Equivalently, you can assign nullptr to a
ComPtr instance.

There is, of course, much more to COM, but more detail is not necessary for
using DirectX effectively.

COM interfaces are prefi xed with a capital I. For example, the COM interface
that represents a command list is called ID3D12GraphicsCommandList.

4.1.3 Textures Formats
A 2D texture is a matrix of data elements. One use for 2D textures is to store 2D
image data, where each element in the texture stores the color of a pixel. However,
this is not the only usage; for example, in an advanced technique called normal
mapping, each element in the texture stores a 3D vector instead of a color.
Therefore, although it is common to think of textures as storing image data, they
are really more general purpose than that. A 1D texture is like a 1D array of data
elements, a 2D texture is like a 2D array of data elements, and a 3D texture is like
a 3D array of data elements. As will be discussed in later chapters, textures are

Note:

92 DIRECT3D FOUNDATIONS

actually more than just arrays of data; they can have mipmap levels, and the GPU
can do special operations on them, such as apply filters and multi-sampling. In
addition, a texture cannot store arbitrary kinds of data elements; it can only store
certain kinds of data element formats, which are described by the DXGI_FORMAT
enumerated type. Some example formats are:

1. DXGI_FORMAT_R32G32B32_FLOAT: Each element has three 32-bit floating-point
components.

2. DXGI_FORMAT_R16G16B16A16_UNORM: Each element has four 16-bit components
mapped to the [0, 1] range.

3. DXGI_FORMAT_R32G32_UINT: Each element has two 32-bit unsigned integer
components.

4. DXGI_FORMAT_R8G8B8A8_UNORM: Each element has four 8-bit unsigned
components mapped to the [0, 1] range.

5. DXGI_FORMAT_R8G8B8A8_SNORM: Each element has four 8-bit signed components
mapped to the [-1, 1] range.

6. DXGI_FORMAT_R8G8B8A8_SINT: Each element has four 8-bit signed integer
components mapped to the [-128, 127] range.

7. DXGI_FORMAT_R8G8B8A8_UINT: Each element has four 8-bit unsigned integer
components mapped to the [0, 255] range.

Note that the R, G, B, A letters are used to stand for red, green, blue, and alpha,
respectively. Colors are formed as combinations of the basis colors red, green, and
blue (e.g., equal red and equal green makes yellow). The alpha channel or alpha
component is generally used to control transparency. However, as we said earlier,
textures need not store color information even though the format names suggest
that they do; for example, the format

 DXGI_FORMAT_R32G32B32_FLOAT

has three floating-point components and can therefore store any 3D vector with
floating-point coordinates. There are also typeless formats, where we just reserve
memory and then specify how to reinterpret the data at a later time (sort of like
a C reinterpret cast) when the texture is bound to the pipeline; for example,
the following typeless format reserves elements with four 16-bit components, but
does not specify the data type (e.g., integer, floating-point, unsigned integer):

 DXGI_FORMAT_R16G16B16A16_TYPELESS

We will see in Chapter 6 that the DXGI_FORMAT enumerated type is also used to
describe vertex data formats and index data formats.

DIRECT3D INITIALIZATION 93

4.1.4 The Swap Chain and Page Flipping
To avoid flickering in animation, it is best to draw an entire frame of animation
into an off-screen texture called the back buffer. Once the entire scene has been
drawn to the back buffer for the given frame of animation, it is presented to the
screen as one complete frame; in this way, the viewer does not watch as the frame
gets drawn—the viewer only sees complete frames. To implement this, two texture
buffers are maintained by the hardware, one called the front buffer and a second
called the back buffer. The front buffer stores the image data currently being
displayed on the monitor, while the next frame of animation is being drawn to
the back buffer. After the frame has been drawn to the back buffer, the roles of the
back buffer and front buffer are reversed: the back buffer becomes the front buffer
and the front buffer becomes the back buffer for the next frame of animation.
Swapping the roles of the back and front buffers is called presenting. Presenting is
an efficient operation, as the pointer to the current front buffer and the pointer to
the current back buffer just need to be swapped. Figure 4.1 illustrates the process.

The front and back buffer form a swap chain. In Direct3D, a swap chain is
represented by the IDXGISwapChain interface. This interface stores the front
and back buffer textures, as well as provides methods for resizing the buffers
(IDXGISwapChain::ResizeBuffers) and presenting (IDXGISwapChain::Present).

Figure 4.1. For frame n, Buffer A is currently being displayed and we render the next frame to Buffer B,
which is serving as the current back buffer. Once the frame is completed, the pointers are swapped and
Buffer B becomes the front buffer and Buffer A becomes the new back buffer. We then render the next frame
n+1 to Buffer A. Once the frame is completed, the pointers are swapped and Buffer A becomes the front
buffer and Buffer B becomes the back buffer again.

Using two buffers (front and back) is called double buffering. More than two
buffers can be employed; using three buffers is called triple buffering. Two buffers
are usually sufficient, however.

Even though the back buffer is a texture (so an element should be called a texel),
we often call an element a pixel since, in the case of the back buffer, it stores color
information. Sometimes people will call an element of a texture a pixel, even if
it doesn’t store color information (e.g., “the pixels of a normal map”).

4.1.5 Depth Buffering
The depth buffer is an example of a texture that does not contain image data, but
rather depth information about a particular pixel. The possible depth values range

Note:

94 DIRECT3D FOUNDATIONS

from 0.0 to 1.0, where 0.0 denotes the closest an object in the view frustum can
be to the viewer and 1.0 denotes the farthest an object in the view frustum can be
from the viewer. There is a one-to-one correspondence between each element in
the depth buffer and each pixel in the back buffer (i.e., the ijth element in the back
buffer corresponds to the ijth element in the depth buffer). So if the back buffer
had a resolution of 1280 × 1024, there would be 1280 × 1024 depth entries.

Figure 4.2 shows a simple scene, where some objects partially obscure the
objects behind them. In order for Direct3D to determine which pixels of an object
are in front of another, it uses a technique called depth buffering or z-buffering. Let
us emphasize that with depth buffering, the order in which we draw the objects
does not matter.

To handle the depth problem, one might suggest drawing the objects in the scene
in the order of farthest to nearest. In this way, near objects will be painted over
far objects, and the correct results should be rendered. This is how a painter
would draw a scene. However, this method has its own problems—sorting a
large data set in back-to-front order and intersecting geometry. Besides, the
graphics hardware gives us depth buffering for free.

To illustrate how depth buffering works, let us look at an example. Consider
Figure 4.3, which shows the volume the viewer sees and a 2D side view of that
volume. From the figure, we observe that three different pixels compete to be
rendered onto the pixel P on the view window. (Of course, we know the closest
pixel should be rendered to P since it obscures the ones behind it, but the computer
does not.) First, before any rendering takes place, the back buffer is cleared to a
default color, and the depth buffer is cleared to a default value—usually 1.0 (the
farthest depth value a pixel can have). Now, suppose that the objects are rendered
in the order of cylinder, sphere, and cone. The following table summarizes how

Note:

Figure 4.2. A group of objects that partially obscure each other.

DIRECT3D INITIALIZATION 95

the pixel P and its corresponding depth value d are updated as the objects are
drawn; a similar process happens for the other pixels.

Operation P d Description

Clear
Operation

Black 1.0 Pixel and corresponding depth entry initialized.

Draw Cylinder P3 d3 Since d3  d  1.0 the depth test passes and we update
the buffers by setting P  P3 and d  d3.

Draw Sphere P1 d1 Since d1  d  d3 the depth test passes and we update
the buffers by setting P  P1 and d  d1.

Draw Cone P1 d1 Since d2 > d  d1 the depth test fails and we do not
update the buffers.

As you can see, we only update the pixel and its corresponding depth value in
the depth buffer when we find a pixel with a smaller depth value. In this way,
after all is said and done, the pixel that is closest to the viewer will be the one
rendered. (You can try switching the drawing order around and working through
this example again if you are still not convinced.)

To summarize, depth buffering works by computing a depth value for each
pixel and performing a depth test. The depth test compares the depths of pixels
competing to be written to a particular pixel location on the back buffer. The
pixel with the depth value closest to the viewer wins, and that is the pixel that gets

1 1

Eye

1

2

3

3

2

Eye

1

2

3

2 3 1

Figure 4.3. The view window corresponds to the 2D image (back buffer) we generate of the 3D scene. We
see that three different pixels can be projected to the pixel P. Intuition tells us that P1 should be written
to P since it is closer to the viewer and blocks the other two pixels. The depth buffer algorithm provides a
mechanical procedure for determining this on a computer. Note that we show the depth values relative to
the 3D scene being viewed, but they are actually normalized to the range [0.0, 1.0] when stored in the depth
buffer.

96 DIRECT3D FOUNDATIONS

written to the back buffer. This makes sense because the pixel closest to the viewer
obscures the pixels behind it.

The depth buffer is a texture, so it must be created with certain data formats.
The formats used for depth buffering are as follows:

1. DXGI_FORMAT_D32_FLOAT_S8X24_UINT: Specifies a 32-bit floating-point depth
buffer, with 8-bits (unsigned integer) reserved for the stencil buffer mapped
to the [0, 255] range and 24-bits not used for padding.

2. DXGI_FORMAT_D32_FLOAT: Specifies a 32-bit floating-point depth buffer.

3. DXGI_FORMAT_D24_UNORM_S8_UINT: Specifies an unsigned 24-bit depth buffer
mapped to the [0, 1] range with 8-bits (unsigned integer) reserved for the
stencil buffer mapped to the [0, 255] range.

4. DXGI_FORMAT_D16_UNORM: Specifies an unsigned 16-bit depth buffer mapped to
the [0, 1] range.

An application is not required to have a stencil buffer, but if it does, the stencil
buffer is always attached to the depth buffer. For example, the 32-bit format

 DXGI_FORMAT_D24_UNORM_S8_UINT

uses 24-bits for the depth buffer and 8-bits for the stencil buffer. For this reason,
the depth buffer is better called the depth/stencil buffer. Using the stencil buffer is
a more advanced topic and will be explained in Chapter 11.

4.1.6 Resources and Descriptors
During the rendering process, the GPU will write to resources (e.g., the back
buffer, the depth/stencil buffer), and read from resources (e.g., textures that
describe the appearance of surfaces, buffers that store the 3D positions of
geometry in the scene). Before we issue a draw command, we need to bind (or
link) the resources to the rendering pipeline that are going to be referenced in
that draw call. Some of the resources may change per draw call, so we need to
update the bindings per draw call if necessary. However, GPU resources are not
bound directly. Instead, a resource is referenced through a descriptor object, which
can be thought of as lightweight structure that describes the resource to the GPU.
Essentially, it is a level of indirection; given a resource descriptor, the GPU can
get the actual resource data and know the necessary information about it. We
bind resources to the rendering pipeline by specifying the descriptors that will be
referenced in the draw call.

Why go to this extra level of indirection with descriptors? The reason is that
GPU resources are essentially generic chunks of memory. Resources are kept
generic so they can be used at different stages of the rendering pipeline; a common

Note:

DIRECT3D INITIALIZATION 97

example is to use a texture as a render target (i.e., Direct3D draws into the texture)
and later as a shader resource (i.e., the texture will be sampled and serve as input
data for a shader). A resource by itself does not say if it is being used as a render
target, depth/stencil buffer, or shader resource. Also, perhaps we only want to bind
a subregion of the resource data to the rendering pipeline—how can we do that
given the whole resource? Moreover, a resource can be created with a typeless
format, so the GPU would not even know the format of the resource.

This is where descriptors come in. In addition to identifying the resource data,
descriptors describe the resource to the GPU: they tell Direct3D how the resource
will be used (i.e., what stage of the pipeline you will bind it to), where applicable
we can specify a subregion of the resource we want to bind in the descriptor, and
if the resource format was specifi ed as typeless at creation time, then we must now
state the type when creating the descriptor.

A view is a synonym for descriptor. The term “view” was used in previous
versions of Direct3D, and it is still used in some parts of the Direct3D 12 API.
We use both interchangeably in this book; for example, constant buffer view and
constant buffer descriptor mean the same thing.

Descriptors have a type, and the type implies how the resource will be used. The
types of descriptors we use in this book are:

1. CBV/SRV/UAV descriptors describe constant buffers, shader resources and
unordered access view resources.

2. Sampler descriptors describe sampler resources (used in texturing).

3. RTV descriptors describe render target resources.

4. DSV descriptors describe depth/stencil resources.

A descriptor heap is an array of descriptors; it is the memory backing for all the
descriptors of a particular type your application uses. You will need a separate
descriptor heap for each type of descriptor. You can also create multiple heaps of
the same descriptor type.

We can have multiple descriptors referencing the same resource. For example,
we can have multiple descriptors referencing different subregions of a resource.
Also, as mentioned, resources can be bound to different stages of the rendering
pipeline. For each stage, we need a separate descriptor. For the example of using
a texture as a render target and shader resource, we would need to create two
descriptors: an RTV typed descriptor, and an SRV typed descriptor. Similarly,
if you create a resource with a typeless format, it is possible for the elements of
a texture to be viewed as fl oating-point values or as integers, for example; this
would require two descriptors, where one descriptor specifi es the fl oating-point
format, and the other the integer format.

Note:

98 DIRECT3D FOUNDATIONS

Descriptors should be created at initialization time. This is because there
is some type checking and validation that occurs, and it is better to do this at
initialization time rather than runtime.

The August 2009 SDK documentation says: “Creating a fully-typed resource
restricts the resource to the format it was created with. This enables the runtime
to optimize access […].” Therefore, you should only create a typeless resource
if you really need the fl exibility they provide (the ability to reinterpret the data
in multiple ways with multiple views); otherwise, create a fully typed resource.

4.1.7 Multisampling Theory
Because the pixels on a monitor are not infinitely small, an arbitrary line cannot
be represented perfectly on the computer monitor. Figure 4.4 illustrates a “stair-
step” (aliasing) effect, which can occur when approximating a line by a matrix of
pixels. Similar aliasing effects occur with the edges of triangles.

Shrinking the pixel sizes by increasing the monitor resolution can alleviate the
problem signifi cantly to where the stair-step effect goes largely unnoticed.

When increasing the monitor resolution is not possible or not enough, we
can apply antialiasing techniques. One technique, called supersampling, works by
making the back buffer and depth buffer 4X bigger than the screen resolution.
The 3D scene is then rendered to the back buffer at this larger resolution. Then,
when it comes time to present the back buffer to the screen, the back buffer is
resolved (or downsampled) such that 4 pixel block colors are averaged together
to get an averaged pixel color. In effect, supersampling works by increasing the
resolution in software.

Supersampling is expensive because it increases the amount of pixel processing
and memory by fourfold. Direct3D supports a compromising antialiasing
technique called multisampling, which shares some computational information
across subpixels making it less expensive than supersampling. Assuming we are
using 4X multisampling (4 subpixels per pixel), multisampling also uses a back

Note:

Figure 4.4. On the top we observe aliasing (the stairstep effect when trying to represent a line by a matrix of
pixels) On the bottom, we see an antialiased line, which generates the final color of a pixel by sampling and
using its neighboring pixels; this results in a smoother image and dilutes the stairstep effect.

DIRECT3D INITIALIZATION 99

buffer and depth buffer 4X bigger than the screen resolution; however, instead of
computing the image color for each subpixel, it computes it only once per pixel, at
the pixel center, and then shares that color information with its subpixels based on
visibility (the depth/stencil test is evaluated per subpixel) and coverage (does the
subpixel center lie inside or outside the polygon?). Figure 4.5 shows an example.

Observe the key difference between supersampling and multisampling. With
supersampling, the image color is computed per subpixel, and so each subpixel
could potentially be a different color. With multisampling (Figure 4.5), the
image color is computed once per pixel and that color is replicated into all
visible subpixels that are covered by the polygon. Because computing the image
color is one of the most expensive steps in the graphics pipeline, the savings
from multisampling over supersampling is signifi cant. On the other hand,
supersampling is more accurate.

In Figure 4.5, we show a pixel subdivided into four subpixels in a uniform grid
pattern. The actual pattern used (the points where the subpixels are positioned)
can vary across hardware vendors, as Direct3D does not define the placement of
the subpixels. Some patterns do better than others in certain situations.

4.1.8 Multisampling in Direct3D
In the next section, we will be required to fill out a DXGI_SAMPLE_DESC structure.
This structure has two members and is defined as follows:

typedef struct DXGI_SAMPLE_DESC
{

Note:

() ()
Figure 4.5. We consider one pixel that crosses the edge of a polygon. (a) The green color evaluated at the
pixel center is stored in the three visible subpixels that are covered by the polygon. The subpixel in the fourth
quadrant is not covered by the polygon and so does not get updated with the green color—it just keeps
its previous color computed from previously drawn geometry or the Clear operation. (b) To compute the
resolved pixel color, we average the four subpixels (three green pixels and one white pixel) to get a light green
along the edge of the polygon. This results in a smoother looking image by diluting the stairstep effect along
the edge of the polygon.

100 DIRECT3D FOUNDATIONS

 UINT Count;
 UINT Quality;
} DXGI_SAMPLE_DESC;

The Count member specifies the number of samples to take per pixel, and the
Quality member is used to specify the desired quality level (what “quality level”
means can vary across hardware manufacturers). Higher sample counts or higher
quality is more expensive to render, so a tradeoff between quality and speed
must be made. The range of quality levels depends on the texture format and the
number of samples to take per pixel.

We can query the number of quality levels for a given texture format and
sample count using the ID3D12Device::CheckFeatureSupport method like so:

typedef struct D3D12_FEATURE_DATA_MULTISAMPLE_QUALITY_LEVELS {
 DXGI_FORMAT Format;
 UINT SampleCount;
 D3D12_MULTISAMPLE_QUALITY_LEVELS_FLAG Flags;
 UINT NumQualityLevels;
} D3D12_FEATURE_DATA_MULTISAMPLE_QUALITY_LEVELS;

D3D12_FEATURE_DATA_MULTISAMPLE_QUALITY_LEVELS msQualityLevels;
msQualityLevels.Format = mBackBufferFormat;
msQualityLevels.SampleCount = 4;
msQualityLevels.Flags = D3D12_MULTISAMPLE_QUALITY_LEVELS_FLAG_NONE;
msQualityLevels.NumQualityLevels = 0;
ThrowIfFailed(md3dDevice->CheckFeatureSupport(
 D3D12_FEATURE_MULTISAMPLE_QUALITY_LEVELS,
 &msQualityLevels,
 sizeof(msQualityLevels)));

Note that the second parameter is both an input and output parameter. For the
input, we must specify the texture format, sample count, and flag we want to query
multisampling support for. The function will then fill out the quality level as the
output. Valid quality levels for a texture format and sample count combination
range from zero to NumQualityLevels–1.

The maximum number of samples that can be taken per pixel is defi ned by:

#define D3D11_MAX_MULTISAMPLE_SAMPLE_COUNT (32)

However, a sample count of 4 or 8 is common in order to keep the performance
and memory cost of multisampling reasonable. If you do not wish to use
multisampling, set the sample count to 1 and the quality level to 0. All Direct3D
11 capable devices support 4X multisampling for all render target formats.

A DXGI_SAMPLE_DESC structure needs to be fi lled out for both the swap chain
buffers and the depth buffer. Both the back buffer and depth buffer must be
created with the same multisampling settings.

Note:

DIRECT3D INITIALIZATION 101

4.1.9 Feature Levels
Direct3D 11 introduces the concept of feature levels (represented in code by
the D3D_FEATURE_LEVEL enumerated type), which roughly correspond to various
Direct3D versions from version 9 to 11:

enum D3D_FEATURE_LEVEL

{

 D3D_FEATURE_LEVEL_9_1 = 0x9100,

 D3D_FEATURE_LEVEL_9_2 = 0x9200,

 D3D_FEATURE_LEVEL_9_3 = 0x9300,

 D3D_FEATURE_LEVEL_10_0 = 0xa000,

 D3D_FEATURE_LEVEL_10_1 = 0xa100,

 D3D_FEATURE_LEVEL_11_0 = 0xb000,

 D3D_FEATURE_LEVEL_11_1 = 0xb100
}D3D_FEATURE_LEVEL;

Feature levels define a strict set of functionality (see the SDK documentation for
the specific capabilities each feature level supports). For example, a GPU that
supports feature level 11 must support the entire Direct3D 11 capability set, with
few exceptions (some things like the multisampling count still need to be queried,
as they are allowed to vary between different Direct3D 11 hardware). Feature sets
make development easier—once you know the supported feature set, you know
the Direct3D functionality you have at your disposal.

If a user’s hardware did not support a certain feature level, the application
could fallback to an older feature level. For example, to support a wider audience,
an application might support Direct3D 11, 10, and 9.3 level hardware. The
application would check feature level support from newest to oldest: That is,
the application would fi rst check if Direct3D 11 is supported, second Direct3D
10, and fi nally Direct3D 9.3. In this book, we always require support for feature
level D3D_FEATURE_LEVEL_11_0. However, real-world applications do need to worry
about supporting older hardware to maximize their audience.

4.1.10 DirectX Graphics Infrastructure
DirectX Graphics Infrastructure (DXGI) is an API used along with Direct3D. The
basic idea of DXGI is that some graphics related tasks are common to multiple
graphics APIs. For example, a 2D rendering API would need swap chains and page
flipping for smooth animation just as much as a 3D rendering API; thus the swap
chain interface IDXGISwapChain (§4.1.4) is actually part of the DXGI API. DXGI
handles other common graphical functionality like full-screen mode transitions,
enumerating graphical system information like display adapters, monitors, and

102 DIRECT3D FOUNDATIONS

supported display modes (resolution, refresh rate, and such); it also defines the
various supported surface formats (DXGI_FORMAT).

We briefl y describe some DXGI concepts and interfaces that will be used during
our Direct3D initialization. One of the key DXGI interfaces is the IDXGIFactory
interface, which is primarily used to create the IDXGISwapChain interface and
enumerate display adapters. Display adapters implement graphical functionality.
Usually, the display adapter is a physical piece of hardware (e.g., graphics card);
however, a system can also have a software display adapter that emulates hardware
graphics functionality. A system can have several adapters (e.g., if it has several
graphics cards). An adapter is represented by the IDXGIAdapter interface. We can
enumerate all the adapters on a system with the following code:

void D3DApp::LogAdapters()
{
 UINT i = 0;
 IDXGIAdapter* adapter = nullptr;
 std::vector<IDXGIAdapter*> adapterList;
 while(mdxgiFactory->EnumAdapters(i, &adapter) != DXGI_ERROR_NOT_

FOUND)
 {
 DXGI_ADAPTER_DESC desc;
 adapter->GetDesc(&desc);

 std::wstring text = L"***Adapter: ";
 text += desc.Description;
 text += L"\n";

 OutputDebugString(text.c_str());

 adapterList.push_back(adapter);

 ++i;
 }

 for(size_t i = 0; i < adapterList.size(); ++i)
 {
 LogAdapterOutputs(adapterList[i]);
 ReleaseCom(adapterList[i]);
 }
}

An example of the output from this method is the following:

***Adapter: NVIDIA GeForce GTX 760
***Adapter: Microsoft Basic Render Driver

The “Microsoft Basic Render Driver” is a software adapter included with Windows
8 and above.

A system can have several monitors. A monitor is an example of a display
output. An output is represented by the IDXGIOutput interface. Each adapter is

DIRECT3D INITIALIZATION 103

associated with a list of outputs. For instance, consider a system with two graphics
cards and three monitors, where two monitors are hooked up to one graphics
card, and the third monitor is hooked up to the other graphics card. In this case,
one adapter has two outputs associated with it, and the other adapter has one
output associated with it. We can enumerate all the outputs associated with an
adapter with the following code:

void D3DApp::LogAdapterOutputs(IDXGIAdapter* adapter)
{
 UINT i = 0;
 IDXGIOutput* output = nullptr;
 while(adapter->EnumOutputs(i, &output) != DXGI_ERROR_NOT_FOUND)
 {
 DXGI_OUTPUT_DESC desc;
 output->GetDesc(&desc);

 std::wstring text = L"***Output: ";
 text += desc.DeviceName;
 text += L"\n";
 OutputDebugString(text.c_str());

 LogOutputDisplayModes(output, DXGI_FORMAT_B8G8R8A8_UNORM);

 ReleaseCom(output);

 ++i;
 }
}

Note that, per the documentation, the “Microsoft Basic Render Driver” has no
display outputs.

Each monitor has a set of display modes it supports. A display mode refers to
the following data in DXGI_MODE_DESC:

typedef struct DXGI_MODE_DESC
{
 UINT Width; // Resolution width
 UINT Height; // Resolution height
 DXGI_RATIONAL RefreshRate;
 DXGI_FORMAT Format; // Display format
 DXGI_MODE_SCANLINE_ORDER ScanlineOrdering; //Progressive vs.

interlaced
 DXGI_MODE_SCALING Scaling; // How the image is stretched
 // over the monitor.

} DXGI_MODE_DESC;

typedef struct DXGI_RATIONAL
{
 UINT Numerator;
 UINT Denominator;
} DXGI_RATIONAL;

104 DIRECT3D FOUNDATIONS

typedef enum DXGI_MODE_SCANLINE_ORDER
{
 DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED = 0,
 DXGI_MODE_SCANLINE_ORDER_PROGRESSIVE = 1,
 DXGI_MODE_SCANLINE_ORDER_UPPER_FIELD_FIRST = 2,
 DXGI_MODE_SCANLINE_ORDER_LOWER_FIELD_FIRST = 3
} DXGI_MODE_SCANLINE_ORDER;

typedef enum DXGI_MODE_SCALING
{
 DXGI_MODE_SCALING_UNSPECIFIED = 0,
 DXGI_MODE_SCALING_CENTERED = 1,
 DXGI_MODE_SCALING_STRETCHED = 2
} DXGI_MODE_SCALING;

Fixing a display mode format, we can get a list of all supported display modes an
output supports in that format with the following code:

void D3DApp::LogOutputDisplayModes(IDXGIOutput* output, DXGI_FORMAT
format)
{
 UINT count = 0;
 UINT flags = 0;

 // Call with nullptr to get list count.
 output->GetDisplayModeList(format, flags, &count, nullptr);

 std::vector<DXGI_MODE_DESC> modeList(count);
 output->GetDisplayModeList(format, flags, &count, &modeList[0]);

 for(auto& x : modeList)
 {
 UINT n = x.RefreshRate.Numerator;
 UINT d = x.RefreshRate.Denominator;
 std::wstring text =
 L"Width = " + std::to_wstring(x.Width) + L" " +
 L"Height = " + std::to_wstring(x.Height) + L" " +
 L"Refresh = " + std::to_wstring(n) + L"/" + std::to_wstring(d) +
 L"\n";

 ::OutputDebugString(text.c_str());
 }
}

An example of some of the output from this code is as follows:

***Output: \\.\DISPLAY2
...
Width = 1920 Height = 1080 Refresh = 59950/1000
Width = 1920 Height = 1200 Refresh = 59950/1000

Enumerating display modes is particularly important when going into full-screen
mode. In order to get optimal full-screen performance, the specified display mode

DIRECT3D INITIALIZATION 105

(including refresh rate), must match exactly a display mode the monitor supports.
Specifying an enumerated display mode guarantees this.

For more reference material on DXGI, we recommend reading the following
articles “DXGI Overview,” “DirectX Graphics Infrastructure: Best Practices,” and
“DXGI 1.4 Improvements” available online at:

DXGI Overview: http://msdn.microsoft.com/en-us/library/windows/desktop/
bb205075(vvs.85).aspx
DirectX Graphics Infrastructure: Best Practices: http://msdn.microsoft.com/
en-us/library/windows/desktop/ee417025(vvs.85).aspx
DXGI 1.4 Improvements: https://msdn.microsoft.com/en-us/library/windows/
desktop/mt427784%28vvs.85%29.aspx

4.1.11 Checking Feature Support
We already used the ID3D12Device::CheckFeatureSupport method to check
multisampling support by the current graphics driver. However, that is just one
feature support we can check for with this function. The prototype of this method
is as follows:

HRESULT ID3D12Device::CheckFeatureSupport(
 D3D12_FEATURE Feature,
 void *pFeatureSupportData,
 UINT FeatureSupportDataSize);

1. Feature: A member of the D3D12_FEATURE enumerated type identifying the
type of features we want to check the support:

a) D3D12_FEATURE_D3D12_OPTIONS: Checks support for various Direct3D 12
features.

b) D3D12_FEATURE_ARCHITECTURE: Checks support for hardware architecture
features.

c) D3D12_FEATURE_FEATURE_LEVELS: Checks feature level support.
d) D3D12_FEATURE_FORMAT_SUPPORT: Check feature support for a given texture

format (e.g., can the format be used as a render target, can the format be
used with blending).

e) D3D12_FEATURE_MULTISAMPLE_QUALITY_LEVELS: Check multisampling feature
support.

2. pFeatureSupportData: Pointer to a data structure to retrieve the feature
support information. The type of structure you use depends on what you
specified for the Feature parameter:

a) If you specifi ed D3D12_FEATURE_D3D12_OPTIONS, then pass an instance of
D3D12_FEATURE_DATA_D3D12_OPTIONS.

106 DIRECT3D FOUNDATIONS

b) If you specifi ed D3D12_FEATURE_ARCHITECTURE, then pass an instance of
D3D12_FEATURE_DATA_ARCHITECTURE.

c) If you specifi ed D3D12_FEATURE_FEATURE_LEVELS, then pass an instance of
D3D12_FEATURE_DATA_FEATURE_LEVELS.

d) If you specifi ed D3D12_FEATURE_FORMAT_SUPPORT, then pass an instance of
D3D12_FEATURE_DATA_FORMAT_SUPPORT.

e) If you specifi ed D3D12_FEATURE_MULTISAMPLE_QUALITY_LEVELS, then pass
an instance of D3D12_FEATURE_DATA_MULTISAMPLE_QUALITY_LEVELS.

3. FeatureSupportDataSize: The size of the data structure passed into
pFeatureSupportData the parameter.

The ID3D12Device::CheckFeatureSupport function checks support for a lot of
features, many of which we do not need to check in this book and are advanced;
see the SDK documentation for details on the data members for each feature
structure. However, as an example, we show below how to check for supported
feature levels (§4.1.9):

typedef struct D3D12_FEATURE_DATA_FEATURE_LEVELS {
 UINT NumFeatureLevels;
 const D3D_FEATURE_LEVEL *pFeatureLevelsRequested;
 D3D_FEATURE_LEVEL MaxSupportedFeatureLevel;
} D3D12_FEATURE_DATA_FEATURE_LEVELS;

D3D_FEATURE_LEVEL featureLevels[3] =
{
 D3D_FEATURE_LEVEL_11_0, // First check D3D 11 support
 D3D_FEATURE_LEVEL_10_0, // Next, check D3D 10 support
 D3D_FEATURE_LEVEL_9_3 // Finally, check D3D 9.3 support
};

D3D12_FEATURE_DATA_FEATURE_LEVELS featureLevelsInfo;
featureLevelsInfo.NumFeatureLevels = 3;
featureLevelsInfo.pFeatureLevelsRequested = featureLevels;
md3dDevice->CheckFeatureSupport(
 D3D12_FEATURE_FEATURE_LEVELS,
 &featureLevelsInfo,
 sizeof(featureLevelsInfo));

Note that the second parameter is both an input and output parameter. For
the input, we specify the number of elements (NumFeatureLevels) in a feature
level array, and a pointer to a feature level array (pFeatureLevelsRequested)
which contains a list of feature levels we want to check hardware support
for. The function outputs the maximum supported feature level through the
MaxSupportedFeatureLevel field.

DIRECT3D INITIALIZATION 107

4.1.12 Residency
A complex game will use a lot of resources such as textures and 3D meshes, but
many of these resources will not be needed by the GPU all the time. For example,
if we imagine a game with an outdoor forest that has a large cave in it, the cave
resources will not be needed until the player enters the cave, and when the player
enters the cave, the forest resources will no longer be needed.

In Direct3D 12, applications manage resource residency (essentially, whether
a resource is in GPU memory) by evicting resources from GPU memory and
then making them resident on the GPU again as needed. The basic idea is to
minimize how much GPU memory the application is using because there might
not be enough to store every resource for the entire game, or the user has other
applications running that require GPU memory. As a performance note, the
application should avoid the situation of swapping the same resources in and out
of GPU memory within a short time frame, as there is overhead for this. Ideally, if
you are going to evict a resource, that resource should not be needed for a while.
Game level/area changes are good examples of times to change resource residency.

By default, when a resource is created it is made resident and it is evicted when
it is destroyed. However, an application can manually control residency with the
following methods:

HRESULT ID3D12Device::MakeResident(
 UINT NumObjects,
 ID3D12Pageable *const *ppObjects);

HRESULT ID3D12Device::Evict(
 UINT NumObjects,
 ID3D12Pageable *const *ppObjects);

For both methods, the second parameter is an array of ID3D12Pageable
resources, and the first parameter is the number of resources in the array.

In this book, for simplicity and due to our demos being small compared to
a game, we do not manage residency. See the documentation on residency for
more information: https://msdn.microsoft.com/en-us/library/windows/desktop/
mt186622%28v=vs.85%29.aspx

4.2 CPU/GPU INTERACTION

We must understand that with graphics programming we have two processors
at work: the CPU and GPU. They work in parallel and sometimes need to be
synchronized. For optimal performance, the goal is to keep both busy for as long
as possible and minimize synchronizations. Synchronizations are undesirable

108 DIRECT3D FOUNDATIONS

because it means one processing unit is idle while waiting on the other to finish
some work; in other words, it ruins the parallelism.

4.2.1 The Command Queue and Command Lists
The GPU has a command queue. The CPU submits commands to the queue
through the Direct3D API using command lists (see Figure 4.6). It is important
to understand that once a set of commands have been submitted to the command
queue, they are not immediately executed by the GPU. They sit in the queue until
the GPU is ready to process them, as the GPU is likely busy processing previously
inserted commands.

If the command queue gets empty, the GPU will idle because it does not have
any work to do; on the other hand, if the command queue gets too full, the CPU
will at some point have to idle while the GPU catches up [Crawfi s12]. Both of
these situations are undesirable; for high performance applications like games,
the goal is to keep both CPU and GPU busy to take full advantage of the hardware
resources available.

Figure 4.6. The command queue.

In Direct3D 12, the command queue is represented by the ID3D12CommandQueue
interface. It is created by filling out a D3D12_COMMAND_QUEUE_DESC structure
describing the queue and then calling ID3D12Device::CreateCommandQueue. The
way we create our command queue in this book is as follows:

Microsoft::WRL::ComPtr<ID3D12CommandQueue> mCommandQueue;
D3D12_COMMAND_QUEUE_DESC queueDesc = {};
queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;
queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;
ThrowIfFailed(md3dDevice->CreateCommandQueue(
 &queueDesc, IID_PPV_ARGS(&mCommandQueue)));

DIRECT3D INITIALIZATION 109

The IID_PPV_ARGS helper macro is defined as:

#define IID_PPV_ARGS(ppType) __uuidof(**(ppType)), IID_PPV_ARGS_
Helper(ppType)

where __uuidof(**(ppType)) evaluates to the COM interface ID of (**(ppType)),
which in the above code is ID3D12CommandQueue. The IID_PPV_ARGS_Helper function
essentially casts ppType to a void**. We use this macro throughout this book, as
many Direct3D 12 API calls have a parameter that requires the COM ID of the
interface we are creating and take a void**.

One of the primary methods of this interface is the ExecuteCommandLists
method which adds the commands in the command lists to the queue:

void ID3D12CommandQueue::ExecuteCommandLists(
 // Number of commands lists in the array
 UINT Count,
 // Pointer to the first element in an array of command lists
 ID3D12CommandList *const *ppCommandLists);

The command lists are executed in order starting with the first array element.
As the above method declarations imply, a command list for graphics is

represented by the ID3D12GraphicsCommandList interface which inherits from
the ID3D12CommandList interface. The ID3D12GraphicsCommandList interface has
numerous methods for adding commands to the command list. For example, the
following code adds commands that set the viewport, clear the render target view,
and issue a draw call:

// mCommandList pointer to ID3D12CommandList
mCommandList->RSSetViewports(1, &mScreenViewport);
mCommandList->ClearRenderTargetView(mBackBufferView,
 Colors::LightSteelBlue, 0, nullptr);
mCommandList->DrawIndexedInstanced(36, 1, 0, 0, 0);

The names of these methods suggest that the commands are executed immediately,
but they are not. The above code just adds commands to the command list. The
ExecuteCommandLists method adds the commands to the command queue, and
the GPU processes commands from the queue. We will learn about the various
commands ID3D12GraphicsCommandList supports as we progress through this
book. When we are done adding commands to a command list, we must indicate
that we are finished recording commands by calling the ID3D12GraphicsCommandLi
st::Close method:

// Done recording commands.
mCommandList->Close();

The command list must be closed before passing it off to ID3D12CommandQueue::Ex
ecuteCommandLists.

110 DIRECT3D FOUNDATIONS

Associated with a command list is a memory backing class called an
ID3D12CommandAllocator. As commands are recorded to the command list, they
will actually be stored in the associated command allocator. When a command list
is executed via ID3D12CommandQueue::ExecuteCommandLists, the command queue
will reference the commands in the allocator. A command allocator is created
from the ID3D12Device:

HRESULT ID3D12Device::CreateCommandAllocator(
 D3D12_COMMAND_LIST_TYPE type,
 REFIID riid,
 void **ppCommandAllocator);

1. type: The type of command lists that can be associated with this allocator. The
two common types we use in this book are:

 a) D3D12_COMMAND_LIST_TYPE_DIRECT: Stores a list of commands to directly be
executed by the GPU (the type of command list we have been describing
thus far).

 b) D3D12_COMMAND_LIST_TYPE_BUNDLE: Specifies the command list represents
a bundle. There is some CPU overhead in building a command list, so
Direct3D 12 provides an optimization that allows us to record a sequence
of commands into a so-called bundle. After a bundle has been recorded,
the driver will preprocess the commands to optimize their execution
during rendering. Therefore, bundles should be recorded at initialization
time. The use of bundles should be thought of as an optimization to use if
profiling shows building particular command lists are taking significant
time. The Direct3D 12 drawing API is already very efficient, so you should
not need to use bundles often, and you should only use them if you
can demonstrate a performance gain by them; that is to say, do not use
them by default. We do not use bundles in this book; see the DirectX 12
documentation for further details.

2. riid: The COM ID of the ID3D12CommandAllocator interface we want to create.

3. ppCommandAllocator: Outputs a pointer to the created command allocator.

Command lists are also created from the ID3D12Device:

HRESULT ID3D12Device::CreateCommandList(
 UINT nodeMask,
 D3D12_COMMAND_LIST_TYPE type,
 ID3D12CommandAllocator *pCommandAllocator,
 ID3D12PipelineState *pInitialState,
 REFIID riid,
 void **ppCommandList);

DIRECT3D INITIALIZATION 111

1. nodeMask: Set to 0 for single GPU system. Otherwise, the node mask identifies
the physical GPU this command list is associated with. In this book we assume
single GPU systems.

2. type: The type of command list: either _COMMAND_LIST_TYPE_DIRECT or D3D12_
COMMAND_LIST_TYPE_BUNDLE.

3. pCommandAllocator: The allocator to be associated with the created command
list. The command allocator type must match the command list type.

4. pInitialState: Specifies the initial pipeline state of the command list. This can
be null for bundles, and in the special case where a command list is executed
for initialization purposes and does not contain any draw commands. We
discuss ID3D12PipelineState in Chapter 6.

5. riid: The COM ID of the ID3D12CommandList interface we want to create.

6. ppCommandList: Outputs a pointer to the created command list.

You can use the ID3D12Device::GetNodeCount method to query the number of
GPU adapter nodes on the system.

You can create multiple command lists associated with the same allocator, but
you cannot record at the same time. That is, all command lists must be closed
except the one whose commands we are going to record. Thus, all commands
from a given command list will be added to the allocator contiguously. Note
that when a command list is created or reset, it is in an “open” state. So if we
tried to create two command lists in a row with the same allocator, we would get
an error:

D3D12 ERROR: ID3D12CommandList::{Create,Reset}CommandList: The command
allocator is currently in-use by another command list.

After we have called ID3D12CommandQueue::ExecuteCommandList(C), it is safe to
reuse the internal memory of C to record a new set of commands by calling the
ID3D12CommandList::Reset method. The parameters of this method are the same
as the matching parameters in ID3D12Device::CreateCommandList.

HRESULT ID3D12CommandList::Reset(
 ID3D12CommandAllocator *pAllocator,
 ID3D12PipelineState *pInitialState);

This method puts the command list in the same state as if it was just created, but
allows us to reuse the internal memory and avoid deallocating the old command
list and allocating a new one. Note that resetting the command list does not affect
the commands in the command queue because the associated command allocator
still has the commands in memory that the command queue references.

Note:

112 DIRECT3D FOUNDATIONS

After we have submitted the rendering commands for a complete frame to the
GPU, we would like to reuse the memory in the command allocator for the next
frame. The ID3D12CommandAllocator::Reset method may be used for this:

HRESULT ID3D12CommandAllocator::Reset(void);

The idea of this is analogous to calling std::vector::clear, which resizes a vector
back to zero, but keeps the current capacity the same. However, because the
command queue may be referencing data in an allocator, a command allocator
must not be reset until we are sure the GPU has finished executing all the
commands in the allocator; how to do this is covered in the next section.

4.2.2 CPU/GPU Synchronization
Due to having two processors running in parallel, a number of synchronization
issues appear.

Suppose we have some resource R that stores the position of some geometry we
wish to draw. Furthermore, suppose the CPU updates the data of R to store position
p1 and then adds a drawing command C that references R to the command queue
with the intent of drawing the geometry at position p1. Adding commands to the
command queue does not block the CPU, so the CPU continues on. It would be an
error for the CPU to continue on and overwrite the data of R to store a new position
p2 before the GPU executed the draw command C (see Figure 4.7).

One solution to this situation is to force the CPU to wait until the GPU has
fi nished processing all the commands in the queue up to a specifi ed fence point.
We call this fl ushing the command queue. We can do this using a fence. A fence is
represented by the ID3D12Fence interface and is used to synchronize the GPU and
CPU. A fence object can be created with the following method:

HRESULT ID3D12Device::CreateFence(
 UINT64 InitialValue,

Figure 4.7. This is an error because C draws the geometry with p2 or draws while R is in the middle of being
updated. In any case, this is not the intended behavior.

DIRECT3D INITIALIZATION 113

 D3D12_FENCE_FLAGS Flags,
 REFIID riid,
 void **ppFence);

// Example
ThrowIfFailed(md3dDevice->CreateFence(
 0,
 D3D12_FENCE_FLAG_NONE,
 IID_PPV_ARGS(&mFence)));

A fence object maintains a UINT64 value, which is just an integer to identify a
fence point in time. We start at value zero and every time we need to mark a new
fence point, we just increment the integer. Now, the following code/comments
show how we can use a fence to flush the command queue.

UINT64 mCurrentFence = 0;
void D3DApp::FlushCommandQueue()
{
 // Advance the fence value to mark commands up to this fence point.
 mCurrentFence++;

 // Add an instruction to the command queue to set a new fence point.
 // Because we are on the GPU timeline, the new fence point won’t be
 // set until the GPU finishes processing all the commands prior to
 // this Signal().
 ThrowIfFailed(mCommandQueue->Signal(mFence.Get(), mCurrentFence));

 // Wait until the GPU has completed commands up to this fence point.
 if(mFence->GetCompletedValue() < mCurrentFence)
 {
 HANDLE eventHandle = CreateEventEx(nullptr, false, false, EVENT_

ALL_ACCESS);

 // Fire event when GPU hits current fence.
 ThrowIfFailed(mFence->SetEventOnCompletion(mCurrentFence,

eventHandle));

 // Wait until the GPU hits current fence event is fired.
 WaitForSingleObject(eventHandle, INFINITE);
 CloseHandle(eventHandle);
 }
}

Figure 4.8 explains this code graphically.
So in the previous example, after the CPU issued the draw command C, it would

fl ush the command queue before overwriting the data of R to store a new position
p2. This solution is not ideal because it means the CPU is idle while waiting for the
GPU to fi nish, but it provides a simple solution that we will use until Chapter 7.
You can fl ush the command queue at almost any point (not necessarily only once
per frame); if you have some initialization GPU commands, you can fl ush the
command queue to execute the initialization before entering the main rendering
loop, for example.

114 DIRECT3D FOUNDATIONS

Note that fl ushing the command queue also can be used to solve the problem
we mentioned at the end of the last section; that is, we can fl ush the command
queue to be sure that all the GPU commands have been executed before we reset
the command allocator.

4.2.3 Resource Transitions
To implement common rendering effects, it is common for the GPU to write
to a resource R in one step, and then, in a later step, read from the resource R.
However, it would be a resource hazard to read from a resource if the GPU has
not finished writing to it or not started writing at all. To solve this problem,
Direct3D associates a state to resources. Resources are in a default state when
they are created, and it is up to the application to tell Direct3D any state
transitions. This enables the GPU to do any work it needs to do to make the
transition and prevent resource hazards. For example, if we are writing to a
resource, say a texture, we will set the texture state to a render target state; when
we need to read the texture, we will change its state to a shader resource state. By
informing Direct3D of a transition, the GPU can take steps to avoid the hazard,
for example, by waiting for all the write operations to complete before reading
from the resource. The burden of resource transition falls on the application
developer for performance reasons. The application developer knows when
these transitions are happening. An automatic transition tracking system would
impose additional overhead.

A resource transition is specifi ed by setting an array of transition resource
barriers on the command list; it is an array in case you want to transition multiple
resources with one API call. In code, a resource barrier is represented by the
D3D12_RESOURCE_BARRIER_DESC structure. The following helper function (defi ned
in d3dx12.h) returns a transition resource barrier description for a given resource,
and specifi es the before and after states:

struct CD3DX12_RESOURCE_BARRIER : public D3D12_RESOURCE_BARRIER

Figure 4.8. At this snapshot, the GPU has processed commands up to xgpu and the CPU has just called the
ID3D12CommandQueue::Signal(fence, n+1) method. This essentially adds an instruction to the
end of the queue to change the fence value to n + 1. However, mFence->GetCompletedValue() will
continue to return n until the GPU processes all the commands in the queue that were added prior to the
Signal(fence, n+1) instruction.

DIRECT3D INITIALIZATION 115

{
 // [...] convenience methods

static inline CD3DX12_RESOURCE_BARRIER Transition(
 In ID3D12Resource* pResource,
 D3D12_RESOURCE_STATES stateBefore,
 D3D12_RESOURCE_STATES stateAfter,
 UINT subresource = D3D12_RESOURCE_BARRIER_ALL_SUBRESOURCES,
 D3D12_RESOURCE_BARRIER_FLAGS flags = D3D12_RESOURCE_BARRIER_FLAG_

NONE)
 {
 CD3DX12_RESOURCE_BARRIER result;
 ZeroMemory(&result, sizeof(result));
 D3D12_RESOURCE_BARRIER &barrier = result;
 result.Type = D3D12_RESOURCE_BARRIER_TYPE_TRANSITION;
 result.Flags = flags;
 barrier.Transition.pResource = pResource;
 barrier.Transition.StateBefore = stateBefore;
 barrier.Transition.StateAfter = stateAfter;
 barrier.Transition.Subresource = subresource;
 return result;
 }

 // [...] more convenience methods
};

Observe that CD3DX12_RESOURCE_BARRIER extends D3D12_RESOURCE_BARRIER_DESC
and adds convenience methods. Most Direct3D 12 structures have extended
helper variations, and we prefer those variations for the convenience. The
CD3DX12 variations are all defined in d3dx12.h. This file is not part of the core
DirectX 12 SDK, but is available for download from Microsoft. For convenience, a
copy is included in the Common directory of the book’s source code.

An example of this function from this chapter’s sample application is as follows:

mCommandList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(
 CurrentBackBuffer(),
 D3D12_RESOURCE_STATE_PRESENT,
 D3D12_RESOURCE_STATE_RENDER_TARGET));

This code transitions a texture representing the image we are displaying on screen
from a presentation state to a render target state. Observe that the resource barrier
is added to the command list. You can think of the resource barrier transition
as a command itself instructing the GPU that the state of a resource is being
transitioned, so that it can take the necessary steps to prevent a resource hazard
when executing subsequent commands.

There are other types of resource barriers besides transition types. For now, we
only need the transition types. We will introduce the other types when we need
them.

Note:

116 DIRECT3D FOUNDATIONS

4.2.4 Multithreading with Commands
Direct3D 12 was designed for effi cient multithreading. The command list

design is one way Direct3D takes advantage of multithreading. For large scenes
with lots of objects, building the command list to draw the entire scene can take
CPU time. So the idea is to build command lists in parallel; for example, you
might spawn four threads, each responsible for building a command list to draw
25% of the scene objects.

A few things to note about command list multithreading:

1. Command list are not free-threaded; that is, multiple threads may not share
the same command list and call its methods concurrently. So generally, each
thread will get its own command list.

2. Command allocators are not free-threaded; that is, multiple threads may
not share the same command allocator and call its methods concurrently. So
generally, each thread will get its own command allocator.

3. The command queue is free-threaded, so multiple threads can access the
command queue and call its methods concurrently. In particular, each thread
can submit their generated command list to the thread queue concurrently.

4. For performance reasons, the application must specify at initialization time
the maximum number of command lists they will record concurrently.

For simplicity, we will not use multithreading in this book. Once the reader is
finished with this book, we recommend they study the Multithreading12 SDK
sample to see how command lists can be generated in parallel. Applications that
want to maximize system resources should definitely use multithreading to take
advantage of multiple CPU cores.

4.3 INITIALIZING DIRECT3D

The following subsections show how to initialize Direct3D for our demo
framework. It is a long process, but only needs to be done once. Our process of
initializing Direct3D can be broken down into the following steps:

1. Create the ID3D12Device using the D3D12CreateDevice function.

2. Create an ID3D12Fence object and query descriptor sizes.

3. Check 4X MSAA quality level support.

4. Create the command queue, command list allocator, and main command list.

5. Describe and create the swap chain.

6. Create the descriptor heaps the application requires.

DIRECT3D INITIALIZATION 117

7. Resize the back buffer and create a render target view to the back buffer.

8. Create the depth/stencil buffer and its associated depth/stencil view.

9. Set the viewport and scissor rectangles.

4.3.1 Create the Device
Initializing Direct3D begins by creating the Direct3D 12 device (ID3D12Device).
The device represents a display adapter. Usually, the display adapter is a physical
piece of 3D hardware (e.g., graphics card); however, a system can also have a
software display adapter that emulates 3D hardware functionality (e.g., the WARP
adapter). The Direct3D 12 device is used to check feature support, and create all
other Direct3D interface objects like resources, views, and command lists. The
device can be created with the following function:

HRESULT WINAPI D3D12CreateDevice(
 IUnknown* pAdapter,
 D3D_FEATURE_LEVEL MinimumFeatureLevel,
 REFIID riid, // Expected: ID3D12Device
 void** ppDevice);

1. pAdapter: Specifies the display adapter we want the created device to represent.
Specifying null for this parameter uses the primary display adapter. We always
use the primary adapter in the sample programs of this book. §4.1.10 showed
how to enumerate all the system’s display adapters.

2. MinimumFeatureLevel: The minimum feature level our application requires
support for; device creation will fail if the adapter does not support this
feature level. In our framework, we specify D3D_FEATURE_LEVEL_11_0 (i.e.,
Direct3D 11 feature support).

3. riid: The COM ID of the ID3D12Device interface we want to create.

4. ppDevice: Returns the created device.

Here is an example call of this function:

#if defined(DEBUG) || defined(_DEBUG)
// Enable the D3D12 debug layer.
{
 ComPtr<ID3D12Debug> debugController;
 ThrowIfFailed(D3D12GetDebugInterface(IID_PPV_

ARGS(&debugController)));
 debugController->EnableDebugLayer();
}
#endif

ThrowIfFailed(CreateDXGIFactory1(IID_PPV_ARGS(&mdxgiFactory)));

// Try to create hardware device.

118 DIRECT3D FOUNDATIONS

HRESULT hardwareResult = D3D12CreateDevice(
 nullptr, // default adapter
 D3D_FEATURE_LEVEL_11_0,
 IID_PPV_ARGS(&md3dDevice));

// Fallback to WARP device.
if(FAILED(hardwareResult))
{
 ComPtr<IDXGIAdapter> pWarpAdapter;
 ThrowIfFailed(mdxgiFactory->EnumWarpAdapter(IID_PPV_

ARGS(&pWarpAdapter)));

 ThrowIfFailed(D3D12CreateDevice(
 pWarpAdapter.Get(),
 D3D_FEATURE_LEVEL_11_0,
 IID_PPV_ARGS(&md3dDevice)));
}

Observe that we first enable the debug layer for debug mode builds. When the
debug layer is enabled, Direct3D will enable extra debugging and send debug
messages to the VC output window like the following:

D3D12 ERROR: ID3D12CommandList::Reset: Reset fails because the command
list was not closed.

Also observe that if our call to D3D12CreateDevice fails, we fallback to a WARP
device, which is a software adapter. WARP stands for Windows Advanced
Rasterization Platform. On Windows 7 and lower, the WARP device supports up
to feature level 10.1; on Windows 8, the WARP device supports up to feature level
11.1. In order to create a WARP adapter, we need to create an IDXGIFactory4 object
so that we can enumerate the warp adapter:

ComPtr<IDXGIFactory4> mdxgiFactory;
CreateDXGIFactory1(IID_PPV_ARGS(&mdxgiFactory));
mdxgiFactory->EnumWarpAdapter(
 IID_PPV_ARGS(&pWarpAdapter));

The mdxgiFactory object will also be used to create our swap chain since it is part
of the DXGI.

4.3.2 Create the Fence and Descriptor Sizes
After we have created our device, we can create our fence object for CPU/GPU
synchronization. In addition, once we get to working with descriptors, we are
going to need to know their size. Descriptor sizes can vary across GPUs so we need
to query this information. We cache the descriptor sizes so that it is available when
we need it for various descriptor types:

ThrowIfFailed(md3dDevice->CreateFence(
 0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&mFence)));

DIRECT3D INITIALIZATION 119

mRtvDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize(
 D3D12_DESCRIPTOR_HEAP_TYPE_RTV);
mDsvDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize(
 D3D12_DESCRIPTOR_HEAP_TYPE_DSV);
mCbvSrvDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize(
 D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);

4.3.3 Check 4X MSAA Quality Support
In this book, we check support for 4X MSAA. We choose 4X because it gives a
good improvement without being overly expensive, and because all Direct3D 11
capable devices support 4X MSAA with all render target formats. Therefore, it is
guaranteed to be available on Direct3D 11 hardware and we do not have to verify
support for it. However, we do have to check the supported quality level, which
can be done with the following method:

D3D12_FEATURE_DATA_MULTISAMPLE_QUALITY_LEVELS msQualityLevels;
msQualityLevels.Format = mBackBufferFormat;
msQualityLevels.SampleCount = 4;
msQualityLevels.Flags = D3D12_MULTISAMPLE_QUALITY_LEVELS_FLAG_NONE;
msQualityLevels.NumQualityLevels = 0;
ThrowIfFailed(md3dDevice->CheckFeatureSupport(
 D3D12_FEATURE_MULTISAMPLE_QUALITY_LEVELS,
 &msQualityLevels,
 sizeof(msQualityLevels)));

m4xMsaaQuality = msQualityLevels.NumQualityLevels;
assert(m4xMsaaQuality > 0 && "Unexpected MSAA quality level.");

Because 4X MSAA is always supported, the returned quality should always be
greater than 0; therefore, we assert that this is the case.

4.3.4 Create Command Queue and Command List
Recall from §4.2.1 that a command queue is represented by the ID3D12CommandQueue
interface, a command allocator is represented by the ID3D12CommandAllocator
interface, and a command list is represented by the ID3D12GraphicsCommandList
interface. The following function shows how we create a command queue,
command allocator, and command list:

ComPtr<ID3D12CommandQueue> mCommandQueue;
ComPtr<ID3D12CommandAllocator> mDirectCmdListAlloc;
ComPtr<ID3D12GraphicsCommandList> mCommandList;
void D3DApp::CreateCommandObjects()
{
 D3D12_COMMAND_QUEUE_DESC queueDesc = {};
 queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;
 queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;
 ThrowIfFailed(md3dDevice->CreateCommandQueue(
 &queueDesc, IID_PPV_ARGS(&mCommandQueue)));

120 DIRECT3D FOUNDATIONS

 ThrowIfFailed(md3dDevice->CreateCommandAllocator(
 D3D12_COMMAND_LIST_TYPE_DIRECT,
 IID_PPV_ARGS(mDirectCmdListAlloc.GetAddressOf())));

 ThrowIfFailed(md3dDevice->CreateCommandList(
 0,
 D3D12_COMMAND_LIST_TYPE_DIRECT,
 mDirectCmdListAlloc.Get(), // Associated command allocator
 nullptr, // Initial PipelineStateObject
 IID_PPV_ARGS(mCommandList.GetAddressOf())));

 // Start off in a closed state. This is because the first time we
 // refer to the command list we will Reset it, and it needs to be
 // closed before calling Reset.
 mCommandList->Close();
}

Observe that for CreateCommandList, we specify null for the pipeline state object
parameter. In this chapter’s sample program, we do not issue any draw commands,
so we do not need a valid pipeline state object. We will discuss pipeline state
objects in Chapter 6.

4.3.5 Describe and Create the Swap Chain
The next step in the initialization process is to create the swap chain. This is
done by first filling out an instance of the DXGI_SWAP_CHAIN_DESC structure,
which describes the characteristics of the swap chain we are going to create. This
structure is defined as follows:

typedef struct DXGI_SWAP_CHAIN_DESC
{
 DXGI_MODE_DESC BufferDesc;
 DXGI_SAMPLE_DESC SampleDesc;
 DXGI_USAGE BufferUsage;
 UINT BufferCount;
 HWND OutputWindow;
 BOOL Windowed;
 DXGI_SWAP_EFFECT SwapEffect;
 UINT Flags;
} DXGI_SWAP_CHAIN_DESC;

The DXGI_MODE_DESC type is another structure, defined as:

typedef struct DXGI_MODE_DESC
{
 UINT Width; // Buffer resolution width
 UINT Height; // Buffer resolution height
 DXGI_RATIONAL RefreshRate;
 DXGI_FORMAT Format; // Buffer display format
 DXGI_MODE_SCANLINE_ORDER ScanlineOrdering; //Progressive vs.

interlaced

DIRECT3D INITIALIZATION 121

 DXGI_MODE_SCALING Scaling; // How the image is stretched
 // over the monitor.

} DXGI_MODE_DESC;

In the following data member descriptions, we only cover the common flags and
options that are most important to a beginner at this point. For a description of
further flags and options, refer to the SDK documentation.

1. BufferDesc: This structure describes the properties of the back buffer we
want to create. The main properties we are concerned with are the width and
height, and pixel format; see the SDK documentation for further details on
the other members.

2. SampleDesc: The number of multisamples and quality level; see §4.1.8. For
single sampling, specify a sample count of 1 and quality level of 0.

3. BufferUsage: Specify DXGI_USAGE_RENDER_TARGET_OUTPUT since we are going to
be rendering to the back buffer (i.e., use it as a render target).

4. BufferCount: The number of buffers to use in the swap chain; specify two for
double buffering.

5. OutputWindow: A handle to the window we are rendering into.

6. Windowed: Specify true to run in windowed mode or false for full-screen
mode.

7. SwapEffect: Specify DXGI_SWAP_EFFECT_FLIP_DISCARD.

8. Flags: Optional flags. If you specify DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_

SWITCH, then when the application is switching to full-screen mode, it will
choose a display mode that best matches the current application window
dimensions. If this flag is not specified, then when the application is switching
to full-screen mode, it will use the current desktop display mode.

After we have described out swap chain, we can create it with the
IDXGIFactory::CreateSwapChain method:

HRESULT IDXGIFactory::CreateSwapChain(
 IUnknown *pDevice, // Pointer to ID3D12CommandQueue.
 DXGI_SWAP_CHAIN_DESC *pDesc, // Pointer to swap chain description.
 IDXGISwapChain **ppSwapChain);// Returns created swap chain interface.

The following code shows how we create the swap chain in our sample framework.
Observe that this function has been designed so that it can be called multiple
times. It will destroy the old swap chain before creating the new one. This allows
us to recreate the swap chain with different settings; in particular, we can change
the multisampling settings at runtime.

DXGI_FORMAT mBackBufferFormat = DXGI_FORMAT_R8G8B8A8_UNORM;

122 DIRECT3D FOUNDATIONS

void D3DApp::CreateSwapChain()
{
 // Release the previous swapchain we will be recreating.
 mSwapChain.Reset();

 DXGI_SWAP_CHAIN_DESC sd;
 sd.BufferDesc.Width = mClientWidth;
 sd.BufferDesc.Height = mClientHeight;
 sd.BufferDesc.RefreshRate.Numerator = 60;
 sd.BufferDesc.RefreshRate.Denominator = 1;
 sd.BufferDesc.Format = mBackBufferFormat;
 sd.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_

UNSPECIFIED;
 sd.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;
 sd.SampleDesc.Count = m4xMsaaState ? 4 : 1;
 sd.SampleDesc.Quality = m4xMsaaState ? (m4xMsaaQuality - 1) : 0;
 sd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
 sd.BufferCount = SwapChainBufferCount;
 sd.OutputWindow = mhMainWnd;
 sd.Windowed = true;
 sd.SwapEffect = DXGI_SWAP_EFFECT_FLIP_DISCARD;
 sd.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH;
 // Note: Swap chain uses queue to perform flush.
 ThrowIfFailed(mdxgiFactory->CreateSwapChain(
 mCommandQueue.Get(),
 &sd,
 mSwapChain.GetAddressOf()));
}

4.3.6 Create the Descriptor Heaps
We need to create the descriptor heaps to store the descriptors/views (§4.1.6) our
application needs. A descriptor heap is represented by the ID3D12DescriptorHeap
interface. A heap is created with the ID3D12Device::CreateDescriptorHeap
method. In this chapter’s sample program, we need SwapChainBufferCount many
render target views (RTVs) to describe the buffer resources in the swap chain
we will render into, and one depth/stencil view (DSV) to describe the depth/
stencil buffer resource for depth testing. Therefore, we need a heap for storing
SwapChainBufferCount RTVs, and we need a heap for storing one DSV. These
heaps are created with the following code:

ComPtr<ID3D12DescriptorHeap> mRtvHeap;
ComPtr<ID3D12DescriptorHeap> mDsvHeap;
void D3DApp::CreateRtvAndDsvDescriptorHeaps()
{
 D3D12_DESCRIPTOR_HEAP_DESC rtvHeapDesc;
 rtvHeapDesc.NumDescriptors = SwapChainBufferCount;
 rtvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV;
 rtvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
 rtvHeapDesc.NodeMask = 0;

DIRECT3D INITIALIZATION 123

 ThrowIfFailed(md3dDevice->CreateDescriptorHeap(
 &rtvHeapDesc, IID_PPV_ARGS(mRtvHeap.GetAddressOf())));

 D3D12_DESCRIPTOR_HEAP_DESC dsvHeapDesc;
 dsvHeapDesc.NumDescriptors = 1;
 dsvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_DSV;
 dsvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
 dsvHeapDesc.NodeMask = 0;
 ThrowIfFailed(md3dDevice->CreateDescriptorHeap(
 &dsvHeapDesc, IID_PPV_ARGS(mDsvHeap.GetAddressOf())));
}

In our application framework, we defi ne

static const int SwapChainBufferCount = 2;
int mCurrBackBuffer = 0;

and we keep track of the current back buffer index with mCurrBackBuffer (recall
that the front and back buffers get swapped in page flipping, so we need to track
which buffer is the current back buffer so we know which one to render to).

After we create the heaps, we need to be able to access the descriptors they
store. Our application references descriptors through handles. A handle to the
fi rst descriptor in a heap is obtained with the ID3D12DescriptorHeap::GetCPUDesc
riptorHandleForHeapStart method. The following functions get the current back
buffer RTV and DSV, respectively:

D3D12_CPU_DESCRIPTOR_HANDLE CurrentBackBufferView()const
{
 // CD3DX12 constructor to offset to the RTV of the current back buffer.
 return CD3DX12_CPU_DESCRIPTOR_HANDLE(
 mRtvHeap->GetCPUDescriptorHandleForHeapStart(),// handle start
 mCurrBackBuffer, // index to offset
 mRtvDescriptorSize); // byte size of descriptor
}

D3D12_CPU_DESCRIPTOR_HANDLE DepthStencilView()const
{
 return mDsvHeap->GetCPUDescriptorHandleForHeapStart();
}

We now see an example of where the descriptor size is needed. In order to offset
to the current back buffer RTV descriptor, we need to know the RTV descriptor
byte size.

4.3.7 Create the Render Target View
As said in §4.1.6, we do not bind a resource to a pipeline stage directly; instead, we
must create a resource view (descriptor) to the resource and bind the view to the

124 DIRECT3D FOUNDATIONS

pipeline stage. In particular, in order to bind the back buffer to the output merger
stage of the pipeline (so Direct3D can render onto it), we need to create a render
target view to the back buffer. The first step is to get the buffer resources which are
stored in the swap chain:

HRESULT IDXGISwapChain::GetBuffer(

 UINT Buffer,

 REFIID riid,
 void **ppSurface);

1. Buffer: An index identifying the particular back buffer we want to get (in case
there is more than one).

2. riid: The COM ID of the ID3D12Resource interface we want to obtain a
pointer to.

3. ppSurface: Returns a pointer to an ID3D12Resource that represents the back
buffer.

The call to IDXGISwapChain::GetBuffer increases the COM reference count to
the back buffer, so we must release it when we are finished with it. This is done
automatically if using a ComPtr.

To create the render target view, we use the ID3D12Device::CreateRenderTarge
tView method:

void ID3D12Device::CreateRenderTargetView(
 ID3D12Resource *pResource,
 const D3D12_RENDER_TARGET_VIEW_DESC *pDesc,
 D3D12_CPU_DESCRIPTOR_HANDLE DestDescriptor);

1. pResource: Specifies the resource that will be used as the render target, which,
in the example above, is the back buffer (i.e., we are creating a render target
view to the back buffer).

2. pDesc: A pointer to a D3D12_RENDER_TARGET_VIEW_DESC. Among other things,
this structure describes the data type (format) of the elements in the resource.
If the resource was created with a typed format (i.e., not typeless), then this
parameter can be null, which indicates to create a view to the first mipmap
level of this resource (the back buffer only has one mipmap level) with the
format the resource was created with. (Mipmaps are discussed in Chapter
9.) Because we specified the type of our back buffer, we specify null for this
parameter.

3. DestDescriptor: Handle to the descriptor that will store the created render
target view.

DIRECT3D INITIALIZATION 125

Below is an example of calling these two methods where we create an RTV to each
buffer in the swap chain:

ComPtr<ID3D12Resource> mSwapChainBuffer[SwapChainBufferCount];
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHeapHandle(
 mRtvHeap->GetCPUDescriptorHandleForHeapStart());
for (UINT i = 0; i < SwapChainBufferCount; i++)
{
 // Get the ith buffer in the swap chain.
 ThrowIfFailed(mSwapChain->GetBuffer(
 i, IID_PPV_ARGS(&mSwapChainBuffer[i])));

 // Create an RTV to it.
 md3dDevice->CreateRenderTargetView(
 mSwapChainBuffer[i].Get(), nullptr, rtvHeapHandle);

 // Next entry in heap.
 rtvHeapHandle.Offset(1, mRtvDescriptorSize);
}

4.3.8 Create the Depth/Stencil Buffer and View
We now need to create the depth/stencil buffer. As described in §4.1.5, the
depth buffer is just a 2D texture that stores the depth information of the nearest
visible objects (and stencil information if using stenciling). A texture is a kind
of GPU resource, so we create one by filling out a D3D12_RESOURCE_DESC structure
describing the texture resource, and then calling the ID3D12Device::CreateCommi
ttedResource method. The D3D12_RESOURCE_DESC structure is defined as follows:

typedef struct D3D12_RESOURCE_DESC
 {
 D3D12_RESOURCE_DIMENSION Dimension;
 UINT64 Alignment;
 UINT64 Width;
 UINT Height;
 UINT16 DepthOrArraySize;
 UINT16 MipLevels;
 DXGI_FORMAT Format;
 DXGI_SAMPLE_DESC SampleDesc;
 D3D12_TEXTURE_LAYOUT Layout;
 D3D12_RESOURCE_MISC_FLAG MiscFlags;
} D3D12_RESOURCE_DESC;

1. Dimension: The dimension of the resource, which is one of the following
enumerated types:

 enum D3D12_RESOURCE_DIMENSION
 {
 D3D12_RESOURCE_DIMENSION_UNKNOWN = 0,
 D3D12_RESOURCE_DIMENSION_BUFFER = 1,
 D3D12_RESOURCE_DIMENSION_TEXTURE1D = 2,

126 DIRECT3D FOUNDATIONS

 D3D12_RESOURCE_DIMENSION_TEXTURE2D = 3,
 D3D12_RESOURCE_DIMENSION_TEXTURE3D = 4
 } D3D12_RESOURCE_DIMENSION;

2. Width: The width of the texture in texels. For buffer resources, this is the
number of bytes in the buffer.

3. Height: The height of the texture in texels.

4. DepthOrArraySize: The depth of the texture in texels, or the texture array size
(for 1D and 2D textures). Note that you cannot have a texture array of 3D
textures.

5. MipLevels: The number of mipmap levels. Mipmaps are covered in Chapter 9
on texturing. For creating the depth/stencil buffer, our texture only needs one
mipmap level.

6. Format: A member of the DXGI_FORMAT enumerated type specifying the format
of the texels. For a depth/stencil buffer, this needs to be one of the formats
shown in §4.1.5.

7. SampleDesc: The number of multisamples and quality level; see §4.1.7 and
§4.1.8. Recall that 4X MSAA uses a back buffer and depth buffer 4X bigger than
the screen resolution, in order to store color and depth/stencil information
per subpixel. Therefore, the multisampling settings used for the depth/stencil
buffer must match the settings used for the render target.

8. Layout: A member of the D3D12_TEXTURE_LAYOUT enumerated type that specifies
the texture layout. For now, we do not have to worry about the layout and can
specify D3D12_TEXTURE_LAYOUT_UNKNOWN.

9. MiscFlags: Miscellaneous resource flags. For a depth/stencil buffer resource,
specify D3D12_RESOURCE_MISC_DEPTH_STENCIL.

GPU resources live in heaps, which are essentially blocks of GPU memory with
certain properties. The ID3D12Device::CreateCommittedResource method creates
and commits a resource to a particular heap with the properties we specify.

HRESULT ID3D12Device::CreateCommittedResource(
 const D3D12_HEAP_PROPERTIES *pHeapProperties,
 D3D12_HEAP_MISC_FLAG HeapMiscFlags,
 const D3D12_RESOURCE_DESC *pResourceDesc,
 D3D12_RESOURCE_USAGE InitialResourceState,
 const D3D12_CLEAR_VALUE *pOptimizedClearValue,
 REFIID riidResource,
 void **ppvResource);

typedef struct D3D12_HEAP_PROPERTIES {
 D3D12_HEAP_TYPE Type;
 D3D12_CPU_PAGE_PROPERTIES CPUPageProperties;
 D3D12_MEMORY_POOL MemoryPoolPreference;

DIRECT3D INITIALIZATION 127

 UINT CreationNodeMask;
 UINT VisibleNodeMask;
} D3D12_HEAP_PROPERTIES;

1. pHeapProperties: The properties of the heap we want to commit the resource
to. Some of these properties are for advanced usage. For now, the main
property we need to worry about is the D3D12_HEAP_TYPE, which can be one of
the following members of the D3D12_HEAP_PROPERTIES enumerated type:

 a) D3D12_HEAP_TYPE_DEFAULT: Default heap. This is where we commit resources
that will be solely accessed by the GPU. Take the depth/stencil buffer as an
example: The GPU reads and writes to the depth/stencil buffer. The CPU
never needs access to it, so the depth/stencil buffer would be placed in the
default heap.

 b) D3D12_HEAP_TYPE_UPLOAD: Upload heap. This is where we commit resources
where we need to upload data from the CPU to the GPU resource.

 c) D3D12_HEAP_TYPE_READBACK: Read-back heap. This is where we commit
resources that need to be read by the CPU.

 d) D3D12_HEAP_TYPE_CUSTOM: For advanced usage scenarios—see the MSDN
documentation for more information.

2. HeapMiscFlags: Additional flags about the heap we want to commit the
resource to. This will usually be D3D12_HEAP_MISC_NONE.

3. pResourceDesc: Pointer to a D3D12_RESOURCE_DESC instance describing the
resource we want to create.

4. InitialResourceState: Recall from §4.2.3 that resources have a current usage
state. Use this parameter to set the initial state of the resource when it is
created. For the depth/stencil buffer, the initial state will be D3D12_RESOURCE_
USAGE_INITIAL, and then we will want to transition it to the D3D12_RESOURCE_
USAGE_DEPTH so it can be bound to the pipeline as a depth/stencil buffer.

5. pOptimizedClearValue: Pointer to a D3D12_CLEAR_VALUE object that describes
an optimized value for clearing resources. Clear calls that match the optimized
clear value can potentially be faster than clear calls that do not match the
optimized clear value. Null can also be specified for this value to not specify
an optimized clear value.

 struct D3D12_CLEAR_VALUE
 {
 DXGI_FORMAT Format;
 union
 {
 FLOAT Color[4];
 D3D12_DEPTH_STENCIL_VALUE DepthStencil;
 };
 } D3D12_CLEAR_VALUE;

128 DIRECT3D FOUNDATIONS

6. riidResource: The COM ID of the ID3D12Resource interface we want to obtain
a pointer to.

7. ppvResource: Returns pointer to an ID3D12Resource that represents the newly
created resource.

Resources should be placed in the default heap for optimal performance. Only
use upload or read back heaps if you need those features.

In addition, before using the depth/stencil buffer, we must create an associated
depth/stencil view to be bound to the pipeline. This is done similarly to creating
the render target view. The following code example shows how we create the
depth/stencil texture and its corresponding depth/stencil view:

// Create the depth/stencil buffer and view.
D3D12_RESOURCE_DESC depthStencilDesc;
depthStencilDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;
depthStencilDesc.Alignment = 0;
depthStencilDesc.Width = mClientWidth;
depthStencilDesc.Height = mClientHeight;
depthStencilDesc.DepthOrArraySize = 1;
depthStencilDesc.MipLevels = 1;
depthStencilDesc.Format = mDepthStencilFormat;
depthStencilDesc.SampleDesc.Count = m4xMsaaState ? 4 : 1;
depthStencilDesc.SampleDesc.Quality = m4xMsaaState ? (m4xMsaaQuality - 1) : 0;
depthStencilDesc.Layout = D3D12_TEXTURE_LAYOUT_UNKNOWN;
depthStencilDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL;

D3D12_CLEAR_VALUE optClear;
optClear.Format = mDepthStencilFormat;
optClear.DepthStencil.Depth = 1.0f;
optClear.DepthStencil.Stencil = 0;
ThrowIfFailed(md3dDevice->CreateCommittedResource(
 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
 D3D12_HEAP_FLAG_NONE,
 &depthStencilDesc,
 D3D12_RESOURCE_STATE_COMMON,
 &optClear,
 IID_PPV_ARGS(mDepthStencilBuffer.GetAddressOf())));

// Create descriptor to mip level 0 of entire resource using the
// format of the resource.
md3dDevice->CreateDepthStencilView(
 mDepthStencilBuffer.Get(),
 nullptr,
 DepthStencilView());

// Transition the resource from its initial state to be used as a depth buffer.
mCommandList->ResourceBarrier(
 1,
 &CD3DX12_RESOURCE_BARRIER::Transition(
 mDepthStencilBuffer.Get(),

Note:

DIRECT3D INITIALIZATION 129

 D3D12_RESOURCE_STATE_COMMON,
 D3D12_RESOURCE_STATE_DEPTH_WRITE));

Note that we use the CD3DX12_HEAP_PROPERTIES helper constructor to create the
heap properties structure, which is implemented like so:

explicit CD3DX12_HEAP_PROPERTIES(
 D3D12_HEAP_TYPE type,
 UINT creationNodeMask = 1,
 UINT nodeMask = 1)
{
 Type = type;
 CPUPageProperty = D3D12_CPU_PAGE_PROPERTY_UNKNOWN;
 MemoryPoolPreference = D3D12_MEMORY_POOL_UNKNOWN;
 CreationNodeMask = creationNodeMask;
 VisibleNodeMask = nodeMask;
}

The second parameter of CreateDepthStencilView is a pointer to a D3D12_DEPTH_
STENCIL_VIEW_DESC. Among other things, this structure describes the data type
(format) of the elements in the resource. If the resource was created with a typed
format (i.e., not typeless), then this parameter can be null, which indicates to
create a view to the first mipmap level of this resource (the depth/stencil buffer
was created with only one mipmap level) with the format the resource was created
with. (Mipmaps are discussed in Chapter 9.) Because we specified the type of our
depth/stencil buffer, we specify null for this parameter.

4.3.9 Set the Viewport
Usually we like to draw the 3D scene to the entire back buffer, where the back
buffer size corresponds to the entire screen (full-screen mode) or the entire client
area of a window. However, sometimes we only want to draw the 3D scene into a
subrectangle of the back buffer; see Figure 4.9.

Figure 4.9. By modifying the viewport, we can draw the 3D scene into a subrectangle of the back buffer.
The back buffer then gets presented to the client area of the window.

130 DIRECT3D FOUNDATIONS

The subrectangle of the back buffer we draw into is called the viewport and it is
described by the following structure:

typedef struct D3D12_VIEWPORT {
 FLOAT TopLeftX;
 FLOAT TopLeftY;
 FLOAT Width;
 FLOAT Height;
 FLOAT MinDepth;
 FLOAT MaxDepth;
} D3D12_VIEWPORT;

The first four data members define the viewport rectangle relative to the back
buffer (observe that we can specify fractional pixel coordinates because the data
members are of type float). In Direct3D, depth values are stored in the depth
buffer in a normalized range of 0 to 1. The MinDepth and MaxDepth members
are used to transform the depth interval [0, 1] to the depth interval [MinDepth,
MaxDepth]. Being able to transform the depth range can be used to achieve certain
effects; for example, you could set MinDepth=0 and MaxDepth=0, so that all objects
drawn with this viewport will have depth values of 0 and appear in front of all
other objects in the scene. However, usually MinDepth is set to 0 and MaxDepth is set
to 1 so that the depth values are not modified.

Once we have fi lled out the D3D12_VIEWPORT structure, we set the viewport with
Direct3D with the ID3D12CommandList::RSSetViewports method. The following
example creates and sets a viewport that draws onto the entire back buffer:

D3D12_VIEWPORT vp;
vp.TopLeftX = 0.0f;
vp.TopLeftY = 0.0f;
vp.Width = static_cast<float>(mClientWidth);
vp.Height = static_cast<float>(mClientHeight);
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;

mCommandList->RSSetViewports(1, &vp);

The fi rst parameter is the number of viewports to bind (using more than one
is for advanced effects), and the second parameter is a pointer to an array of
viewports.

You cannot specify multiple viewports to the same render target. Multiple
viewports are used for advanced techniques that render to multiple render
targets at the same time.

The viewport needs to be reset whenever the command list is reset.

You could use the viewport to implement split screens for two-player game
modes, for example. You would create two viewports, one for the left half of the

Note:

Note:

DIRECT3D INITIALIZATION 131

screen and one for the right half of the screen. Then you would draw the 3D scene
from the perspective of Player 1 into the left viewport and draw the 3D scene from
the perspective of Player 2 into the right viewport.

4.3.10 Set the Scissor Rectangles
We can define a scissor rectangle relative to the back buffer such that pixels outside
this rectangle are culled (i.e., not rasterized to the back buffer). This can be used
for optimizations. For example, if we know an area of the screen will contain a
rectangular UI element on top of everything, we do not need to process the pixels
of the 3D world that the UI element will obscure.

A scissor rectangle is defi ned by a D3D12_RECT structure which is typedefed to
the following structure:

typedef struct tagRECT
{
 LONG left;
 LONG top;
 LONG right;
 LONG bottom;
} RECT;

We set the scissor rectangle with Direct3D with the ID3D12CommandList::RSSetSci
ssorRects method. The following example creates and sets a scissor rectangle that
covers the upper-left quadrant of the back buffer:

mScissorRect = { 0, 0, mClientWidth/2, mClientHeight/2 };
mCommandList->RSSetScissorRects(1, &mScissorRect);

Similar to RSSetViewports, the first parameter is the number of scissor rectangles
to bind (using more than one is for advanced effects), and the second parameter is
a pointer to an array of rectangles.

You cannot specify multiple scissor rectangles on the same render target. Multiple
scissor rectangles are used for advanced techniques that render to multiple render
targets at the same time.

The scissors rectangles need to be reset whenever the command list is reset.

4.4 TIMING AND ANIMATION

To do animation correctly, we will need to keep track of the time. In particular,
we will need to measure the amount of time that elapses between frames of
animation. If the frame rate is high, these time intervals between frames will be
very short; therefore, we need a timer with a high level of accuracy.

Note:

Note:

132 DIRECT3D FOUNDATIONS

4.4.1 The Performance Timer
For accurate time measurements, we use the performance timer (or performance
counter). To use the Win32 functions for querying the performance timer, we
must #include <windows.h>.

The performance timer measures time in units called counts. We obtain the
current time value, measured in counts, of the performance timer with the
QueryPerformanceCounter function like so:

 __int64 currTime;
 QueryPerformanceCounter((LARGE_INTEGER*)&currTime);

Observe that this function returns the current time value through its parameter,
which is a 64-bit integer value.

To get the frequency (counts per second) of the performance timer, we use the
QueryPerformanceFrequency function:

 __int64 countsPerSec;
 QueryPerformanceFrequency((LARGE_INTEGER*)&countsPerSec);

Then the number of seconds (or fractions of a second) per count is just the
reciprocal of the counts per second:

 mSecondsPerCount = 1.0 / (double)countsPerSec;

Thus, to convert a time reading valueInCounts to seconds, we just multiply it by
the conversion factor mSecondsPerCount

 valueInSecs = valueInCounts * mSecondsPerCount;

The values returned by the QueryPerformanceCounter function are not particularly
interesting in and of themselves. What we do is get the current time value using
QueryPerformanceCounter, and then get the current time value a little later using
QueryPerformanceCounter again. Then the time that elapsed between those two
time calls is just the difference. That is, we always look at the relative difference
between two time stamps to measure time, not the actual values returned by the
performance counter. The following better illustrates the idea:

 __int64 A = 0;
 QueryPerformanceCounter((LARGE_INTEGER*)&A);

 /* Do work */

 __int64 B = 0;
 QueryPerformanceCounter((LARGE_INTEGER*)&B);

So it took (B–A) counts to do the work, or (B–A)*mSecondsPerCount seconds to do
the work.

DIRECT3D INITIALIZATION 133

MSDN has the following remark about QueryPerformanceCounter: “On
a multiprocessor computer, it should not matter which processor is called.
However, you can get different results on different processors due to bugs in the
basic input/output system (BIOS) or the hardware abstraction layer (HAL).”
You can use the SetThreadAffi nityMask function so that the main application
thread does not get switch to another processor.

4.4.2 Game Timer Class
In the next two sections, we will discuss the implementation of the following
GameTimer class.

class GameTimer
{
public:
 GameTimer();

 float GameTime()const; // in seconds
 float DeltaTime()const; // in seconds

 void Reset(); // Call before message loop.
 void Start(); // Call when unpaused.
 void Stop(); // Call when paused.
 void Tick(); // Call every frame.

private:
 double mSecondsPerCount;
 double mDeltaTime;

 __int64 mBaseTime;
 __int64 mPausedTime;
 __int64 mStopTime;
 __int64 mPrevTime;
 __int64 mCurrTime;

 bool mStopped;
};

The constructor, in particular, queries the frequency of the performance counter.
The other member functions are discussed in the next two sections.

GameTimer::GameTimer()
: mSecondsPerCount(0.0), mDeltaTime(-1.0), mBaseTime(0),
 mPausedTime(0), mPrevTime(0), mCurrTime(0), mStopped(false)
{
 __int64 countsPerSec;
 QueryPerformanceFrequency((LARGE_INTEGER*)&countsPerSec);
 mSecondsPerCount = 1.0 / (double)countsPerSec;
}

Note:

134 DIRECT3D FOUNDATIONS

The GameTimer class and implementations are in the GameTimer.h and GameTimer.
cpp files, which can be found in the Common directory of the sample code.

4.4.3 Time Elapsed Between Frames
When we render our frames of animation, we will need to know how much time
has elapsed between frames so that we can update our game objects based on how
much time has passed. Computing the time elapsed between frames proceeds as
follows. Let ti be the time returned by the performance counter during the ith
frame and let ti1 be the time returned by the performance counter during the
previous frame. Then the time elapsed between the ti1 reading and the ti reading
is t ti – ti1. For real-time rendering, we typically require at least 30 frames per
second for smooth animation (and we usually have much higher rates); thus,
t  ti – ti1 tends to be a relatively small number.

The following code shows how t is computed in code:

void GameTimer::Tick()
{
 if(mStopped)
 {
 mDeltaTime = 0.0;
 return;
 }

 // Get the time this frame.
 __int64 currTime;
 QueryPerformanceCounter((LARGE_INTEGER*)&currTime);
 mCurrTime = currTime;

 // Time difference between this frame and the previous.
 mDeltaTime = (mCurrTime - mPrevTime)*mSecondsPerCount;

 // Prepare for next frame.
 mPrevTime = mCurrTime;

 // Force nonnegative. The DXSDK’s CDXUTTimer mentions that if the
 // processor goes into a power save mode or we get shuffled to
 // another processor, then mDeltaTime can be negative.
 if(mDeltaTime < 0.0)
 {
 mDeltaTime = 0.0;
 }
}

float GameTimer::DeltaTime()const
{
 return (float)mDeltaTime;
}

DIRECT3D INITIALIZATION 135

The function Tick is called in the application message loop as follows:

int D3DApp::Run()
{
 MSG msg = {0};

 mTimer.Reset();

 while(msg.message != WM_QUIT)
 {
 // If there are Window messages then process them.
 if(PeekMessage(&msg, 0, 0, 0, PM_REMOVE))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 // Otherwise, do animation/game stuff.
 else
 {
 mTimer.Tick();

 if(!mAppPaused)
 {
 CalculateFrameStats();
 Update(mTimer);
 Draw(mTimer);
 }
 else
 {
 Sleep(100);
 }
 }
 }

 return (int)msg.wParam;
}

In this way, t is computed every frame and fed into the UpdateScene method
so that the scene can be updated based on how much time has passed since the
previous frame of animation. The implementation of the Reset method is:

void GameTimer::Reset()
{
 __int64 currTime;
 QueryPerformanceCounter((LARGE_INTEGER*)&currTime);

 mBaseTime = currTime;
 mPrevTime = currTime;
 mStopTime = 0;
 mStopped = false;
}

Some of the variables shown have not been discussed yet (see §4.4.4). However,
we see that this initializes mPrevTime to the current time when Reset is called. It is

136 DIRECT3D FOUNDATIONS

important to do this because for the first frame of animation, there is no previous
frame, and therefore, no previous time stamp ti1. Thus this value needs to be
initialized in the Reset method before the message loop starts.

4.4.4 Total Time
Another time measurement that can be useful is the amount of time that has
elapsed since the application start, not counting paused time; we will call this total
time. The following situation shows how this could be useful. Suppose the player
has 300 seconds to complete a level. When the level starts, we can get the time
tstart which is the time elapsed since the application started. Then after the level
has started, every so often we can check the time t since the application started. If
t − tstart > 300s (see Figure 4.10) then the player has been in the level for over 300
seconds and loses. Obviously in this situation, we do not want to count any time
the game was paused against the player.

Another application of total time is when we want to animate a quantity as a
function of time. For instance, suppose we wish to have a light orbit the scene as a
function of time. Its position can be described by the parametric equations:

10cos

20

10sin

x t

y

z t


 
 

Here t represents time, and as t (time) increases, the coordinates of the light are
updated so that the light moves in a circle with radius 10 in the y  20 plane. For
this kind of animation, we also do not want to count paused time; see Figure 4.11.

To implement total time, we use the following variables:

 __int64 mBaseTime;
 __int64 mPausedTime;
 __int64 mStopTime;

As we saw in §4.4.3, mBaseTime is initialized to the current time when Reset was
called. We can think of this as the time when the application started. In most cases,

ݐݎܽݐݏݐ
ݐ ݐ − ݐݎܽݐݏݐ

0
Figure 4.10. Computing the time since the level started. Note that we choose the application start time as
the origin (0), and measure time values relative to that frame of reference.

DIRECT3D INITIALIZATION 137

you will only call Reset once before the message loop, so mBaseTime stays constant
throughout the application’s lifetime. The variable mPausedTime accumulates all
the time that passes while we are paused. We need to accumulate this time so we
can subtract it from the total running time, in order to not count paused time.
The mStopTime variable gives us the time when the timer is stopped (paused); this
is used to help us keep track of paused time.

Two important methods of the GameTimer class are Stop and Start. They should
be called when the application is paused and unpaused, respectively, so that the
GameTimer can keep track of paused time. The code comments explain the details
of these two methods.

void GameTimer::Stop()
{
 // If we are already stopped, then don’t do anything.
 if(!mStopped)
 {
 __int64 currTime;
 QueryPerformanceCounter((LARGE_INTEGER*)&currTime);

 // Otherwise, save the time we stopped at, and set
 // the Boolean flag indicating the timer is stopped.
 mStopTime = currTime;
 mStopped = true;
 }
}

void GameTimer::Start()
{
 __int64 startTime;
 QueryPerformanceCounter((LARGE_INTEGER*)&startTime);

 // Accumulate the time elapsed between stop and start pairs.
 //
 // |<-------d------->|

	(
1)

	(
2)

+�

+�

Figure 4.11. If we paused at t1 and unpaused at t2, and counted paused time, then when we unpause, the
position will jump abruptly from p(t1) to p(t2).

138 DIRECT3D FOUNDATIONS

 // ---------------*-----------------*------------> time
 // mStopTime startTime

 // If we are resuming the timer from a stopped state...
 if(mStopped)
 {
 // then accumulate the paused time.
 mPausedTime += (startTime - mStopTime);

 // since we are starting the timer back up, the current
 // previous time is not valid, as it occurred while paused.
 // So reset it to the current time.
 mPrevTime = startTime;

 // no longer stopped...
 mStopTime = 0;
 mStopped = false;
 }
}

Finally, the TotalTime member function, which returns the time elapsed since
Reset was called not counting paused time, is implemented as follows:

float GameTimer::TotalTime()const
{
// If we are stopped, do not count the time that has passed
// since we stopped. Moreover, if we previously already had
// a pause, the distance mStopTime - mBaseTime includes paused
// time,which we do not want to count. To correct this, we can
// subtract the paused time from mStopTime:
//
// previous paused time
// |<----------->|
// ---*------------*-------------*-------*-----------*------> time
// mBaseTime mStopTime mCurrTime

 if(mStopped)
 {
 return (float)(((mStopTime - mPausedTime)-
 mBaseTime)*mSecondsPerCount);
 }

// The distance mCurrTime - mBaseTime includes paused time,
// which we do not want to count. To correct this, we can subtract
// the paused time from mCurrTime:
//
// (mCurrTime - mPausedTime) - mBaseTime
//
// |<--paused time-->|
// ----*---------------*-----------------*------------*------> time
// mBaseTime mStopTime startTime mCurrTime

 else
 {

DIRECT3D INITIALIZATION 139

 return (float)(((mCurrTime-mPausedTime)-
 mBaseTime)*mSecondsPerCount);
 }
}

Our demo framework creates an instance of GameTimer for measuring the total
time since the application started, and the time elapsed between frames; however,
you can also create additional instances and use them as generic “stopwatches.”
For example, when a bomb is ignited, you could start a new GameTimer, and when
the TotalTime reached 5 seconds, you could raise an event that the bomb exploded.

4.5 THE DEMO APPLICATION FRAMEWORK

The demos in this book use code from the d3dUtil.h, d3dUtil.cpp, d3dApp.h, and
d3dApp.cpp files, which can be downloaded from the book’s website. The d3dUtil.h
and d3dUtil.cpp files contain useful utility code, and the d3dApp.h and d3dApp.cpp
files contain the core Direct3D application class code that is used to encapsulate
a Direct3D sample application. The reader is encouraged to study these files after
reading this chapter, as we do not cover every line of code in these files (e.g., we do
not show how to create a window, as basic Win32 programming is a prerequisite
of this book). The goal of this framework was to hide the window creation code
and Direct3D initialization code; by hiding this code, we feel it makes the demos
less distracting, as you can focus only on the specific details the sample code is
trying to illustrate.

4.5.1 D3DApp
The D3DApp class is the base Direct3D application class, which provides functions
for creating the main application window, running the application message loop,
handling window messages, and initializing Direct3D. Moreover, the class defines
the framework functions for the demo applications. Clients are to derive from
D3DApp, override the virtual framework functions, and instantiate only a single
instance of the derived D3DApp class. The D3DApp class is defined as follows:

#include "d3dUtil.h"
#include "GameTimer.h"

// Link necessary d3d12 libraries.
#pragma comment(lib,"d3dcompiler.lib")
#pragma comment(lib, "D3D12.lib")
#pragma comment(lib, "dxgi.lib")

class D3DApp
{

140 DIRECT3D FOUNDATIONS

protected:

 D3DApp(HINSTANCE hInstance);
 D3DApp(const D3DApp& rhs) = delete;
 D3DApp& operator=(const D3DApp& rhs) = delete;
 virtual ~D3DApp();

public:

 static D3DApp* GetApp();

 HINSTANCE AppInst()const;
 HWND MainWnd()const;
 float AspectRatio()const;

 bool Get4xMsaaState()const;
 void Set4xMsaaState(bool value);

 int Run();

 virtual bool Initialize();
 virtual LRESULT MsgProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM

lParam);

protected:
 virtual void CreateRtvAndDsvDescriptorHeaps();
 virtual void OnResize();
 virtual void Update(const GameTimer& gt)=0;
 virtual void Draw(const GameTimer& gt)=0;

 // Convenience overrides for handling mouse input.
 virtual void OnMouseDown(WPARAM btnState, int x, int y){ }
 virtual void OnMouseUp(WPARAM btnState, int x, int y) { }
 virtual void OnMouseMove(WPARAM btnState, int x, int y){ }

protected:

 bool InitMainWindow();
 bool InitDirect3D();
 void CreateCommandObjects();
 void CreateSwapChain();

 void FlushCommandQueue();

 ID3D12Resource* CurrentBackBuffer()const
 {
 return mSwapChainBuffer[mCurrBackBuffer].Get();
 }

 D3D12_CPU_DESCRIPTOR_HANDLE CurrentBackBufferView()const
 {
 return CD3DX12_CPU_DESCRIPTOR_HANDLE(
 mRtvHeap->GetCPUDescriptorHandleForHeapStart(),
 mCurrBackBuffer,
 mRtvDescriptorSize);
 }

DIRECT3D INITIALIZATION 141

 D3D12_CPU_DESCRIPTOR_HANDLE DepthStencilView()const
 {
 return mDsvHeap->GetCPUDescriptorHandleForHeapStart();
 }

 void CalculateFrameStats();

 void LogAdapters();
 void LogAdapterOutputs(IDXGIAdapter* adapter);
 void LogOutputDisplayModes(IDXGIOutput* output, DXGI_FORMAT format);

protected:

 static D3DApp* mApp;

 HINSTANCE mhAppInst = nullptr; // application instance handle
 HWND mhMainWnd = nullptr; // main window handle
 bool mAppPaused = false; // is the application paused?
 bool mMinimized = false; // is the application minimized?
 bool mMaximized = false; // is the application maximized?
 bool mResizing = false; // are the resize bars being dragged?
 bool mFullscreenState = false;// fullscreen enabled

 // Set true to use 4X MSAA (§4.1.8). The default is false.
 bool m4xMsaaState = false; // 4X MSAA enabled
 UINT m4xMsaaQuality = 0; // quality level of 4X MSAA

 // Used to keep track of the "delta-time" and game time (§4.4).
 GameTimer mTimer;

 Microsoft::WRL::ComPtr<IDXGIFactory4> mdxgiFactory;
 Microsoft::WRL::ComPtr<IDXGISwapChain> mSwapChain;
 Microsoft::WRL::ComPtr<ID3D12Device> md3dDevice;

 Microsoft::WRL::ComPtr<ID3D12Fence> mFence;
 UINT64 mCurrentFence = 0;

 Microsoft::WRL::ComPtr<ID3D12CommandQueue> mCommandQueue;
 Microsoft::WRL::ComPtr<ID3D12CommandAllocator> mDirectCmdListAlloc;
 Microsoft::WRL::ComPtr<ID3D12GraphicsCommandList> mCommandList;

 static const int SwapChainBufferCount = 2;
 int mCurrBackBuffer = 0;
 Microsoft::WRL::ComPtr<ID3D12Resource> mSwapChainBuffer[SwapChainBuf

ferCount];
 Microsoft::WRL::ComPtr<ID3D12Resource> mDepthStencilBuffer;

 Microsoft::WRL::ComPtr<ID3D12DescriptorHeap> mRtvHeap;
 Microsoft::WRL::ComPtr<ID3D12DescriptorHeap> mDsvHeap;

 D3D12_VIEWPORT mScreenViewport;
 D3D12_RECT mScissorRect;

 UINT mRtvDescriptorSize = 0;
 UINT mDsvDescriptorSize = 0;

142 DIRECT3D FOUNDATIONS

 UINT mCbvSrvDescriptorSize = 0;

 // Derived class should set these in derived constructor to customize
 // starting values.
 std::wstring mMainWndCaption = L"d3d App";
 D3D_DRIVER_TYPE md3dDriverType = D3D_DRIVER_TYPE_HARDWARE;
 DXGI_FORMAT mBackBufferFormat = DXGI_FORMAT_R8G8B8A8_UNORM;
 DXGI_FORMAT mDepthStencilFormat = DXGI_FORMAT_D24_UNORM_S8_UINT;
 int mClientWidth = 800;
 int mClientHeight = 600;
};

We have used comments in the above code to describe some of the data members;
the methods are discussed in the subsequent sections.

4.5.2 Non-Framework Methods

1. D3DApp: The constructor simply initializes the data members to default values.

2. ~D3DApp: The destructor releases the COM interfaces the D3DApp acquires, and
flushes the command queue. The reason we need to flush the command queue
in the destructor is that we need to wait until the GPU is done processing
the commands in the queue before we destroy any resources the GPU is still
referencing. Otherwise, the GPU might crash when the application exits.

D3DApp::~D3DApp()
{
 if(md3dDevice != nullptr)
 FlushCommandQueue();
}

3. AppInst: Trivial access function returns a copy of the application instance
handle.

4. MainWnd: Trivial access function returns a copy of the main window handle.

5. AspectRatio: The aspect ratio is defined as the ratio of the back buffer width
to its height. The aspect ratio will be used in the next chapter. It is trivially
implemented as:

 float D3DApp::AspectRatio()const
 {
 return static_cast<float>(mClientWidth) / mClientHeight;
 }

6. Get4xMsaaState: Returns true is 4X MSAA is enabled and false otherwise.

7. Set4xMsaaState: Enables/disables 4X MSAA.

8. Run: This method wraps the application message loop. It uses the Win32
PeekMessage function so that it can process our game logic when no messages
are present. The implementation of this function was shown in §4.4.3.

DIRECT3D INITIALIZATION 143

9. InitMainWindow: Initializes the main application window; we assume the
reader is familiar with basic Win32 window initialization.

10. InitDirect3D: Initializes Direct3D by implementing the steps discussed in §4.3.

11. CreateSwapChain: Creates the swap chain (§4.3.5.).

12. CreateCommandObjects: Creates the command queue, a command list allocator,
and a command list, as described in §4.3.4.

13. FlushCommandQueue: Forces the CPU to wait until the GPU has finished
processing all the commands in the queue (see §4.2.2).

14. CurrentBackBuffer: Returns an ID3D12Resource to the current back buffer in
the swap chain.

15. CurrentBackBufferView: Returns the RTV (render target view) to the current
back buffer.

16. DepthStencilView: Returns the DSV (depth/stencil view) to the main depth/
stencil buffer.

17. CalculateFrameStats: Calculates the average frames per second and the
average milliseconds per frame. The implementation of this method is
discussed in §4.4.4.

18. LogAdapters: Enumerates all the adapters on a system (§4.1.10).

19. LogAdapterOutputs: Enumerates all the outputs associated with an adapter
(§4.1.10).

20. LogOutputDisplayModes: Enumerates all the display modes an output supports
for a given format (§4.1.10).

4.5.3 Framework Methods
For each sample application in this book, we consistently override six virtual
functions of D3DApp. These six functions are used to implement the code specific
to the particular sample. The benefit of this setup is that the initialization code,
message handling, etc., is implemented in the D3DApp class, so that the derived
class needs to only focus on the specific code of the demo application. Here is a
description of the framework methods:

1. Initialize: Use this method to put initialization code for the application such
as allocating resources, initializing objects, and setting up the 3D scene. The
D3DApp implementation of this method calls InitMainWindow and InitDirect3D;
therefore, you should call the D3DApp version of this method in your derived
implementation first like this:

bool TestApp::Init()
{

144 DIRECT3D FOUNDATIONS

 if(!D3DApp::Init())
 return false;

 /* Rest of initialization code goes here */
}

 so that your initialization code can access the initialized members of D3DApp.

2. MsgProc: This method implements the window procedure function for the
main application window. Generally, you only need to override this method
if there is a message you need to handle that D3DApp::MsgProc does not handle
(or does not handle to your liking). The D3DApp implementation of this
method is explored in §4.5.5. If you override this method, any message that
you do not handle should be forwarded to D3DApp::MsgProc.

3. CreateRtvAndDsvDescriptorHeaps: Virtual function where you create the RTV
and DSV descriptor heaps your application needs. The default implementation
creates an RTV heap with SwapChainBufferCount many descriptors (for the
buffer in the swap chain) and a DSV heap with one descriptor (for the depth/
stencil buffer). The default implementation will be sufficient for a lot of our
demos; for more advanced rendering techniques that use multiple render
targets, we will have to override this method.

4. OnResize: This method is called by D3DApp::MsgProc when a WM_SIZE message
is received. When the window is resized, some Direct3D properties need
to be changed, as they depend on the client area dimensions. In particular,
the back buffer and depth/stencil buffers need to be recreated to match the
new client area of the window. The back buffer can be resized by calling the
IDXGISwapChain::ResizeBuffers method. The depth/stencil buffer needs
to be destroyed and then remade based on the new dimension. In addition,
the render target and depth/stencil views need to be recreated. The D3DApp
implementation of OnResize handles the code necessary to resize the back and
depth/stencil buffers; see the source code for the straightforward details. In
addition to the buffers, other properties depend on the size of the client area
(e.g., the projection matrix), so this method is part of the framework because
the client code may need to execute some of its own code when the window is
resized.

5. Update: This abstract method is called every frame and should be used to
update the 3D application over time (e.g., perform animations, move the
camera, do collision detection, check for user input, and etc.).

6. Draw: This abstract method is invoked every frame and is where we issue
rendering commands to actually draw our current frame to the back buffer.
When we are done drawing our frame, we call the IDXGISwapChain::Present
method to present the back buffer to the screen.

DIRECT3D INITIALIZATION 145

In addition to the above six framework methods, we provide three other virtual
functions for convenience to handle the events when a mouse button is pressed,
released, and when the mouse moves:

 virtual void OnMouseDown(WPARAM btnState, int x, int y){ }
 virtual void OnMouseUp(WPARAM btnState, int x, int y) { }
 virtual void OnMouseMove(WPARAM btnState, int x, int y){ }

In this way, if you want to handle mouse messages, you can override these
methods instead of overriding the MsgProc method. The fi rst parameter is the
same as the WPARAM parameter for the various mouse messages, which stores the
mouse button states (i.e., which mouse buttons were pressed when the event was
raised). The second and third parameters are the client area (x, y) coordinates
of the mouse cursor.

4.5.4 Frame Statistics
It is common for games and graphics application to measure the number
of frames being rendered per second (FPS). To do this, we simply count the
number of frames processed (and store it in a variable n) over some specified
time period t. Then, the average FPS over the time period t is fpsavg  n/t  n.
If we set t  1, then fpsavg  n/1  n. In our code, we use t  1 (second) since it
avoids a division, and moreover, one second gives a pretty good average—it is
not too long and not too short. The code to compute the FPS is provided by the
D3DApp::CalculateFrameStats method:

void D3DApp::CalculateFrameStats()
{
 // Code computes the average frames per second, and also the
 // average time it takes to render one frame. These stats
 // are appended to the window caption bar.

 static int frameCnt = 0;
 static float timeElapsed = 0.0f;

 frameCnt++;

 // Compute averages over one second period.
 if((mTimer.TotalTime() - timeElapsed) >= 1.0f)
 {
 float fps = (float)frameCnt; // fps = frameCnt / 1
 float mspf = 1000.0f / fps;

 wstring fpsStr = to_wstring(fps);
 wstring mspfStr = to_wstring(mspf);

 wstring windowText = mMainWndCaption +
 L" fps: " + fpsStr +
 L" mspf: " + mspfStr;

Note:

146 DIRECT3D FOUNDATIONS

 SetWindowText(mhMainWnd, windowText.c_str());

 // Reset for next average.
 frameCnt = 0;
 timeElapsed += 1.0f;
 }
}

This method would be called every frame in order to count the frame.
In addition to computing the FPS, the above code also computes the number of

milliseconds it takes, on average, to process a frame:

 float mspf = 1000.0f / fps;

The seconds per frame is just the reciprocal of the FPS, but we multiply by 1000
ms / 1 s to convert from seconds to milliseconds (recall there are 1000 ms per
second).

The idea behind this line is to compute the time, in milliseconds, it takes
to render a frame; this is a different quantity than FPS (but observe this value
can be derived from the FPS). In actuality, the time it takes to render a frame is
more useful than the FPS, as we may directly see the increase/decrease in time
it takes to render a frame as we modify our scene. On the other hand, the FPS
does not immediately tell us the increase/decrease in time as we modify our scene.
Moreover, as [Dunlop03] points out in his article FPS versus Frame Time, due to
the non-linearity of the FPS curve, using the FPS can give misleading results. For
example, consider situation (1): Suppose our application is running at 1000 FPS,
taking 1 ms (millisecond) to render a frame. If the frame rate drops to 250 FPS,
then it takes 4 ms to render a frame. Now consider situation (2): Suppose that our
application is running at 100 FPS, taking 10 ms to render a frame. If the frame
rate drops to about 76.9 FPS, then it takes about 13 ms to render a frame. In both
situations, the rendering per frame increased by 3 ms, and thus both represent
the same increase in time it takes to render a frame. Reading the FPS is not as
straightforward. The drop from 1000 FPS to 250 FPS seems much more drastic
than the drop from 100 FPS to 76.9 FPS; however, as we have just showed, they
actually represent the same increase in time it takes to render a frame.

4.5.5 The Message Handler
The window procedure we implement for our application framework does
the bare minimum. In general, we won’t be working very much with Win32
messages anyway. In fact, the core of our application code gets executed during
idle processing (i.e., when no window messages are present). Still, there are some
important messages we do need to process. However, because of the length of the
window procedure, we do not embed all the code here; rather, we just explain

DIRECT3D INITIALIZATION 147

the motivation behind each message we handle. We encourage the reader to
download the source code files and spend some time getting familiar with the
application framework code, as it is the foundation of every sample for this book.

The fi rst message we handle is the WM_ACTIVATE message. This message is sent
when an application becomes activated or deactivated. We implement it like so:

case WM_ACTIVATE:
 if(LOWORD(wParam) == WA_INACTIVE)
 {
 mAppPaused = true;
 mTimer.Stop();
 }
 else
 {
 mAppPaused = false;
 mTimer.Start();
 }
 return 0;

As you can see, when our application becomes deactivated, we set the data
member mAppPaused to true, and when our application becomes active, we set the
data member mAppPaused to false. In addition, when the application is paused,
we stop the timer, and then resume the timer once the application becomes active
again. If we look back at the implementation to D3DApp::Run (§4.4.3), we find
that if our application is paused, then we do not update our application code, but
instead free some CPU cycles back to the OS; in this way, our application does not
hog CPU cycles when it is inactive.

The next message we handle is the WM_SIZE message. Recall that this message
is called when the window is resized. The main reason for handling this message
is that we want the back buffer and depth/stencil dimensions to match the
dimensions of the client area rectangle (so no stretching occurs). Thus, every
time the window is resized, we want to resize the buffer dimensions. The code
to resize the buffers is implemented in D3DApp::OnResize. As already stated,
the back buffer can be resized by calling the IDXGISwapChain::ResizeBuffers
method. The depth/stencil buffer needs to be destroyed and then remade based
on the new dimensions. In addition, the render target and depth/stencil views
need to be recreated. If the user is dragging the resize bars, we must be careful
because dragging the resize bars sends continuous WM_SIZE messages, and we do
not want to continuously resize the buffers. Therefore, if we determine that the
user is resizing by dragging, we actually do nothing (except pause the application)
until the user is done dragging the resize bars. We can do this by handling the WM_
EXITSIZEMOVE message. This message is sent when the user releases the resize bars.

// WM_ENTERSIZEMOVE is sent when the user grabs the resize bars.
case WM_ENTERSIZEMOVE:

148 DIRECT3D FOUNDATIONS

 mAppPaused = true;
 mResizing = true;
 mTimer.Stop();
 return 0;

// WM_EXITSIZEMOVE is sent when the user releases the resize bars.
// Here we reset everything based on the new window dimensions.
case WM_EXITSIZEMOVE:
 mAppPaused = false;
 mResizing = false;
 mTimer.Start();
 OnResize();
 return 0;

The next three messages we handle are trivially implemented and so we just show
the code:

// WM_DESTROY is sent when the window is being destroyed.
case WM_DESTROY:
 PostQuitMessage(0);
 return 0;

// The WM_MENUCHAR message is sent when a menu is active and the user
// presses a key that does not correspond to any mnemonic or
// accelerator key.
case WM_MENUCHAR:
 // Don’t beep when we alt-enter.
 return MAKELRESULT(0, MNC_CLOSE);

// Catch this message to prevent the window from becoming too small.
case WM_GETMINMAXINFO:
 ((MINMAXINFO*)lParam)->ptMinTrackSize.x = 200;
 ((MINMAXINFO*)lParam)->ptMinTrackSize.y = 200;
 return 0;

Finally, to support our mouse input virtual functions, we handle the following
messages as follows:

case WM_LBUTTONDOWN:
case WM_MBUTTONDOWN:
case WM_RBUTTONDOWN:
 OnMouseDown(wParam, GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam));
 return 0;
case WM_LBUTTONUP:
case WM_MBUTTONUP:
case WM_RBUTTONUP:
 OnMouseUp(wParam, GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam));
 return 0;
case WM_MOUSEMOVE:
 OnMouseMove(wParam, GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam));
 return 0;

We must #include <Windowsx.h> for the GET_X_LPARAM and GET_Y_LPARAM macros.

DIRECT3D INITIALIZATION 149

4.5.6 The “Init Direct3D” Demo
Now that we have discussed the application framework, let us make a small
application using it. The program requires almost no real work on our part since
the parent class D3DApp does most of the work required for this demo. The main
thing to note is how we derive a class from D3DApp and implement the framework
functions, where we will write our sample specific code. All of the programs in
this book will follow the same template.

#include "../../Common/d3dApp.h"
#include <DirectXColors.h>

using namespace DirectX;

class InitDirect3DApp : public D3DApp
{
public:
 InitDirect3DApp(HINSTANCE hInstance);
 ~InitDirect3DApp();

 virtual bool Initialize()override;

private:
 virtual void OnResize()override;
 virtual void Update(const GameTimer& gt)override;
 virtual void Draw(const GameTimer& gt)override;

};

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prevInstance,
 PSTR cmdLine, int showCmd)
{
 // Enable run-time memory check for debug builds.
#if defined(DEBUG) | defined(_DEBUG)
 _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
#endif

 try
 {
 InitDirect3DApp theApp(hInstance);
 if(!theApp.Initialize())
 return 0;

 return theApp.Run();
 }
 catch(DxException& e)
 {
 MessageBox(nullptr, e.ToString().c_str(), L"HR Failed", MB_OK);
 return 0;
 }
}

150 DIRECT3D FOUNDATIONS

InitDirect3DApp::InitDirect3DApp(HINSTANCE hInstance)
: D3DApp(hInstance)
{
}

InitDirect3DApp::~InitDirect3DApp()
{
}

bool InitDirect3DApp::Initialize()
{
 if(!D3DApp::Initialize())
 return false;

 return true;
}

void InitDirect3DApp::OnResize()
{
 D3DApp::OnResize();
}

void InitDirect3DApp::Update(const GameTimer& gt)
{

}

void InitDirect3DApp::Draw(const GameTimer& gt)
{
 // Reuse the memory associated with command recording.
 // We can only reset when the associated command lists have finished
 // execution on the GPU.
 ThrowIfFailed(mDirectCmdListAlloc->Reset());

 // A command list can be reset after it has been added to the
 // command queue via ExecuteCommandList. Reusing the command list

reuses memory.
 ThrowIfFailed(mCommandList->Reset(
 mDirectCmdListAlloc.Get(), nullptr));

 // Indicate a state transition on the resource usage.
 mCommandList->ResourceBarrier(
 1, &CD3DX12_RESOURCE_BARRIER::Transition(
 CurrentBackBuffer(),
 D3D12_RESOURCE_STATE_PRESENT,
 D3D12_RESOURCE_STATE_RENDER_TARGET));

 // Set the viewport and scissor rect. This needs to be reset
 // whenever the command list is reset.
 mCommandList->RSSetViewports(1, &mScreenViewport);
 mCommandList->RSSetScissorRects(1, &mScissorRect);

 // Clear the back buffer and depth buffer.
 mCommandList->ClearRenderTargetView(

DIRECT3D INITIALIZATION 151

 CurrentBackBufferView(),
 Colors::LightSteelBlue, 0, nullptr);
 mCommandList->ClearDepthStencilView(
 DepthStencilView(), D3D12_CLEAR_FLAG_DEPTH |
 D3D12_CLEAR_FLAG_STENCIL, 1.0f, 0, 0, nullptr);

 // Specify the buffers we are going to render to.
 mCommandList->OMSetRenderTargets(1, &CurrentBackBufferView(),
 true, &DepthStencilView());

 // Indicate a state transition on the resource usage.
 mCommandList->ResourceBarrier(
 1, &CD3DX12_RESOURCE_BARRIER::Transition(
 CurrentBackBuffer(),
 D3D12_RESOURCE_STATE_RENDER_TARGET,
 D3D12_RESOURCE_STATE_PRESENT));

 // Done recording commands.
 ThrowIfFailed(mCommandList->Close());

 // Add the command list to the queue for execution.
 ID3D12CommandList* cmdsLists[] = { mCommandList.Get() };
 mCommandQueue->ExecuteCommandLists(_countof(cmdsLists), cmdsLists);

 // swap the back and front buffers
 ThrowIfFailed(mSwapChain->Present(0, 0));
 mCurrBackBuffer = (mCurrBackBuffer + 1) % SwapChainBufferCount;

 // Wait until frame commands are complete. This waiting is
 // inefficient and is done for simplicity. Later we will show how to
 // organize our rendering code so we do not have to wait per frame.
 FlushCommandQueue();
}

There are some methods we have not yet discussed. The ClearRenderTargetView
method clears the specified render target to a given color, and the
ClearDepthStencilView method clears the specified depth/stencil buffer. We
always clear the back buffer render target and depth/stencil buffer every frame
before drawing to start the image fresh. These methods are declared as follows:

void ID3D12GraphicsCommandList::ClearRenderTargetView(
 D3D12_CPU_DESCRIPTOR_HANDLE RenderTargetView,
 const FLOAT ColorRGBA[4],
 UINT NumRects,
 const D3D12_RECT *pRects);

1. RenderTargetView: RTV to the resource we want to clear.

2. ColorRGBA: Defines the color to clear the render target to.

3. NumRects: The number of elements in the pRects array. This can be 0.

152 DIRECT3D FOUNDATIONS

4. pRects: An array of D3D12_RECTs that identify rectangle regions on the render
target to clear. This can be a nullptr to indicate to clear the entire render
target.

void ID3D12GraphicsCommandList::ClearDepthStencilView(
 D3D12_CPU_DESCRIPTOR_HANDLE DepthStencilView,
 D3D12_CLEAR_FLAGS ClearFlags,
 FLOAT Depth,
 UINT8 Stencil,
 UINT NumRects,
 const D3D12_RECT *pRects);

1. DepthStencilView: DSV to the depth/stencil buffer to clear.

2. ClearFlags: Flags indicating which part of the depth/stencil buffer to clear.
This can be either D3D12_CLEAR_FLAG_DEPTH, D3D12_CLEAR_FLAG_STENCIL, or
both bitwised ORed together.

3. Depth: Defines the value to clear the depth values to.

4. Stencil: Defines the value to clear the stencil values to.

5. NumRects: The number of elements in the pRects array. This can be 0.

6. pRects: An array of D3D12_RECTs that identify rectangle regions on the render
target to clear. This can be a nullptr to indicate to clear the entire render
target.

Another new method is the ID3D12GraphicsCommandList::OMSetRenderTargets
method. This method sets the render target and depth/stencil buffer we want to use
to the pipeline. For now, we want to use the current back buffer as a render target
and our main depth/stencil buffer. Later in this book, we will look at techniques
that use multiple render targets. This method has the following prototype:

void ID3D12GraphicsCommandList::OMSetRenderTargets(
 UINT NumRenderTargetDescriptors,
 const D3D12_CPU_DESCRIPTOR_HANDLE *pRenderTargetDescriptors,
 BOOL RTsSingleHandleToDescriptorRange,
 const D3D12_CPU_DESCRIPTOR_HANDLE *pDepthStencilDescriptor);

1. NumRenderTargetDescriptors: Specifies the number of RTVs we are going to
bind. Using multiple render targets simultaneously is used for some advanced
techniques. For now, we always use one RTV.

2. pRenderTargetDescriptors: Pointer to an array of RTVs that specify the render
targets we want to bind to the pipeline.

3. RTsSingleHandleToDescriptorRange: Specify true if all the RTVs in the
previous array are contiguous in the descriptor heap. Otherwise, specify false.

4. pDepthStencilDescriptor: Pointer to a DSV that specifies the depth/stencil
buffer we want to bind to the pipeline.

DIRECT3D INITIALIZATION 153

Finally, the IDXGISwapChain::Present method swaps the back and front buffers.
When we Present the swap chain to swap the front and back buffers, we have to
update the index to the current back buffer as well so that we render to the new
back buffer on the subsequent frame:

ThrowIfFailed(mSwapChain->Present(0, 0));
mCurrBackBuffer = (mCurrBackBuffer + 1) % SwapChainBufferCount;

Figure 4.12. A screenshot of the sample program for Chapter 4.

4.6 DEBUGGING DIRECT3D APPLICATIONS

Many Direct3D functions return HRESULT error codes. For our sample programs,
we use a simple error handling system where we check a returned HRESULT, and if it
failed, we throw an exception that stores the error code, function name, filename,
and line number of the offending call. This is done with the following code in
d3dUtil.h:

class DxException
{
public:
 DxException() = default;
 DxException(HRESULT hr, const std::wstring& functionName,
 const std::wstring& filename, int lineNumber);

 std::wstring ToString()const;

 HRESULT ErrorCode = S_OK;
 std::wstring FunctionName;
 std::wstring Filename;
 int LineNumber = -1;
};

#ifndef ThrowIfFailed
#define ThrowIfFailed(x) \
{ \
 HRESULT hr__ = (x); \
 std::wstring wfn = AnsiToWString(__FILE__); \
 if(FAILED(hr__)) { throw DxException(hr__, L#x, wfn, __LINE__); } \
}
#endif

154 DIRECT3D FOUNDATIONS

Observe that ThrowIfFailed must be a macro and not a function; otherwise __
FILE__ and __LINE__ would refer to the file and line of the function implementation
instead of the file and line where ThrowIfFailed was written.

The L#x turns the ThrowIfFailed macro’s argument token into a Unicode string.
In this way, we can output the function call that caused the error to the message
box.

For a Direct3D function that returns an HRESULT, we use the macro like so:

ThrowIfFailed(md3dDevice->CreateCommittedResource(
 &CD3D12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
 D3D12_HEAP_MISC_NONE,
 &depthStencilDesc,
 D3D12_RESOURCE_USAGE_INITIAL,
 IID_PPV_ARGS(&mDepthStencilBuffer)));

Our entire application exists in a try/catch block:

 try
 {
 InitDirect3DApp theApp(hInstance);
 if(!theApp.Initialize())
 return 0;

 return theApp.Run();
 }
 catch(DxException& e)
 {
 MessageBox(nullptr, e.ToString().c_str(), L"HR Failed", MB_OK);
 return 0;
 }

If an HRESULT fails, an exception is thrown, we output information about it via
the MessageBox function, and then exit the application. For example, if we pass
an invalid argument to CreateCommittedResource, we get the following message
box:

Figure 4.13. Example of the error message box shown when an HRESULT fails.

DIRECT3D INITIALIZATION 155

4.7 SUMMARY

1. Direct3D can be thought of as a mediator between the programmer and the
graphics hardware. For example, the programmer calls Direct3D functions
to bind resource views to the hardware rendering pipeline, to configure the
output of the rendering pipeline, and to draw 3D geometry.

2. Component Object Model (COM) is the technology that allows DirectX
to be language independent and have backwards compatibility. Direct3D
programmers don’t need to know the details of COM and how it works; they
need only to know how to acquire COM interfaces and how to release them.

3. A 1D texture is like a 1D array of data elements, a 2D texture is like a 2D
array of data elements, and a 3D texture is like a 3D array of data elements.
The elements of a texture must have a format described by a member of the
DXGI_FORMAT enumerated type. Textures typically contain image data, but they
can contain other data, too, such as depth information (e.g., the depth buffer).
The GPU can do special operations on textures, such as filter and multisample
them.

4. To avoid flickering in animation, it is best to draw an entire frame of animation
into an off-screen texture called the back buffer. Once the entire scene has
been drawn to the back buffer for the given frame of animation, it is presented
to the screen as one complete frame; in this way, the viewer does not watch as
the frame gets drawn. After the frame has been drawn to the back buffer, the
roles of the back buffer and front buffer are reversed: the back buffer becomes
the front buffer and the front buffer becomes the back buffer for the next
frame of animation. Swapping the roles of the back and front buffers is called
presenting. The front and back buffer form a swap chain, represented by the
IDXGISwapChain interface. Using two buffers (front and back) is called double
buffering.

5. Assuming opaque scene objects, the points nearest to the camera occlude
any points behind them. Depth buffering is a technique for determining the
points in the scene nearest to the camera. In this way, we do not have to worry
about the order in which we draw our scene objects.

6. In Direct3D, resources are not bound to the pipeline directly. Instead, we
bind resources to the rendering pipeline by specifying the descriptors that
will be referenced in the draw call. A descriptor object can be thought of as
lightweight structure that identifies and describes a resource to the GPU.
Different descriptors of a single resource may be created. In this way, a single
resource may be viewed in different ways; for example, bound to different

156 DIRECT3D FOUNDATIONS

stages of the rendering pipeline or have its bits interpreted as a different DXGI_
FORMAT. Applications create descriptor heaps which form the memory backing
of descriptors.

7. The ID3D12Device is the chief Direct3D interface that can be thought of as
our software controller of the physical graphics device hardware; through it,
we can create GPU resources, and create other specialized interfaces used to
control the graphics hardware and instruct it to do things.

8. The GPU has a command queue. The CPU submits commands to the queue
through the Direct3D API using command lists. A command instructs the
GPU to do something. Submitted commands are not executed by the GPU
until they reach the front of the queue. If the command queue gets empty,
the GPU will idle because it does not have any work to do; on the other hand,
if the command queue gets too full, the CPU will at some point have to idle
while the GPU catches up. Both of these scenarios underutilize the system’s
hardware resources.

9. The GPU is a second processor in the system that runs in parallel with
the CPU. Sometimes the CPU and GPU will need to be synchronized. For
example, if the GPU has a command in its queue that references a resource,
the CPU must not modify or destroy that resource until the GPU is done with
it. Any synchronization methods that cause one of the processors to wait and
idle should be minimized, as it means we are not taking full advantage of the
two processors.

10. The performance counter is a high-resolution timer that provides accurate
timing measurements needed for measuring small time differentials, such
as the time elapsed between frames. The performance timer works in time
units called counts. The QueryPerformanceFrequency outputs the counts per
second of the performance timer, which can then be used to convert from
units of counts to seconds. The current time value of the performance timer
(measured in counts) is obtained with the QueryPerformanceCounter function.

11. To compute the average frames per second (FPS), we count the number of
frames processed over some time interval t. Let n be the number of frames
counted over time t, then the average frames per second over that time

interval is avg

n
fps

t



. The frame rate can give misleading conclusions about

performance; the time it takes to process a frame is more informative. The
amount of time, in seconds, spent processing a frame is the reciprocal of the
frame rate, i.e., 1/ fpsavg.

12. The sample framework is used to provide a consistent interface that all demo
applications in this book follow. The code provided in the d3dUtil.h, d3dUtil.

DIRECT3D INITIALIZATION 157

cpp, d3dApp.h and d3dApp.cpp files, wrap standard initialization code that
every application must implement. By wrapping this code up, we hide it,
which allows the samples to be more f ocused on demonstrating the current
topic.

13. For debug mode builds, we enable the debug layer (debugController-
>EnableDebugLayer()). When the debug layer is enabled, Direct3D will send
debug messages to the VC output window.

Chapter

159

5Chapter

THE
RENDERING
PIPELINE

The primary theme of this chapter is the rendering pipeline. Given a geometric
description of a 3D scene with a positioned and oriented virtual camera, the
rendering pipeline refers to the entire sequence of steps necessary to generate a 2D
image based on what the virtual camera sees (Figure 5.1). This chapter is mostly
theoretical—the next chapter puts the theory into practice as we learn to draw
with Direct3D. Before we begin coverage of the rendering pipeline, we have two
short stops: First, we discuss some elements of the 3D illusion (i.e., the illusion that
we are looking into a 3D world through a flat 2D monitor screen); and second, we
explain how colors will be represented and worked with mathematically and in
Direct3D code.

Objectives:
1. To discover several key signals used to convey a realistic sense of volume and

spatial depth in a 2D image.

2. To find out how we represent 3D objects in Direct3D.

3. To learn how we model the virtual camera.

4. To understand the rendering pipeline—the process of taking a geometric
description of a 3D scene and generating a 2D image from it.

160 DIRECT3D FOUNDATIONS

5.1 THE 3D ILLUSION

Before we embark on our journey of 3D computer graphics, a simple question
remains outstanding: How do we display a 3D world with depth and volume on a
flat 2D monitor screen? Fortunately for us, this problem has been well studied, as
artists have been painting 3D scenes on 2D canvases for centuries. In this section,
we outline several key techniques that make an image look 3D, even though it is
actually drawn on a 2D plane.

Suppose that you have encountered a railroad track that doesn’t curve, but goes
along a straight line for a long distance. Now the railroad rails remain parallel to
each other for all time, but if you stand on the railroad and look down its path,
you will observe that the two railroad rails get closer and closer together as their
distance from you increases, and eventually they converge at an infi nite distance.
This is one observation that characterizes our human viewing system: parallel
lines of vision converge to a vanishing point; see Figure 5.2.

Figure 5.1. The left image shows a side view of some objects setup in the 3D world with a camera
positioned and aimed; the middle image shows the same scene, but from a top-down view. The “pyramid”
volume specifies the volume of space that the viewer can see; objects (and parts of objects) outside this
volume are not seen. The image on the right shows the 2D image created based on what the camera “sees.”

Figure 5.2. Parallel lines of vision converge to a vanishing point. Artists sometimes call this linear perspective.

THE RENDERING PIPELINE 161

Another simple observation of how humans see things is that the size of an
object appears to diminish with depth; that is, objects near us look bigger than
objects far away. For example, a house far away on a hill will look very small, while
a tree near us will look very large in comparison. Figure 5.3 shows a simple scene
where parallel rows of columns are placed behind each other, one after another.
The columns are actually all the same size, but as their depths increase from the
viewer, they get smaller and smaller. Also notice how the columns are converging
to the vanishing point at the horizon.

We all experience object overlap (Figure 5.4), which refers to the fact that
opaque objects obscure parts (or all) of the objects behind them. This is an
important perception, as it conveys the depth ordering relationship of the objects
in the scene. We already discussed (Chapter 4) how Direct3D uses a depth buffer
to fi gure out which pixels are being obscured and thus should not be drawn.

Consider Figure 5.5. On the left we have an unlit sphere, and on the right, we
have a lit sphere. As you can see, the sphere on the left looks rather fl at—maybe it

Figure 5.3. Here, all the columns are of the same size,
but a viewer observes a diminishing in size with respect
to depth phenomenon.

Figure 5.4. A group of objects that partially
obscure each other because one is in front
of the other, etc. (they overlap).

Figure 5.5. (a) An unlit sphere that looks 2D.
(b) A lit sphere that looks 3D.

Figure 5.6. A spaceship and its shadow. The shadow implies
the location of the light source in the scene and also gives an
idea of how high off the ground the spaceship is.

162 DIRECT3D FOUNDATIONS

is not even a sphere at all, but just a textured 2D circle! Thus, lighting and shading
play a very important role in depicting the solid form and volume of 3D objects.

Finally, Figure 5.6 shows a spaceship and its shadow. The shadow serves two key
purposes. First, it tells us the origin of the light source in the scene. And secondly,
it provides us with a rough idea of how high off the ground the spaceship is.

The observations just discussed, no doubt, are intuitively obvious from our day-
to-day experiences. Nonetheless, it is helpful to explicitly state what we know and to
keep these observations in mind as we study and work on 3D computer graphics.

5.2 MODEL REPRESENTATION

A solid 3D object is represented by a triangle mesh approximation, and
consequently, triangles form the basic building blocks of the objects we model.
As Figure 5.7 implies, we can approximate any real-world 3D object by a triangle
mesh. In general, the more triangles you use to approximate an object, the better
the approximation, as you can model finer details. Of course, the more triangles
we use, the more processing power is required, and so a balance must be made
based on the hardware power of the application’s target audience. In addition to
triangles, it is sometimes useful to draw lines or points. For example, a curve could
be graphically drawn by a sequence of short line segments a pixel thick.

The large number of triangles used in Figure 5.7 makes one thing clear: It
would be extremely cumbersome to manually list the triangles of a 3D model.
For all but the simplest models, special 3D applications called 3D modelers are
used to generate and manipulate 3D objects. These modelers allow the user to
build complex and realistic meshes in a visual and interactive environment with a
rich tool set, thereby making the entire modeling process much easier. Examples
of popular modelers used for game development are 3D Studio Max (http://usa.
autodesk.com/3ds-max/), LightWave 3D (https://www.lightwave3d.com/), Maya

Figure 5.7. (Left) A car approximated by a triangle mesh. (Right) A skull approximated by a triangle mesh.

THE RENDERING PIPELINE 163

(http://usa.autodesk.com/maya/), Softimage|XSI (www.softimage.com), and
Blender (www.blender.org/). (Blender has the advantage for hobbyists of being
open source and free.) Nevertheless, for the fi rst part of this book, we will generate
our 3D models manually by hand, or via a mathematical formula (the triangle list
for cylinders and spheres, for example, can easily be generated with parametric
formulas). In the third part of this book, we show how to load and display 3D
models exported from 3D modeling programs.

5.3 BASIC COMPUTER COLOR

Computer monitors emit a mixture of red, green, and blue light through each
pixel. When the light mixture enters the eye and strikes an area of the retina, cone
receptor cells are stimulated and neural impulses are sent down the optic nerve
toward the brain. The brain interprets the signal and generates a color. As the
light mixture varies, the cells are stimulated differently, which in turn generates a
different color in the mind. Figure 5.8 shows some examples of mixing red, green,
and blue to get different colors; it also shows different intensities of red. By using
different intensities for each color component and mixing them together, we can
describe all the colors we need to display realistic images.

The best way to get comfortable with describing colors by RGB (red, green,
blue) values is to use a paint program like Adobe Photoshop, or even the
Win32 ChooseColor dialog box (Figure 5.9), and experiment with different RGB
combinations to see the colors they produce.

Figure 5.8. (Top) The mixing of pure red, green,
and blue colors to get new colors. (Bottom)
Different shades of red found by controlling the
intensity of red light. Figure 5.9. The ChooseColor dialog box.

164 DIRECT3D FOUNDATIONS

A monitor has a maximum intensity of red, green, and blue light it can emit. To
describe the intensities of light, it is useful to use a normalized range from 0 to 1.
0 denotes no intensity and 1 denotes the full intensity. Intermediate values denote
intermediate intensities. For example, the values (0.25, 0.67, 1.0) mean the light
mixture consists of 25% intensity of red light, 67% intensity of green light, and
100% intensity of blue light. As the example just stated implies, we can represent a
color by a 3D color vector (r, g, b), where 0  r, g, b  1, and each color component
describes the intensity of red, green, and blue light in the mixture.

5.3.1 Color Operations
Some vector operations also apply to color vectors. For example, we can add color
vectors to get new colors:

 (0.0, 0.5, 0)  (0, 0.0, 0.25)  (0.0, 0.5, 0.25)

By combining a medium intensity green color with a low intensity blue color, we
get a dark-green color.

Colors can also be subtracted to get new colors:

 (1, 1, 1) – (1, 1, 0)  (0, 0, 1)

That is, we start with white and subtract out the red and green parts, and we end
up with blue.

Scalar multiplication also makes sense. Consider the following:

 0.5(1, 1, 1)  (0.5, 0.5, 0.5)

That is, we start with white and multiply by 0.5, and we end up with a medium
shade of gray. On the other hand, the operation 2(0.25, 0, 0)  (0.5, 0, 0) doubles
the intensity of the red component.

Obviously expressions like the dot product and cross product do not make
sense for color vectors. However, color vectors do get their own special color
operation called modulation or componentwise multiplication. It is defi ned as:

 (, ,) (, ,) (, ,)r g b r g b r r g g b bc c c k k k c k c k c k 

This operation is mainly used in lighting equations. For example, suppose we have
an incoming ray of light with color (r, g, b) and it strikes a surface which reflects
50% red light, 75% green light, and 25% blue light, and absorbs the rest. Then the
color of the reflected light ray is given by:

 (, ,) (0.5, 0.75, 0.25) (0.5 , 0.75 , 0.25)r g b r g b 

So we can see that the light ray lost some intensity when it struck the surface, since
the surface absorbed some of the light.

THE RENDERING PIPELINE 165

When doing color operation, it is possible that your color components go
outside the [0, 1] interval; consider the equation, (1, 0.1, 0.6)  (0, 0.3, 0.5) 
(1, 0.4, 1.1), for example. Since 1.0 represents the maximum intensity of a color
component, you cannot become more intense than it. Thus 1.1 is just as intense as
1.0. So what we do is clamp 1.1  1.0. Likewise, a monitor cannot emit negative
light, so any negative color component (which could result from a subtraction
operation) should be clamped to 0.0.

5.3.2 128-Bit Color
It is common to incorporate an additional color component, called the alpha
component. The alpha component is often used to denote the opacity of a color,
which is useful in blending (Chapter 10). (Since we are not using blending yet, just
set the alpha component to 1 for now.) Including the alpha component, means
we can represent a color by a 4D color vector (r, g, b, a) where 0  r, g, b, a  1. To
represent a color with 128-bits, we use a floating-point value for each component.
Because mathematically a color is just a 4D vector, we can use the XMVECTOR type to
represent a color in code, and we gain the benefit of SIMD operations whenever
we use the DirectXMath vector functions to do color operations (e.g., color
addition, subtraction, scalar multiplication). For componentwise multiplication,
the DirectX Math library provides the following function:

XMVECTOR XM_CALLCONV XMColorModulate(// Returns c1  c2
 FXMVECTOR C1,
 FXMVECTOR C2);

5.3.3 32-Bit Color
To represent a color with 32-bits, a byte is given to each component. Since each
color is given an 8-bit byte, we can represent 256 different shades for each color
component—0 being no intensity, 255 being full intensity, and intermediate
values being intermediate intensities. A byte per color component may seem
small, but when we look at all the combinations (256  256  256  16, 777, 216),
we see millions of distinct colors can be represented. The DirectX Math library
(#include <DirectXPackedVector.h>) provides the following structure, in the
DirectX::PackedVector namespace, for storing a 32-bit color:

namespace DirectX
{
namespace PackedVector
{
// ARGB Color; 8-8-8-8 bit unsigned normalized integer components packed
// into a 32 bit integer. The normalized color is packed into 32 bits
// using 8 bit unsigned, normalized integers for the alpha, red, green,
// and blue components.

166 DIRECT3D FOUNDATIONS

// The alpha component is stored in the most significant bits and the
// blue component in the least significant bits (A8R8G8B8):
// [32] aaaaaaaa rrrrrrrr gggggggg bbbbbbbb [0]
struct XMCOLOR
{
 union
 {
 struct
 {
 uint8_t b; // Blue: 0/255 to 255/255
 uint8_t g; // Green: 0/255 to 255/255
 uint8_t r; // Red: 0/255 to 255/255
 uint8_t a; // Alpha: 0/255 to 255/255
 };
 uint32_t c;
 };

 XMCOLOR() {}
 XMCOLOR(uint32_t Color) : c(Color) {}
 XMCOLOR(float _r, float _g, float _b, float _a);
 explicit XMCOLOR(_In_reads_(4) const float *pArray);

 operator uint32_t () const { return c; }

 XMCOLOR& operator= (const XMCOLOR& Color) { c = Color.c; return
*this; }

 XMCOLOR& operator= (const uint32_t Color) { c = Color; return *this;
}

};
} // end PackedVector namespace
} // end DirectX namespace

A 32-bit color can be converted to a 128-bit color by mapping the integer range

[0, 255] onto the real-valued interval [0, 1]. This is done by dividing by 255. That

is, if 0  n  255 is an integer, then 0 1
255

n
  gives the intensity in the normalized

range from 0 to 1. For example, the 32-bit color (80, 140, 200, 255) becomes:

    80 140 200 255
80,1 40, 200, 255 , , , 0.31, 0.55, 0.78,1 .0

255 255 255 255
   
 

On the other hand, a 128-bit color can be converted to a 32-bit color by multiplying
each component by 255 and rounding to the nearest integer. For example:

      0.3, 0.6, 0.9,1 .0 0.3 255, 0.6 255, 0.9 255,1 .0 255 77, 153, 230, 255     

Additional bit operations must usually be done when converting a 32-bit color
to a 128-bit color and conversely because the 8-bit color components are usually
packed into a 32-bit integer value (e.g., an unsigned int), as it is in XMCOLOR. The

THE RENDERING PIPELINE 167

DirectXMath library defines the following function which takes a XMCOLOR and
returns an XMVECTOR from it:

XMVECTOR XM_CALLCONV PackedVector::XMLoadColor(
 const XMCOLOR* pSource);

Figure 5.10 shows how the 8-bit color components are packed into a UINT. Note
that this is just one way to pack the color components. Another format might
be ABGR or RGBA, instead of ARGB; however, the XMCOLOR class uses the ARGB
layout. The DirectX Math library also provides a function to convert an XMVECTOR
color to a XMCOLOR:

void XM_CALLCONV PackedVector::XMStoreColor(
 XMCOLOR* pDestination,
 FXMVECTOR V);

Typically, 128-bit colors values are used where high precision color operations
are needed (e.g., in a pixel shader); in this way, we have many bits of accuracy
for the calculations so arithmetic error does not accumulate too much. The final
pixel color, however, is usually stored in a 32-bit color value in the back buffer;
current physical display devices cannot take advantage of the higher resolution
color [Verth04].

5.4 OVERVIEW OF THE RENDERING PIPELINE

Given a geometric description of a 3D scene with a positioned and oriented virtual
camera, the rendering pipeline refers to the entire sequence of steps necessary to
generate a 2D image based on what the virtual camera sees. Figure 5.11 shows
a diagram of the stages that make up the rendering pipeline, as well as GPU
memory resources off to the side. An arrow going from the resource memory pool
to a stage means the stage can access the resources as input; for example, the pixel
shader stage may need to read data from a texture resource stored in memory in
order to do its work. An arrow going from a stage to memory means the stage
writes to GPU resources; for example, the output merger stage writes data to
textures such as the back buffer and depth/stencil buffer. Observe that the arrow
for the output merger stage is bidirectional (it reads and writes to GPU resources).
As we can see, most stages do not write to GPU resources. Instead, their output is
just fed in as input to the next stage of the pipeline; for example, the Vertex Shader

Figure 5.10. A 32-bit color, where a byte is allocated for each color component alpha, red, green, and blue.

168 DIRECT3D FOUNDATIONS

stage inputs data from the Input Assembler stage, does its own work, and then
outputs its results to the Geometry Shader stage. The subsequent sections give an
overview of each stage of the rendering pipeline.

5.5 THE INPUT ASSEMBLER STAGE

The input assembler (IA) stage reads geometric data (vertices and indices) from
memory and uses it to assemble geometric primitives (e.g., triangles, lines).
(Indices are covered in a later subsection, but briefly, they define how the vertices
should be put together to form the primitives.)

5.5.1 Vertices
Mathematically, the vertices of a triangle are where two edges meet; the vertices of
a line are the endpoints; for a single point, the point itself is the vertex. Figure 5.12
illustrates vertices pictorially.

Input Assembler (IA) Stage

Vertex Shader (VS) Stage

Geometry Shader (GS) Stage

Rasterizer (RS) Stage

Pixel Shader (PS) Stage

Output Merger (OM) Stage

G
PU

 Resources: Buffers, Textures
Stream Output (SO) Stage

Hull Shader (HS) Stage

 Tessellator Stage

Domain Shader (DS) Stage

Figure 5.11. The stages of the rendering pipeline.

THE RENDERING PIPELINE 169

From Figure 5.12, it seems that a vertex is just a special point in a geometric
primitive. However, in Direct3D, vertices are much more general than that.
Essentially, a vertex in Direct3D can consist of additional data besides spatial
location, which allows us to perform more sophisticated rendering effects. For
example, in Chapter 8, we will add normal vectors to our vertices to implement
lighting, and in Chapter 9, we will add texture coordinates to our vertices to
implement texturing. Direct3D gives us the fl exibility to defi ne our own vertex
formats (i.e., it allows us to defi ne the components of a vertex), and we will see
the code used to do this in the next chapter. In this book, we will defi ne several
different vertex formats based on the rendering effect we are doing.

5.5.2 Primitive Topology
Vertices are bound to the rendering pipeline in a special Direct3D data structure
called a vertex buffer. A vertex buffer just stores a list of vertices in contiguous
memory. However, it does not say how these vertices should be put together to
form geometric primitives. For example, should every two vertices in the vertex
buffer be interpreted as a line or should every three vertices in the vertex buffer be
interpreted as a triangle? We tell Direct3D how to form geometric primitives from
the vertex data by specifying the primitive topology:

void ID3D12GraphicsCommandList::IASetPrimitiveTopology(
 D3D_PRIMITIVE_TOPOLOGY Topology);

typedef enum D3D_PRIMITIVE_TOPOLOGY
{
 D3D_PRIMITIVE_TOPOLOGY_UNDEFINED = 0,
 D3D_PRIMITIVE_TOPOLOGY_POINTLIST = 1,
 D3D_PRIMITIVE_TOPOLOGY_LINELIST = 2,
 D3D_PRIMITIVE_TOPOLOGY_LINESTRIP = 3,
 D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST = 4,
 D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP = 5,
 D3D_PRIMITIVE_TOPOLOGY_LINELIST_ADJ = 10,
 D3D_PRIMITIVE_TOPOLOGY_LINESTRIP_ADJ = 11,
 D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ = 12,
 D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ = 13,
 D3D_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST = 33,

1

0
2 1

0
Figure 5.12. A triangle defined by the three vertices v0, v1, v2; a line defined by the two vertices p0, p1; a point
defined by the vertex Q.

170 DIRECT3D FOUNDATIONS

 D3D_PRIMITIVE_TOPOLOGY_2_CONTROL_POINT_PATCHLIST = 34,
 .
 .
 .
 D3D_PRIMITIVE_TOPOLOGY_32_CONTROL_POINT_PATCHLIST = 64,
} D3D_PRIMITIVE_TOPOLOGY;

All subsequent drawing calls will use the currently set primitive topology until the
topology is changed via the command list. The following code illustrates:

mCommandList->IASetPrimitiveTopology(
 D3D_PRIMITIVE_TOPOLOGY_LINELIST);
/* ...draw objects using line list... */

mCommandList->IASetPrimitiveTopology(
 D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
/* ...draw objects using triangle list... */

mCommandList->IASetPrimitiveTopology(
 D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
/* ...draw objects using triangle strip... */

The following subsections elaborate on the different primitive topologies. In this
book, we mainly use triangle lists exclusively with few exceptions.

5.5.2.1 Point List

A point list is specified by D3D_PRIMITIVE_TOPOLOGY_POINTLIST. With a point list, every
vertex in the draw call is drawn as an individual point, as shown in Figure 5.13a.

5.5.2.2 Line Strip

A line strip is specified by D3D_PRIMITIVE_TOPOLOGY_LINESTRIP. With a line strip,
the vertices in the draw call are connected to form lines (see Figure 5.13b); so
n  1 vertices induce n lines.

5.5.2.3 Line List

A line list is specified by D3D_PRIMITIVE_TOPOLOGY_LINELIST. With a line list, every
two vertices in the draw call forms an individual line (see Figure 5.13c); so 2n
vertices induce n lines. The difference between a line list and strip is that the lines
in the line list may be disconnected, whereas a line strip automatically assumes
they are connected; by assuming connectivity, fewer vertices can be used since
each interior vertex is shared by two lines.

5.5.2.4 Triangle Strip

A triangle strip is specified by D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP. With a
triangle strip, it is assumed the triangles are connected as shown in Figure 5.13d
to form a strip. By assuming connectivity, we see that vertices are shared between
adjacent triangles, and n vertices induce n  2 triangles.

THE RENDERING PIPELINE 171

Observe that the winding order for even triangles in a triangle strip differs from
the odd triangles, thereby causing culling issues (see §5.10.2). To fi x this problem,
the GPU internally swaps the order of the fi rst two vertices of even triangles, so
that they are consistently ordered like the odd triangles.

5.5.2.5 Triangle List

A triangle list is specified by D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST. With a
triangle list, every three vertices in the draw call forms an individual triangle (see
Figure 5.14a); so 3n vertices induce n triangles. The difference between a triangle
list and strip is that the triangles in the triangle list may be disconnected, whereas
a triangle strip assumes they are connected.

5.5.2.6 Primitives with Adjacency

A triangle list with adjacency is where, for each triangle, you also include its three
neighboring triangles called adjacent triangles; see Figure 5.14b to observe how
these triangles are defined. This is used for the geometry shader, where certain
geometry shading algorithms need access to the adjacent triangles. In order for
the geometry shader to get those adjacent triangles, the adjacent triangles need

Figure 5.13. (a) A point list; (b) a line strip; (c) a line list; (d) a triangle strip.

172 DIRECT3D FOUNDATIONS

to be submitted to the pipeline in the vertex/index buffers along with the triangle
itself, and the D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ topology must be
specified so that the pipeline knows how construct the triangle and its adjacent
triangles from the vertex buffer. Note that the vertices of adjacent primitives are
only used as input into the geometry shader—they are not drawn. If there is no
geometry shader, the adjacent primitives are still not drawn.

It is also possible to have a line list with adjacency, line strip with adjacency, and
triangle with strip adjacency primitives; see the SDK documentation for details.

5.5.2.7 Control Point Patch List

The D3D_PRIMITIVE_TOPOLOGY_N_CONTROL_POINT_PATCHLIST topology type
indicates that the vertex data should be interpreted as a patch lists with N control
points. These are used in the (optional) tessellation stage of the rendering pipeline,
and therefore, we will postpone a discussion of them until Chapter 14.

5.5.3 Indices
As already mentioned, triangles are the basic building blocks for solid 3D objects.
The following code shows the vertex arrays used to construct a quad and octagon
using triangle lists (i.e., every three vertices form a triangle).

(a)
0

1

2

3

4

5

6

7

8

(b)

0

1 2
3

4

5

6

7

8

910
11

12

13 14
15

16

17

Figure 5.14. (a) A triangle list; (b) A triangle list with adjacency—observe that each triangle requires 6
vertices to describe it and its adjacent triangles. Thus 6n vertices induce n triangles with adjacency info.

THE RENDERING PIPELINE 173

Vertex quad[6] = {
 v0, v1, v2, // Triangle 0
 v0, v2, v3, // Triangle 1
};

Vertex octagon[24] = {
 v0, v1, v2, // Triangle 0
 v0, v2, v3, // Triangle 1
 v0, v3, v4, // Triangle 2
 v0, v4, v5, // Triangle 3
 v0, v5, v6, // Triangle 4
 v0, v6, v7, // Triangle 5
 v0, v7, v8, // Triangle 6
 v0, v8, v1 // Triangle 7
};

The order in which you specify the vertices of a triangle is important and is called
the winding order; see §5.10.2 for details.

As Figure 5.15 illustrates, the triangles that form a 3D object share many of the
same vertices. More specifi cally, each triangle of the quad in Figure 5.15a shares
the vertices v0 and v2. While duplicating two vertices is not too bad, the duplication
is worse in the octagon example (Figure 5.15b), as every triangle duplicates the
center vertex v0, and each vertex on the perimeter of the octagon is shared by two
triangles. In general, the number of duplicate vertices increases as the detail and
complexity of the model increases.

There are two reasons why we do not want to duplicate vertices:

1. Increased memory requirements. (Why store the same vertex data more than
once?)

2. Increased processing by the graphics hardware. (Why process the same vertex
data more than once?)

Triangle strips can help the duplicate vertex problem in some situations, provided
the geometry can be organized in a strip like fashion. However, triangle lists are

0

1 2

3

0 1
234

5
6 7

8

(a) (b)
Figure 5.15. (a) A quad built from two triangles. (b) An octagon built from eight triangles.

174 DIRECT3D FOUNDATIONS

more flexible (the triangles need not be connected), and so it is worth devising a
method to remove duplicate vertices for triangle lists. The solution is to use indices.
It works like this: We create a vertex list and an index list. The vertex list consists of
all the unique vertices and the index list contains values that index into the vertex
list to define how the vertices are to be put together to form triangles. Returning
to the shapes in Figure 5.15, the vertex list of the quad would be constructed as
follows:

Vertex v[4] = {v0, v1, v2, v3};

Then the index list needs to define how the vertices in the vertex list are to be put
together to form the two triangles.

UINT indexList[6] = {0, 1, 2, // Triangle 0
 0, 2, 3}; // Triangle 1

In the index list, every three elements define a triangle. So the above index list says,
“form triangle 0 by using the vertices v[0], v[1], and v[2], and form triangle 1 by
using the vertices v[0], v[2], and v[3].”

Similarly, the vertex list for the circle would be constructed as follows:

Vertex v [9] = {v0, v1, v2, v3, v4, v5, v6, v7, v8};

and the index list would be:

UINT indexList[24] = {

 0, 1, 2, // Triangle 0

 0, 2, 3, // Triangle 1

 0, 3, 4, // Triangle 2

 0, 4, 5, // Triangle 3

 0, 5, 6, // Triangle 4

 0, 6, 7, // Triangle 5

 0, 7, 8, // Triangle 6

 0, 8, 1 // Triangle 7
};

After the unique vertices in the vertex list are processed, the graphics card can use
the index list to put the vertices together to form the triangles. Observe that we
have moved the “duplication” over to the index list, but this is not bad since:

1. Indices are simply integers and do not take up as much memory as a full vertex
structure (and vertex structures can get big as we add more components to
them).

2. With good vertex cache ordering, the graphics hardware won’t have to process
duplicate vertices (too often).

THE RENDERING PIPELINE 175

5.6 THE VERTEX SHADER STAGE

After the primitives have been assembled, the vertices are fed into the vertex shader
stage. The vertex shader can be thought of as a function that inputs a vertex and
outputs a vertex. Every vertex drawn will be pumped through the vertex shader; in
fact, we can conceptually think of the following happening on the hardware:

for(UINT i = 0; i < numVertices; ++i)
 outputVertex[i] = VertexShader(inputVertex[i]);

The vertex shader function is something we implement, but it is executed by the
GPU for each vertex, so it is very fast.

Many special effects can be done in the vertex shader such as transformations,
lighting, and displacement mapping. Remember that not only do we have access
to the input vertex data, but we also can access textures and other data stored in
GPU memory such as transformation matrices, and scene lights.

We will see many examples of different vertex shaders throughout this book;
so by the end, you should have a good idea of what can be done with them. For
our fi rst code example, however, we will just use the vertex shader to transform
vertices. The following subsections explain the kind of transformations that
generally need to be done.

5.6.1 Local Space and World Space
Suppose for a moment that you are working on a film and your team has to
construct a miniature version of a train scene for some special effect shots. In
particular, suppose that you are tasked with making a small bridge. Now, you
would not construct the bridge in the middle of the scene, where you would
likely have to work from a difficult angle and be careful not to mess up the other
miniatures that compose the scene. Instead, you would work on the bridge at your
workbench away from the scene. Then when it is all done, you would place the
bridge at its correct position and angle in the scene.

3D artists do something similar when constructing 3D objects. Instead
of building an object’s geometry with coordinates relative to a global scene
coordinate system (world space), they specify them relative to a local coordinate
system (local space); the local coordinate system will usually be some convenient
coordinate system located near the object and axis-aligned with the object. Once
the vertices of the 3D model have been defi ned in local space, it is placed in the
global scene. In order to do this, we must defi ne how the local space and world
space are related; this is done by specifying where we want the origin and axes of
the local space coordinate system relative to the global scene coordinate system,
and executing a change of coordinate transformation (see Figure 5.16 and recall

176 DIRECT3D FOUNDATIONS

§3.4). The process of changing coordinates relative to a local coordinate system
into the global scene coordinate system is called the world transform, and the
corresponding matrix is called the world matrix. Each object in the scene has its
own world matrix. After each object has been transformed from its local space to
the world space, then all the coordinates of all the objects are relative to the same
coordinate system (the world space). If you want to defi ne an object directly in the
world space, then you can supply an identity world matrix.

Defi ning each model relative to its own local coordinate system has several
advantages:

1. It is easier. For instance, usually in local space the object will be centered at
the origin and symmetrical with respect to one of the major axes. As another
example, the vertices of a cube are much easier to specify if we choose a local
coordinate system with origin centered at the cube and with axes orthogonal
to the cube faces; see Figure 5.17.

2. The object may be reused across multiple scenes, in which case it makes
no sense to hardcode the object’s coordinates relative to a particular scene.
Instead, it is better to store its coordinates relative to a local coordinate system
and then define, via a change of coordinate matrix, how the local coordinate
system and world coordinate system are related for each scene.

3. Finally, sometimes we draw the same object more than once in a scene, but in
different positions, orientations, and scales (e.g., a tree object may be reused
several times to build a forest). It would be wasteful to duplicate the object’s
vertex and index data for each instance. Instead, we store a single copy of the
geometry (i.e., vertex and index lists) relative to its local space. Then we draw
the object several times, but each time with a different world matrix to specify

Figure 5.16. (a) The vertices of each object are defined with coordinates relative to their own local
coordinate system. In addition, we define the position and orientation of each local coordinate system
relative to the world space coordinate system based on where we want the object in the scene. Then we
execute a change of coordinate transformation to make all coordinates relative to the world space system.
(b) After the world transform, the objects’ vertices have coordinates all relative to the same world system.

THE RENDERING PIPELINE 177

the position, orientation, and scale of the instance in the world space. This is
called instancing.

As §3.4.3 shows, the world matrix for an object is given by describing its local space
with coordinates relative to the world space, and placing these coordinates in the
rows of a matrix. If Qw  (Qx, Qy, Qz, 1), uw  (ux, uy, uz, 0), vw  (vx, vy, vz, 0), and ww 
(wx, wy, wz, 0) describe, respectively, the origin, x-, y-, and z-axes of a local space with
homogeneous coordinates relative to world space, then we know from §3.4.3 that
the change of coordinate matrix from local space to world space is:

0

0

0

1

x y z

x y z

x y z

x y z

u u u

v v v

w w w

Q Q Q

 
 
 
 
 
  

W

We see that to construct a world matrix, we must directly figure out the
coordinates of the local space origin and axes relative to the world space. This is
sometimes not that easy or intuitive. A more common approach is to define W
as a sequence of transformations, say W  SRT, the product of a scaling matrix
S to scale the object into the world, followed by a rotation matrix R to define the
orientation of the local space relative to the world space, followed by a translation
matrix T to define the origin of the local space relative to the world space. From
§3.5, we know that this sequence of transformations may be interpreted as a
change of coordinate transformation, and that the row vectors of W  SRT store
the homogeneous coordinates of the x-axis, y-axis, z-axis and origin of the local
space relative to the world space.

Figure 5.17. The vertices of a cube are easily specified when the cube is centered at the origin and axis-
aligned with the coordinate system. It is not so easy to specify the coordinates when the cube is at an
arbitrary position and orientation with respect to the coordinate system. Therefore, when we construct
the geometry of an object, we usually always choose a convenient coordinate system near the object and
aligned with the object, from which to build the object around.

178 DIRECT3D FOUNDATIONS

☞ Example
Suppose we have a unit square defined relative to some local space with minimum
and maximum points (0.5, 0, 0.5) and (0.5, 0, 0.5), respectively. Find the world
matrix such that the square has a length of 2 in world space, the square is rotated
45 clockwise in the xz-plane of the world space, and the square is positioned at
(10, 0, 10) in world space. We construct S, R, T, and W as follows:

2 0 0 0 2 / 2 0 2 / 2 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 2 0 0 0 1 02 / 2 0 2 / 2 0
0 0 0 1 10 0 10 10 0 0 1

    
    
          
    
     

S R T

2 0 2 0

0 1 0 0

2 0 2 0

10 0 10 1

 
 
    
 
  

W SRT

Now from §3.5, the rows in W describe the local coordinate system relative to the

world space; that is,  2, 0, 2, 0W  u , vW  (0, 1, 0, 0),  2, 0, 2, 0W w ,

and QW  (10, 0, 10, 1). When we change coordinates from the local space to the
world space with W, the square end up in the desired place in world space (see
Figure 5.18).

 

 

 

 

0.5, 0, 0.5, 1 10 2, 0, 0, 1

0.5, 0, 0.5, 1 0, 0, 10 2, 1

0.5, 0, 0.5, 1 10 2, 0, 0, 1

0.5, 0, 0.5, 1 0, 0, 10 2, 1

     
     
     
     

W

W

W

W

The point of this example is that instead of figuring out QW, uW, vW, and wW
directly to form the world matrix, we were able to construct the world matrix
by compositing a sequence of simple transforms. This is often much easier than
figuring out QW, uW, vW, and wW directly, as we need only ask: what size do we
want the object in world space, at what orientation do we want the object in world
space, and at what position do we want the object in world space.

THE RENDERING PIPELINE 179

Another way to consider the world transform is to just take the local space
coordinates and treat them as world space coordinates (this is equivalent to
using an identity matrix as the world transform). Thus if the object is modeled
at the center of its local space, the object is just at the center of the world space.
In general, the center of the world is probably not where we want to position all
of our objects. So now, for each object, just apply a sequence of transformations
to scale, rotation, and position the object where you want in the world space.
Mathematically, this will give the same world transform as building the change of
coordinate matrix from local space to world space.

5.6.2 View Space
In order to form a 2D image of the scene, we must place a virtual camera in the
scene. The camera specifies what volume of the world the viewer can see and thus
what volume of the world we need to generate a 2D image of. Let us attach a local
coordinate system (called view space, eye space, or camera space) to the camera
as shown in Figure 5.19; that is, the camera sits at the origin looking down the

+

+
(1 1

World Space

Local
Space

Figure 5.18. The row vectors of the world matrix describe the local coordinate system with coordinates
relative to the world coordinate system.

Figure 5.19. Convert the coordinates of vertices relative to the world space to make them relative to the
camera space.

180 DIRECT3D FOUNDATIONS

positive z-axis, the x-axis aims to the right of the camera, and the y-axis aims above
the camera. Instead of describing our scene vertices relative to the world space, it
is convenient for later stages of the rendering pipeline to describe them relative
to the camera coordinate system. The change of coordinate transformation from
world space to view space is called the view transform, and the corresponding
matrix is called the view matrix.

If QW  (Qx, Qy, Qz, 1), uW  (ux, uy, uz, 0), vW  (vx, vy, vz, 0), and wW  (wx,
wy, wz, 0) describe, respectively, the origin, x-, y-, and z-axes of view space with
homogeneous coordinates relative to world space, then we know from §3.4.3 that
the change of coordinate matrix from view space to world space is:

0

0

0

1

x y z

x y z

x y z

x y z

u u u

v v v

w w w

Q Q Q

 
 
 
 
 
  

W

However, this is not the transformation we want. We want the reverse
transformation from world space to view space. But recall from §3.4.5 that reverse
transformation is just given by the inverse. Thus W1 transforms from world space
to view space.

The world coordinate system and view coordinate system generally differ by
position and orientation only, so it makes intuitive sense that W  RT (i.e., the
world matrix can be decomposed into a rotation followed by a translation). This
form makes the inverse easier to compute:

   11 1 1 1 T      V W RT T R T R

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 1 1

x x x x x x

y y y y y y

z z z z z z

x y z

u v w u v w

u v w u v w

u v w u v w

Q Q Q

     
     
      
     
                    Q u Q v Q w

So the view matrix has the form:

0

0

0

1

x x x

y y y

z z z

u v w

u v w

u v w

 
 
 
 
       

V

Q u Q v Q w

THE RENDERING PIPELINE 181

We now show an intuitive way to construct the vectors needed to build the view
matrix. Let Q be the position of the camera and let T be the target point the camera
is aimed at. Furthermore, let j be the unit vector that describes the “up” direction
of the world space. (In this book, we use the world xz-plane as our world “ground
plane” and the world y-axis describes the “up” direction; therefore, j  (0, 1, 0) is
just a unit vector parallel to the world y-axis. However, this is just a convention,
and some applications might choose the xy-plane as the ground plane, and the
z-axis as the “up” direction.) Referring to Figure 5.20, the direction the camera is
looking is given by:

|| ||





T Q

w
T Q

This vector describes the local z-axis of the camera. A unit vector that aims to the
“right” of w is given by:

|| ||





j w

u
j w

This vector describes the local x-axis of the camera. Finally, a vector that describes
the local y-axis of the camera is given by:

 v  w  u
Since w and u are orthogonal unit vectors, w × u is necessarily a unit vector, and
so it does not need to be normalized.

Thus, given the position of the camera, the target point, and the world “up”
direction, we were able to derive the local coordinate system of the camera, which
can be used to form the view matrix.

The DirectXMath library provides the following function for computing the
view matrix based on the just described process:

XMMATRIX XM_CALLCONV XMMatrixLookAtLH(// Outputs view matrix V
 FXMVECTOR EyePosition, // Input camera position Q

Figure 5.20. Constructing the camera coordinate system given the camera position, a target point, and a
world “up” vector.

182 DIRECT3D FOUNDATIONS

 FXMVECTOR FocusPosition, // Input target point T
 FXMVECTOR UpDirection); // Input world up direction j

Usually the world’s y-axis corresponds to the “up” direction, so the “up” vector is
usually always j  (0, 1, 0). As an example, suppose we want to position the camera
at the point (5, 3, 10) relative to the world space, and have the camera look at the
origin of the world (0, 0, 0). We can build the view matrix by writing:

XMVECTOR pos = XMVectorSet(5, 3, -10, 1.0f);
XMVECTOR target = XMVectorZero();
XMVECTOR up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f);

XMMATRIX V = XMMatrixLookAtLH(pos, target, up);

5.6.3 Projection and Homogeneous Clip Space
So far we have described the position and orientation of the camera in the world,
but there is another component to a camera, which is the volume of space the
camera sees. This volume is described by a frustum (Figure 5.21).

Our next task is to project the 3D geometry inside the frustum onto a 2D
projection window. The projection must be done in such a way that parallel
lines converge to a vanishing point, and as the 3D depth of an object increases,
the size of its projection diminishes; a perspective projection does this, and is
illustrated in Figure 5.22. We call the line from a vertex to the eye point the vertex’s
line of projection. Then we defi ne the perspective projection transformation as the
transformation that transforms a 3D vertex v to the point v where its line of
projection intersects the 2D projection plane; we say that v is the projection of v.
The projection of a 3D object refers to the projection of all the vertices that make
up the object.

 /
Figure 5.21. A frustum defines the volume of space that the camera “sees.”

THE RENDERING PIPELINE 183

Projection Window

Eye Point Line of Projection

Figure 5.22. Both cylinders in 3D space are the same size but are placed at different depths. The projection
of the cylinder closer to the eye is bigger than the projection of the farther cylinder. Geometry inside the
frustum is projected onto a projection window; geometry outside the frustum, gets projected onto the
projection plane, but will lie outside the projection window.

5.6.3.1 Defining a Frustum

We can define a frustum in view space, with center of projection at the origin and
looking down the positive z-axis, by the following four quantities: a near plane
n, far plane f, vertical field of view angle , and aspect ratio r. Note that in view
space, the near plane and far plane are parallel to the xy-plane; thus we simply
specify their distance from the origin along the z-axis. The aspect ratio is defined
by r  w/h where w is the width of the projection window and h is the height of the
projection window (units in view space). The projection window is essentially the
2D image of the scene in view space. The image here will eventually be mapped to
the back buffer; therefore, we like the ratio of the projection window dimensions
to be the same as the ratio of the back buffer dimensions. So the ratio of the back
buffer dimensions is usually specified as the aspect ratio (it is a ratio so it has no
units). For example, if the back buffer dimensions are 800  600, then we specify

800
1.333

600
r   . If the aspect ratio of the projection window and the back buffer

were not the same, then a non-uniform scaling would be necessary to map the
projection window to the back buffer, which would cause distortion (e.g., a circle
on the projection window might get stretched into an ellipse when mapped to the
back buffer).

We label the horizontal fi eld of view angle , and it is determined by the vertical
fi eld of view angle  and aspect ratio r. To see how r helps us fi nd , consider
Figure 5.23. Note that the actual dimensions of the projection window are not
important, just the aspect ratio needs to be maintained. Therefore, we will choose
the convenient height of 2, and thus the width must be:

2

2
   

w wr w r
h

184 DIRECT3D FOUNDATIONS

In order to have the specified vertical field of view , the projection window must
be placed a distance d from the origin:

1

tan cot
2 2

d
d

         
   

We have now fixed the distance d of the projection window along the z-axis to
have a vertical field of view  when the height of the projection window is 2. Now
we can solve for . Looking at the xz-plane in Figure 5.23, we now see that:

tan
2

cot
2

tan
2

r r

d

r

       
 
 
    

 
So given the vertical field of view angle  and the aspect ratio r, we can always get
the horizontal field of view angle :

 12 tan tan
2

r          

5.6.3.2 Projecting Vertices

Refer to Figure 5.24. Given a point (x, y, z), we wish to find its projection (x, y, d),
on the projection plane z  d. By considering the x- and y-coordinates separately
and using similar triangles, we find:

Figure 5.23. Deriving the horizontal field of view angle  given the vertical field of view angle  and the
aspect ratio r.

THE RENDERING PIPELINE 185

 
 

cot /2

tan /2

xx x xd x
x

d z z z z


    



and

 

 
cot /2

tan /2

yy y yd y
y

d z z z z


    



Observe that a point (x, y, z) is inside the frustum if and only if

 r x r  
 1 1y  
 n z f 

5.6.3.3 Normalized Device Coordinates (NDC)

The coordinates of the projected points in the preceding section are computed
in view space. In view space, the projection window has a height of 2 and a width
of 2r, where r is the aspect ratio. The problem with this is that the dimensions
depend on the aspect ratio. This means we would need to tell the hardware the
aspect ratio, since the hardware will later need to do some operations that involve
the dimensions of the projection window (such as map it to the back buffer). It
would be more convenient if we could remove this dependency on the aspect
ratio. The solution is to scale the projected x-coordinate from the interval [r, r]
to [1, 1] like so:

 r x r  
 1 / 1  x r

Figure 5.24. Similar triangles.

186 DIRECT3D FOUNDATIONS

After this mapping, the x- and y-coordinates are said to be normalized device
coordinates (NDC) (the z-coordinate has not yet been normalized), and a point
(x, y, z) is inside the frustum if and only if

 1 / 1  x r

 1 1  y
 n z f 

The transformation from view space to NDC space can be viewed as a unit
conversion. We have the relationship that one NDC unit equals r units in view
space (i.e., 1ndc  r vs) on the x-axis. So given x view space units, we can use this
relationship to convert units:

1 ndc vs ndc

 vs
 

xx
r r

We can modify our projection formulas to give us the projected x- and
y-coordinates directly in NDC coordinates:

  

 

tan /2

tan /2

x
x

rz

y
y

z

 


 


 (eq. 5.1)

Note that in NDC coordinates, the projection window has a height of 2 and a
width of 2. So now the dimensions are fixed, and the hardware need not know the
aspect ratio, but it is our responsibility to always supply the projected coordinates
in NDC space (the graphics hardware assumes we will).

5.6.3.4 Writing the Projection Equations with a Matrix

For uniformity, we would like to express the projection transformation by
a matrix. However, Equation 5.1 is nonlinear, so it does not have a matrix
representation. The “trick” is to separate it into two parts: a linear part and a
nonlinear part. The nonlinear part is the divide by z. As will be discussed in the
next section, we are going to normalize the z-coordinate; this means we will not
have the original z-coordinate around for the divide. Therefore, we must save
the input z-coordinate before it is transformed; to do this, we take advantage
of homogeneous coordinates and copy the input z-coordinate to the output
w-coordinate. In terms of matrix multiplication, this is done by setting entry [2]
[3]  1 and entry [3][3]  0 (zero-based indices). Our projection matrix looks like
this:

THE RENDERING PIPELINE 187

 

 

1
0 0 0

tan /2

1
0 0 0

tan /2

0 0 1

0 0 0

r

A

B

 
  
 

   
 
 
  

P

Note that we have placed constants (to be determined in the next section) A and B
into the matrix; these constants will be used to transform the input z-coordinate
into the normalized range. Multiplying an arbitrary point (x, y, z, 1) by this matrix
gives:

 

 

 

   

1
0 0 0

tan /2

1
0 0 0, , ,1

tan /2

0 0 1

0 0 0

, , ,
tan /2 tan /2

r

x y z

A

B

yx
Az B z

r

 
  
 
  
 
 
  
 

    

 (eq. 5.2)

After multiplying by the projection matrix (the linear part), we complete the
transformation by dividing each coordinate by w  z (the nonlinear part):

       
divide by

, , , , , ,1
tan /2 tan /2 tan /2 tan /2

wy yx x B
Az B z A

r rz z z

   
           

 (eq. 5.3)

Incidentally, you may wonder about a possible divide by zero; however, the near
plane should be greater than zero, so such a point would be clipped (§5.9). The
divide by w is sometimes called the perspective divide or homogeneous divide. We
see that the projected x- and y-coordinates agree with Equation 5.1.

5.6.3.5 Normalized Depth Value

It may seem like after projection, we can discard the original 3D z-coordinate, as
all the projected points now lay on the 2D projection window, which forms the
2D image seen by the eye. However, we still need 3D depth information around
for the depth buffering algorithm. Just like Direct3D wants the projected x- and

188 DIRECT3D FOUNDATIONS

y-coordinates in a normalized range, Direct3D wants the depth coordinates in
the normalized range [0, 1]. Therefore, we must construct an order preserving
function g(z) that maps the interval [n, f] onto [0, 1]. Because the function is
order preserving, if z1, z2  [n, f] and z1 < z2, then g(z1) < g(z2); so even though
the depth values have been transformed, the relative depth relationships remain
intact, so we can still correctly compare depths in the normalized interval, which
is all we need for the depth buffering algorithm.

Mapping [n, f] onto [0, 1] can be done with a scaling and translation. However,
this approach will not integrate into our current projection strategy. We see from
Equation 5.3, that the z-coordinate undergoes the transformation:

 ()
B

g z A
z

 

We now need to choose A and B subject to the constraints:

Condition 1: g(n)  A  B/n  0 (the near plane gets mapped to zero)
Condition 2: g(f)  A  B/f  1 (the far plane gets mapped to one)

Solving condition 1 for B yields: B  −An. Substituting this into condition 2 and
solving for A gives:

1

1

An
A

f

Af An

f

Af An f

f
A

f n


 




 




Therefore,

  
 

f nf
g z

f n f n z
 

 

A graph of g (Figure 5.25) shows it is strictly increasing (order preserving) and
nonlinear. It also shows that most of the range is “used up” by depth values close
to the near plane. Consequently, the majority of the depth values get mapped to
a small subset of the range. This can lead to depth buffer precision problems (the
computer can no longer distinguish between slightly different transformed depth
values due to finite numerical representation). The general advice is to make the
near and far planes as close as possible to minimize depth precision problems.

THE RENDERING PIPELINE 189

Now that we have solved for A and B, we can state the full perspective projection
matrix:

 

 

1
0 0 0

tan /2

1
0 0 0

tan /2

0 0 1

0 0 0

r

f

f n

nf

f n

 
  
 
  
 
 

 
 
 

  

P

After multiplying by the projection matrix, but before the perspective divide,
geometry is said to be in homogeneous clip space or projection space. After the
perspective divide, the geometry is said to be in normalized device coordinates
(NDC).

5.6.3.6 XMMatrixPerspectiveFovLH

A perspective projection matrix can be built with the following DirectX Math
function:

// Returns the projection matrix
XMMATRIX XM_CALLCONV XMMatrixPerspectiveFovLH(
 float FovAngleY, // vertical field of view angle in radians
 float Aspect, // aspect ratio = width / height
 float NearZ, // distance to near plane
 float FarZ); // distance to far plane

(, = 1, = 100)

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0 (, = 10, = 100)

+

()

Figure 5.25. Graph of g(z) for different near planes.

190 DIRECT3D FOUNDATIONS

The following code snippet illustrates how to use XMMatrixPerspectiveFovLH.
Here, we specify a 45 vertical field of view, a near plane at z  1 and a far plane at
z  1000 (these lengths are in view space).

XMMATRIX P = XMMatrixPerspectiveFovLH(0.25f*XM_PI,
AspectRatio(), 1.0f, 1000.0f);

The aspect ratio is taken to match our window aspect ratio:

float D3DApp::AspectRatio()const
{
 return static_cast<float>(mClientWidth) / mClientHeight;
}

5.7 THE TESSELLATION STAGES

Tessellation refers to subdividing the triangles of a mesh to add new triangles.
These new triangles can then be offset into new positions to create finer mesh
detail (see Figure 5.26).

There are a number of benefi ts to tessellations:

1. We can implement a level-of-detail (LOD) mechanism, where triangles near
the camera are tessellated to add more detail, and triangles far away from the
camera are not tessellated. In this way, we only use more triangles where the
extra detail will be noticed.

2. We keep a simpler low-poly mesh (low-poly means low triangle count) in
memory, and add the extra triangles on the fly, thus saving memory.

3. We do operations like animation and physics on a simpler low-poly mesh,
and only use the tessellated high-poly mesh for rendering.

The tessellation stages are new to Direct3D 11, and they provide a way to tessellate
geometry on the GPU. Before Direct3D 11, if you wanted to implement a form
of tessellation, it would have to be done on the CPU, and then the new tessellated

Figure 5.26. The left image shows the original mesh. The right image shows the mesh after tessellation.

THE RENDERING PIPELINE 191

geometry would have to be uploaded back to the GPU for rendering. However,
uploading new geometry from CPU memory to GPU memory is slow, and it also
burdens the CPU with computing the tessellation. For this reason, tessellation
methods have not been very popular for real-time graphics prior to Direct3D
11. Direct3D 11 provides an API to do tessellation completely in hardware with
a Direct3D 11 capable video card. This makes tessellation a much more attractive
technique. The tessellation stages are optional (you only need to use it if you want
tessellation). We defer our coverage of tessellation until Chapter 14.

5.8 THE GEOMETRY SHADER STAGE

The geometry shader stage is optional, and we do not use it until Chapter 12, so
we will be brief here. The geometry shader inputs entire primitives. For example,
if we were drawing triangle lists, then the input to the geometry shader would
be the three vertices defining the triangle. (Note that the three vertices will have
already passed through the vertex shader.) The main advantage of the geometry
shader is that it can create or destroy geometry. For example, the input primitive
can be expanded into one or more other primitives, or the geometry shader can
choose not to output a primitive based on some condition. This is in contrast to a
vertex shader, which cannot create vertices: it inputs one vertex and outputs one
vertex. A common example of the geometry shader is to expand a point into a
quad or to expand a line into a quad.

We also notice the “stream-out” arrow from Figure 5.11. That is, the geometry
shader can stream-out vertex data into a buffer in memory, which can later be
drawn. This is an advanced technique, and will be discussed in a later chapter.

Vertex positions leaving the geometry shader must be transformed to
homogeneous clip space.

5.9 CLIPPING

Geometry completely outside the viewing frustum needs to be discarded, and
geometry that intersects the boundary of the frustum must be clipped, so that
only the interior part remains; see Figure 5.27 for the idea illustrated in 2D.

We can think of the frustum as being the region bounded by six planes: the top,
bottom, left, right, near, and far planes. To clip a polygon against the frustum, we
clip it against each frustum plane one-by-one. When clipping a polygon against a
plane (Figure 5.28), the part in the positive half-space of the plane is kept, and the

Note:

192 DIRECT3D FOUNDATIONS

part in the negative half space is discarded. Clipping a convex polygon against a
plane will always result in a convex polygon. Because the hardware does clipping
for us, we will not cover the details here; instead, we refer the reader to the popular
Sutherland-Hodgeman clipping algorithm [Sutherland74]. It basically amounts
to fi nding the intersection points between the plane and polygon edges, and then
ordering the vertices to form the new clipped polygon.

[Blinn78] describes how clipping can be done in 4D homogeneous space. After

the perspective divide, points , , , 1
yx z

w w w
 
 
 

 inside the view frustum are in normalized

device coordinates and bounded as follows:

 1  x/w  1

 1  y/w  1

 0  z/w  1

Far Plane

Left Plane Near Plane

Right Pl
ane

Far Plane

Left Plane Near Plane

Right Pl
ane

(a) (b)
Figure 5.27. (a) Before clipping. (b) After clipping.

(a) (b)

Figure 5.28. (a) Clipping a triangle against a plane. (b) The clipped triangle. Note that the clipped triangle
is not a triangle, but a quad. Thus the hardware will need to triangulate the resulting quad, which is
straightforward to do for convex polygons.

THE RENDERING PIPELINE 193

So in homogeneous clip space, before the divide, 4D points (x, y, z, w) inside the
frustum are bounded as follows:

 w x w  
 w y w  
 0 z w 

That is, the points are bounded by the simple 4D planes:
Left: w  x
Right: w  x

Bottom: w  y
Top: w  y
Near: z  0
Far: z  w

Once we know the frustum plane equations in homogeneous space, we can apply
a clipping algorithm (such as Sutherland-Hodgeman). Note that the mathematics
of the segment/plane intersection test generalizes to 4, so we can do the test with
4D points and the 4D planes in homogeneous clip space.

5.10 THE RASTERIZATION STAGE

The main job of the rasterization stage is to compute pixel colors from the
projected 3D triangles.

5.10.1 Viewport Transform
After clipping, the hardware can do the perspective divide to transform from
homogeneous clip space to normalized device coordinates (NDC). Once vertices
are in NDC space, the 2D x- and y- coordinates forming the 2D image are
transformed to a rectangle on the back buffer called the viewport (recall §4.3.9).
After this transform, the x- and y-coordinates are in units of pixels. Usually the

+ܺ

+ܹ

ݓ − ݔ = 0
ݓ + ݔ = 0

Figure 5.29. The frustum boundaries in the xw-plane in homogeneous clip space.

194 DIRECT3D FOUNDATIONS

viewport transformation does not modify the z-coordinate, as it is used for depth
buffering, but it can by modifying the MinDepth and MaxDepth values of the D3D12_
VIEWPORT structure. The MinDepth and MaxDepth values must be between 0 and 1.

5.10.2 Backface Culling
A triangle has two sides. To distinguish between the two sides we use the following
convention. If the triangle vertices are ordered v0, v1, v2 then we compute the
triangle normal n like so:

0 1 0

1 2 0

0 1

0 1

 
 






e v v

e v v

e e
n

e e

The side the normal vector emanates from is the front side and the other side is the
back side. Figure 5.30 illustrates this.

We say that a triangle is front-facing if the viewer sees the front side of a
triangle, and we say a triangle is back-facing if the viewer sees the back side of a
triangle. From our perspective of Figure 5.30, the left triangle is front-facing while
the right triangle is back-facing. Moreover, from our perspective, the left triangle
is ordered clockwise while the right triangle is ordered counterclockwise. This is
no coincidence: with the convention we have chosen (i.e., the way we compute
the triangle normal), a triangle ordered clockwise (with respect to that viewer)
is front-facing, and a triangle ordered counterclockwise (with respect to that
viewer) is back-facing.

Now, most objects in 3D worlds are enclosed solid objects. Suppose we agree to
construct the triangles for each object in such a way that the normals are always
aimed outward. Then, the camera does not see the back-facing triangles of a
solid object because the front-facing triangles occlude the back-facing triangles;
Figure 5.31 illustrates this in 2D and 5.32 in 3D. Because the front-facing triangles
occlude the back-facing triangles, it makes no sense to draw them. Backface culling

Figure 5.30. The left triangle is front-facing from our viewpoint, and the right triangle is back-facing from our
viewpoint.

THE RENDERING PIPELINE 195

refers to the process of discarding back-facing triangles from the pipeline. This
can potentially reduce the amount of triangles that need to be processed by half.

By default, Direct3D treats triangles with a clockwise winding order (with
respect to the viewer) as front-facing, and triangles with a counterclockwise
winding order (with respect to the viewer) as back-facing. However, this
convention can be reversed with a Direct3D render state setting.

5.10.3 Vertex Attribute Interpolation
Recall that we define a triangle by specifying its vertices. In addition to position,
we can attach attributes to vertices such as colors, normal vectors, and texture
coordinates. After the viewport transform, these attributes need to be interpolated
for each pixel covering the triangle. In addition to vertex attributes, vertex depth
values need to get interpolated so that each pixel has a depth value for the depth
buffering algorithm. The vertex attributes are interpolated in screen space in
such a way that the attributes are interpolated linearly across the triangle in 3D
space (Figure 5.33); this requires the so-called perspective correct interpolation.
Essentially, interpolation allows us to use the vertex values to compute values for
the interior pixels.

Eye

Front Facing

Back Facing

Eye (a) (b)

Figure 5.31. (a) A solid object with front-facing and back-facing triangles. (b) The scene after culling
the back-facing triangles. Note that backface culling does not affect the final image since the back-facing
triangles are occluded by the front-facing ones.

Figure 5.32. (Left) We draw the cubes with transparency so that you can see all six sides. (Right) We draw
the cubes as solid blocks. Note that we do not see the three back-facing sides since the three front-facing
sides occlude them—thus the back-facing triangles can actually be discarded from further processing and no
one will notice.

196 DIRECT3D FOUNDATIONS

The mathematical details of perspective correct attribute interpolation are
not something we need to worry about since the hardware does it; the interested
reader may fi nd the mathematical derivation in [Eberly01]. However, Figure 5.34
gives the basic idea of what is going on.

5.11 THE PIXEL SHADER STAGE

Pixel shaders are programs we write that are executed on the GPU. A pixel shader
is executed for each pixel fragment and uses the interpolated vertex attributes as
input to compute a color. A pixel shader can be as simple as returning a constant
color, to doing more complicated things like per-pixel lighting, reflections and
shadowing effects.

Figure 5.33. An attribute value p(s, t) on a triangle can be obtained by linearly interpolating between the attribute
values at the vertices of the triangle.

Figure 5.34. A 3D line is being projected onto the projection window (the projection is a 2D line in screen space).
We see that taking uniform step sizes along the 3D line corresponds to taking non-uniform step sizes in 2D screen
space. Therefore to do linear interpolation in 3D space, we need to do nonlinear interpolation in screen space.

THE RENDERING PIPELINE 197

5.12 THE OUTPUT MERGER STAGE

After pixel fragments have been generated by the pixel shader, they move onto
the output merger (OM) stage of the rendering pipeline. In this stage, some pixel
fragments may be rejected (e.g., from the depth or stencil buffer tests). Pixel
fragments that are not rejected are written to the back buffer. Blending is also done
in this stage, where a pixel may be blended with the pixel currently on the back
buffer instead of overriding it completely. Some special effects like transparency
are implemented with blending; Chapter 10 is devoted to blending.

5.13 SUMMARY

1. We can simulate 3D scenes on 2D images by employing several techniques
based on the way we see things in real life. We observe parallel lines converge
to vanishing points, the size of objects diminishes with depth, objects obscure
the objects behind them, lighting and shading depict the solid form and
volume of 3D objects, and shadows imply the location of light sources and
indicate the position of objects relative to other objects in the scene.

2. We approximate objects with triangle meshes. We can define each triangle
by specifying its three vertices. In many meshes, vertices are shared among
triangles; indexed lists can be used to avoid vertex duplication.

3. Colors are described by specifying an intensity of red, green, and blue. The
additive mixing of these three colors at different intensities allows us to
describe millions of colors. To describe the intensities of red, green, and blue,
it is useful to use a normalized range from 0 to 1. 0 denotes no intensity, 1
denotes the full intensity, and intermediate values denote intermediate
intensities. It is common to incorporate an additional color component,
called the alpha component. The alpha component is often used to denote the
opacity of a color, which is useful in blending. Including the alpha component,
means we can represent a color by a 4D color vector (r, g, b, a) where 0  r, g,
b, a  1. Because the data needed to represent a color is a 4D vector, we can
use the XMVECTOR type to represent a color in code, and we gain the benefi t
of SIMD operations whenever use the DirectX Math vector functions to do
color operations. To represent a color with 32-bits, a byte is given to each
component; the DirectXMath library provides the XMCOLOR structure for
storing a 32-bit color. Color vectors are added, subtracted, and scaled just like
regular vectors, except that we must clamp their components to the [0, 1]
interval (or [0, 255] for 32-bit colors). The other vector operations such

198 DIRECT3D FOUNDATIONS

as the dot product and cross product do not make sense for color vectors.
The symbol  denotes component-wise multiplication and it is defi ned as:

     1 2 3 4 1 2 3 4 1 1 2 2 3 3 4 4, , , , , , , , , c c c c k k k k c k c k c k c k  .

4. Given a geometric description of a 3D scene and a positioned and aimed
virtual camera in that scene, the rendering pipeline refers to the entire sequence
of steps necessary to generate a 2D image that can be displayed on a monitor
screen based on what the virtual camera sees.

5. The rendering pipeline can be broken down into the following major stages.
The input assembly (IA) stage; the vertex shader (VS) stage; the tessellation
stages; the geometry shader (GS) stage; the clipping stage; the rasterization
stage (RS); the pixel shader (PS) stage; and the output merger (OM) stage.

5.14 EXERCISES

1. Construct the vertex and index list of a pyramid, as shown in Figure 5.35.

Figure 5.35. The triangles of a pyramid.

2. Consider the two shapes shown in Figure 5.36. Merge the objects into one
vertex and index list. (The idea here is that when you append the second
index list to the first, you will need to update the appended indices since they
reference vertices in the original vertex list, not the merged vertex list.)

Figure 5.36. Shapes for Exercise 2.

3. Relative to the world coordinate system, suppose that the camera is positioned
at (20, 35, -50) and looking at the point (10, 0, 30). Compute the view matrix
assuming (0, 1, 0) describes the “up” direction in the world.

THE RENDERING PIPELINE 199

4. Given that the view frustum has a vertical field of view angle  = 45, the
aspect ratio is a = 4/3, the near plane is n = 1, and the far plane is f = 100, find
the corresponding perspective projection matrix.

5. Suppose that the view window has height 4. Find the distance d from the
origin the view window must be to create a vertical field of view angle  = 60.

6. Consider the following perspective projection matrix:

1.86603 0 0 0

0 3.73205 0 0

0 0 1.02564 1

0 0 5.12821 0

 
 
 
 


 


 Find the vertical fi eld of view angle  the aspect ratio r, and the near and far
plane values that were used to build this matrix.

7. Suppose that you are given the following perspective projection matrix with
fixed A, B, C, D:

0 0 0
0 0 0
0 0 1
0 0 0

 
 
 
 
 
 

A
B

C
D

 Find the vertical fi eld of view angle  the aspect ratio r, and the near and far
plane values that were used to build this matrix in terms of A, B, C, D. That is,
solve the following equations:

(a)
 
1

tan / 2
A

r a

(b)
 
1

tan / 2
B

a

(c) 

fC

f n

(d)




nfD

f n
Solving these equations will give you formulas for extracting the vertical fi eld
of view angle  the aspect ratio r, and the near and far plane values from any
perspective projection matrix of the kind described in this book.

200 DIRECT3D FOUNDATIONS

8. For projective texturing algorithms, we multiply an affine transformation
matrix T after the projection matrix. Prove that it does not matter if we do
the perspective divide before or after multiplying by T. Let, v be a 4D vector, P
be a projection matrix, T be a 4 × 4 affine transformation matrix, and let a w
subscript denote the w-coordinate of a 4D vector, prove:

  
 
 w w

 
  

 

vPTvP
T

vP vPT

9. Prove that the inverse of the projection matrix is given by:

1

tan 0 0 0
2

0 tan 0 0
2

0 0 0

1
0 0 1

r

f n

nf

n



  
    

  
   

  
 

 
 
 
  

P

10. Let [x, y, z, 1] be the coordinates of a point in view space, and let [xndc, yndc,
zndc, 1] be the coordinates of the same point in NDC space. Prove that you can
transform from NDC space to view space in the following way:

    
divide by

1 1
, , ,1 , ,1, , , ,1

w

ndc ndc ndc

yx
x y z x y z

z z z
     

P

Explain why you need the division by w. Would you need the division by w if
you were transforming from homogeneous clip space to view space?

11. Another way to describe the view frustum is by specifying the width and
height of the view volume at the near plane. Given the width w and height h of
the view volume at the near plane, and given the near plane n and far plane f
show that the perspective projection matrix is given by:

2
0 0 0

2
0 0 0

0 0 1

0 0 0

n

w
n

h
f

f n

nf

f n

 
 
 
 
 
 
 
 
  
  

P

THE RENDERING PIPELINE 201

12. Given a view frustum with vertical field of view angle , aspect ratio is a, near
plane n, and far plane f, find the 8 vertex corners of the frustum.

13. Consider the 3D shear transform given by Sxy(x, y, z)  (x  ztx, y  zty, z).
This transformation is illustrated in Figure 5.37. Prove that this is a linear
transformation and has the following matrix representation:

1 0 0

0 1 0

1
xy

x yt t

 
 

  
 
 

S

Figure 5.37. The x- and y-coordinates sheared by the z-coordinate. The top face of the box lies in the z = 1
plane. Observe that the shear transform translates points in this plane.

14. Consider 3D points in the plane z  1; that is, points of the form (x, y, 1).
Observe that transforming a point (x, y, 1) by the shear transformation Sxy
given in the previous exercise amounts to a 2D translation in the z  1 plane:

 
1 0 0

, , 1 0 1 0 , , 1
1

 
        
  

x y

x y

x y x t y t
t t

If we are working on a 2D application, we could use 3D coordinates, but
where our 2D universe always lies on the plane z  1; then we could use Sxy to
do translations in our 2D space.
 Conclude the following generalizations:

a. Just as a plane in 3D space is a 2D space, a plane in 4D space is a 3D space.
When we write homogeneous points (x, y, z, 1) we are working in the 3D
space that lives in the 4D plane w  1.

b. The translation matrix is the matrix representation of the 4D shear
transformation Sxyz(x, y, z, w)  (x  wtx, y  wty, z  wtz, w). The 4D shear
transformation has the effect of translating points in the plane w  1.

Chapter

203

6Chapter

DRAWING IN
DIRECT3D

In the previous chapter, we mostly focused on the conceptual and mathematical
aspects of the rendering pipeline. This chapter, in turn, focuses on the Direct3D
API interfaces and methods needed to configure the rendering pipeline, define
vertex and pixel shaders, and submit geometry to the rendering pipeline for
drawing. By the end of this chapter, you will be able to draw a 3D box with solid
coloring or in wireframe mode.

Objectives:
1. To discover the Direct3D interfaces methods for defining, storing, and

drawing geometric data.

2. To learn how to write basic vertex and pixel shaders.

3. To find out how to configure the rendering pipeline with pipeline state objects.

4. To understand how to create and bind constant buffer data to the pipeline,
and to become familiar with the root signature.

6.1 VERTICES AND INPUT LAYOUTS

Recall from §5.5.1 that a vertex in Direct3D can consist of additional data besides
spatial location. To create a custom vertex format, we first create a structure

204 DIRECT3D FOUNDATIONS

that holds the vertex data we choose. For instance, the following illustrates two
different kinds of vertex formats; one consists of position and color, and the
second consists of position, normal vector, and two sets of 2D texture coordinates.

struct Vertex1
{
 XMFLOAT3 Pos;
 XMFLOAT4 Color;
};

struct Vertex2
{
 XMFLOAT3 Pos;
 XMFLOAT3 Normal;
 XMFLOAT2 Tex0;
 XMFLOAT2 Tex1;
};

Once we have defined a vertex structure, we need to provide Direct3D with
a description of our vertex structure so that it knows what to do with each
component. This description is provided to Direct3D in the form of an input
layout description which is represented by the D3D12_INPUT_LAYOUT_DESC structure:

typedef struct D3D12_INPUT_LAYOUT_DESC
{
 const D3D12_INPUT_ELEMENT_DESC *pInputElementDescs;
 UINT NumElements;
} D3D12_INPUT_LAYOUT_DESC;

An input layout description is simply an array of D3D12_INPUT_ELEMENT_DESC
elements, and the number of elements in the array.

Each element in the D3D12_INPUT_ELEMENT_DESC array describes and corresponds
to one component in the vertex structure. So if the vertex structure has two
components, then the corresponding D3D12_INPUT_ELEMENT_DESC array will have
two elements. The D3D12_INPUT_ELEMENT_DESC structure is defi ned as:

typedef struct D3D12_INPUT_ELEMENT_DESC
{
 LPCSTR SemanticName;
 UINT SemanticIndex;
 DXGI_FORMAT Format;
 UINT InputSlot;
 UINT AlignedByteOffset;
 D3D12_INPUT_CLASSIFICATION InputSlotClass;
 UINT InstanceDataStepRate;
} D3D12_INPUT_ELEMENT_DESC;

1. SemanticName: A string to associate with the element. This can be any valid
variable name. Semantics are used to map elements in the vertex structure to
elements in the vertex shader input signature; see Figure 6.1.

DRAWING IN DIRECT3D 205

2. SemanticIndex: An index to attach to a semantic. The motivation for this is
illustrated in Figure 6.1, where, for example, a vertex structure may have more
than one set of texture coordinates; so rather than introducing a new semantic
name, we can just attach an index to the end to distinguish the two texture
coordinate sets. A semantic with no index specified in the shader code defaults
to index zero; for instance, POSITION is equivalent to POSITION0 in Figure 6.1.

3. Format: A member of the DXGI_FORMAT enumerated type specifying the format
(i.e., the data type) of this vertex element to Direct3D; here are some common
examples of formats used:

 DXGI_FORMAT_R32_FLOAT // 1D 32-bit float scalar
 DXGI_FORMAT_R32G32_FLOAT // 2D 32-bit float vector
 DXGI_FORMAT_R32G32B32_FLOAT // 3D 32-bit float vector
 DXGI_FORMAT_R32G32B32A32_FLOAT // 4D 32-bit float vector

 DXGI_FORMAT_R8_UINT // 1D 8-bit unsigned integer scalar
 DXGI_FORMAT_R16G16_SINT // 2D 16-bit signed integer vector
 DXGI_FORMAT_R32G32B32_UINT // 3D 32-bit unsigned integer vector
 DXGI_FORMAT_R8G8B8A8_SINT // 4D 8-bit signed integer vector
 DXGI_FORMAT_R8G8B8A8_UINT // 4D 8-bit unsigned integer vector

struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT3 Normal;
 XMFLOAT2 Tex0;
 XMFLOAT2 Tex1;
};

D3D11_INPUT_ELEMENT_DESC vertexDesc[] =
{
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D11_INPUT_PER_VERTEX_DATA, 0},
 {"NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12,
 D3D11_INPUT_PER_VERTEX_DATA, 0},
 {"TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24,
 D3D11_INPUT_PER_VERTEX_DATA, 0},
 {"TEXCOORD", 1, DXGI_FORMAT_R32G32_FLOAT, 0, 32,
 D3D11_INPUT_PER_VERTEX_DATA, 0}
};

VertexOut VS(float3 iPos : POSITION,
 float3 iNormal : NORMAL,
 float2 iTex0 : TEXCOORD0,
 float2 iTex1 : TEXCOORD1)

Figure 6.1. Each element in the vertex structure is described by a corresponding element in the D3D12_
INPUT_ELEMENT_DESC array. The semantic name and index provides way for mapping vertex elements to
the corresponding parameters of the vertex shader.

206 DIRECT3D FOUNDATIONS

4. InputSlot: Specifies the input slot index this element will come from.
Direct3D supports sixteen input slots (indexed from 0-15) through which you
can feed vertex data. For now, we will only be using input slot 0 (i.e., all vertex
elements come from the same input slot); Exercise 2 asks you to experiment
with multiple input slots.

5. AlignedByteOffset: The offset, in bytes, from the start of the C vertex
structure of the specified input slot to the start of the vertex component. For
example, in the following vertex structure, the element Pos has a 0-byte offset
since its start coincides with the start of the vertex structure; the element
Normal has a 12-byte offset because we have to skip over the bytes of Pos to get
to the start of Normal; the element Tex0 has a 24-byte offset because we need
to skip over the bytes of Pos and Normal to get to the start of Tex0; the element
Tex1 has a 32-byte offset because we need to skip over the bytes of Pos, Normal,
and Tex0 to get to the start of Tex1.

struct Vertex2
{
 XMFLOAT3 Pos; // 0-byte offset
 XMFLOAT3 Normal; // 12-byte offset
 XMFLOAT2 Tex0; // 24-byte offset
 XMFLOAT2 Tex1; // 32-byte offset
};

6. InputSlotClass: Specify D3D12_INPUT_PER_VERTEX_DATA for now; the other
option is used for the advanced technique of instancing.

7. InstanceDataStepRate: Specify 0 for now; other values are only used for the
advanced technique of instancing.

For the previous two example vertex structures, Vertex1 and Vertex2, the
corresponding input layout descriptions would be:

D3D12_INPUT_ELEMENT_DESC desc1[] =
{
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_PER_VERTEX_DATA, 0},
 {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12,
 D3D12_INPUT_PER_VERTEX_DATA, 0}
};

D3D12_INPUT_ELEMENT_DESC desc2[] =
{
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_PER_VERTEX_DATA, 0},
 {"NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12,
 D3D12_INPUT_PER_VERTEX_DATA, 0},
 {"TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24,
 D3D12_INPUT_PER_VERTEX_DATA, 0}
 {"TEXCOORD", 1, DXGI_FORMAT_R32G32_FLOAT, 0, 32,
 D3D12_INPUT_PER_VERTEX_DATA, 0}
};

DRAWING IN DIRECT3D 207

6.2 VERTEX BUFFERS

In order for the GPU to access an array of vertices, they need to be placed in a
GPU resource (ID3D12Resource) called a buffer. We call a buffer that stores
vertices a vertex buffer. Buffers are simpler resources than textures; they are not
multidimensional, and do not have mipmaps, filters, or multisampling support.
We will use buffers whenever we need to provide the GPU with an array of data
elements such as vertices.

As we did in §4.3.8, we create an ID3D12Resource object by fi lling out a D3D12_
RESOURCE_DESC structure describing the buffer resource, and then calling the ID3
D12Device::CreateCommittedResource method. See §4.3.8 for a description of all
the members of the D3D12_RESOURCE_DESC structure. Direct3D 12 provides a C
wrapper class CD3DX12_RESOURCE_DESC, which derives from D3D12_RESOURCE_DESC
and provides convenience constructors and methods. In particular, it provides
the following method that simplifi es the construction of a D3D12_RESOURCE_DESC
describing a buffer:

static inline CD3DX12_RESOURCE_DESC Buffer(
 UINT64 width,
 D3D12_RESOURCE_FLAGS flags = D3D12_RESOURCE_FLAG_NONE,
 UINT64 alignment = 0)
{
 return CD3DX12_RESOURCE_DESC(D3D12_RESOURCE_DIMENSION_BUFFER,
 alignment, width, 1, 1, 1,
 DXGI_FORMAT_UNKNOWN, 1, 0,
 D3D12_TEXTURE_LAYOUT_ROW_MAJOR, flags);
}

For a buffer, the width refers to the number of bytes in the buffer. For example, if
the buffer stored 64 floats, then the width would be 64*sizeof(float).

The CD3DX12_RESOURCE_DESC class also provides convenience methods for
constructing a D3D12_RESOURCE_DESC that describes texture resources and
querying information about the resource:

1. CD3DX12_RESOURCE_DESC::Tex1D
2. CD3DX12_RESOURCE_DESC::Tex2D
3. CD3DX12_RESOURCE_DESC::Tex3D

Recall from Chapter 4 that the depth/stencil buffer, which was a 2D texture
was also represented by an ID3D12Resource object. All resources in Direct3D 12
are represented by the ID3D12Resource interface. This is in contrast to Direct3D
11 which had different interfaces for various resources like ID3D11Buffer and
ID3D11Texture2D. The type of resource is specifi ed by the D3D12_RESOURCE_

Note:

Note:

208 DIRECT3D FOUNDATIONS

DESC::D3D12_RESOURCE_DIMENSION fi eld. For example, buffers have dimension
D3D12_RESOURCE_DIMENSION_BUFFER and 2D textures have dimension D3D12_
RESOURCE_DIMENSION_TEXTURE2D.

For static geometry (i.e., geometry that does not change on a per-frame basis),
we put vertex buffers in the default heap (D3D12_HEAP_TYPE_DEFAULT) for optimal
performance. Generally, most geometry in a game will be like this (e.g., trees,
buildings, terrain, characters). After the vertex buffer has been initialized, only
the GPU needs to read from the vertex buffer to draw the geometry, so the default
heap makes sense. However, if the CPU cannot write to the vertex buffer in the
default heap, how do we initialize the vertex buffer?

In addition to creating the actual vertex buffer resource, we need to create an
intermediate upload buffer resource with heap type D3D12_HEAP_TYPE_UPLOAD.
Recall from §4.3.8 that we commit a resource to the upload heap when we need to
copy data from CPU to GPU memory. After we create the upload buffer, we copy
our vertex data from system memory to the upload buffer, and then we copy the
vertex data from the upload buffer to the actual vertex buffer.

Because an intermediate upload buffer is required to initialize the data of a
default buffer (buffer with heap type D3D12_HEAP_TYPE_DEFAULT), we build the
following utility function in d3dUtil.h/.cpp to avoid repeating this work every
time we need a default buffer:

Microsoft::WRL::ComPtr<ID3D12Resource> d3dUtil::CreateDefaultBuffer(
 ID3D12Device* device,
 ID3D12GraphicsCommandList* cmdList,
 const void* initData,
 UINT64 byteSize,
 Microsoft::WRL::ComPtr<ID3D12Resource>& uploadBuffer)
{
 ComPtr<ID3D12Resource> defaultBuffer;

 // Create the actual default buffer resource.
 ThrowIfFailed(device->CreateCommittedResource(
 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
 D3D12_HEAP_FLAG_NONE,
 &CD3DX12_RESOURCE_DESC::Buffer(byteSize),
 D3D12_RESOURCE_STATE_COMMON,
 nullptr,
 IID_PPV_ARGS(defaultBuffer.GetAddressOf())));

 // In order to copy CPU memory data into our default buffer, we need
 // to create an intermediate upload heap.
 ThrowIfFailed(device->CreateCommittedResource(
 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
 D3D12_HEAP_FLAG_NONE,
 &CD3DX12_RESOURCE_DESC::Buffer(byteSize),
 D3D12_RESOURCE_STATE_GENERIC_READ,

DRAWING IN DIRECT3D 209

 nullptr,
 IID_PPV_ARGS(uploadBuffer.GetAddressOf())));

 // Describe the data we want to copy into the default buffer.
 D3D12_SUBRESOURCE_DATA subResourceData = {};
 subResourceData.pData = initData;
 subResourceData.RowPitch = byteSize;
 subResourceData.SlicePitch = subResourceData.RowPitch;

 // Schedule to copy the data to the default buffer resource.
 // At a high level, the helper function UpdateSubresources
 // will copy the CPU memory into the intermediate upload heap.
 // Then, using ID3D12CommandList::CopySubresourceRegion,
 // the intermediate upload heap data will be copied to mBuffer.
 cmdList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(defaultBuffer.Get(),
 D3D12_RESOURCE_STATE_COMMON,
 D3D12_RESOURCE_STATE_COPY_DEST));
 UpdateSubresources<1>(cmdList,
 defaultBuffer.Get(), uploadBuffer.Get(),
 0, 0, 1, &subResourceData);
 cmdList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(defaultBuffer.Get(),
 D3D12_RESOURCE_STATE_COPY_DEST,
 D3D12_RESOURCE_STATE_GENERIC_READ));

 // Note: uploadBuffer has to be kept alive after the above function
 // calls because the command list has not been executed yet that
 // performs the actual copy.
 // The caller can Release the uploadBuffer after it knows the copy
 // has been executed.
 return defaultBuffer;
}

The D3D12_SUBRESOURCE_DATA structure is defined as follows:

typedef struct D3D12_SUBRESOURCE_DATA
{
 const void *pData;
 LONG_PTR RowPitch;
 LONG_PTR SlicePitch;
} D3D12_SUBRESOURCE_DATA;

1. pData: A pointer to a system memory array which contains the data to initialize
the buffer with. If the buffer can store n vertices, then the system array must
contain at least n vertices so that the entire buffer can be initialized.

2. RowPitch: For buffers, the size of the data we are copying in bytes.

3. SlicePitch: For buffers, the size of the data we are copying in bytes.

210 DIRECT3D FOUNDATIONS

The following code shows how this class would be used to create a default buffer
that stored the 8 vertices of a cube, where each vertex had a different color
associated with it:

Vertex vertices[] =
{
 { XMFLOAT3(-1.0f, -1.0f, -1.0f), XMFLOAT4(Colors::White) },
 { XMFLOAT3(-1.0f, +1.0f, -1.0f), XMFLOAT4(Colors::Black) },
 { XMFLOAT3(+1.0f, +1.0f, -1.0f), XMFLOAT4(Colors::Red) },
 { XMFLOAT3(+1.0f, -1.0f, -1.0f), XMFLOAT4(Colors::Green) },
 { XMFLOAT3(-1.0f, -1.0f, +1.0f), XMFLOAT4(Colors::Blue) },
 { XMFLOAT3(-1.0f, +1.0f, +1.0f), XMFLOAT4(Colors::Yellow) },
 { XMFLOAT3(+1.0f, +1.0f, +1.0f), XMFLOAT4(Colors::Cyan) },
 { XMFLOAT3(+1.0f, -1.0f, +1.0f), XMFLOAT4(Colors::Magenta) }
};

const UINT64 vbByteSize = 8 * sizeof(Vertex);

ComPtr<ID3D12Resource> VertexBufferGPU = nullptr;
ComPtr<ID3D12Resource> VertexBufferUploader = nullptr;
VertexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(),
 mCommandList.Get(), vertices, vbByteSize, VertexBufferUploader);

where the Vertex type and colors are defined as follows:

struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT4 Color;
};

In order to bind a vertex buffer to the pipeline, we need to create a vertex buffer
view to the vertex buffer resource. Unlike an RTV (render target view), we do not
need a descriptor heap for a vertex buffer view. A vertex buffer view is represented
by the D3D12_VERTEX_BUFFER_VIEW_DESC structure:

typedef struct D3D12_VERTEX_BUFFER_VIEW
{
 D3D12_GPU_VIRTUAL_ADDRESS BufferLocation;
 UINT SizeInBytes;
 UINT StrideInBytes;
} D3D12_VERTEX_BUFFER_VIEW;

1. BufferLocation: The virtual address of the vertex buffer resource we want
to create a view to. We can use the ID3D12Resource::GetGPUVirtualAddress
method to get this.

2. SizeInBytes: The number of bytes to view in the vertex buffer starting from
BufferLocation.

3. StrideInBytes: The size of each vertex element, in bytes.

DRAWING IN DIRECT3D 211

After a vertex buffer has been created and we have created a view to it, we can bind
it to an input slot of the pipeline to feed the vertices to the input assembler stage
of the pipeline. This can be done with the following method:

void ID3D12GraphicsCommandList::IASetVertexBuffers(
 UINT StartSlot,
 UINT NumBuffers,
 const D3D12_VERTEX_BUFFER_VIEW *pViews);

1. StartSlot: The input slot to start binding vertex buffers to. There are 16 input
slots indexed from 0-15.

2. NumBuffers: The number of vertex buffers we are binding to the input slots.
If the start slot has index k and we are binding n buffers, then we are binding
buffers to input slots Ik, Ik1,…,Ikn-1.

3. pViews: Pointer to the first element of an array of vertex buffers views.

Below is an example call:

D3D12_VERTEX_BUFFER_VIEW vbv;
vbv.BufferLocation = VertexBufferGPU->GetGPUVirtualAddress();
vbv.StrideInBytes = sizeof(Vertex);
vbv.SizeInBytes = 8 * sizeof(Vertex);

D3D12_VERTEX_BUFFER_VIEW vertexBuffers[1] = { vbv };
mCommandList->IASetVertexBuffers(0, 1, vertexBuffers);

The IASetVertexBuffers method may seem a little complicated because it
supports setting an array of vertex buffers to various input slots. However, we will
only use one input slot. An end-of-chapter exercise gives you some experience
working with two input slots.

A vertex buffer will stay bound to an input slot until you change it. So you may
structure your code like this, if you are using more than one vertex buffer:

ID3D12Resource* mVB1; // stores vertices of type Vertex1
ID3D12Resource* mVB2; // stores vertices of type Vertex2

D3D12_VERTEX_BUFFER_VIEW_DESC mVBView1; // view to mVB1
D3D12_VERTEX_BUFFER_VIEW_DESC mVBView2; // view to mVB2

/*...Create the vertex buffers and views...*/

mCommandList->IASetVertexBuffers(0, 1, &VBView1);
/* ...draw objects using vertex buffer 1... */

mCommandList->IASetVertexBuffers(0, 1, &mVBView2);
/* ...draw objects using vertex buffer 2... */

212 DIRECT3D FOUNDATIONS

Setting a vertex buffer to an input slot does not draw them; it only makes the
vertices ready to be fed into the pipeline. The final step to actually draw the
vertices is done with the ID3D12GraphicsCommandList::DrawInstanced method:

void ID3D12CommandList::DrawInstanced(
 UINT VertexCountPerInstance,
 UINT InstanceCount,
 UINT StartVertexLocation,
 UINT StartInstanceLocation);

1. VertexCountPerInstance: The number of vertices to draw (per instance).

2. InstanceCount: Used for an advanced technique called instancing; for now, set
this to 1 as we only draw one instance.

3. StartVertexLocation: specifies the index (zero-based) of the first vertex in the
vertex buffer to begin drawing.

4. StartInstanceLocation: Used for an advanced technique called instancing;
for now, set this to 0.

The two parameters VertexCountPerInstance and StartVertexLocation define a
contiguous subset of vertices in the vertex buffer to draw; see Figure 6.2.

Vertex Buffer’s Memory

Vertex Count

Start Vertex Location

Figure 6.2. StartVertexLocation specifies the index (zero-based) of the first vertex in the vertex buffer
to begin drawing. VertexCountPerInstance specifies the number of vertices to draw.

The DrawInstanced method does not specify what kind of primitive the vertices
defi ne. Should they be drawn as points, line lists, or triangle lists? Recall from
§5.5.2 that the primitive topology state is set with the ID3D12GraphicsCommandList
::IASetPrimitiveTopology method. Here is an example call:

cmdList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

6.3 INDICES AND INDEX BUFFERS

Similar to vertices, in order for the GPU to access an array of indices, they need to
be placed in a buffer GPU resource (ID3D12Resource). We call a buffer that stores
indices an index buffer. Because our d3dUtil::CreateDefaultBuffer function
works with generic data via a void*, we can use this same function to create an
index buffer (or any default buffer).

DRAWING IN DIRECT3D 213

In order to bind an index buffer to the pipeline, we need to create an index
buffer view to the index buffer resource. As with vertex buffer views, we do
not need a descriptor heap for an index buffer view. An index buffer view is
represented by the D3D12_INDEX_BUFFER_VIEW structure:

typedef struct D3D12_INDEX_BUFFER_VIEW
{
 D3D12_GPU_VIRTUAL_ADDRESS BufferLocation;
 UINT SizeInBytes;
 DXGI_FORMAT Format;
} D3D12_INDEX_BUFFER_VIEW;

1. BufferLocation: The virtual address of the vertex buffer resource we want
to create a view to. We can use the ID3D12Resource::GetGPUVirtualAddress
method to get this.

2. SizeInBytes: The number of bytes to view in the index buffer starting from
BufferLocation.

3. Format: The format of the indices which must be either DXGI_FORMAT_R16_UINT
for 16-bit indices or DXGI_FORMAT_R32_UINT for 32-bit indices. You should use
16-bit indices to reduce memory and bandwidth, and only use 32-bit indices
if you have index values that need the extra 32-bit range.

As with vertex buffers, and other Direct3D resource for that matter, before we
can use it, we need to bind it to the pipeline. An index buffer is bound to the
input assembler stage with the ID3D12CommandList::SetIndexBuffer method. The
following code shows how to create an index buffer defining the triangles of a
cube, create a view to it, and bind it to the pipeline:

std::uint16_t indices[] = {
 // front face
 0, 1, 2,
 0, 2, 3,

 // back face
 4, 6, 5,
 4, 7, 6,

 // left face
 4, 5, 1,
 4, 1, 0,

 // right face
 3, 2, 6,
 3, 6, 7,

 // top face
 1, 5, 6,
 1, 6, 2,

214 DIRECT3D FOUNDATIONS

 // bottom face
 4, 0, 3,
 4, 3, 7
};

const UINT ibByteSize = 36 * sizeof(std::uint16_t);

ComPtr<ID3D12Resource> IndexBufferGPU = nullptr;
ComPtr<ID3D12Resource> IndexBufferUploader = nullptr;
IndexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(),
 mCommandList.Get(), indices), ibByteSize, IndexBufferUploader);

D3D12_INDEX_BUFFER_VIEW ibv;
ibv.BufferLocation = IndexBufferGPU->GetGPUVirtualAddress();
ibv.Format = DXGI_FORMAT_R16_UINT;
ibv.SizeInBytes = ibByteSize;

mCommandList->IASetIndexBuffer(&ibv);

Finally, when using indices, we must use the ID3D12GraphicsCommandList::DrawIn
dexedInstanced method instead of DrawInstanced:

void ID3D12GraphicsCommandList::DrawIndexedInstanced(
 UINT IndexCountPerInstance,
 UINT InstanceCount,
 UINT StartIndexLocation,
 INT BaseVertexLocation,
 UINT StartInstanceLocation);

1. IndexCountPerInstance: The number of indices to draw (per instance).

2. InstanceCount: Used for an advanced technique called instancing; for now, set
this to 1 as we only draw one instance.

3. StartIndexLocation: Index to an element in the index buffer that marks the
starting point from which to begin reading indices.

4. BaseVertexLocation: An integer value to be added to the indices used in this
draw call before the vertices are fetched.

5. StartInstanceLocation: Used for an advanced technique called instancing;
for now, set this to 0.

To illustrate these parameters, consider the following situation. Suppose we have
three objects: a sphere, box, and cylinder. At first, each object has its own vertex
buffer and its own index buffer. The indices in each local index buffer are relative
to the corresponding local vertex buffer. Now suppose that we concatenate the
vertices and indices of the sphere, box, and cylinder into one global vertex and
index buffer, as shown in Figure 6.3. (One might concatenate vertex and index
buffers because there is some API overhead when changing the vertex and index
buffers. Most likely this will not be a bottleneck, but if you have many small
vertex and index buffers that could be easily merged, it may be worth doing so for

DRAWING IN DIRECT3D 215

performance reasons.) After this concatenation, the indices are no longer correct,
as they store index locations relative to their corresponding local vertex buffers,
not the global one; thus the indices need to be recomputed to index correctly
into the global vertex buffer. The original box indices were computed with the
assumption that the box’s vertices ran through the indices

 0, 1, ..., numBoxVertices-1

But after the merger, they run from

 firstBoxVertexPos,
 firstBoxVertexPos+1,
 ...,
 firstBoxVertexPos+numBoxVertices-1

Therefore, to update the indices, we need to add firstBoxVertexPos to every box
index. Likewise, we need to add firstCylVertexPos to every cylinder index. Note
that the sphere’s indices do not need to be changed (since the first sphere vertex
position is zero). Let us call the position of an object’s first vertex relative to the
global vertex buffer its base vertex location. In general, the new indices of an object
are computed by adding its base vertex location to each index. Instead of having

Global Vertex Buffer

Sphere Vertices Box Vertices Cylinder Vertices

Global Index Buffer

Sphere Indices Box Indices Cylinder Indices

firstBoxIndex
firstCylIndex

numSphereIndices numBoxIndices

0

numCylIndices

0 firstBoxVertexPos
firstCylVertexPos

Sphere = {VB, IB} Box = {VB, IB} Cylinder = {VB, IB}

Figure 6.3. Concatenating several vertex buffers into one large vertex buffer, and concatenating several
index buffers into one large index buffer.

216 DIRECT3D FOUNDATIONS

to compute the new indices ourselves, we can let Direct3D do it by passing the
base vertex location to the fourth parameter of DrawIndexedInstanced.

We can then draw the sphere, box, and cylinder one-by-one with the following
three calls:

mCmdList->DrawIndexedInstanced(
 numSphereIndices, 1, 0, 0, 0);
mCmdList->DrawIndexedInstanced(
 numBoxIndices, 1, firstBoxIndex, firstBoxVertexPos, 0);
mCmdList->DrawIndexedInstanced(
 numCylIndices, 1, firstCylIndex, firstCylVertexPos, 0);

The “Shapes” demo project in the next chapter uses this technique.

6.4 EXAMPLE VERTEX SHADER

Below in an implementation of the simple vertex shader (recall §5.6):

cbuffer cbPerObject : register(b0)
{
 float4x4 gWorldViewProj;
};

void VS(float3 iPosL : POSITION,
 float4 iColor : COLOR,
 out float4 oPosH : SV_POSITION,
 out float4 oColor : COLOR)
{
 // Transform to homogeneous clip space.
 oPosH = mul(float4(iPosL, 1.0f), gWorldViewProj);

 // Just pass vertex color into the pixel shader.
 oColor = iColor;
}

Shaders are written in a language called the high level shading language (HLSL),
which has similar syntax to C, so it is easy to learn. Appendix B provides a concise
reference to the HLSL. Our approach to teaching the HLSL and programming
shaders will be example based. That is, as we progress through the book, we will
introduce any new HLSL concepts we need in order to implement the demo at
hand. Shaders are usually written in text-based files with a .hlsl extension.

The vertex shader is the function called VS. Note that you can give the vertex
shader any valid function name. This vertex shader has four parameters; the fi rst
two are input parameters, and the last two are output parameters (indicated by the
out keyword). The HLSL does not have references or pointers, so to return multiple
values from a function, you need to either use structures or out parameters. In
HLSL, functions are always inlined.

DRAWING IN DIRECT3D 217

The fi rst two input parameters form the input signature of the vertex shader and
correspond to data members in our custom vertex structure we are using for the
draw. The parameter semantics “:POSITION” and “:COLOR” are used for mapping
the elements in the vertex structure to the vertex shader input parameters, as
Figure 6.4 shows.

The output parameters also have attached semantics (“:SV_POSITION” and
“:COLOR”). These are used to map vertex shader outputs to the corresponding
inputs of the next stage (either the geometry shader or pixel shader). Note
that the SV_POSITION semantic is special (SV stands for system value). It is used
to denote the vertex shader output element that holds the vertex position in
homogeneous clip space. We must attach the SV_POSITION semantic to the position
output because the GPU needs to be aware of this value because it is involved in
operations the other attributes are not involved in, such as clipping, depth testing
and rasterization. The semantic name for output parameters that are not system
values can be any valid semantic name.

The fi rst line transforms the vertex position from local space to homogeneous
clip space by multiplying by the 4  4 matrix gWorldViewProj:

struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT4 Color;
};

D3D11_INPUT_ELEMENT_DESC vertexDesc[] =
{
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D11_INPUT_PER_VERTEX_DATA, 0},
 {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12,
 D3D11_INPUT_PER_VERTEX_DATA, 0}
};

void VS(float3 iPosL : POSITION,
 float4 iColor : COLOR,
 out float4 oPosH : SV_POSITION,
 out float4 oColor : COLOR)
{
 // Transform to homogeneous clip space.
 oPosH = mul(float4(iPosL, 1.0f), gWorldViewProj);

 // Just pass vertex color into the pixel shader.
 oColor = iColor;
}

Figure 6.4. Each vertex element has an associated semantic specified by the D3D12_INPUT_ELEMENT_
DESC array. Each parameter of the vertex shader also has an attached semantic. The semantics are used to
match vertex elements with vertex shader parameters.

218 DIRECT3D FOUNDATIONS

 // Transform to homogeneous clip space.
 oPosH = mul(float4(iPosL, 1.0f), gWorldViewProj);

The constructor syntax float4(iPosL, 1.0f) constructs a 4D vector and is
equivalent to float4(iPosL.x, iPosL.y, iPosL.z, 1.0f); because we know
the position of vertices are points and not vectors, we place a 1 in the fourth
component (w  1). The float2 and float3 types represent 2D and 3D vectors,
respectively. The matrix variable gWorldViewProj lives in what is called a constant
buffer, which will be discussed in the next section. The built-in function mul
is used for the vector-matrix multiplication. Incidentally, the mul function is
overloaded for matrix multiplications of different sizes; for example, you can use
it to multiply two 4 × 4 matrices, two 3 × 3 matrices, or a 1 × 3 vector and a 3 × 3
matrix. The last line in the shader body just copies the input color to the output
parameter so that the color will be fed into the next stage of the pipeline:

 oColor = iColor;

We can equivalently rewrite the above vertex shader above using structures for the
return type and input signature (as opposed to a long parameter list):

cbuffer cbPerObject : register(b0)
{
 float4x4 gWorldViewProj;
};

struct VertexIn
{
 float3 PosL : POSITION;
 float4 Color : COLOR;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float4 Color : COLOR;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout;

 // Transform to homogeneous clip space.
 vout.PosH = mul(float4(vin.PosL, 1.0f), gWorldViewProj);

 // Just pass vertex color into the pixel shader.
 vout.Color = vin.Color;

 return vout;
}

DRAWING IN DIRECT3D 219

If there is no geometry shader (geometry shaders are covered in Chapter 12),
then the vertex shader must output the vertex position in homogenous clip space
with the SV_POSITION semantic because this is the space the hardware expects the
vertices to be in when leaving the vertex shader (if there is no geometry shader).
If there is a geometry shader, the job of outputting the homogenous clip space
position can be deferred to the geometry shader.

A vertex shader (or geometry shader) does not do the perspective divide; it just
does the projection matrix part. The perspective divide will be done later by the
hardware .

6.4.1 Input Layout Description and Input Signature Linking
Note from Figure 6.4 that there is a linking between the attributes of the vertices
being fed into the pipeline, which is defined by the input layout description. If you
feed in vertices that do not supply all the inputs a vertex shader expects, an error
will result. For example, the following vertex shader input signature and vertex
data are incompatible:

//--------------
// C++ app code
//--------------
struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT4 Color;
};

D3D12_INPUT_ELEMENT_DESC desc[] =
{
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_PER_VERTEX_DATA, 0},
 {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12,
 D3D12_INPUT_PER_VERTEX_DATA, 0}
};

//--------------
// Vertex shader
//--------------
struct VertexIn
{
 float3 PosL : POSITION;
 float4 Color : COLOR;
 float3 Normal : NORMAL;
};

struct VertexOut
{

Note:

Note:

220 DIRECT3D FOUNDATIONS

 float4 PosH : SV_POSITION;
 float4 Color : COLOR;
};

VertexOut VS(VertexIn vin) { ... }

As we will see in §6.9, when we create an ID3D12PipelineState object, we must
specify both the input layout description and the vertex shader. Direct3D will
then validate that the input layout description and vertex shader are compatible.

The vertex data and input signature do not need to match exactly. What is
needed is for the vertex data to provide all the data the vertex shader expects.
Therefore, it is allowed for the vertex data to provide additional data the vertex
shader does not use. That is, the following are compatible:

//--------------
// C++ app code
//--------------
struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT4 Color;
 XMFLOAT3 Normal;
};

D3D12_INPUT_ELEMENT_DESC desc[] =
{
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_PER_VERTEX_DATA, 0},
 {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12,
 D3D12_INPUT_PER_VERTEX_DATA, 0},
 { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 28,
 D3D12_INPUT_PER_VERTEX_DATA, 0 }
};

//--------------
// Vertex shader
//--------------
struct VertexIn
{
 float3 PosL : POSITION;
 float4 Color : COLOR;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float4 Color : COLOR;
};

VertexOut VS(VertexIn vin) { ... }

DRAWING IN DIRECT3D 221

Now consider the case where the vertex structure and input signature have
matching vertex elements, but the types are different for the color attribute:

//--------------
// C++ app code
//--------------
struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT4 Color;
};

D3D12_INPUT_ELEMENT_DESC desc[] =
{
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_PER_VERTEX_DATA, 0},
 {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12,
 D3D12_INPUT_PER_VERTEX_DATA, 0}
};

//--------------
// Vertex shader
//--------------
struct VertexIn
{
 float3 PosL : POSITION;
 int4 Color : COLOR;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float4 Color : COLOR;
};

VertexOut VS(VertexIn vin) { ... }

This is actually legal because Direct3D allows the bits in the input registers to
be reinterpreted. However, the VC debug output window gives the following
warning:

D3D12 WARNING: ID3D11Device::CreateInputLayout: The provided input
signature expects to read an element with SemanticName/Index: ‘COLOR’/0
and component(s) of the type ‘int32’. However, the matching entry in
the Input Layout declaration, element[1], specifies mismatched format:
‘R32G32B32A32_FLOAT’. This is not an error, since behavior is well
defined: The element format determines what data conversion algorithm
gets applied before it shows up in a shader register. Independently,
the shader input signature defines how the shader will interpret the
data that has been placed in its input registers, with no change in the
bits stored. It is valid for the application to reinterpret data as
a different type once it is in the vertex shader, so this warning is
issued just in case reinterpretation was not intended by the author.

222 DIRECT3D FOUNDATIONS

6.5 EXAMPLE PIXEL SHADER

As discussed in §5.10.3, during rasterization vertex attributes output from the
vertex shader (or geometry shader) are interpolated across the pixels of a triangle.
The interpolated values are then fed into the pixel shader as input (§5.11).
Assuming there is no geometry shader, Figure 6.5 illustrates the path vertex data
takes up to now.

A pixel shader is like a vertex shader in that it is a function executed for each
pixel fragment. Given the pixel shader input, the job of the pixel shader is to
calculate a color value for the pixel fragment. We note that the pixel fragment may
not survive and make it onto the back buffer; for example, it might be clipped
in the pixel shader (the HLSL includes a clip function which can discard a pixel
fragment from further processing), occluded by another pixel fragment with a
smaller depth value, or the pixel fragment may be discarded by a later pipeline test

struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT3 Normal;
 XMFLOAT2 Tex0;
};

D3D11_INPUT_ELEMENT_DESC vertexDesc[] =
{
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D11_INPUT_PER_VERTEX_DATA, 0},
 {"NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12,
 D3D11_INPUT_PER_VERTEX_DATA, 0},
 {"TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24,
 D3D11_INPUT_PER_VERTEX_DATA, 0}
};

void VS(float3 iPosL : POSITION,
 float3 iNormalL : NORMAL,
 float2 iTex0 : TEXCOORD,
 out float4 oPosH : SV_POSITION,
 out float3 oPosW : POSITION,
 out float3 oNormalW : NORMAL,
 out float2 oTex0 : TEXCOORD0,
 out float oFog : TEXCOORD1)
{

}

void PS(float4 posH : SV_POSITION,
 float3 posW : POSITION,
 float3 normalW : NORMAL,
 float2 tex0 : TEXCOORD0,
 float fog : TEXCOORD1)
{

}

Figure 6.5. Each vertex element has an associated semantic specified by the D3D12_INPUT_ELEMENT_
DESC array. Each parameter of the vertex shader also has an attached semantic. The semantics are used to
match vertex elements with vertex shader parameters. Likewise, each output from the vertex shader has an
attached semantic, and each pixel shader input parameter has an attached semantics. These semantics are
used to map vertex shader outputs into the pixel shader input parameters.

DRAWING IN DIRECT3D 223

like the stencil buffer test. Therefore, a pixel on the back buffer may have several
pixel fragment candidates; this is the distinction between what is meant by “pixel
fragment” and “pixel,” although sometimes the terms are used interchangeably,
but context usually makes it clear what is meant.

As a hardware optimization, it is possible that a pixel fragment is rejected by
the pipeline before making it to the pixel shader (e.g., early-z rejection). This is
where the depth test is done fi rst, and if the pixel fragment is determined to be
occluded by the depth test, then the pixel shader is skipped. However, there are
some cases that can disable the early-z rejection optimization. For example, if
the pixel shader modifi es the depth of the pixel, then the pixel shader has to be
executed because we do not really know what the depth of the pixel is before the
pixel shader if the pixel shader changes it.

Below is a simple pixel shader which corresponds to the vertex shader given in
§6.4. For completeness, the vertex shader is shown again.

cbuffer cbPerObject : register(b0)
{
 float4x4 gWorldViewProj;
};

void VS(float3 iPos : POSITION, float4 iColor : COLOR,
 out float4 oPosH : SV_POSITION,
 out float4 oColor : COLOR)
{
 // Transform to homogeneous clip space.
 oPosH = mul(float4(iPos, 1.0f), gWorldViewProj);

 // Just pass vertex color into the pixel shader.
 oColor = iColor;
}

float4 PS(float4 posH : SV_POSITION, float4 color : COLOR) : SV_Target
{
 return pin.Color;
}

In this example, the pixel shader simply returns the interpolated color value.
Notice that the pixel shader input exactly matches the vertex shader output; this
is a requirement. The pixel shader returns a 4D color value, and the SV_TARGET
semantic following the function parameter listing indicates the return value type
should match the render target format.

We can equivalently rewrite the above vertex and pixel shaders using input/
output structures. The notation varies in that we attach the semantics to the
members of the input/output structures, and that we use a return statement for
output instead of output parameters.

Note:

224 DIRECT3D FOUNDATIONS

cbuffer cbPerObject : register(b0)
{
 float4x4 gWorldViewProj;
};

struct VertexIn
{
 float3 Pos : POSITION;
 float4 Color : COLOR;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float4 Color : COLOR;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout;

 // Transform to homogeneous clip space.
 vout.PosH = mul(float4(vin.Pos, 1.0f), gWorldViewProj);

 // Just pass vertex color into the pixel shader.
 vout.Color = vin.Color;

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 return pin.Color;
}

6.6 CONSTANT BUFFERS

6.6.1 Creating Constant Buffers
A constant buffer is an example of a GPU resource (ID3D12Resource) whose data
contents can be referenced in shader programs. As we will learn throughout this
book, textures and other types of buffer resources can also be referenced in shader
programs. The example vertex shader in the §6.4 had the code:

cbuffer cbPerObject : register(b0)
{
 float4x4 gWorldViewProj;
};

This code refers to a cbuffer object (constant buffer) called cbPerObject. In this
example, the constant buffer stores a single 4 × 4 matrix called gWorldViewProj,

DRAWING IN DIRECT3D 225

representing the combined world, view, and projection matrices used to transform
a point from local space to homogeneous clip space. In HLSL, a 4  4 matrix is
declared by the built-in float4x4 type; to declare a 3  4 matrix and 2  4 matrix,
for example, you would use the float3x4 and float2x2 types, respectively.

Unlike vertex and index buffers, constant buffers are usually updated once per
frame by the CPU. For example, if the camera is moving every frame, the constant
buffer would need to be updated with the new view matrix every frame. Therefore,
we create constant buffers in an upload heap rather than a default heap so that we
can update the contents from the CPU.

Constant buffers also have the special hardware requirement that their size
must be a multiple of the minimum hardware allocation size (256 bytes).

Often we will need multiple constant buffers of the same type. For example,
the above constant buffer cbPerObject stores constants that vary per object, so if
we have n objects, then we will need n constant buffers of this type. The following
code shows how we create a buffer that stores NumElements many constant buffers:

struct ObjectConstants
{
 DirectX::XMFLOAT4X4 WorldViewProj = MathHelper::Identity4x4();
};

UINT elementByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof(Objec
tConstants));

ComPtr<ID3D12Resource> mUploadCBuffer;
device->CreateCommittedResource(
 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
 D3D12_HEAP_FLAG_NONE,
 &CD3DX12_RESOURCE_DESC::Buffer(mElementByteSize * NumElements),
 D3D12_RESOURCE_STATE_GENERIC_READ,
 nullptr,
 IID_PPV_ARGS(&mUploadCBuffer));

We can think of the mUploadCBuffer as storing an array of constant buffers of type
ObjectConstants (with padding to make a multiple of 256 bytes). When it comes
time to draw an object, we just bind a constant buffer view (CBV) to a subregion
of the buffer that stores the constants for that object. Note that we will often call
the buffer mUploadCBuffer a constant buffer since it stores an array of constant
buffers.

The utility function d3dUtil::CalcConstantBufferByteSize does the arithmetic
to round the byte size of the buffer to be a multiple of the minimum hardware
allocation size (256 bytes):

UINT d3dUtil::CalcConstantBufferByteSize(UINT byteSize)
{
 // Constant buffers must be a multiple of the minimum hardware
 // allocation size (usually 256 bytes). So round up to nearest

226 DIRECT3D FOUNDATIONS

 // multiple of 256. We do this by adding 255 and then masking off
 // the lower 2 bytes which store all bits < 256.
 // Example: Suppose byteSize = 300.
 // (300 + 255) & ~255
 // 555 & ~255
 // 0x022B & ~0x00ff
 // 0x022B & 0xff00
 // 0x0200
 // 512
 return (byteSize + 255) & ~255;
}

Even though we allocate constant data in multiples of 256, it is not necessary to
explicitly pad the corresponding constant data in the HLSL structure because it
is done implicitly:

// Implicitly padded to 256 bytes.
cbuffer cbPerObject : register(b0)
{
 float4x4 gWorldViewProj;
};

// Explicitly padded to 256 bytes.
cbuffer cbPerObject : register(b0)
{
 float4x4 gWorldViewProj;
 float4x4 Pad0;
 float4x4 Pad1;
 float4x4 Pad1;
};

To avoid dealing with rounding constant buffer elements to a multiple of 256
bytes, you could explicitly pad all your constant buffer structures to always be a
multiple of 256 bytes.

Direct3D 12 introduced shader model 5.1. Shader model 5.1 has introduced an
alternative HLSL syntax for defining a constant buffer which looks like this:

struct ObjectConstants
{
 float4x4 gWorldViewProj;
 uint matIndex;
};
ConstantBuffer<ObjectConstants> gObjConstants : register(b0);

Here the data elements of the constant buffer are just defined in a separate
structure, and then a constant buffer is created from that structure. Fields of the
constant buffer are then accessed in the shader using data member syntax:

uint index = gObjConstants.matIndex;

Note:

Note:

DRAWING IN DIRECT3D 227

6.6.2 Updating Constant Buffers
Because a constant buffer is created with the heap type D3D12_HEAP_TYPE_UPLOAD,
we can upload data from the CPU to the constant buffer resource. To do this, we
first must obtain a pointer to the resource data, which can be done with the Map
method:

ComPtr<ID3D12Resource> mUploadBuffer;
BYTE* mMappedData = nullptr;
mUploadBuffer->Map(0, nullptr, reinterpret_cast<void**>(&mMappedData));

The first parameter is a subresource index identifying the subresource to map.
For a buffer, the only subresource is the buffer itself, so we just set this to 0. The
second parameter is an optional pointer to a D3D12_RANGE structure that describes
the range of memory to map; specifying null maps the entire resource. The
second parameter returns a pointer to the mapped data. To copy data from system
memory to the constant buffer, we can just do a memcpy:

memcpy(mMappedData, &data, dataSizeInBytes);

When we are done with a constant buffer, we should Unmap it before releasing the
memory:

if(mUploadBuffer != nullptr)
 mUploadBuffer->Unmap(0, nullptr);

mMappedData = nullptr;

The first parameter to Unmap is a subresource index identifying the subresource to
map, which will be 0 for a buffer. The second parameter to Unmap is an optional
pointer to a D3D12_RANGE structure that describes the range of memory to unmap;
specifying null unmaps the entire resource.

6.6.3 Upload Buffer Helper
It is convenient to build a light wrapper around an upload buffer. We define the
following class in UploadBuffer.h to make working with upload buffers easier. It
handles the construction and destruction of an upload buffer resource for us,
handles mapping and unmapping the resource, and provides the CopyData method
to update a particular element in the buffer. We use the CopyData method when
we need to change the contents of an upload buffer from the CPU (e.g., when
the view matrix changes). Note that this class can be used for any upload buffer,
not necessarily a constant buffer. If we do use it for a constant buffer, however,
we need to indicate so via the isConstantBuffer constructor parameter. If it is
storing a constant buffer, then it will automatically pad the memory to make each
constant buffer a multiple of 256 bytes.

228 DIRECT3D FOUNDATIONS

template<typename T>
class UploadBuffer
{
public:
 UploadBuffer(ID3D12Device* device, UINT elementCount, bool

isConstantBuffer) :
 mIsConstantBuffer(isConstantBuffer)
 {
 mElementByteSize = sizeof(T);

 // Constant buffer elements need to be multiples of 256 bytes.
 // This is because the hardware can only view constant data
 // at m*256 byte offsets and of n*256 byte lengths.
 // typedef struct D3D12_CONSTANT_BUFFER_VIEW_DESC {
 // UINT64 OffsetInBytes; // multiple of 256
 // UINT SizeInBytes; // multiple of 256
 // } D3D12_CONSTANT_BUFFER_VIEW_DESC;
 if(isConstantBuffer)
 mElementByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof

(T));

 ThrowIfFailed(device->CreateCommittedResource(
 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
 D3D12_HEAP_FLAG_NONE,
 &CD3DX12_RESOURCE_DESC::Buffer(mElementByteSize*elementCount),
 D3D12_RESOURCE_STATE_GENERIC_READ,
 nullptr,
 IID_PPV_ARGS(&mUploadBuffer)));

 ThrowIfFailed(mUploadBuffer->Map(0, nullptr, reinterpret_
cast<void**>(&mMappedData)));

 // We do not need to unmap until we are done with the resource.
 // However, we must not write to the resource while it is in use by
 // the GPU (so we must use synchronization techniques).
 }

 UploadBuffer(const UploadBuffer& rhs) = delete;
 UploadBuffer& operator=(const UploadBuffer& rhs) = delete;
 ~UploadBuffer()
 {
 if(mUploadBuffer != nullptr)
 mUploadBuffer->Unmap(0, nullptr);

 mMappedData = nullptr;
 }

 ID3D12Resource* Resource()const
 {
 return mUploadBuffer.Get();
 }

 void CopyData(int elementIndex, const T& data)
 {
 memcpy(&mMappedData[elementIndex*mElementByteSize], &data,

sizeof(T));

DRAWING IN DIRECT3D 229

 }

private:
 Microsoft::WRL::ComPtr<ID3D12Resource> mUploadBuffer;
 BYTE* mMappedData = nullptr;

 UINT mElementByteSize = 0;
 bool mIsConstantBuffer = false;
};

Typically, the world matrix of an object will change when it moves/rotates/scales,
the view matrix changes when the camera moves/rotates, and the projection
matrix changes when the window is resized. In our demo for this chapter, we
allow the user to rotate and move the camera with the mouse, and we update the
combined world-view-projection matrix with the new view matrix every frame in
the Update function:

void BoxApp::OnMouseMove(WPARAM btnState, int x, int y)
{
 if((btnState & MK_LBUTTON) != 0)
 {
 // Make each pixel correspond to a quarter of a degree.
 float dx = XMConvertToRadians(0.25f*static_cast<float>

(x - mLastMousePos.x));
 float dy = XMConvertToRadians(0.25f*static_cast<float>

(y - mLastMousePos.y));

 // Update angles based on input to orbit camera around box.
 mTheta += dx;
 mPhi += dy;

 // Restrict the angle mPhi.
 mPhi = MathHelper::Clamp(mPhi, 0.1f, MathHelper::Pi - 0.1f);
 }
 else if((btnState & MK_RBUTTON) != 0)
 {
 // Make each pixel correspond to 0.005 unit in the scene.
 float dx = 0.005f*static_cast<float>(x - mLastMousePos.x);
 float dy = 0.005f*static_cast<float>(y - mLastMousePos.y);

 // Update the camera radius based on input.
 mRadius += dx - dy;

 // Restrict the radius.
 mRadius = MathHelper::Clamp(mRadius, 3.0f, 15.0f);
 }

 mLastMousePos.x = x;
 mLastMousePos.y = y;
}

void BoxApp::Update(const GameTimer& gt)
{

230 DIRECT3D FOUNDATIONS

 // Convert Spherical to Cartesian coordinates.
 float x = mRadius*sinf(mPhi)*cosf(mTheta);
 float z = mRadius*sinf(mPhi)*sinf(mTheta);
 float y = mRadius*cosf(mPhi);

 // Build the view matrix.
 XMVECTOR pos = XMVectorSet(x, y, z, 1.0f);
 XMVECTOR target = XMVectorZero();
 XMVECTOR up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f);

 XMMATRIX view = XMMatrixLookAtLH(pos, target, up);
 XMStoreFloat4x4(&mView, view);

 XMMATRIX world = XMLoadFloat4x4(&mWorld);
 XMMATRIX proj = XMLoadFloat4x4(&mProj);
 XMMATRIX worldViewProj = world*view*proj;

 // Update the constant buffer with the latest worldViewProj matrix.
 ObjectConstants objConstants;
 XMStoreFloat4x4(&objConstants.WorldViewProj,

XMMatrixTranspose(worldViewProj));
 mObjectCB->CopyData(0, objConstants);
}

6.6.4 Constant Buffer Descriptors
Recall from §4.1.6 that we bind a resource to the rendering pipeline through a
descriptor object. So far we have used descriptors/views for render targets, depth/
stencil buffers, and vertex and index buffers. We also need descriptors to bind
constant buffers to the pipeline. Constant buffer descriptors live in a descriptor
heap of type D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV. Such a heap can store a
mixture of constant buffer, shader resource, and unordered access descriptors. To
store these new types of descriptors we will need to create a new descriptor heap
of this type:

D3D12_DESCRIPTOR_HEAP_DESC cbvHeapDesc;
cbvHeapDesc.NumDescriptors = 1;
cbvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;
cbvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;
cbvHeapDesc.NodeMask = 0;

ComPtr<ID3D12DescriptorHeap> mCbvHeap
md3dDevice->CreateDescriptorHeap(&cbvHeapDesc,
 IID_PPV_ARGS(&mCbvHeap));

This code is similar to how we created the render target and depth/stencil buffer
descriptor heaps. However, one important difference is that we specify the D3D12_
DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE flag to indicate that these descriptors will
be accessed by shader programs. In the demo for his chapter, we have no SRV or

DRAWING IN DIRECT3D 231

UAV descriptors, and we are only going to draw one object; therefore, we only
need 1 descriptor in this heap to store 1 CBV.

A constant buffer view is created by fi lling out a D3D12_CONSTANT_BUFFER_VIEW_
DESC instance and calling ID3D12Device::CreateConstantBufferView:

// Constant data per-object.
struct ObjectConstants
{
 XMFLOAT4X4 WorldViewProj = MathHelper::Identity4x4();
};

// Constant buffer to store the constants of n object.
std::unique_ptr<UploadBuffer<ObjectConstants>> mObjectCB = nullptr;
mObjectCB = std::make_unique<UploadBuffer<ObjectConstants>>(
 md3dDevice.Get(), n, true);

UINT objCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof(ObjectC
onstants));

// Address to start of the buffer (0th constant buffer).
D3D12_GPU_VIRTUAL_ADDRESS cbAddress = mObjectCB->Resource()-

>GetGPUVirtualAddress();

// Offset to the ith object constant buffer in the buffer.
int boxCBufIndex = i;
cbAddress += boxCBufIndex*objCBByteSize;

D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc;
cbvDesc.BufferLocation = cbAddress;
cbvDesc.SizeInBytes = d3dUtil::CalcConstantBufferByteSize(sizeof(Object

Constants));

md3dDevice->CreateConstantBufferView(
 &cbvDesc,
 mCbvHeap->GetCPUDescriptorHandleForHeapStart());

The D3D12_CONSTANT_BUFFER_VIEW_DESC structure describes a subset of the constant
buffer resource to bind to the HLSL constant buffer structure. As mentioned,
typically a constant buffer stores an array of per-object constants for n objects, but
we can get a view to the ith object constant data by using the BufferLocation and
SizeInBytes. The D3D12_CONSTANT_BUFFER_VIEW_DESC::SizeInBytes and D3D12_
CONSTANT_BUFFER_VIEW_DESC::OffsetInBytes members must by a multiple of 256
bytes due to hardware requirements. For example, if you specified 64, then you
would get the following debug errors:

D3D12 ERROR: ID3D12Device::CreateConstantBufferView: SizeInBytes of 64
is invalid. Device requires SizeInBytes be a multiple of 256.

D3D12 ERROR: ID3D12Device:: CreateConstantBufferView: OffsetInBytes of
64 is invalid. Device requires OffsetInBytes be a multiple of 256.

232 DIRECT3D FOUNDATIONS

6.6.5 Root Signature and Descriptor Tables
Generally, different shader programs will expect different resources to be bound
to the rendering pipeline before a draw call is executed. Resources are bound
to particular register slots, where they can be accessed by shader programs. For
example, the previous vertex and pixel shader expected only a constant buffer to
be bound to register b0. A more advanced set of vertex and pixel shaders that we
use later in this book expect several constant buffers, textures, and samplers to be
bound to various register slots:

// Texture resource bound to texture register slot 0.
Texture2D gDiffuseMap : register(t0);

// Sampler resources bound to sampler register slots 0-5.
SamplerState gsamPointWrap : register(s0);
SamplerState gsamPointClamp : register(s1);
SamplerState gsamLinearWrap : register(s2);
SamplerState gsamLinearClamp : register(s3);
SamplerState gsamAnisotropicWrap : register(s4);
SamplerState gsamAnisotropicClamp : register(s5);

// cbuffer resource bound to cbuffer register slots 0-2
cbuffer cbPerObject : register(b0)
{
 float4x4 gWorld;
 float4x4 gTexTransform;
};

// Constant data that varies per material.
cbuffer cbPass : register(b1)
{
 float4x4 gView;
 float4x4 gProj;
 [...] // Other fields omitted for brevity.
};

cbuffer cbMaterial : register(b2)
{
 float4 gDiffuseAlbedo;
 float3 gFresnelR0;
 float gRoughness;
 float4x4 gMatTransform;
};

The root signature defines what resources the application will bind to the rendering
pipeline before a draw call can be executed and where those resources get mapped
to shader input registers. The root signature must be compatible with the shaders
it will be used with (i.e., the root signature must provide all the resources the
shaders expect to be bound to the rendering pipeline before a draw call can be
executed); this will be validated when the pipeline state object is created (§6.9).

DRAWING IN DIRECT3D 233

Different draw calls may use a different set of shader programs, which will require
a different root signature.

If we think of the shader programs as a function, and the input resources the
shaders expect as function parameters, then the root signature can be thought
of as defi ning a function signature (hence the name root signature). By binding
different resources as arguments, the shader output will be different. So, for
example, a vertex shader will depend on the actual vertex being input to the
shader, and also the bound resources.

A root signature is represented in Direct3D by the ID3D12RootSignature interface.
It is defined by an array of root parameters that describe the resources the shaders
expect for a draw call. A root parameter can be a root constant, root descriptor, or
descriptor table. We will discuss root constants and root descriptors in the next
chapter; in this chapter, we will just use descriptor tables. A descriptor table
specifies a contiguous range of descriptors in a descriptor heap.

The following code below creates a root signature that has one root parameter
that is a descriptor table large enough to store one CBV (constant buffer view):

// Root parameter can be a table, root descriptor or root constants.
CD3DX12_ROOT_PARAMETER slotRootParameter[1];

// Create a single descriptor table of CBVs.
CD3DX12_DESCRIPTOR_RANGE cbvTable;
cbvTable.Init(
 D3D12_DESCRIPTOR_RANGE_TYPE_CBV,
 1, // Number of descriptors in table
 0);// base shader register arguments are bound to for this root

parameter

slotRootParameter[0].InitAsDescriptorTable(
 1, // Number of ranges
 &cbvTable); // Pointer to array of ranges

// A root signature is an array of root parameters.
CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(1, slotRootParameter, 0,

nullptr,
 D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

// create a root signature with a single slot which points to a
// descriptor range consisting of a single constant buffer.
ComPtr<ID3DBlob> serializedRootSig = nullptr;
ComPtr<ID3DBlob> errorBlob = nullptr;
HRESULT hr = D3D12SerializeRootSignature(&rootSigDesc,
 D3D_ROOT_SIGNATURE_VERSION_1,
 serializedRootSig.GetAddressOf(),
 errorBlob.GetAddressOf());

Note:

234 DIRECT3D FOUNDATIONS

ThrowIfFailed(md3dDevice->CreateRootSignature(
 0,
 serializedRootSig->GetBufferPointer(),
 serializedRootSig->GetBufferSize(),
 IID_PPV_ARGS(&mRootSignature)));

We will describe CD3DX12_ROOT_PARAMETER and CD3DX12_DESCRIPTOR_RANGE more in
the next chapter, but for now just understand that the code

CD3DX12_ROOT_PARAMETER slotRootParameter[1];

CD3DX12_DESCRIPTOR_RANGE cbvTable;
cbvTable.Init(
 D3D12_DESCRIPTOR_RANGE_TYPE_CBV, // table type
 1, // Number of descriptors in table
 0);// base shader register arguments are bound to for this root

parameter

slotRootParameter[0].InitAsDescriptorTable(
 1, // Number of ranges
 &cbvTable); // Pointer to array of ranges

creates a root parameter that expects a descriptor table of 1 CBV that gets bound
to constant buffer register 0 (i.e., register(b0) in the HLSL code).

Our root signature example in this chapter is very simple. We will see lots
of examples of root signatures throughout this book, and they will grow in
complexity as needed.

The root signature only defines what resources the application will bind to the
rendering pipeline; it does not actually do any resource binding. Once a root
signature has been set with a command list, we use the ID3D12GraphicsCommandL
ist::SetGraphicsRootDescriptorTable to bind a descriptor table to the pipeline:

void ID3D12GraphicsCommandList::SetGraphicsRootDescriptorTable(
 UINT RootParameterIndex,
 D3D12_GPU_DESCRIPTOR_HANDLE BaseDescriptor);

1. RootParameterIndex: Index of the root parameter we are setting.

2. BaseDescriptor: Handle to a descriptor in the heap that specifies the first
descriptor in the table being set. For example, if the root signature specified
that this table had five descriptors, then BaseDescriptor and the next four
descriptors in the heap are being set to this root table.

The following code sets the root signature and CBV heap to the command list, and
sets the descriptor table identifying the resource we want to bind to the pipeline:

mCommandList->SetGraphicsRootSignature(mRootSignature.Get());
ID3D12DescriptorHeap* descriptorHeaps[] = { mCbvHeap.Get() };

Note:

DRAWING IN DIRECT3D 235

mCommandList->SetDescriptorHeaps(_countof(descriptorHeaps),
descriptorHeaps);

// Offset the CBV we want to use for this draw call.
CD3DX12_GPU_DESCRIPTOR_HANDLE cbv(mCbvHeap

->GetGPUDescriptorHandleForHeapStart());
cbv.Offset(cbvIndex, mCbvSrvUavDescriptorSize);

mCommandList->SetGraphicsRootDescriptorTable(0, cbv);

For performance, make the root signature as small as possible, and try to
minimize the number of times you change the root signature per rendering
frame.

The contents of the Root Signature (the descriptor tables, root constants and root
descriptors) that the application has bound automatically get versioned by the
D3D12 driver whenever any part of the contents change between draw/dispatch
calls. So each draw/dispatch gets a unique full set of Root Signature state.

If you change the root signature then you lose all the existing bindings. That
is, you need to rebind all the resources to the pipeline the new root signature
expects.

6.7 COMPILING SHADERS

In Direct3D, shader programs must first be compiled to a portable bytecode. The
graphics driver will then take this bytecode and compile it again into optimal
native instructions for the system’s GPU [ATI1]. At runtime, we can compile a
shader with the following function:

HRESULT D3DCompileFromFile(
 LPCWSTR pFileName,
 const D3D_SHADER_MACRO *pDefines,
 ID3DInclude *pInclude,
 LPCSTR pEntrypoint,
 LPCSTR pTarget,
 UINT Flags1,
 UINT Flags2,
 ID3DBlob **ppCode,
 ID3DBlob **ppErrorMsgs);

1. pFileName: The name of the .hlsl file that contains the HLSL source code we
want to compile.

2. pDefines: Advanced option we do not use; see the SDK documentation. We
always specify null in this book.

Note:

Note:

Note:

236 DIRECT3D FOUNDATIONS

3. pInclude: Advanced option we do not use; see the SDK documentation. We
always specify null in this book.

4. pEntrypoint: The function name of the shader’s entry point. A .hlsl can
contain multiple shaders programs (e.g., one vertex shader and one pixel
shader), so we need to specify the entry point of the particular shader we want
to compile.

5. pTarget: A string specifying the shader program type and version we are using.
In this book, we target versions 5.0 and 5.1.

 a) vs_5_0 and vs_5_1: Vertex shader 5.0 and 5.1, respectively.
 b) hs_5_0 and hs_5_1: Hull shader 5.0 and 5.1, respectively.
 c) ds_5_0 and ds_5_1: Domain shader 5.0 and 5.1, respectively.
 d) gs_5_0 and gs_5_1: Geometry shader 5.0 and 5.1, respectively.
 e) ps_5_0 and ps_5_1: Pixel shader 5.0 and 5.1, respectively.
 f) cs_5_0 and cs_5_1: Compute shader 5.0 and 5.1, respectively.

6. Flags1: Flags to specify how the shader code should be compiled. There are
quite a few of these flags listed in the SDK documentation, but the only two
we use in this book are:

 a) D3DCOMPILE_DEBUG: Compiles the shaders in debug mode.
 b) D3DCOMPILE_SKIP_OPTIMIZATION: Instructs the compiler to skip

optimizations (useful for debugging).

7. Flags2: Advanced effect compilation options we do not use; see the SDK
documentation.

8. ppCode: Returns a pointer to a ID3DBlob data structure that stores the compiled
shader object bytecode.

9. ppErrorMsgs: Returns a pointer to a ID3DBlob data structure that stores a string
containing the compilation errors, if any.

The type ID3DBlob is just a generic chunk of memory that has two methods:
a) LPVOID GetBufferPointer: Returns a void* to the data, so it must be casted to

the appropriate type before use (see the example below).
b) SIZE_T GetBufferSize: Returns the byte size of the buffer.

To support error output, we implement the following helper function to compile
shaders at runtime in d3dUtil.h/.cpp:

ComPtr<ID3DBlob> d3dUtil::CompileShader(
 const std::wstring& filename,
 const D3D_SHADER_MACRO* defines,
 const std::string& entrypoint,
 const std::string& target)
{
 // Use debug flags in debug mode.

DRAWING IN DIRECT3D 237

 UINT compileFlags = 0;
#if defined(DEBUG) || defined(_DEBUG)
 compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#endif

 HRESULT hr = S_OK;

 ComPtr<ID3DBlob> byteCode = nullptr;
 ComPtr<ID3DBlob> errors;
 hr = D3DCompileFromFile(filename.c_str(), defines, D3D_COMPILE_

STANDARD_FILE_INCLUDE,
 entrypoint.c_str(), target.c_str(), compileFlags, 0, &byteCode,

&errors);

 // Output errors to debug window.
 if(errors != nullptr)
 OutputDebugStringA((char*)errors->GetBufferPointer());

 ThrowIfFailed(hr);

 return byteCode;
}
Here is an example of calling this function:
ComPtr<ID3DBlob> mvsByteCode = nullptr;
ComPtr<ID3DBlob> mpsByteCode = nullptr;
mvsByteCode = d3dUtil::CompileShader(L"Shaders\\color.hlsl",
 nullptr, "VS", "vs_5_0");
mpsByteCode = d3dUtil::CompileShader(L"Shaders\\color.hlsl",
 nullptr, "PS", "ps_5_0");

HLSL errors and warnings will be returned through the ppErrorMsgs parameter.
For example, if we misspelled the mul function, then we get the following error
output to the debug window:

Shaders\color.hlsl(29,14-55): error X3004: undeclared identifier ‘mu’

Compiling a shader does not bind it to the rendering pipeline for use. We will see
how to do that in §6.9.

6.7.1 Offl ine Compilation
Instead of compiling shaders at runtime, we can compile them offline in a separate
step (e.g., a build step, or as part of an asset content pipeline process). There are a
few reasons to do this:

1. For complicated shaders, compilation can take a long time. Therefore,
compiling offline will make your loading times faster.

2. It is convenient to see shader compilation errors earlier in the build process
rather than at runtime.

3. Windows 8 Store apps must use offline compilation.

238 DIRECT3D FOUNDATIONS

It is the common practice to use the .cso (compiled shader object) extension for
compiled shaders.

To compile shaders offl ine we use the FXC tool that comes with DirectX. This is
a command line tool. To compile a vertex and pixel shader stored in color.hlsl with
entry points VS and PS, respectively, with debugging we would write:

fxc "color.hlsl" /Od /Zi /T vs_5_0 /E "VS" /Fo "color_vs.cso" /Fc "color_vs.asm"
fxc "color.hlsl" /Od /Zi /T ps_5_0 /E "PS" /Fo "color_ps.cso" /Fc "color_ps.asm"

To compile a vertex and pixel shader stored in color.hlsl with entry points VS and
PS, respectively, for release we would write:

fxc "color.hlsl" /T vs_5_0 /E "VS" /Fo "color_vs.cso" /Fc "color_vs.asm"
fxc "color.hlsl" /T ps_5_0 /E "PS" /Fo "color_ps.cso" /Fc "color_ps.asm"

Parameter Description

/Od Disables optimizations (useful for debugging).

/Zi Enables debug information.

/T <string> Shader type and target version.

/E <string> Shader entry point.

/Fo <string> Compiled shader object bytecode.

/Fc <string> Outputs an assembly file listing (useful for debugging, checking
instruction counts, seeing what kind of code is being generated).

If you try to compile a shader with a syntax error, FXC will output the error/
warning to the command window. For example, if we misname a variable in the
color.hlsl effect file:

// Should be gWorldViewProj, not worldViewProj!
vout.PosH = mul(float4(vin.Pos, 1.0f), worldViewProj);

Then we get quite a few errors from this one mistake (the top error being the key
one to fix) listed in the debut output window:

color.hlsl(29,42-54): error X3004: undeclared identifier
‘worldViewProj’
color.hlsl(29,14-55): error X3013: ‘mul’: no matching 2 parameter

intrinsic function
color.hlsl(29,14-55): error X3013: Possible intrinsic functions are:
color.hlsl(29,14-55): error X3013: mul(float|half...

Getting the error messages at compile time is much more convenient than
runtime.

We have shown how to compile our vertex and pixel shaders offl ine to .cso
fi les. Therefore, we no longer need to do it at runtime (i.e., we do not need to
call D3DCompileFromFile). However, we still need to load the compiled shader

DRAWING IN DIRECT3D 239

object bytecode from the .cso fi les into our app. This can be done using standard
C fi le input mechanisms like so:

ComPtr<ID3DBlob> d3dUtil::LoadBinary(const std::wstring& filename)
{
 std::ifstream fin(filename, std::ios::binary);

 fin.seekg(0, std::ios_base::end);
 std::ifstream::pos_type size = (int)fin.tellg();
 fin.seekg(0, std::ios_base::beg);

 ComPtr<ID3DBlob> blob;
 ThrowIfFailed(D3DCreateBlob(size, blob.GetAddressOf()));

 fin.read((char*)blob->GetBufferPointer(), size);
 fin.close();

 return blob;
}
...
ComPtr<ID3DBlob> mvsByteCode = d3dUtil::LoadBinary(L"Shaders\\color_vs.cso");
ComPtr<ID3DBlob> mpsByteCode = d3dUtil::LoadBinary(L"Shaders\\color_ps.cso");

6.7.2 Generated Assembly
The /Fc optional parameter to FXC generates the generated portable assembly
code. Looking at the assembly of your shaders from time to time is useful to check
shader instruction counts, and to see what kind of code is being generated—
sometimes it might be different than what you expect. For example, if you have
a conditional statement in your HLSL code, then you might expect there to be a
branching instruction in the assembly code. In the early days of programmable
GPUs, branching in shaders used to be expensive, and so sometimes the compiler
will flatten a conditional statement by evaluating both branches and then
interpolate between the two to pick the right answer. That is, the following codes
will give the same answer:

Conditional Flattened
float x = 0;

// s == 1 (true) or s == 0 (false)

if(s)

 x = sqrt(y);

else

 x = 2*y;

float a = 2*y;

float b = sqrt(y);

float x = a + s*(b-a);

// s == 1: x = a + b – a = b = sqrt(y)

// s == 0: x = a + 0*(b-a) = a = 2*y

So the flattened method gives us the same result without any branching, but
without looking at the assembly code, we would not know if flattening was

240 DIRECT3D FOUNDATIONS

happening, or if a true branch instruction was generated. The point being that
sometimes you want to look at the assembly to see what is really going on. The
following is an example of the assembly generated for the vertex shader in color.
hlsl:

//
// Generated by Microsoft (R) HLSL Shader Compiler 6.4.9844.0
//
//
// Buffer Definitions:
//
// cbuffer cbPerObject
// {
//
// float4x4 gWorldViewProj; // Offset: 0 Size: 64
//
// }
//
//
// Resource Bindings:
//
// Name Type Format Dim Slot Elements
// ------------------------------ ---------- ------- ----------- ----

// cbPerObject cbuffer NA NA 0 1
//
//
//
// Input signature:
//
// Name Index Mask Register SysValue Format Used
// -------------------- ----- ------ -------- -------- ------- ------
// POSITION 0 xyz 0 NONE float xyz
// COLOR 0 xyzw 1 NONE float xyzw
//
//
// Output signature:
//
// Name Index Mask Register SysValue Format Used
// -------------------- ----- ------ -------- -------- ------- ------
// SV_POSITION 0 xyzw 0 POS float xyzw
// COLOR 0 xyzw 1 NONE float xyzw
//
vs_5_0
dcl_globalFlags refactoringAllowed | skipOptimization
dcl_constantbuffer cb0[4], immediateIndexed
dcl_input v0.xyz
dcl_input v1.xyzw
dcl_output_siv o0.xyzw, position
dcl_output o1.xyzw
dcl_temps 2
//
// Initial variable locations:

DRAWING IN DIRECT3D 241

// v0.x <- vin.PosL.x; v0.y <- vin.PosL.y; v0.z <- vin.PosL.z;
// v1.x <- vin.Color.x; v1.y <- vin.Color.y; v1.z <- vin.Color.z; v1.w

<- vin.Color.w;
// o1.x <- <VS return value>.Color.x;
// o1.y <- <VS return value>.Color.y;
// o1.z <- <VS return value>.Color.z;
// o1.w <- <VS return value>.Color.w;
// o0.x <- <VS return value>.PosH.x;
// o0.y <- <VS return value>.PosH.y;
// o0.z <- <VS return value>.PosH.z;
// o0.w <- <VS return value>.PosH.w
//
#line 29 "color.hlsl"
mov r0.xyz, v0.xyzx
mov r0.w, l(1.000000)
dp4 r1.x, r0.xyzw, cb0[0].xyzw // r1.x <- vout.PosH.x
dp4 r1.y, r0.xyzw, cb0[1].xyzw // r1.y <- vout.PosH.y
dp4 r1.z, r0.xyzw, cb0[2].xyzw // r1.z <- vout.PosH.z
dp4 r1.w, r0.xyzw, cb0[3].xyzw // r1.w <- vout.PosH.w

#line 32
mov r0.xyzw, v1.xyzw // r0.x <- vout.Color.x; r0.y <- vout.Color.y;
 // r0.z <- vout.Color.z; r0.w <- vout.Color.w
mov o0.xyzw, r1.xyzw
mov o1.xyzw, r0.xyzw
ret
// Approximately 10 instruction slots used

6.7.3 Using Visual Studio to Compile Shaders Offl ine
Visual Studio 2013 has some integrated support for compiling shader programs.
You can add .hlsl files to your project, and Visual Studio (VS) will recognize them
and provide compilation options (see Figure 6.6). These options provide a UI for

Figure 6.6. Adding a custom build tool to the project.

242 DIRECT3D FOUNDATIONS

the FXC parameters. When you add a HLSL file to your VS project, it will become
part of the build process, and the shader will be compiled with FXC.

One downside to using the VS integrated HLSL support is that it only supports
one shader program per fi le. Therefore, you cannot store both a vertex and pixel
shader in one fi le. Moreover, sometimes we want to compile the same shader
program with different preprocessor directives to get different variations of a
shader. Again, this will not be possible using the integrated VS support since it is
one .cso output per .hlsl input.

6.8 RASTERIZER STATE

While many parts of the rendering pipeline are programmable, some parts are only
configurable. The rasterizer state group, represented by the D3D12_RASTERIZER_DESC
structure, is used to configure the rasterization stage of the rendering pipeline:

typedef struct D3D12_RASTERIZER_DESC {
 D3D12_FILL_MODE FillMode; // Default: D3D12_FILL_SOLID
 D3D12_CULL_MODE CullMode; // Default: D3D12_CULL_BACK
 BOOL FrontCounterClockwise; // Default: false
 INT DepthBias; // Default: 0
 FLOAT DepthBiasClamp; // Default: 0.0f
 FLOAT SlopeScaledDepthBias; // Default: 0.0f
 BOOL DepthClipEnable; // Default: true
 BOOL ScissorEnable; // Default: false
 BOOL MultisampleEnable; // Default: false
 BOOL AntialiasedLineEnable; // Default: false
 UINT ForcedSampleCount; // Default: 0

 // Default: D3D12_CONSERVATIVE_RASTERIZATION_MODE_OFF
 D3D12_CONSERVATIVE_RASTERIZATION_MODE ConservativeRaster;
} D3D12_RASTERIZER_DESC;

Most of these members are advanced or not used very often; therefore, we refer
you to the SDK documentation for the descriptions of each member. We only
describe four here.

1. FillMode: Specify D3D12_FILL_WIREFRAME for wireframe rendering or D3D12_
FILL_SOLID for solid rendering. Solid rendering is the default.

2. CullMode: Specify D3D12_CULL_NONE to disable culling, D3D12_CULL_BACK to
cull back-facing triangles, or D3D12_CULL_FRONT to cull front-facing triangles.
Back-facing triangles are culled by default.

3. FrontCounterClockwise: Specify false if you want triangles ordered clockwise
(with respect to the camera) to be treated as front-facing and triangles ordered
counterclockwise (with respect to the camera) to be treated as back-facing.

DRAWING IN DIRECT3D 243

Specify true if you want triangles ordered counterclockwise (with respect
to the camera) to be treated as front-facing and triangles ordered clockwise
(with respect to the camera) to be treated as back-facing. This state is false by
default.

4. ScissorEnable: Specify true to enable the scissor test (§4.3.10) and false to
disable it. The default is false.

The following code shows how to create a rasterize state that turns on wireframe
mode and disables backface culling:

CD3DX12_RASTERIZER_DESC rsDesc(D3D12_DEFAULT);
rsDesc.FillMode = D3D12_FILL_WIREFRAME;
rsDesc.CullMode = D3D12_CULL_NONE;

CD3DX12_RASTERIZER_DESC is a convenience class that extends D3D12_RASTERIZER_
DESC and adds some helper constructors. In particular, it has a constructor that
takes an object of type CD3D12_DEFAULT, which is just a dummy type used for
overloading to indicate the rasterizer state members should be initialized to the
default values. CD3D12_DEFAULT and D3D12_DEFAULT are defined like so:

struct CD3D12_DEFAULT {};
extern const DECLSPEC_SELECTANY CD3D12_DEFAULT D3D12_DEFAULT;

D3D12_DEFAULT is used in several of the Direct3D convenience classes.

6.9 PIPELINE STATE OBJECT

We have shown, for example, how to describe an input layout description, how to
create vertex and pixel shaders, and how to configure the rasterizer state group.
However, we have not yet shown how to bind any of these objects to the graphics
pipeline for actual use. Most of the objects that control the state of the graphics
pipeline are specified as an aggregate called a pipeline state object (PSO), which
is represented by the ID3D12PipelineState interface. To create a PSO, we first
describe it by filling out a D3D12_GRAPHICS_PIPELINE_STATE_DESC instance:

typedef struct D3D12_GRAPHICS_PIPELINE_STATE_DESC
{
 ID3D12RootSignature *pRootSignature;
 D3D12_SHADER_BYTECODE VS;
 D3D12_SHADER_BYTECODE PS;
 D3D12_SHADER_BYTECODE DS;
 D3D12_SHADER_BYTECODE HS;
 D3D12_SHADER_BYTECODE GS;
 D3D12_STREAM_OUTPUT_DESC StreamOutput;
 D3D12_BLEND_DESC BlendState;
 UINT SampleMask;

244 DIRECT3D FOUNDATIONS

 D3D12_RASTERIZER_DESC RasterizerState;
 D3D12_DEPTH_STENCIL_DESC DepthStencilState;
 D3D12_INPUT_LAYOUT_DESC InputLayout;
 D3D12_PRIMITIVE_TOPOLOGY_TYPE PrimitiveTopologyType;
 UINT NumRenderTargets;
 DXGI_FORMAT RTVFormats[8];
 DXGI_FORMAT DSVFormat;
 DXGI_SAMPLE_DESC SampleDesc;
} D3D12_GRAPHICS_PIPELINE_STATE_DESC;

1. pRootSignature: Pointer to the root signature to be bound with this PSO. The
root signature must be compatible with the shaders specified with this PSO.

2. VS: The vertex shader to bind. This is specified by the D3D12_SHADER_BYTECODE
structure which is a pointer to the compiled bytecode data, and the size of the
bytecode data in bytes.

 typedef struct D3D12_SHADER_BYTECODE {
 const BYTE *pShaderBytecode;
 SIZE_T BytecodeLength;
 } D3D12_SHADER_BYTECODE;

3. PS: The pixel shader to bind.

4. DS: The domain shader to bind (we will discuss this type of shader in a later
chapter).

5. HS: The hull shader to bind (we will discuss this type of shader in a later
chapter).

6. GS: The geometry shader to bind (we will discuss this type of shader in a later
chapter).

7. StreamOutput: Used for an advanced technique called stream-out. We just
zero-out this field for now.

8. BlendState: Specifies the blend state which configures blending. We will
discuss this state group in a later chapter; for now, specify the default CD3DX12_
BLEND_DESC(D3D12_DEFAULT).

9. SampleMask: Multisampling can take up to 32 samples. This 32-bit integer
value is used to enable/disable the samples. For example, if you turn off the
5th bit, then the 5th sample will not be taken. Of course, disabling the 5th
sample only has any consequence if you are actually using multisampling with
at least 5 samples. If an application is using single sampling, then only the first
bit of this parameter matters. Generally the default of 0xffffffff is used, which
does not disable any samples.

10. RasterizerState: Specifies the rasterization state which configures the
rasterizer.

DRAWING IN DIRECT3D 245

11. DepthStencilState: Specifies the depth/stencil state which configures the
depth/stencil test. We will discuss this state group in a later chapter; for now,
specify the default CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT).

12. InputLayout: An input layout description which is simply an array of D3D12_
INPUT_ELEMENT_DESC elements, and the number of elements in the array.

 typedef struct D3D12_INPUT_LAYOUT_DESC
 {
 const D3D12_INPUT_ELEMENT_DESC *pInputElementDescs;
 UINT NumElements;
 } D3D12_INPUT_LAYOUT_DESC;

13. PrimitiveTopologyType: Specifies the primitive topology type.

 typedef enum D3D12_PRIMITIVE_TOPOLOGY_TYPE {
 D3D12_PRIMITIVE_TOPOLOGY_TYPE_UNDEFINED = 0,
 D3D12_PRIMITIVE_TOPOLOGY_TYPE_POINT = 1,
 D3D12_PRIMITIVE_TOPOLOGY_TYPE_LINE = 2,
 D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE = 3,
 D3D12_PRIMITIVE_TOPOLOGY_TYPE_PATCH = 4
 } D3D12_PRIMITIVE_TOPOLOGY_TYPE;

14. NumRenderTargets: The number of render targets we are using simultaneously.

15. RTVFormats: The render target formats. This is an array to support writing to
multiple render targets simultaneously. This should match the settings of the
render target we are using the PSO with.

16. DSVFormat: The format of the depth/stencil buffer. This should match the
settings of the depth/stencil buffer we are using the PSO with.

17. SampleDesc: Describes the multisample count and quality level. This should
match the settings of the render target we are using.

After we have filled out a D3D12_GRAPHICS_PIPELINE_STATE_DESC instance, we
create an ID3D12PipelineState object using the ID3D12Device::CreateGraphicsP
ipelineState method:

ComPtr<ID3D12RootSignature> mRootSignature;
std::vector<D3D12_INPUT_ELEMENT_DESC> mInputLayout;
ComPtr<ID3DBlob> mvsByteCode;
ComPtr<ID3DBlob> mpsByteCode;
...
D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc;
ZeroMemory(&psoDesc, sizeof(D3D12_GRAPHICS_PIPELINE_STATE_DESC));
psoDesc.InputLayout = { mInputLayout.data(), (UINT)mInputLayout.size()

};
psoDesc.pRootSignature = mRootSignature.Get();
psoDesc.VS =
{
 reinterpret_cast<BYTE*>(mvsByteCode->GetBufferPointer()),

246 DIRECT3D FOUNDATIONS

 mvsByteCode->GetBufferSize()
};
psoDesc.PS =
{
 reinterpret_cast<BYTE*>(mpsByteCode->GetBufferPointer()),
 mpsByteCode->GetBufferSize()
};
psoDesc.RasterizerState = CD3D12_RASTERIZER_DESC(D3D12_DEFAULT);
psoDesc.BlendState = CD3D12_BLEND_DESC(D3D12_DEFAULT);
psoDesc.DepthStencilState = CD3D12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
psoDesc.SampleMask = UINT_MAX;
psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
psoDesc.NumRenderTargets = 1;
psoDesc.RTVFormats[0] = mBackBufferFormat;
psoDesc.SampleDesc.Count = m4xMsaaState ? 4 : 1;
psoDesc.SampleDesc.Quality = m4xMsaaState ? (m4xMsaaQuality - 1) : 0;
psoDesc.DSVFormat = mDepthStencilFormat;

ComPtr<ID3D12PipelineState> mPSO;
md3dDevice->CreateGraphicsPipelineState(&psoDesc, IID_PPV_
ARGS(&mPSO)));

This is quite a lot of state in one aggregate ID3D12PipelineState object. We
specify all these objects as an aggregate to the graphics pipeline for performance.
By specifying them as an aggregate, Direct3D can validate that all the state
is compatible and the driver can generate all the code up front to program the
hardware state. In the Direct3D 11 state model, these render states pieces were
set separately. However, the states are related; if one piece of state gets changed, it
may additionally require the driver to reprogram the hardware for another piece
of dependent state. As many states are changed to configure the pipeline, the state
of the hardware could get reprogrammed redundantly. To avoid this redundancy,
the drivers typically deferred programming the hardware state until a draw call is
issued when the entire pipeline state would be known. But this deferral requires
additional bookkeeping work by the driver at runtime; it needs to track which
states have changed, and then generate the code to program the hardware state
at runtime. In the new Direct3D 12 model, the driver can generate all the code
needed to program the pipeline state at initialization time because we specify the
majority of pipeline state as an aggregate.

Because PSO validation and creation can be time consuming, PSOs should be
generated at initialization time. One exception to this might be to create a PSO
at runtime on demand the fi rst time it is referenced; then store it in a collection
such as a hash table so it can quickly be fetched for future use.

Not all rendering states are encapsulated in a PSO. Some states like the viewport
and scissor rectangles are specified independently to the PSO. Such state can

Note:

DRAWING IN DIRECT3D 247

efficiently be set independently to the other pipeline state, so no advantage was
gained by including them in the PSO.

Direct3D is basically a state machine. Things stay in their current state until
we change them. If some objects you are drawing use one PSO, and other objects
you are drawing require a different PSO, then you need to structure your code like
this:

// Reset specifies initial PSO.
mCommandList->Reset(mDirectCmdListAlloc.Get(), mPSO1.Get())
/* ...draw objects using PSO 1... */

// Change PSO
mCommandList->SetPipelineState(mPSO2.Get());
/* ...draw objects using PSO 2... */

// Change PSO
mCommandList->SetPipelineState(mPSO3.Get());
/* ...draw objects using PSO 3... */

In other words, when a PSO is bound to the command list, it does not change
until you overwrite it (or the command list is reset).

PSO state changes should be kept to a minimum for performance. Draw all
objects together that can use the same PSO. Do not change the PSO per draw
call!

6.10 GEOMETRY HELPER STRUCTURE

It is helpful to create a structure that groups a vertex and index buffer together to
define a group of geometry. In addition, this structure can keep a system memory
backing of the vertex and index data so that it can be read by the CPU. The
CPU will need access to the geometry data for things like picking and collision
detection. In addition, the structure caches the important properties of the vertex
and index buffers such as the format and strike, and provides methods that return
views to the buffers. We use the following MeshGeometry (defined in d3dUtil.h)
structure throughout the book whenever we define a chunk of geometry.

// Defines a subrange of geometry in a MeshGeometry. This is for when
// multiple geometries are stored in one vertex and index buffer. It
// provides the offsets and data needed to draw a subset of geometry
// stores in the vertex and index buffers so that we can implement the
// technique described by Figure 6.3.
struct SubmeshGeometry
{
 UINT IndexCount = 0;
 UINT StartIndexLocation = 0;

Note:

248 DIRECT3D FOUNDATIONS

 INT BaseVertexLocation = 0;

 // Bounding box of the geometry defined by this submesh.
 // This is used in later chapters of the book.
 DirectX::BoundingBox Bounds;
};

struct MeshGeometry
{
 // Give it a name so we can look it up by name.
 std::string Name;

 // System memory copies. Use Blobs because the vertex/index format can
 // be generic.
 // It is up to the client to cast appropriately.
 Microsoft::WRL::ComPtr<ID3DBlob> VertexBufferCPU = nullptr;
 Microsoft::WRL::ComPtr<ID3DBlob> IndexBufferCPU = nullptr;

 Microsoft::WRL::ComPtr<ID3D12Resource> VertexBufferGPU = nullptr;
 Microsoft::WRL::ComPtr<ID3D12Resource> IndexBufferGPU = nullptr;

 Microsoft::WRL::ComPtr<ID3D12Resource> VertexBufferUploader = nullptr;
 Microsoft::WRL::ComPtr<ID3D12Resource> IndexBufferUploader = nullptr;

 // Data about the buffers.
 UINT VertexByteStride = 0;
 UINT VertexBufferByteSize = 0;
 DXGI_FORMAT IndexFormat = DXGI_FORMAT_R16_UINT;
 UINT IndexBufferByteSize = 0;

 // A MeshGeometry may store multiple geometries in one vertex/index
 // buffer.
 // Use this container to define the Submesh geometries so we can draw
 // the Submeshes individually.
 std::unordered_map<std::string, SubmeshGeometry> DrawArgs;

 D3D12_VERTEX_BUFFER_VIEW VertexBufferView()const
 {
 D3D12_VERTEX_BUFFER_VIEW vbv;
 vbv.BufferLocation = VertexBufferGPU->GetGPUVirtualAddress();
 vbv.StrideInBytes = VertexByteStride;
 vbv.SizeInBytes = VertexBufferByteSize;

 return vbv;
 }

 D3D12_INDEX_BUFFER_VIEW IndexBufferView()const
 {
 D3D12_INDEX_BUFFER_VIEW ibv;
 ibv.BufferLocation = IndexBufferGPU->GetGPUVirtualAddress();
 ibv.Format = IndexFormat;
 ibv.SizeInBytes = IndexBufferByteSize;

 return ibv;
 }

DRAWING IN DIRECT3D 249

 // We can free this memory after we finish upload to the GPU.
 void DisposeUploaders()
 {
 VertexBufferUploader = nullptr;
 IndexBufferUploader = nullptr;
 }
};

6.11 BOX DEMO

At last, we have covered enough material to present a simple demo, which renders
a colored box. This example essentially puts everything we have discussed in this
chapter up to now into a single program. The reader should study the code and refer
back to the previous sections of this chapter until every line is understood. Note that
the program uses the Shaders\color.hlsl, which was shown at the end of §6.5.

//***
// BoxApp.cpp by Frank Luna (C) 2015 All Rights Reserved.
//
// Shows how to draw a box in Direct3D 12.
//
// Controls:
// Hold the left mouse button down and move the mouse to rotate.
// Hold the right mouse button down and move the mouse to zoom in and
// out.
//***

#include "../../Common/d3dApp.h"
#include "../../Common/MathHelper.h"
#include "../../Common/UploadBuffer.h"

using Microsoft::WRL::ComPtr;
using namespace DirectX;
using namespace DirectX::PackedVector;

struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT4 Color;
};

struct ObjectConstants
{
 XMFLOAT4X4 WorldViewProj = MathHelper::Identity4x4();
};

class BoxApp : public D3DApp
{
public:
 BoxApp(HINSTANCE hInstance);

250 DIRECT3D FOUNDATIONS

 BoxApp(const BoxApp& rhs) = delete;
 BoxApp& operator=(const BoxApp& rhs) = delete;
 ~BoxApp();

 virtual bool Initialize()override;

private:
 virtual void OnResize()override;
 virtual void Update(const GameTimer& gt)override;
 virtual void Draw(const GameTimer& gt)override;

 virtual void OnMouseDown(WPARAM btnState, int x, int y)override;
 virtual void OnMouseUp(WPARAM btnState, int x, int y)override;
 virtual void OnMouseMove(WPARAM btnState, int x, int y)override;

 void BuildDescriptorHeaps();
 void BuildConstantBuffers();
 void BuildRootSignature();
 void BuildShadersAndInputLayout();
 void BuildBoxGeometry();
 void BuildPSO();

private:

 ComPtr<ID3D12RootSignature> mRootSignature = nullptr;
 ComPtr<ID3D12DescriptorHeap> mCbvHeap = nullptr;

 std::unique_ptr<UploadBuffer<ObjectConstants>> mObjectCB = nullptr;

 std::unique_ptr<MeshGeometry> mBoxGeo = nullptr;

 ComPtr<ID3DBlob> mvsByteCode = nullptr;
 ComPtr<ID3DBlob> mpsByteCode = nullptr;

 std::vector<D3D12_INPUT_ELEMENT_DESC> mInputLayout;

 ComPtr<ID3D12PipelineState> mPSO = nullptr;

 XMFLOAT4X4 mWorld = MathHelper::Identity4x4();
 XMFLOAT4X4 mView = MathHelper::Identity4x4();
 XMFLOAT4X4 mProj = MathHelper::Identity4x4();

 float mTheta = 1.5f*XM_PI;
 float mPhi = XM_PIDIV4;
 float mRadius = 5.0f;

 POINT mLastMousePos;
};

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prevInstance,
 PSTR cmdLine, int showCmd)
{
 // Enable run-time memory check for debug builds.
#if defined(DEBUG) | defined(_DEBUG)

DRAWING IN DIRECT3D 251

 _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
#endif

 try
 {
 BoxApp theApp(hInstance);
 if(!theApp.Initialize())
 return 0;

 return theApp.Run();
 }
 catch(DxException& e)
 {
 MessageBox(nullptr, e.ToString().c_str(), L"HR Failed", MB_OK);
 return 0;
 }
}

BoxApp::BoxApp(HINSTANCE hInstance)
: D3DApp(hInstance)
{
}

BoxApp::~BoxApp()
{
}

bool BoxApp::Initialize()
{
 if(!D3DApp::Initialize())
 return false;

 // Reset the command list to prep for initialization commands.
 ThrowIfFailed(mCommandList->Reset(mDirectCmdListAlloc.Get(),

nullptr));

 BuildDescriptorHeaps();
 BuildConstantBuffers();
 BuildRootSignature();
 BuildShadersAndInputLayout();
 BuildBoxGeometry();
 BuildPSO();

 // Execute the initialization commands.
 ThrowIfFailed(mCommandList->Close());
 ID3D12CommandList* cmdsLists[] = { mCommandList.Get() };
 mCommandQueue->ExecuteCommandLists(_countof(cmdsLists), cmdsLists);

 // Wait until initialization is complete.
 FlushCommandQueue();

 return true;
}

252 DIRECT3D FOUNDATIONS

void BoxApp::OnResize()
{
 D3DApp::OnResize();

 // The window resized, so update the aspect ratio and recompute the
 // projection matrix.
 XMMATRIX P = XMMatrixPerspectiveFovLH(0.25f*MathHelper::Pi,

AspectRatio(), 1.0f, 1000.0f);
 XMStoreFloat4x4(&mProj, P);
}

void BoxApp::Update(const GameTimer& gt)
{
 // Convert Spherical to Cartesian coordinates.
 float x = mRadius*sinf(mPhi)*cosf(mTheta);
 float z = mRadius*sinf(mPhi)*sinf(mTheta);
 float y = mRadius*cosf(mPhi);

 // Build the view matrix.
 XMVECTOR pos = XMVectorSet(x, y, z, 1.0f);
 XMVECTOR target = XMVectorZero();
 XMVECTOR up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f);

 XMMATRIX view = XMMatrixLookAtLH(pos, target, up);
 XMStoreFloat4x4(&mView, view);

 XMMATRIX world = XMLoadFloat4x4(&mWorld);
 XMMATRIX proj = XMLoadFloat4x4(&mProj);
 XMMATRIX worldViewProj = world*view*proj;

 // Update the constant buffer with the latest worldViewProj matrix.
 ObjectConstants objConstants;
 XMStoreFloat4x4(&objConstants.WorldViewProj, XMMatrixTranspose(world

ViewProj));
 mObjectCB->CopyData(0, objConstants);
}

void BoxApp::Draw(const GameTimer& gt)
{
 // Reuse the memory associated with command recording.
 // We can only reset when the associated command lists have finished
 // execution on the GPU.
 ThrowIfFailed(mDirectCmdListAlloc->Reset());

 // A command list can be reset after it has been added to the
 // command queue via ExecuteCommandList. Reusing the command
 // list reuses memory.
 ThrowIfFailed(mCommandList->Reset(mDirectCmdListAlloc.Get(), mPSO.

Get()));

 mCommandList->RSSetViewports(1, &mScreenViewport);
 mCommandList->RSSetScissorRects(1, &mScissorRect);

 // Indicate a state transition on the resource usage.

DRAWING IN DIRECT3D 253

 mCommandList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(CurrentBackBuffer(),
 D3D12_RESOURCE_STATE_PRESENT, D3D12_RESOURCE_STATE_RENDER_TARGET));

 // Clear the back buffer and depth buffer.
 mCommandList->ClearRenderTargetView(CurrentBackBufferView(),
 Colors::LightSteelBlue, 0, nullptr);
 mCommandList->ClearDepthStencilView(DepthStencilView(),
 D3D12_CLEAR_FLAG_DEPTH | D3D12_CLEAR_FLAG_STENCIL,
 1.0f, 0, 0, nullptr);

 // Specify the buffers we are going to render to.
 mCommandList->OMSetRenderTargets(1, &CurrentBackBufferView(),
 true, &DepthStencilView());

 ID3D12DescriptorHeap* descriptorHeaps[] = { mCbvHeap.Get() };
 mCommandList->SetDescriptorHeaps(_countof(descriptorHeaps),

descriptorHeaps);

 mCommandList->SetGraphicsRootSignature(mRootSignature.Get());

 mCommandList->IASetVertexBuffers(0, 1, &mBoxGeo->VertexBufferView());
 mCommandList->IASetIndexBuffer(&mBoxGeo->IndexBufferView());
 mCommandList->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_

TRIANGLELIST);

 mCommandList->SetGraphicsRootDescriptorTable(
 0, mCbvHeap->GetGPUDescriptorHandleForHeapStart());

 mCommandList->DrawIndexedInstanced(
 mBoxGeo->DrawArgs["box"].IndexCount,
 1, 0, 0, 0);

 // Indicate a state transition on the resource usage.
 mCommandList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(CurrentBackBuffer(),
 D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_PRESENT));

 // Done recording commands.
 ThrowIfFailed(mCommandList->Close());

 // Add the command list to the queue for execution.
 ID3D12CommandList* cmdsLists[] = { mCommandList.Get() };
 mCommandQueue->ExecuteCommandLists(_countof(cmdsLists), cmdsLists);

 // swap the back and front buffers
 ThrowIfFailed(mSwapChain->Present(0, 0));
 mCurrBackBuffer = (mCurrBackBuffer + 1) % SwapChainBufferCount;

 // Wait until frame commands are complete. This waiting is
 // inefficient and is done for simplicity. Later we will show how to
 // organize our rendering code so we do not have to wait per frame.
 FlushCommandQueue();
}

254 DIRECT3D FOUNDATIONS

void BoxApp::OnMouseDown(WPARAM btnState, int x, int y)
{
 mLastMousePos.x = x;
 mLastMousePos.y = y;

 SetCapture(mhMainWnd);
}

void BoxApp::OnMouseUp(WPARAM btnState, int x, int y)
{
 ReleaseCapture();
}

void BoxApp::OnMouseMove(WPARAM btnState, int x, int y)
{
 if((btnState & MK_LBUTTON) != 0)
 {
 // Make each pixel correspond to a quarter of a degree.
 float dx = XMConvertToRadians(0.25f*static_cast<float>(x -

mLastMousePos.x));
 float dy = XMConvertToRadians(0.25f*static_cast<float>(y -

mLastMousePos.y));

 // Update angles based on input to orbit camera around box.
 mTheta += dx;
 mPhi += dy;

 // Restrict the angle mPhi.
 mPhi = MathHelper::Clamp(mPhi, 0.1f, MathHelper::Pi - 0.1f);
 }
 else if((btnState & MK_RBUTTON) != 0)
 {
 // Make each pixel correspond to 0.005 unit in the scene.
 float dx = 0.005f*static_cast<float>(x - mLastMousePos.x);
 float dy = 0.005f*static_cast<float>(y - mLastMousePos.y);

 // Update the camera radius based on input.
 mRadius += dx - dy;

 // Restrict the radius.
 mRadius = MathHelper::Clamp(mRadius, 3.0f, 15.0f);
 }

 mLastMousePos.x = x;
 mLastMousePos.y = y;
}

void BoxApp::BuildDescriptorHeaps()
{
 D3D12_DESCRIPTOR_HEAP_DESC cbvHeapDesc;
 cbvHeapDesc.NumDescriptors = 1;
 cbvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;
 cbvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;
 cbvHeapDesc.NodeMask = 0;
 ThrowIfFailed(md3dDevice->CreateDescriptorHeap(&cbvHeapDesc,

DRAWING IN DIRECT3D 255

 IID_PPV_ARGS(&mCbvHeap)));
}

void BoxApp::BuildConstantBuffers()
{
 mObjectCB = std::make_unique<UploadBuffer<ObjectConstants>>(md3dDevi

ce.Get(), 1, true);

 UINT objCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof(Objec
tConstants));

 D3D12_GPU_VIRTUAL_ADDRESS cbAddress = mObjectCB->Resource()-
>GetGPUVirtualAddress();

 // Offset to the ith object constant buffer in the buffer.
 // Here our i = 0.
 int boxCBufIndex = 0;
 cbAddress += boxCBufIndex*objCBByteSize;

 D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc;
 cbvDesc.BufferLocation = cbAddress;
 cbvDesc.SizeInBytes = d3dUtil::CalcConstantBufferByteSize(sizeof(Obje

ctConstants));

 md3dDevice->CreateConstantBufferView(
 &cbvDesc,
 mCbvHeap->GetCPUDescriptorHandleForHeapStart());
}

void BoxApp::BuildRootSignature()
{
 // Shader programs typically require resources as input (constant
 // buffers, textures, samplers). The root signature defines the
 // resources the shader programs expect. If we think of the shader
 // programs as a function, and the input resources as function
 // parameters, then the root signature can be thought of as defining
 // the function signature.

 // Root parameter can be a table, root descriptor or root constants.
 CD3DX12_ROOT_PARAMETER slotRootParameter[1];

 // Create a single descriptor table of CBVs.
 CD3DX12_DESCRIPTOR_RANGE cbvTable;
 cbvTable.Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);
 slotRootParameter[0].InitAsDescriptorTable(1, &cbvTable);

 // A root signature is an array of root parameters.
 CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(1, slotRootParameter, 0,

nullptr,
 D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

 // create a root signature with a single slot which points to a
 // descriptor range consisting of a single constant buffer
 ComPtr<ID3DBlob> serializedRootSig = nullptr;
 ComPtr<ID3DBlob> errorBlob = nullptr;

256 DIRECT3D FOUNDATIONS

 HRESULT hr = D3D12SerializeRootSignature(&rootSigDesc, D3D_ROOT_
SIGNATURE_VERSION_1,

 serializedRootSig.GetAddressOf(), errorBlob.GetAddressOf());

 if(errorBlob != nullptr)
 {
 ::OutputDebugStringA((char*)errorBlob->GetBufferPointer());
 }
 ThrowIfFailed(hr);

 ThrowIfFailed(md3dDevice->CreateRootSignature(
 0,
 serializedRootSig->GetBufferPointer(),
 serializedRootSig->GetBufferSize(),
 IID_PPV_ARGS(&mRootSignature)));
}

void BoxApp::BuildShadersAndInputLayout()
{
 HRESULT hr = S_OK;

 mvsByteCode = d3dUtil::CompileShader(L"Shaders\\color.hlsl", nullptr,

"VS", "vs_5_0");
 mpsByteCode = d3dUtil::CompileShader(L"Shaders\\color.hlsl", nullptr,

"PS", "ps_5_0");

 mInputLayout =
 {
 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
 { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12,
 D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
 };
}

void BoxApp::BuildBoxGeometry()
{
 std::array<Vertex, 8> vertices =
 {
 Vertex({ XMFLOAT3(-1.0f, -1.0f, -1.0f), XMFLOAT4(Colors::White) }),
 Vertex({ XMFLOAT3(-1.0f, +1.0f, -1.0f), XMFLOAT4(Colors::Black) }),
 Vertex({ XMFLOAT3(+1.0f, +1.0f, -1.0f), XMFLOAT4(Colors::Red) }),
 Vertex({ XMFLOAT3(+1.0f, -1.0f, -1.0f), XMFLOAT4(Colors::Green) }),
 Vertex({ XMFLOAT3(-1.0f, -1.0f, +1.0f), XMFLOAT4(Colors::Blue) }),
 Vertex({ XMFLOAT3(-1.0f, +1.0f, +1.0f), XMFLOAT4(Colors::Yellow)

}),
 Vertex({ XMFLOAT3(+1.0f, +1.0f, +1.0f), XMFLOAT4(Colors::Cyan) }),
 Vertex({ XMFLOAT3(+1.0f, -1.0f, +1.0f), XMFLOAT4(Colors::Magenta)

})
 };

 std::array<std::uint16_t, 36> indices =
 {
 // front face

DRAWING IN DIRECT3D 257

 0, 1, 2,
 0, 2, 3,

 // back face
 4, 6, 5,
 4, 7, 6,

 // left face
 4, 5, 1,
 4, 1, 0,

 // right face
 3, 2, 6,
 3, 6, 7,

 // top face
 1, 5, 6,
 1, 6, 2,

 // bottom face
 4, 0, 3,
 4, 3, 7
 };

 const UINT vbByteSize = (UINT)vertices.size() * sizeof(Vertex);
 const UINT ibByteSize = (UINT)indices.size() * sizeof(std::uint16_t);

 mBoxGeo = std::make_unique<MeshGeometry>();
 mBoxGeo->Name = "boxGeo";

 ThrowIfFailed(D3DCreateBlob(vbByteSize, &mBoxGeo->VertexBufferCPU));
 CopyMemory(mBoxGeo->VertexBufferCPU->GetBufferPointer(),
 vertices.data(), vbByteSize);

 ThrowIfFailed(D3DCreateBlob(ibByteSize, &mBoxGeo->IndexBufferCPU));
 CopyMemory(mBoxGeo->IndexBufferCPU->GetBufferPointer(),
 indices.data(), ibByteSize);

 mBoxGeo->VertexBufferGPU = d3dUtil::CreateDefaultBuffer(
 md3dDevice.Get(), mCommandList.Get(),
 vertices.data(), vbByteSize,
 mBoxGeo->VertexBufferUploader);

 mBoxGeo->IndexBufferGPU = d3dUtil::CreateDefaultBuffer(
 md3dDevice.Get(), mCommandList.Get(),
 indices.data(), ibByteSize,
 mBoxGeo->IndexBufferUploader);

 mBoxGeo->VertexByteStride = sizeof(Vertex);
 mBoxGeo->VertexBufferByteSize = vbByteSize;
 mBoxGeo->IndexFormat = DXGI_FORMAT_R16_UINT;
 mBoxGeo->IndexBufferByteSize = ibByteSize;

 SubmeshGeometry submesh;
 submesh.IndexCount = (UINT)indices.size();

258 DIRECT3D FOUNDATIONS

 submesh.StartIndexLocation = 0;
 submesh.BaseVertexLocation = 0;

 mBoxGeo->DrawArgs["box"] = submesh;
}

void BoxApp::BuildPSO()
{
 D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc;
 ZeroMemory(&psoDesc, sizeof(D3D12_GRAPHICS_PIPELINE_STATE_DESC));
 psoDesc.InputLayout = { mInputLayout.data(), (UINT)mInputLayout.

size() };
 psoDesc.pRootSignature = mRootSignature.Get();
 psoDesc.VS =
 {
 reinterpret_cast<BYTE*>(mvsByteCode->GetBufferPointer()),
 mvsByteCode->GetBufferSize()
 };
 psoDesc.PS =
 {
 reinterpret_cast<BYTE*>(mpsByteCode->GetBufferPointer()),
 mpsByteCode->GetBufferSize()
 };
 psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
 psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
 psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_

DEFAULT);
 psoDesc.SampleMask = UINT_MAX;
 psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_

TRIANGLE;
 psoDesc.NumRenderTargets = 1;
 psoDesc.RTVFormats[0] = mBackBufferFormat;
 psoDesc.SampleDesc.Count = m4xMsaaState ? 4 : 1;
 psoDesc.SampleDesc.Quality = m4xMsaaState ? (m4xMsaaQuality - 1) : 0;
 psoDesc.DSVFormat = mDepthStencilFormat;
 ThrowIfFailed(md3dDevice->CreateGraphicsPipelineState(&psoDesc, IID_

PPV_ARGS(&mPSO)));
}

Figure 6.7. Screenshot of the “Box” demo.

DRAWING IN DIRECT3D 259

6.12 SUMMARY

1. A vertex in Direct3D can consist of additional data besides spatial location. To
create a custom vertex format, we first define a structure that holds the vertex
data we choose. Once we have defined a vertex structure, we describe it to
Direct3D by defining an input layout description (D3D12_INPUT_LAYOUT_DESC),
which is an array of D3D12_INPUT_ELEMENT_DESC elements, and the number of
elements in the array. Each element in the D3D12_INPUT_ELEMENT_DESC array
describes and corresponds to one component in the vertex structure. An input
layout description is set as a field in the D3D12_GRAPHICS_PIPELINE_STATE_DESC
structure, where it becomes part of a PSO, and is validated against the vertex
shader input signature. An input layout is bound to the IA stage when the
PSO it is part of gets bound.

2. In order for the GPU to access an array of vertices/indices, they need
to be placed in a resource called a buffer, which is represented by the
ID3D12Resource interface. A buffer that stores vertices is called a vertex buffer
and a buffer that stores indices is called an index buffer. A buffer resource is
created by fi lling out a D3D12_RESOURCE_DESC structure and then calling the
ID3D12Device::CreateCommittedResource method. A view to a vertex buffer
is represented by the D3D12_VERTEX_BUFFER_VIEW structure, and a view to an
index buffer is represented by the D3D12_INDEX_BUFFER_VIEW structure. A
vertex buffer is bound to the IA stage with the ID3D12GraphicsCommandList:
:IASetVertexBuffers method, and an index buffer is bound to the IA stage
with the ID3D12GraphicsCommandList::IASetIndexBuffer method. Non-
indexed geometry can be drawn with ID3D12GraphicsCommandList::DrawInst
anced, and indexed geometry can be drawn with ID3D12GraphicsCommandList
::DrawIndexedInstanced.

3. A vertex shader is a program written in HLSL, executed on the GPU, which
inputs a vertex and outputs a vertex. Every drawn vertex goes through the
vertex shader. This enables the programmer to do specialized work on a per
vertex basis to achieve various rendering effects. The values output from the
vertex shader are passed on to the next stage in the pipeline.

4. A constant buffer is a GPU resource (ID3D12Resource) whose data contents
can be referenced in shader programs. They are created in an upload heap
rather than a default heap so that the application can update the constant
buffer data by copying system memory to GPU memory. In this way, the
C application can communicate with the shader and update the values in
the constant buffers the shader uses; for example, the C application can
change the world-view-projection matrix the shader uses. The general advice

260 DIRECT3D FOUNDATIONS

is to create constant buffers based on the frequency in which you need to
update their contents. The motivation for dividing the constant buffers up is
efficiency. When a constant buffer is updated, all its variables must be updated;
therefore, it is efficient to group them based on their update frequency to
minimize redundant updates.

5. A pixel shader is a program written in HLSL, executed on the GPU, which
inputs interpolated vertex data and outputs a color value. As a hardware
optimization, it is possible that a pixel fragment is rejected by the pipeline
before making it to the pixel shader (e.g., early-z rejection). Pixel shaders
enable the programmer to do specialized work on a per pixel basis to achieve
various rendering effects. The values output from the pixel shader are passed
on to the next stage in the pipeline.

6. Most of the Direct3D objects that control the state of the graphics pipeline
are specified as an aggregate called a pipeline state object (PSO), which is
represented by the ID3D12PipelineState interface. We specify all these objects
as an aggregate to the graphics pipeline for performance. By specifying them
as an aggregate, Direct3D can validate that all the state is compatible and the
driver can generate all the code up front to program the hardware state.

6.13 EXERCISES

1. Write down the D3D12_INPUT_ELEMENT_DESC array for the following vertex
structure:

struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT3 Tangent;
 XMFLOAT3 Normal;
 XMFLOAT2 Tex0;
 XMFLOAT2 Tex1;
 XMCOLOR Color;
};

2. Redo the Colored Cube demo, but this time use two vertex buffers (and two
input slots) to feed the pipeline with vertices, one that stores the position
element and the other that stores the color element. For this you will use two
vertex structures to store the split data:
struct VPosData
{
 XMFLOAT3 Pos;
};

DRAWING IN DIRECT3D 261

struct VColorData
{
 XMFLOAT4 Color;
};

Your D3D12_INPUT_ELEMENT_DESC array will look like this:

D3D12_INPUT_ELEMENT_DESC vertexDesc[] =
{
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_PER_VERTEX_DATA, 0},
 {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, 0,
 D3D12_INPUT_PER_VERTEX_DATA, 0}
};

 The position element is hooked up to input slot 0, and the color element
is hooked up to input slot 1. Moreover note that the D3D12_INPUT_ELEMENT_
DESC::AlignedByteOffset is 0 for both elements; this is because the position
and color elements are no longer interleaved in a single input slot. Then use ID
3D12CommandList::IASetVertexBuffers to bind the two vertex buffers to slots
0 and 1. Direct3D will then use the elements from the different input slots to
assemble the vertices. This can be used as an optimization. For example, in
the shadow mapping algorithm, we need to draw our scene twice per frame:
once from the perspective of the light source (shadow pass) and once from the
perspective of the main camera (main pass). The shadow pass only requires
the position data and texture coordinates (for alpha tested geometry). So we
can split the vertex data into two slots: one slot contains position and texture
coordinates, and the other slot contains the other vertex attributes (e.g.,
normal and tangent vectors). Now we can easily only stream in the vertex data
the shadow pass needs (position and texture coordinates), thereby saving data
bandwidth for the shadow pass. The main render pass would use both vertex
input slots to get all the vertex data it needs. For performance, the advice is to
minimize the number of input slots used to a small number less than or equal
to 3.

3. Draw

(a) a point list like the one shown in Figure 5.13a.

(b) a line strip like the one shown in Figure 5.13b.

(c) a line list like the one shown in Figure 5.13c.

(d) a triangle strip like the one shown in Figure 5.13d.

(e) a triangle list like the one shown in Figure 5.14a.

4. Construct the vertex and index list of a pyramid, as shown in Figure 6.8, and
draw it. Color the base vertices green and the tip vertex red.

262 DIRECT3D FOUNDATIONS

Figure 6.8. The triangles of a pyramid.

5. Run the “Box” demo, and recall that we specified colors at the vertices only.
Explain how pixel colors were obtained for each pixel on the triangle.

6. Modify the Box demo by applying the following transformation to each vertex
in the vertex shader prior to transforming to world space.

 vin.PosL.xy += 0.5f*sin(vinL.Pos.x)*sin(3.0f*gTime);
 vin.PosL.z *= 0.6f + 0.4f*sin(2.0f*gTime);

 You will need to add a gTime constant buffer variable; this variable corresponds
to the current GameTimer::TotalTime() value. This will animate the vertices as
a function of time by distorting them periodically with the sine function.

7. Merge the vertices of a box and pyramid (Exercise 4) into one large vertex
buffer. Also merge the indices of the box and pyramid into one large index
buffer (but do not update the index values). Then draw the box and pyramid
one-by-one using the parameters of ID3D12CommandList::DrawIndexedInstan
ced. Use the world transformation matrix so that the box and pyramid are
disjoint in world space.

8. Modify the Box demo by rendering the cube in wireframe mode.

9. Modify the Box demo by disabling backface culling (D3D12_CULL_NONE); also
try culling front faces instead of back faces (D3D12_CULL_FRONT). Output your
results in wireframe mode so that you can more easily see the difference.

10. If vertex memory is significant, then reducing from 128-bit color values to 32-
bit color values may be worthwhile. Modify the “Box” demo by using a 32-bit
color value instead of a 128-bit color value in the vertex structure. Your vertex
structure and corresponding vertex input description will look like this:

struct Vertex
{
 XMFLOAT3 Pos;
 XMCOLOR Color;
};

D3D12_INPUT_ELEMENT_DESC vertexDesc[] =
{
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_PER_VERTEX_DATA, 0},

DRAWING IN DIRECT3D 263

 {"COLOR", 0, DXGI_FORMAT_B8G8R8A8_UNORM, 0, 12,
 D3D12_INPUT_PER_VERTEX_DATA, 0}
};

 We use the DXGI_FORMAT_B8G8R8A8_UNORM format (8-bits red, green, blue, and
alpha). This format corresponds to the common 32-bit graphics color format
ARGB, but the DXGI_FORMAT symbol lists the bytes as they appear in memory
in little-endian notation. In little-endian, the bytes of a multi-byte data word
are written from least significant byte to most significant byte, which is why
ARGB appears in memory as BGRA with the least significant byte at the
smallest memory address and the most significant byte at the highest memory
address.

11. Consider the following C vertex structure:

struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT4 Color;
};

(a) Does the input layout description order need to match the vertex structure
order? That is, is the following vertex declaration correct for this vertex
structure? Do an experiment to fi nd out. Then give reasoning for why you
think it works or does not work.

D3D11_INPUT_ELEMENT_DESC vertexDesc[] =
{
 {"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12,
 D3D11_INPUT_PER_VERTEX_DATA, 0},
 {"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D11_INPUT_PER_VERTEX_DATA, 0},
};

(b) Does the corresponding vertex shader structure order need to match
the C vertex structure order? That is, does the following vertex shader
structure work with the above C vertex structure? Do an experiment to
fi nd out. Then give reasoning for why you think it works or does not work.

struct VertexIn
{
 float4 Color : COLOR;
 float3 Pos : POSITION;
};

12. Set the viewport to the left half of the back buffer.

13. Use the scissor test to cull all pixels outside a rectangle centered about the back
buffer with width mClientWidth/2 and height mClientHeight/2. Remember
that you also need to enable the scissor test with the rasterizer state group.

264 DIRECT3D FOUNDATIONS

14. Pixel shader color tint. Use constant buffer to animate color over time. Use
smooth easing function. Do it in vertex shader and pixel shader.

15. Modify the pixel shader in the Box demo to be the following:

float4 PS(VertexOut pin) : SV_Target
{
 clip(pin.Color.r - 0.5f);
 return pin.Color;
}

 Run the demo and make a conjecture of what the built-in clip function does.

16. Modify the pixel shader in the Box demo to smoothly pulse between the
interpolated vertex color and a gPulseColor specified through the constant buffer.
You will also need to update the constant buffer on the application side. The
constant buffer and pixel shader in the HLSL code should look like the following:
cbuffer cbPerObject : register(b0)
{
 float4x4 gWorldViewProj;
 float4 gPulseColor;
 float gTime;
};

float4 PS(VertexOut pin) : SV_Target
{
 const float pi = 3.14159;

 // Oscillate a value in [0,1] over time using a sine function.
 float s = 0.5f*sin(2*gTime - 0.25f*pi)+0.5f;

 // Linearly interpolate between pin.Color and gPulseColor based on
 // parameter s.
 float4 c = lerp(pin.Color, gPulseColor, s);

 return c;
}

 The gTime variable corresponds to the current GameTimer::TotalTime() value.

Chapter

265

7Chapter

DRAWING IN
DIRECT3D
PART II

This chapter introduces a number of drawing patterns that we will use throughout
the rest of this book. The chapter begins by introducing a drawing optimization,
which we refer to as “frame resources.” With frame resources, we modify our render
loop so that we do not have to flush the command queue every frame; this improves
CPU and GPU utilization. Next we introduce the concept of a render item and
explain how we divide up our constant data based on update frequency. In addition,
we examine root signatures in more detail and learn about the other root parameter
types: root descriptors and root constants. Finally, we show how to draw some more
complicated objects; by the end of this chapter, you will be able to draw a surface that
resembles hills and valleys, cylinders, spheres, and an animated wave simulation.

Objectives:
1. To understand a modification to our rendering process that does not require

us to flush the command queue every frame, thereby improving performance.

2. To learn about the two other types of root signature parameter types: root
descriptors and root constants.

3. To discover how to procedurally generate and draw common geometric
shapes like grids, cylinders, and spheres.

4. To find out how we can animate vertices on the CPU and upload the new
vertex positions to the GPU using dynamic vertex buffers.

266 DIRECT3D FOUNDATIONS

7.1 FRAME RESOURCES

Recall from §4.2 that the CPU and GPU work in parallel. The CPU builds and
submits command lists (in addition to other CPU work) and the GPU processes
commands in the command queue. The goal is to keep both CPU and GPU busy
to take full advantage of the hardware resources available on the system. So far in
our demos, we have been synchronizing the CPU and GPU once per frame. Two
examples of why this is necessary are:

1. The command allocator cannot be reset until the GPU is finished executing
the commands. Suppose we did not synchronize so that the CPU could
continue on to the next frame n1 before the GPU has finished processing
the current frame n: If the CPU resets the command allocator in frame n1,
but the GPU is still processing commands from frame n, then we would be
clearing the commands the GPU is still working on.

2. A constant buffer cannot be updated by the CPU until the GPU has finished
executing the drawing commands that reference the constant buffer. This example
corresponds to the situation described in §4.2.2 and Figure 4.7. Suppose we did
not synchronize so that the CPU could continue on to the next frame n  1 before
the GPU has finished processing the current frame n: If the CPU overwrites the
constant buffer data in frame n1, but the GPU has not yet executed the draw call
that references the constant buffer in frame n, then the constant buffer contains
the wrong data for when the GPU executes the draw call for frame n.

Thus we have been calling D3DApp::FlushCommandQueue at the end of every frame
to ensure the GPU has finished executing all the commands for the frame. This
solution works but is inefficient for the following reasons:

1. At the beginning of a frame, the GPU will not have any commands to process
since we waited to empty the command queue. It will have to wait until the
CPU builds and submits some commands for execution.

2. At the end of a frame, the CPU is waiting for the GPU to finish processing
commands.

So every frame, the CPU and GPU are idling at some point.
One solution to this problem is to create a circular array of the resources the

CPU needs to modify each frame. We call such resources frame resources, and
we usually use a circular array of three frame resource elements. The idea is
that for frame n, the CPU will cycle through the frame resource array to get the
next available (i.e., not in use by GPU) frame resource. The CPU will then do
any resource updates, and build and submit command lists for frame n while the
GPU works on previous frames. The CPU will then continue on to frame n1 and

DRAWING IN DIRECT3D PART II 267

repeat. If the frame resource array has three elements, this lets the CPU get up to
two frames ahead of the GPU, ensuring that the GPU is kept busy. Below is an
example of the frame resource class we use for the “Shapes” demo in this chapter.
Because the CPU only needs to modify constant buffers in this demo, the frame
resource class only contains constant buffers.

// Stores the resources needed for the CPU to build the command lists
// for a frame. The contents here will vary from app to app based on
// the needed resources.
struct FrameResource
{
public:

 FrameResource(ID3D12Device* device, UINT passCount,

UINT objectCount);
 FrameResource(const FrameResource& rhs) = delete;
 FrameResource& operator=(const FrameResource& rhs) = delete;
 ~FrameResource();

 // We cannot reset the allocator until the GPU is done processing the
 // commands. So each frame needs their own allocator.
 Microsoft::WRL::ComPtr<ID3D12CommandAllocator> CmdListAlloc;

 // We cannot update a cbuffer until the GPU is done processing the
 // commands that reference it. So each frame needs their own cbuffers.
 std::unique_ptr<UploadBuffer<PassConstants>> PassCB = nullptr;
 std::unique_ptr<UploadBuffer<ObjectConstants>> ObjectCB = nullptr;

 // Fence value to mark commands up to this fence point. This lets us
 // check if these frame resources are still in use by the GPU.
 UINT64 Fence = 0;
};

FrameResource::FrameResource(ID3D12Device* device, UINT passCount, UINT
 objectCount)
{
 ThrowIfFailed(device->CreateCommandAllocator(
 D3D12_COMMAND_LIST_TYPE_DIRECT,
 IID_PPV_ARGS(CmdListAlloc.GetAddressOf())));

 PassCB = std::make_unique<UploadBuffer<PassConstants>>(device,
passCount, true);

 ObjectCB = std::make_unique<UploadBuffer<ObjectConstants>>(device,
objectCount, true);

}
FrameResource::~FrameResource() { }

Our application class will then instantiate a vector of three frame resources, and
keep member variables to track the current frame resource:

static const int NumFrameResources = 3;
std::vector<std::unique_ptr<FrameResource>> mFrameResources;
FrameResource* mCurrFrameResource = nullptr;

268 DIRECT3D FOUNDATIONS

int mCurrFrameResourceIndex = 0;

void ShapesApp::BuildFrameResources()
{
 for(int i = 0; i < gNumFrameResources; ++i)
 {
 mFrameResources.push_back(std::make_unique<FrameResource>(
 md3dDevice.Get(), 1, (UINT)mAllRitems.size()));
 }
}

Now, for CPU frame n, the algorithm works like so:

void ShapesApp::Update(const GameTimer& gt)
{
 // Cycle through the circular frame resource array.
 mCurrFrameResourceIndex = (mCurrFrameResourceIndex + 1) %

NumFrameResources;
 mCurrFrameResource = mFrameResources[mCurrFrameResourceIndex];

 // Has the GPU finished processing the commands of the current frame
 // resource. If not, wait until the GPU has completed commands up to
 // this fence point.
 if(mCurrFrameResource->Fence != 0 &&
 mCommandQueue->GetLastCompletedFence() < mCurrFrameResource->Fence)
 {
 HANDLE eventHandle = CreateEventEx(nullptr, false, false, EVENT_

ALL_ACCESS);
 ThrowIfFailed(mCommandQueue->SetEventOnFenceCompletion(
 mCurrFrameResource->Fence, eventHandle));
 WaitForSingleObject(eventHandle, INFINITE);
 CloseHandle(eventHandle);
 }

 // [...] Update resources in mCurrFrameResource (like cbuffers).
}

void ShapesApp::Draw(const GameTimer& gt)
{
 // [...] Build and submit command lists for this frame.

 // Advance the fence value to mark commands up to this fence point.
 mCurrFrameResource->Fence = ++mCurrentFence;

 // Add an instruction to the command queue to set a new fence point.
 // Because we are on the GPU timeline, the new fence point won’t be
 // set until the GPU finishes processing all the commands prior to
 // this Signal().
 mCommandQueue->Signal(mFence.Get(), mCurrentFence);

 // Note that GPU could still be working on commands from previous
 // frames, but that is okay, because we are not touching any frame
 // resources associated with those frames.
}

DRAWING IN DIRECT3D PART II 269

Note that this solution does not prevent waiting. If one processor is processing
frames much faster than the other, one processor will eventually have to wait for
the other to catch up, as we cannot let one get too far ahead of the other. If the
GPU is processing commands faster than the CPU can submit work, then the
GPU will idle. In general, if we are trying to push the graphical limit, we want to
avoid this situation, as we are not taking full advantage of the GPU. On the other
hand, if the CPU is always processing frames faster than the GPU, then the CPU
will have to wait at some point. This is the desired situation, as the GPU is being
fully utilized; the extra CPU cycles can always be used for other parts of the game
such as AI, physics, and game play logic.

So if multiple frame resources do not prevent any waiting, how does it help us?
It helps us keep the GPU fed. While the GPU is processing commands from frame
n, it allows the CPU to continue on to build and submit commands for frames
n1 and n2. This helps keep the command queue nonempty so that the GPU
always has work to do.

7.2 RENDER ITEMS

Drawing an object requires setting multiple parameters such as binding vertex and
index buffers, binding object constants, setting a primitive type, and specifying
the DrawIndexedInstanced parameters. As we begin to draw more objects in our
scenes, it is helpful to create a lightweight structure that stores the data needed to
draw an object; this data will vary from app to app as we add new features which
will require different drawing data. We call the set of data needed to submit a
full draw call the rendering pipeline a render item. For this demo, our RenderItem
structure looks like this:

// Lightweight structure stores parameters to draw a shape. This will
// vary from app-to-app.
struct RenderItem
{
 RenderItem() = default;

 // World matrix of the shape that describes the object’s local space
 // relative to the world space, which defines the position,
 // orientation, and scale of the object in the world.
 XMFLOAT4X4 World = MathHelper::Identity4x4();

 // Dirty flag indicating the object data has changed and we need
 // to update the constant buffer. Because we have an object
 // cbuffer for each FrameResource, we have to apply the
 // update to each FrameResource. Thus, when we modify obect data we
 // should set
 // NumFramesDirty = gNumFrameResources so that each frame resource
 // gets the update.

270 DIRECT3D FOUNDATIONS

 int NumFramesDirty = gNumFrameResources;

 // Index into GPU constant buffer corresponding to the ObjectCB
 // for this render item.
 UINT ObjCBIndex = -1;

 // Geometry associated with this render-item. Note that multiple
 // render-items can share the same geometry.
 MeshGeometry* Geo = nullptr;

 // Primitive topology.
 D3D12_PRIMITIVE_TOPOLOGY PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_

TRIANGLELIST;

 // DrawIndexedInstanced parameters.
 UINT IndexCount = 0;
 UINT StartIndexLocation = 0;
 int BaseVertexLocation = 0;
};

Our application will maintain lists of render items based on how they need to be
drawn; that is, render items that need different PSOs will be kept in different lists.

// List of all the render items.
std::vector<std::unique_ptr<RenderItem>> mAllRitems;

// Render items divided by PSO.
std::vector<RenderItem*> mOpaqueRitems;
std::vector<RenderItem*> mTransparentRitems;

7.3 PASS CONSTANTS

Observe from the previous section that we introduced a new constant buffer in
our FrameResource class:

std::unique_ptr<UploadBuffer<PassConstants>> PassCB = nullptr;

In the demos going forward, this buffer stores constant data that is fixed over a
given rendering pass such as the eye position, the view and projection matrices,
and information about the screen (render target) dimensions; it also includes
game timing information, which is useful data to have access to in shader
programs. Note that our demos will not necessarily use all this constant data,
but it is convenient to have available, and there is little cost providing the extra
data. For example, while we do not need the render target sizes now, when we
go to implement some post processing effect, having that information will be
needed.

cbuffer cbPass : register(b1)
{

DRAWING IN DIRECT3D PART II 271

 float4x4 gView;
 float4x4 gInvView;
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gViewProj;
 float4x4 gInvViewProj;
 float3 gEyePosW;
 float cbPerObjectPad1;
 float2 gRenderTargetSize;
 float2 gInvRenderTargetSize;
 float gNearZ;
 float gFarZ;
 float gTotalTime;
 float gDeltaTime;
};

We have also modified our per object constant buffer to only store constants that
are associated with an object. So far, the only constant data we associate with an
object for drawing is its world matrix:

cbuffer cbPerObject : register(b0)
{
 float4x4 gWorld;
};

The idea of these changes is to group constants based on update frequency. The
per pass constants only need to be updated once per rendering pass, and the
object constants only need to change when an object’s world matrix changes. If
we had a static object in the scene, like a tree, we only need to set its world matrix
once to a constant buffer and then never update the constant buffer again. In our
demos, we implement the following methods to handle updating the per pass and
per object constant buffers. These methods are called once per frame in the Update
method.

void ShapesApp::UpdateObjectCBs(const GameTimer& gt)
{
 auto currObjectCB = mCurrFrameResource->ObjectCB.get();
 for(auto& e : mAllRitems)
 {
 // Only update the cbuffer data if the constants have changed.
 // This needs to be tracked per frame resource.
 if(e->NumFramesDirty > 0)
 {
 XMMATRIX world = XMLoadFloat4x4(&e->World);

 ObjectConstants objConstants;
 XMStoreFloat4x4(&objConstants.World, XMMatrixTranspose(world));

 currObjectCB->CopyData(e->ObjCBIndex, objConstants);

 // Next FrameResource need to be updated too.
 e->NumFramesDirty--;

272 DIRECT3D FOUNDATIONS

 }
 }
}

void ShapesApp::UpdateMainPassCB(const GameTimer& gt)
{
 XMMATRIX view = XMLoadFloat4x4(&mView);
 XMMATRIX proj = XMLoadFloat4x4(&mProj);

 XMMATRIX viewProj = XMMatrixMultiply(view, proj);
 XMMATRIX invView = XMMatrixInverse(&XMMatrixDeterminant(view), view);
 XMMATRIX invProj = XMMatrixInverse(&XMMatrixDeterminant(proj), proj);
 XMMATRIX invViewProj = XMMatrixInverse(&XMMatrixDeterminant(viewPr

oj), viewProj);

 XMStoreFloat4x4(&mMainPassCB.View, XMMatrixTranspose(view));
 XMStoreFloat4x4(&mMainPassCB.InvView, XMMatrixTranspose(invView));
 XMStoreFloat4x4(&mMainPassCB.Proj, XMMatrixTranspose(proj));
 XMStoreFloat4x4(&mMainPassCB.InvProj, XMMatrixTranspose(invProj));
 XMStoreFloat4x4(&mMainPassCB.ViewProj, XMMatrixTranspose(viewProj));
 XMStoreFloat4x4(&mMainPassCB.InvViewProj, XMMatrixTranspose(invViewP

roj));
 mMainPassCB.EyePosW = mEyePos;
 mMainPassCB.RenderTargetSize = XMFLOAT2((float)mClientWidth, (float)

mClientHeight);
 mMainPassCB.InvRenderTargetSize = XMFLOAT2(1.0f / mClientWidth, 1.0f

/ mClientHeight);
 mMainPassCB.NearZ = 1.0f;
 mMainPassCB.FarZ = 1000.0f;
 mMainPassCB.TotalTime = gt.TotalTime();
 mMainPassCB.DeltaTime = gt.DeltaTime();

 auto currPassCB = mCurrFrameResource->PassCB.get();
 currPassCB->CopyData(0, mMainPassCB);
}

We update our vertex shader accordingly to support these constant buffer changes:

VertexOut VS(VertexIn vin)
{
 VertexOut vout;

 // Transform to homogeneous clip space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);
 vout.PosH = mul(posW, gViewProj);

 // Just pass vertex color into the pixel shader.
 vout.Color = vin.Color;

 return vout;
}

The extra vector-matrix multiplication per vertex this adjustment gives is
negligible on modern GPUs, which have plenty of computation power.

DRAWING IN DIRECT3D PART II 273

The resources that our shaders expect have changed; therefore, we need to
update the root signature accordingly to take two descriptor tables (we need two
tables because the CBVs will be set at different frequencies—the per pass CBV
only needs to be set once per rendering pass while the per object CBV needs to be
set per render item):

CD3DX12_DESCRIPTOR_RANGE cbvTable0;
cbvTable0.Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);

CD3DX12_DESCRIPTOR_RANGE cbvTable1;
cbvTable1.Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 1);

// Root parameter can be a table, root descriptor or root constants.
CD3DX12_ROOT_PARAMETER slotRootParameter[2];

// Create root CBVs.
slotRootParameter[0].InitAsDescriptorTable(1, &cbvTable0);
slotRootParameter[1].InitAsDescriptorTable(1, &cbvTable1);

// A root signature is an array of root parameters.
CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(2, slotRootParameter, 0,

nullptr,
 D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

Do not go overboard with the number of constant buffers in your shaders.
[Thibieroz13] recommends you keep them under fi ve for performance.

7.4 SHAPE GEOMETRY

In this section, we show how to create the geometry for ellipsoids, spheres,
cylinders and cones. These shapes are useful for drawing sky domes, debugging,
visualizing collision detection, and deferred rendering. For example, you might
want to render all of your game characters as spheres for a debug test.

We put our procedural geometry generation code in the GeometryGenerator
class (GeometryGenerator.h/.cpp). GeometryGenerator is a utility class for
generating simple geometric shapes like grids, sphere, cylinders, and boxes, which
we use throughout this book for our demo programs. This class generates the
data in system memory, and we must then copy the data we want to our vertex
and index buffers. GeometryGenerator creates some vertex data that will be used in
later chapters. We do not need this data in our current demos, and so we do not
copy this data into our vertex buffers. The MeshData structure is a simple structure
nested inside GeometryGenerator that stores a vertex and index list:

class GeometryGenerator
{
public:

Note:

274 DIRECT3D FOUNDATIONS

 using uint16 = std::uint16_t;
 using uint32 = std::uint32_t;

 struct Vertex
 {
 Vertex(){}
 Vertex(
 const DirectX::XMFLOAT3& p,
 const DirectX::XMFLOAT3& n,
 const DirectX::XMFLOAT3& t,
 const DirectX::XMFLOAT2& uv) :
 Position(p),
 Normal(n),
 TangentU(t),
 TexC(uv){}
 Vertex(
 float px, float py, float pz,
 float nx, float ny, float nz,
 float tx, float ty, float tz,
 float u, float v) :
 Position(px,py,pz),
 Normal(nx,ny,nz),
 TangentU(tx, ty, tz),
 TexC(u,v){}

 DirectX::XMFLOAT3 Position;
 DirectX::XMFLOAT3 Normal;
 DirectX::XMFLOAT3 TangentU;
 DirectX::XMFLOAT2 TexC;
 };
 struct MeshData
 {
 std::vector<Vertex> Vertices;
 std::vector<uint32> Indices32;

 std::vector<uint16>& GetIndices16()
 {
 if(mIndices16.empty())
 {
 mIndices16.resize(Indices32.size());
 for(size_t i = 0; i < Indices32.size(); ++i)
 mIndices16[i] = static_cast<uint16>(Indices32[i]);
 }

 return mIndices16;
 }

 private:
 std::vector<uint16> mIndices16;
 };

...

};

DRAWING IN DIRECT3D PART II 275

7.4.1 Generating a Cylinder Mesh
We define a cylinder by specifying its bottom and top radii, its height, and the slice
and stack count, as shown in Figure 7.1. We break the cylinder into three parts: 1)
the side geometry, 2) the top cap geometry, and 3) the bottom cap geometry.

7.4.1.1 Cylinder Side Geometry

We generate the cylinder centered at the origin, parallel to the y-axis. From Figure
7.1, all the vertices lie on the “rings” of the cylinder, where there are stackCount
 1 rings, and each ring has sliceCount unique vertices. The difference in radius
between consecutive rings is r = (topRadius – bottomRadius)/stackCount. If
we start at the bottom ring with index 0, then the radius of the ith ring is ri 
bottomRadius  ir and the height of the ith ring is 2 ,h

ih i h    where h

is the stack height and h is the cylinder height. So the basic idea is to iterate over
each ring, and generate the vertices that lie on that ring. This gives the following
implementation:

GeometryGenerator::MeshData
GeometryGenerator::CreateCylinder(
 float bottomRadius, float topRadius,
 float height, uint32 sliceCount, uint32 stackCount)
{
 MeshData meshData;

 //
 // Build Stacks.
 //

 float stackHeight = height / stackCount;

 // Amount to increment radius as we move up each stack level from
 // bottom to top.
 float radiusStep = (topRadius - bottomRadius) / stackCount;

 uint32 ringCount = stackCount+1;

Figure 7.1. In this illustration, the cylinder on the left has eight slices and four stacks, and the cylinder on
the right has sixteen slices and eight stacks. The slices and stacks control the triangle density. Note that the
top and bottom radii can differ so that we can create cone shaped objects, not just “pure” cylinders.

276 DIRECT3D FOUNDATIONS

 // Compute vertices for each stack ring starting at the bottom and
 // moving up.
 for(uint32 i = 0; i < ringCount; ++i)
 {
 float y = -0.5f*height + i*stackHeight;
 float r = bottomRadius + i*radiusStep;

 // vertices of ring
 float dTheta = 2.0f*XM_PI/sliceCount;
 for(uint32 j = 0; j <= sliceCount; ++j)
 {
 Vertex vertex;

 float c = cosf(j*dTheta);
 float s = sinf(j*dTheta);

 vertex.Position = XMFLOAT3(r*c, y, r*s);

 vertex.TexC.x = (float)j/sliceCount;
 vertex.TexC.y = 1.0f - (float)i/stackCount;

 // Cylinder can be parameterized as follows, where we introduce v
 // parameter that goes in the same direction as the v tex-coord
 // so that the bitangent goes in the same direction as the
 // v tex-coord.
 // Let r0 be the bottom radius and let r1 be the top radius.
 // y(v) = h - hv for v in [0,1].
 // r(v) = r1 + (r0-r1)v
 //
 // x(t, v) = r(v)*cos(t)
 // y(t, v) = h - hv
 // z(t, v) = r(v)*sin(t)
 //
 // dx/dt = -r(v)*sin(t)
 // dy/dt = 0
 // dz/dt = +r(v)*cos(t)
 //
 // dx/dv = (r0-r1)*cos(t)
 // dy/dv = -h
 // dz/dv = (r0-r1)*sin(t)

 // This is unit length.
 vertex.TangentU = XMFLOAT3(-s, 0.0f, c);

 float dr = bottomRadius-topRadius;
 XMFLOAT3 bitangent(dr*c, -height, dr*s);

 XMVECTOR T = XMLoadFloat3(&vertex.TangentU);
 XMVECTOR B = XMLoadFloat3(&bitangent);
 XMVECTOR N = XMVector3Normalize(XMVector3Cross(T, B));
 XMStoreFloat3(&vertex.Normal, N);

 meshData.Vertices.push_back(vertex);
 }
 }

DRAWING IN DIRECT3D PART II 277

Observe that the fi rst and last vertex of each ring is duplicated in position, but
the texture coordinates are not duplicated. We have to do this so that we can
apply textures to cylinders correctly.

The actual method GeometryGenerator::CreateCylinder creates additional
vertex data such as normal vectors and texture coordinates that will be useful
for future demos. Do not worry about these quantities for now.

Observe from Figure 7.2 that there is a quad (two triangles) for each slice in every
stack. Figure 7.2 shows that the indices for the ith stack and jth slice are given by:

     , 1 , 1 1ABC i n j i n j i n j          

   , 1 1, 1ACD i n j i n j i n j          

where n is the number of vertices per ring. So the key idea is to loop over every
slice in every stack, and apply the above formulas.

 // Add one because we duplicate the first and last vertex per ring
 // since the texture coordinates are different.
 uint32 ringVertexCount = sliceCount+1;

 // Compute indices for each stack.
 for(uint32 i = 0; i < stackCount; ++i)
 {
 for(uint32 j = 0; j < sliceCount; ++j)
 {
 meshData.Indices32.push_back(i*ringVertexCount + j);
 meshData.Indices32.push_back((i+1)*ringVertexCount + j);
 meshData.Indices32.push_back((i+1)*ringVertexCount + j+1);

 meshData.Indices32.push_back(i*ringVertexCount + j);

Note:

Note:

Figure 7.2. The vertices A, B, C, D contained in the ith and i + 1th ring, and jth slice.

278 DIRECT3D FOUNDATIONS

 meshData.Indices32.push_back((i+1)*ringVertexCount + j+1);
 meshData.Indices32.push_back(i*ringVertexCount + j+1);
 }
 }

 BuildCylinderTopCap(bottomRadius, topRadius, height,
 sliceCount, stackCount, meshData);
 BuildCylinderBottomCap(bottomRadius, topRadius, height,
 sliceCount, stackCount, meshData);

 return meshData;
}

7.4.1.2 Cap Geometry

Generating the cap geometry amounts to generating the slice triangles of the top
and bottom rings to approximate a circle:

void GeometryGenerator::BuildCylinderTopCap(
 float bottomRadius, float topRadius, float height,
 uint32 sliceCount, uint32 stackCount, MeshData& meshData)
{
 uint32 baseIndex = (uint32)meshData.Vertices.size();

 float y = 0.5f*height;
 float dTheta = 2.0f*XM_PI/sliceCount;

 // Duplicate cap ring vertices because the texture coordinates and
 // normals differ.
 for(uint32 i = 0; i <= sliceCount; ++i)
 {
 float x = topRadius*cosf(i*dTheta);
 float z = topRadius*sinf(i*dTheta);

 // Scale down by the height to try and make top cap texture coord
 // area proportional to base.
 float u = x/height + 0.5f;
 float v = z/height + 0.5f;

 meshData.Vertices.push_back(
 Vertex(x, y, z, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, u, v));
 }

 // Cap center vertex.
 meshData.Vertices.push_back(
 Vertex(0.0f, y, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f,

0.5f));

 // Index of center vertex.
 uint32 centerIndex = (uint32)meshData.Vertices.size()-1;

 for(uint32 i = 0; i < sliceCount; ++i)
 {
 meshData.Indices32.push_back(centerIndex);
 meshData.Indices32.push_back(baseIndex + i+1);

DRAWING IN DIRECT3D PART II 279

 meshData.Indices32.push_back(baseIndex + i);
 }
}

The bottom cap code is analogous.

7.4.2 Generating a Sphere Mesh
We define a sphere by specifying its radius, and the slice and stack count, as
shown in Figure 7.3. The algorithm for generating the sphere is very similar to
that of the cylinder, except that the radius per ring changes is a nonlinear way
based on trigonometric functions. We will leave it to the reader to study the
GeometryGenerator::CreateSphere code. Note that we can apply a non-uniform
scaling world transformation to transform a sphere into an ellipsoid.

7.4.3 Generating a Geosphere Mesh
Observe from Figure 7.3 that the triangles of the sphere do not have equal areas.
This can be undesirable for some situations. A geosphere approximates a sphere
using triangles with almost equal areas as well as equal side lengths (see Figure 7.4).

To generate a geosphere, we start with an icosahedron, subdivide the triangles,
and then project the new vertices onto the sphere with the given radius. We can
repeat this process to improve the tessellation.

Figure 7.5 shows how a triangle can be subdivided into four equal sized
triangles. The new vertices are found just by taking the midpoints along the edges
of the original triangle. The new vertices can then be projected onto a sphere of

Figure 7.3. The idea of slices and stacks also apply to a sphere to control the level of tessellation.

Figure 7.4. Approximating a geosphere by repeated subdivision and reprojection onto the sphere.

280 DIRECT3D FOUNDATIONS

radius r by projecting the vertices onto the unit sphere and then scalar multiplying
by || ||: .r r  v

vv

The code is given below:

GeometryGenerator::MeshData
GeometryGenerator::CreateGeosphere(float radius, uint32

numSubdivisions)
{
 MeshData meshData;

 // Put a cap on the number of subdivisions.
 numSubdivisions = std::min<uint32>(numSubdivisions, 6u);

 // Approximate a sphere by tessellating an icosahedron.

 const float X = 0.525731f;
 const float Z = 0.850651f;

 XMFLOAT3 pos[12] =
 {
 XMFLOAT3(-X, 0.0f, Z), XMFLOAT3(X, 0.0f, Z),
 XMFLOAT3(-X, 0.0f, -Z), XMFLOAT3(X, 0.0f, -Z),
 XMFLOAT3(0.0f, Z, X), XMFLOAT3(0.0f, Z, -X),
 XMFLOAT3(0.0f, -Z, X), XMFLOAT3(0.0f, -Z, -X),
 XMFLOAT3(Z, X, 0.0f), XMFLOAT3(-Z, X, 0.0f),
 XMFLOAT3(Z, -X, 0.0f), XMFLOAT3(-Z, -X, 0.0f)
 };

 uint32 k[60] =
 {
 1,4,0, 4,9,0, 4,5,9, 8,5,4, 1,8,4,
 1,10,8, 10,3,8, 8,3,5, 3,2,5, 3,7,2,
 3,10,7, 10,6,7, 6,11,7, 6,0,11, 6,1,0,
 10,1,6, 11,0,9, 2,11,9, 5,2,9, 11,2,7
 };

 meshData.Vertices.resize(12);
 meshData.Indices32.assign(&k[0], &k[60]);

 for(uint32 i = 0; i < 12; ++i)
 meshData.Vertices[i].Position = pos[i];

Figure 7.5. Subdividing a triangle into four triangles of equal area.

DRAWING IN DIRECT3D PART II 281

 for(uint32 i = 0; i < numSubdivisions; ++i)
 Subdivide(meshData);

 // Project vertices onto sphere and scale.
 for(uint32 i = 0; i < meshData.Vertices.size(); ++i)
 {
 // Project onto unit sphere.
 XMVECTOR n = XMVector3Normalize(XMLoadFloat3(&meshData.Vertices[i].

Position));

 // Project onto sphere.
 XMVECTOR p = radius*n;

 XMStoreFloat3(&meshData.Vertices[i].Position, p);
 XMStoreFloat3(&meshData.Vertices[i].Normal, n);

 // Derive texture coordinates from spherical coordinates.
 float theta = atan2f(meshData.Vertices[i].Position.z,
 meshData.Vertices[i].Position.x);

 // Put in [0, 2pi].
 if(theta < 0.0f)
 theta += XM_2PI;

 float phi = acosf(meshData.Vertices[i].Position.y / radius);

 meshData.Vertices[i].TexC.x = theta/XM_2PI;
 meshData.Vertices[i].TexC.y = phi/XM_PI;

 // Partial derivative of P with respect to theta
 meshData.Vertices[i].TangentU.x = -radius*sinf(phi)*sinf(theta);
 meshData.Vertices[i].TangentU.y = 0.0f;
 meshData.Vertices[i].TangentU.z = +radius*sinf(phi)*cosf(theta);

 XMVECTOR T = XMLoadFloat3(&meshData.Vertices[i].TangentU);
 XMStoreFloat3(&meshData.Vertices[i].TangentU,

XMVector3Normalize(T));
 }

 return meshData;
}

7.5 SHAPES DEMO

To demonstrate our sphere and cylinder generation code, we implement the
“Shapes” demo shown in Figure 7.6. In addition, you will also gain experience
positioning and drawing multiple objects in a scene (i.e., creating multiple world
transformation matrices). Furthermore, we place all of the scene geometry
in one big vertex and index buffer. Then we will use the DrawIndexedInstanced
method to draw one object at a time (as the world matrix needs to be changed

282 DIRECT3D FOUNDATIONS

between objects); so you will see an example of using the StartIndexLocation and
BaseVertexLocation parameters of DrawIndexedInstanced.

7.5.1 Vertex and Index Buffers
As Figure 7.6 shows, in this demo we draw a box, grid, cylinders, and sphere. Even
though we draw multiple spheres and cylinders in this demo, we only need one
copy of the sphere and cylinder geometry. We simply redraw the same sphere
and cylinder mesh multiple times, but with different world matrices; this is an
example of instancing geometry, which saves memory.

We pack all the mesh vertices and indices into one vertex and index buffer.
This is done by concatenating the vertex and index arrays. This means that when
we draw an object, we are only drawing a subset of the vertex and index buffers.
There are three quantities we need to know in order to draw only a subset of the
geometry using ID3D12CommandList::DrawIndexedInstanced (recall Figure 6.3
and the discussion about it from Chapter 6). We need to know the starting index
to the object in the concatenated index buffer, its index count, and we need to
know the base vertex location—the index of the object’s fi rst vertex relative to
the concatenated vertex buffer. Recall that the base vertex location is an integer
value added to the indices in a draw call before the vertices are fetched, so that the
indices reference the proper subset in the concatenated vertex buffer. (See also
Exercise 2 in Chapter 5.)

The code below shows how the geometry buffers are created, how the necessary
drawing quantities are cached, and how the objects are drawn.

void ShapesApp::BuildShapeGeometry()
{

Figure 7.6. Screenshot of the “Shapes” demo.

DRAWING IN DIRECT3D PART II 283

 GeometryGenerator geoGen;
 GeometryGenerator::MeshData box = geoGen.CreateBox(1.5f, 0.5f, 1.5f,

3);
 GeometryGenerator::MeshData grid = geoGen.CreateGrid(20.0f, 30.0f,

60, 40);
 GeometryGenerator::MeshData sphere = geoGen.CreateSphere(0.5f, 20,

20);
 GeometryGenerator::MeshData cylinder = geoGen.CreateCylinder(0.5f,

0.3f, 3.0f, 20, 20);

 //
 // We are concatenating all the geometry into one big vertex/index
 // buffer. So define the regions in the buffer each submesh covers.
 //

 // Cache the vertex offsets to each object in the concatenated vertex
 // buffer.
 UINT boxVertexOffset = 0;
 UINT gridVertexOffset = (UINT)box.Vertices.size();
 UINT sphereVertexOffset = gridVertexOffset + (UINT)grid.Vertices.

size();
 UINT cylinderVertexOffset = sphereVertexOffset + (UINT)sphere.

Vertices.size();

 // Cache the starting index for each object in the concatenated index
 // buffer.
 UINT boxIndexOffset = 0;
 UINT gridIndexOffset = (UINT)box.Indices32.size();
 UINT sphereIndexOffset = gridIndexOffset + (UINT)grid.Indices32.

size();
 UINT cylinderIndexOffset = sphereIndexOffset + (UINT)sphere.Indices32.

size();

 // Define the SubmeshGeometry that cover different
 // regions of the vertex/index buffers.

 SubmeshGeometry boxSubmesh;
 boxSubmesh.IndexCount = (UINT)box.Indices32.size();
 boxSubmesh.StartIndexLocation = boxIndexOffset;
 boxSubmesh.BaseVertexLocation = boxVertexOffset;

 SubmeshGeometry gridSubmesh;
 gridSubmesh.IndexCount = (UINT)grid.Indices32.size();
 gridSubmesh.StartIndexLocation = gridIndexOffset;
 gridSubmesh.BaseVertexLocation = gridVertexOffset;

 SubmeshGeometry sphereSubmesh;
 sphereSubmesh.IndexCount = (UINT)sphere.Indices32.size();
 sphereSubmesh.StartIndexLocation = sphereIndexOffset;
 sphereSubmesh.BaseVertexLocation = sphereVertexOffset;

 SubmeshGeometry cylinderSubmesh;
 cylinderSubmesh.IndexCount = (UINT)cylinder.Indices32.size();
 cylinderSubmesh.StartIndexLocation = cylinderIndexOffset;

284 DIRECT3D FOUNDATIONS

 cylinderSubmesh.BaseVertexLocation = cylinderVertexOffset;

 //
 // Extract the vertex elements we are interested in and pack the
 // vertices of all the meshes into one vertex buffer.
 //

 auto totalVertexCount =
 box.Vertices.size() +
 grid.Vertices.size() +
 sphere.Vertices.size() +
 cylinder.Vertices.size();

 std::vector<Vertex> vertices(totalVertexCount);

 UINT k = 0;
 for(size_t i = 0; i < box.Vertices.size(); ++i, ++k)
 {
 vertices[k].Pos = box.Vertices[i].Position;
 vertices[k].Color = XMFLOAT4(DirectX::Colors::DarkGreen);
 }

 for(size_t i = 0; i < grid.Vertices.size(); ++i, ++k)
 {
 vertices[k].Pos = grid.Vertices[i].Position;
 vertices[k].Color = XMFLOAT4(DirectX::Colors::ForestGreen);
 }

 for(size_t i = 0; i < sphere.Vertices.size(); ++i, ++k)
 {
 vertices[k].Pos = sphere.Vertices[i].Position;
 vertices[k].Color = XMFLOAT4(DirectX::Colors::Crimson);
 }

 for(size_t i = 0; i < cylinder.Vertices.size(); ++i, ++k)
 {
 vertices[k].Pos = cylinder.Vertices[i].Position;
 vertices[k].Color = XMFLOAT4(DirectX::Colors::SteelBlue);
 }

 std::vector<std::uint16_t> indices;
 indices.insert(indices.end(),
 std::begin(box.GetIndices16()),
 std::end(box.GetIndices16()));
 indices.insert(indices.end(),
 std::begin(grid.GetIndices16()),
 std::end(grid.GetIndices16()));
 indices.insert(indices.end(),
 std::begin(sphere.GetIndices16()),
 std::end(sphere.GetIndices16()));
 indices.insert(indices.end(),
 std::begin(cylinder.GetIndices16()),
 std::end(cylinder.GetIndices16()));

DRAWING IN DIRECT3D PART II 285

 const UINT vbByteSize = (UINT)vertices.size() * sizeof(Vertex);
 const UINT ibByteSize = (UINT)indices.size() * sizeof(std::uint16_t);

 auto geo = std::make_unique<MeshGeometry>();
 geo->Name = "shapeGeo";

 ThrowIfFailed(D3DCreateBlob(vbByteSize, &geo->VertexBufferCPU));
 CopyMemory(geo->VertexBufferCPU->GetBufferPointer(), vertices.data(),
 vbByteSize);

 ThrowIfFailed(D3DCreateBlob(ibByteSize, &geo->IndexBufferCPU));
 CopyMemory(geo->IndexBufferCPU->GetBufferPointer(), indices.data(),
 ibByteSize);

 geo->VertexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(),
 mCommandList.Get(), vertices.data(), vbByteSize, geo-

>VertexBufferUploader);

 geo->IndexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(),
 mCommandList.Get(), indices.data(), ibByteSize, geo-

>IndexBufferUploader);

 geo->VertexByteStride = sizeof(Vertex);
 geo->VertexBufferByteSize = vbByteSize;
 geo->IndexFormat = DXGI_FORMAT_R16_UINT;
 geo->IndexBufferByteSize = ibByteSize;

 geo->DrawArgs["box"] = boxSubmesh;
 geo->DrawArgs["grid"] = gridSubmesh;
 geo->DrawArgs["sphere"] = sphereSubmesh;
 geo->DrawArgs["cylinder"] = cylinderSubmesh;

 mGeometries[geo->Name] = std::move(geo);
}

The mGeometries variable used in the last line of the above method is defined like
so:

std::unordered_map<std::string, std::unique_ptr<MeshGeometry>>
mGeometries;

This is a common pattern we employ for the rest of this book. It is cumbersome
to create a new variable name for each geometry, PSO, texture, shader, etc., so we
use unordered maps for constant time lookup and reference our objects by name.
Here are some more examples:

std::unordered_map<std::string, std::unique_ptr<MeshGeometry>>
mGeometries;

std::unordered_map<std::string, ComPtr<ID3DBlob>> mShaders;
std::unordered_map<std::string, ComPtr<ID3D12PipelineState>> mPSOs;

286 DIRECT3D FOUNDATIONS

7.5.2 Render Items
We now define our scene render items. Observe how all the render items share
the same MeshGeometry, and we use the DrawArgs to get the DrawIndexedInstanced
parameters to draw a subregion of the vertex/index buffers.

// ShapesApp member variable.
std::vector<std::unique_ptr<RenderItem>> mAllRitems;
std::vector<RenderItem*> mOpaqueRitems;

void ShapesApp::BuildRenderItems()
{
 auto boxRitem = std::make_unique<RenderItem>();
 XMStoreFloat4x4(&boxRitem->World,
 XMMatrixScaling(2.0f, 2.0f, 2.0f)*XMMatrixTranslation(0.0f, 0.5f,

0.0f));
 boxRitem->ObjCBIndex = 0;
 boxRitem->Geo = mGeometries["shapeGeo"].get();
 boxRitem->PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
 boxRitem->IndexCount = boxRitem->Geo->DrawArgs["box"].IndexCount;
 boxRitem->StartIndexLocation = boxRitem->Geo->DrawArgs["box"].
 StartIndexLocation;
 boxRitem->BaseVertexLocation = boxRitem->Geo->DrawArgs["box"].
 BaseVertexLocation;
 mAllRitems.push_back(std::move(boxRitem));

 auto gridRitem = std::make_unique<RenderItem>();
 gridRitem->World = MathHelper::Identity4x4();
 gridRitem->ObjCBIndex = 1;
 gridRitem->Geo = mGeometries["shapeGeo"].get();
 gridRitem->PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
 gridRitem->IndexCount = gridRitem->Geo->DrawArgs["grid"].IndexCount;
 gridRitem->StartIndexLocation = gridRitem->Geo->DrawArgs["grid"].
 StartIndexLocation;
 gridRitem->BaseVertexLocation = gridRitem->Geo->DrawArgs["grid"].
 BaseVertexLocation;
 mAllRitems.push_back(std::move(gridRitem));

 // Build the columns and spheres in rows as in Figure 7.6.
 UINT objCBIndex = 2;
 for(int i = 0; i < 5; ++i)
 {
 auto leftCylRitem = std::make_unique<RenderItem>();
 auto rightCylRitem = std::make_unique<RenderItem>();
 auto leftSphereRitem = std::make_unique<RenderItem>();
 auto rightSphereRitem = std::make_unique<RenderItem>();

 XMMATRIX leftCylWorld = XMMatrixTranslation(-5.0f, 1.5f, -10.0f +
i*5.0f);

 XMMATRIX rightCylWorld = XMMatrixTranslation(+5.0f, 1.5f, -10.0f +
i*5.0f);

 XMMATRIX leftSphereWorld = XMMatrixTranslation(-5.0f, 3.5f, -10.0f +
i*5.0f);

DRAWING IN DIRECT3D PART II 287

 XMMATRIX rightSphereWorld = XMMatrixTranslation(+5.0f, 3.5f, -10.0f
 + i*5.0f);

 XMStoreFloat4x4(&leftCylRitem->World, rightCylWorld);
 leftCylRitem->ObjCBIndex = objCBIndex++;
 leftCylRitem->Geo = mGeometries["shapeGeo"].get();
 leftCylRitem->PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
 leftCylRitem->IndexCount = leftCylRitem->Geo->DrawArgs["cylinder"].
 IndexCount;
 leftCylRitem->StartIndexLocation =
 leftCylRitem->Geo->DrawArgs["cylinder"].StartIndexLocation;
 leftCylRitem->BaseVertexLocation =
 leftCylRitem->Geo->DrawArgs["cylinder"].BaseVertexLocation;

 XMStoreFloat4x4(&rightCylRitem->World, leftCylWorld);
 rightCylRitem->ObjCBIndex = objCBIndex++;
 rightCylRitem->Geo = mGeometries["shapeGeo"].get();
 rightCylRitem->PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
 rightCylRitem->IndexCount = rightCylRitem->

Geo->DrawArgs["cylinder"].
 IndexCount;
 rightCylRitem->StartIndexLocation =
 rightCylRitem->Geo->DrawArgs["cylinder"].StartIndexLocation;
 rightCylRitem->BaseVertexLocation =
 rightCylRitem->Geo->DrawArgs["cylinder"].BaseVertexLocation;

 XMStoreFloat4x4(&leftSphereRitem->World, leftSphereWorld);
 leftSphereRitem->ObjCBIndex = objCBIndex++;
 leftSphereRitem->Geo = mGeometries["shapeGeo"].get();
 leftSphereRitem->PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_

TRIANGLELIST;
 leftSphereRitem->IndexCount = leftSphereRitem->Geo-

>DrawArgs["sphere"].
 IndexCount;
 leftSphereRitem->StartIndexLocation =
 leftSphereRitem->Geo->DrawArgs["sphere"].StartIndexLocation;
 leftSphereRitem->BaseVertexLocation =
 leftSphereRitem->Geo->DrawArgs["sphere"].BaseVertexLocation;

 XMStoreFloat4x4(&rightSphereRitem->World, rightSphereWorld);
 rightSphereRitem->ObjCBIndex = objCBIndex++;
 rightSphereRitem->Geo = mGeometries["shapeGeo"].get();
 rightSphereRitem->PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_

TRIANGLELIST;
 rightSphereRitem->IndexCount = rightSphereRitem->Geo-

>DrawArgs["sphere"].
 IndexCount;
 rightSphereRitem->StartIndexLocation =
 rightSphereRitem->Geo->DrawArgs["sphere"].StartIndexLocation;
 rightSphereRitem->BaseVertexLocation =
 rightSphereRitem->Geo->DrawArgs["sphere"].BaseVertexLocation;

 mAllRitems.push_back(std::move(leftCylRitem));
 mAllRitems.push_back(std::move(rightCylRitem));

288 DIRECT3D FOUNDATIONS

 mAllRitems.push_back(std::move(leftSphereRitem));
 mAllRitems.push_back(std::move(rightSphereRitem));
 }

 // All the render items are opaque in this demo.
 for(auto& e : mAllRitems)
 mOpaqueRitems.push_back(e.get());
}

7.5.3 Frame Resources and Constant Buffer Views
Recall that we have a vector of FrameResources, and each FrameResource has an
upload buffer for storing the pass constants and constant buffers for every render
item in the scene.

std::unique_ptr<UploadBuffer<PassConstants>> PassCB = nullptr;
std::unique_ptr<UploadBuffer<ObjectConstants>> ObjectCB = nullptr;

If we have 3 frame resources and n render items, then we have three 3n object
constant buffers and 3 pass constant buffers. Hence we need 3(n1) constant
buffer views (CBVs). Thus we will need to modify our CBV heap to include the
additional descriptors:

void ShapesApp::BuildDescriptorHeaps()
{
 UINT objCount = (UINT)mOpaqueRitems.size();

 // Need a CBV descriptor for each object for each frame resource,
 // +1 for the perPass CBV for each frame resource.
 UINT numDescriptors = (objCount+1) * gNumFrameResources;

 // Save an offset to the start of the pass CBVs. These are the last 3
descriptors.

 mPassCbvOffset = objCount * gNumFrameResources;

 D3D12_DESCRIPTOR_HEAP_DESC cbvHeapDesc;
 cbvHeapDesc.NumDescriptors = numDescriptors;
 cbvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;
 cbvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;
 cbvHeapDesc.NodeMask = 0;
 ThrowIfFailed(md3dDevice->CreateDescriptorHeap(&cbvHeapDesc,
 IID_PPV_ARGS(&mCbvHeap)));
}

Now, we can populate the CBV heap with the following code where descriptors 0
to n-1 contain the object CBVs for the 0th frame resource, descriptors n to 2n1
contains the object CBVs for 1st frame resource, descriptors 2n to 3n1 contain
the objects CBVs for the 2nd frame resource, and descriptors 3n, 3n1, and 3n2
contain the pass CBVs for the 0th, 1st, and 2nd frame resource, respectively:

void ShapesApp::BuildConstantBufferViews()
{

DRAWING IN DIRECT3D PART II 289

 UINT objCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof
 (ObjectConstants));

 UINT objCount = (UINT)mOpaqueRitems.size();

 // Need a CBV descriptor for each object for each frame resource.
 for(int frameIndex = 0; frameIndex < gNumFrameResources;

++frameIndex)
 {
 auto objectCB = mFrameResources[frameIndex]->ObjectCB->Resource();
 for(UINT i = 0; i < objCount; ++i)
 {
 D3D12_GPU_VIRTUAL_ADDRESS cbAddress = objectCB-

>GetGPUVirtualAddress();

 // Offset to the ith object constant buffer in the current buffer.
 cbAddress += i*objCBByteSize;

 // Offset to the object CBV in the descriptor heap.
 int heapIndex = frameIndex*objCount + i;
 auto handle = CD3DX12_CPU_DESCRIPTOR_HANDLE(
 mCbvHeap->GetCPUDescriptorHandleForHeapStart());
 handle.Offset(heapIndex, mCbvSrvUavDescriptorSize);

 D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc;
 cbvDesc.BufferLocation = cbAddress;
 cbvDesc.SizeInBytes = objCBByteSize;

 md3dDevice->CreateConstantBufferView(&cbvDesc, handle);
 }
 }

 UINT passCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof
 (PassConstants));

 // Last three descriptors are the pass CBVs for each frame resource.
 for(int frameIndex = 0; frameIndex < gNumFrameResources;

++frameIndex)
 {
 auto passCB = mFrameResources[frameIndex]->PassCB->Resource();

 // Pass buffer only stores one cbuffer per frame resource.
 D3D12_GPU_VIRTUAL_ADDRESS cbAddress = passCB-

>GetGPUVirtualAddress();

 // Offset to the pass cbv in the descriptor heap.
 int heapIndex = mPassCbvOffset + frameIndex;
 auto handle = CD3DX12_CPU_DESCRIPTOR_HANDLE(
 mCbvHeap->GetCPUDescriptorHandleForHeapStart());
 handle.Offset(heapIndex, mCbvSrvUavDescriptorSize);

 D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc;
 cbvDesc.BufferLocation = cbAddress;
 cbvDesc.SizeInBytes = passCBByteSize;

290 DIRECT3D FOUNDATIONS

 md3dDevice->CreateConstantBufferView(&cbvDesc, handle);
 }
}

Recall that we can get a handle to the first descriptor in a heap with the ID3D12
DescriptorHeap::GetCPUDescriptorHandleForHeapStart method. However, now
that our heap has more than one descriptor, this method is no longer sufficient.
We need to be able to offset to other descriptors in the heap. To do this, we need
to know the size to increment in the heap to get to the next descriptor. This is
hardware specific, so we have to query this information from the device, and it
depends on the heap type. Recall that our D3DApp class caches this information:

mRtvDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize(

 D3D12_DESCRIPTOR_HEAP_TYPE_RTV);

mDsvDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize(

 D3D12_DESCRIPTOR_HEAP_TYPE_DSV);

mCbvSrvUavDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize(
 D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);

Once we know the descriptor increment size, we can use one of the two CD3DX12_
CPU_DESCRIPTOR_HANDLE::Offset methods to offset the handle by n descriptors:

// Specify the number of descriptors to offset times the descriptor
// Offset by n descriptors:
CD3DX12_CPU_DESCRIPTOR_HANDLE handle = mCbvHeap->GetCPUDescriptorHandle

ForHeapStart();
handle.Offset(n * mCbvSrvDescriptorSize);

// Or equivalently, specify the number of descriptors to offset,
// followed by the descriptor increment size:
CD3DX12_CPU_DESCRIPTOR_HANDLE handle = mCbvHeap->GetCPUDescriptorHandle

ForHeapStart();
handle.Offset(n, mCbvSrvDescriptorSize);

CD3DX12_GPU_DESCRIPTOR_HANDLE has the same Offset methods.

7.5.4 Drawing the Scene
At last we can draw our render items. Perhaps the only tricky part is offsetting to
the correct CBV in the heap for the object we want to draw. Notice how a render
item stores an index to the constant buffer that is associated with the render item.

void ShapesApp::DrawRenderItems(
 ID3D12GraphicsCommandList* cmdList,
 const std::vector<RenderItem*>& ritems)
{
 UINT objCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof(Objec

tConstants));

Note:

DRAWING IN DIRECT3D PART II 291

 auto objectCB = mCurrFrameResource->ObjectCB->Resource();

 // For each render item...
 for(size_t i = 0; i < ritems.size(); ++i)
 {
 auto ri = ritems[i];

 cmdList->IASetVertexBuffers(0, 1, &ri->Geo->VertexBufferView());
 cmdList->IASetIndexBuffer(&ri->Geo->IndexBufferView());
 cmdList->IASetPrimitiveTopology(ri->PrimitiveType);

 // Offset to the CBV in the descriptor heap for this object and
 // for this frame resource.
 UINT cbvIndex = mCurrFrameResourceIndex*(UINT)mOpaqueRitems.size()
 + ri->ObjCBIndex;
 auto cbvHandle = CD3DX12_GPU_DESCRIPTOR_HANDLE(
 mCbvHeap->GetGPUDescriptorHandleForHeapStart());
 cbvHandle.Offset(cbvIndex, mCbvSrvUavDescriptorSize);

 cmdList->SetGraphicsRootDescriptorTable(0, cbvHandle);

 cmdList->DrawIndexedInstanced(ri->IndexCount, 1,
 ri->StartIndexLocation, ri->BaseVertexLocation, 0);
 }
}

The DrawRenderItems method is invoked in the main Draw call:

void ShapesApp::Draw(const GameTimer& gt)
{
 auto cmdListAlloc = mCurrFrameResource->CmdListAlloc;

 // Reuse the memory associated with command recording.
 // We can only reset when the associated command lists have
 // finished execution on the GPU.
 ThrowIfFailed(cmdListAlloc->Reset());

 // A command list can be reset after it has been added to the
 // command queue via ExecuteCommandList.
 // Reusing the command list reuses memory.
 if(mIsWireframe)
 {
 ThrowIfFailed(mCommandList->Reset(
 cmdListAlloc.Get(), mPSOs["opaque_wireframe"].Get()));
 }
 else
 {
 ThrowIfFailed(mCommandList->Reset(cmdListAlloc.Get(),

mPSOs["opaque"].Get()));
 }

 mCommandList->RSSetViewports(1, &mScreenViewport);
 mCommandList->RSSetScissorRects(1, &mScissorRect);

 // Indicate a state transition on the resource usage.

292 DIRECT3D FOUNDATIONS

 mCommandList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(CurrentBackBuffer(),
 D3D12_RESOURCE_STATE_PRESENT,
 D3D12_RESOURCE_STATE_RENDER_TARGET));

 // Clear the back buffer and depth buffer.
 mCommandList->ClearRenderTargetView(CurrentBackBufferView(),
 Colors::LightSteelBlue, 0, nullptr);
 mCommandList->ClearDepthStencilView(DepthStencilView(),
 D3D12_CLEAR_FLAG_DEPTH | D3D12_CLEAR_FLAG_STENCIL,
 1.0f, 0, 0, nullptr);

 // Specify the buffers we are going to render to.
 mCommandList->OMSetRenderTargets(1, &CurrentBackBufferView(),
 true, &DepthStencilView());

 ID3D12DescriptorHeap* descriptorHeaps[] = { mCbvHeap.Get() };
 mCommandList->SetDescriptorHeaps(_countof(descriptorHeaps),

descriptorHeaps);

 mCommandList->SetGraphicsRootSignature(mRootSignature.Get());

 int passCbvIndex = mPassCbvOffset + mCurrFrameResourceIndex;
 auto passCbvHandle = CD3DX12_GPU_DESCRIPTOR_HANDLE(
 mCbvHeap->GetGPUDescriptorHandleForHeapStart());
 passCbvHandle.Offset(passCbvIndex, mCbvSrvUavDescriptorSize);
 mCommandList->SetGraphicsRootDescriptorTable(1, passCbvHandle);

 DrawRenderItems(mCommandList.Get(), mOpaqueRitems);

 // Indicate a state transition on the resource usage.
 mCommandList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(CurrentBackBuffer(),
 D3D12_RESOURCE_STATE_RENDER_TARGET,
 D3D12_RESOURCE_STATE_PRESENT));

 // Done recording commands.
 ThrowIfFailed(mCommandList->Close());

 // Add the command list to the queue for execution.
 ID3D12CommandList* cmdsLists[] = { mCommandList.Get() };
 mCommandQueue->ExecuteCommandLists(_countof(cmdsLists), cmdsLists);

 // Swap the back and front buffers
 ThrowIfFailed(mSwapChain->Present(0, 0));
 mCurrBackBuffer = (mCurrBackBuffer + 1) % SwapChainBufferCount;

 // Advance the fence value to mark commands up to this fence point.
 mCurrFrameResource->Fence = ++mCurrentFence;

 // Add an instruction to the command queue to set a new fence point.
 // Because we are on the GPU timeline, the new fence point won’t be
 // set until the GPU finishes processing all the commands prior to

this Signal().
 mCommandQueue->Signal(mFence.Get(), mCurrentFence);
}

DRAWING IN DIRECT3D PART II 293

7.6 MORE ON ROOT SIGNATURES

We introduced root signatures in §6.6.5 of the previous chapter. A root signature
defines what resources need to be bound to the pipeline before issuing a draw call
and how those resources get mapped to shader input registers. What resources
need to be bound depends on what resources the current shader programs expect.
When the PSO is created, the root signature and shader programs combination
will be validated.

7.6.1 Root Parameters
Recall that a root signature is defined by an array of root parameters. Thus far we
have only created a root parameter that stores a descriptor table. However, a root
parameter can actually be one of three types:

1. Descriptor Table: Expects a descriptors table referencing a contiguous range in
a heap that identifies the resource to be bound.

2. Root descriptor (inline descriptor): Expects a descriptor to be set directly that
identifies the resource to be bound; the descriptor does not need to be in a
heap. Only CBVs to constant buffers, and SRV/UAVs to buffers can be bound
as a root descriptor. In particular, this means SRVs to textures cannot be
bound as a root descriptor.

3. Root constant: Expects a list of 32-bit constant values to be bound directly.

For performance, there is a limit of 64 DWORDs that can be put in a root
signature. The three types of root parameters have the following costs:

1. Descriptor Table: 1 DWORD

2. Root Descriptor: 2 DWORDs

3. Root Constant: 1 DWORD per 32-bit constant

We can create an arbitrary root signature, provided we do not go over the sixty-
four DWORD limit. Root constants are very convenient but their cost adds up
quickly. For example, if the only constant data we needed was a world-view-
projection matrix, we could use sixteen root constants to store it, which would
make us not need to bother with a constant buffer and CBV heap. However, that
eats up a quarter of our root signature budget. Using a root descriptor would only
be two DWORDs, and a descriptor table is only one DWORD. As our applications
become more complex, our constant buffer data will become larger, and it
is unlikely we will be able to get away with using only root constants. In a real
world application, you will probably use a combination of all three types of root
parameters.

294 DIRECT3D FOUNDATIONS

In code a root parameter is described by fi lling out a CD3DX12_ROOT_PARAMETER
structure. As we have seen with CD3DX code, the CD3DX12_ROOT_PARAMETER extends
D3D12_ROOT_PARAMETER and add some helper initialization functions.

typedef struct D3D12_ROOT_PARAMETER
{
 D3D12_ROOT_PARAMETER_TYPE ParameterType;
 union
 {
 D3D12_ROOT_DESCRIPTOR_TABLE DescriptorTable;
 D3D12_ROOT_CONSTANTS Constants;
 D3D12_ROOT_DESCRIPTOR Descriptor;
 };
 D3D12_SHADER_VISIBILITY ShaderVisibility;
}D3D12_ROOT_PARAMETER;

1. ParameterType: A member of the following enumerated type indicating the
root parameter type (descriptor table, root constant, CBV root descriptor,
SRV root descriptor, UAV root descriptor).

 enum D3D12_ROOT_PARAMETER_TYPE
 {
 D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE = 0,
 D3D12_ROOT_PARAMETER_TYPE_32BIT_CONSTANTS= 1,
 D3D12_ROOT_PARAMETER_TYPE_CBV = 2,
 D3D12_ROOT_PARAMETER_TYPE_SRV = 3 ,
 D3D12_ROOT_PARAMETER_TYPE_UAV = 4
 } D3D12_ROOT_PARAMETER_TYPE;

2. DescriptorTable/Constants/Descriptor: A structure describing the root
parameter. The member of the union you fill out depends on the root
parameter type. §7.6.2, §7.6.3, and §7.6.4 discuss these structures.

3. ShaderVisibility: A member of the following enumeration that specifies
which shader programs this root parameter is visible to. Usually in this book
we specify D3D12_SHADER_VISIBILITY_ALL. However, if we know a resource
is only going to be used in a pixel shader, for example, then we can specify
D3D12_SHADER_VISIBILITY_PIXEL. Limiting the visibility of a root parameter
can potentially lead to some optimizations.

 enum D3D12_SHADER_VISIBILITY
 {
 D3D12_SHADER_VISIBILITY_ALL = 0,
 D3D12_SHADER_VISIBILITY_VERTEX = 1,
 D3D12_SHADER_VISIBILITY_HULL = 2,
 D3D12_SHADER_VISIBILITY_DOMAIN = 3,
 D3D12_SHADER_VISIBILITY_GEOMETRY = 4,
 D3D12_SHADER_VISIBILITY_PIXEL = 5
 } D3D12_SHADER_VISIBILITY;

DRAWING IN DIRECT3D PART II 295

7.6.2 Descriptor Tables
A descriptor table root parameter is further defined by filling out the
DescriptorTable member of D3D12_ROOT_PARAMETER.

typedef struct D3D12_ROOT_DESCRIPTOR_TABLE
{
 UINT NumDescriptorRanges;
 const D3D12_DESCRIPTOR_RANGE *pDescriptorRanges;
} D3D12_ROOT_DESCRIPTOR_TABLE;

This simply specifies an array of D3D12_DESCRIPTOR_RANGEs and the number of
ranges in the array.

The D3D12_DESCRIPTOR_RANGE structure is defi ned like so:

typedef struct D3D12_DESCRIPTOR_RANGE
{
 D3D12_DESCRIPTOR_RANGE_TYPE RangeType;
 UINT NumDescriptors;
 UINT BaseShaderRegister;
 UINT RegisterSpace;
 UINT OffsetInDescriptorsFromTableStart;
} D3D12_DESCRIPTOR_RANGE;

1. RangeType: A member of the following enumerated type indicating the type of
descriptors in this range:

 enum D3D12_DESCRIPTOR_RANGE_TYPE
 {
 D3D12_DESCRIPTOR_RANGE_TYPE_SRV = 0,
 D3D12_DESCRIPTOR_RANGE_TYPE_UAV = 1,
 D3D12_DESCRIPTOR_RANGE_TYPE_CBV = 2 ,
 D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER = 3
 } D3D12_DESCRIPTOR_RANGE_TYPE;

Sampler descriptors are discussed in the chapter on texturing.

2. NumDescriptors: The number of descriptors in the range.

3. BaseShaderRegister: Base shader register arguments are bound to. For
example, if you set NumDescriptors to 3, BaseShaderRegister to 1 and the
range type is CBV (for constant buffers), then you will be binding to HLSL
registers

 cbuffer cbA : register(b1) {...};
 cbuffer cbB : register(b2) {...};
 cbuffer cbC : register(b3) {...};

4. RegisterSpace: This property gives you another dimension to specify shader
registers. For example, the following two registers seem to overlap register

Note:

296 DIRECT3D FOUNDATIONS

slot t0, but they are different registers because they live in different spaces:
 Texture2D gDiffuseMap : register(t0, space0);

 Texture2D gNormalMap : register(t0, space1);

 If no space register is explicitly specified in the shader, it automatically defaults
to space0. Usually we use space0, but for arrays of resources it is useful to use
multiple spaces, and necessary if the arrays are of an unknown size.

5. OffsetInDescriptorsFromTableStart: The offset of this range of descriptors
from the start of the table. See the example below.

A slot parameter initialized as a descriptor table takes an array of D3D12_
DESCRIPTOR_RANGE instances because we can mix various types of descriptors in
one table. Suppose we defined a table of six descriptors by the following three
ranges in order: two CBVs, three SRVs and one UAV. This table would be defined
like so:

// Create a table with 2 CBVs, 3 SRVs and 1 UAV.
CD3DX12_DESCRIPTOR_RANGE descRange[3];
descRange[0].Init(
 D3D12_DESCRIPTOR_RANGE_TYPE_CBV, // descriptor type
 2, // descriptor count
 0, // base shader register arguments are bound to for this root
 // parameter
 0, // register space
 0);// offset from start of table
descRange[1].Init(
 D3D12_DESCRIPTOR_RANGE_TYPE_SRV, // descriptor type
 3, // descriptor count
 0, // base shader register arguments are bound to for this root
 // parameter
 0, // register space
 2);// offset from start of table
descRange[2].Init(
 D3D12_DESCRIPTOR_RANGE_TYPE_UAV, // descriptor type
 1, // descriptor count
 0, // base shader register arguments are bound to for this root
 // parameter
 0, // register space
 5);// offset from start of table

slotRootParameter[0].InitAsDescriptorTable(
 3, descRange, D3D12_SHADER_VISIBILITY_ALL);

 As usual, there is a CD3DX12_DESCRIPTOR_RANGE variation that inherits from
D3D12_DESCRIPTOR_RANGE, and we use the following initialization function:

void CD3DX12_DESCRIPTOR_RANGE::Init(
 D3D12_DESCRIPTOR_RANGE_TYPE rangeType,
 UINT numDescriptors,
 UINT baseShaderRegister,

DRAWING IN DIRECT3D PART II 297

 UINT registerSpace = 0,
 UINT offsetInDescriptorsFromTableStart =
 D3D12_DESCRIPTOR_RANGE_OFFSET_APPEND);

 This table covers six descriptors, and the application is expected to bind a
contiguous range of descriptors in a descriptor heap that include two CBVs
followed by three SRVs followed by one UAV. We see that all the range types
start at register 0 but there is no “overlap” conflict because CBVs, SRVs, and
UAVs all get bound to different register types, each starting at register 0.

 We can have Direct3D compute the OffsetInDescriptorsFromTableStart
value for us by specifying D3D12_DESCRIPTOR_RANGE_OFFSET_APPEND; this
instructs Direct3D to use the previous range descriptor counts in the table to
compute the offset. Note that the CD3DX12_DESCRIPTOR_RANGE::Init method
defaults to the register space to 0, and the OffsetInDescriptorsFromTableStart
to D3D12_DESCRIPTOR_RANGE_OFFSET_APPEND.

7.6.3 Root Descriptors
A root descriptor root parameter is further defined by filling out the Descriptor
member of D3D12_ROOT_PARAMETER.

typedef struct D3D12_ROOT_DESCRIPTOR
{
 UINT ShaderRegister;
 UINT RegisterSpace;
}D3D12_ROOT_DESCRIPTOR;

1. ShaderRegister: The shader register the descriptor will be bound to. For
example, if you specify 2 and this root parameter is a CBV then the parameter
gets mapped to the constant buffer in register(b2):

 cbuffer cbPass : register(b2) {...};

2. RegisterSpace: See D3D12_DESCRIPTOR_RANGE::RegisterSpace.

Unlike descriptor tables which require us to set a descriptor handle in a descriptor
heap, to set a root descriptor, we simply bind the virtual address of the resource
directly.

UINT objCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof
 (ObjectConstants));

D3D12_GPU_VIRTUAL_ADDRESS objCBAddress =
objectCB->GetGPUVirtualAddress();

// Offset to the constants for this object in the buffer.

298 DIRECT3D FOUNDATIONS

objCBAddress += ri->ObjCBIndex*objCBByteSize;

cmdList->SetGraphicsRootConstantBufferView(
 0, // root parameter index
 objCBAddress);

7.6.4 Root Constants
A descriptor table root parameter is further defined by filling out the Constants
member of D3D12_ROOT_PARAMETER.

 typedef struct D3D12_ROOT_CONSTANTS
 {
 UINT ShaderRegister;
 UINT RegisterSpace;
 UINT Num32BitValues;
 } D3D12_ROOT_CONSTANTS;

1. ShaderRegister: See D3D12_ROOT_DESCRIPTOR::ShaderRegister.

2. RegisterSpace: See D3D12_DESCRIPTOR_RANGE::RegisterSpace.

3. Num32BitValues: The number of 32-bit constants this root parameter expects.

Setting root constants still maps the data to a constant buffer from the shader’s
perspective. The following example illustrates:

// Application code: Root signature definition.
CD3DX12_ROOT_PARAMETER slotRootParameter[1];
slotRootParameter[0].InitAsConstants(12, 0);

// A root signature is an array of root parameters.
CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(1, slotRootParameter,
 0, nullptr,
 D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

// Application code: to set the constants to register b0.
auto weights = CalcGaussWeights(2.5f);
int blurRadius = (int)weights.size() / 2;

cmdList->SetGraphicsRoot32BitConstants(0, 1, &blurRadius, 0);
cmdList->SetGraphicsRoot32BitConstants(0, (UINT)weights.size(),

weights.data(), 1);

// HLSL code.
cbuffer cbSettings : register(b0)
{
 // We cannot have an array entry in a constant buffer that gets
 // mapped onto root constants, so list each element.

 int gBlurRadius;

 // Support up to 11 blur weights.
 float w0;

DRAWING IN DIRECT3D PART II 299

 float w1;
 float w2;
 float w3;
 float w4;
 float w5;
 float w6;
 float w7;
 float w8;
 float w9;
 float w10;
};

The ID3D12GraphicsCommandList::SetGraphicsRoot32BitConstants method has
the following prototype:

void ID3D12GraphicsCommandList::SetGraphicsRoot32BitConstants(
 UINT RootParameterIndex,
 UINT Num32BitValuesToSet,
 const void *pSrcData,
 UINT DestOffsetIn32BitValues);

1. RootParameterIndex: Index of the root parameter we are setting.

2. Num32BitValuesToSet: The number of 32-bit values to set.

3. pSrcData: Pointer to an array of 32-bit values to set.

4. DestOffsetIn32BitValues: Offset in 32-bit values in the constant buffer.
As with root descriptors, setting root constants bypasses the need for a descriptor
heap.

7.6.5 A More Complicated Root Signature Example
Consider a shader that expects the following resources:

Texture2D gDiffuseMap : register(t0);

cbuffer cbPerObject : register(b0)
{
 float4x4 gWorld;
 float4x4 gTexTransform;
};

cbuffer cbPass : register(b1)
{
 float4x4 gView;
 float4x4 gInvView;
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gViewProj;
 float4x4 gInvViewProj;
 float3 gEyePosW;
 float cbPerObjectPad1;
 float2 gRenderTargetSize;

300 DIRECT3D FOUNDATIONS

 float2 gInvRenderTargetSize;
 float gNearZ;
 float gFarZ;
 float gTotalTime;
 float gDeltaTime;
 float4 gAmbientLight;
 Light gLights[MaxLights];
};

cbuffer cbMaterial : register(b2)
{
 float4 gDiffuseAlbedo;
 float3 gFresnelR0;
 float gRoughness;
 float4x4 gMatTransform;
};

The root signature for this shader would be described as follows:

CD3DX12_DESCRIPTOR_RANGE texTable;
 texTable.Init(
 D3D12_DESCRIPTOR_RANGE_TYPE_SRV,
 1, // number of descriptors
 0); // register t0

 // Root parameter can be a table, root descriptor or root constants.
 CD3DX12_ROOT_PARAMETER slotRootParameter[4];

 // Perfomance TIP: Order from most frequent to least frequent.
 slotRootParameter[0].InitAsDescriptorTable(1,
 &texTable, D3D12_SHADER_VISIBILITY_PIXEL);
 slotRootParameter[1].InitAsConstantBufferView(0); // register b0
 slotRootParameter[2].InitAsConstantBufferView(1); // register b1
 slotRootParameter[3].InitAsConstantBufferView(2); // register b2

 // A root signature is an array of root parameters.
 CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(4, slotRootParameter,
 0, nullptr,
 D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

7.6.6 Root Parameter Versioning
Root arguments refer to the actual values we pass to root parameters. Consider the
following code where we change the root arguments (only descriptor table in this
case) between draw calls:

for(size_t i = 0; i < mRitems.size(); ++i)
{
 const auto& ri = mRitems[i];

 ...

 // Offset to the CBV for this frame and this render item.

DRAWING IN DIRECT3D PART II 301

 int cbvOffset = mCurrFrameResourceIndex*(int)mRitems.size();
 cbvOffset += ri.CbIndex;
 cbvHandle.Offset(cbvOffset, mCbvSrvDescriptorSize);

 // Identify descriptors to use for this draw call.
 cmdList->SetGraphicsRootDescriptorTable(0, cbvHandle);

 cmdList->DrawIndexedInstanced(
 ri.IndexCount, 1,
 ri.StartIndexLocation,
 ri.BaseVertexLocation, 0);
}

Each draw call will be executed with the currently set state of the root arguments
at the time of the draw call. This works because the hardware automatically saves
a snapshot of the current state of the root arguments for each draw call. In other
words, the root arguments are automatically versioned for each draw call.

Note that a root signature can provide more fi elds than a shader uses. For
example, if the root signature specifi es a root CBV in root parameter 2, but the
shader does not use that constant buffer, then this combination is valid as long as
the root signature does specify all the resource the shader does use.

For performance, we should aim to keep the root signature small. One reason
for this is the automatic versioning of the root arguments per draw call. The
larger the root signature, the larger these snapshots of the root arguments will be.
Additionally, the SDK documentation advises that root parameters should be
ordered in the root signature from most frequently changed to least frequently
changed. The Direct3D 12 documentation also advises to avoid switching the
root signature when possible, so it is a good idea to share the same root signature
across many PSOs you create. In particular, it may be benefi cial to have a “super”
root signature that works with several shader programs even though not all the
shaders uses all the parameters the root signature defi nes. On the other hand, it
also depends how big this “super” root signature has to be for this to work. If it is
too big, it could cancel out the gains of not switching the root signature.

7.7 LAND AND WAVES DEMO

In this section, we show how to build the “Land and Waves” demo shown in
Figure 7.7. This demo constructs a triangle grid mesh procedurally and offsets
the vertex heights to create a terrain. In addition, it uses another triangle grid to
represent water, and animates the vertex heights to create waves. This demo also
switches to using root descriptors for constant buffers, which allows us to drop
support for a descriptor heap for CBVs.

302 DIRECT3D FOUNDATIONS

The graph of a “nice” real-valued function y  f(x, z) is a surface. We can
approximate the surface by constructing a grid in the xz-plane, where every quad
is built from two triangles, and then applying the function to each grid point; see
Figure 7.8.

7.7.1 Generating the Grid Vertices
So the main task is how to build the grid in the xz-plane. A grid of m  n vertices
induces (m – 1)  (n – 1) quads (or cells), as shown in Figure 7.9. Each cell will be
covered by two triangles, so there are a total of 2·(m – 1) × (n – 1) triangles. If the
grid has width w and depth d, the cell spacing along the x-axis is dx = w/(n – 1)
and the cell spacing along the z-axis is dz = d/(m  1). To generate the vertices, we
start at the upper-left corner and incrementally compute the vertex coordinates
row-by-row. The coordinates of the ijth grid vertex in the xz-plane are given by:

  0.5 , 0.0, 0.5ij w j dx d i dz     v

The following code generates the grid vertices:

GeometryGenerator::MeshData
GeometryGenerator::CreateGrid(float width, float depth, uint32 m,

uint32 n)
{
 MeshData meshData;

 uint32 vertexCount = m*n;
 uint32 faceCount = (m-1)*(n-1)*2;

 float halfWidth = 0.5f*width;
 float halfDepth = 0.5f*depth;

 float dx = width / (n-1);

Figure 7.7. Screenshot of the “Lands and Waves” demo. Because we do not have lighting yet, it is difficult to
see the shape of the waves. Hold the ‘1’ key down to view the scene in wireframe mode to see the waves better.

DRAWING IN DIRECT3D PART II 303

Figure 7.8. (Top) Lay down a grid in the xz-plane. (Bottom) For each grid point, apply the function f(x, z) to
obtain the y-coordinate. The plot of the points (x, f(x, z), z) gives the graph of a surface.

Figure 7.9. Grid construction.

304 DIRECT3D FOUNDATIONS

 float dz = depth / (m-1);

 float du = 1.0f / (n-1);
 float dv = 1.0f / (m-1);

 meshData.Vertices.resize(vertexCount);
 for(uint32 i = 0; i < m; ++i)
 {
 float z = halfDepth - i*dz;
 for(uint32 j = 0; j < n; ++j)
 {
 float x = -halfWidth + j*dx;

 meshData.Vertices[i*n+j].Position = XMFLOAT3(x, 0.0f, z);
 meshData.Vertices[i*n+j].Normal = XMFLOAT3(0.0f, 1.0f, 0.0f);
 meshData.Vertices[i*n+j].TangentU = XMFLOAT3(1.0f, 0.0f, 0.0f);

 // Stretch texture over grid.
 meshData.Vertices[i*n+j].TexC.x = j*du;
 meshData.Vertices[i*n+j].TexC.y = i*dv;
 }
 }

7.7.2 Generating the Grid Indices
After we have computed the vertices, we need to define the grid triangles by
specifying the indices. To do this, we iterate over each quad, again row-by-row
starting at the top-left, and compute the indices to define the two triangles of the
quad; referring to Figure 7.10, for an m × n vertex grid, the linear array indices of
the two triangles are computed as follows:

   , 1, 1ABC i n j i n j i n j         

     1 , 1, 1 1CBD i n j i n j i n j           

Figure 7.10. The indices of the ijth quad’s vertices.

DRAWING IN DIRECT3D PART II 305

The corresponding code:

 meshData.Indices32.resize(faceCount*3); // 3 indices per face

 // Iterate over each quad and compute indices.
 uint32 k = 0;
 for(uint32 i = 0; i < m-1; ++i)
 {
 for(uint32 j = 0; j < n-1; ++j)
 {
 meshData.Indices32[k] = i*n+j;
 meshData.Indices32[k+1] = i*n+j+1;
 meshData.Indices32[k+2] = (i+1)*n+j;

 meshData.Indices32[k+3] = (i+1)*n+j;
 meshData.Indices32[k+4] = i*n+j+1;
 meshData.Indices32[k+5] = (i+1)*n+j+1;

 k += 6; // next quad
 }
 }

 return meshData;
}

7.7.3 Applying the Height Function
After we have created the grid, we can extract the vertex elements we want from
the MeshData grid, turn the flat grid into a surface representing hills, and generate
a color for each vertex based on the vertex altitude (y-coordinate).

// Not to be confused with GeometryGenerator::Vertex.
struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT4 Color;
};
void LandAndWavesApp::BuildLandGeometry()
{
 GeometryGenerator geoGen;
 GeometryGenerator::MeshData grid = geoGen.CreateGrid(160.0f, 160.0f,

50, 50);

 //
 // Extract the vertex elements we are interested and apply the height
 // function to each vertex. In addition, color the vertices based on
 // their height so we have sandy looking beaches, grassy low hills,
 // and snow mountain peaks.
 //

 std::vector<Vertex> vertices(grid.Vertices.size());
 for(size_t i = 0; i < grid.Vertices.size(); ++i)

306 DIRECT3D FOUNDATIONS

 {
 auto& p = grid.Vertices[i].Position;
 vertices[i].Pos = p;
 vertices[i].Pos.y = GetHillsHeight(p.x, p.z);

 // Color the vertex based on its height.
 if(vertices[i].Pos.y < -10.0f)
 {
 // Sandy beach color.
 vertices[i].Color = XMFLOAT4(1.0f, 0.96f, 0.62f, 1.0f);
 }
 else if(vertices[i].Pos.y < 5.0f)
 {
 // Light yellow-green.
 vertices[i].Color = XMFLOAT4(0.48f, 0.77f, 0.46f, 1.0f);
 }
 else if(vertices[i].Pos.y < 12.0f)
 {
 // Dark yellow-green.
 vertices[i].Color = XMFLOAT4(0.1f, 0.48f, 0.19f, 1.0f);
 }
 else if(vertices[i].Pos.y < 20.0f)
 {
 // Dark brown.
 vertices[i].Color = XMFLOAT4(0.45f, 0.39f, 0.34f, 1.0f);
 }
 else
 {
 // White snow.
 vertices[i].Color = XMFLOAT4(1.0f, 1.0f, 1.0f, 1.0f);
 }
 }

 const UINT vbByteSize = (UINT)vertices.size() * sizeof(Vertex);

 std::vector<std::uint16_t> indices = grid.GetIndices16();
 const UINT ibByteSize = (UINT)indices.size() * sizeof(std::uint16_t);

 auto geo = std::make_unique<MeshGeometry>();
 geo->Name = "landGeo";

 ThrowIfFailed(D3DCreateBlob(vbByteSize, &geo->VertexBufferCPU));
 CopyMemory(geo->VertexBufferCPU->GetBufferPointer(), vertices.data(),

vbByteSize);

 ThrowIfFailed(D3DCreateBlob(ibByteSize, &geo->IndexBufferCPU));
 CopyMemory(geo->IndexBufferCPU->GetBufferPointer(), indices.data(),

ibByteSize);

 geo->VertexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(),
 mCommandList.Get(), vertices.data(), vbByteSize, geo-

>VertexBufferUploader);

DRAWING IN DIRECT3D PART II 307

 geo->IndexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(),
 mCommandList.Get(), indices.data(), ibByteSize,

geo->IndexBufferUploader);

 geo->VertexByteStride = sizeof(Vertex);
 geo->VertexBufferByteSize = vbByteSize;
 geo->IndexFormat = DXGI_FORMAT_R16_UINT;
 geo->IndexBufferByteSize = ibByteSize;

 SubmeshGeometry submesh;
 submesh.IndexCount = (UINT)indices.size();
 submesh.StartIndexLocation = 0;
 submesh.BaseVertexLocation = 0;

 geo->DrawArgs["grid"] = submesh;

 mGeometries["landGeo"] = std::move(geo);
}

The function f(x, z) we have used in this demo is given by:

float LandAndWavesApp::GetHeight(float x, float z)const
{
 return 0.3f*(z*sinf(0.1f*x) + x*cosf(0.1f*z));
}

Its graph looks like somewhat like a terrain with hills and valleys (see Figure 7.7).

7.7.4 Root CBVs
Another change we make to the “Land and Waves” demo from the previous
“Shape” demos is that we use root descriptors so that we can bind CBVs directly
without having to use a descriptor heap. Here are the changes that need to be
made to do this:

1. The root signature needs to be changed to take two root CBVs instead of two
descriptor tables.

2. No CBV heap is needed nor needs to be populated with descriptors.

3. There is new syntax for binding a root descriptor.

The new root signature is defined like so:

// Root parameter can be a table, root descriptor or root constants.
CD3DX12_ROOT_PARAMETER slotRootParameter[2];

// Create root CBV.
slotRootParameter[0].InitAsConstantBufferView(0); // per-object CBV
slotRootParameter[1].InitAsConstantBufferView(1); // per-pass CBV

// A root signature is an array of root parameters.
CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(2, slotRootParameter, 0,

308 DIRECT3D FOUNDATIONS

 nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_
LAYOUT);

Observe that we use the InitAsConstantBufferView helper method to create root
CBV; the parameter specifies the shader register this parameter is bound to (in the
above code, shader constant buffer register “b0” and “b1”).

Now, we bind a CBV as an argument to a root descriptor using the following
method:

void
ID3D12GraphicsCommandList::SetGraphicsRootConstantBufferView(
 UINT RootParameterIndex,
 D3D12_GPU_VIRTUAL_ADDRESS BufferLocation);

1. RootParameterIndex: The index of the root parameter we are binding a CBV to.

2. BufferLocation: The virtual address to the resource that contains the constant
buffer data.

With this change, our drawing code now looks like this:

void LandAndWavesApp::Draw(const GameTimer& gt)
{
 [...]

 // Bind per-pass constant buffer. We only need to do this once per-
 // pass.
 auto passCB = mCurrFrameResource->PassCB->Resource();
 mCommandList->SetGraphicsRootConstantBufferView(1, passCB-
 >GetGPUVirtualAddress());

 DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)
RenderLayer::Opaque]);

 [...]
}

void LandAndWavesApp::DrawRenderItems(
 ID3D12GraphicsCommandList* cmdList,
 const std::vector<RenderItem*>& ritems)
{
 UINT objCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof
 (ObjectConstants));

 auto objectCB = mCurrFrameResource->ObjectCB->Resource();

 // For each render item...
 for(size_t i = 0; i < ritems.size(); ++i)
 {
 auto ri = ritems[i];

 cmdList->IASetVertexBuffers(0, 1, &ri->Geo->VertexBufferView());
 cmdList->IASetIndexBuffer(&ri->Geo->IndexBufferView());
 cmdList->IASetPrimitiveTopology(ri->PrimitiveType);

DRAWING IN DIRECT3D PART II 309

 D3D12_GPU_VIRTUAL_ADDRESS objCBAddress =
objectCB->GetGPUVirtualAddress();

 objCBAddress += ri->ObjCBIndex*objCBByteSize;

 cmdList->SetGraphicsRootConstantBufferView(0, objCBAddress);

 cmdList->DrawIndexedInstanced(ri->IndexCount, 1,
 ri->StartIndexLocation, ri->BaseVertexLocation, 0);
 }
}

7.7.5 Dynamic Vertex Buffers
So far we have stored our vertices in a default buffer resource. We use this kind of
resource when we want to store static geometry. That is, geometry that we do not
change—we set the data, and the GPU reads and draws the data. A dynamic vertex
buffer is where we change the vertex data frequently, say per-frame. For example,
suppose we are doing a wave simulation, and we solve the wave equation for the
solution function f(x, z, t). This function represents the wave height at each point in
the xz-plane at time t. If we were to use this function to draw the waves, we would
use a triangle grid mesh like we did with the peaks and valleys, and apply f(x, z, t)
to each grid point in order to obtain the wave heights at the grid points. Because
this function also depends on time t (i.e., the wave surface changes with time), we
would need to reapply this function to the grid points a short time later (say every
1/30th of a second) to get a smooth animation. Thus, we need a dynamic vertex
buffer in order to update the heights of the triangle grid mesh vertices as time
passes. Another situation that leads to dynamic vertex buffers is particle systems
with complex physics and collision detection. Each frame we will do the physics and
collision detection on the CPU to find the new position of the particles. Because
the particle positions are changing each frame, we need a dynamic vertex buffer in
order to update the particle positions for drawing each frame.

We have already seen an example of uploading data from the CPU to the GPU
per-frame when we used upload buffers to update our constant buffer data. We
can apply the same technique and use our UploadBuffer class, but instead of
storing an array of constant buffers, we store an array of vertices:

 std::unique_ptr<UploadBuffer<Vertex>> WavesVB = nullptr;

 WavesVB = std::make_unique<UploadBuffer<Vertex>>(
 device, waveVertCount, false);

Because we need to upload the new contents from the CPU to the wave’s dynamic
vertex buffer every frame, the dynamic vertex buffer needs to be a frame resource.
Otherwise we could overwrite the memory before the GPU has finished processing
the last frame.

310 DIRECT3D FOUNDATIONS

Every frame, we run the wave simulation and update the vertex buffer like so:

void LandAndWavesApp::UpdateWaves(const GameTimer& gt)
{
 // Every quarter second, generate a random wave.
 static float t_base = 0.0f;
 if((mTimer.TotalTime() - t_base) >= 0.25f)
 {
 t_base += 0.25f;

 int i = MathHelper::Rand(4, mWaves->RowCount() - 5);
 int j = MathHelper::Rand(4, mWaves->ColumnCount() - 5);

 float r = MathHelper::RandF(0.2f, 0.5f);

 mWaves->Disturb(i, j, r);
 }

 // Update the wave simulation.
 mWaves->Update(gt.DeltaTime());

 // Update the wave vertex buffer with the new solution.
 auto currWavesVB = mCurrFrameResource->WavesVB.get();
 for(int i = 0; i < mWaves->VertexCount(); ++i)
 {
 Vertex v;

 v.Pos = mWaves->Position(i);
 v.Color = XMFLOAT4(DirectX::Colors::Blue);

 currWavesVB->CopyData(i, v);
 }

 // Set the dynamic VB of the wave renderitem to the current frame VB.
 mWavesRitem->Geo->VertexBufferGPU = currWavesVB->Resource();
}

We save a reference to the wave render item (mWavesRitem) so that we can set its
vertex buffer on the fl y. We need to do this because its vertex buffer is a dynamic
buffer and changes every frame.

There is some overhead when using dynamic buffers, as the new data must be
transferred from CPU memory back up to GPU memory. Therefore, static buffers
should be preferred to dynamic buffers, provided static buffers will work. Recent
versions of Direct3D have introduced new features to lessen the need for dynamic
buffers. For instance:

1. Simple animations may be done in a vertex shader.

2. It is possible, through render to texture or compute shaders and vertex texture
fetch functionality, to implement a wave simulation like the one described
above that runs completely on the GPU.

Note:

DRAWING IN DIRECT3D PART II 311

3. The geometry shader provides the ability for the GPU to create or destroy
primitives, a task that would normally need to be done on the CPU without a
geometry shader.

4. The tessellation stages can add tessellate geometry on the GPU, a task that
would normally need to be done on the CPU without hardware tessellation.

Index buffers can be dynamic, too. However, in the “Land and Waves” demo, the
triangle topology remains constant and only the vertex heights change; therefore,
only the vertex buffer needs to be dynamic.

The “Waves” demo for this chapter uses a dynamic vertex buffer to implement
a simple wave simulation like the one described at the beginning of this section.
For this book, we are not concerned with the actual algorithm details for the wave
simulation (see [Lengyel02] for that), but more with the process so as to illustrate
dynamic buffers: update the simulation on CPU and then update the vertex data
using an upload buffer.

We mention again that this demo could be implemented on the GPU using
more advanced methods such as render to texture functionality or the compute
shader, and vertex texture fetch. Because we have not covered these topics yet, we
do the wave simulation on the CPU and update the new vertices using dynamic
vertex buffers.

7.8 SUMMARY

1. Waiting for the GPU to finish executing all the commands in the queue every
frame is inefficient because it causes both the CPU and GPU to idle at some
point. A more efficient technique is to create frame resources—a circular array
of the resources the CPU needs to modify each frame. This way, the CPU does
not need to wait for the GPU to finish before moving on to the next frame;
the CPU will just work with the next available (i.e., not in use by GPU) frame
resource. If the CPU is always processing frames faster than the GPU, then
eventually the CPU will have to wait at some point for the GPU to catch up,
but this is the desired situation, as the GPU is being fully utilized; the extra
CPU cycles can always be used for other parts of the game such as AI, physics,
and game play logic.

2. We can get a handle to the first descriptor in a heap with the ID3D12Descriptor
Heap::GetCPUDescriptorHandleForHeapStart method. We can get a descriptor
size (depends on the hardware and descriptor type) with the ID3D12Device::
GetDescriptorHandleIncrementSize(DescriptorHeapType type) method. Once

Note:

312 DIRECT3D FOUNDATIONS

we know the descriptor increment size, we can use one of the two CD3DX12_
CPU_DESCRIPTOR_HANDLE::Offset methods to offset the handle by n descriptors:

// Specify the number of descriptors to offset times the descriptor
// increment size:
D3D12_CPU_DESCRIPTOR_HANDLE handle = mCbvHeap->
 GetCPUDescriptorHandleForHeapStart();
handle.Offset(n * mCbvSrvDescriptorSize);

// Or equivalently, specify the number of descriptors to offset,
// followed by the descriptor increment size:
D3D12_CPU_DESCRIPTOR_HANDLE handle = mCbvHeap->GetCPUDescriptorHandleFo

rHeapStart();
handle.Offset(n, mCbvSrvDescriptorSize);
The CD3DX12_GPU_DESCRIPTOR_HANDLE type has the same Offset methods.

3. A root signature defines what resources need to be bound to the pipeline
before issuing a draw call and how those resources get mapped to shader
input registers. What resources need to be bound depends on what
resources the bound shader programs expect. When the PSO is created, the
root signature and shader programs combination will be validated. A root
signature is specified as an array of root parameters. A root parameter can be a
descriptor table, root descriptor, or root constant. A descriptor table specifies
a contiguous range of descriptors in a heap. A root descriptor is used to bind
a descriptor directly in the root signature (it does not need to be in a heap).
Root constants are used to bind constant values directly in the root signature.
For performance, there is a limit of sixty-four DWORDs that can be put in
a root signature. Descriptor tables cost one DWORD each, root descriptors
cost two DWORDs each, and root constants cost one DWORD for each 32-bit
constant. The hardware automatically saves a snapshot of the root arguments
for each draw call. Thus we are safe to change root arguments per draw call,
however, we should also try to keep the root signatures small so there is less
memory to copy.

4. Dynamic vertex buffers are used when the contents of a vertex buffer needs
to be updated frequently at runtime (e.g., every frame or every 1/30th of a
second). We can use an UploadBuffer to implement dynamic vertex buffers,
but instead of storing an array of constant buffers, we store an array of
vertices. Because we need to upload the new contents from the CPU to the
wave’s dynamic vertex buffer every frame, the dynamic vertex buffer needs
to be a frame resource. There is some overhead when using dynamic vertex
buffers, as the new data must be transferred from CPU memory back up to
GPU memory. Therefore, static vertex buffers should be preferred to dynamic
vertex buffers, provided static vertex buffers will work. Recent versions of
Direct3D have introduced new features to lessen the need for dynamic buffers.

DRAWING IN DIRECT3D PART II 313

7.9 EXERCISES

1. Modify the “Shape” demo to use GeometryGenerator::CreateGeosphere instead
of GeometryGenerator::CreateSphere. Try with 0, 1, 2, and 3 subdivision
levels.

2. Modify the “Shapes” demo to use sixteen root constants to set the per-object
world matrix instead of a descriptor table.

3. On the DVD, there a file called Models/Skull.txt. This file contains the vertex
and index lists needed to render the skull in Figure 7.11. Study the file using a
text editor like notepad, and modify the “Shapes” demo to load and render the
skull mesh.

Figure 7.11. Rendered output of Exercise 4.

ON THE DVD

Chapter

315

8Chapter

LIGHTING

Consider Figure 8.1. On the left we have an unlit sphere, and on the right, we have
a lit sphere. As you can see, the sphere on the left looks rather flat—maybe it is not
even a sphere at all, but just a 2D circle! On the other hand, the sphere on the right
does look 3D—the lighting and shading aid in our perception of the solid form
and volume of the object. In fact, our visual perception of the world depends on
light and its interaction with materials, and consequently, much of the problem of
generating photorealistic scenes has to do with physically accurate lighting models.

Of course, in general, the more accurate the model, the more computationally
expensive it is; thus a balance must be reached between realism and speed. For
example, 3D special FX scenes for fi lms can be much more complex and utilize
very realistic lighting models than a game because the frames for a fi lm are

Figure 8.1. (a) An unlit sphere looks 2D. (b) A lit sphere looks 3D.

316 DIRECT3D FOUNDATIONS

pre-rendered, so they can afford to take hours or days to process a frame. Games,
on the other hand, are real-time applications, and therefore, the frames need to be
drawn at a rate of at least 30 frames per second.

Note that the lighting model explained and implemented in this book is largely
based off the one described in [Möller08].

Objectives:
1. To gain a basic understanding of the interaction between lights and materials

2. To understand the differences between local illumination and global
illumination

3. To find out how we can mathematically describe the direction a point on a
surface is “facing” so that we can determine the angle at which incoming light
strikes the surface

4. To learn how to correctly transform normal vectors

5. To be able to distinguish between ambient, diffuse, and specular light

6. To learn how to implement directional lights, point lights, and spotlights

7. To understand how to vary light intensity as a function of depth by controlling
attenuation parameters

8.1 LIGHT AND MATERIAL INTERACTION

When using lighting, we no longer specify vertex colors directly; rather, we specify
materials and lights, and then apply a lighting equation, which computes the
vertex colors for us based on light/material interaction. This leads to a much more
realistic coloring of the object (compare Figure 8.1a and 8.1b again).

Materials can be thought of as the properties that determine how light interacts
with a surface of an object. Examples of such properties are the color of light
the surface refl ects and absorbs, the index of refraction of the material under the
surface, how smooth the surface is, and how transparent the surface is. By specifying
material properties we can model different kinds of real-world surfaces like wood,
stone, glass, metals, and water.

In our model, a light source can emit various intensities of red, green, and blue
light; in this way, we can simulate many light colors. When light travels outwards
from a source and collides with an object, some of that light may be absorbed and
some may be refl ected (for transparent objects, such as glass, some of the light passes
through the medium, but we do not consider transparency here). The refl ected light
now travels along its new path and may strike other objects where some light is

LIGHTING 317

again absorbed and refl ected. A light ray may strike many objects before it is fully
absorbed. Presumably, some light rays eventually travel into the eye (see Figure 8.2)
and strike the light receptor cells (named cones and rods) on the retina.

According to the trichromatic theory (see [Santrock03]), the retina contains
three kinds of light receptors, each one sensitive to red, green, and blue light
(with some overlap). The incoming RGB light stimulates its corresponding light
receptors to varying intensities based on the strength of the light. As the light
receptors are stimulated (or not), neural impulses are sent down the optic nerve
toward the brain, where the brain generates an image in your head based on
the stimulus of the light receptors. (Of course, if you close/cover your eyes, the
receptor cells receive no stimulus and the brain registers this as black.)

For example, consider Figure 8.2 again. Suppose that the material of the
cylinder refl ects 75% red light, 75% green light, and absorbs the rest, and the
sphere refl ects 25% red light and absorbs the rest. Also suppose that pure white
light is being emitted from the light source. As the light rays strike the cylinder,
all the blue light is absorbed and only 75% red and green light is refl ected (i.e.,
a medium-high intensity yellow). This light is then scattered—some of it travels
into the eye and some of it travels toward the sphere. The part that travels into the
eye primarily stimulates the red and green cone cells to a semi-high degree; hence,
the viewer sees the cylinder as a semi-bright shade of yellow. Now, the other light
rays travel toward the sphere and strike it. The sphere refl ects 25% red light and
absorbs the rest; thus, the diluted incoming red light (medium-high intensity red)
is diluted further and refl ected, and all of the incoming green light is absorbed.
This remaining red light then travels into the eye and primarily stimulates the red
cone cells to a low degree. Thus the viewer sees the sphere as a dark shade of red.

The lighting models we (and most real-time applications) adopt in this
book are called local illumination models. With a local model, each object is lit
independently of another object, and only the light directly emitted from light
sources is taken into account in the lighting process (i.e., light that has bounced off
other scene objects to strikes the object currently being lit is ignored). Figure 8.3
shows a consequence of this model.

Figure 8.2. (a) Flux of incoming white light. (b) The light strikes the cylinder and some rays are absorbed
and other rays are scatted toward the eye and sphere. (c) The light reflecting off the cylinder toward the
sphere is absorbed or reflected again and travels into the eye. (d) The eye receives incoming light that
determines what the eye sees.

318 DIRECT3D FOUNDATIONS

On the other hand, global illumination models light objects by taking into
consideration not only the light directly emitted from light sources, but also the
indirect light that has bounced off other objects in the scene. These are called
global illumination models because they take everything in the global scene
into consideration when lighting an object. Global illumination models are
generally prohibitively expensive for real-time games (but come very close to
generating photorealistic scenes). Finding real-time methods for approximating
global illumination is an area of ongoing research; see, for example, voxel global
illumination [http://on-demand.gputechconf.com/gtc/2014/presentations/S4552-
rt-voxel-based-global-illumination-gpus.pdf]. Other popular methods are to
precompute indirect lighting for static objects (e.g., walls, statues), and then use
that result to approximate indirect lighting for dynamic objects (e.g., moving
game characters).

8.2 NORMAL VECTORS

A face normal is a unit vector that describes the direction a polygon is facing (i.e.,
it is orthogonal to all points on the polygon); see Figure 8.4a. A surface normal is
a unit vector that is orthogonal to the tangent plane of a point on a surface; see
Figure 8.4b. Observe that surface normals determine the direction a point on a
surface is “facing.”

For lighting calculations, we need the surface normal at each point on the
surface of a triangle mesh so that we can determine the angle at which light
strikes the point on the mesh surface. To obtain surface normals, we specify the
surface normals only at the vertex points (so-called vertex normals). Then, in
order to obtain a surface normal approximation at each point on the surface of a
triangle mesh, these vertex normals will be interpolated across the triangle during
rasterization (recall §5.10.3 and see Figure 8.5).

Figure 8.3. Physically, the wall blocks the light rays emitted by the light bulb and the sphere is in the
shadow of the wall. However, in a local illumination model, the sphere is lit as if the wall were not there.

LIGHTING 319

Interpolating the normal and doing lighting calculations per pixel is called pixel
lighting or phong lighting. A less expensive, but less accurate, method is doing
the lighting calculations per vertex. Then the result of the per vertex lighting
calculation is output from the vertex shader and interpolated across the pixels
of the triangle. Moving calculations from the pixel shader to the vertex shader is
a common performance optimization at the sake of quality and sometimes the
visual difference is very subtle making such optimizations very attractive.

8.2.1 Computing Normal Vectors
To find the face normal of a triangle p0, p1, p2 we first compute two vectors that
lie on the triangle’s edges:

u  p1 – p0

v  p2 – p0

Then the face normal is:

|| ||





u v

n
u v

Below is a function that computes the face normal of the front side (§5.10.2) of a
triangle from the three vertex points of the triangle.

XMVECTOR ComputeNormal(FXMVECTOR p0,
 FXMVECTOR p1,
 FXMVECTOR p2)
{
 XMVECTOR u = p1 - p0;
 XMVECTOR v = p2 - p0;

 return XMVector3Normalize(
 XMVector3Cross(u,v));
}

Note:

Figure 8.4. (a) The face normal is orthogonal to all
points on the face. (b) The surface normal is the vector
that is orthogonal to the tangent plane of a point on
a surface.

Figure 8.5. The vertex normals n0 and n1 are defined at
the segment vertex points p0 and p1. A normal vector n
for a point p in the interior of the line segment is found
by linearly interpolating (weighted average) between the
vertex normals; that is, n = n0 + t(n1 – n0) where t is such
that p = p0 + t(p1 – p0) Although we illustrated normal
interpolation over a line segment for simplicity, the idea
straightforwardly generalizes to interpolating over a 3D
triangle.

320 DIRECT3D FOUNDATIONS

For a differentiable surface, we can use calculus to find the normals of points on
the surface. Unfortunately, a triangle mesh is not differentiable. The technique that
is generally applied to triangle meshes is called vertex normal averaging. The vertex
normal n or an arbitrary vertex v in a mesh is found by averaging the face normals of
every polygon in the mesh that shares the vertex v. For example, in Figure 8.6, four
polygons in the mesh share the vertex v thus, the vertex normal for v is given by:

 0 1 2 3

0 1 2 3 ||
avg

  


  
n n n n

n
|| n n n n

In the above example, we do not need to divide by 4, as we would in a typical
average, since we normalize the result. Note also that more sophisticated averaging
schemes can be constructed; for example, a weighted average might be used where
the weights are determined by the areas of the polygons (e.g., polygons with larger
areas have more weight than polygons with smaller areas).

The following pseudocode shows how this averaging can be implemented given
the vertex and index list of a triangle mesh:

// Input:
// 1. An array of vertices (mVertices). Each vertex has a
// position component (pos) and a normal component (normal).
// 2. An array of indices (mIndices).

// For each triangle in the mesh:
for(UINT i = 0; i < mNumTriangles; ++i)
{
 // indices of the ith triangle
 UINT i0 = mIndices[i*3+0];
 UINT i1 = mIndices[i*3+1];
 UINT i2 = mIndices[i*3+2];

 // vertices of ith triangle
 Vertex v0 = mVertices[i0];
 Vertex v1 = mVertices[i1];
 Vertex v2 = mVertices[i2];

 // compute face normal
 Vector3 e0 = v1.pos - v0.pos;
 Vector3 e1 = v2.pos - v0.pos;

Figure 8.6. The middle vertex is shared by the neighboring four polygons, so we approximate the middle
vertex normal by averaging the four polygon face normals.

LIGHTING 321

 Vector3 faceNormal = Cross(e0, e1);

 // This triangle shares the following three vertices,
 // so add this face normal into the average of these
 // vertex normals.
 mVertices[i0].normal += faceNormal;
 mVertices[i1].normal += faceNormal;
 mVertices[i2].normal += faceNormal;
}

// For each vertex v, we have summed the face normals of all
// the triangles that share v, so now we just need to normalize.
for(UINT i = 0; i < mNumVertices; ++i)
 mVertices[i].normal = Normalize(&mVertices[i].normal));

8.2.2 Transforming Normal Vectors
Consider Figure 8.7a where we have a tangent vector u  v1  v0 orthogonal to a
normal vector n. If we apply a non-uniform scaling transformation A we see from
Figure 8.7b that the transformed tangent vector uA  v1A  v0A does not remain
orthogonal to the transformed normal vector nA.

So our problem is this: Given a transformation matrix A that transforms
points and vectors (non-normal), we want to fi nd a transformation matrix B that
transforms normal vectors such that the transformed tangent vector is orthogonal
to the transformed normal vector (i.e., uAnB  0). To do this, let us fi rst start
with something we know: we know that the normal vector n is orthogonal to the
tangent vector u:

un  0
unT  0

u(AA1)nT  0
(uA)(A1 nT)  0

(uA)(A1 nT)T)T  0
(uA)(n(A1)T)T  0

uAn(A1)T  0
uAnB  0

Tangent vector orthogonal to normal vector
Rewriting the dot product as a matrix multiplication
Inserting the identity matrix I  AA1

Associative property of matrix multiplication
Transpose property (AT)T  A
Transpose property (ABT)T  BTAT

Rewriting the matrix multiplication as a dot product
Transformed tangent vector orthogonal to transformed normal vector

Figure 8.7. (a) The surface normal before transformation. (b) After scaling by 2 units on the x-axis the normal is
no longer orthogonal to the surface. (c) The surface normal correctly transformed by the inverse-transpose of the
scaling transformation.

322 DIRECT3D FOUNDATIONS

Thus B  (A1)T (the inverse transpose of A) does the job in transforming
normal vectors so that they are perpendicular to its associated transformed
tangent vector uA.

Note that if the matrix is orthogonal (AT  A1), then B  (A1)T  (AT)T  A;
that is, we do not need to compute the inverse transpose, since A does the job in
this case. In summary, when transforming a normal vector by a nonuniform or
shear transformation, use the inverse-transpose.

We implement a helper function in MathHelper.h for computing the inverse-
transpose:

static XMMATRIX InverseTranspose(CXMMATRIX M)

{
 XMMATRIX A = M;
 A.r[3] = XMVectorSet(0.0f, 0.0f, 0.0f, 1.0f);

 XMVECTOR det = XMMatrixDeterminant(A);
 return XMMatrixTranspose(XMMatrixInverse(&det, A));
}

We clear out any translation from the matrix because we use the inverse-transpose
to transform vectors, and translations only apply to points. However, from
§3.2.1 we know that setting w  0 for vectors (using homogeneous coordinates)
prevents vectors from being modified by translations. Therefore, we should
not need to zero out the translation in the matrix. The problem is if we want to
concatenate the inverse-transpose and another matrix that does not contain non-
uniform scaling, say the view matrix (A1)TV, the transposed translation in the
fourth column of (A1)T “leaks” into the product matrix causing errors. Hence,
we zero out the translation as a precaution to avoid this error. The proper way
would be to transform the normal by: ((AV)1)T. Below is an example of a scaling
and translation matrix, and what the inverse-transpose looks like with a fourth
column not [0, 0, 0, 1]T:

 1

1 0 0 0

0 0.5 0 0

0 0 0.5 0

1 1 1 1

1 0 0 1

0 2 0 2

0 0 2 2

0 0 0 1

T

 
 
 
 
 
 

 
  
 
 
 

A

A

Even with the inverse-transpose transformation, normal vectors may lose their
unit length; thus, they may need to be renormalized after the transformation.

Note:

LIGHTING 323

8.3 IMPORTANT VECTORS IN LIGHTING

In this section, we summarize some important vectors involved with lighting.
Referring to Figure 8.8, E is the eye position, and we are considering the point p
the eye sees along the line of site defined by the unit vector v. At the point p the
surface has normal n, and the point is hit by a ray of light traveling with incident
direction I. The light vector L is the unit vector that aims in the opposite direction
of the light ray striking the surface point. Although it may be more intuitive
to work with the direction the light travels I, for lighting calculations we work
with the light vector L; in particular, for calculating Lambert’s Cosine Law, the
vector L is used to evaluate Ln  cos i, where i is the angle between L and n. The
reflection vector r is the reflection of the incident light vector about the surface
normal n. The view vector (or to-eye vector) v  normalize(E  p) is the unit vector
from the surface point p to the eye point E that defines the line of site from the eye
to the point on the surface being seen. Sometimes we need to use the vector v,
which is the unit vector from the eye to the point on the surface we are evaluating
the lighting of.

The refl ection vector is given by: r  I – 2(nI)n; see Figure 8.9. (It is assumed
that n is a unit vector.) However, we can actually use the HLSL intrinsic refl ect
function to compute r for us in a shader program.

8.4 LAMBERT’S COSINE LAW

We can think of light as a collection of photons traveling through space in a certain
direction. Each photon carries some (light) energy. The amount of (light) energy
emitted per second is called radiant flux. The density of radiant flux per area
(called irradiance) is important because that will determine how much light an
area on a surface receives (and thus how bright it will appear to the eye). Loosely,

Figure 8.8. Important vectors involved in lighting calculations. Figure 8.9. Geometry of reflection.

324 DIRECT3D FOUNDATIONS

we can think of irradiance as the amount of light striking an area on a surface, or
the amount of light passing through an imaginary area in space.

Light that strikes a surface head-on (i.e., the light vector L equals the normal
vector n) is more intense than light that glances a surface at an angle. Consider
a small light beam with cross sectional area A1 with radiant flux P passing
through it. If we aim this light beam at a surface head-on (Figure 8.10a), then
the light beam strikes the area A1 on the surface and the irradiance at A1 is
E1  P/A1. Now suppose we rotate the light beam so that it strikes the surface
at an angle (Figure 8.10b), then the light beam covers the larger area A2 and
the irradiance striking this area is E2  P/A2. By trigonometry, A1 and A2 are
related by:

1

2 2 1

1 cos
cos

A

A A A


   

Therefore,

  2 1 1
2 1

cos cos
P P

E E E
A A

      n L

In other words, the irradiance striking area A2 is equal to the irradiance at the
area A1 perpendicular to the light direction scaled by nL  cos . This is called
Lambert’s Cosine Law. To handle the case where light strikes the back of the surface
(which results in the dot product being negative), we clamp the result with the max
function:

 f() = max(cos, 0)  max(Ln, 0)

Figure 8.11 shows a plot of f() to see how the intensity, ranging from 0.0 to 1.0
(i.e., 0% to 100%), varies with .

Figure 8.10. (a) A light beam with cross sectional area A1 strikes a surface head-on. (b) A light beam
with cross sectional area A1 strikes a surface at an angle to cover a larger area A2 on the surface, thereby
spreading the light energy over a larger area, thus making the light appear “dimmer.”

LIGHTING 325

8.5 DIFFUSE LIGHTING

Consider the surface of an opaque object, as in Figure 8.12. When light strikes
a point on the surface, some of the light enters the interior of the object and
interacts with the matter near the surface. The light will bounce around in the
interior, where some of it will be absorbed and the remaining part scattered out of
the surface in every direction; this is called a diffuse reflection. For simplification,
we assume the light is scattered out at the same point the light entered. The
amount of absorption and scattering out depends on the material; for example,
wood, dirt, brick, tile, and stucco would absorb/scatter light differently (which is
why the materials look different). In our approximation for modeling this kind
of light/material interaction, we stipulate that the light scatters out equally in all
directions above the surface; consequently, the reflected light will reach the eye

Figure 8.11. Plot of the function f () = max(cos, 0) = max(Ln, 0) for 2    2. Note that /2  1.57.

Figure 8.12. Incoming light scatters equally in every direction when striking a diffuse surface. The idea is
that light enters the interior of the medium and scatters around under the surface. Some of the light will
be absorbed and the remaining will scatter back out of the surface. Because it is difficult to model this
subsurface scattering, we assume the re-emitted light scatters out equally in all directions above the surface
about the point the light entered.

326 DIRECT3D FOUNDATIONS

no matter the viewpoint (eye position). Therefore, we do not need to take the
viewpoint into consideration (i.e., the diffuse lighting calculation is viewpoint
independent), and the color of a point on the surface will always look the same no
matter the viewpoint.

We break the calculation of diffuse lighting into two parts. For the fi rst part,
we specify a light color and a diffuse albedo color. The diffuse albedo specifi es
the amount of incoming light that the surface refl ects due to diffuse refl ectance
(by energy conservation, the amount not refl ected is absorbed by the material).
This is handled with a component-wise color multiplication (because light can
be colored). For example, suppose some point on a surface refl ects 50% incoming
red light, 100% green light, and 75% blue light, and the incoming light color is
80% intensity white light. That is to say, the quantity of incoming light is given by
BL  (0.8, 0.8, 0.8) and the diffuse albedo is given by md  (0.5, 1.0, 0.75); then the
amount of light refl ected off the point is given by:

 cd = BL  md = (0.8, 0.8, 0.8)  (0.5, 1.0, 0.75) = (0.4, 0.8, 0.6)

Note that the diffuse albedo components must be in the range 0.0 to 1.0 so that
they describe the fraction of light reflected.

The above formula is not quite correct, however. We still need to include
Lambert’s cosine law (which controls how much of the original light the surface
receives based on the angle between the surface normal and light vector). Let
BL represent the quantity of incoming light, md be the diffuse albedo color, L be
the light vector, and n be the surface normal. Then the amount of diffuse light
refl ected off a point is given by:

 cd = max (Ln, 0)  BL  md (eq. 8.1)

8.6 AMBIENT LIGHTING

As stated earlier, our lighting model does not take into consideration indirect light
that has bounced off other objects in the scenes. However, much light we see in the
real world is indirect. For example, a hallway connected to a room might not be in
the direct line of site with a light source in the room, but the light bounces off the
walls in the room and some of it may make it into the hallway, thereby lightening
it up a bit. As a second example, suppose we are sitting in a room with a teapot on
a desk and there is one light source in the room. Only one side of the teapot is in
the direct line of site of light source; nevertheless, the backside of the teapot would
not be completely black. This is because some light scatters off the walls or other
objects in the room and eventually strikes the backside of the teapot.

LIGHTING 327

To sort of hack this indirect light, we introduce an ambient term to the lighting
equation:

 ca = AL md (eq. 8.2)

The color AL specifies the total amount of indirect (ambient) light a surface
receives, which may be different than the light emitted from the source due to the
absorption that occurred when the light bounced off other surfaces. The diffuse
albedo md specifies the amount of incoming light that the surface reflects due to
diffuse reflectance. We use the same value for specifying the amount of incoming
ambient light the surface reflects; that is, for ambient lighting, we are modeling
the diffuse reflectance of the indirect (ambient) light. All ambient light does is
uniformly brighten up the object a bit—there is no real physics calculation at all.
The idea is that the indirect light has scattered and bounced around the scene so
many times that it strikes the object equally in every direction.

8.7 SPECULAR LIGHTING

We used diffuse lighting to model diffuse reflection, where light enters a medium,
bounces around, some light is absorbed, and the remaining light is scattered
out of the medium in every direction. A second kind of reflection happens due
to the Fresnel effect, which is a physical phenomenon. When light reaches the
interface between two media with different indices of refraction some of the
light is reflected and the remaining light is refracted (see Figure 8.13). The index
of refraction is a physical property of a medium that is the ratio of the speed of
light in a vacuum to the speed of light in the given medium. We refer to this light

Figure 8.13. (a) The Fresnel effect for a perfectly flat mirror with normal n. The incident light I is split
where some of it reflects in the reflection direction r and the remaining light refracts into the medium in the
refraction direction t. All these vectors are in the same plane. The angle between the reflection vector and
normal is always i, which is the same as the angle between the light vector L = I and normal n. The angle t
between the refraction vector and n depends in the indices of refraction between the two mediums and is
specified by Snell’s Law. (b) Most objects are not perfectly flat mirrors but have microscopic roughness. This
causes the reflected and refracted light to spread about the reflection and refraction vectors.

328 DIRECT3D FOUNDATIONS

reflection process as specular reflection and the reflected light as specular light.
Specular light is illustrated in Figure 8.14a.

If the refracted vector exits the medium (from the other side) and enters the
eye, the object appears transparent. That is, light passes through transparent
objects. Real-time graphics typically use alpha blending or a post process effect to
approximate refraction in transparent objects, which we will explain later in this
book. For now, we consider only opaque objects.

For opaque objects, the refracted light enters the medium and undergoes
diffuse refl ectance. So we can see from Figure 8.14b that for opaque objects, the
amount of light that refl ects off a surface and makes it into the eye is a combination
of body refl ected (diffuse) light and specular refl ection. In contrast to diffuse
light, specular light might not travel into the eye because it refl ects in a specifi c
direction; that is to say, the specular lighting calculation is viewpoint dependent.
This means that as the eye moves about the scene, the amount of specular light it
receives will change.

8.7.1 Fresnel Effect
Let us consider a flat surface with normal n that separates two mediums with
different indices of refraction. Due to the index of refraction discontinuity at
the surface, when incoming light strikes the surface some reflects away from the
surface and some refracts into the surface (see Figure 8.13). The Fresnel equations
mathematically describe the percentage of incoming light that is reflected,
0  RF  1. By conservation of energy, if RF is the amount of reflected light then
(1  RF) is the amount of refracted light. The value RF is an RGB vector because
the amount of reflection depends on the light color.

How much light is refl ected depends on the medium (some materials will be
more refl ective than others) and also on the angle i between the normal vector
n and light vector L. Due to their complexity, the full Fresnel equations are
not typically used in real-time rendering; instead, the Schlick approximation is
used:

        5
0 1 0 1 cosF i F F i       R R R

Figure 8.14. (a) Specular light of a rough surface spreads about the reflection vector r. (b) The reflected
light that makes it into the eye is a combination of specular reflection and diffuse reflection.

LIGHTING 329

RF(0) is a property of the medium; below are some values for common materials
[Möller08]:

Medium RF(0)

Water (0.02, 0.02, 0.02)

Glass (0.08, 0.08, 0.08)

Plastic (0.05, 0.05, 0.05)

Gold (1.0, 0.71, 0.29)

Silver (0.95, 0.93, 0.88)

Copper (0.95, 0.64, 0.54)

Figure 8.15 shows a plot of the Schlick approximation for a couple different RF(0).
The key observation is that the amount of reflection increases as i  90. Let us
look at a real-world example. Consider Figure 8.16. Suppose we are standing a
couple feet deep in a calm pond of relatively clear water. If we look down, we mostly
see the bottom sand and rocks of the pond. This is because the light coming down
from the environment that reflects into our eye forms a small angle i near 0.0;
thus, the amount of reflection is low, and, by energy conservation, the amount of
refraction high. On the other hand, if we look towards the horizon, we will see a
strong reflection in the pond water. This is because the light coming down from
the environment that makes it into our eye forms an angle i closer to 90.0, thus
increasing the amount of reflection. This behavior is often referred to as the Fresnel
effect. To summarize the Fresnel effect briefly: the amount of reflected light depends
on the material (RF(0)) and the angle between the normal and light vector.

Figure 8.15. The Schlick approximation plotted for different materials: water, ruby, and iron.

330 DIRECT3D FOUNDATIONS

Metals absorb transmitted light [Möller08], which means they will not have
body refl ectance. Metals do not appear black, however, as they have high RF(0)
values which means they refl ect a fair amount of specular light even at small
incident angles near 0.

8.7.2 Roughness
Reflective objects in the real world tend not to be perfect mirrors. Even if an object’s
surface appears flat, at the microscopic level we can think of it as having roughness.
Referring to Figure 8.17, we can think of a perfect mirror as having no roughness
and its micro-normals all aim in the same direction as the macro-normal. As the
roughness increases, the direction of the micro-normals diverge from the macro-
normal, causing the reflected light to spread out into a specular lobe.

To model roughness mathematically, we employ the microfacet model, where
we model the microscopic surface as a collection of tiny fl at elements called
microfacets; the micro-normals are the normals to the microfacets. For a given view
v and light vector L, we want to know the fraction of microfacets that refl ect L into
v; in other words, the fraction of microfacets with normal h  normalize(L  v);
see Figure 8.18. This will tell us how much light is refl ected into the eye from

Figure 8.16. (a): Looking down in the pond, reflection is low and refraction high because the angle between L and
n is small. (b) Look towards the horizon and reflection is high and refraction low because the angle between L and
n is closer to 90.

Figure 8.17. (a) The black horizontal bar represents the magnification of a small surface element.
At the microscopic level, the area has many micro-normals that aim in different directions due to roughness
at the microscopic level. The smoother the surface, the more aligned the micro-normals will be with the
macro-normal; the rougher the surface, the more the micro-normals will diverge from the macro-normal.
(b) This roughness causes the specular reflected light to spread out. The shape of the of the specular
reflection is referred to as the specular lobe. In general, the shape of the specular lobe can vary based on the
type of surface material being modeled.

LIGHTING 331

specular refl ection—the more microfacets that refl ect L into v the brighter the
specular light the eye sees.

The vector h is called the halfway vector as it lies halfway between L and v.
Moreover, let us also introduce the angle h between the halfway vector h and the
macro-normal n.

We defi ne the normalized distribution function (h)  [0, 1] to denote the
fraction of microfacets with normals h that make an angle h with the macro-
normal n. Intuitively, we expect that (h) achieves its maximum when h  0.
That is, we expect the microfacet normals to be biased towards the macro-normal,
and as h increases (as h diverges from the micro-normal n) we expect the fraction
of microfacets with normal h to decrease. A popular controllable function to
model (h) that has the expectations just discussed is:

(h)  cosm(h)
  cosm(n  h)

Note that cos(h)  (nh) provided both vectors and unit length. Figure 8.19
shows (h)  cosm(h) for various m. Here m controls the roughness, which
specifies the fraction of microfacets with normals h that make an angle h with
the macro-normal n. As m decreases, the surface becomes rougher, and the
microfacet normals increasingly diverge from the macro-normal. As m increases,
the surface becomes smoother, and the microfacet normals increasingly converge
to the macro-normal.

We can combine (h) with a normalization factor to obtain a new function
that models the amount of specular refl ection of light based on roughness:

   

 

8
cos

8
8

8

m
h h

m

m
S

m


  


 n h

Figure 8.18. The microfacets with normal h reflect L into v.

332 DIRECT3D FOUNDATIONS

Figure 8.20 shows this function for various m. Like before, m controls the

roughness, but we have added the 8

8

m normalization factor so that light energy

is conserved; it is essentially controlling the height of the curve in Figure 8.20 so
that the overall light energy is conserved as the specular lobe widens or narrows
with m. For a smaller m, the surface is rougher and the specular lobe widens as
light energy is more spread out; therefore, we expect the specular highlight to be
dimmer since the energy has been spread out. On the other hand, for a larger m,
the surface is smoother and the specular lobe is narrower; therefore, we expect
the specular highlight to be brighter since the energy has been concentrated.
Geometrically, m controls the spread of the specular lobe. To model smooth
surfaces (like polished metal) you will use a large m, and for rougher surfaces you
will use a small m.

Figure 8.19. A function to model roughness.

Figure 8.20. A function to model specular reflection of light due to roughness.

LIGHTING 333

To conclude this section, let us combine Fresnel refl ection and surface roughness.
We are trying to compute how much light is refl ected into the view direction v (see
Figure 8.18). Recall that microfacets with normals h refl ect light into v. Let h be the
angle between the light vector and half vector h, then RF(h) tells us the amount of
light refl ected about h into v due to the Fresnel effect. Multiplying the amount of
refl ected light RF(h) due to the Fresnel effect with the amount of light refl ected due
to roughness S(h) gives us the amount of specular refl ected light: Let (max(Ln,
0)BL) represent the quantity of incoming light that strikes the surface point we are
lighting, then the fraction of (max(Ln, 0)BL) specularly refl ected into the eye due
to roughness and the Fresnel effect is given by:

    8
max , 0 ()

8

m
s L F h

m
     c L n B R n h (eq. 8.3)

Observe that if Ln  0 the light strikes the back of the surface we are computing;
hence the front-side surface receives no light.

8.8 LIGHTING MODEL RECAP

Bringing everything together, the total light reflected off a surface is a sum of
ambient light reflectance, diffuse light reflectance and specular light reflectance:

1. Ambient Light ca: Models the amount of light reflected off the surface due to
indirect light.

2. Diffuse Light cd: Models light that enters the interior of a medium, scatters
around under the surface where some of the light is absorbed and the
remaining light scatters back out of the surface. Because it is difficult to model
this subsurface scattering, we assume the re-emitted light scatters out equally
in all directions above the surface about the point the light entered.

3. Specular Light cs: Models the light that is reflected off the surface due to the
Fresnel effect and surface roughness.

This leads to the lighting equation our shaders implement in this book:

   8
max , 0 ()

8

a d s

m
L d L d F h

LitColor

m

  

          
 

c c c

A m L n B m R n h
 (eq. 8.4)

All of the vectors in this equation are assumed to be unit length.

1. L: The light vector aims toward the light source.

2. n: The surface normal.

334 DIRECT3D FOUNDATIONS

3. h: The halfway vector lies halfway between the light vector and view vector
(vector from surface point being lit to the eye point).

4. AL: Represent the quantity of incoming ambient light.

5. BL: Represent the quantity of incoming direct light.

6. md: Specifies the amount of incoming light light that the surface reflects due
to diffuse reflectance.

7. Ln : Lambert’s Cosine Law.

8. h: Angle between the half vector h and light vector L.

9. RF(h): Specifies the amount of light reflected about h into the eye due to the
Fresnel effect.

10. m: Controls the surface roughness.

11. (nh)m: Specifies the fraction of microfacets with normals h that make an
angle hwith the macro-normal n.

12. 8

8

m : Normalization factor to model energy conservation in the specular

reflection.

Figure 8.21 shows how these three components work together.

Equation 4 is a common and popular lighting equation, but it is just a model.
Other lighting models have been proposed as well.

8.9 IMPLEMENTING MATERIALS

Our material structure looks like this, and is defined in d3dUtil.h:

// Simple struct to represent a material for our demos.
struct Material
{
 // Unique material name for lookup.
 std::string Name;

 // Index into constant buffer corresponding to this material.
 int MatCBIndex = -1;

Note:

Figure 8.21: (a) Sphere colored with ambient light only, which uniformly brightens it. (b) Ambient and
diffuse lighting combined. There is now a smooth transition from bright to dark due to Lambert’s cosine
law. (c) Ambient, diffuse, and specular lighting. The specular lighting yields a specular highlight.

LIGHTING 335

 // Index into SRV heap for diffuse texture. Used in the texturing
 // chapter.
 int DiffuseSrvHeapIndex = -1;

 // Dirty flag indicating the material has changed and we need to
 // update the constant buffer. Because we have a material constant
 // buffer for each FrameResource, we have to apply the update to each
 // FrameResource. Thus, when we modify a material we should set
 // NumFramesDirty = gNumFrameResources so that each frame resource
 // gets the update.
 int NumFramesDirty = gNumFrameResources;

 // Material constant buffer data used for shading.
 DirectX::XMFLOAT4 DiffuseAlbedo = { 1.0f, 1.0f, 1.0f, 1.0f };
 DirectX::XMFLOAT3 FresnelR0 = { 0.01f, 0.01f, 0.01f };
 float Roughness = 0.25f;
 DirectX::XMFLOAT4X4 MatTransform = MathHelper::Identity4x4();
};

Modeling real-world materials will require a combination of setting realistic values
for the DiffuseAlbedo and FresnelR0, and some artistic tweaking. For example,
metal conductors absorb refracted light [Möller08] that enters the interior of the
metal, which means metals will not have diffuse reflection (i.e., the DiffuseAlbedo
would be zero). However, to compensate that we are not doing 100% physical
simulation of lighting, it may give better artistic results to give a low DiffuseAlbedo
value rather than zero. The point is: we will try to use physically realistic material
values, but are free to tweak the values as we want if the end result looks better
from an artistic point of view.

In our material structure, roughness is specifi ed in a normalized fl oating-point
value in the [0, 1] range. A roughness of 0 would indicate a perfectly smooth
surface, and a roughness of 1 would indicate the roughest surface physically
possible. The normalized range makes it easier to author roughness and compare
the roughness between different materials. For example, a material with a
roughness of 0.6 is twice as rough as a material with roughness 0.3. In the shader
code, we will use the roughness to derive the exponent m used in Equation 8.4.
Note that with our defi nition of roughness, the shininess of a surface is just the
inverse of the roughness: shininess  1 – roughness  [0, 1].

A question now is at what granularity we should specify the material values? The
material values may vary over the surface; that is, different points on the surface may
have different material values. For example, consider a car model as shown in Figure
8.22, where the frame, windows, lights, and tires refl ect and absorb light differently,
and so the material values would need to vary over the car surface.

To implement this variation, one solution might be to specify material values
on a per vertex basis. These per vertex materials would then interpolated across the
triangle during rasterization, giving us material values for each point on the surface

336 DIRECT3D FOUNDATIONS

of the triangle mesh. However, as we saw from the “Hills” demo in Chapter 7,
per vertex colors are still too coarse to realistically model fi ne details. Moreover,
per vertex colors add additional data to our vertex structures, and we need to have
tools to paint per vertex colors. Instead, the prevalent solution is to use texture
mapping, which will have to wait until the next chapter. For this chapter, we allow
material changes at the draw call frequency. To do this, we defi ne the properties of
each unique material and put them in a table:

std::unordered_map<std::string, std::unique_ptr<Material>> mMaterials;

void LitWavesApp::BuildMaterials()
{
 auto grass = std::make_unique<Material>();
 grass->Name = "grass";
 grass->MatCBIndex = 0;
 grass->DiffuseAlbedo = XMFLOAT4(0.2f, 0.6f, 0.6f, 1.0f);
 grass->FresnelR0 = XMFLOAT3(0.01f, 0.01f, 0.01f);
 grass->Roughness = 0.125f;

 // This is not a good water material definition, but we do not have
 // all the rendering tools we need (transparency, environment
 // reflection), so we fake it for now.
 auto water = std::make_unique<Material>();
 water->Name = "water";
 water->MatCBIndex = 1;
 water->DiffuseAlbedo = XMFLOAT4(0.0f, 0.2f, 0.6f, 1.0f);
 water->FresnelR0 = XMFLOAT3(0.1f, 0.1f, 0.1f);
 water->Roughness = 0.0f;

 mMaterials["grass"] = std::move(grass);
 mMaterials["water"] = std::move(water);
}

The above table stores the material data in system memory. In order for the GPU
to access the material data in a shader, we need to mirror the relevant data in a

Figure 8.22. A car mesh divided into five material attribute groups.

LIGHTING 337

constant buffer. Just like we did with per-object constant buffers, we add a constant
buffer to each FrameResource that will store the constants for each material:

struct MaterialConstants
{
 DirectX::XMFLOAT4 DiffuseAlbedo = { 1.0f, 1.0f, 1.0f, 1.0f };
 DirectX::XMFLOAT3 FresnelR0 = { 0.01f, 0.01f, 0.01f };
 float Roughness = 0.25f;

 // Used in the chapter on texture mapping.
 DirectX::XMFLOAT4X4 MatTransform = MathHelper::Identity4x4();
};

struct FrameResource
{
public:
 ...

 std::unique_ptr<UploadBuffer<MaterialConstants>> MaterialCB =
nullptr;

 ...
};

Note that the MaterialConstants structure contains a subset of the Material data;
specifically, it contains just the data the shaders need for rendering.

In the update function, the material data is then copied to a subregion of the
constant buffer whenever it is changed (“dirty”) so that the GPU material constant
buffer data is kept up to date with the system memory material data:

void LitWavesApp::UpdateMaterialCBs(const GameTimer& gt)
{
 auto currMaterialCB = mCurrFrameResource->MaterialCB.get();
 for(auto& e : mMaterials)
 {
 // Only update the cbuffer data if the constants have changed. If
 // the cbuffer data changes, it needs to be updated for each
 // FrameResource.
 Material* mat = e.second.get();
 if(mat->NumFramesDirty > 0)
 {
 XMMATRIX matTransform = XMLoadFloat4x4(&mat->MatTransform);

 MaterialConstants matConstants;
 matConstants.DiffuseAlbedo = mat->DiffuseAlbedo;
 matConstants.FresnelR0 = mat->FresnelR0;
 matConstants.Roughness = mat->Roughness;

 currMaterialCB->CopyData(mat->MatCBIndex, matConstants);

 // Next FrameResource need to be updated too.
 mat->NumFramesDirty--;
 }

338 DIRECT3D FOUNDATIONS

 }
}

Now each render item contains a pointer to a Material. Note that multiple render
items can refer to the same Material object; for example, multiple render items
might use the same “brick” material. In turn, each Material object has an index
that specifies were its constant data is in the material constant buffer. From this,
we can offset to the virtual address of the constant data needed for the render
item we are drawing, and set it to the root descriptor that expects the material
constant data. (Alternatively, we could offset to a CBV descriptor in a heap and set
a descriptor table, but we defined our root signature in this demo to take a root
descriptor for the material constant buffer instead of a table.) The following code
shows how we draw render items with different materials:

void LitWavesApp::DrawRenderItems(
 ID3D12GraphicsCommandList* cmdList,
 const std::vector<RenderItem*>& ritems)
{
 UINT objCBByteSize = d3dUtil::CalcConstantBufferByteSize
 (sizeof(ObjectConstants));
 UINT matCBByteSize = d3dUtil::CalcConstantBufferByteSize
 (sizeof(MaterialConstants));

 auto objectCB = mCurrFrameResource->ObjectCB->Resource();
 auto matCB = mCurrFrameResource->MaterialCB->Resource();

 // For each render item...
 for(size_t i = 0; i < ritems.size(); ++i)
 {
 auto ri = ritems[i];

 cmdList->IASetVertexBuffers(0, 1, &ri->Geo-
>VertexBufferView());
 cmdList->IASetIndexBuffer(&ri->Geo->IndexBufferView());
 cmdList->IASetPrimitiveTopology(ri->PrimitiveType);

 D3D12_GPU_VIRTUAL_ADDRESS objCBAddress =
 objectCB->GetGPUVirtualAddress() +
 ri->ObjCBIndex*objCBByteSize;
 D3D12_GPU_VIRTUAL_ADDRESS matCBAddress =
 matCB->GetGPUVirtualAddress() +
 ri->Mat->MatCBIndex*matCBByteSize;

 cmdList->SetGraphicsRootConstantBufferView(0, objCBAddress);
 cmdList->SetGraphicsRootConstantBufferView(1, matCBAddress);

 cmdList->DrawIndexedInstanced(ri->IndexCount, 1,
 ri->StartIndexLocation, ri->BaseVertexLocation, 0);
 }

}

LIGHTING 339

We remind the reader that we need normal vectors at each point on the surface
of a triangle mesh so that we can determine the angle at which light strikes a
point on the mesh surface (for Lambert’s cosine law). In order to obtain a normal
vector approximation at each point on the surface of the triangle mesh, we specify
normals at the vertex level. These vertex normals will be interpolated across the
triangle during rasterization.

So far we have discussed the components of light, but we have not discussed
specifi c kinds of light sources. The next three sections describe how to implement,
parallel, point, and spot lights.

8.10 PARALLEL LIGHTS

A parallel light (or directional light) approximates a light source that is very far
away. Consequently, we can approximate all incoming light rays as parallel to each
other (Figure 8.23). Moreover, because the light source is very far away, we can
ignore the effects of distance and just specify the light intensity where the light
strikes the scene.

A parallel light source is defi ned by a vector, which specifi es the direction the
light rays travel. Because the light rays are parallel, they all use the same direction
vector. The light vector, aims in the opposite direction the light rays travel. A
common example of a light source that can accurately be modeled as a directional
light is the sun (Figure 8.24).

8.11 POINT LIGHTS

A good physical example of a point light is a lightbulb; it radiates spherically in
all directions (Figure 8.25). In particular, for an arbitrary point P, there exists a
light ray originating from the point light position Q traveling toward the point.

Figure 8.23. Parallel light rays striking a surface.

Figure 8.24. The figure is not drawn to scale, but if you select
a small surface area on the Earth, the light rays striking that
area are approximately parallel.

340 DIRECT3D FOUNDATIONS

As usual, we define the light vector to go in the opposite direction; that is, the
direction from the point P to the point light source Q:






Q P
L

|| Q P ||

Essentially, the only difference between point lights and parallel lights is how
the light vector is computed—it varies from point to point for point lights, but
remains constant for parallel lights.

8.11.1 Attenuation
Physically, light intensity weakens as a function of distance based on the inverse
squared law. That is to say, the light intensity at a point a distance d away from the
light source is given by:

   0
2

I
I d

d


where I0 is the light intensity at a distance d  1 from the light source. This works
well if you set up physically based light values and use HDR (high dynamic range)
lighting and tonemapping. However, an easier formula to get started with, and the
one we shall use in our demos, is a linear falloff function:

  att saturate
falloffEnd d

falloffEnd falloffStart

 
 
 

A graph of this function is depicted in Figure 8.26. The saturate function clamps
the argument to the range [0, 1]:

  
, 0 1

saturate 0, 0

1, 1

x x

x x

x

 
 
 

Figure 8.25. Point lights radiate in every direction; in particular, for an arbitrary point P there exists a light
ray originating from the point source Q towards P.

LIGHTING 341

The formula for evaluating a point light is the same as Equation 8.4, but we
must scale the light source value BL by the attenuation factor att(d). Note that
attenuation does not affect ambient term, as the ambient term is used to model
indirect light that has bounced around.

Using our falloff function, a point whose distance from the light source is
greater than or equal to falloffEnd receives no light. This provides a useful lighting
optimization: in our shader programs, if a point is out of range, then we can
return early and skip the lighting calculations with dynamic branching.

8.12 SPOTLIGHTS

A good physical example of a spotlight is a flashlight. Essentially, a spotlight has
a position Q, is aimed in a direction d, and radiates light through a cone (see
Figure 8.27).

To implement a spotlight, we begin as we do with a point light: the light vector
is given by:






Q P
L

|| Q P ||

Figure 8.26. The attenuation factor that scales the light value stays at full strength (1.0) until the distance d
reaches falloffStart, it then linearly decays to 0.0 as the distance reaches falloffEnd.

Figure 8.27. A spotlight has a position Q, is aimed in a direction d, and radiates light through a cone with
angle max.

342 DIRECT3D FOUNDATIONS

where P is the position of the point being lit and Q is the position of the spotlight.
Observe from Figure 8.27 that P is inside the spotlight’s cone (and therefore
receives light) if and only if the angle  between L and d is smaller than the cone
angle max. Moreover, all the light in the spotlight’s cone should not be of equal
intensity; the light at the center of the cone should be the most intense and the
light intensity should fade to zero as  increases from 0 to max.

So how do we control the intensity falloff as a function of , and also how do
we control the size of the spotlight’s cone? We can use a function with the same
graph as in Figure 8.19, but replace h with  and m with s:

      max cos ,0 max , 0
s s

spotk      L d

This gives us what we want: the intensity smoothly fades as  increases;
additionally, by altering the exponent s, we can indirectly control max (the angle
the intensity drops to 0); that is to say, we can shrink or expand the spotlight cone
by varying s. For example, if we set s  8, the cone has approximately a 45 half
angle.

The spotlight equation is just like Equation 8.4, except that we multiply the
light source value BL by both the attenuation factor att(d) and the spotlight factor
kspot to scale the light intensity based on where the point is with respect to the
spotlight cone.

We see that a spotlight is more expensive than a point light because we need to
compute the additional kspot factor and multiply by it. Similarly, we see that a point
light is more expensive than a directional light because the distance d needs to
be computed (this is actually pretty expensive because distance involves a square
root operation), and we need to compute and multiply by the attenuation factor.
To summarize, directional lights are the least expensive light source, followed by
point lights, followed by spotlights being the most expensive light source.

8.13 LIGHTING IMPLEMENTATION

This section discusses the details for implementing directional, point, and spot
lights.

8.13.1 Light Structure
In d3dUtil.h, we define the following structure to support lights. This structure
can represent directional, point, or spot lights. However, depending on the light
type, some values will not be used; for example, a point light does not use the
Direction data member.

LIGHTING 343

struct Light
{
 DirectX::XMFLOAT3 Strength; // Light color
 float FalloffStart; // point/spot light only

 DirectX::XMFLOAT3 Direction;// directional/spot light only
 float FalloffEnd; // point/spot light only
 DirectX::XMFLOAT3 Position; // point/spot light only
 float SpotPower; // spot light only
};

The LightingUtils.hlsl fi le defi nes structures that mirror these:

struct Light
{
 float3 Strength;
 float FalloffStart; // point/spot light only
 float3 Direction; // directional/spot light only
 float FalloffEnd; // point/spot light only
 float3 Position; // point light only
 float SpotPower; // spot light only
};

The order of data members listed in the Light structure (and also the
MaterialConstants structure) is not arbitrary. They are cognizant of the HLSL
structure packing rules. See Appendix B (“Structure Packing”) for details, but the
main idea is that in HLSL, structure padding occurs so that elements are packed
into 4D vectors, with the restriction that a single element cannot be split across
two 4D vectors. This means the above structure gets nicely packed into three 4D
vectors like this:

vector 1: (Strength.x, Strength.y, Strength.z, FalloffStart)
vector 2: (Direction.x, Direction.y, Direction.z, FalloffEnd)
vector 3: (Position.x, Position.y, Position.z, SpotPower)

On the other hand, if we wrote our Light structure like this

struct Light
{
 DirectX::XMFLOAT3 Strength; // Light color
 DirectX::XMFLOAT3 Direction;// directional/spot light only
 DirectX::XMFLOAT3 Position; // point/spot light only
 float FalloffStart; // point/spot light only
 float FalloffEnd; // point/spot light only
 float SpotPower; // spot light only
};

struct Light
{
 float3 Strength;
 float3 Direction; // directional/spot light only
 float3 Position; // point light only
 float FalloffStart; // point/spot light only
 float FalloffEnd; // point/spot light only

344 DIRECT3D FOUNDATIONS

 float SpotPower; // spot light only
};

then it would get packed into four 4D vectors like this:

vector 1: (Strength.x, Strength.y, Strength.z, empty)
vector 2: (Direction.x, Direction.y, Direction.z, empty)
vector 3: (Position.x, Position.y, Position.z, empty)
vector 4: (FalloffStart, FalloffEnd, SpotPower, empty)

The second approach takes up more data, but that is not the main problem. The
more serious problem is that we have a C application side structure that mirrors
the HLSL structure, but the C structure does not follow the same HLSL packing
rules; thus, the C and HLSL structure layouts are likely not going to match unless
you are careful with the HLSL packing rules and write them so that they do. If the
C and HLSL structure layouts do not match, then we will get rendering bugs
when we upload data from the CPU to GPU constant buffers using memcpy.

8.13.2 Common Helper Functions
The below three functions, defined in LightingUtils.hlsl, contain code that is
common to more than one type of light, and therefore we define in helper
functions.

1. CalcAttenuation: Implements a linear attenuation factor, which applies to
point lights and spot lights.

2. SchlickFresnel: The Schlick approximation to the Fresnel equations; it
approximates the percentage of light reflected off a surface with normal n
based on the angle between the light vector L and surface normal n due to the
Fresnel effect.

3. BlinnPhong: Computes the amount of light reflected into the eye; it is the sum
of diffuse reflectance and specular reflectance.

float CalcAttenuation(float d, float falloffStart, float falloffEnd)
{
 // Linear falloff.
 return saturate((falloffEnd-d) / (falloffEnd - falloffStart));
}

// Schlick gives an approximation to Fresnel reflectance
// (see pg. 233 "Real-Time Rendering 3rd Ed.").
// R0 = ((n-1)/(n+1))^2, where n is the index of refraction.
float3 SchlickFresnel(float3 R0, float3 normal, float3 lightVec)
{
 float cosIncidentAngle = saturate(dot(normal, lightVec));

 float f0 = 1.0f - cosIncidentAngle;
 float3 reflectPercent = R0 + (1.0f - R0)*(f0*f0*f0*f0*f0);

LIGHTING 345

 return reflectPercent;
}

struct Material
{
 float4 DiffuseAlbedo;
 float3 FresnelR0;

 // Shininess is inverse of roughness: Shininess = 1-roughness.
 float Shininess;
};

float3 BlinnPhong(float3 lightStrength, float3 lightVec,
 float3 normal, float3 toEye, Material mat)
{
 // Derive m from the shininess, which is derived from the roughness.
 const float m = mat.Shininess * 256.0f;
 float3 halfVec = normalize(toEye + lightVec);

 float roughnessFactor = (m + 8.0f)*pow(max(dot(halfVec, normal),
0.0f), m) / 8.0f;

 float3 fresnelFactor = SchlickFresnel(mat.FresnelR0, halfVec,
lightVec);

 // Our spec formula goes outside [0,1] range, but we are doing
 // LDR rendering. So scale it down a bit.
 specAlbedo = specAlbedo / (specAlbedo + 1.0f);

 return (mat.DiffuseAlbedo.rgb + specAlbedo) * lightStrength;
}

The following intrinsic HLSL functions were used: dot, pow, and max, which are,
respectively, the vector dot product function, power function, and maximum
function. Descriptions of most of the HLSL intrinsic functions can be found
in Appendix B, along with a quick primer on other HLSL syntax. One thing
to note, however, is that when two vectors are multiplied with operator*, the
multiplication is done component-wise.

Our formula for computing the specular albedo allows for specular values to be
greater than 1 which indicates very bright highlights. However, our render target
expects color values to be in the low-dynamic-range (LDR) of [0, 1]. Values
outside this range will simply get clamped to 1.0 since our render target requires
color values to be in the [0, 1] range. Therefore, to get softer specular highlights
without a sharp clamp, we need to need to scale down the specular albedo:

 specAlbedo = specAlbedo / (specAlbedo + 1.0f);

High-Dynamic-Range (HDR) lighting uses fl oating-point render targets that
allows light values to go outside the range [0, 1], and then a tonemapping step
is performed to remap the high-dynamic-range back to [0, 1] for display, while
preserving the details that are important. HDR rendering and tonemapping is

Note:

346 DIRECT3D FOUNDATIONS

a subject on its own—see the textbook by [Reinhard10]. However, [Pettineo12]
provides a good introduction and demo to experiment with.

On the PC, HLSL functions are always inlined; therefore, there is no performance
overhead for functions or parameter passing.

8.13.3 Implementing Directional Lights
Given the eye position E and given a point p on a surface visible to the eye with
surface normal n, and material properties, the following HLSL function outputs
the amount of light, from a directional light source, that reflects into the to-eye
direction v  normalize (E  p). In our samples, this function will be called in a
pixel shader to determine the color of the pixel based on lighting.

float3 ComputeDirectionalLight(Light L, Material mat, float3 normal,
float3 toEye)
{
 // The light vector aims opposite the direction the light rays

travel.
 float3 lightVec = -L.Direction;

 // Scale light down by Lambert’s cosine law.
 float ndotl = max(dot(lightVec, normal), 0.0f);
 float3 lightStrength = L.Strength * ndotl;

 return BlinnPhong(lightStrength, lightVec, normal, toEye, mat);
}

8.13.4 Implementing Point Lights
Given the eye position E and given a point p on a surface visible to the eye with
surface normal n, and material properties, the following HLSL function outputs
the amount of light, from a point light source, that reflects into the to-eye direction
v  normalize (E  p) . In our samples, this function will be called in a pixel shader
to determine the color of the pixel based on lighting.

float3 ComputePointLight(Light L, Material mat, float3 pos, float3
normal, float3 toEye)
{
 // The vector from the surface to the light.
 float3 lightVec = L.Position - pos;

 // The distance from surface to light.
 float d = length(lightVec);

 // Range test.
 if(d > L.FalloffEnd)
 return 0.0f;

Note:

LIGHTING 347

 // Normalize the light vector.
 lightVec /= d;

 // Scale light down by Lambert’s cosine law.
 float ndotl = max(dot(lightVec, normal), 0.0f);
 float3 lightStrength = L.Strength * ndotl;

 // Attenuate light by distance.
 float att = CalcAttenuation(d, L.FalloffStart, L.FalloffEnd);
 lightStrength *= att;

 return BlinnPhong(lightStrength, lightVec, normal, toEye, mat);
}

8.13.5 Implementing Spotlights
Given the eye position E and given a point p on a surface visible to the eye with
surface normal n, and material properties, the following HLSL function outputs
the amount of light, from a spot light source, that reflects into the to-eye direction
v  normalize (E  p). In our samples, this function will be called in a pixel shader
to determine the color of the pixel based on lighting.

float3 ComputeSpotLight(Light L, Material mat, float3 pos, float3
normal, float3 toEye)
{
 // The vector from the surface to the light.
 float3 lightVec = L.Position - pos;

 // The distance from surface to light.
 float d = length(lightVec);

 // Range test.
 if(d > L.FalloffEnd)
 return 0.0f;

 // Normalize the light vector.
 lightVec /= d;

 // Scale light down by Lambert’s cosine law.
 float ndotl = max(dot(lightVec, normal), 0.0f);
 float3 lightStrength = L.Strength * ndotl;

 // Attenuate light by distance.
 float att = CalcAttenuation(d, L.FalloffStart, L.FalloffEnd);
 lightStrength *= att;

 // Scale by spotlight
 float spotFactor = pow(max(dot(-lightVec, L.Direction), 0.0f),

L.SpotPower);
 lightStrength *= spotFactor;

 return BlinnPhong(lightStrength, lightVec, normal, toEye, mat);
}

348 DIRECT3D FOUNDATIONS

8.13.6 Accumulating Multiple Lights
Lighting is additive, so supporting multiple lights in a scene simply means we
need to iterate over each light source and sum its contribution to the point/pixel
we are evaluating the lighting of. Our sample framework supports up to sixteen
total lights. We can use any combination of directional, point, or spot lights, but
the total must not exceed sixteen. Moreover, our code uses the convention that
directional lights must come first in the light array, point lights come second, and
spot lights come last. The following code evaluates the lighting equation for a
point

#define MaxLights 16

// Constant data that varies per material.
cbuffer cbPass : register(b2)
{
 ...
// Indices [0, NUM_DIR_LIGHTS) are directional lights;
// indices [NUM_DIR_LIGHTS, NUM_DIR_LIGHTS+NUM_POINT_LIGHTS) are
// point lights;
// indices [NUM_DIR_LIGHTS+NUM_POINT_LIGHTS,
// NUM_DIR_LIGHTS+NUM_POINT_LIGHT+NUM_SPOT_LIGHTS)
// are spot lights for a maximum of MaxLights per object.
 Light gLights[MaxLights];
};

float4 ComputeLighting(Light gLights[MaxLights], Material mat,
 float3 pos, float3 normal, float3 toEye,
 float3 shadowFactor)
{
 float3 result = 0.0f;

 int i = 0;

#if (NUM_DIR_LIGHTS > 0)
 for(i = 0; i < NUM_DIR_LIGHTS; ++i)
 {
 result += shadowFactor[i] * ComputeDirectionalLight(gLights[i],

mat, normal, toEye);
 }
#endif

#if (NUM_POINT_LIGHTS > 0)
 for(i = NUM_DIR_LIGHTS; i < NUM_DIR_LIGHTS+NUM_POINT_LIGHTS; ++i)
 {
 result += ComputePointLight(gLights[i], mat, pos, normal, toEye);
 }
#endif

#if (NUM_SPOT_LIGHTS > 0)
 for(i = NUM_DIR_LIGHTS + NUM_POINT_LIGHTS;
 i < NUM_DIR_LIGHTS + NUM_POINT_LIGHTS + NUM_SPOT_LIGHTS;
 ++i)

LIGHTING 349

 {
 result += ComputeSpotLight(gLights[i], mat, pos, normal, toEye);
 }
#endif

 return float4(result, 0.0f);
}

Observe that the number of lights for each type is controlled with #defines. The
idea is for the shader to only do the lighting equation for the number of lights
that are actually needed. So if an application only requires three lights, we only do
the calculations for three lights. If your application needs to support a different
number of lights at different times, then you just generate different shaders using
different #defines.

The shadowFactor parameter will not be used until the chapter on shadowing.
So for now, we just set this to the vector (1, 1, 1), which makes the shadow factor
have no effect in the equation.

8.13.7 The Main HLSL File
The below code contains the vertex and pixel shaders used for the demo of
this chapter, and makes use of the HLSL code in LightingUtil.hlsl we have been
discussing up to now.

//***
// Default.hlsl by Frank Luna (C) 2015 All Rights Reserved.
//
// Default shader, currently supports lighting.
//***

// Defaults for number of lights.
#ifndef NUM_DIR_LIGHTS
 #define NUM_DIR_LIGHTS 1
#endif

#ifndef NUM_POINT_LIGHTS
 #define NUM_POINT_LIGHTS 0
#endif

#ifndef NUM_SPOT_LIGHTS
 #define NUM_SPOT_LIGHTS 0
#endif

// Include structures and functions for lighting.
#include "LightingUtil.hlsl"

// Constant data that varies per frame.

cbuffer cbPerObject : register(b0)
{

Note:

350 DIRECT3D FOUNDATIONS

 float4x4 gWorld;
};

cbuffer cbMaterial : register(b1)
{
 float4 gDiffuseAlbedo;
 float3 gFresnelR0;
 float gRoughness;
 float4x4 gMatTransform;
};

// Constant data that varies per material.
cbuffer cbPass : register(b2)
{
 float4x4 gView;
 float4x4 gInvView;
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gViewProj;
 float4x4 gInvViewProj;
 float3 gEyePosW;
 float cbPerObjectPad1;
 float2 gRenderTargetSize;
 float2 gInvRenderTargetSize;
 float gNearZ;
 float gFarZ;
 float gTotalTime;
 float gDeltaTime;
 float4 gAmbientLight;

 // Indices [0, NUM_DIR_LIGHTS) are directional lights;
 // indices [NUM_DIR_LIGHTS, NUM_DIR_LIGHTS+NUM_POINT_LIGHTS) are
 // point lights;
 // indices [NUM_DIR_LIGHTS+NUM_POINT_LIGHTS,
 // NUM_DIR_LIGHTS+NUM_POINT_LIGHT+NUM_SPOT_LIGHTS)
 // are spot lights for a maximum of MaxLights per object.
 Light gLights[MaxLights];
};

struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 NormalW : NORMAL;
};

VertexOut VS(VertexIn vin)
{

LIGHTING 351

 VertexOut vout = (VertexOut)0.0f;

 // Transform to world space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);
 vout.PosW = posW.xyz;

 // Assumes nonuniform scaling; otherwise, need to use
 // inverse-transpose of world matrix.
 vout.NormalW = mul(vin.NormalL, (float3x3)gWorld);

 // Transform to homogeneous clip space.
 vout.PosH = mul(posW, gViewProj);

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 // Interpolating normal can unnormalize it, so renormalize it.
 pin.NormalW = normalize(pin.NormalW);

 // Vector from point being lit to eye.
 float3 toEyeW = normalize(gEyePosW - pin.PosW);

 // Indirect lighting.
 float4 ambient = gAmbientLight*gDiffuseAlbedo;

 // Direct lighting.
 const float shininess = 1.0f - gRoughness;
 Material mat = { gDiffuseAlbedo, gFresnelR0, shininess };
 float3 shadowFactor = 1.0f;
 float4 directLight = ComputeLighting(gLights, mat,
 pin.PosW, pin.NormalW, toEyeW, shadowFactor);

 float4 litColor = ambient + directLight;

 // Common convention to take alpha from diffuse material.
 litColor.a = gDiffuseAlbedo.a;

 return litColor;
}

8.14 LIGHTING DEMO

The lighting demo builds off the “Waves” demo from the previous chapter.
It uses one directional light to represent the sun. The user can rotate the sun
position using the left, right, up, and down arrow keys. While we have discussed
how material and lights are implemented, the following subsections go over
implementation details not yet discussed. Figure 8.28 shows a screen shot of the
lighting demo.

352 DIRECT3D FOUNDATIONS

8.14.1 Vertex Format
Lighting calculations require a surface normal. We define normals at the vertex
level; these normals are then interpolated across the pixels of a triangle so that
we may do the lighting calculations per pixel. Moreover, we no longer specify a
vertex color. Instead, pixel colors are generated by applying the lighting equation
for each pixel. To support vertex normals we modify our vertex structures like so:

// C++ Vertex structure
struct Vertex
{
 DirectX::XMFLOAT3 Pos;
 DirectX::XMFLOAT3 Normal;
};

// Corresponding HLSL vertex structure
struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
};

When we add a new vertex format, we need to describe it with a new input layout
description:

mInputLayout =
{
 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
 { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12,
 D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
};

8.14.2 Normal Computation
The shape functions in GeometryGenerator already create data with vertex normals,
so we are all set there. However, because we modify the heights of the grid in this

Figure 8.28. Screenshot of the lighting demo.

LIGHTING 353

demo to make it look like terrain, we need to generate the normal vectors for the
terrain ourselves.

Because our terrain surface is given by a function y  f(x, z), we can compute
the normal vectors directly using calculus, rather than the normal averaging
technique described in §8.2.1. To do this, for each point on the surface, we form
two tangent vectors in the x- and z- directions by taking the partial derivatives:

1, , 0

0, ,1

f

x

f

z

    
    

x

z

T

T

These two vectors lie in the tangent plane of the surface point. Taking the cross
product then gives the normal vector:

0 1

1 0

1 0
0 1

, ,
1 0

0 1

,1 ,

f

z
f

x

f f

z z
f f

x x

f f

x z


  





  
    
  

   
       

z x

i j k

n T T

The function we used to generate the land mesh is:

      , 0.3 sin 0.1 0.3 cos 0.1f x z z x x z   

The partial derivatives are:

   

   

0.03 cos 0.1 0.3cos 0.1

0.3sin 0.1 0.03 sin 0.1

f
z x z

x
f

x x z
z


  




  


354 DIRECT3D FOUNDATIONS

The surface normal at a surface point (x, f (x, z), z) is thus given by:

  
   

   

0.03 cos 0.1 0.3cos 0.1

, ,1 , 1

0.3sin 0.1 0.03 sin 0.1

T
z x z

f f
x z

x z
x x z

   
                 

n

We note that this surface normal is not of unit length, so it needs to be normalized
before lighting calculations.

In particular, we do the above normal calculation at each vertex point to get the
vertex normals:

XMFLOAT3 LitWavesApp::GetHillsNormal(float x, float z)const
{
 // n = (-df/dx, 1, -df/dz)
 XMFLOAT3 n(
 -0.03f*z*cosf(0.1f*x) - 0.3f*cosf(0.1f*z),
 1.0f,
 -0.3f*sinf(0.1f*x) + 0.03f*x*sinf(0.1f*z));

 XMVECTOR unitNormal = XMVector3Normalize(XMLoadFloat3(&n));
 XMStoreFloat3(&n, unitNormal);

 return n;
}

The normal vectors for the water surface are done in a similar way, except that
we do not have a formula for the water. However, tangent vectors at each vertex
point can be approximated using a finite difference scheme (see [Lengyel02] or
any numerical analysis book).

If your calculus is rusty, do not worry as it will not play a major role in this book.
Right now it is useful because we are using mathematical surfaces to generate
our geometry so that we have some interesting objects to draw. Eventually, we
will load 3D meshes from fi le that were exported from 3D modeling programs.

8.14.3 Updating the Light Direction
As shown in §8.13.7, our array of Lights is put in the per-pass constant buffer. The
demo uses one directional light to represent the sun, and allows the user to rotate
the sun position using the left, right, up, and down arrow keys. So every frame, we
need to calculate the new light direction from the sun, and set it to the per-pass
constant buffer.

We track the sun position in spherical coordinates (, , ), but the radius 
does not matter, because we assume the sun is infi nitely far away. In particular,
we just use   1 so that it lies on the unit sphere and interpret (1, , ) as the

Note:

LIGHTING 355

direction towards the sun. The direction of the light is just the negative of the
direction towards the sun. Below is the relevant code for updating the sun.

float mSunTheta = 1.25f*XM_PI;
float mSunPhi = XM_PIDIV4;

void LitWavesApp::OnKeyboardInput(const GameTimer& gt)
{
 const float dt = gt.DeltaTime();

 if(GetAsyncKeyState(VK_LEFT) & 0x8000)
 mSunTheta -= 1.0f*dt;

 if(GetAsyncKeyState(VK_RIGHT) & 0x8000)
 mSunTheta += 1.0f*dt;

 if(GetAsyncKeyState(VK_UP) & 0x8000)
 mSunPhi -= 1.0f*dt;

 if(GetAsyncKeyState(VK_DOWN) & 0x8000)
 mSunPhi += 1.0f*dt;

 mSunPhi = MathHelper::Clamp(mSunPhi, 0.1f, XM_PIDIV2);
}

void LitWavesApp::UpdateMainPassCB(const GameTimer& gt)
{
 ...
 XMVECTOR lightDir = -MathHelper::SphericalToCartesian(1.0f,

mSunTheta, mSunPhi);

 XMStoreFloat3(&mMainPassCB.Lights[0].Direction, lightDir);
 mMainPassCB.Lights[0].Strength = { 0.8f, 0.8f, 0.7f };

 auto currPassCB = mCurrFrameResource->PassCB.get();
 currPassCB->CopyData(0, mMainPassCB);
}

Putting the Light array in the per-pass constant buffer means we cannot have
more than sixteen (the maximum number of lights we support) lights per
rendering pass. This is more than suffi cient for small demos. However, for large
game worlds, this would not be enough, as you can imagine game levels with
hundreds of lights spread throughout the level. One solution to this is to move
the Light array to the per-object constant buffer. Then, for each object O, you do
a search of the scene and fi nd the lights that affect the object O, and bind those
lights to the constant buffer. The lights that would affect O are the lights whose
volumes (sphere for point light and cone for spot light) intersect it. Another
popular strategy is to use deferred rendering or Forward+ rendering.

Note:

356 DIRECT3D FOUNDATIONS

8.14.4 Update to Root Signature
Lighting introduces a new material constant buffer to our shader programs.
To support this, we need to update our root signature to support an additional
constant buffer. As with per-object constant buffers, we use a root descriptor for
the material constant buffer to support binding a constant buffer directly rather
than going through a descriptor heap.

8.15 SUMMARY

1. With lighting, we no longer specify per-vertex colors but instead define scene
lights and per-vertex materials. Materials can be thought of as the properties
that determine how light interacts with a surface of an object. The per-vertex
materials are interpolated across the face of the triangle to obtain material
values at each surface point of the triangle mesh. The lighting equations then
compute a surface color the eye sees based on the interaction between the
light and surface materials; other parameters are also involved, such as the
surface normal and eye position.

2. A surface normal is a unit vector that is orthogonal to the tangent plane of a
point on a surface. Surface normals determine the direction a point on a surface
is “facing.” For lighting calculations, we need the surface normal at each point
on the surface of a triangle mesh so that we can determine the angle at which
light strikes the point on the mesh surface. To obtain surface normals, we specify
the surface normals only at the vertex points (so-called vertex normals). Then,
in order to obtain a surface normal approximation at each point on the surface
of a triangle mesh, these vertex normals will be interpolated across the triangle
during rasterization. For arbitrary triangle meshes, vertex normals are typically
approximated via a technique called normal averaging. If the matrix A is used to
transform points and vectors (non-normal vectors), then (A1)T should be used
to transform surface normals.

3. A parallel (directional) light approximates a light source that is very far away.
Consequently, we can approximate all incoming light rays as parallel to each
other. A physical example of a directional light is the sun relative to the earth.
A point light emits light in every direction. A physical example of a point light
is a light bulb. A spotlight emits light through a cone. A physical example of a
spotlight is a flashlight.

4. Due to the Fresnel effect, when light reaches the interface between two media
with different indices of refraction some of the light is reflected and the

LIGHTING 357

remaining light is refracted into the medium. How much light is reflected
depends on the medium (some materials will be more reflective than others)
and also on the angle i between the normal vector n and light vector L. Due
to their complexity, the full Fresnel equations are not typically used in real-
time rendering; instead, the Schlick approximation is used.

5. Reflective objects in the real-world tend not to be perfect mirrors. Even if
an object’s surface appears flat, at the microscopic level we can think of it as
having roughness. We can think of a perfect mirror as having no roughness
and its micro-normals all aim in the same direction as the macro-normal. As
the roughness increases, the direction of the micro-normals diverge from the
macro-normal causing the reflected light to spread out into a specular lobe.

6. Ambient light models indirect light that has scattered and bounced around
the scene so many times that it strikes the object equally in every direction,
thereby uniformly brightening it up. Diffuse light models light that enters the
interior of a medium and scatters around under the surface where some of
the light is absorbed and the remaining light scatters back out of the surface.
Because it is difficult to model this subsurface scattering, we assume the re-
emitted light scatters out equally in all directions above the surface about the
point the light entered. Specular light models the light that is reflected off the
surface due to the Fresnel effect and surface roughness.

8.16 EXERCISES

1. Modify the lighting demo of this chapter so that the directional light only
emits mostly red light. In addition, make the strength of the light oscillate as
a function of time using the sine function so that the light appears to pulse.
Using colored and pulsing lights can be useful for different game moods; for
example, a pulsing red light might be used to signify emergency situations.

2. Modify the lighting demo of this chapter by changing the roughness in the
materials.

3. Modify the “Shapes” demo from the previous chapter by adding materials and a
three-point lighting system. The three-point lighting system is commonly used
in film and photography to get better lighting than just one light source can
provide; it consists of a primary light source called the key light, a secondary
fill light usually aiming in the side direction from the key light, and a back light.
We use three-point lighting as a way to fake indirect lighting that gives better
object definition than just using the ambient component for indirect lighting.
Use three directional lights for the three-point lighting system.

358 DIRECT3D FOUNDATIONS

Figure 8.29. Screenshot of the solution to Exercise 3.

4. Modify the solution to Exercise 3 by removing the three-point lighting, and
adding a point centered about each sphere above the columns.

5. Modify the solution to Exercise 3 by removing the three-point lighting, and
adding a spotlight centered about each sphere above the columns and aiming
down.

6. One characteristic of cartoon styled lighting is the abrupt transition from one
color shade to the next (in contrast with a smooth transition) as shown in
Figure 8.30. This can be implemented by computing kd and ks in the usual way,
but then transforming them by discrete functions like the following before
using them in the pixel shader:

 

 

0.4 if 0.0

0.6 if 0.0 0.5

1.0 if 0.5 1.0

0.0 if 0.0 0.1

0.5 if 0.1 0.8

0.8 if 0.8 1.0

d

d d d

d

s

s s s

s

k

k f k k

k

k

k g k k

k

  
    
  

 
    
  

 Modify the lighting demo of this chapter to use this sort of toon shading.
(Note: The functions f and g above are just sample functions to start with, and
can be tweaked until you get the results you want.)

Figure 8.30. Screenshot of cartoon lighting.

Chapter

359

9Chapter

TEXTURING

Our demos are getting a little more interesting, but real-world objects typically have
more details than per-object materials can capture. Texture mapping is a technique
that allows us to map image data onto a triangle, thereby enabling us to increase the
details and realism of our scene significantly. For instance, we can build a cube and
turn it into a crate by mapping a crate texture on each side (Figure 9.1).

Objectives:
1. To learn how to specify the part of a texture that gets mapped to a triangle.

2. To find out how to create and enable textures.

3. To learn how textures can be filtered to create a smoother image.

Figure 9.1. The Crate demo creates a cube with a crate texture.

360 DIRECT3D FOUNDATIONS

4. To discover how to tile a texture several times with address modes.

5. To find out how multiple textures can be combined to create new textures and
special effects.

6. To learn how to create some basic effects via texture animation.

9.1 TEXTURE AND RESOURCE RECAP

Recall that we have already been using textures since Chapter 4; in particular,
the depth buffer and back buffer are 2D texture objects represented by the
ID3D12Resource interface with the D3D12_RESOURCE_DESC::Dimension of D3D12_
RESOURCE_DIMENSION_TEXTURE2D. For easy reference, in this first section we review
much of the material on textures we have already covered in Chapter 4.

A 2D texture is a matrix of data elements. One use for 2D textures is to store
2D image data, where each element in the texture stores the color of a pixel.
However, this is not the only usage; for example, in an advanced technique called
normal mapping, each element in the texture stores a 3D vector instead of a color.
Therefore, although it is common to think of textures as storing image data,
they are really more general purpose than that. A 1D texture (D3D12_RESOURCE_
DIMENSION_TEXTURE1D) is like a 1D array of data elements, and a 3D texture (D3D12_
RESOURCE_DIMENSION_TEXTURE3D) is like a 3D array of data elements. The 1D, 2D,
and 3D texture interfaces are all represented by the generic ID3D12Resource.

Textures are different than buffer resources, which just store arrays of data;
textures can have mipmap levels, and the GPU can do special operations on
them, such as apply fi lters and multisampling. Because of these special operations
that are supported for texture resources, they are limited to certain kind of data
formats, whereas buffer resources can store arbitrary data. The data formats
supported for textures are described by the DXGI_FORMAT enumerated type. Some
example formats are:

1. DXGI_FORMAT_R32G32B32_FLOAT: Each element has three 32-bit floating-point
components.

2. DXGI_FORMAT_R16G16B16A16_UNORM: Each element has four 16-bit components
mapped to the [0, 1] range.

3. DXGI_FORMAT_R32G32_UINT: Each element has two 32-bit unsigned integer
components.

4. DXGI_FORMAT_R8G8B8A8_UNORM: Each element has four 8-bit unsigned
components mapped to the [0, 1] range.

5. DXGI_FORMAT_R8G8B8A8_SNORM: Each element has four 8-bit signed components
mapped to the [-1, 1] range.

TEXTURING 361

6. DXGI_FORMAT_R8G8B8A8_SINT: Each element has four 8-bit signed integer
components mapped to the [128, 127] range.

7. DXGI_FORMAT_R8G8B8A8_UINT: Each element has four 8-bit unsigned integer
components mapped to the [0, 255] range.

Note that the R, G, B, A letters are used to stand for red, green, blue, and alpha,
respectively. However, as we said earlier, textures need not store color information;
for example, the format

DXGI_FORMAT_R32G32B32_FLOAT

has three floating-point components and can therefore store a 3D vector with
floating-point coordinates (not necessarily a color vector). There are also typeless
formats, where we just reserve memory and then specify how to reinterpret the
data at a later time (sort of like a cast) when the texture is bound to the rendering
pipeline; for example, the following typeless format reserves elements with four
8-bit components, but does not specify the data type (e.g., integer, floating-point,
unsigned integer):

DXGI_FORMAT_R8G8B8A8_TYPELESS

The DirectX 11 SDK documentation says: “Creating a fully-typed resource
restricts the resource to the format it was created with. This enables the runtime
to optimize access […].” Therefore, you should only create a typeless resource if
you really need it; otherwise, create a fully typed resource.

A texture can be bound to different stages of the rendering pipeline; a common
example is to use a texture as a render target (i.e., Direct3D draws into the texture)
and as a shader resource (i.e., the texture will be sampled in a shader). A texture
can also be used as both a render target and as a shader resource, but not at the
same time. Rendering to a texture and then using it as a shader resource, a method
called render-to-texture, allows for some interesting special effects which we will
use later in this book. For a texture to be used as both a render target and a shader
resource, we would need to create two descriptors to that texture resource: 1) one
that lives in a render target heap (i.e., D3D12_DESCRIPTOR_HEAP_TYPE_RTV) and 2)
one that lives in a shader resource heap (i.e., D3D12_DESCRIPTOR_HEAP_TYPE_CBV_
SRV_UAV). (Note that a shader resource heap can also store constant buffer view
descriptors and unordered access view descriptors.) Then the resource can be
bound as a render target or bound as a shader input to a root parameter in the
root signature (but never at the same time):

// Bind as render target.
CD3DX12_CPU_DESCRIPTOR_HANDLE rtv = ...;
CD3DX12_CPU_DESCRIPTOR_HANDLE dsv = ...;
cmdList->OMSetRenderTargets(1, &rtv, true, &dsv);

Note:

362 DIRECT3D FOUNDATIONS

// Bind as shader input to root parameter.
CD3DX12_GPU_DESCRIPTOR_HANDLE tex = ...;
cmdList->SetGraphicsRootDescriptorTable(rootParamIndex, tex);

Resource descriptors essentially do two things: they tell Direct3D how the resource
will be used (i.e., what stage of the pipeline you will bind it to), and if the resource
format was specified as typeless at creation time, then we must now state the type
when creating a view. Thus, with typeless formats, it is possible for the elements of
a texture to be viewed as floating-point values in one pipeline stage and as integers
in another; this essentially amounts to a reinterpret cast of the data.

In this chapter, we will only be interested in binding textures as shader resources
so that our pixel shaders can sample the textures and use them to color pixels.

9.2 TEXTURE COORDINATES

Direct3D uses a texture coordinate system that consists of a u-axis that runs
horizontally to the image and a v-axis that runs vertically to the image. The
coordinates, (u, v) such that 0  u, v  1, identify an element on the texture called
a texel. Notice that the v-axis is positive in the “down” direction (see Figure 9.2).
Also, notice the normalized coordinate interval, [0, 1], which is used because it
gives Direct3D a dimension independent range to work with; for example, (0.5,
0.5) always specifies the middle texel no matter if the actual texture dimensions
are 256  256, 512  1024 or 2048  2048 in pixels. Likewise, (0.25, 0.75) identifies
the texel a quarter of the total width in the horizontal direction, and three-
quarters of the total height in the vertical direction. For now, texture coordinates
are always in the range [0, 1], but later we explain what can happen when you go
outside this range.

Figure 9.2. The texture coordinate system, sometimes called texture space.

TEXTURING 363

For each 3D triangle, we want to defi ne a corresponding triangle on the texture
that is to be mapped onto the 3D triangle (see Figure 9.3). Let p0, p1, and p2 be the
vertices of a 3D triangle with respective texture coordinates q0, q1 and q2. For an
arbitrary point (x, y, z) on the 3D triangle, its texture coordinates (u, v) are found
by linearly interpolating the vertex texture coordinates across the 3D triangle by
the same s, t parameters; that is, if

 0 1 0 2 0(, ,) () ()x y z s t     p p p p p p

for 0, 0, 1s t s t    then,

 0 1 0 2 0(,) () ()u v s t     q q q q q q

In this way, every point on the triangle has a corresponding texture coordinate.
To implement this, we modify our vertex structure once again and add a pair of

texture coordinates that identify a point on the texture. Now every 3D vertex has a
corresponding 2D texture vertex. Thus, every 3D triangle defi ned by three vertices
also defi nes a 2D triangle in texture space (i.e., we have associated a 2D texture
triangle for every 3D triangle).

struct Vertex
{
 DirectX::XMFLOAT3 Pos;
 DirectX::XMFLOAT3 Normal;
 DirectX::XMFLOAT2 TexC;
};

std::vector<D3D12_INPUT_ELEMENT_DESC> mInputLayout =
{
 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },

Figure 9.3. On the left is a triangle in 3D space, and on the right we define a 2D triangle on the texture that
is going to be mapped onto the 3D triangle.

364 DIRECT3D FOUNDATIONS

 { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12,
 D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
 { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24,
 D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
};

You can create “odd” texture mappings where the 2D texture triangle is much
different than the 3D triangle. Thus, when the 2D texture is mapped onto the
3D triangle, a lot of stretching and distortion occurs making the results not look
good. For example, mapping an acute angled triangle to a right angled triangle
requires stretching. In general, texture distortion should be minimized, unless
the texture artist desires the distortion look.

Observe that in Figure 9.3, we map the entire texture image onto each face of
the cube. This is by no means required. We can map only a subset of a texture
onto geometry. In fact, we can place several unrelated images on one big
texture map (this is called a texture atlas), and use it for several different objects
(Figure 9.4). The texture coordinates are what will determine what part of the
texture gets mapped on the triangles.

9.3 TEXTURE DATA SOURCES

The most prevalent way of creating textures for games is for an artist to make them
in Photoshop or some other image editor, and then save them as an image file like
BMP, DDS, TGA, or PNG. Then the game application will load the image data at
load time into an ID3D12Resource object. For real-time graphics applications, the

Note:

Figure 9.4. A texture atlas storing four subtextures on one large texture. The texture coordinates for each
vertex are set so that the desired part of the texture gets mapped onto the geometry.

TEXTURING 365

DDS (DirectDraw Surface format) image file format is preferred, as it supports a
variety of image formats that are natively understood by the GPU; in particular, it
supports compressed image formats that can be natively decompressed by the GPU.

Artists should not use the DDS format as a working image format. Instead they
should use their preferred format for saving work. Then when the texture is
complete, they export out to DDS for the game application.

9.3.1 DDS Overview
The DDS format is ideal for 3D graphics because it supports special formats and
texture types that are specifically used for 3D graphics. It is essentially an image
format built for GPUs. For example, DDS textures support the following features
(not yet discussed) used in 3D graphics development:

1. mipmaps

2. compressed formats that the GPU can natively decompress

3. texture arrays

4. cube maps

5. volume textures

The DDS format can support different pixel formats. The pixel format is described
by a member of the DXGI_FORMAT enumerated type; however, not all formats apply
to DDS textures. Typically, for uncompressed image data you will use the formats:

1. DXGI_FORMAT_B8G8R8A8_UNORM or DXGI_FORMAT_B8G8R8X8_UNORM: For low-
dynamic-range images.

2. DXGI_FORMAT_R16G16B16A16_FLOAT: For high-dynamic-range images.

The GPU memory requirements for textures add up quickly as your virtual
worlds grow with hundreds of textures (remember we need to keep all these
textures in GPU memory to apply them quickly). To help alleviate these memory
requirements, Direct3D supports compressed texture formats: BC1, BC2, BC3,
BC4, BC5, BC6, and BC7:

1. BC1 (DXGI_FORMAT_BC1_UNORM): Use this format if you need to compress a
format that supports three color channels, and only a 1-bit (on/off) alpha
component.

2. BC2 (DXGI_FORMAT_BC2_UNORM): Use this format if you need to compress a
format that supports three color channels, and only a 4-bit alpha component.

3. BC3 (DXGI_FORMAT_BC3_UNORM): Use this format if you need to compress a
format that supports three color channels, and a 8-bit alpha component.

Note:

366 DIRECT3D FOUNDATIONS

4. BC4 (DXGI_FORMAT_BC4_UNORM): Use this format if you need to compress a
format that contains one color channel (e.g., a grayscale image).

5. BC5 (DXGI_FORMAT_BC5_UNORM): Use this format if you need to compress a
format that supports two color channels.

6. BC6 (DXGI_FORMAT_BC6_UF16): Use this format for compressed HDR (high
dynamic range) image data.

7. BC7 (DXGI_FORMAT_BC7_UNORM): Use this format for high quality RGBA
compression. In particular, this format significantly reduces the errors caused
by compressing normal maps.

A compressed texture can only be used as an input to the shader stage of the
rendering pipeline, not as a render target.

Because the block compression algorithms work with 4  4 pixel blocks, the
dimensions of the texture must be multiples of 4.

Again, the advantage of these formats is that they can be stored compressed in
GPU memory, and then decompressed on the fly by the GPU when needed. An
additional advantage of storing your textures compressed in DDS files is that they
also take up less hard disk space.

9.3.2 Creating DDS Files
If you are new to graphics programming, you are probably unfamiliar with DDS
and are probably more used to using formats like BMP, TGA, or PNG. Here are
two ways to convert traditional image formats to the DDS format:

1. NVIDIA supplies a plugin for Adobe Photoshop that can export images to the
DDS format. The plugin is available at https://developer.nvidia.com/nvidia-
texture-tools-adobe-photoshop. Among other options, it allows you to specify
the DXGI_FORMAT of the DDS file, and generate mipmaps.

2. Microsoft provides a command line tool called texconv that can be used to
convert traditional image formats to DDS. In addition, the texconv program
can be used for more such as resizing images, changing pixel formats,
generating mipmaps and even more. You can find the documentation and
download link at the following website https://directxtex.codeplex.com/wikipag
e?title=Texconv&referringTitle=Documentation.

The following example inputs a BMP file bricks.bmp and outpts a DDS file bricks.
dds with format BC3_UNORM and generates a mipmaps chain with 10 mipmaps.

texconv -m 10 -f BC3_UNORM treeArray.dds

Note:

Note:

TEXTURING 367

Microsoft provides an additional command line tool called texassemble, which
is used to create DDS fi les that store texture arrays, volume maps, and cube
maps. We will need this tool later in the book. Its documentation and download
link can be found at https://directxtex.codeplex.com/wikipage?title=Texassembl
e&referringTitle=Documentation.

Visual Studio 2015 has a built-in image editor that supports DDS in addition
to other popular formats. You can drag an image into Visual Studio 2015 and
it should open it in the image editor. For DDS fi les, you can view the mipmap
levels, change the DDS format, and view the various color channels.

9.4 CREATING AND ENABLING A TEXTURE

9.4.1 Loading DDS Files
Microsoft provides lightweight source code to load DDS files at:

https://github.com/Microsoft/DirectXTK/wiki/DDSTextureLoader

However, at the time of this writing, the code only supports DirectX 11. We have
modified the DDSTextureLoader.h/.cpp files and provided an additional method
for DirectX 12 (these modified files can be found in the Common folder on the
DVD or downloadable source):

HRESULT DirectX::CreateDDSTextureFromFile12(
 In ID3D12Device* device,
 In ID3D12GraphicsCommandList* cmdList,
 _In_z_ const wchar_t* szFileName,
 Out Microsoft::WRL::ComPtr<ID3D12Resource>& texture,
 Out Microsoft::WRL::ComPtr<ID3D12Resource>& textureUploadHeap);

1. device: Pointer to the D3D device to create the texture resources.

2. cmdList: Command list to submit GPU commands (e.g., copying texture data
from an upload heap to a default heap).

3. szFileName: Filename of the image to load.

4. texture: Returns the texture resource with the loaded image data.

5. textureUploadHeap: Returns the texture resource that was used as an upload
heap to copy the image data into the default heap texture resource. This
resource cannot be destroyed until the GPU finished the copy command.

To create a texture from an image called WoodCreate01.dds, we would write the
following:

struct Texture

Note:

Note:

368 DIRECT3D FOUNDATIONS

{
 // Unique material name for lookup.
 std::string Name;

 std::wstring Filename;

 Microsoft::WRL::ComPtr<ID3D12Resource> Resource = nullptr;
 Microsoft::WRL::ComPtr<ID3D12Resource> UploadHeap = nullptr;
};

auto woodCrateTex = std::make_unique<Texture>();
woodCrateTex->Name = "woodCrateTex";
woodCrateTex->Filename = L"Textures/WoodCrate01.dds";
ThrowIfFailed(DirectX::CreateDDSTextureFromFile12(
 md3dDevice.Get(), mCommandList.Get(),
 woodCrateTex->Filename.c_str(),
 woodCrateTex->Resource, woodCrateTex->UploadHeap));

9.4.2 SRV Heap
Once a texture resource is created, we need to create an SRV descriptor to it which
we can set to a root signature parameter slot for use by the shader programs. In
order to do that, we first need to create a descriptor heap with ID3D12Device::Cre
ateDescriptorHeap to store the SRV descriptors. The following code builds a heap
with three descriptors that can store either CBV, SRV, or UAV descriptors, and is
visible to shaders:

D3D12_DESCRIPTOR_HEAP_DESC srvHeapDesc = {};
srvHeapDesc.NumDescriptors = 3;
srvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;
srvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;
ThrowIfFailed(md3dDevice->CreateDescriptorHeap(
 &srvHeapDesc, IID_PPV_ARGS(&mSrvDescriptorHeap)));

9.4.3 Creating SRV Descriptors
Once we have an SRV heap, we need to create the actual descriptors. An SRV
descriptor is described by filling out a D3D12_SHADER_RESOURCE_VIEW_DESC object,
which describes how the resource is used and other information—its format,
dimension, mipmaps count, etc.

typedef struct D3D12_SHADER_RESOURCE_VIEW_DESC
{
 DXGI_FORMAT Format;
 D3D12_SRV_DIMENSION ViewDimension;
 UINT Shader4ComponentMapping;
 union
 {
 D3D12_BUFFER_SRV Buffer;
 D3D12_TEX1D_SRV Texture1D;
 D3D12_TEX1D_ARRAY_SRV Texture1DArray;

TEXTURING 369

 D3D12_TEX2D_SRV Texture2D;
 D3D12_TEX2D_ARRAY_SRV Texture2DArray;
 D3D12_TEX2DMS_SRV Texture2DMS;
 D3D12_TEX2DMS_ARRAY_SRV Texture2DMSArray;
 D3D12_TEX3D_SRV Texture3D;
 D3D12_TEXCUBE_SRV TextureCube;
 D3D12_TEXCUBE_ARRAY_SRV TextureCubeArray;
 };
} D3D12_SHADER_RESOURCE_VIEW_DESC;

typedef struct D3D12_TEX2D_SRV
{
 UINT MostDetailedMip;
 UINT MipLevels;
 UINT PlaneSlice;
 FLOAT ResourceMinLODClamp;
} D3D12_TEX2D_SRV;

For 2D textures, we are only interested in the D3D12_TEX2D_SRV part of the union.

1. Format: The format of the resource. Set this to the DXGI_FORMAT of the resource
you are creating a view to if the format was non-typeless. If you specified a
typeless DXGI_FORMAT for the resource during creation, then you must specify a
non-typeless format for the view here so that the GPU knows how to interpret
the data.
typeless format when creating

2. ViewDimension: The resource dimension; for now, we are using 2D textures
so we specify D3D12_SRV_DIMENSION_TEXTURE2D. Other common texture
dimensions would be:
(a) D3D12_SRV_DIMENSION_TEXTURE1D: The resource is a 1D texture.
(b) D3D12_SRV_DIMENSION_TEXTURE3D: The resource is a 3D texture.
(c) D3D12_SRV_DIMENSION_TEXTURECUBE: The resource is a cube texture.

3. Shader4ComponentMapping: When a texture is sampled in a shader, it will return
a vector of the texture data at the specified texture coordinates. This field
provides a way to reorder the vector components returned when sampling the
texture. For example, you could use this field to swap the red and green color
components. This would be used in special scenarios, which we do not need
in this book. So we just specify D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING
which will not reorder the components and just return the data in the order it
is stored in the texture resource.

4. MostDetailedMip: Specifies the index of the most detailed mipmap level to
view. This will be a number between 0 and MipCount-1.

5. MipLevels: The number of mipmap levels to view, starting at MostDetailedMip.
This field, along with MostDetailedMip allows us to specify a subrange of

370 DIRECT3D FOUNDATIONS

mipmap levels to view. You can specify -1 to indicate to view all mipmap levels
from MostDetailedMip down to the last mipmap level.

6. PlaneSlice: Plane index.

7. ResourceMinLODClamp: Specifies the minimum mipmap level that can be
accessed. 0.0 means all the mipmap levels can be accessed. Specifying 3.0
means mipmap levels 3.0 to MipCount-1 can be accessed.

The following populates the heap we created in the previous section with actual
descriptors to three resources:

// Suppose the following texture resources are already created.
// ID3D12Resource* bricksTex;
// ID3D12Resource* stoneTex;
// ID3D12Resource* tileTex;

// Get pointer to the start of the heap.
CD3DX12_CPU_DESCRIPTOR_HANDLE hDescriptor(
 mSrvDescriptorHeap->GetCPUDescriptorHandleForHeapStart());

D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
srvDesc.Format = bricksTex->GetDesc().Format;
srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
srvDesc.Texture2D.MostDetailedMip = 0;
srvDesc.Texture2D.MipLevels = bricksTex->GetDesc().MipLevels;
srvDesc.Texture2D.ResourceMinLODClamp = 0.0f;
md3dDevice->CreateShaderResourceView(bricksTex.Get(), &srvDesc, hDescriptor);

// offset to next descriptor in heap
hDescriptor.Offset(1, mCbvSrvDescriptorSize);

srvDesc.Format = stoneTex->GetDesc().Format;
srvDesc.Texture2D.MipLevels = stoneTex->GetDesc().MipLevels;
md3dDevice->CreateShaderResourceView(stoneTex.Get(), &srvDesc, hDescriptor);

// offset to next descriptor in heap
hDescriptor.Offset(1, mCbvSrvDescriptorSize);

srvDesc.Format = tileTex->GetDesc().Format;
srvDesc.Texture2D.MipLevels = tileTex->GetDesc().MipLevels;
md3dDevice->CreateShaderResourceView(tileTex.Get(), &srvDesc, hDescriptor);

9.4.4 Binding Textures to the Pipeline
Right now we specify materials per draw call by changing the material constant
buffer. This means that all geometry in the draw call will have the same material
values. This is quite limited as we cannot specify per pixel material variations so
our scenes lack detail. The idea of texturing mapping is to get the material data
from texture maps instead of the material constant buffer. This allows for per

TEXTURING 371

pixel variation which increases the details and realism of our scene, as Figure 9.1
showed.

In this chapter, we add a diffuse albedo texture map to specify the diffuse
albedo component of our material. The FresnelR0 and Roughness material values
will still be specifi ed at the per draw call frequency via the material constant
buffer; however, in the chapter on “Normal Mapping” we will describe how to use
texturing to specify roughness at a per-pixel level. Note that with texturing we will
still keep the DiffuseAlbedo component in the material constant buffer. In fact, we
will combine it with the texture diffuse albedo value in the following way in the
pixel-shader:

// Get diffuse albedo at this pixel from texture.
float4 texDiffuseAlbedo = gDiffuseMap.Sample(
 gsamAnisotropicWrap, pin.TexC);

// Multiple texture sample with constant buffer albedo.
float4 diffuseAlbedo = texDiffuseAlbedo * gDiffuseAlbedo;

Usually, we will set DiffuseAlbedo=(1,1,1,1) so that to does not modify
texDiffuseAlbedo. However, sometimes it is useful to slightly tweak the diffuse
albedo without having to author a new texture. For example, suppose we had a brick
texture and an artist wanted to slightly tint it blue. This could be accomplished by
reducing the red and green components by setting DiffuseAlbedo=(0.9,0.9,1,1).

We add an index to our material defi nition, which references an SRV in the
descriptor heap specifying the texture associated with the material:

struct Material
{
 ...

 // Index into SRV heap for diffuse texture.
 int DiffuseSrvHeapIndex = -1;

 ...
};

Then, assuming the root signature has been defined to expect a table of shader
resource views to be bound to the 0th slot parameter, we can draw our render
items with texturing using the following code:

void CrateApp::DrawRenderItems(
 ID3D12GraphicsCommandList* cmdList,
 const std::vector<RenderItem*>& ritems)
{
 UINT objCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof(Objec

tConstants));
 UINT matCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof(Mater

ialConstants));

372 DIRECT3D FOUNDATIONS

 auto objectCB = mCurrFrameResource->ObjectCB->Resource();
 auto matCB = mCurrFrameResource->MaterialCB->Resource();

 // For each render item...
 for(size_t i = 0; i < ritems.size(); ++i)
 {
 auto ri = ritems[i];

 cmdList->IASetVertexBuffers(0, 1, &ri->Geo->VertexBufferView());
 cmdList->IASetIndexBuffer(&ri->Geo->IndexBufferView());
 cmdList->IASetPrimitiveTopology(ri->PrimitiveType);

 CD3DX12_GPU_DESCRIPTOR_HANDLE tex(
 mSrvDescriptorHeap->GetGPUDescriptorHandleForHeapStart());
 tex.Offset(ri->Mat->DiffuseSrvHeapIndex, mCbvSrvDescriptorSize);

 D3D12_GPU_VIRTUAL_ADDRESS objCBAddress =
 objectCB->GetGPUVirtualAddress() +
 ri->ObjCBIndex*objCBByteSize;
 D3D12_GPU_VIRTUAL_ADDRESS matCBAddress =
 matCB->GetGPUVirtualAddress() +
 ri->Mat->MatCBIndex*matCBByteSize;

 cmdList->SetGraphicsRootDescriptorTable(0, tex);
 cmdList->SetGraphicsRootConstantBufferView(1, objCBAddress);
 cmdList->SetGraphicsRootConstantBufferView(3, matCBAddress);

 cmdList->DrawIndexedInstanced(ri->IndexCount,
 1, ri->StartIndexLocation,
 ri->BaseVertexLocation, 0);
 }
}

A texture resource can actually be used by any shader (vertex, geometry, or pixel
shader). For now, we will just be using them in pixel shaders. As we mentioned,
textures are essentially special arrays that support special operations on the
GPU, so it is not hard to imagine that they could be useful in other shader
programs, too.

Texture atlases can improve performance because it can lead to drawing more
geometry with one draw call. For example, suppose we used the texture atlas as
in Figure 9.4 that contains the crate, grass, and brick textures. Then, by adjusting
the texture coordinates for each object to its corresponding subtexture, we could
put all the geometry in one render item (assuming no other parameters needed
to be changed per object). There is overhead to draw calls, so it is desirable to
minimize them with techniques like this, although we note that the overhead
has signifi cantly been reduced with Direct3D 12 compared to earlier versions of
Direct3D.

Note:

Note:

TEXTURING 373

9.5 FILTERS

9.5.1 Magnifi cation
The elements of a texture map should be thought of as discrete color samples
from a continuous image; they should not be thought of as rectangles with areas.
So the question is: What happens if we have texture coordinates (u, v) that do not
coincide with one of the texel points? This can happen in the following situation.
Suppose the player zooms in on a wall in the scene so that the wall covers the entire
screen. For the sake of example, suppose the monitor resolution is 1024  1024 and
the wall’s texture resolution is 256  256. This illustrates texture magnification—
we are trying to cover many pixels with a few texels. In our example, between
every texel point lies four pixels. Each pixel will be given a pair of unique texture
coordinates when the vertex texture coordinates are interpolated across the
triangle. Thus there will be pixels with texture coordinates that do not coincide
with one of the texel points. Given the colors at the texels we can approximate the
colors between texels using interpolation. There are two methods of interpolation
graphics hardware supports: constant interpolation and linear interpolation. In
practice, linear interpolation is almost always used.

Figure 9.5 illustrates these methods in 1D: Suppose we have a 1D texture
with 256 samples and an interpolated texture coordinate u  0.126484375. This
normalized texture coordinate refers to the 0.126484375  256  32.38 texel.
Of course, this value lies between two of our texel samples, so we must use
interpolation to approximate it.

2D linear interpolation is called bilinear interpolation and is illustrated in
Figure 9.6. Given a pair of texture coordinates between four texels, we do two 1D
linear interpolations in the u-direction, followed by one 1D interpolation in the
v-direction.

Figure 9.7 shows the difference between constant and linear interpolation.
As you can see, constant interpolation has the characteristic of creating a blocky

Figure 9.5. (a) Given the texel points, we construct a piecewise constant function to approximate values
between the texel points; this is sometimes called nearest neighbor point sampling, as the value of the nearest
texel point is used. (b) Given the texel points, we construct a piecewise linear function to approximate values
between texel points.

374 DIRECT3D FOUNDATIONS

looking image. Linear interpolation is smoother, but still will not look as good as
if we had real data (e.g., a higher resolution texture) instead of derived data via
interpolation.

One thing to note about this discussion is that there is no real way to get around
magnifi cation in an interactive 3D program where the virtual eye is free to move
around and explore. From some distances, the textures will look great, but will
start to break down as the eye gets too close to them. Some games limit how close
the virtual eye can get to a surface to avoid excessive magnifi cation. Using higher
resolution textures can help.

In the context of texturing, using constant interpolation to fi nd texture values
for texture coordinates between texels is also called point fi ltering. And using
linear interpolation to fi nd texture values for texture coordinates between texels
is also called called linear fi ltering. Point and linear fi ltering is the terminology
Direct3D uses.

Note:

Figure 9.6. Here we have four texel points: cij, ci, j + 1, ci + 1, j, and ci + 1, j + 1. We want to approximate the color
of c, which lies between these four texel points, using interpolation; in this example, c lies 0.75 units to the
right of cij and 0.38 units below cij. We first do a 1D linear interpolation between the top two colors to get
cT. Likewise, we do a 1D linear interpolate between the bottom two colors to get cB. Finally, we do a 1D
linear interpolation between cT and cB to get c.

Figure 9.7. We zoom in on a cube with a crate texture so that magnification occurs. On the left we use
constant interpolation, which results in a blocky appearance; this makes sense because the interpolating
function has discontinuities (Figure 9.5a), which makes the changes abrupt rather than smooth. On the right
we use linear filtering, which results in a smoother image due to the continuity of the interpolating function.

TEXTURING 375

9.5.2 Minifi cation
Minification is the opposite of magnification. In minification, too many texels
are being mapped to too few pixels. For instance, consider the following situation
where we have a wall with a 256  256 texture mapped over it. The eye, looking at
the wall, keeps moving back so that the wall gets smaller and smaller until it only
covers 64 × 64 pixels on screen. So now we have 256 × 256 texels getting mapped
to 64 × 64 screen pixels. In this situation, texture coordinates for pixels will still
generally not coincide with any of the texels of the texture map, so constant
and linear interpolation filters still apply to the minification case. However,
there is more that can be done with minification. Intuitively, a sort of average
downsampling of the 256 × 256 texels should be taken to reduce it to 64 × 64.
The technique of mipmapping offers an efficient approximation for this at the
expense of some extra memory. At initialization time (or asset creation time),
smaller versions of the texture are made by downsampling the image to create
a mipmap chain (see Figure 9.8). Thus the averaging work is precomputed for
the mipmap sizes. At runtime, the graphics hardware will do two different things
based on the mipmap settings specified by the programmer:

1. Pick and use the mipmap level that best matches the projected screen geometry
resolution for texturing, applying constant or linear interpolation as needed. This
is called point filtering for mipmaps because it is like constant interpolation—you
just choose the nearest mipmap level and use that for texturing.

2. Pick the two nearest mipmap levels that best match the projected screen
geometry resolution for texturing (one will be bigger and one will be smaller
than the screen geometry resolution). Next, apply constant or linear filtering
to both of these mipmap levels to produce a texture color for each one.
Finally, interpolate between these two texture color results. This is called
linear filtering for mipmaps because it is like linear interpolation—you
linearly interpolate between the two nearest mipmap levels.

By choosing the best texture levels of detail from the mipmap chain, the amount
of minification is greatly reduced.

Figure 9.8. A chain of mipmaps; each successive mipmap is half the size, in each dimension, of the previous
mipmap level of detail down to 1 × 1.

376 DIRECT3D FOUNDATIONS

As mentioned in §9.3.2, mipmaps can be created using the Photoshop DDS exporter
plugin, or using the texconv program. These programs use a downsampling
algorithm to generate the lower mipmap levels from the base image data.
Sometimes these algorithms do not preserve the details we want and an artist has
to manually create/edit the lower mipmap levels to keep the important details.

9.5.3 Anisotropic Filtering
Another type of filter that can be used is called anisotropic filtering. This filter helps
alleviate the distortion that occurs when the angle between a polygon’s normal
vector and camera’s look vector is wide (e.g., when a polygon is orthogonal to
the view window). This filter is the most expensive, but can be worth the cost
for correcting the distortion artifacts. Figure 9.9 shows a screenshot comparing
anisotropic filtering with linear filtering.

9.6 ADDRESS MODES

A texture, combined with constant or linear interpolation, defines a vector-
valued function T(u, v)  (r, g, b, a). That is, given the texture coordinates (u, v) 
[0, 1]2 the texture function T returns a color (r, g, b, a). Direct3D allows us to
extend the domain of this function in four different ways (called address modes):
wrapbordercolorclamp and mirror.

1. wrap extends the texture function by repeating the image at every integer
junction (see Figure 9.10).

2. border color extends the texture function by mapping each (u, v) not in [0, 1]2
to some color specified by the programmer (see Figure 9.11).

3. clamp extends the texture function by mapping each (u, v) not in [0, 1]2 to the
color T(u0, v0), where (u0, v0) is the nearest point to (u, v) contained in [0, 1]2

(see Figure 9.12).

4. mirror extends the texture function by mirroring the image at every integer
junction (see Figure 9.13).

Note:

Figure 9.9. The top face of the crate is nearly orthogonal to the view window. (Left) Using linear filtering the
top of the crate is badly blurred. (Right) Anisotropic filtering does a better job at rendering the top face of
the crate from this angle.

TEXTURING 377

Figure 9.10. Wrap address mode.

Figure 9.11. Border color address mode.

Figure 9.12. Clamp address mode.

Figure 9.13. Mirror address mode.

378 DIRECT3D FOUNDATIONS

An address mode is always specifi ed (wrap mode is the default), so therefore,
texture coordinates outside the [0, 1] range are always defi ned.

The wrap address mode is probably the most often employed; it allows us to
tile a texture repeatedly over some surface. This effectively enables us to increase
the texture resolution without supplying additional data (although the extra
resolution is repetitive). With tiling, it is usually important that the texture
is seamless. For example, the crate texture is not seamless, as you can see the
repetition clearly. However, Figure 9.14 shows a seamless brick texture repeated
2  3 times.

Address modes are described in Direct3D via the D3D12_TEXTURE_ADDRESS_MODE
enumerated type:

typedef enum D3D12_TEXTURE_ADDRESS_MODE
{
 D3D12_TEXTURE_ADDRESS_MODE_WRAP = 1,
 D3D12_TEXTURE_ADDRESS_MODE_MIRROR = 2,
 D3D12_TEXTURE_ADDRESS_MODE_CLAMP = 3,
 D3D12_TEXTURE_ADDRESS_MODE_BORDER = 4,
 D3D12_TEXTURE_ADDRESS_MODE_MIRROR_ONCE = 5
} D3D12_TEXTURE_ADDRESS_MODE;

9.7 SAMPLER OBJECTS

From the previous two sections, we see that in addition to texture data, there are
two other key concepts involved with using textures: texture filtering and address

Figure 9.14. A brick texture tiled 2 × 3 times. Because the texture is seamless, the repetition pattern is
harder to notice.

TEXTURING 379

modes. What filter and address mode to use when sampling a texture resource
is defined by a sampler object. An application will usually need several sampler
objects to sample textures in different ways.

9.7.1 Creating Samplers
As we will see in the next section, samplers are used in shaders. In order to bind
samplers to shaders for use, we need to bind descriptors to sampler objects. The
following code shows an example root signature such that the second slot takes a
table of one sampler descriptor bound to sampler register slot 0.

CD3DX12_DESCRIPTOR_RANGE descRange[3];
descRange[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
descRange[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 1, 0);
descRange[2].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);

CD3DX12_ROOT_PARAMETER rootParameters[3];
rootParameters[0].InitAsDescriptorTable(1, &descRange[0], D3D12_SHADER_

VISIBILITY_PIXEL);
rootParameters[1].InitAsDescriptorTable(1, &descRange[1], D3D12_SHADER_

VISIBILITY_PIXEL);
rootParameters[2].InitAsDescriptorTable(1, &descRange[2], D3D12_SHADER_

VISIBILITY_ALL);

CD3DX12_ROOT_SIGNATURE_DESC descRootSignature;
descRootSignature.Init(3, rootParameters, 0, nullptr,
 D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

If we are going to be setting sampler descriptors, we need a sampler heap. A
sampler heap is created by filling out a D3D12_DESCRIPTOR_HEAP_DESC instance and
specifying the heap type D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER:

D3D12_DESCRIPTOR_HEAP_DESC descHeapSampler = {};
descHeapSampler.NumDescriptors = 1;
descHeapSampler.Type = D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER;
descHeapSampler.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;

ComPtr<ID3D12DescriptorHeap> mSamplerDescriptorHeap;
ThrowIfFailed(mDevice->CreateDescriptorHeap(&descHeapSampler,
 __uuidof(ID3D12DescriptorHeap),
 (void**)&mSamplerDescriptorHeap));

Once we have a sampler heap, we can create sampler descriptors. It is here that we
specify the address mode and filter type, as well as other parameters by filling out
a D3D12_SAMPLER_DESC object:

typedef struct D3D12_SAMPLER_DESC
{
 D3D12_FILTER Filter;
 D3D12_TEXTURE_ADDRESS_MODE AddressU;
 D3D12_TEXTURE_ADDRESS_MODE AddressV;

380 DIRECT3D FOUNDATIONS

 D3D12_TEXTURE_ADDRESS_MODE AddressW;
 FLOAT MipLODBias;
 UINT MaxAnisotropy;
 D3D12_COMPARISON_FUNC ComparisonFunc;
 FLOAT BorderColor[4];
 FLOAT MinLOD;
 FLOAT MaxLOD;
} D3D12_SAMPLER_DESC;

1. Filter: A member of the D3D12_FILTER enumerated type to specify the kind of
filtering to use.

2. AddressU: The address mode in the horizontal u-axis direction of the texture.

3. AddressV: The address mode in the vertical v-axis direction of the texture.

4. AddressW: The address mode in the depth w-axis direction of the texture
(applicable to 3D textures only).

5. MipLODBias: A value to bias the mipmap level picked. Specify 0.0 for no bias.

6. MaxAnisotropy: The maximum anisotropy value which must be between 1-16
inclusively. This is only applicable for D3D12_FILTER_ANISOTROPIC or D3D12_
FILTER_COMPARISON_ANISOTROPIC. Larger values are more expensive, but can
give better results.

7. ComparisonFunc: Advanced options used for some specialized applications like
shadow mapping. For now, just set to D3D12_COMPARISON_FUNC_ALWAYS until the
shadow mapping chapter.

8. BorderColor: Used to specify the border color for address mode D3D12_
TEXTURE_ADDRESS_MODE_BORDER.

9. MinLOD: Minimum mipmap level that can be selected.

10. MaxLOD: Maximum mipmap level that can be selected.

Below are some examples of commonly used D3D12_FILTER types:

1. D3D12_FILTER_MIN_MAG_MIP_POINT: Point filtering over a texture map, and
point filtering across mipmap levels (i.e., the nearest mipmap level is used).

2. D3D12_FILTER_MIN_MAG_LINEAR_MIP_POINT: Bilinear filtering over a texture
map, and point filtering across mipmap levels (i.e., the nearest mipmap level
is used).

3. D3D12_FILTER_MIN_MAG_MIP_LINEAR: Bilinear filtering over a texture
map, and linear filtering between the two nearest lower and upper mipmap
levels. This is often called trilinear filtering.

4. D3D12_FILTER_ANISOTROPIC: Anisotropic filtering for minification,
magnification, and mipmapping.

TEXTURING 381

You can figure out the other possible permutations from these examples, or you
can look up the D3D12_FILTER enumerated type in the SDK documentation.

The following example shows how to create a descriptor to a sampler in the
heap that uses linear fi ltering, wrap address mode, and typical default values for
the other parameters:

D3D12_SAMPLER_DESC samplerDesc = {};
samplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
samplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
samplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;

md3dDevice->CreateSampler(&samplerDesc,
 mSamplerDescriptorHeap->GetCPUDescriptorHandleForHeapStart());

The following code shows how to bind a sampler descriptor to a root signature
parameter slot for use by the shader programs:

commandList->SetGraphicsRootDescriptorTable(1,
 samplerDescriptorHeap->GetGPUDescriptorHandleForHeapStart());

9.7.2 Static Samplers
It turns out that a graphics application usually only uses a handful of samplers.
Therefore, Direct3D provides a special shortcut to define an array of samplers
and set them without going through the process of creating a sampler heap. The
Init function of the CD3DX12_ROOT_SIGNATURE_DESC class has two parameters that
allow you to define an array of so-called static samplers your application can use.
Static samplers are described by the D3D12_STATIC_SAMPLER_DESC structure. This
structure is very similar to D3D12_SAMPLER_DESC, with the following exceptions:

1. There are some limitations on what the border color can be. Specifically, the
border color of a static sampler must be a member of:

enum D3D12_STATIC_BORDER_COLOR
{
 D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK = 0,
 D3D12_STATIC_BORDER_COLOR_OPAQUE_BLACK = (
 D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK + 1) ,
 D3D12_STATIC_BORDER_COLOR_OPAQUE_WHITE = (
 D3D12_STATIC_BORDER_COLOR_OPAQUE_BLACK + 1)
}D3D12_STATIC_BORDER_COLOR;

2. It contains additional fields to specify the shader register, register space, and
shader visibility, which would normally be specified as part of the sampler heap.

382 DIRECT3D FOUNDATIONS

In addition, you can only define 2032 number of static samplers, which is more
than enough for most applications. If you do need more, however, you can just
use non-static samplers and go through a sampler heap.

We use static samplers in our demos. The following code shows how we defi ne
our static samplers. Note that we do not need all these static samplers in our
demos, but we defi ne them anyway so that they are there if we do need them. It
is only a handful anyway, and it does not hurt to defi ne a few extra samplers that
may or may not be used.

std::array<const CD3DX12_STATIC_SAMPLER_DESC, 6>
 TexColumnsApp::GetStaticSamplers()
{
 // Applications usually only need a handful of samplers. So just

define them
 // all up front and keep them available as part of the root

signature.

 const CD3DX12_STATIC_SAMPLER_DESC pointWrap(
 0, // shaderRegister
 D3D12_FILTER_MIN_MAG_MIP_POINT, // filter
 D3D12_TEXTURE_ADDRESS_MODE_WRAP, // addressU
 D3D12_TEXTURE_ADDRESS_MODE_WRAP, // addressV
 D3D12_TEXTURE_ADDRESS_MODE_WRAP); // addressW

 const CD3DX12_STATIC_SAMPLER_DESC pointClamp(
 1, // shaderRegister
 D3D12_FILTER_MIN_MAG_MIP_POINT, // filter
 D3D12_TEXTURE_ADDRESS_MODE_CLAMP, // addressU
 D3D12_TEXTURE_ADDRESS_MODE_CLAMP, // addressV
 D3D12_TEXTURE_ADDRESS_MODE_CLAMP); // addressW

 const CD3DX12_STATIC_SAMPLER_DESC linearWrap(
 2, // shaderRegister
 D3D12_FILTER_MIN_MAG_MIP_LINEAR, // filter
 D3D12_TEXTURE_ADDRESS_MODE_WRAP, // addressU
 D3D12_TEXTURE_ADDRESS_MODE_WRAP, // addressV
 D3D12_TEXTURE_ADDRESS_MODE_WRAP); // addressW

 const CD3DX12_STATIC_SAMPLER_DESC linearClamp(
 3, // shaderRegister
 D3D12_FILTER_MIN_MAG_MIP_LINEAR, // filter
 D3D12_TEXTURE_ADDRESS_MODE_CLAMP, // addressU
 D3D12_TEXTURE_ADDRESS_MODE_CLAMP, // addressV
 D3D12_TEXTURE_ADDRESS_MODE_CLAMP); // addressW

 const CD3DX12_STATIC_SAMPLER_DESC anisotropicWrap(
 4, // shaderRegister
 D3D12_FILTER_ANISOTROPIC, // filter
 D3D12_TEXTURE_ADDRESS_MODE_WRAP, // addressU
 D3D12_TEXTURE_ADDRESS_MODE_WRAP, // addressV
 D3D12_TEXTURE_ADDRESS_MODE_WRAP, // addressW
 0.0f, // mipLODBias

TEXTURING 383

 8); // maxAnisotropy

 const CD3DX12_STATIC_SAMPLER_DESC anisotropicClamp(
 5, // shaderRegister
 D3D12_FILTER_ANISOTROPIC, // filter
 D3D12_TEXTURE_ADDRESS_MODE_CLAMP, // addressU
 D3D12_TEXTURE_ADDRESS_MODE_CLAMP, // addressV
 D3D12_TEXTURE_ADDRESS_MODE_CLAMP, // addressW
 0.0f, // mipLODBias
 8); // maxAnisotropy

 return {
 pointWrap, pointClamp,
 linearWrap, linearClamp,
 anisotropicWrap, anisotropicClamp };
}

void TexColumnsApp::BuildRootSignature()
{
 CD3DX12_DESCRIPTOR_RANGE texTable;
 texTable.Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);

 // Root parameter can be a table, root descriptor or root constants.
 CD3DX12_ROOT_PARAMETER slotRootParameter[4];

 slotRootParameter[0].InitAsDescriptorTable(1,
 &texTable, D3D12_SHADER_VISIBILITY_PIXEL);
 slotRootParameter[1].InitAsConstantBufferView(0);
 slotRootParameter[2].InitAsConstantBufferView(1);
 slotRootParameter[3].InitAsConstantBufferView(2);

 auto staticSamplers = GetStaticSamplers();

 // A root signature is an array of root parameters.
 CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(4, slotRootParameter,
 (UINT)staticSamplers.size(), staticSamplers.data(),
 D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

 // create a root signature with a single slot which points to a
 // descriptor range consisting of a single constant buffer
 ComPtr<ID3DBlob> serializedRootSig = nullptr;
 ComPtr<ID3DBlob> errorBlob = nullptr;
 HRESULT hr = D3D12SerializeRootSignature(&rootSigDesc, D3D_ROOT_

SIGNATURE_VERSION_1,
 serializedRootSig.GetAddressOf(), errorBlob.GetAddressOf());

 if(errorBlob != nullptr)
 {
 ::OutputDebugStringA((char*)errorBlob->GetBufferPointer());
 }
 ThrowIfFailed(hr);

 ThrowIfFailed(md3dDevice->CreateRootSignature(
 0,
 serializedRootSig->GetBufferPointer(),

384 DIRECT3D FOUNDATIONS

 serializedRootSig->GetBufferSize(),
 IID_PPV_ARGS(mRootSignature.GetAddressOf())));
}

9.8 SAMPLING TEXTURES IN A SHADER

A texture object is defined in HLSL and assigned to a texture register with the
following syntax:

Texture2D gDiffuseMap : register(t0);

Note that texture registers use specified by tn where n is an integer identifying the
texture register slot. The root signature definition specifies the mapping from slot
parameter to shader register; this is how the application code can bind an SRV to a
particular Texture2D object in a shader.

Similarly, sampler objects are defi ned HLSL and assigned to a sampler register
with the following syntax:

SamplerState gsamPointWrap : register(s0);
SamplerState gsamPointClamp : register(s1);
SamplerState gsamLinearWrap : register(s2);
SamplerState gsamLinearClamp : register(s3);
SamplerState gsamAnisotropicWrap : register(s4);
SamplerState gsamAnisotropicClamp : register(s5);

These samplers correspond to the static sampler array we set in the previous
section. Note that texture registers use specified by sn where n is an integer
identifying the sampler register slot.

Now, given a pair of texture coordinate (u, v) for a pixel in the pixel shader, we
actually sample a texture using the Texture2D::Sample method:

Texture2D gDiffuseMap : register(t0);

SamplerState gsamPointWrap : register(s0);
SamplerState gsamPointClamp : register(s1);
SamplerState gsamLinearWrap : register(s2);
SamplerState gsamLinearClamp : register(s3);
SamplerState gsamAnisotropicWrap : register(s4);
SamplerState gsamAnisotropicClamp : register(s5);

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 NormalW : NORMAL;
 float2 TexC : TEXCOORD;
};

float4 PS(VertexOut pin) : SV_Target

TEXTURING 385

{
 float4 diffuseAlbedo = gDiffuseMap.Sample(gsamAnisotropicWrap, pin.

TexC) * gDiffuseAlbedo;
 ...

We pass a SamplerState object for the first parameter indicating how the texture
data will be sampled, and we pass in the pixel’s (u, v) texture coordinates for the
second parameter. This method returns the interpolated color from the texture
map at the specified (u, v) point using the filtering methods specified by the
SamplerState object.

9.9 CRATE DEMO

We now review the key points of adding a crate texture to a cube (as shown in
Figure 9.1).

9.9.1 Specifying Texture Coordinates
The GeometryGenerator::CreateBox generates the texture coordinates for the box
so that the entire texture image is mapped onto each face of the box. For brevity,
we only show the vertex definitions for the front, back, and top face. Note also
that we omit the coordinates for the normal and tangent vectors in the Vertex
constructor (the texture coordinates are bolded).

GeometryGenerator::MeshData GeometryGenerator::CreateBox(
 float width, float height, float depth,
 uint32 numSubdivisions)
{
 MeshData meshData;

 Vertex v[24];

 float w2 = 0.5f*width;
 float h2 = 0.5f*height;
 float d2 = 0.5f*depth;

 // Fill in the front face vertex data.
 v[0] = Vertex(-w2, -h2, -d2, ..., 0.0f, 1.0f);
 v[1] = Vertex(-w2, +h2, -d2, ..., 0.0f, 0.0f);
 v[2] = Vertex(+w2, +h2, -d2, ..., 1.0f, 0.0f);
 v[3] = Vertex(+w2, -h2, -d2, ..., 1.0f, 1.0f);

 // Fill in the back face vertex data.
 v[4] = Vertex(-w2, -h2, +d2, ..., 1.0f, 1.0f);
 v[5] = Vertex(+w2, -h2, +d2, ..., 0.0f, 1.0f);
 v[6] = Vertex(+w2, +h2, +d2, ..., 0.0f, 0.0f);
 v[7] = Vertex(-w2, +h2, +d2, ..., 1.0f, 0.0f);

386 DIRECT3D FOUNDATIONS

 // Fill in the top face vertex data.
 v[8] = Vertex(-w2, +h2, -d2, ..., 0.0f, 1.0f);
 v[9] = Vertex(-w2, +h2, +d2, ..., 0.0f, 0.0f);
 v[10] = Vertex(+w2, +h2, +d2, ..., 1.0f, 0.0f);
 v[11] = Vertex(+w2, +h2, -d2, ..., 1.0f, 1.0f);

Refer back to Figure 9.3 if you need help seeing why the texture coordinates are
specified this way.

9.9.2 Creating the Texture
We create the texture from file at initialization time as follows:

// Helper structure to group data related to the texture.
struct Texture
{
 // Unique material name for lookup.
 std::string Name;

 std::wstring Filename;

 Microsoft::WRL::ComPtr<ID3D12Resource> Resource = nullptr;
 Microsoft::WRL::ComPtr<ID3D12Resource> UploadHeap = nullptr;
};

std::unordered_map<std::string, std::unique_ptr<Texture>> mTextures;

void CrateApp::LoadTextures()
{
 auto woodCrateTex = std::make_unique<Texture>();
 woodCrateTex->Name = "woodCrateTex";
 woodCrateTex->Filename = L"Textures/WoodCrate01.dds";
 ThrowIfFailed(DirectX::CreateDDSTextureFromFile12(md3dDevice.Get(),
 mCommandList.Get(), woodCrateTex->Filename.c_str(),
 woodCrateTex->Resource, woodCrateTex->UploadHeap));

 mTextures[woodCrateTex->Name] = std::move(woodCrateTex);
}

We store all of our unique textures in an unordered map so that we can look them
up by name. In production code, before loading a texture, you would want to
check if the texture data has already been loaded (i.e., is it already contained in the
unordered map) so that it does not get loaded multiple times.

9.9.3 Setting the Texture
Once a texture has been created and an SRV has been created for it in a descriptor
heap, binding the texture to the pipeline so that it can be used in shader programs is
simply a matter of setting it to the root signature parameter that expects the texture:

// Get SRV to texture we want to bind.

TEXTURING 387

CD3DX12_GPU_DESCRIPTOR_HANDLE tex(
mSrvDescriptorHeap->GetGPUDescriptorHandleForHeapStart());
tex.Offset(ri->Mat->DiffuseSrvHeapIndex, mCbvSrvDescriptorSize);

...

// Bind to root parameter 0. The root parameter description specifies
which

// shader register slot this corresponds to.
cmdList->SetGraphicsRootDescriptorTable(0, tex);

9.9.4 Updated HLSL
Below is the revised Default.hlsl file that now supports texturing (texturing code
has been bolded):

// Defaults for number of lights.
#ifndef NUM_DIR_LIGHTS
 #define NUM_DIR_LIGHTS 3
#endif

#ifndef NUM_POINT_LIGHTS
 #define NUM_POINT_LIGHTS 0
#endif

#ifndef NUM_SPOT_LIGHTS
 #define NUM_SPOT_LIGHTS 0
#endif

// Include structures and functions for lighting.
#include "LightingUtil.hlsl"

Texture2D gDiffuseMap : register(t0);

SamplerState gsamPointWrap : register(s0);
SamplerState gsamPointClamp : register(s1);
SamplerState gsamLinearWrap : register(s2);
SamplerState gsamLinearClamp : register(s3);
SamplerState gsamAnisotropicWrap : register(s4);
SamplerState gsamAnisotropicClamp : register(s5);

// Constant data that varies per frame.
cbuffer cbPerObject : register(b0)
{
 float4x4 gWorld;
 float4x4 gTexTransform;
};

// Constant data that varies per material.
cbuffer cbPass : register(b1)
{
 float4x4 gView;

388 DIRECT3D FOUNDATIONS

 float4x4 gInvView;
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gViewProj;
 float4x4 gInvViewProj;
 float3 gEyePosW;
 float cbPerObjectPad1;
 float2 gRenderTargetSize;
 float2 gInvRenderTargetSize;
 float gNearZ;
 float gFarZ;
 float gTotalTime;
 float gDeltaTime;
 float4 gAmbientLight;

 // Indices [0, NUM_DIR_LIGHTS) are directional lights;
 // indices [NUM_DIR_LIGHTS, NUM_DIR_LIGHTS+NUM_POINT_LIGHTS) are

point lights;
 // indices [NUM_DIR_LIGHTS+NUM_POINT_LIGHTS,
 // NUM_DIR_LIGHTS+NUM_POINT_LIGHT+NUM_SPOT_LIGHTS)
 // are spot lights for a maximum of MaxLights per object.
 Light gLights[MaxLights];
};

cbuffer cbMaterial : register(b2)
{
 float4 gDiffuseAlbedo;
 float3 gFresnelR0;
 float gRoughness;
 float4x4 gMatTransform;
};

struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
 float2 TexC : TEXCOORD;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 NormalW : NORMAL;
 float2 TexC : TEXCOORD;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout = (VertexOut)0.0f;

 // Transform to world space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);
 vout.PosW = posW.xyz;

TEXTURING 389

 // Assumes nonuniform scaling; otherwise, need to use
 // inverse-transpose of world matrix.
 vout.NormalW = mul(vin.NormalL, (float3x3)gWorld);

 // Transform to homogeneous clip space.
 vout.PosH = mul(posW, gViewProj);

 // Output vertex attributes for interpolation across triangle.
 float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform);
 vout.TexC = mul(texC, gMatTransform).xy;

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 float4 diffuseAlbedo = gDiffuseMap.Sample(gsamAnisotropicWrap, pin.

TexC) * gDiffuseAlbedo;

 // Interpolating normal can unnormalize it, so renormalize it.
 pin.NormalW = normalize(pin.NormalW);

 // Vector from point being lit to eye.
 float3 toEyeW = normalize(gEyePosW - pin.PosW);

 // Light terms.
 float4 ambient = gAmbientLight*diffuseAlbedo;

 const float shininess = 1.0f - gRoughness;
 Material mat = { diffuseAlbedo, gFresnelR0, shininess };
 float3 shadowFactor = 1.0f;
 float4 directLight = ComputeLighting(gLights, mat, pin.PosW,
 pin.NormalW, toEyeW, shadowFactor);

 float4 litColor = ambient + directLight;

 // Common convention to take alpha from diffuse albedo.
 litColor.a = diffuseAlbedo.a;

 return litColor;
}

9.10 TRANSFORMING TEXTURES

Two constant buffer variables we have not discussed are gTexTransform and
gMatTransform. These variables are used in the vertex shader to transform the
input texture coordinates:

// Output vertex attributes for interpolation across triangle.
float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform);
vout.TexC = mul(texC, gMatTransform).xy;

390 DIRECT3D FOUNDATIONS

Texture coordinates represent 2D points in the texture plane. Thus, we can
translate, rotate, and scale them like we could any other point. Here are some
example uses for transforming textures:

1. A brick texture is stretched along a wall. The wall vertices currently have
texture coordinates in the range [0, 1]. We scale the texture coordinates by 4 to
scale them to the range [0, 4], so that the texture will be repeated four-by-four
times across the wall.

2. We have cloud textures stretches over a clear blue sky. By translating the
texture coordinates as a function of time, the clouds are animated over the sky.

3. Texture rotation is sometimes useful for particle like effects, where we rotate a
fireball texture over time, for example.

In the “Crate” demo, we use an identity matrix transformation so that the input
texture coordinates are left unmodified, but in the next section we explain a demo
that does use texture transforms.

Note that to transform the 2D texture coordinates by a 4 × 4 matrix, we
augment it to a 4D vector:

vin.TexC ---> float4(vin.Tex, 0.0f, 1.0f)

After the multiplication is done, the resulting 4D vector is cast back to a 2D vector
by throwing away the z- and w-components. That is,

vout.TexC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform).xy;

We use two separate texture transformation matrices gTexTransform and
gMatTransform because sometimes it makes more sense for the material to
transform the textures (for animated materials like water), but sometimes it
makes more sense for the texture transform to be a property of the object.

Because we are working with 2D texture coordinates, we only care about
transformations done to the fi rst two coordinates. For instance, if the texture
matrix translated the z-coordinate, it would have no effect on the resulting texture
coordinates.

9.11 TEXTURED HILLS AND WAVES DEMO

In this demo, we add textures to our land and water scene. The first key issue is
that we tile a grass texture over the land. Because the land mesh is a large surface, if
we simply stretched a texture over it, then too few texels would cover each triangle.
In other words, there is not enough texture resolution for the surface; we would
thus get magnification artifacts. Therefore, we repeat the grass texture over the

TEXTURING 391

land mesh to get more resolution. The second key issue is that we scroll the water
texture over the water geometry as a function of time. This added motion makes
the water a bit more convincing. Figure 9.15 shows a screenshot of the demo.

9.11.1 Grid Texture Coordinate Generation
Figure 9.16 shows an m  n grid in the xz-plane and a corresponding grid in the
normalized texture space domain [0, 1]2. From the picture, it is clear that the
texture coordinates of the ijth grid vertex in the xz-plane are the coordinates of
the ijth grid vertex in the texture space. The texture space coordinates of the ijth
vertex are:

 iju j u 

 ijv i v 

where
1

1
u

n
 


 and

1

1
v

m
 


.

Figure 9.15. Screenshot of the Land Tex demo.

Figure 9.16. The texture coordinates of the grid vertex vij in xz-space are given by the ijth grid vertex Tij in
uv-space.

392 DIRECT3D FOUNDATIONS

Thus, we use the following code to generate texture coordinates for a grid in the
GeometryGenerator::CreateGrid method:

GeometryGenerator::MeshData
GeometryGenerator::CreateGrid(float width, float depth, uint32 m, uint32 n)
{
 MeshData meshData;

 uint32 vertexCount = m*n;
 uint32 faceCount = (m-1)*(n-1)*2;

 float halfWidth = 0.5f*width;
 float halfDepth = 0.5f*depth;

 float dx = width / (n-1);
 float dz = depth / (m-1);

 float du = 1.0f / (n-1);
 float dv = 1.0f / (m-1);

 meshData.Vertices.resize(vertexCount);
 for(uint32 i = 0; i < m; ++i)
 {
 float z = halfDepth - i*dz;
 for(uint32 j = 0; j < n; ++j)
 {
 float x = -halfWidth + j*dx;

 meshData.Vertices[i*n+j].Position = XMFLOAT3(x, 0.0f, z);
 meshData.Vertices[i*n+j].Normal = XMFLOAT3(0.0f, 1.0f, 0.0f);
 meshData.Vertices[i*n+j].TangentU = XMFLOAT3(1.0f, 0.0f, 0.0f);

 // Stretch texture over grid.
 meshData.Vertices[i*n+j].TexC.x = j*du;
 meshData.Vertices[i*n+j].TexC.y = i*dv;
 }
 }

9.11.2 Texture Tiling
We said we wanted to tile a grass texture over the land mesh. But so far the
texture coordinates we have computed lie in the unit domain [0, 1]2; so no tiling
will occur. To tile the texture, we specify the wrap address mode and scale the
texture coordinates by 5 using a texture transformation matrix. Thus the texture
coordinates are mapped to the domain [0, 5]2 so that the texture is tiled 5 × 5
times across the land mesh surface:

void TexWavesApp::BuildRenderItems()
{
 auto gridRitem = std::make_unique<RenderItem>();
 gridRitem->World = MathHelper::Identity4x4();

TEXTURING 393

 XMStoreFloat4x4(&gridRitem->TexTransform,
 XMMatrixScaling(5.0f, 5.0f, 1.0f));
 ...
}

9.11.3 Texture Animation
To scroll a water texture over the water geometry, we translate the texture
coordinates in the texture plane as a function of time in the AnimateMaterials
method, which gets called every update cycle. Provided the displacement is small
for each frame, this gives the illusion of a smooth animation. We use the wrap
address mode along with a seamless texture so that we can seamlessly translate
the texture coordinates around the texture space plane. The following code shows
how we calculate the offset vector for the water texture, and how we build and set
the water’s texture matrix:

void TexWavesApp::AnimateMaterials(const GameTimer& gt)
{
 // Scroll the water material texture coordinates.
 auto waterMat = mMaterials["water"].get();

 float& tu = waterMat->MatTransform(3, 0);
 float& tv = waterMat->MatTransform(3, 1);

 tu += 0.1f * gt.DeltaTime();
 tv += 0.02f * gt.DeltaTime();

 if(tu >= 1.0f)
 tu -= 1.0f;

 if(tv >= 1.0f)
 tv -= 1.0f;

 waterMat->MatTransform(3, 0) = tu;
 waterMat->MatTransform(3, 1) = tv;

 // Material has changed, so need to update cbuffer.
 waterMat->NumFramesDirty = gNumFrameResources;
}

9.12 SUMMARY

1. Texture coordinates are used to define a triangle on the texture that gets
mapped to the 3D triangle.

2. The most prevalent way of creating textures for games is for an artist to make
them in Photoshop or some other image editor, and then save them as an
image file like BMP, DDS, TGA, or PNG. Then the game application will load

394 DIRECT3D FOUNDATIONS

the image data at load time into an ID3D12Resource object. For real-
time graphics applications, the DDS (DirectDraw Surface format) image file
format is preferred, as it supports a variety of image formats that are natively
understood by the GPU; in particular, it supports compressed image formats
that can be natively decompressed by the GPU.

3. There are two popular ways to convert traditional image formats to the DDS
format: use an image editor that exports to DDS or use a Microsoft command
line tool called texconv.

4. We can create textures from image files stored on disk using the
CreateDDSTextureFromFile12 function, which is located on the DVD at
Common/DDSTextureLoader.h/.cpp.

5. Magnification occurs when we zoom in on a surface and are trying to cover
too many screen pixels with a few texels. Minification occurs when we zoom
out of a surface and too many texels are trying to cover too few screen pixels.
Mipmaps and texture filters are techniques to handle magnification and
minification. GPUs support three kinds of texture filtering natively (in order
of lowest quality and least expensive to highest quality and most expensive):
point, linear, and anisotropic filters.

6. Address modes define what Direct3D is supposed to do with texture
coordinates outside the [0, 1] range. For example, should the texture be tiled,
mirrored, clamped, etc.?

7. Texture coordinates can be scaled, rotated, and translated just like other
points. By incrementally transforming the texture coordinates by a small
amount each frame, we animate the texture.

9.13 EXERCISES

1. Experiment with the “Crate” demo by changing the texture coordinates
and using different address mode combinations and filtering options. In
particular, reproduce the images in Figures 9.7, 9.9, 9.10, 9.11, 9.12, and 9.13.

2. Using the DirectX Texture Tool, we can manually specify each mipmap level
(File->Open Onto This Surface). Create a DDS file with a mipmap chain like
the one in Figure 9.17, with a different textual description or color on each
level so that you can easily distinguish between each mipmap level. Modify
the Crate demo by using this texture and have the camera zoom in and out
so that you can explicitly see the mipmap levels changing. Try both point and
linear mipmap filtering.

ON THE DVD

TEXTURING 395

Figure 9.17. A mipmap chain manually constructed so that each level is easily distinguishable.

3. Given two textures of the same size, we can combine them via different
operations to obtain a new image. More generally, this is called multitexturing,
where multiple textures are used to achieve a result. For example, we can
add, subtract, or (component-wise) multiply the corresponding texels of
two textures. Figure 9.18 shows the result of component-wise multiplying
two textures to get a fireball like result. For this exercise, modify the “Crate”
demo by combining the two source textures in Figure 9.18 in a pixel shader
to produce the fireball texture over each cube face. (The image files for this
exercise may be downloaded from the book’s website.) Note that you will have
to modify the Default.hlsl to support more than one texture.

Figure 9.18: Component-wise multiplying corresponding texels of two textures to produce a new
texture.

4. Modify the solution to Exercise 3 by rotating the fireball texture as a function
of time over each cube face.

5. Let p0, p1, and p2 be the vertices of a 3D triangle with respective texture
coordinates q0, q1, and q2. Recall from §9.2 that for an arbitrary point on a
3D triangle p(s, t)  p0  s(p1 − p0)  t(p2 − p0) where s  0, t  0, s  t  1,
its texture coordinates (u, v) are found by linearly interpolating the vertex
texture coordinates across the 3D triangle b y the same s, t parameters:

(u, v)  q0  s(q1 q0)  t(q2 q0)

(a) Given (u, v) and q0, q1, and q2, solve for (s, t) in terms of u and v (Hint:
Consider the vector equation (u, v)  q0  s(q1 q0)  t(q2 q0).

(b) Express p as a function of u and v; that is, fi nd a formula p  p(u, v).
(c) Compute / u p and / v p and give a geometric interpretation of what

these vectors mean.

396 DIRECT3D FOUNDATIONS

6. Modify the “LitColumns” demo from the previous chapter by adding textures
to the ground, columns, and spheres (Figure 9.19). The textures can be found
in this chapter’s code directory.

Figure 9.19. Textured column scene.

Chapter

397

10Chapter

BLENDING

Consider Figure 10.1. We start rendering the frame by first drawing the terrain
followed by the wooden crate, so that the terrain and crate pixels are on the back
buffer. We then draw the water surface to the back buffer using blending, so that
the water pixels get blended with the terrain and crate pixels on back buffer in
such a way that the terrain and crate shows through the water. In this chapter,
we examine blending techniques which allow us to blend (combine) the pixels
that we are currently rasterizing (so-called source pixels) with the pixels that
were previously rasterized to the back buffer (so-called destination pixels). This
technique enables us, among other things, to render semi-transparent objects
such as water and glass.

Figure 10.1. A semi-transparent water surface.

398 DIRECT3D FOUNDATIONS

For the sake of discussion, we specifi cally mention the back buffer as the render
target. However, we will show later that we can render to “off screen” render
targets as well. Blending applies to these render targets just the same, and the
destination pixels are the pixel values that were previously rasterized to these off
screen render targets.

Objectives:
1. To understand how blending works and how to use it with Direct3D

2. To learn about the different blend modes that Direct3D supports

3. To find out how the alpha component can be used to control the transparency
of a primitive

4. To learn how we can prevent a pixel from being drawn to the back buffer
altogether by employing the HLSL clip function

10.1 THE BLENDING EQUATION

Let Csrc be the color output from the pixel shader for the ijth pixel we are currently
rasterizing (source pixel), and let Cdst be the color of the ijth pixel currently on
the back buffer (destination pixel). Without blending, Csrc would overwrite Cdst
(assuming it passes the depth/stencil test) and become the new color of the ijth
back buffer pixel. But with blending, Csrc and Cdst are blended together to get the
new color C that will overwrite Cdst (i.e., the blended color C will be written to the
ijth pixel of the back buffer). Direct3D uses the following blending equation to
blend the source and destination pixel colors:

C  Csrc  Fsrc  Cdst  Fdst

The colors Fsrc (source blend factor) and Fdst (destination blend factor) may be any
of the values described in §10.3, and they allow us modify the original source and
destination pixels in a variety of ways, allowing for different effects to be achieved.
The  operator means component wise multiplication for color vectors as defined
in §5.3.1; the  operator may be any of the binary operators defined in §10.2.

The above blending equation holds only for the RGB components of the colors.
The alpha component is actually handled by a separate similar equation:

A = Asrc Fsrc  AdstFdst

The equation is essentially the same, but it is possible that the blend factors and
binary operation are different. The motivation for separating RGB from alpha is

Note:

BLENDING 399

simply so that we can process them independently, and hence, differently, which
allows for a greater variety of possibilities.

Blending the alpha component is needed much less frequently than blending the
RGB components. This is mainly because we do not care about the back buffer
alpha values. Back buffer alpha values are only important if you have some
algorithm that requires destination alpha values.

10.2 BLEND OPERATIONS

The binary  operator used in the blending equation may be one of the following:

typedef enum D3D12_BLEND_OP
{
 D3D12_BLEND_OP_ADD = 1, src src dst dst   C C F C F

 D3D12_BLEND_OP_SUBTRACT = 2, dst dst src src   C C F C F

 D3D12_BLEND_OP_REV_SUBTRACT = 3, src src dst dst   C C F C F

 D3D12_BLEND_OP_MIN = 4,  min ,src dstC C C

 D3D12_BLEND_OP_MAX = 5,  max ,src dstC C C

} D3D12_BLEND_OP;

The blend factors are ignored in the min/max operation.

These same operators also work for the alpha blending equation. Also, you can
specify a different operator for RGB and alpha. For example, it is possible to add
the two RGB terms, but subtract the two alpha terms:

src src dst dst

dst dst src srcA A F A F

   
 

C C F C F

A feature recently added to Direct3D is the ability to blend the source color
and destination color using a logic operator instead of the traditional blending
equations above. The available logic operators are given below:

typedef
enum D3D12_LOGIC_OP
{
 D3D12_LOGIC_OP_CLEAR = 0,
 D3D12_LOGIC_OP_SET = (D3D12_LOGIC_OP_CLEAR + 1) ,
 D3D12_LOGIC_OP_COPY = (D3D12_LOGIC_OP_SET + 1) ,
 D3D12_LOGIC_OP_COPY_INVERTED = (D3D12_LOGIC_OP_COPY + 1) ,
 D3D12_LOGIC_OP_NOOP = (D3D12_LOGIC_OP_COPY_INVERTED + 1) ,
 D3D12_LOGIC_OP_INVERT = (D3D12_LOGIC_OP_NOOP + 1) ,
 D3D12_LOGIC_OP_AND = (D3D12_LOGIC_OP_INVERT + 1) ,
 D3D12_LOGIC_OP_NAND = (D3D12_LOGIC_OP_AND + 1) ,

Note:

Note:

400 DIRECT3D FOUNDATIONS

 D3D12_LOGIC_OP_OR = (D3D12_LOGIC_OP_NAND + 1) ,
 D3D12_LOGIC_OP_NOR = (D3D12_LOGIC_OP_OR + 1) ,
 D3D12_LOGIC_OP_XOR = (D3D12_LOGIC_OP_NOR + 1) ,
 D3D12_LOGIC_OP_EQUIV = (D3D12_LOGIC_OP_XOR + 1) ,
 D3D12_LOGIC_OP_AND_REVERSE = (D3D12_LOGIC_OP_EQUIV + 1) ,
 D3D12_LOGIC_OP_AND_INVERTED = (D3D12_LOGIC_OP_AND_REVERSE + 1) ,
 D3D12_LOGIC_OP_OR_REVERSE = (D3D12_LOGIC_OP_AND_INVERTED + 1) ,
 D3D12_LOGIC_OP_OR_INVERTED = (D3D12_LOGIC_OP_OR_REVERSE + 1)
} D3D12_LOGIC_OP;

Note that you cannot use traditional blending and logic operator blending at the
same time; you pick one or the other. Note also that in order to use logic operator
blending the render target format must support—it should be a format of the
UINT variety, otherwise you will get errors like the following:

D3D12 ERROR: ID3D12Device::CreateGraphicsPipelineState: The render
target format at slot 0 is format (R8G8B8A8_UNORM). This format
does not support logic ops. The Pixel Shader output signature
indicates this output could be written, and the Blend State indicates
logic op is enabled for this slot. [STATE_CREATION ERROR #678:
CREATEGRAPHICSPIPELINESTATE_OM_RENDER_TARGET_DOES_NOT_SUPPORT_LOGIC_
OPS]

D3D12 WARNING: ID3D12Device::CreateGraphicsPipelineState: Pixel Shader
output ‘SV_Target0’ has type that is NOT unsigned int, while the
corresponding Output Merger RenderTarget slot [0] has logic op enabled.
This happens to be well defined: the raw bits output from the shader
will simply be interpreted as UINT bits in the blender without any data
conversion. This warning is to check that the application developer
really intended to rely on this behavior. [STATE_CREATION WARNING
#677: CREATEGRAPHICSPIPELINESTATE_PS_OUTPUT_TYPE_MISMATCH]

10.3 BLEND FACTORS

By setting different combinations for the source and destination blend factors
along with different blend operators, dozens of different blending effects may
be achieved. We will illustrate some combinations in §10.5, but you will need to
experiment with others to get a feel of what they do. The following list describes
the basic blend factors, which apply to both Fsrc and Fdst. See the D3D12_BLEND
enumerated type in the SDK documentation for some additional advanced blend
factors. Letting Csrc  (rs, gs, bs), Asrc  as (the RGBA values output from the pixel
shader), Cdst  (rd, gd, bd), Adst  ad (the RGBA values already stored in the render
target), F being either Fsrc or Fdst and F being either Fsrc or Fdst, we have:

D3D12_BLEND_ZERO: F  (0, 0, 0) and F  0
D3D12_BLEND_ONE: F  (1, 1, 1) and F  1
D3D12_BLEND_SRC_COLOR: F  (rs, gs, bs)
D3D12_BLEND_INV_SRC_COLOR: Fsrc  (1 − rs, 1 − gs, 1 − bs)

BLENDING 401

D3D12_BLEND_SRC_ALPHA: F  (as, as, as) and F  as

D3D12_BLEND_INV_SRC_ALPHA: F  (1 − as, 1 − as, 1 − as) and F  (1 − as)
D3D12_BLEND_DEST_ALPHA: F  (ad, ad, ad) and F  ad

D3D12_BLEND_INV_DEST_ALPHA: F  (1 − ad, 1 − ad, 1 − ad) and F  (1 − ad)
D3D12_BLEND_DEST_COLOR: F  (rd, gd, bd)
D3D12_BLEND_INV_DEST_COLOR: F  (1 − rd, 1 − gd, 1 − bd)
D3D12_BLEND_SRC_ALPHA_SAT:  , , s s sa a a  F and sF a
 where sa  clamp(as, 0, 1)
D3D12_BLEND_BLEND_FACTOR: F  (r, g, b) and F  a, where the color (r, g, b, a) is
supplied to the second parameter of the ID3D12GraphicsCommandList::OMSetBlen
dFactor method. This allows you to specify the blend factor color to use directly;
however, it is constant until you change the blend state.
D3D12_BLEND_INV_BLEND_FACTOR: F  (1 − r, 1 − g, 1 − b) and F 1 − a, where the
color (r, g, b, a) is supplied by the second parameter of the ID3D12GraphicsCommand
List::OMSetBlendFactor method. This allows you to specify the blend factor color
to use directly; however, it is constant until you change the blend state.

All of the above blend factors apply to the RGB blending equation. For the
alpha blending equation, blend factors ending with _COLOR are not allowed.

The clamp function is defi ned as:

  
,

clamp , , ,

,

x a x b

x a b a x a

b x b

 
 
 

We can set the blend factor color with the following function:

void ID3D12GraphicsCommandList::OMSetBlendFactor(
 const FLOAT BlendFactor[4]);

Passing a nullptr restores the default blend factor of (1, 1, 1, 1).

10.4 BLEND STATE

We have talked about the blending operators and blend factors, but where do
we set these values with Direct3D? As with other Direct3D state, the blend state
is part of the PSO. Thus far we have been using the default blend state, which
disables blending:

D3D12_GRAPHICS_PIPELINE_STATE_DESC opaquePsoDesc;
ZeroMemory(&opaquePsoDesc, sizeof(D3D12_GRAPHICS_PIPELINE_STATE_DESC));
...

Note:

Note:

402 DIRECT3D FOUNDATIONS

opaquePsoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);

To configure a non-default blend state we must fill out a D3D12_BLEND_DESC
structure. The D3D12_BLEND_DESC structure is defined like so:

typedef struct D3D12_BLEND_DESC {
 BOOL AlphaToCoverageEnable; // Default: False
 BOOL IndependentBlendEnable; // Default: False
 D3D11_RENDER_TARGET_BLEND_DESC RenderTarget[8];
} D3D11_BLEND_DESC;

1. AlphaToCoverageEnable: Specify true to enable alpha-to-coverage, which is
a multisampling technique useful when rendering foliage or gate textures.
Specify false to disable alpha-to-coverage. Alpha-to-coverage requires
multisampling to be enabled (i.e., the back and depth buffer were created with
multisampling).

2. IndependentBlendEnable: Direct3D supports rendering to up to eight render
targets simultaneously. When this flag is set to true, it means blending can be
performed for each render target differently (different blend factors, different
blend operations, blending disabled/enabled, etc.). If this flag is set to false, it
means all the render targets will be blended the same way as described by the
first element in the D3D12_BLEND_DESC::RenderTarget array. Multiple render
targets are used for advanced algorithms; for now, assume we only render to
one render target at a time.

3. RenderTarget: An array of 8 D3D12_RENDER_TARGET_BLEND_DESC elements, where
the ith element describes how blending is done for the ith simultaneous
render target. If IndependentBlendEnable is set to false, then all the render
targets use RenderTarget[0] for blending.

The D3D12_RENDER_TARGET_BLEND_DESC structure is defined like so:

typedef struct D3D12_RENDER_TARGET_BLEND_DESC
{
 BOOL BlendEnable; // Default: False
 BOOL LogicOpEnable; // Default: False
 D3D12_BLEND SrcBlend; // Default: D3D12_BLEND_ONE
 D3D12_BLEND DestBlend; // Default: D3D12_BLEND_ZERO
 D3D12_BLEND_OP BlendOp; // Default: D3D12_BLEND_OP_ADD
 D3D12_BLEND SrcBlendAlpha; // Default: D3D12_BLEND_ONE
 D3D12_BLEND DestBlendAlpha; // Default: D3D12_BLEND_ZERO
 D3D12_BLEND_OP BlendOpAlpha; // Default: D3D12_BLEND_OP_ADD
 D3D12_LOGIC_OP LogicOp; // Default: D3D12_LOGIC_OP_NOOP
 UINT8 RenderTargetWriteMask; // Default: D3D12_COLOR_WRITE_ENABLE_ALL
} D3D12_RENDER_TARGET_BLEND_DESC;

1. BlendEnable: Specify true to enable blending and false to disable it. Note that
BlendEnable and LogicOpEnable cannot both be set to true; you either use
regular blending or logic operator blending.

BLENDING 403

2. LogicOpEnable: Specify true to enable a logic blend operation. Note that
BlendEnable and LogicOpEnable cannot both be set to true; you either use
regular blending or logic operator blending.

3. SrcBlend: A member of the D3D12_BLEND enumerated type that specifies the
source blend factor Fsrc for RGB blending.

4. DestBlend: A member of the D3D12_BLEND enumerated type that specifies the
destination blend factor Fdst for RGB blending.

5. BlendOp: A member of the D3D12_BLEND_OP enumerated type that specifies the
RGB blending operator.

6. SrcBlendAlpha: A member of the D3D12_BLEND enumerated type that specifies
the destination blend factor Fsrc for alpha blending.

7. DestBlendAlpha: A member of the D3D12_BLEND enumerated type that specifies
the destination blend factor Fdst for alpha blending.

8. BlendOpAlpha: A member of the D3D12_BLEND_OP enumerated type that specifies
the alpha blending operator.

9. LogicOp: A member of the D3D12_LOGIC_OP enumerated type that specifies the
logic operator to use for blending the source and destination colors.

10. RenderTargetWriteMask: A combination of one or more of the following flags:

typedef enum D3D12_COLOR_WRITE_ENABLE {
 D3D12_COLOR_WRITE_ENABLE_RED = 1,
 D3D12_COLOR_WRITE_ENABLE_GREEN = 2,
 D3D12_COLOR_WRITE_ENABLE_BLUE = 4,
 D3D12_COLOR_WRITE_ENABLE_ALPHA = 8,
 D3D12_COLOR_WRITE_ENABLE_ALL =
 (D3D12_COLOR_WRITE_ENABLE_RED | D3D12_COLOR_WRITE_ENABLE_GREEN |
 D3D12_COLOR_WRITE_ENABLE_BLUE | D3D12_COLOR_WRITE_ENABLE_ALPHA)
} D3D12_COLOR_WRITE_ENABLE;

These flags control which color channels in the back buffer are written to after
blending. For example, you could disable writes to the RGB channels, and only
write to the alpha channel, by specifying D3D12_COLOR_WRITE_ENABLE_ALPHA. This
flexibility can be useful for advanced techniques. When blending is disabled, the
color returned from the pixel shader is used with no write mask applied.

Blending is not free and does require additional per-pixel work, so only enable it
if you need it, and turn it off when you are done.

The following code shows example code of creating and setting a blend state:

// Start from non-blended PSO
D3D12_GRAPHICS_PIPELINE_STATE_DESC transparentPsoDesc = opaquePsoDesc;

Note:

404 DIRECT3D FOUNDATIONS

D3D12_RENDER_TARGET_BLEND_DESC transparencyBlendDesc;
transparencyBlendDesc.BlendEnable = true;
transparencyBlendDesc.LogicOpEnable = false;
transparencyBlendDesc.SrcBlend = D3D12_BLEND_SRC_ALPHA;
transparencyBlendDesc.DestBlend = D3D12_BLEND_INV_SRC_ALPHA;
transparencyBlendDesc.BlendOp = D3D12_BLEND_OP_ADD;
transparencyBlendDesc.SrcBlendAlpha = D3D12_BLEND_ONE;
transparencyBlendDesc.DestBlendAlpha = D3D12_BLEND_ZERO;
transparencyBlendDesc.BlendOpAlpha = D3D12_BLEND_OP_ADD;
transparencyBlendDesc.LogicOp = D3D12_LOGIC_OP_NOOP;
transparencyBlendDesc.RenderTargetWriteMask = D3D12_COLOR_WRITE_ENABLE_

ALL;

transparentPsoDesc.BlendState.RenderTarget[0] = transparencyBlendDesc;
ThrowIfFailed(md3dDevice->CreateGraphicsPipelineState(
 &transparentPsoDesc, IID_PPV_ARGS(&mPSOs["transparent"])));

As with other PSOs, you should create them all at application initialization time,
and then just switch between them as needed with the ID3D12GraphicsCommandLis
t::SetPipelineState method.

10.5 EXAMPLES

In the following subsections, we look at some blend factor combinations used
to get specific effects. In these examples, we only look at RGB blending. Alpha
blending is handled analogously.

10.5.1 No Color Write
Suppose that we want to keep the original destination pixel exactly as it is and not
overwrite it or blend it with the source pixel currently being rasterized. This can
be useful, for example, if you just want to write to the depth/stencil buffer, and not
the back buffer. To do this, set the source pixel blend factor to D3D12_BLEND_ZERO,
the destination blend factor to D3D12_BLEND_ONE, and the blend operator to D3D12_
BLEND_OP_ADD. With this setup, the blending equation reduces to:

    0,0,0 1,1,1

src src dst dst

src dst

dst

  

   



C C F C F

C C C

C C



This is a contrived example; another way to implement the same thing would be
to set the D3D12_RENDER_TARGET_BLEND_DESC::RenderTargetWriteMask member to
0, so that none of the color channels are written to.

BLENDING 405

10.5.2 Adding/Subtracting
Suppose that we want to add the source pixels with the destination pixels (see
Figure 10.2). To do this, set the source blend factor to D3D12_BLEND_ONE, the
destination blend factor to D3D12_BLEND_ONE, and the blend operator to D3D12_
BLEND_OP_ADD. With this setup, the blending equation reduces to:

    1,1,1 1,1,1

src src dst dst

src dst

src dst

  

   

 

C C F C F

C C C

C C C



We can subtract source pixels from destination pixels by using the above blend
factors and replacing the blend operation with D3D12_BLEND_OP_SUBTRACT
(Figure 10.3).

10.5.3 Multiplying
Suppose that we want to multiply a source pixel with its corresponding destination
pixel (see Figure 10.4). To do this, we set the source blend factor to D3D12_BLEND_
ZERO, the destination blend factor to D3D12_BLEND_SRC_COLOR, and the blend operator
to D3D12_BLEND_OP_ADD. With this setup, the blending equation reduces to:

  0,0,0

src src dst dst

src dst src

dst src

  

   

 

FC C F C

C C C C

C C C



Figure 10.2. Adding source and destination color. Adding creates a brighter image since color is being added.

Figure 10.3. Subtracting source color from destination color. Subtraction creates a darker image since color is
being removed.

406 DIRECT3D FOUNDATIONS

10.5.4 Transparency
Let the source alpha component as be thought of as a percent that controls the
opacity of the source pixel (e.g., 0 alpha means 0% opaque, 0.4 means 40% opaque,
and 1.0 means 100% opaque). The relationship between opacity and transparency
is simply T  1 − A, where A is opacity and T is transparency. For instance, if
something is 0.4 opaque, then it is 1 – 0.4  0.6 transparent. Now suppose that we
want to blend the source and destination pixels based on the opacity of the source
pixel. To do this, set the source blend factor to D3D12_BLEND_SRC_ALPHA and the
destination blend factor to D3D12_BLEND_INV_SRC_ALPHA, and the blend operator to
D3D12_BLEND_OP_ADD. With this setup, the blending equation reduces to:

    
 

, , 1 ,1 ,1

1

src src dst dst

src s s s dst s s s

s src s dst

a a a a a a

a a

  

      

  

C C F C F

C C C

C C C



For example, suppose as  0.25, which is to say the source pixel is only 25%
opaque. Then when the source and destination pixels are blended together, we
expect the final color will be a combination of 25% of the source pixel and 75% of
the destination pixel (the pixel “behind” the source pixel), since the source pixel is
75% transparent. The equation above gives us precisely this:

 1

0.25 0.75

s src s dst

src dst

a a  

 

C C C

C C C

Using this blending method, we can draw transparent objects like the one in
Figure 10.1. It should be noted that with this blending method, the order that you
draw the objects matters. We use the following rule:

Draw objects that do not use blending fi rst. Next, sort the objects that use
blending by their distance from the camera. Finally, draw the objects that use
blending in a back-to-front order.

The reason for the back-to-front draw order is so that objects are blended
with the objects spatially behind them. For if an object is transparent, we can see
through it to see the scene behind it. So it is necessary that all the pixels behind the

Figure 10.4. Multiplying source color and destination color.

BLENDING 407

transparent object have already been written to the back buffer, so that we can blend
the transparent source pixels with the destination pixels of the scene behind it.

For the blending method in §10.5.1, draw order does not matter since it simply
prevents source pixel writes to the back buffer. For the blending methods discussed
in §10.5.2 and 10.5.3, we still draw non-blended objects fi rst and blended objects
last; this is because we want to fi rst lay all the non-blended geometry onto the back
buffer before we start blending. However, we do not need to sort the objects that
use blending. This is because the operations are commutative. That is, if you start
with a back buffer pixel color B, and then do n additive/subtractive/multiplicative
blends to that pixel, the order does not matter:

0 1 1

0 1 1

0 1 1

n

n

n







    
    
    

B B C C C

B B C C C

B B C C C

10.5.5 Blending and the Depth Buffer
When blending with additive/subtractive/multiplicative blending, an issue arises
with the depth test. For the sake of example, we will explain only with additive
blending, but the same idea holds for subtractive/multiplicative blending. If
we are rendering a set S of objects with additive blending, the idea is that the
objects in S do not obscure each other; instead, their colors are meant to simply
accumulate (see Figure 10.5). Therefore, we do not want to perform the depth
test between objects in S; for if we did, without a back-to-front draw ordering,
one of the objects in S would obscure another object in S, thus causing the pixel
fragments to be rejected due to the depth test, which means that object’s pixel

Figure 10.5. With additive blending, the intensity is greater near the source point where more particles are
overlapping and being added together. As the particles spread out, the intensity weakens because there are
less particles overlapping and being added together.

408 DIRECT3D FOUNDATIONS

colors would not be accumulated into the blend sum. We can disable the depth
test between objects in S by disabling writes to the depth buffer while rendering
objects in S. Because depth writes are disabled, the depths of an object in S drawn
with additive blending will not be written to the depth buffer; hence, this object
will not obscure any later drawn object in S behind it due to the depth test. Note
that we only disable depth writes while drawing the objects in S (the set of objects
drawn with additive blending). Depth reads and the depth test are still enabled.
This is so that non-blended geometry (which is drawn before blended geometry)
will still obscure blended geometry behind it. For example, if you have a set of
additively blended objects behind a wall, you will not see the blended objects
because the solid wall obscures them. How to disable depth writes and, more
generally, configure the depth test settings will be covered in the next chapter.

10.6 ALPHA CHANNELS

The example from §10.5.4 showed that source alpha components can be used
in RGB blending to control transparency. The source color used in the blending
equation comes from the pixel shader. As we saw in the last chapter, we return the
diffuse material’s alpha value as the alpha output of the pixel shader. Thus the
alpha channel of the diffuse map is used to control transparency.

float4 PS(VertexOut pin) : SV_Target
{
 float4 diffuseAlbedo = gDiffuseMap.Sample(
 gsamAnisotropicWrap, pin.TexC) * gDiffuseAlbedo;

 ...

 // Common convention to take alpha from diffuse albedo.
 litColor.a = diffuseAlbedo.a;
 return litColor;
}

You can generally add an alpha channel in any popular image editing software,
such as Adobe Photoshop, and then save the image to an image format that
supports an alpha channel like DDS.

10.7 CLIPPING PIXELS

Sometimes we want to completely reject a source pixel from being further
processed. This can be done with the intrinsic HLSL clip(x) function. This
function can only be called in a pixel shader, and it discards the current pixel from

BLENDING 409

further processing if x < 0. This function is useful to render wire fence textures,
for example, like the one shown in Figure 10.6. That is, it is useful for rendering
pixels were a pixel is either completely opaque or completely transparent.

In the pixel shader, we grab the alpha component of the texture. If it is a small
value close to 0, which indicates that the pixel is completely transparent, then we
clip the pixel from further processing.

float4 PS(VertexOut pin) : SV_Target
{
 float4 diffuseAlbedo = gDiffuseMap.Sample(
 gsamAnisotropicWrap, pin.TexC) * gDiffuseAlbedo;

#ifdef ALPHA_TEST
 // Discard pixel if texture alpha < 0.1. We do this test as soon
 // as possible in the shader so that we can potentially exit the
 // shader early, thereby skipping the rest of the shader code.
 clip(diffuseAlbedo.a - 0.1f);
#endif

 ...

 // Common convention to take alpha from diffuse albedo.
 litColor.a = diffuseAlbedo.a;

 return litColor;
}

Observe that we only clip if ALPHA_TEST is defined; this is because we might not
want to invoke clip for some render items, so we need to be able to switch it on/
off by having specialized shaders. Moreover, there is a cost to using alpha testing,
so we should only use it if we need it.

Note that the same result can be obtained using blending, but this is more
effi cient. For one thing, no blending calculation needs to be done (blending can be
disabled). Also, the draw order does not matter. And furthermore, by discarding

Figure 10.6. A wire fence texture with its alpha channel. The pixels with black alpha values will be rejected
by the clip function and not drawn; hence, only the wire fence remains. Essentially, the alpha channel is
used to mask out the non fence pixels from the texture.

410 DIRECT3D FOUNDATIONS

a pixel early from the pixel shader, the remaining pixel shader instructions can be
skipped (no point in doing the calculations for a discarded pixel).

Due to fi ltering, the alpha channel can get blurred a bit, so you should leave
some buffer room when clipping pixels. For example, clip pixels with alpha
values close to 0, but not necessarily exactly zero.

Figure 10.7 shows a screenshot of the “Blend” demo. It renders semi-transparent
water using transparency blending, and renders the wire fenced box using the
clip test. One other change worth mentioning is that, because we can now see
through the box with the fence texture, we want to disable back face culling for
alpha tested objects:

// PSO for alpha tested objects

D3D12_GRAPHICS_PIPELINE_STATE_DESC alphaTestedPsoDesc = opaquePsoDesc;
alphaTestedPsoDesc.PS =
{
 reinterpret_cast<BYTE*>(mShaders["alphaTestedPS"]-

>GetBufferPointer()),
 mShaders["alphaTestedPS"]->GetBufferSize()
};
alphaTestedPsoDesc.RasterizerState.CullMode = D3D12_CULL_MODE_NONE;
ThrowIfFailed(md3dDevice->CreateGraphicsPipelineState(
 &alphaTestedPsoDesc, IID_PPV_ARGS(&mPSOs["alphaTested"])));

10.8 FOG

To simulate certain types of weather conditions in our games, we need to be able
to implement a fog effect; see Figure 10.8. In addition to the obvious purposes
of fog, fog provides some fringe benefits. For example, it can mask distant

Note:

Figure 10.7. Screenshot of the “Blend” demo.

BLENDING 411

rendering artifacts and prevent popping. Popping refers to when an object that
was previously behind the far plane all of a sudden comes in front of the frustum,
due to camera movement, and thus becomes visible; so it seems to “pop” into the
scene abruptly. By having a layer of fog in the distance, the popping is hidden.
Note that if your scene takes place on a clear day, you may wish to still include a
subtle amount of fog at far distances, because, even on clear days, distant objects
such as mountains appear hazier and lose contrast as a function of depth, and we
can use fog to simulate this atmospheric perspective phenomenon.

Our strategy for implementing fog works as follows: We specify a fog color, a
fog start distance from the camera and a fog range (i.e., the range from the fog
start distance until the fog completely hides any objects). Then the color of a point
on a triangle is a weighted average of its usual color and the fog color:

 

 1

  

    

foggedColor litColor s fogColor litColor

s litColor s fogColor

The parameter s ranges from 0 to 1 and is a function of the distance between the
camera position and the surface point. As the distance between a surface point
and the eye increases, the point becomes more and more obscured by the fog. The
parameter s is defined as follows:

 dist ,

saturate
fogStart

s
fogRange

 
  

 

p E

where dist (p, E) is the distance between the surface point p and the camera
position E. The saturate function clamps the argument to the range [0, 1]:

Figure 10.8. Screenshot of the “Blend” demo with fog enabled.

412 DIRECT3D FOUNDATIONS

 
, 0 1

0, 0

1, 1

x x

saturate x x

x

 
 
 

Figure 10.10 shows a plot of s as a function of distance. We see that when dist(p, E)
fogStart, s  0 and the fogged color is given by:

foggedColor = litColor

In other words, the fog does not modify the color of vertices whose distance from
the camera is less than fogStart. This makes sense based on the name “fogStart”;
the fog does not start affecting the color until the distance from the camera is at
least that of fogStart.

Figure 10.9. The distance of a point from the eye, and the fogStart and fogRange parameters.

Figure 10.10. (Left): A plot of s (the fog color weight) as a function of distance. (Right): A plot of 1 − s (the
lit color weight) as a function of distance. As s increases, (1 − s) decreases the same amount.]

BLENDING 413

Let fogEnd = fogStart + fogRange. When dist(p, E) fogEnd, s  1 and the fogged
color is given by:

 foggedColor = fogColor

In other words, the fog completely hides the surface point at distances greater
than or equal to fogEnd—so all you see is the fog color.

When fogStart < dist(p, E) < fogEnd, we see that s linearly ramps up from 0 to
1 as dist(p, E) increases from fogStart to fogEnd. This means that as the distance
increases, the fog color gets more and more weight while the original color gets
less and less weight. This makes sense, of course, because as the distance increases,
the fog obscures more and more of the surface point.

The following shader code shows how fog is implemented. We compute the
distance and interpolation at the pixel level, after we have computed the lit color.

// Defaults for number of lights.
#ifndef NUM_DIR_LIGHTS
 #define NUM_DIR_LIGHTS 3
#endif

#ifndef NUM_POINT_LIGHTS
 #define NUM_POINT_LIGHTS 0
#endif

#ifndef NUM_SPOT_LIGHTS
 #define NUM_SPOT_LIGHTS 0
#endif

// Include structures and functions for lighting.
#include "LightingUtil.hlsl"

Texture2D gDiffuseMap : register(t0);

SamplerState gsamPointWrap : register(s0);
SamplerState gsamPointClamp : register(s1);
SamplerState gsamLinearWrap : register(s2);
SamplerState gsamLinearClamp : register(s3);
SamplerState gsamAnisotropicWrap : register(s4);
SamplerState gsamAnisotropicClamp : register(s5);

// Constant data that varies per frame.
cbuffer cbPerObject : register(b0)
{
 float4x4 gWorld;
 float4x4 gTexTransform;
};

// Constant data that varies per material.
cbuffer cbPass : register(b1)
{

414 DIRECT3D FOUNDATIONS

 float4x4 gView;
 float4x4 gInvView;
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gViewProj;
 float4x4 gInvViewProj;
 float3 gEyePosW;
 float cbPerPassPad1;
 float2 gRenderTargetSize;
 float2 gInvRenderTargetSize;
 float gNearZ;
 float gFarZ;
 float gTotalTime;
 float gDeltaTime;
 float4 gAmbientLight;

 // Allow application to change fog parameters once per frame.
 // For example, we may only use fog for certain times of day.
 float4 gFogColor;
 float gFogStart;
 float gFogRange;
 float2 cbPerPassPad2;

 // Indices [0, NUM_DIR_LIGHTS) are directional lights;
 // indices [NUM_DIR_LIGHTS, NUM_DIR_LIGHTS+NUM_POINT_LIGHTS) are

point lights;
 // indices [NUM_DIR_LIGHTS+NUM_POINT_LIGHTS,
 // NUM_DIR_LIGHTS+NUM_POINT_LIGHT+NUM_SPOT_LIGHTS)
 // are spot lights for a maximum of MaxLights per object.
 Light gLights[MaxLights];
};

cbuffer cbMaterial : register(b2)
{
 float4 gDiffuseAlbedo;
 float3 gFresnelR0;
 float gRoughness;
 float4x4 gMatTransform;
};

struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
 float2 TexC : TEXCOORD;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 NormalW : NORMAL;
 float2 TexC : TEXCOORD;
};

BLENDING 415

VertexOut VS(VertexIn vin)
{
 VertexOut vout = (VertexOut)0.0f;

 // Transform to world space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);
 vout.PosW = posW.xyz;

 // Assumes nonuniform scaling; otherwise, need to use inverse-
transpose

 // of world matrix.
 vout.NormalW = mul(vin.NormalL, (float3x3)gWorld);

 // Transform to homogeneous clip space.
 vout.PosH = mul(posW, gViewProj);

 // Output vertex attributes for interpolation across triangle.
 float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform);
 vout.TexC = mul(texC, gMatTransform).xy;

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 float4 diffuseAlbedo = gDiffuseMap.Sample(
 gsamAnisotropicWrap, pin.TexC) * gDiffuseAlbedo;

#ifdef ALPHA_TEST
 // Discard pixel if texture alpha < 0.1. We do this test as soon
 // as possible in the shader so that we can potentially exit the
 // shader early, thereby skipping the rest of the shader code.
 clip(diffuseAlbedo.a - 0.1f);
#endif

 // Interpolating normal can unnormalize it, so renormalize it.
 pin.NormalW = normalize(pin.NormalW);

 // Vector from point being lit to eye.
 float3 toEyeW = gEyePosW - pin.PosW;
 float distToEye = length(toEyeW);
 toEyeW /= distToEye; // normalize

 // Light terms.
 float4 ambient = gAmbientLight*diffuseAlbedo;

 const float shininess = 1.0f - gRoughness;
 Material mat = { diffuseAlbedo, gFresnelR0, shininess };
 float3 shadowFactor = 1.0f;
 float4 directLight = ComputeLighting(gLights, mat, pin.PosW,
 pin.NormalW, toEyeW, shadowFactor);

 float4 litColor = ambient + directLight;

416 DIRECT3D FOUNDATIONS

#ifdef FOG
 float fogAmount = saturate((distToEye - gFogStart) / gFogRange);
 litColor = lerp(litColor, gFogColor, fogAmount);
#endif

 // Common convention to take alpha from diffuse albedo.
 litColor.a = diffuseAlbedo.a;

 return litColor;
}

Some scenes may not want to use fog; therefore, we make fog optional by requiring
FOG to be defined when compiling the shader. This way, if fog is not wanted, then
we do not pay the cost of the fog calculations. In our demo, we enable fog by
supplying the following D3D_SHADER_MACRO to the CompileShader function:

const D3D_SHADER_MACRO defines[] =
{
 "FOG", "1",
 NULL, NULL
};

mShaders["opaquePS"] = d3dUtil::CompileShader(
 L"Shaders\\Default.hlsl", defines, "PS", "ps_5_0");

Observe that in the fog calculation, we use the distToEye value, that we also
computed to normalize the toEye vector. A less optimal implementation would
have been to write:

fl oat3 toEye = normalize(gEyePosW - pin.PosW);

fl oat distToEye = distance(gEyePosW, pin.PosW);

This essentially computes the length of the toEye vector twice, once in the
normalize function, and again in the distance function.

10.9 SUMMARY

1. Blending is a technique which allows us to blend (combine) the pixels that
we are currently rasterizing (so-called source pixels) with the pixels that were
previously rasterized to the back buffer (so-called destination pixels). This
technique enables us, among other things, to render semi-transparent objects
such as water and glass.

2. The blending equation is:

 src src dst dst  C C F C F

 src src dst dstA A F A F 

Note:

BLENDING 417

 Note that RGB components are blended independently to alpha
components. The  binary operator can be one of the operators defi ned by
the D3D12_BLEND_OP enumerated type.

3. Fsrc,Fdst, Fsrc, and Fdst are called blend factors, and they provide a means for
customizing the blending equation. They can be a member of the D3D12_BLEND
enumerated type. For the alpha blending equation, blend factors ending with
_COLOR are not allowed.

4. Source alpha information comes from the diffuse material. In our framework,
the diffuse material is defined by a texture map, and the texture’s alpha
channel stores the alpha information.

5. Source pixels can be completely rejected from further processing using the
intrinsic HLSL clip(x) function. This function can only be called in a pixel
shader, and it discards the current pixel from further processing if x < 0.
Among other things, this function is useful for efficiently rendering pixels
were a pixel is either completely opaque or completely transparent (it is used
to reject completely transparent pixels—pixels with an alpha value near zero).

6. Use fog to model various weather effects and atmospheric perspective, to hide
distant rendering artifacts, and to hide popping. In our linear fog model, we
specify a fog color, a fog start distance from the camera and a fog range. The
color of a point on a triangle is a weighted average of its usual color and the
fog color:

 

 1

  

    

foggedColor litColor s fogColor litColor

s litColor s fogColor

The parameter s ranges from 0 to 1 and is a function of the distance between the
camera position and the surface point. As the distance between a surface point
and the eye increases, the point becomes more and more obscured by the fog.

10. 10 EXERCISES

1. Experiment with different blend operation and blend factor combinations.

2. Modify the “Blend” demo by drawing the water first. Explain the results.

3. Suppose fogStart  10 and fogRange  200. Compute foggedColor for when

(a) dist (p, E)  160

(b) dist (p, E)  110

418 DIRECT3D FOUNDATIONS

(c) dist (p, E)  60

(d) dist (p, E)  30

4. Verify the compiled pixel shader without ALPHA_TEST defined does not have a
discard instruction, and the compiled pixel shader with ALPHA_TEST does, by
looking at the generated shader assembly. The discard instruction corresponds
to the HLSL clip instruction.

5. Modify the “Blend” demo by creating and applying a blend render state that
disables color writes to the red and green color channels.

Chapter

419

11Chapter

STENCILING

The stencil buffer is an off-screen buffer we can use to achieve some special
effects. The stencil buffer has the same resolution as the back buffer and depth
buffer, such that the ijth pixel in the stencil buffer corresponds with the ijth pixel
in the back buffer and depth buffer. Recall from §4.1.5 that when a stencil buffer
is specified, it comes attached to the depth buffer. As the name suggests, the stencil
buffer works as a stencil and allows us to block the rendering of certain pixel
fragments to the back buffer.

For instance, when implementing a mirror, we need to refl ect an object across
the plane of the mirror; however, we only want to draw the refl ection into the
mirror. We can use the stencil buffer to block the rendering of the refl ection unless
it is being drawn into the mirror (see Figure 11.1).

The stencil buffer (and also the depth buffer) state is confi gured by fi lling out
a D3D12_DEPTH_STENCIL_DESC instance and assigning it to the D3D12_GRAPHICS_
PIPELINE_STATE_DESC::DepthStencilState fi eld of a pipeline state object (PSO).
Learning to use the stencil buffer effectively comes best by studying existing
example application. Once you understand a few applications of the stencil buffer,
you will have a better idea of how it can be used for your own specifi c needs.

Objectives:
1. To find out how to control the depth and stencil buffer state by filling out the

D3D12_DEPTH_STENCIL_DESC field in a pipeline state object.

420 DIRECT3D FOUNDATIONS

2. To learn how to implement mirrors by using the stencil buffer to prevent
reflections from being drawn to non-mirror surfaces.

3. To be able to identify double blending and understand how the stencil buffer
can prevent it.

4. To explain depth complexity and describe two ways the depth complexity of a
scene can to measured.

11.1 DEPTH/STENCIL FORMATS AND CLEARING

Recalling that the depth/stencil buffer is a texture, it must be created with certain
data formats. The formats used for depth/stencil buffering are as follows:

1. DXGI_FORMAT_D32_FLOAT_S8X24_UINT: Specifies a 32-bit floating-point depth
buffer, with 8-bits (unsigned integer) reserved for the stencil buffer mapped
to the [0, 255] range and 24-bits not used for padding.

2. DXGI_FORMAT_D24_UNORM_S8_UINT: Specifies an unsigned 24-bit depth buffer
mapped to the [0, 1] range with 8-bits (unsigned integer) reserved for the
stencil buffer mapped to the [0, 255] range.

In our D3DApp framework, when we create the depth buffer, we specify:

DXGI_FORMAT mDepthStencilFormat = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthStencilDesc.Format = mDepthStencilFormat;

Also, the stencil buffer should be reset to some value at the beginning of each
frame. This is done with the following method (which also clears the depth
buffer):

void ID3D12GraphicsCommandList::ClearDepthStencilView(
 D3D12_CPU_DESCRIPTOR_HANDLE DepthStencilView,
 D3D12_CLEAR_FLAGS ClearFlags,
 FLOAT Depth,

Figure 11.1. (Left) The reflected skull shows properly in the mirror. The reflection does not show through the wall
bricks because it fails the depth test in this area. However, looking behind the wall we are able to see the reflection,
thus breaking the illusion (the reflection should only show up through the mirror). (Right) By using the stencil
buffer, we can block the reflected skull from being rendered unless it is being drawn in the mirror.

STENCILING 421

 UINT8 Stencil,
 UINT NumRects,
 const D3D12_RECT *pRects);

1. DepthStencilView: Descriptor to the view of the depth/stencil buffer we want
to clear.

2. ClearFlags: Specify D3D12_CLEAR_FLAG_DEPTH to clear the depth buffer only;
specify D3D12_CLEAR_FLAG_STENCIL to clear the stencil buffer only; specify
D3D12_CLEAR_FLAG_DEPTH | D3D12_CLEAR_FLAG_STENCIL to clear both.

3. Depth: The float-value to set each pixel in the depth buffer to; it must be a
floating point number x such that 0  x  1.

4. Stencil: The integer-value to set each pixel of the stencil buffer to; it must be
an integer n such that 0  n  255.

5. NumRects: The number of rectangles in the array pRects points to.

6. pRects: An array of D3D12_RECTs marking rectangular regions on the depth/
stencil buffer to clear; specify nullptr to clear the entire depth/stencil buffer.

We have already been calling this method every frame in our demos. For example:

mCommandList->ClearDepthStencilView(DepthStencilView(),
 D3D12_CLEAR_FLAG_DEPTH | D3D12_CLEAR_FLAG_STENCIL,
 1.0f, 0, 0, nullptr);

11.2 THE STENCIL TEST

As previously stated, we can use the stencil buffer to block rendering to certain
areas of the back buffer. The decision to block a particular pixel from being
written is decided by the stencil test, which is given by the following:

 if(StencilRef & StencilReadMask  Value & StencilReadMask)
 accept pixel
 else
 reject pixel

The stencil test is performed as pixels get rasterized (i.e., during the output-
merger stage), assuming stenciling is enabled, and takes two operands:

1. A left-hand-side (LHS) operand that is determined by ANDing an application-
defined stencil reference value (StencilRef) with an application-defined
masking value (StencilReadMask).

2. A right-hand-side (RHS) operand that is determined by ANDing the entry
already in the stencil buffer of the particular pixel we are testing (Value) with
an application-defined masking value (StencilReadMask).

422 DIRECT3D FOUNDATIONS

Note that the StencilReadMask is the same for the LHS and the RHS. The stencil
test then compares the LHS with the RHS as specifi ed an application-chosen
comparison function  , which returns a true or false value. We write the pixel to
the back buffer if the test evaluates to true (assuming the depth test also passes).
If the test evaluates to false, then we block the pixel from being written to the back
buffer. And of course, if a pixel is rejected due to failing the stencil test, it is not
written to the depth buffer either.

The  operator is any one of the functions defi ned in the D3D12_COMPARISON_
FUNC enumerated type:

typedef enum D3D12_COMPARISON_FUNC
{
 D3D12_COMPARISON_NEVER = 1,
 D3D12_COMPARISON_LESS = 2,
 D3D12_COMPARISON_EQUAL = 3,
 D3D12_COMPARISON_LESS_EQUAL = 4,
 D3D12_COMPARISON_GREATER = 5,
 D3D12_COMPARISON_NOT_EQUAL = 6,
 D3D12_COMPARISON_GREATER_EQUAL = 7,
 D3D12_COMPARISON_ALWAYS = 8,

} D3D12_COMPARISON_FUNC;

1. D3D12_COMPARISON_NEVER: The function always returns false.

2. D3D12_COMPARISON_LESS: Replace  with the < operator.

3. D3D12_COMPARISON_EQUAL: Replace  with the  operator.

4. D3D12_COMPARISON_LESS_EQUAL: Replace  with the  operator.

5. D3D12_COMPARISON_GREATER: Replace  with the > operator.

6. D3D12_COMPARISON_NOT_EQUAL: Replace  with the operator.

7. D3D12_COMPARISON_GREATER_EQUAL: Replace  with the  operator.

8. D3D12_COMPARISON_ALWAYS: The function always returns true.

11.3 DESCRIBING THE DEPTH/STENCIL STATE

The depth/stencil state is described by filling out a D3D12_DEPTH_STENCIL_DESC
instance:

typedef struct D3D12_DEPTH_STENCIL_DESC {
 BOOL DepthEnable; // Default True

 // Default: D3D11_DEPTH_WRITE_MASK_ALL
 D3D12_DEPTH_WRITE_MASK DepthWriteMask;

 // Default: D3D11_COMPARISON_LESS
 D3D12_COMPARISON_FUNC DepthFunc;

STENCILING 423

 BOOL StencilEnable; // Default: False
 UINT8 StencilReadMask; // Default: 0xff
 UINT8 StencilWriteMask; // Default: 0xff
 D3D12_DEPTH_STENCILOP_DESC FrontFace;
 D3D12_DEPTH_STENCILOP_DESC BackFace;

} D3D12_DEPTH_STENCIL_DESC;

11.3.1 Depth Settings

1. DepthEnable: Specify true to enable the depth buffering; specify false to
disable it. When depth testing is disabled, the draw order matters, and a
pixel fragment will be drawn even if it is behind an occluding object (review
§4.1.5). If depth buffering is disabled, elements in the depth buffer are not
updated either, regardless of the DepthWriteMask setting.

2. DepthWriteMask: This can be either D3D12_DEPTH_WRITE_MASK_ZERO or D3D12_
DEPTH_WRITE_MASK_ALL, but not both. Assuming DepthEnable is set to true,
D3D12_DEPTH_WRITE_MASK_ZERO disables writes to the depth buffer, but depth
testing will still occur. D3D12_DEPTH_WRITE_MASK_ALL enables writes to the
depth buffer; new depths will be written provided the depth and stencil test
both pass. The ability to control depth reads and writes becomes necessary for
implementing certain special effects.

3. DepthFunc: Specify one of the members of the D3D12_COMPARISON_FUNC
enumerated type to defi ne the depth test comparison function. Usually this
is always D3D12_COMPARISON_LESS so that the usual depth test is performed,
as described in §4.1.5. That is, a pixel fragment is accepted provided its
depth value is less than the depth of the previous pixel written to the back
buffer. But as you can see, Direct3D allows you to customize the depth test
if necessary.

11.3.2 Stencil Settings

1. StencilEnableSpecify true to enable the stencil test; specify false to disable it.

2. StencilReadMask: The StencilReadMask used in the stencil test:

 if(StencilRef & StencilReadMask  Value & StencilReadMask)
 accept pixel
 else
 reject pixel

The default does not mask any bits:

 #define D3D12_DEFAULT_STENCIL_READ_MASK (0xff)

424 DIRECT3D FOUNDATIONS

3. StencilWriteMask: When the stencil buffer is being updated, we can mask off
certain bits from being written to with the write mask. For example, if you
wanted to prevent the top 4 bits from being written to, you could use the write
mask of 0x0f. The default value does not mask any bits:

 #define D3D12_DEFAULT_STENCIL_WRITE_MASK (0xff)

4. FrontFace: A filled out D3D12_DEPTH_STENCILOP_DESC structure indicating how
the stencil buffer works for front facing triangles.

5. BackFace: A filled out D3D12_DEPTH_STENCILOP_DESC structure indicating how
the stencil buffer works for back facing triangles.

typedef struct D3D12_DEPTH_STENCILOP_DESC {

 D3D12_STENCIL_OP StencilFailOp; // Default: D3D12_STENCIL_OP_KEEP
 D3D12_STENCIL_OP StencilDepthFailOp; // Default: D3D12_STENCIL_OP_KEEP
 D3D12_STENCIL_OP StencilPassOp; // Default: D3D12_STENCIL_OP_KEEP
 D3D12_COMPARISON_FUNC StencilFunc; // Default: D3D12_COMPARISON_ALWAYS
} D3D12_DEPTH_STENCILOP_DESC;

1. StencilFailOp: A member of the D3D12_STENCIL_OP enumerated type
describing how the stencil buffer should be updated when the stencil test fails
for a pixel fragment.

2. StencilDepthFailOp: A member of the D3D12_STENCIL_OP enumerated type
describing how the stencil buffer should be updated when the stencil test
passes but the depth test fails for a pixel fragment.

3. StencilPassOp: A member of the D3D12_STENCIL_OP enumerated type
describing how the stencil buffer should be updated when the stencil test and
depth test both pass for a pixel fragment.

4. StencilFunc: A member of the D3D12_COMPARISON_FUNC enumerated type to
defi ne the stencil test comparison function.

typedef
enum D3D12_STENCIL_OP
{
 D3D12_STENCIL_OP_KEEP = 1,
 D3D12_STENCIL_OP_ZERO = 2,
 D3D12_STENCIL_OP_REPLACE = 3,
 D3D12_STENCIL_OP_INCR_SAT = 4,
 D3D12_STENCIL_OP_DECR_SAT = 5,
 D3D12_STENCIL_OP_INVERT = 6,
 D3D12_STENCIL_OP_INCR = 7,
 D3D12_STENCIL_OP_DECR = 8
} D3D12_STENCIL_OP;

1. D3D12_STENCIL_OP_KEEP: Specifies to not change the stencil buffer; that is, keep
the value currently there.

STENCILING 425

2. D3D12_STENCIL_OP_ZERO: Specifies to set the stencil buffer entry to zero.

3. D3D12_STENCIL_OP_REPLACE: Specifies to replaces the stencil buffer entry with
the stencil-reference value (StencilRef) used in the stencil test. Note that
the StencilRef value is set when we bind the depth/stencil state block to the
rendering pipeline (§11.3.3).

4. D3D12_STENCIL_OP_INCR_SAT: Specifies to increment the stencil buffer entry.
If the incremented value exceeds the maximum value (e.g., 255 for an 8-bit
stencil buffer), then we clamp the entry to that maximum.

5. D3D12_STENCIL_OP_DECR_SAT: Specifies to decrement the stencil buffer entry. If
the decremented value is less than zero, then we clamp the entry to zero.

6. D3D12_STENCIL_OP_INVERT: Specifies to invert the bits of the stencil buffer
entry.

7. D3D12_STENCIL_OP_INCR: Specifies to increment the stencil buffer entry. If the
incremented value exceeds the maximum value (e.g., 255 for an 8-bit stencil
buffer), then we wrap to 0.

8. D3D12_STENCIL_OP_DECR: Specifies to decrement the stencil buffer entry. If the
decremented values is less than zero, then we wrap to the maximum allowed
value.

Observe that the stenciling behavior for front facing and back facing triangles
can be different. The BackFace settings are irrelevant in the case that we do
not render back facing polygons due to back face culling. However, sometimes
we do need to render back facing polygons for certain graphics algorithms, or
for transparent geometry (like the wire fence box, where we could see through
the box to see the back sides). In these cases, the BackFace settings are relevant.

11.3.3 Creating and Binding a Depth/Stencil State
Once we have fully filled out a D3D12_DEPTH_STENCIL_DESC instance describing
our depth/stencil state, we can assign it to the D3D12_GRAPHICS_PIPELINE_STATE_
DESC::DepthStencilState field of a PSO. Any geometry drawn with this PSO will
be rendered with the depth/stencil settings of the PSO.

One detail we have not mentioned yet is how to set the stencil reference value.
The stencil reference value is set with the ID3D12GraphicsCommandList::OMSetStenc
ilRef method, which takes a single unsigned integer parameter; for example, the
following sets the stencil reference value to 1:

mCommandList->OMSetStencilRef(1);

Note:

426 DIRECT3D FOUNDATIONS

11.4 IMPLEMENTING PLANAR MIRRORS

Many surfaces in nature serve as mirrors and allow us to see the reflections
of objects. This section describes how we can simulate mirrors for our 3D
applications. Note that for simplicity, we reduce the task of implementing mirrors
to planar surfaces only. For instance, a shiny car can display a reflection; however,
a car’s body is smooth, round, and not planar. Instead, we render reflections such
as those that are displayed in a shiny marble floor or those that are displayed in a
mirror hanging on a wall—in other words, mirrors that lie on a plane.

Implementing mirrors programmatically requires us to solve two problems.
First, we must learn how to refl ect an object about an arbitrary plane so that we
can draw the refl ection correctly. Second, we must only display the refl ection in a
mirror, that is, we must somehow “mark” a surface as a mirror and then, as we are
rendering, only draw the refl ected object if it is in a mirror. Refer back to Figure 11.1,
which fi rst introduced this concept.

The fi rst problem is easily solved with some analytical geometry, and is
discussed in Appendix C. The second problem can be solved using the stencil
buffer.

11.4.1 Mirror Overview

When we draw the refl ection, we also need to refl ect the light source across the
mirror plane. Otherwise, the lighting in the refl ection would not be accurate.

Figure 11.2 shows that to draw a reflection of an object, we just need to reflect it
over the mirror plane. However, this introduces the problem shown in Figure 11.1.
Namely, the reflection of the object (the skull in this case) is just another object
in our scene, and if nothing is occluding it, then the eye will see it. However, the
reflection should only be seen through the mirror. We can solve this problem

Note:

Figure 11.2. The eye sees the box reflection through the mirror. To simulate this, we reflect the box across
the mirror plane and render the reflected box as usual.

STENCILING 427

using the stencil buffer because the stencil buffer allows us to block rendering to
certain areas on the back buffer. Thus we can use the stencil buffer to block the
rendering of the reflected skull if it is not being rendered into the mirror. The
following outlines the step of how this can be accomplished:

1. Render the floor, walls, and skull to the back buffer as normal (but not the
mirror). Note that this step does not modify the stencil buffer.

2. Clear the stencil buffer to 0. Figure 11.3 shows the back buffer and stencil
buffer at this point (where we substitute a box for the skull to make the
drawing simpler).

3. Render the mirror only to the stencil buffer. We can disable color writes to the
back buffer by creating a blend state that sets

D3D12_RENDER_TARGET_BLEND_DESC::RenderTargetWriteMask = 0;

and we can disable writes to the depth buffer by setting

D3D12_DEPTH_STENCIL_DESC::DepthWriteMask = D3D12_DEPTH_WRITE_MASK_
ZERO;

When rendering the mirror to the stencil buffer, we set the stencil test to
always succeed (D3D12_COMPARISON_ALWAYS) and specify that the stencil buffer
entry should be replaced (D3D12_STENCIL_OP_REPLACE) with 1 (StencilRef) if
the test passes. If the depth test fails, we specify D3D12_STENCIL_OP_KEEP so that
the stencil buffer is not changed if the depth test fails (this can happen, for
example, if the skull obscures part of the mirror). Since we are only rendering
the mirror to the stencil buffer, it follows that all the pixels in the stencil
buffer will be 0 except for the pixels that correspond to the visible part of
the mirror—they will have a 1. Figure 11.4 shows the updated stencil buffer.
Essentially, we are marking the visible pixels of the mirror in the stencil buffer.

It is important to draw the mirror to the stencil buffer after we have drawn the
skull so that pixels of the mirror occluded by the skull fail the depth test, and thus
do not modify the stencil buffer. We do not want to turn on parts of the stencil
buffer that are occluded; otherwise the refl ection will show through the skull.

Note:

Figure 11.3. The floor, walls, and skull to the back buffer and the stencil buffer cleared to 0 (denoted by
light gray color). The black outlines drawn on the stencil buffer illustrate the relationship between the back
buffer pixels and the stencil buffer pixels—they do not indicate any data drawn on the stencil buffer.

428 DIRECT3D FOUNDATIONS

4. Now we render the reflected skull to the back buffer and stencil buffer. But
recall that we only will render to the back buffer if the stencil test passes. This
time, we set the stencil test to only succeed if the value in the stencil buffer
equals 1; this is done using a StencilRef of 1, and the stencil operator D3D12_
COMPARISON_EQUAL. In this way, the reflected skull will only be rendered to areas
that have a 1 in their corresponding stencil buffer entry. Since the areas in the
stencil buffer that correspond to the visible parts of the mirror are the only
entries that have a 1, it follows that the reflected skull will only be rendered
into the visible parts of the mirror.

5. Finally, we render the mirror to the back buffer as normal. However, in order
for the skull reflection to show through (which lies behind the mirror), we
need to render the mirror with transparency blending. If we did not render
the mirror with transparency, the mirror would simply occlude the reflection
since its depth is less than that of the reflection. To implement this, we simply
need to define a new material instance for the mirror; we set the alpha channel
of the diffuse component to 0.3 to make the mirror 30% opaque, and we
render the mirror with the transparency blend state as described in the last
chapter (§10.5.4).

auto icemirror = std::make_unique<Material>();
icemirror->Name = "icemirror";
icemirror->MatCBIndex = 2;
icemirror->DiffuseSrvHeapIndex = 2;
icemirror->DiffuseAlbedo = XMFLOAT4(1.0f, 1.0f, 1.0f, 0.3f);
icemirror->FresnelR0 = XMFLOAT3(0.1f, 0.1f, 0.1f);
icemirror->Roughness = 0.5f;

These settings give the following blending equation:

 0.3 0.7src dst   C C C

Assuming we have laid down the reflected skull pixels to the back buffer, we see
30% of the color comes from the mirror (source) and 70% of the color comes
from the skull (destination).

Figure 11.4: Rendering the mirror to the stencil buffer, essentially marking the pixels in the stencil buffer
that correspond to the visible parts of the mirror. The solid black area on the stencil buffer denotes stencil
entries set to 1. Note that the area on the stencil buffer occluded by the box does not get set to 1 since it
fails the depth test (the box is in front of that part of the mirror).

STENCILING 429

11.4.2 Defi ning the Mirror Depth/Stencil States
To implement the previously described algorithm, we need two PSOs. The first is
used when drawing the mirror to mark the mirror pixels on the stencil buffer. The
second is used to draw the reflected skull so that it is only drawn into the visible
parts of the mirror.

//
// PSO for marking stencil mirrors.
//

// Turn off render target writes.
CD3DX12_BLEND_DESC mirrorBlendState(D3D12_DEFAULT);
mirrorBlendState.RenderTarget[0].RenderTargetWriteMask = 0;

D3D12_DEPTH_STENCIL_DESC mirrorDSS;
mirrorDSS.DepthEnable = true;
mirrorDSS.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ZERO;
mirrorDSS.DepthFunc = D3D12_COMPARISON_FUNC_LESS;
mirrorDSS.StencilEnable = true;
mirrorDSS.StencilReadMask = 0xff;
mirrorDSS.StencilWriteMask = 0xff;

mirrorDSS.FrontFace.StencilFailOp = D3D12_STENCIL_OP_KEEP;
mirrorDSS.FrontFace.StencilDepthFailOp = D3D12_STENCIL_OP_KEEP;
mirrorDSS.FrontFace.StencilPassOp = D3D12_STENCIL_OP_REPLACE;
mirrorDSS.FrontFace.StencilFunc = D3D12_COMPARISON_FUNC_ALWAYS;

// We are not rendering backfacing polygons, so these settings do not
// matter.
mirrorDSS.BackFace.StencilFailOp = D3D12_STENCIL_OP_KEEP;
mirrorDSS.BackFace.StencilDepthFailOp = D3D12_STENCIL_OP_KEEP;
mirrorDSS.BackFace.StencilPassOp = D3D12_STENCIL_OP_REPLACE;
mirrorDSS.BackFace.StencilFunc = D3D12_COMPARISON_FUNC_ALWAYS;

D3D12_GRAPHICS_PIPELINE_STATE_DESC markMirrorsPsoDesc = opaquePsoDesc;
markMirrorsPsoDesc.BlendState = mirrorBlendState;
markMirrorsPsoDesc.DepthStencilState = mirrorDSS;
ThrowIfFailed(md3dDevice->CreateGraphicsPipelineState(
 &markMirrorsPsoDesc,
 IID_PPV_ARGS(&mPSOs["markStencilMirrors"])));

//
// PSO for stencil reflections.
//

D3D12_DEPTH_STENCIL_DESC reflectionsDSS;
reflectionsDSS.DepthEnable = true;
reflectionsDSS.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
reflectionsDSS.DepthFunc = D3D12_COMPARISON_FUNC_LESS;
reflectionsDSS.StencilEnable = true;
reflectionsDSS.StencilReadMask = 0xff;
reflectionsDSS.StencilWriteMask = 0xff;

430 DIRECT3D FOUNDATIONS

reflectionsDSS.FrontFace.StencilFailOp = D3D12_STENCIL_OP_KEEP;
reflectionsDSS.FrontFace.StencilDepthFailOp = D3D12_STENCIL_OP_KEEP;
reflectionsDSS.FrontFace.StencilPassOp = D3D12_STENCIL_OP_KEEP;
reflectionsDSS.FrontFace.StencilFunc = D3D12_COMPARISON_FUNC_EQUAL;

// We are not rendering backfacing polygons, so these settings do not
// matter.
reflectionsDSS.BackFace.StencilFailOp = D3D12_STENCIL_OP_KEEP;
reflectionsDSS.BackFace.StencilDepthFailOp = D3D12_STENCIL_OP_KEEP;
reflectionsDSS.BackFace.StencilPassOp = D3D12_STENCIL_OP_KEEP;
reflectionsDSS.BackFace.StencilFunc = D3D12_COMPARISON_FUNC_EQUAL;

D3D12_GRAPHICS_PIPELINE_STATE_DESC drawReflectionsPsoDesc =
opaquePsoDesc;

drawReflectionsPsoDesc.DepthStencilState = reflectionsDSS;
drawReflectionsPsoDesc.RasterizerState.CullMode = D3D12_CULL_MODE_BACK;
drawReflectionsPsoDesc.RasterizerState.FrontCounterClockwise = true;
ThrowIfFailed(md3dDevice->CreateGraphicsPipelineState(
 &drawReflectionsPsoDesc,
 IID_PPV_ARGS(&mPSOs["drawStencilReflections"])));

11.4.3 Drawing the Scene
The following code outlines our draw method. We have omitted irrelevant details,
such as setting constant buffer values, for brevity and clarity (see the example
code for the full details).

// Draw opaque items--floors, walls, skull.
auto passCB = mCurrFrameResource->PassCB->Resource();
mCommandList->SetGraphicsRootConstantBufferView(2,
 passCB->GetGPUVirtualAddress());
DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)

RenderLayer::Opaque]);

// Mark the visible mirror pixels in the stencil buffer with the value 1
mCommandList->OMSetStencilRef(1);
mCommandList->SetPipelineState(mPSOs["markStencilMirrors"].Get());
DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)

RenderLayer::Mirrors]);

// Draw the reflection into the mirror only (only for pixels where the
// stencil buffer is 1).
// Note that we must supply a different per-pass constant buffer--one
// with the lights reflected.
mCommandList->SetGraphicsRootConstantBufferView(2,
 passCB->GetGPUVirtualAddress() + 1 * passCBByteSize);
mCommandList->SetPipelineState(mPSOs["drawStencilReflections"].Get());
DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)

RenderLayer::Reflected]);

// Restore main pass constants and stencil ref.
mCommandList->SetGraphicsRootConstantBufferView(2,
 passCB->GetGPUVirtualAddress());

STENCILING 431

mCommandList->OMSetStencilRef(0);

// Draw mirror with transparency so reflection blends through.
mCommandList->SetPipelineState(mPSOs["transparent"].Get());
DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)
RenderLayer::Transparent]);

One point to note in the above code is how we change the per-pass constant buffer
when drawing the RenderLayer::Reflected layer. This is because the scene lighting
also needs to get reflected when drawing the reflection. The lights are stored in a
per-pass constant buffer, so we create an additional per-pass constant buffer that
stores the reflected scene lighting. The per-pass constant buffer used for drawing
reflections is set in the following method:

PassConstants StencilApp::mMainPassCB;
PassConstants StencilApp::mReflectedPassCB;
void StencilApp::UpdateReflectedPassCB(const GameTimer& gt)
{
 mReflectedPassCB = mMainPassCB;

 XMVECTOR mirrorPlane = XMVectorSet(0.0f, 0.0f, 1.0f, 0.0f); // xy plane
 XMMATRIX R = XMMatrixReflect(mirrorPlane);

 // Reflect the lighting.
 for(int i = 0; i < 3; ++i)
 {
 XMVECTOR lightDir = XMLoadFloat3(&mMainPassCB.Lights[i].Direction);
 XMVECTOR reflectedLightDir = XMVector3TransformNormal(lightDir, R);
 XMStoreFloat3(&mReflectedPassCB.Lights[i].Direction,

reflectedLightDir);
 }

 // Reflected pass stored in index 1
 auto currPassCB = mCurrFrameResource->PassCB.get();
 currPassCB->CopyData(1, mReflectedPassCB);
}

11.4.4 Winding Order and Refl ections
When a triangle is reflected across a plane, its winding order does not reverse, and
thus, its face normal does not reverse. Hence, outward facing normals become
inward facing normals (see Figure 11.5), after reflection. To correct this, we tell
Direct3D to interpret triangles with a counterclockwise winding order as front-
facing and triangles with a clockwise winding order as back-facing (this is the
opposite of our usual convention—§5.10.2). This effectively reflects the normal
directions so that they are outward facing after reflection. We reverse the winding
order convention by setting the following rasterizer properties in the PSO:

drawReflectionsPsoDesc.RasterizerState.FrontCounterClockwise = true;

432 DIRECT3D FOUNDATIONS

Figure 11.5. The polygon normals do not get reversed with reflection, which makes them inward facing
after reflection.

11.5 IMPLEMENTING PLANAR SHADOWS

Portions of this section appeared in the book by Frank D. Luna, Introduction to
3D Game Programming with DirectX 9.0c: A Shader Approach, 2006: Jones
and Bartlett Learning, Burlington, MA. www.jblearning.com. Reprinted with
permission.

Shadows aid in our perception of where light is being emitted in a scene and
ultimately makes the scene more realistic. In this section, we will show how to
implement planar shadows; that is, shadows that lie on a plane (see Figure 11.6).

To implement planar shadows, we must fi rst fi nd the shadow an object casts
to a plane and model it geometrically so that we can render it. This can easily be
done with some 3D math. We then render the triangles that describe the shadow
with a black material at 50% transparency. Rendering the shadow like this can
introduce some rendering artifacts called “double blending,” which we explain
in a few sections; we utilize the stencil buffer to prevent double blending from
occurring.

Note:

Figure 11.6. The main light source casts a planar shadow in the “Mirror” demo.

STENCILING 433

11.5.1 Parallel Light Shadows
Figure 11.7 shows the shadow an object casts with respect to a parallel light source.
Given a parallel light source with direction L, the light ray that passes through a
vertex p is given by r(t)  p  tL. The intersection of the ray r(t) with the shadow
plane (n, d) gives s. (The reader can read more about rays and planes in Appendix C.)
The set of intersection points found by shooting a ray through each of the object’s
vertices with the plane defines the projected geometry of the shadow. For a vertex
p, its shadow projection is given by

 ()s

d
t

 
  


n p

s r p L
n L

 (eq. 11.1)

The details of the ray/plane intersection test are given in Appendix C.
Equation 11.1 can be written in terms of matrices.

0

0
1

0

x x y x z x

x y y y z y
x y z

x z y z z z

x y z

L n L n L n

L n L n L n
p p p

L n L n L n

L d L d L d

    
              
      

n L

n L
s

n L

n L

We call the preceding 4  4 matrix the directional shadow matrix and denote it by
Sdir. To see how this matrix is equivalent to Equation 11.1, we just need to perform
the multiplication. First, however, observe that this equation modifies the
w-component so that sw = n·L. Thus, when the perspective divide (§5.6.3.4) takes
place, each coordinate of s will be divided by n·L; this is how we get the division
by n·L in Equation 11.1 using matrices. Now doing the matrix multiplication to
obtain the ith coordinate is for i  {1, 2, 3}, followed by the perspective divide we
obtain:

Figure 11.7. The shadow cast with respect to a parallel light source.

434 DIRECT3D FOUNDATIONS

()

() ()

i i x x i y y i z z i
i

i i

i i

p L n p L n p L n p L d
s

p d L

d
p L

    
 


   




 
 



n L

n L
n L n p

n L
n p

n L

This is exactly the ith coordinate of s in Equation 11.1, so s  s.
To use the shadow matrix, we combine it with our world matrix. However,

after the world transform, the geometry has not really been projected on to the
shadow plane yet because the perspective divide has not occurred yet. A problem
arises if sw = n·L < 0. because this makes the w-coordinate negative. Usually in the
perspective projection process we copy the z-coordinate into the w-coordinate,
and a negative w-coordinate would mean the point is not in the view volume and
thus is clipped away (clipping is done in homogeneous space before the divide).
This is a problem for planar shadows because we are now using the w-coordinate
to implement shadows, in addition to the perspective divide. Figure 11.8 shows a
valid situation where n·L < 0, but the shadow will not show up.

To fi x this, instead of using the light ray direction L, we should use the vector
towards the infi nitely far away light source  L L% . Observe that ()t t r p L
and ()t t r p L% defi ne the same 3D line, and the intersection point between the
line and the plane will be the same (the intersection parameter ts will be different
to compensate for the sign difference between L% and L). So using  L L% gives us
the same answer, but with n·L > 0, which avoids the negative w-coordinate.

11.5.2 Point Light Shadows
Figure 11.9 shows the shadow an object casts with respect to a point light source
whose position is described by the point L. The light ray from a point light through

Figure 11.8. A situation where n·L < 0. Figure 11.9. The shadow cast with respect to a point light source.

STENCILING 435

any vertex p is given by r(t) = p  t(p  L). The intersection of the ray r(t) with
the shadow plane (n, d) gives s. The set of intersection points found by shooting
a ray through each of the object’s vertices with the plane defines the projected
geometry of the shadow. For a vertex p, its shadow projection is given by

 () ()
()

s

d
t

 
   

 
n p

s r p p L
n p L

 (eq. 11.2)

Equation 11.2 can also be written by a matrix equation:

x x y x z x x

x y y y z y y
point

x z y z z z z

x y z

d L n L n L n n

L n d L n L n n

L n L n d L n n

L d L d L d

      
       
      
      

n L

n L
S

n L

n L

To see how this matrix is equivalent to Equation 11.2, we just need to perform
the multiplication the same way we did in the previous section. Note that the last
column has no zeros and gives:

(

w x x y y z zs p n p n p n     

    
   

n L

p n n L

n p L)

This is the negative of the denominator in Equation 11.2, but we can negate the
denominator if we also negate the numerator.

Notice that L serves different purposes for point and parallel lights. For point
lights we use L to defi ne the position of the point light. For parallel lights we use
L to defi ne the direction towards the infi nitely far away light source (i.e., the
opposite direction the parallel light rays travel).

11.5.3 General Shadow Matrix
Using homogeneous coordinates, it is possible to create a general shadow matrix
that works for both point and directional lights.

1. If Lw  0 then L describes the direction towards the infinitely far away light
source (i.e., the opposite direction the parallel light rays travel).

2. If Lw  1 then L describes the location of the point light.

Then we represent the transformation from a vertex p to its projection s with the
following shadow matrix:

Note:

436 DIRECT3D FOUNDATIONS

w x x y x z x w x

x y w y y z y w y

x z y z w z z w z

x y z

dL L n L n L n L n

L n dL L n L n L n

L n L n dL L n L n

L d L d L d

      
       
      
      

n L

n L
S

n L

n L

It is easy to see that S reduced to Sdir if Lw  0 and S reduces to Spoint for Lw  0.
The DirectX math library provides the following function to build the shadow

matrix given the plane we wish to project the shadow into and a vector describing
a parallel light if w  0 or a point light if w  1:

inline XMMATRIX XM_CALLCONV XMMatrixShadow(
 FXMVECTOR ShadowPlane,
 FXMVECTOR LightPosition);

For further reading, both [Blinn96] and [Möller02] discuss planar shadows.

11.5.4 Using the Stencil Buffer to Prevent Double Blending
When we flatten out the geometry of an object onto the plane to describe its
shadow, it is possible (and in fact likely) that two or more of the flattened triangles
will overlap. When we render the shadow with transparency (using blending),
these areas that have overlapping triangles will get blended multiple times and
thus appear darker. Figure 11.10 shows this.

We can solve this problem using the stencil buffer.

1. Assume the stencil buffer pixels where the shadow will be rendered have been
cleared to 0. This is true in our mirror demo because we are only casting a
shadow onto the ground plane, and we only modified the mirror stencil buffer
pixels.

2. Set the stencil test to only accept pixels if the stencil buffer has an entry of 0. If
the stencil test passes, then we increment the stencil buffer value to 1.

The first time we render a shadow pixel, the stencil test will pass because the
stencil buffer entry is 0. However, when we render this pixel, we also increment

Figure 11.10. Notice the darker “acne” areas of the shadow in the left image; these correspond to areas
where parts of the flattened skull overlapped, thus causing a “double blend.” The image on the right shows
the shadow rendered correctly, without double blending.

STENCILING 437

the corresponding stencil buffer entry to 1. Thus, if we attempt to overwrite to an
area that has already been rendered to (marked in the stencil buffer with a value of
1), the stencil test will fail. This prevents drawing over the same pixel more than once,
and thus prevents double blending.

11.5.5 Shadow Code
We define a shadow material used to color the shadow that is just a 50%
transparent black material:

auto shadowMat = std::make_unique<Material>();
shadowMat->Name = "shadowMat";
shadowMat->MatCBIndex = 4;
shadowMat->DiffuseSrvHeapIndex = 3;
shadowMat->DiffuseAlbedo = XMFLOAT4(0.0f, 0.0f, 0.0f, 0.5f);
shadowMat->FresnelR0 = XMFLOAT3(0.001f, 0.001f, 0.001f);
shadowMat->Roughness = 0.0f;

In order to prevent double blending we set up the following PSO with depth/
stencil state:

// We are going to draw shadows with transparency, so base it off
// the transparency description.
D3D12_DEPTH_STENCIL_DESC shadowDSS;
shadowDSS.DepthEnable = true;
shadowDSS.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
shadowDSS.DepthFunc = D3D12_COMPARISON_FUNC_LESS;
shadowDSS.StencilEnable = true;
shadowDSS.StencilReadMask = 0xff;
shadowDSS.StencilWriteMask = 0xff;

shadowDSS.FrontFace.StencilFailOp = D3D12_STENCIL_OP_KEEP;
shadowDSS.FrontFace.StencilDepthFailOp = D3D12_STENCIL_OP_KEEP;
shadowDSS.FrontFace.StencilPassOp = D3D12_STENCIL_OP_INCR;
shadowDSS.FrontFace.StencilFunc = D3D12_COMPARISON_FUNC_EQUAL;

// We are not rendering backfacing polygons, so these settings do not
// matter.
shadowDSS.BackFace.StencilFailOp = D3D12_STENCIL_OP_KEEP;
shadowDSS.BackFace.StencilDepthFailOp = D3D12_STENCIL_OP_KEEP;
shadowDSS.BackFace.StencilPassOp = D3D12_STENCIL_OP_INCR;
shadowDSS.BackFace.StencilFunc = D3D12_COMPARISON_FUNC_EQUAL;

D3D12_GRAPHICS_PIPELINE_STATE_DESC shadowPsoDesc = transparentPsoDesc;
shadowPsoDesc.DepthStencilState = shadowDSS;
ThrowIfFailed(md3dDevice->CreateGraphicsPipelineState(
 &shadowPsoDesc,
 IID_PPV_ARGS(&mPSOs["shadow"])));

We then draw the skull shadow with the shadow PSO with a StencilRef value of 0:

// Draw shadows

438 DIRECT3D FOUNDATIONS

mCommandList->OMSetStencilRef(0);
mCommandList->SetPipelineState(mPSOs["shadow"].Get());
DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)

RenderLayer::Shadow]);

where the skull shadow render-item’s world matrix is computed like so:

// Update shadow world matrix.
XMVECTOR shadowPlane = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f); // xz plane
XMVECTOR toMainLight = -XMLoadFloat3(&mMainPassCB.Lights[0].Direction);
XMMATRIX S = XMMatrixShadow(shadowPlane, toMainLight);
XMMATRIX shadowOffsetY = XMMatrixTranslation(0.0f, 0.001f, 0.0f);
XMStoreFloat4x4(&mShadowedSkullRitem->World, skullWorld * S * shadowOffsetY);

Note that we offset the projected shadow mesh along the y-axis by a small amount
to prevent z-fighting so the shadow mesh does not intersect the floor mesh, but
lies slightly above it. If the meshes did intersect, then due to limited precision of
the depth buffer, we would see flickering artifacts as the floor and shadow mesh
pixels compete to be visible.

11.6 SUMMARY

1. The stencil buffer is an off-screen buffer we can use to block the rendering of
certain pixel fragments to the back buffer. The stencil buffer is shared with
the depth buffer and thus has the same resolution as the depth buffer. Valid
depth/stencil buffer formats are DXGI_FORMAT_D32_FLOAT_S8X24_UINT and
DXGI_FORMAT_D24_UNORM_S8_UINT.

2. The decision to block a particular pixel from being written is decided by the
stencil test, which is given by the following:

 if(StencilRef & StencilReadMask  Value & StencilReadMask)
 accept pixel
 else
 reject pixel

 where the  operator is any one of the functions defined in the D3D12_
COMPARISON_FUNC enumerated type. The StencilRef, StencilReadMask,

StencilReadMask, and comparison operator  are all application-defined
quantities set with the Direct3D depth/stencil API. The Value quantity is the
current value in the stencil buffer.

3. The depth/stencil state is part of a PSO description. Specifi cally, the depth/
stencil state is confi gured by fi lling out the D3D12_GRAPHICS_PIPELINE_STATE_
DESC::DepthStencilState fi eld, where DepthStencilState is of type D3D12_
DEPTH_STENCIL_DESC.

STENCILING 439

4. The stencil reference value is set with the ID3D12GraphicsCommandList::OMSetSt
encilRef method, which takes a single unsigned integer parameter specifying
the stencil reference value.

11.7 EXERCISES

1. Prove that the general shadow matrix S reduced to Sdir if Lw  0 and S reduces
to Spoint for Lw  1.

2. Prove that  
  point

d 
   

 
n p

s p p L pS
n p L

 by doing the matrix

multiplication for each component, as was done in §11.5.1 for directional
lights.

3. Modify the “Mirror” demo to produce the “Left” image in Figure 11.1.

4. Modify the “Mirror” demo to produce the “Left” image in Figure 11.10.

5. Modify the “Mirror” demo in the following way. First draw a wall with the
following depth settings:

depthStencilDesc.DepthEnable = false;
depthStencilDesc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
depthStencilDesc.DepthFunc = D3D12_COMPARISON_LESS;

 Next, draw the skull behind the wall with the depth settings:

depthStencilDesc.DepthEnable = true;
depthStencilDesc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
depthStencilDesc.DepthFunc = D3D12_COMPARISON_LESS;

 Does the wall occlude the skull? Explain. What happens if you use the
following to draw the wall instead?

depthStencilDesc.DepthEnable = true;
depthStencilDesc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
depthStencilDesc.DepthFunc = D3D12_COMPARISON_LESS;

 Note that this exercise does not use the stencil buffer, so that should be
disabled.

6. Modify the “Mirror” demo by not reversing the triangle winding order
convention. Does the reflected teapot render correctly?

7. Modify the “Blend” demo from Chapter 10 to draw a cylinder (with no caps)
at the center of the scene. Texture the cylinder with the 60 frame animated
electric bolt animation found in this chapter’s directory using additive
blending. Figure 11.11 shows an example of the output.

Refer back to §10.5.5 for the depth states to use when rendering additive blending
geometry.

Hint:

440 DIRECT3D FOUNDATIONS

Figure 11.11. Sample screenshot of the solution to Exercise 7.

8. Depth complexity refers to the number of pixel fragments that compete, via the
depth test, to be written to a particular entry in the back buffer. For example, a
pixel we have drawn may be overwritten by a pixel that is closer to the camera
(and this can happen several times before the closest pixel is actually figured
out once the entire scene has been drawn). The pixel in Figure 11.12 has a
depth complexity of 3 since three pixel fragments compete for the pixel.

Figure 11.12. Multiple pixel fragments competing to be rendering to a single pixel on the projection
window. In this scene, the pixel P has a depth complexity of 3.

 Potentially, the graphics card could fill a pixel several times each frame.
This overdraw has performance implications, as the graphics card is wasting
time processing pixels that eventually get overridden and are never seen.
Consequently, it is useful to measure the depth complexity in a scene for
performance analysis.

 We can measure the depth complexity as follows: Render the scene and use the
stencil buffer as a counter; that is, each pixel in the stencil buffer is originally
cleared to zero, and every time a pixel fragment is processed, we increment
its count with D3D12_STENCIL_OP_INCR. The corresponding stencil buffer entry
should always be incremented for every pixel fragment no matter what, so
use the stencil comparison function D3D12_COMPARISON_ALWAYS. Then, for
example, after the frame has been drawn, if the ijth pixel has a corresponding
entry of fi ve in the stencil buffer, then we know that that fi ve pixel fragments

STENCILING 441

were processed for that pixel during that frame (i.e., the pixel has a depth
complexity of fi ve). Note that when counting the depth complexity, technically
you only need to render the scene to the stencil buffer.

 To visualize the depth complexity (stored in the stencil buffer), proceed as
follows:

 a. Associate a color ck for each level of depth complexity k. For example, blue
for a depth complexity of one, green for a depth complexity of two, red for
a depth complexity of three, and so on. (In very complex scenes where the
depth complexity for a pixel could get very large, you probably do not want
to associate a color for each level. Instead, you could associate a color for a
range of disjoint levels. For example, pixels with depth complexity 1-5 are
colored blue, pixels with depth complexity 6-10 are colored green, and so
on.)

 b. Set the stencil buffer operation to D3D12_STENCIL_OP_KEEP so that we do not
modify it anymore. (We modify the stencil buffer with D3D12_STENCIL_OP_
INCR when we are counting the depth complexity as the scene is rendered,
but when writing the code to visualize the stencil buffer, we only need to
read from the stencil buffer and we should not write to it.)

 c. For each level of depth complexity k:

 (i) Set the stencil comparison function to D3D12_COMPARISON_EQUAL and set
the stencil reference value to k.

 (ii) draw a quad of color ck that covers the entire projection window. Note
that this will only color the pixels that have a depth complexity of k
because of the preceding set stencil comparison function and reference
value.

 With this setup, we have colored each pixel based on its depth complexity
uniquely, and so we can easily study the depth complexity of the scene. For
this exercise, render the depth complexity of the scene used in the “Blend”
demo from Chapter 10. Figure 11.13 shows a sample screenshot.

Figure 11.13. Sample screenshot of the solution to Exercise 8.

442 DIRECT3D FOUNDATIONS

The depth test occurs in the output merger stage of the pipeline, which occurs
after the pixel shader stage. This means that a pixel fragment is processed through
the pixel shader, even if it may ultimately be rejected by the depth test. However,
modern hardware does an “early z-test” where the depth test is performed before
the pixel shader. This way, a rejected pixel fragment will be discarded before
being processed by a potentially expensive pixel shader. To take advantage of
this optimization, you should try to render your non-blended game objects in
front-to-back order with respect to the camera; in this way, the nearest objects
will be drawn fi rst, and objects behind them will fail the early z-test and not be
processed further. This can be a signifi cant performance benefi t if your scene
suffers from lots overdraw due to a high depth complexity. We are not able to
control the early z-test through the Direct3D API; the graphics driver is the one
that decides if it is possible to perform the early z-test. For example, if a pixel
shader modifi es the pixel fragment’s depth value, then the early z-test is not
possible, as the pixel shader must be executed before the depth test since the pixel
shader modifi es depth values.

We mentioned the ability to modify the depth of a pixel in the pixel shader. How
does that work? A pixel shader can actually output a structure, not just a single
color vector as we have been doing thus far:

struct PixelOut
{
 float4 color : SV_Target;
 float depth : SV_Depth;
};

PixelOut PS(VertexOut pin)
{
 PixelOut pout;

 // ... usual pixel work

 pout.Color = float4(litColor, alpha);

 // set pixel depth in normalized [0, 1] range
 pout.depth = pin.PosH.z - 0.05f;

 return pout;
}

The z-coordinate of the SV_Position element (pin.PosH.z) gives the unmodifi ed
pixel depth value. Using the special system value semantic SV_Depth, the pixel
shader can output a modifi ed depth value.

Note:

Note:

STENCILING 443

9. Another way to implement depth complexity visualization is to use additive
blending. First clear the back buffer black and disable the depth test. Next,
set the source and destination blend factors both to D3D12_BLEND_ONE, and the
blend operation to D3D12_BLEND_OP_ADD so that the blending equation looks
like C  Csrc  Cdst. Observe that with this formula, for each pixel, we are
accumulating the colors of all the pixel fragments written to it. Now render
all the objects in the scene with a pixel shader that outputs a low intensity
color like (0.05, 0.05, 0.05). The more overdraw a pixel has, the more of these
low intensity colors will be summed in, thus increasing the brightness of
the pixel. If a pixel was overdrawn ten times, for example, then it will have a
color intensity of (0.5, 0.5, 0.5). Thus by looking at the intensity of each pixel
after rendering the scene, we obtain an idea of the scene depth complexity.
Implement this version of depth complexity measurement using the “Blend”
demo from Chapter 10 as a test scene.

10. Explain how you can count the number of pixels that pass the depth test.
Explain how you can count the number of pixels that fail the depth test?

11. Modify the “Mirror” demo to reflect the floor into the mirror in addition to
the skull.

12. Remove the vertical offset from the world matrix of the shadow render-item
so that you can see z-fighting.

Chapter

445

12Chapter

THE
GEOMETRY
SHADER

Assuming we are not using the tessellation stages, the geometry shader stage is
an optional stage that sits between the vertex and pixel shader stages. While the
vertex shader inputs vertices, the geometry shader inputs entire primitives. For
example, if we were drawing triangle lists, then conceptually the geometry shader
program would be executed for each triangle T in the list:

for(UINT i = 0; i < numTriangles; ++i)
 OutputPrimitiveList = GeometryShader(T[i].vertexList);

Notice the three vertices of each triangle are input into the geometry shader, and
the geometry shader outputs a list of primitives. Unlike vertex shaders which
cannot destroy or create vertices, the main advantage of the geometry shader is
that it can create or destroy geometry; this enables some interesting effects to be
implemented on the GPU. For example, the input primitive can be expanded into
one or more other primitives, or the geometry shader can choose not to output a
primitive based on some condition. Note that the output primitives need not be
the same type as the input primitive; for instance, a common application of the
geometry shader is to expand a point into a quad (two triangles).

The primitives output from the geometry shader are defi ned by a vertex
list. Vertex positions leaving the geometry shader must be transformed to
homogeneous clip space. After the geometry shader stage, we have a list of vertices
defi ning primitives in homogeneous clip space. These vertices are projected
(homogeneous divide), and then rasterization occurs as usual.

446 DIRECT3D FOUNDATIONS

Objectives:
1. To learn how to program geometry shaders.

2. To discover how billboards can be implemented efficiently using the geometry
shader.

3. To recognize auto generated primitive IDs and some of their applications.

4. To find out how to create and use texture arrays, and understand why they are
useful.

5. To understand how alpha-to-coverage helps with the aliasing problem of
alpha cutouts.

12.1 PROGRAMMING GEOMETRY SHADERS

Programming geometry shaders is a lot like programming vertex or pixel shaders,
but there are some differences. The following code shows the general form:

[maxvertexcount(N)]
void ShaderName (
 PrimitiveType InputVertexType InputName [NumElements],
 inout StreamOutputObject<OutputVertexType> OutputName)
{
 // Geometry shader body...
}

We must first specify the maximum number of vertices the geometry shader will
output for a single invocation (the geometry shader is invoked per primitive).
This is done by setting the max vertex count before the shader definition using the
following attribute syntax:

 [maxvertexcount(N)]

where N is the maximum number of vertices the geometry shader will output for
a single invocation. The number of vertices a geometry shader can output per
invocation is variable, but it cannot exceed the defined maximum. For performance
purposes, maxvertexcount should be as small as possible; [NVIDIA08] states
that peak performance of the GS is achieved when the GS outputs between 1-20
scalars, and performance drops to 50% if the GS outputs between 27-40 scalars.
The number of scalars output per invocation is the product of maxvertexcount
and the number of scalars in the output vertex type structure. Working with
such restrictions is difficult in practice, so we can either accept lower than peak
performance as good enough, or choose an alternative implementation that does
not use the geometry shader; however, we must also consider that an alternative

THE GEOMETRY SHADER 447

implementation may have other drawbacks, which can still make the geometry
shader implementation a better choice. Furthermore, the recommendations in
[NVIDIA08] are from 2008 (first generation geometry shaders), so things should
have improved.

The geometry shader takes two parameters: an input parameter and an output
parameter. (Actually, it can take more, but that is a special topic; see §12.2.4.)
The input parameter is always an array of vertices that defi ne the primitive—one
vertex for a point, two for a line, three for a triangle, four for a line with adjacency,
and six for a triangle with adjacency. The vertex type of the input vertices is the
vertex type returned by the vertex shader (e.g., VertexOut). The input parameter
must be prefi xed by a primitive type, describing the type of primitives being input
into the geometry shader. This can be anyone of the following:

1. point: The input primitives are points.

2. line: The input primitives are lines (lists or strips).

3. triangle: The input primitives triangles (lists or strips).

4. lineadj: The input primitives are lines with adjacency (lists or strips).

5. triangleadj: The input primitives are triangles with adjacency (lists or
strips).

The input primitive into a geometry shader is always a complete primitive (e.g.,
two vertices for a line, and three vertices for a triangle). Thus the geometry shader
does not need to distinguish between lists and strips. For example, if you are
drawing triangle strips, the geometry shader is still executed for every triangle
in the strip, and the three vertices of each triangle are passed into the geometry
shader as input. This entails additional overhead, as vertices that are shared by
multiple primitives are processed multiple times in the geometry shader.

The output parameter always has the inout modifier. Additionally, the output
parameter is always a stream type. A stream type stores a list of vertices which
defines the geometry the geometry shader is outputting. A geometry shader adds
a vertex to the outgoing stream list using the intrinsic Append method:

void StreamOutputObject<OutputVertexType>::Append(OutputVertexType v);

A stream type is a template type, where the template argument is used to specify
the vertex type of the outgoing vertices (e.g., GeoOut). There are three possible
stream types:

1. PointStream<OutputVertexType>: A list of vertices defining a point list.

2. LineStream<OutputVertexType>: A list of vertices defining a line strip.

3. TriangleStream<OutputVertexType>: A list of vertices defining a triangle strip.

Note:

448 DIRECT3D FOUNDATIONS

The vertices output by a geometry shader form primitives; the type of
output primitive is indicated by the stream type (PointStream, LineStream,
TriangleStream). For lines and triangles, the output primitive is always a strip. Line
and triangle lists, however, can be simulated by using the intrinsic RestartStrip
method:

void StreamOutputObject<OutputVertexType>::RestartStrip();

For example, if you wanted to output triangle lists, then you would call
RestartStrip every time after three vertices were appended to the output stream.

Below are some specifi c examples of geometry shader signatures:

// EXAMPLE 1: GS ouputs at most 4 vertices. The input primitive is a
// line.
// The output is a triangle strip.
//
[maxvertexcount(4)]
void GS(line VertexOut gin[2],
 inout TriangleStream<GeoOut> triStream)

  Geometry shader body...


// EXAMPLE 2: GS outputs at most 32 vertices. The input primitive is
// a triangle. The output is a triangle strip.
//
[maxvertexcount(32)]
void GS(triangle VertexOut gin[3],
 inout TriangleStream<GeoOut> triStream)

 // Geometry shader body...


// EXAMPLE 3: GS outputs at most 4 vertices. The input primitive
// is a point. The output is a triangle strip.
//
[maxvertexcount(4)]
void GS(point VertexOut gin[1],
 inout TriangleStream<GeoOut> triStream)
{
 // Geometry shader body...
}

The following geometry shader illustrates the Append and RestartStrip methods;
it inputs a triangle, subdivides it (Figure 12.1) and outputs the four subdivided
triangles:

struct VertexOut
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
 float2 Tex : TEXCOORD;
};

THE GEOMETRY SHADER 449

struct GeoOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 NormalW : NORMAL;
 float2 Tex : TEXCOORD;
 float FogLerp : FOG;
};

void Subdivide(VertexOut inVerts[3], out VertexOut outVerts[6])
{
 // 1
 // *
 // / \
 // / \
 // m0*-----*m1
 // / \ / \
 // / \ / \
 // *-----*-----*
 // 0 m2 2

 VertexOut m[3];

 // Compute edge midpoints.
 m[0].PosL = 0.5f*(inVerts[0].PosL+inVerts[1].PosL);
 m[1].PosL = 0.5f*(inVerts[1].PosL+inVerts[2].PosL);
 m[2].PosL = 0.5f*(inVerts[2].PosL+inVerts[0].PosL);

 // Project onto unit sphere
 m[0].PosL = normalize(m[0].PosL);
 m[1].PosL = normalize(m[1].PosL);
 m[2].PosL = normalize(m[2].PosL);

 // Derive normals.
 m[0].NormalL = m[0].PosL;
 m[1].NormalL = m[1].PosL;
 m[2].NormalL = m[2].PosL;

 // Interpolate texture coordinates.
 m[0].Tex = 0.5f*(inVerts[0].Tex+inVerts[1].Tex);
 m[1].Tex = 0.5f*(inVerts[1].Tex+inVerts[2].Tex);
 m[2].Tex = 0.5f*(inVerts[2].Tex+inVerts[0].Tex);

Figure 12.1. Subdividing a triangle into four equally sized triangles. Observe that the three new vertices are
the midpoints along the edges of the original triangle.

450 DIRECT3D FOUNDATIONS

 outVerts[0] = inVerts[0];
 outVerts[1] = m[0];
 outVerts[2] = m[2];
 outVerts[3] = m[1];
 outVerts[4] = inVerts[2];
 outVerts[5] = inVerts[1];
};

void OutputSubdivision(VertexOut v[6],
 inout TriangleStream<GeoOut> triStream)
{
 GeoOut gout[6];

 [unroll]
 for(int i = 0; i < 6; ++i)
 {
 // Transform to world space space.
 gout[i].PosW = mul(float4(v[i].PosL, 1.0f), gWorld).xyz;
 gout[i].NormalW = mul(v[i].NormalL,
(float3x3)gWorldInvTranspose);

 // Transform to homogeneous clip space.
 gout[i].PosH = mul(float4(v[i].PosL, 1.0f), gWorldViewProj);

 gout[i].Tex = v[i].Tex;
 }

 // 1
 // *
 // / \
 // / \
 // m0*-----*m1
 // / \ / \
 // / \ / \
 // *-----*-----*
 // 0 m2 2

 // We can draw the subdivision in two strips:
 // Strip 1: bottom three triangles
 // Strip 2: top triangle

 [unroll]
 for(int j = 0; j < 5; ++j)
 {
 triStream.Append(gout[j]);
 }
 triStream.RestartStrip();

 triStream.Append(gout[1]);
 triStream.Append(gout[5]);
 triStream.Append(gout[3]);
}

[maxvertexcount(8)]

THE GEOMETRY SHADER 451

void GS(triangle VertexOut gin[3], inout TriangleStream<GeoOut>)
{
 VertexOut v[6];
 Subdivide(gin, v);
 OutputSubdivision(v, triStream);
}

Geometry shaders are compiled very similarly to vertex and pixel shaders. Suppose
we have a geometry shader called GS in TreeSprite.hlsl, then we would compile the
shader to bytecode like so:

mShaders["treeSpriteGS"] = d3dUtil::CompileShader(
 L"Shaders\\TreeSprite.hlsl", nullptr, "GS", "gs_5_0");

Like vertex and pixel shaders, a given geometry shader is bound to the rendering
pipeline as part of a pipeline state object (PSO):

D3D12_GRAPHICS_PIPELINE_STATE_DESC treeSpritePsoDesc = opaquePsoDesc;
...
treeSpritePsoDesc.GS =
{
 reinterpret_cast<BYTE*>(mShaders["treeSpriteGS"]-

>GetBufferPointer()),
 mShaders["treeSpriteGS"]->GetBufferSize()
};

Given an input primitive, the geometry shader can choose not to output it based
on some condition. In this way, geometry is “destroyed” by the geometry shader,
which can be useful for some algorithms.

If you do not output enough vertices to complete a primitive in a geometry
shader, then the partial primitive is discarded.

12.2 TREE BILLBOARDS DEMO

12.2.1 Overview
When trees are far away, a billboarding technique is used for efficiency. That is,
instead of rendering the geometry for a fully 3D tree, a quad with a picture of a
3D tree is painted on it (see Figure 12.2). From a distance, you cannot tell that
a billboard is being used. However, the trick is to make sure that the billboard
always faces the camera (otherwise the illusion would break).

Assuming the y-axis is up and the xz-plane is the ground plane, the tree
billboards will generally be aligned with the y-axis and just face the camera in
the xz-plane. Figure 12.3 shows the local coordinate systems of several billboards
from a bird’s eye view—notice that the billboards are “looking” at the camera.

Note:

Note:

452 DIRECT3D FOUNDATIONS

So given the center position C  (Cx, Cy, Cz) of a billboard in world space and the
position of the camera EEx, Ey, Ez)in world space, we have enough information
to describe the local coordinate system of the billboard relative to the world space:

 
 
 

, 0,

|| , 0, ||

0,1 , 0

x x z z

x x z z

E C E C

E C E C

 


 



 

w

v

u v w

Given the local coordinate system of the billboard relative to the world space,
and the world size of the billboard, the billboard quad vertices can be obtained as
follows (see Figure 12.4):

v[0] = float4(gin[0].CenterW + halfWidth*right - halfHeight*up, 1.0f);
v[1] = float4(gin[0].CenterW + halfWidth*right + halfHeight*up, 1.0f);
v[2] = float4(gin[0].CenterW - halfWidth*right - halfHeight*up, 1.0f);
v[3] = float4(gin[0].CenterW - halfWidth*right + halfHeight*up, 1.0f);

Figure 12.4. Computing the billboard quad vertices from the local coordinate system and world size of the billboard.

Figure 12.2. A tree billboard texture with alpha channel. Figure 12.3. Billboards facing the camera.

THE GEOMETRY SHADER 453

Note that the local coordinate system of a billboard differs for each billboard,
so it must be computed for each billboard.

For this demo, we will construct a list of point primitives (D3D12_PRIMITIVE_
TOPOLOGY_TYPE_POINT for the PrimitiveTopologyType of the PSO and D3D_

PRIMITIVE_TOPOLOGY_POINTLIST as the argument for ID3D12GraphicsCommandL

ist::IASetPrimitiveTopology) that lie slightly above a land mass. These points
represent the centers of the billboards we want to draw. In the geometry shader,
we will expand these points into billboard quads. In addition, we will compute
the world matrix of the billboard in the geometry shader. Figure 12.5 shows a
screenshot of the demo.

As Figure 12.5 shows, this sample builds off the “Blend” demo from Chapter 10.

A common CPU implementation of billboards would be to use four vertices per
billboard in a dynamic vertex buffer (i.e., upload heap). Then every time the
camera moved, the vertices would be updated on the CPU and memcpyed to the
GPU buffer so that the billboards face the camera. This approach must submit
four vertices per billboard to the IA stage, and requires updating dynamic vertex
buffers, which has overhead. With the geometry shader approach, we can use static
vertex buffers since the geometry shader does the billboard expansion and makes
the billboards face the camera. Moreover, the memory footprint of the billboards
is quite small, as we only have to submit one vertex per billboard to the IA stage.

12.2.2 Vertex Structure
We use the following vertex structure for our billboard points:

struct TreeSpriteVertex
{

Note:

Figure 12.5. Screenshot of the tree billboard demo.

454 DIRECT3D FOUNDATIONS

 XMFLOAT3 Pos;
 XMFLOAT2 Size;
};

mTreeSpriteInputLayout =
{
 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,
 D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
 { "SIZE", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12,
 D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
};

The vertex stores a point which represents the center position of the billboard in
world space. It also includes a size member, which stores the width/height of the
billboard (scaled to world space units); this is so the geometry shader knows how
large the billboard should be after expansion (Figure 12.6). By having the size vary
per vertex, we can easily allow for billboards of different sizes.

Excepting texture arrays (§12.2.4), the other C code in the “Tree Billboard”
demo should be routine Direct3D code by now (creating vertex buffers, effects,
invoking draw methods, etc.). Thus we will now turn our attention to the
TreeSprite.hlsl fi le.

12.2.3 The HLSL File
Since this is our first demo with a geometry shader, we will show the entire HLSL
file here so that you can see how it fits together with the vertex and pixel shaders.
This effect also introduces some new objects that we have not discussed yet (SV_
PrimitiveID and Texture2DArray); these items will be discussed next. For now,
mainly focus on the geometry shader program GS; this shader expands a point into
a quad aligned with the world’s y-axis that faces the camera, as described in §12.2.1.

Figure 12.6. Expanding a point into a quad.

THE GEOMETRY SHADER 455

//**
// TreeSprite.hlsl by Frank Luna (C) 2015 All Rights Reserved.
//**

// Defaults for number of lights.
#ifndef NUM_DIR_LIGHTS
 #define NUM_DIR_LIGHTS 3
#endif

#ifndef NUM_POINT_LIGHTS
 #define NUM_POINT_LIGHTS 0
#endif

#ifndef NUM_SPOT_LIGHTS
 #define NUM_SPOT_LIGHTS 0
#endif

// Include structures and functions for lighting.
#include "LightingUtil.hlsl"

Texture2DArray gTreeMapArray : register(t0);

SamplerState gsamPointWrap : register(s0);
SamplerState gsamPointClamp : register(s1);
SamplerState gsamLinearWrap : register(s2);
SamplerState gsamLinearClamp : register(s3);
SamplerState gsamAnisotropicWrap : register(s4);
SamplerState gsamAnisotropicClamp : register(s5);

// Constant data that varies per frame.
cbuffer cbPerObject : register(b0)
{
 float4x4 gWorld;
 float4x4 gTexTransform;
};

// Constant data that varies per material.
cbuffer cbPass : register(b1)
{
 float4x4 gView;
 float4x4 gInvView;
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gViewProj;
 float4x4 gInvViewProj;
 float3 gEyePosW;
 float cbPerPassPad1;
 float2 gRenderTargetSize;
 float2 gInvRenderTargetSize;
 float gNearZ;
 float gFarZ;
 float gTotalTime;
 float gDeltaTime;
 float4 gAmbientLight;

456 DIRECT3D FOUNDATIONS

 float4 gFogColor;
 float gFogStart;
 float gFogRange;
 float2 cbPerPassPad2;

 // Indices [0, NUM_DIR_LIGHTS) are directional lights;
 // indices [NUM_DIR_LIGHTS, NUM_DIR_LIGHTS+NUM_POINT_LIGHTS) are point
 // lights;
 // indices [NUM_DIR_LIGHTS+NUM_POINT_LIGHTS,
 // NUM_DIR_LIGHTS+NUM_POINT_LIGHT+NUM_SPOT_LIGHTS)
 // are spot lights for a maximum of MaxLights per object.
 Light gLights[MaxLights];
};

cbuffer cbMaterial : register(b2)
{
 float4 gDiffuseAlbedo;
 float3 gFresnelR0;
 float gRoughness;
 float4x4 gMatTransform;
};

struct VertexIn
{
 float3 PosW : POSITION;
 float2 SizeW : SIZE;
};

struct VertexOut
{
 float3 CenterW : POSITION;
 float2 SizeW : SIZE;
};

struct GeoOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 NormalW : NORMAL;
 float2 TexC : TEXCOORD;
 uint PrimID : SV_PrimitiveID;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout;

 // Just pass data over to geometry shader.
 vout.CenterW = vin.PosW;
 vout.SizeW = vin.SizeW;

 return vout;
}

THE GEOMETRY SHADER 457

 // We expand each point into a quad (4 vertices), so the maximum number of vertices
 // we output per geometry shader invocation is 4.
[maxvertexcount(4)]
void GS(point VertexOut gin[1],
 uint primID : SV_PrimitiveID,
 inout TriangleStream<GeoOut> triStream)
{
 //
 // Compute the local coordinate system of the sprite relative to the world
 // space such that the billboard is aligned with the y-axis and faces the eye.
 //

 float3 up = float3(0.0f, 1.0f, 0.0f);
 float3 look = gEyePosW - gin[0].CenterW;
 look.y = 0.0f; // y-axis aligned, so project to xz-plane
 look = normalize(look);
 float3 right = cross(up, look);

 //
 // Compute triangle strip vertices (quad) in world space.
 //
 float halfWidth = 0.5f*gin[0].SizeW.x;
 float halfHeight = 0.5f*gin[0].SizeW.y;

 float4 v[4];
 v[0] = float4(gin[0].CenterW + halfWidth*right - halfHeight*up, 1.0f);
 v[1] = float4(gin[0].CenterW + halfWidth*right + halfHeight*up, 1.0f);
 v[2] = float4(gin[0].CenterW - halfWidth*right - halfHeight*up, 1.0f);
 v[3] = float4(gin[0].CenterW - halfWidth*right + halfHeight*up, 1.0f);

 //
 // Transform quad vertices to world space and output
 // them as a triangle strip.
 //

 float2 texC[4] =
 {
 float2(0.0f, 1.0f),
 float2(0.0f, 0.0f),
 float2(1.0f, 1.0f),
 float2(1.0f, 0.0f)
 };

 GeoOut gout;
 [unroll]
 for(int i = 0; i < 4; ++i)
 {
 gout.PosH = mul(v[i], gViewProj);
 gout.PosW = v[i].xyz;
 gout.NormalW = look;
 gout.TexC = texC[i];
 gout.PrimID = primID;

 triStream.Append(gout);
 }
}

458 DIRECT3D FOUNDATIONS

float4 PS(GeoOut pin) : SV_Target
{
 float3 uvw = float3(pin.TexC, pin.PrimID%3);
 float4 diffuseAlbedo = gTreeMapArray.Sample(
 gsamAnisotropicWrap, uvw) * gDiffuseAlbedo;

#ifdef ALPHA_TEST
 // Discard pixel if texture alpha < 0.1. We do this test as soon
 // as possible in the shader so that we can potentially exit the
 // shader early, thereby skipping the rest of the shader code.
 clip(diffuseAlbedo.a - 0.1f);
#endif

 // Interpolating normal can unnormalize it, so renormalize it.
 pin.NormalW = normalize(pin.NormalW);

 // Vector from point being lit to eye.
 float3 toEyeW = gEyePosW - pin.PosW;
 float distToEye = length(toEyeW);
 toEyeW /= distToEye; // normalize

 // Light terms.
 float4 ambient = gAmbientLight*diffuseAlbedo;

 const float shininess = 1.0f - gRoughness;
 Material mat = { diffuseAlbedo, gFresnelR0, shininess };
 float3 shadowFactor = 1.0f;
 float4 directLight = ComputeLighting(gLights, mat, pin.PosW,
 pin.NormalW, toEyeW, shadowFactor);

 float4 litColor = ambient + directLight;

#ifdef FOG
 float fogAmount = saturate((distToEye - gFogStart) / gFogRange);
 litColor = lerp(litColor, gFogColor, fogAmount);
#endif

 // Common convention to take alpha from diffuse albedo.
 litColor.a = diffuseAlbedo.a;

 return litColor;
}

12.2.4 SV_PrimitiveID
The geometry shader in this example takes a special unsigned integer parameter
with semantic SV_PrimitiveID.

[maxvertexcount(4)]
void GS(point VertexOut gin[1],
 uint primID : SV_PrimitiveID,
 inout TriangleStream<GeoOut> triStream)

THE GEOMETRY SHADER 459

When this semantic is specified, it tells the input assembler stage to automatically
generate a primitive ID for each primitive. When a draw call is executed to draw
n primitives, the first primitive is labeled 0; the second primitive is labeled 1; and
so on, until the last primitive in the draw call is labeled n-1. The primitive IDs are
only unique for a single draw call. In our billboard example, the geometry shader
does not use this ID (although a geometry shader could); instead, the geometry
shader writes the primitive ID to the outgoing vertices, thereby passing it on to the
pixel shader stage. The pixel shader uses the primitive ID to index into a texture
array, which leads us to the next section.

If a geometry shader is not present, the primitive ID parameter can be added to
the parameter list of the pixel shader:

float4 PS(VertexOut pin, uint primID : SV_PrimitiveID) : SV_Target
{
 // Pixel shader body...
}

However, if a geometry shader is present, then the primitive ID parameter must
occur in the geometry shader signature. Then the geometry shader can use the
primitive ID or pass it on to the pixel shader stage (or both).

It is also possible to have the input assembler generate a vertex ID. To do this,
add an additional parameter of type uint to the vertex shader signature with
semantic SV_VertexID:
The following vertex shader signature shows how this is done:

VertexOut VS(VertexIn vin, uint vertID : SV_VertexID)
{
 // vertex shader body...
}

For a Draw call, the vertices in the draw call will be labeled with IDs from 0, 1, …,
n-1, where n is the number of vertices in the draw call. For a DrawIndexed call,
the vertex IDs correspond to the vertex index values.

12.3 TEXTURE ARRAYS

12.3.1 Overview
A texture array stores an array of textures. In C code, a texture array is
represented by the ID3D12Resource interface just like all resources are (textures
and buffers). When creating an ID3D12Resource object, there is actually a
property called DepthOrArraySize that can be set to specify the number of texture

Note:

Note:

460 DIRECT3D FOUNDATIONS

elements the texture stores (or the depth for a 3D texture). When we create our
depth/stencil texture in d3dApp.cpp, we always set this to 1. If you look at the
CreateD3DResources12 function in Common/DDSTextureLoader.cpp you will see
how the code supports creating texture arrays and volume textures. In a HLSL file,
a texture array is represented by the Texture2DArray type:

Texture2DArray gTreeMapArray;

Now, you have be wondering why we need texture arrays. Why not just do this:

Texture2D TexArray[4];

...

float4 PS(GeoOut pin) : SV_Target
{
float4 c = TexArray[pin.PrimID%4].Sample(samLinear, pin.Tex);

In shader model 5.1 (new to Direct3D 12), we actually can do this. However, this
was not allowed in previous Direct3D versions. Moreover, indexing textures like
this may have a little overhead depending on the hardware, so for this chapter we
will stick to texture arrays.

12.3.2 Sampling a Texture Array
In the Billboards demo, we sample a texture array with the following code:

float3 uvw = float3(pin.Tex, pin.PrimID%4);
float4 diffuseAlbedo = gTreeMapArray.Sample(
 gsamAnisotropicWrap, uvw) * gDiffuseAlbedo;

When using a texture array, three texture coordinates are required. The first
two texture coordinates are the usual 2D texture coordinates; the third texture
coordinate is an index into the texture array. For example, 0 is the index to the first
texture in the array, 1 is the index to the second texture in the array, 2 is the index
to the third texture in the array, and so on.

In the Billboards demo, we use a texture array with four texture elements, each
with a different tree texture (Figure 12.7). However, because we are drawing more
than four trees per draw call, the primitive IDs will become greater than three.
Thus, we take the primitive ID modulo 4 (pin.PrimID % 4) to map the primitive
ID to 0, 1, 2, or 3, which are valid array indices for an array with four elements.

One of the advantages with texture arrays is that we were able to draw a
collection of primitives, with different textures, in one draw call. Normally, we
would have to have a separate render-item for each mesh with a different texture:

SetTextureA();
DrawPrimitivesWithTextureA();

THE GEOMETRY SHADER 461

SetTextureB();
DrawPrimitivesWithTextureB();

...

SetTextureZ();
DrawPrimitivesWithTextureZ();

Each set and draw call has some overhead associated with it. With texture arrays,
we could reduce this to one set and one draw call:

SetTextureArray();

DrawPrimitivesWithTextureArray();

12.3.3 Loading Texture Arrays
Our DDS loading code in Common/DDSTextureLoader.h/.cpp supports loading
DDS files that store texture arrays. So the key is to create a DDS file that contains
a texture array. To do this, we use the texassemble tool provided by Microsoft at
https://directxtex.codeplex.com/wikipage?title=Texassemble&referringTitle=Texco
nv. The following syntax shows how to create a texture array called treeArray.dds
from 4 images t0.dds, t1.dds, t2.dds, and t3.dds:

texassemble -array -o treeArray.dds t0.dds t1.dds t2.dds t2.dds

Note that when building a texture array with texassemble, the input images should
only have one mipmap level. After you have invoked texassemble to build the texture
array, you can use texconv (https://directxtex.codeplex.com/wikipage?title=Texconv)
to generate mipmaps and change the pixel format if needed:

texconv -m 10 -f BC3_UNORM treeArray.dds

Figure 12.7. Tree billboard images.

462 DIRECT3D FOUNDATIONS

12.3.4 Texture Subresources
Now that we have discussed texture arrays, we can talk about subresources. Figure 12.8
shows an example of a texture array with several textures. In turn, each texture has
its own mipmap chain. The Direct3D API uses the term array slice to refer to an
element in a texture along with its complete mipmap chain. The Direct3D API uses
the term mip slice to refer to all the mipmaps at a particular level in the texture array.
A subresource refers to a single mipmap level in a texture array element.

Given the texture array index, and a mipmap level, we can access a subresource
in a texture array. However, the subresources can also be labeled by a linear index;
Direct3D uses a linear index ordered as shown in Figure 12.9.

The following utility function is used to compute the linear subresource index
given the mip level, array index, and the number of mipmap levels:

inline UINT D3D12CalcSubresource(UINT MipSlice, UINT ArraySlice,
 UINT PlaneSlice, UINT MipLevels, UINT ArraySize)
{
 return MipSlice + ArraySlice * MipLevels + PlaneSlice * MipLevels *

ArraySize;
}

Figure 12.8. A texture array with four textures. Each texture has three mipmap levels.

Figure 12.9. Subresources in a texture array labeled with a linear index.

THE GEOMETRY SHADER 463

12.4 ALPHA-TO-COVERAGE

When the “Tree Billboard” demo is run, notice that at some distances the edges
of the tree billboard cutouts appear blocky. This is caused by the clip function,
which we use to mask out the pixels of the texture that are not part of the tree;
the clip function either keeps a pixel or rejects it—there is no smooth transition.
The distance from the eye to the billboard plays a role because the short distances
result in magnification, which makes the block artifacts larger, and short distances
result in a lower resolution mipmap level being used.

One way to fi x this problem is to use transparency blending instead of the alpha
test. Due to linear texture fi ltering, the edge pixels will be blurred slightly making
a smooth transition from white (opaque pixels) to black (masked out pixels).
The transparency blending will consequently cause a smooth fade out along the
edges from opaque pixels to masked pixels. Unfortunately, transparency blending
requires sorting and rendering in back-to-front order. The overhead for sorting
a small number of tree billboards is not high, but if we are rendering a forest or
grass prairie, the sorting can be expensive as it must be done every frame; worse is
that rendering in back-to-front order results in massive overdraw (see Exercise 8
in Chapter 11), which can kill performance.

One might suggest that MSAA (multisampling antialiasing—see §4.1.7) can
help, as MSAA is used to smooth out blocky edges of polygons. Indeed, it should be
able to help, but there is a problem. MSAA executes the pixel shader once per pixel,
at the pixel center, and then shares that color information with its subpixels based
on visibility (the depth/stencil test is evaluated per subpixel) and coverage (does the
subpixel center lie inside or outside the polygon?). The key here is that coverage is
determined at the polygon level. Therefore, MSAA is not going to detect the edges of
the tree billboard cutouts as defi ned by the alpha channel—it will only look at the
edges of the quads the textures are mapped onto. So is there a way to tell Direct3D to
take the alpha channel into consideration when calculating coverage? The answer is
yes, and it leads us to the technique known as alpha-to-coverage.

When MSAA is enabled, and alpha-to-coverage is enabled (a member of
D3D12_BLEND_DESC::AlphaToCoverageEnable = true), the hardware will look at
the alpha value returned by the pixel shader and use that to determine coverage
[NVIDIA05]. For example, with 4X MSAA, if the pixel shader alpha is 0.5, then
we can assume that two out of the four subpixels are covered and this will create a
smooth edge.

The general advice is that you always want to use alpha-to-coverage for alpha
masked cut out textures like foliage and fences. However, it does require that
MSAA is enabled. Note that in the constructor of our demo application, we set:

mEnable4xMsaa = true;

464 DIRECT3D FOUNDATIONS

This causes our sample framework to create the back and depth buffers with 4X
MSAA support.

12.5 SUMMARY

1. Assuming we are not using the tessellation stages, the geometry shader stage
is an optional stage that sits between the vertex and pixel shader stages.
The geometry shader is invoked for each primitive sent through the input
assembler. The geometry shader can output zero, one, or more primitives.
The output primitive type may be different from the input primitive type.
The vertices of the output primitives should be transformed to homogeneous
clip space before leaving the geometry shader. The primitives output from the
geometry shader next enter the rasterization stage of the rendering pipeline.
Geometry shaders are programmed in effect files, side-by-side vertex and
pixel shaders.

2. The billboard technique is where a quad textured with an image of an object
is used instead of a true 3D model of the object. For objects far away, the
viewer cannot tell a billboard is being used. The advantage of billboards is that
the GPU does not have to waste processing time rendering a full 3D object,
when a textured quad will suffice. This technique can be useful for rendering
forests of trees, where true 3D geometry is used for trees near the camera, and
billboards are used for trees in the distance. In order for the billboard trick to
work, the billboard must always face the camera. The billboard technique can
be implemented efficiently in a geometry shader.

3. A special parameter of type uint and semantic SV_PrimitiveID can be added
to the parameter list of a geometry shader as the following example shows:

[maxvertexcount(4)]
void GS(point VertexOut gin[1],

 uint primID : SV_PrimitiveID,
 inout TriangleStream<GeoOut> triStream);

 When this semantic is specified, it tells the input assembler stage to
automatically generate a primitive ID for each primitive. When a draw call
is executed to draw n primitives, the first primitive is labeled 0; the second
primitive is labeled 1; and so on, until the last primitive in the draw call is
labeled n-1. If a geometry shader is not present, the primitive ID parameter
can be added to the parameter list of the pixel shader. However, if a geometry
shader is present, then the primitive ID parameter must occur in the geometry
shader signature. Then the geometry shader can use the primitive ID or pass it
on to the pixel shader stage (or both).

THE GEOMETRY SHADER 465

4. The input assembler stage can generate a vertex ID. To do this, add an
additional parameter of type uint to the vertex shader signature with semantic
SV_VertexID. For a Draw call, the vertices in the draw call will be labeled with
IDs from 0, 1, …, n-1, where n is the number of vertices in the draw call. For a
DrawIndexed call, the vertex IDs correspond to the vertex index values.

5. A texture array stores an array of textures. In C code, a texture array is
represented by the ID3D12Resource interface just like all resources are (textures
and buffers). When creating an ID3D12Resource object, there is a property
called DepthOrArraySize that can be set to specify the number of texture
elements the texture stores (or the depth for a 3D texture). In HLSL, a texture
array is represented by the Texture2DArray type. When using a texture array,
three texture coordinates are required. The fi rst two texture coordinates are
the usual 2D texture coordinates; the third texture coordinate is an index into
the texture array. For example, 0 is the index to the fi rst texture in the array,
1 is the index to the second texture in the array, 2 is the index to the third
texture in the array, and so on. One of the advantages with texture arrays is
that we were able to draw a collection of primitives, with different textures, in
one draw call. Each primitive will have an index into the texture array which
indicates which texture to apply to the primitive.

6. Alpha-to-coverage instructs the hardware to look at the alpha value returned
by the pixel shader when determining subpixel coverage. This enables smooth
edges for alpha masked cutout textures like foliage and fences. Alpha-to-
coverage is controlled by the D3D12_BLEND_DESC::AlphaToCoverageEnable fi eld
in a PSO.

12.6 EXERCISES

1. Consider a circle, drawn with a line strip, in the xz-plane. Expand the line strip
into a cylinder with no caps using the geometry shader.

2. An icosahedron is a rough approximation of a sphere. By subdividing each
triangle (Figure 12.10), and projecting the new vertices onto the sphere,
a better approximation is obtained. (Projecting a vertex onto a unit sphere
simply amounts to normalizing the position vector, as the heads of all unit
vectors coincide with the surface of the unit sphere.) For this exercise, build and
render an icosahedron. Use a geometry shader to subdivide the icosahedron
based on its distance d from the camera. For example, if d < 15, then subdivide
the original icosahedron twice; if 15 d < 30 , then subdivide the original
icosahedron once; if d  then just render the original icosahedron. The

466 DIRECT3D FOUNDATIONS

idea of this is to only use a high number of polygons if the object is close to the
camera; if the object is far away, then a coarser mesh will suffice, and we need
not waste GPU power processing more polygons than needed. Figure 12.10
shows the three LOD levels side-by-side in wireframe and solid (lit) mode.
Refer back to §7.4.3 for a discussion on tessellating an icosahedron.

3. A simple explosion effect can be simulated by translating triangles in the
direction of their face normal as a function of time. This simulation can be
implemented in a geometry shader. For each triangle input into the geometry
shader, the geometry shader computes the face normal n, and then translates
the three triangle vertices, p0, p1, and p2, in the direction n based on the time t
since the explosion started:

 for 0, 1, 2i i t i   p p n

 The face normal n need not be unit length, and can be scaled accordingly to
control the speed of the explosion. One could even make the scale depend
on the primitive ID, so that each primitive travels at a different speed. Use an
icosahedron (not subdivided) as a sample mesh for implementing this effect.

4. It can be useful for debugging to visualize the vertex normals of a mesh. Write
an effect that renders the vertex normals of a mesh as short line segments.
To do this, implement a geometry shader that inputs the point primitives
of the mesh (i.e., its vertices with topology D3D_PRIMITIVE_TOPOLOGY_
POINTLIST), so that each vertex gets pumped through the geometry shader.
Now the geometry shader can expand each point into a line segment of some
length L. If the vertex has position p and normal n, then the two endpoints of
the line segment representing the vertex normal are p and p  Ln. After this is
implemented, draw the mesh as normal, and then draw the scene again with
the normal vector visualization technique so that the normals are rendered on
top of the scene. Use the “Blend” demo as a test scene.

Figure 12.10. Subdivision of an icosahedron with vertices projected onto the unit sphere.

THE GEOMETRY SHADER 467

5. Similar to the previous exercise, write an effect that renders the face normals
of a mesh as short line segments. For this effect, the geometry shader will
input a triangle, calculate its normal, and output a line segment.

6. This exercise shows that for a Draw call, the vertices in the draw call will be
labeled with IDs from 0, 1, …, n-1, where n is the number of vertices in the
draw call, and that for a DrawIndexed call, the vertex IDs correspond to the
vertex index values.

 Modify the “Tree Billboards” demo in the following way. First, change the
vertex shader to the following:
VertexOut VS(VertexIn vin, uint vertID : SV_VertexID)
{
 VertexOut vout;

 // Just pass data over to geometry shader.
 vout.CenterW = vin.PosW;
 vout.SizeW = float2(2+vertID, 2+vertID);

 return vout;
}

 In other words, we size the tree billboard based on the vertex ID of its center.
Now run the program; when drawing 16 billboards, the sizes should range
from 2 to 17. Now modify the drawing like so: Instead of using a single draw
call to draw all 16 points at once, use four like so:
cmdList->Draw(4, 0, 0, 0);
cmdList->Draw(4, 0, 4, 0);
cmdList->Draw(4, 0, 8, 0);
cmdList->Draw(4, 0, 12, 0);

 Now run the program. This time, the sizes should range from 2 to 5. Because
each draw call draws 4 vertices, the vertex IDs range from 0-3 for each draw
call. Now use an index buffer and four DrawIndexed calls. After running the
program, the sizes should return back to the range of 2 to 17. This is because
when using DrawIndexed, the vertex IDs correspond to the vertex index values.

7. Modify the “Tree Billboards” demo in the following way. First, remove the
“modulo 4” from the pixel shader:
float3 uvw = float3(pin.Tex, pin.PrimID);

 Now run the program. Since we are drawing 16 primitives, with primitive IDs
ranging from 0-15, these IDs go outside the array bounds. However, this does
not cause an error, as the out-of-bounds index will be clamped to the highest
valid index (3 in this case). Now instead of using a single draw call to draw all
16 points at once, use four like so:
cmdList->Draw(4, 0, 0, 0);
cmdList->Draw(4, 0, 4, 0);

468 DIRECT3D FOUNDATIONS

cmdList->Draw(4, 0, 8, 0);
cmdList->Draw(4, 0, 12, 0);

 Run the program again. This time there is no clamping. Because each draw
call draws 4 primitives, the primitive IDs range from 0-3 for each draw call.
Thus the primitive IDs can be used as indices without going out of bounds.
This shows that the primitive ID “count” resets to zero with each draw call.

Chapter

469

13Chapter

THE
COMPUTE
SHADER

GPUs have been optimized to process a large amount of memory from a single
location or sequential locations (so-called streaming operation); this is in contrast
to a CPU designed for random memory accesses [Boyd10]. Moreover, because
vertices and pixels can be independently processed, GPUs have been architected
to be massively parallel; for example, the NVIDIA “Fermi” architecture supports
up to sixteen streaming multiprocessors of thirty-two CUDA cores for a total of
512 CUDA cores [NVIDIA09].

Obviously, graphics benefi t from this GPU architecture, as the architecture
was designed for graphics. However, some non-graphical applications benefi t
from the massive amount of computational power a GPU can provide with its
parallel architecture. Using the GPU for non-graphical applications is called
general purpose GPU (GPGPU) programming. Not all algorithms are ideal for
a GPU implementation; GPUs need data-parallel algorithms to take advantage
of the parallel architecture of the GPU. That is, we need a large amount of data
elements that will have similar operations performed on them so that the elements
can be processed in parallel. Graphical operations like shading pixels is a good
example, as each pixel fragment being drawn is operated on by the pixel shader.
As another example, if you look at the code for our wave simulation from the
previous chapters, you will see that in the update step, we perform a calculation
on each grid element. So this, too, is a good candidate for a GPU implementation,
as each grid element can be updated in parallel by the GPU. Particle systems

470 DIRECT3D FOUNDATIONS

provide yet another example, where the physics of each particle can be computed
independently provided we take the simplifi cation that the particles do not
interact with each other.

For GPGPU programming, the user generally needs to access the computation
results back on the CPU. This requires copying the result from video memory
to system memory, which is slow (see Figure 13.1), but may be a negligible issue
compared to the speed up from doing the computation on the GPU. For graphics,
we typically use the computation result as an input to the rendering pipeline, so
no transfer from GPU to CPU is needed. For example, we can blur a texture with
the compute shader, and then bind a shader resource view to that blurred texture
to a shader as input.

The Compute Shader is a programmable shader Direct3D exposes that is
not directly part of the rendering pipeline. Instead, it sits off to the side and can
read from GPU resources and write to GPU resources (Figure 13.2). Essentially,
the Compute Shader allows us to access the GPU to implement data-parallel
algorithms without drawing anything. As mentioned, this is useful for GPGPU
programming, but there are still many graphical effects that can be implemented
on the compute shader as well—so it is still very relevant for a graphics
programmer. And as already mentioned, because the Compute Shader is part
of Direct3D, it reads from and writes to Direct3D resources, which enables us to
bind the output of a compute shader directly to the rendering pipeline.

Figure 13.1. Image has been redrawn from [Boyd10].
The relative memory bandwidth speeds between CPU
and RAM, CPU and GPU, and GPU and VRAM. These
numbers are just illustrative numbers to show the order
of magnitude difference between the bandwidths.
Observe that transferring memory between CPU and
GPU is the bottleneck.

Figure 13.2. The compute shader is not part of
the rendering pipeline but sits off to the side. The
compute shader can read and write to GPU resources.
The compute shader can be mixed with graphics
rendering, or used alone for GPGPU programming.

THE COMPUTE SHADER 471

Objectives:
1. To learn how to program compute shaders.

2. To obtain a basic high-level understanding of how the hardware processes
thread groups, and the threads within them.

3. To discover which Direct3D resources can be set as an input to a compute shader
and which Direct3D resources can be set as an output to a compute shader.

4. To understand the various thread IDs and their uses.

5. To learn about shared memory and how it can be used for performance
optimizations.

6. To find out where to obtain more detailed information about GPGPU
programming.

13.1 THREADS AND THREAD GROUPS

In GPU programming, the number of threads desired for execution is divided up
into a grid of thread groups. A thread group is executed on a single multiprocessor.
Therefore, if you had a GPU with sixteen multiprocessors, you would want to break
up your problem into at least sixteen thread groups so that each multiprocessor
has work to do. For better performance, you would want at least two thread
groups per multiprocessor since a multiprocessor can switch to processing the
threads in a different group to hide stalls [Fung10] (a stall can occur, for example,
if a shader needs to wait for a texture operation result before it can continue to the
next instruction).

Each thread group gets shared memory that all threads in that group can
access; a thread cannot access shared memory in a different thread group. Thread
synchronization operations can take place amongst the threads in a thread group,
but different thread groups cannot be synchronized. In fact, we have no control
over the order in which different thread groups are processed. This makes sense as
the thread groups can be executed on different multiprocessors.

A thread group consists of n threads. The hardware actually divides these
threads up into warps (thirty-two threads per warp), and a warp is processed by
the multiprocessor in SIMD32 (i.e., the same instructions are executed for the
thirty-two threads simultaneously). Each CUDA core processes a thread and
recall that a “Fermi” multiprocessor has thirty-two CUDA cores (so a CUDA core
is like an SIMD “lane.”) In Direct3D, you can specify a thread group size with
dimensions that are not multiples of thirty-two, but for performance reasons, the
thread group dimensions should always be multiples of the warp size [Fung10].

472 DIRECT3D FOUNDATIONS

Thread group sizes of 256 seems to be a good starting point that should work
well for various hardware. Then experiment with other sizes. Changing the
number of threads per group will change the number of groups dispatched.

NVIDIA hardware uses warp sizes of thirty-two threads. ATI uses “wavefront”
sizes of sixty-four threads, and recommends the thread group size should always
be a multiple of the wavefront size [Bilodeau10]. Also, the warp size or wavefront
size can change in future generations of hardware.

In Direct3D, thread groups are launched via the following method call:

void ID3D12GraphicsCommandList::Dispatch(
 UINT ThreadGroupCountX,
 UINT ThreadGroupCountY,
 UINT ThreadGroupCountZ);

This enables you to launch a 3D grid of thread groups; however, in this book we
will only be concerned with 2D grids of thread groups. The following example call
launches three groups in the x direction and two groups in the y direction for a
total of 3  2  6 thread groups (see Figure 13.3).

13.2 A SIMPLE COMPUTE SHADER

Below is a simple compute shader that sums two textures, assuming all the
textures are the same size. This shader is not very interesting, but it illustrates the
basic syntax of writing a compute shader.

cbuffer cbSettings
{
 // Compute shader can access values in constant buffers.
};

// Data sources and outputs.
Texture2D gInputA;

Note:

Figure 13.3. Dispatching a grid of 3  2 thread groups. Each thread group has 8  8 threads.

THE COMPUTE SHADER 473

Texture2D gInputB;
RWTexture2D<float4> gOutput;

// The number of threads in the thread group. The threads in a group
can

// be arranged in a 1D, 2D, or 3D grid layout.
[numthreads(16, 16, 1)]
void CS(int3 dispatchThreadID : SV_DispatchThreadID) // Thread ID
{
 // Sum the xyth texels and store the result in the xyth texel of
 // gOutput.
 gOutput[dispatchThreadID.xy] =
 gInputA[dispatchThreadID.xy] +
 gInputB[dispatchThreadID.xy];
}

A compute shader consists of the following components:

1. Global variable access via constant buffers.

2. Input and output resources, which are discussed in the next section.

3. The [numthreads(X, Y, Z)] attribute, which specifies the number of threads
in the thread group as a 3D grid of threads.

4. The shader body that has the instructions to execute for each thread.

5. Thread identification system value parameters (discussed in §13.4).

Observe that we can define different topologies of the thread group; for example,
a thread group could be a single line of X threads [numthreads(X, 1, 1)] or a
single column of Y threads [numthreads(1, Y, 1)]. 2D thread groups of X  Y
threads can be made by setting the z-dimension to 1 like this [numthreads(X, Y,
1)]. The topology you choose will be dictated by the problem you are working on.
As mentioned in the previous section, the total thread count per group should
be a multiple of the warp size (thirty-two for NVIDIA cards) or a multiple of the
wavefront size (sixty-four for ATI cards). A multiple of the wavefront size is also a
multiple of the warp size, so choosing a multiple of the wavefront size works for
both types of cards.

13.2.1 Compute PSO
To enable a compute shader, we use a special “compute pipeline state description.”
This structure has far fewer fields than D3D12_GRAPHICS_PIPELINE_STATE_DESC
because the compute shader sits to the side of the graphics pipeline, so all the
graphics pipeline state does not apply to compute shaders and thus does not need
to be set. Below shows an example of creating a compute pipeline state object:

D3D12_COMPUTE_PIPELINE_STATE_DESC wavesUpdatePSO = {};
wavesUpdatePSO.pRootSignature = mWavesRootSignature.Get();
wavesUpdatePSO.CS =

474 DIRECT3D FOUNDATIONS

{
 reinterpret_cast<BYTE*>(mShaders["wavesUpdateCS"]-

>GetBufferPointer()),
 mShaders["wavesUpdateCS"]->GetBufferSize()
};
wavesUpdatePSO.Flags = D3D12_PIPELINE_STATE_FLAG_NONE;
ThrowIfFailed(md3dDevice->CreateComputePipelineState(
 &wavesUpdatePSO, IID_PPV_ARGS(&mPSOs["wavesUpdate"])));

The root signature defines what parameters the shader expects as input (CBVs,
SRVs, etc.). The CS field is where we specify the compute shader. The following
code shows an example of compiling a compute shader to bytecode:

mShaders["wavesUpdateCS"] = d3dUtil::CompileShader(
 L"Shaders\\WaveSim.hlsl", nullptr, "UpdateWavesCS", "cs_5_0");

13.3 DATA INPUT AND OUTPUT RESOURCES

Two types of resources can be bound to a compute shader: buffers and textures.
We have worked with buffers already such as vertex and index buffers, and
constant buffers. We are also familiar with texture resources from Chapter 9.

13.3.1 Texture Inputs
The compute shader defined in the previous section defined two input texture
resources:

Texture2D gInputA;
Texture2D gInputB;

The input textures gInputA and gInputB are bound as inputs to the shader by
creating (SRVs) to the textures and passing them as arguments to the root
parameters; for example:

cmdList->SetComputeRootDescriptorTable(1, mSrvA);
cmdList->SetComputeRootDescriptorTable(2, mSrvB);

This is exactly the same way we bind shader resource views to pixel shaders. Note
that SRVs are read-only.

13.3.2 Texture Outputs and Unordered Access Views (UAVs)
The compute shader defined in the previous section defined one output resource:

RWTexture2D<float4> gOutput;

Outputs are treated special and have the special prefix to their type “RW,” which
stands for read-write, and as the name implies, you can read and write to elements

THE COMPUTE SHADER 475

in this resource in the compute shader. In contrast, the textures gInputA and
gInputB are read-only. Also, it is necessary to specify the type and dimensions of
the output with the template angle brackets syntax <float4>. If our output was a
2D integer like DXGI_FORMAT_R8G8_SINT, then we would have instead written:

RWTexture2D<int2> gOutput;

Binding an output resource is different than an input, however. To bind a resource
that we will write to in a compute shader, we need to bind it using a new view
type called an unordered access view (UAV), which is represented in code by a
descriptor handle and described in code by the D3D12_UNORDERED_ACCESS_VIEW_
DESC structure. This is created in a similar way to a shader resource view. Here is an
example that creates a UAV to a texture resource:

D3D12_RESOURCE_DESC texDesc;
ZeroMemory(&texDesc, sizeof(D3D12_RESOURCE_DESC));
texDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;
texDesc.Alignment = 0;
texDesc.Width = mWidth;
texDesc.Height = mHeight;
texDesc.DepthOrArraySize = 1;
texDesc.MipLevels = 1;
texDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
texDesc.SampleDesc.Count = 1;
texDesc.SampleDesc.Quality = 0;
texDesc.Layout = D3D12_TEXTURE_LAYOUT_UNKNOWN;
texDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;

ThrowIfFailed(md3dDevice->CreateCommittedResource(
 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
 D3D12_HEAP_FLAG_NONE,
 &texDesc,
 D3D12_RESOURCE_STATE_COMMON,
 nullptr,
 IID_PPV_ARGS(&mBlurMap0)));

D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_

MAPPING;
srvDesc.Format = mFormat;
srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
srvDesc.Texture2D.MostDetailedMip = 0;
srvDesc.Texture2D.MipLevels = 1;

D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {};

uavDesc.Format = mFormat;
uavDesc.ViewDimension = D3D12_UAV_DIMENSION_TEXTURE2D;
uavDesc.Texture2D.MipSlice = 0;

md3dDevice->CreateShaderResourceView(mBlurMap0.Get(),
 &srvDesc, mBlur0CpuSrv);

476 DIRECT3D FOUNDATIONS

md3dDevice->CreateUnorderedAccessView(mBlurMap0.Get(),
 nullptr, &uavDesc, mBlur0CpuUav);

Observe that if a texture is going to be bound as UAV, then it must be created with
the D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS flag; in the above example, the
texture will be bound as a UAV and as a SRV (but not simultaneously). This is
common, as we often use the compute shader to perform some operation on a
texture (so the texture will be bound to the compute shader as a UAV), and then
after, we want to texture geometry with it, so it will be bound to the vertex or pixel
shader as a SRV.

Recall that a descriptor heap of type D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV
can mix CBVs, SRVs, and UAVs all in the same heap. Therefore, we can put UAV
descriptors in that heap. Once they are in a heap, we simply pass the descriptor
handles as arguments to the root parameters to bind the resources to the pipeline
for a dispatch call. Consider the following root signature for a compute shader:

void BlurApp::BuildPostProcessRootSignature()
{
 CD3DX12_DESCRIPTOR_RANGE srvTable;
 srvTable.Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);

 CD3DX12_DESCRIPTOR_RANGE uavTable;
 uavTable.Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0);

 // Root parameter can be a table, root descriptor or root constants.
 CD3DX12_ROOT_PARAMETER slotRootParameter[3];

 // Perfomance TIP: Order from most frequent to least frequent.
 slotRootParameter[0].InitAsConstants(12, 0);
 slotRootParameter[1].InitAsDescriptorTable(1, &srvTable);
 slotRootParameter[2].InitAsDescriptorTable(1, &uavTable);

 // A root signature is an array of root parameters.
 CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(3, slotRootParameter,
 0, nullptr,
 D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

 // create a root signature with a single slot which points to a
 // descriptor range consisting of a single constant buffer
 ComPtr<ID3DBlob> serializedRootSig = nullptr;
 ComPtr<ID3DBlob> errorBlob = nullptr;
 HRESULT hr = D3D12SerializeRootSignature(&rootSigDesc, D3D_ROOT_

SIGNATURE_VERSION_1,
 serializedRootSig.GetAddressOf(), errorBlob.GetAddressOf());

 if(errorBlob != nullptr)
 {
 ::OutputDebugStringA((char*)errorBlob->GetBufferPointer());
 }
 ThrowIfFailed(hr);

THE COMPUTE SHADER 477

 ThrowIfFailed(md3dDevice->CreateRootSignature(
 0,
 serializedRootSig->GetBufferPointer(),
 serializedRootSig->GetBufferSize(),
 IID_PPV_ARGS(mPostProcessRootSignature.GetAddressOf())));
}

The root signature defines that the shader expects a constant buffer for root
parameter slot 0, an SRV for root parameter slot 1, and a UAV for root parameter
slot 2. Before a dispatch invocation, we bind the constants and descriptors to use
for this dispatch call:

cmdList->SetComputeRootSignature(rootSig);

cmdList->SetComputeRoot32BitConstants(0, 1, &blurRadius, 0);
cmdList->SetComputeRoot32BitConstants(0, (UINT)weights.size(), weights.data(), 1);

cmdList->SetComputeRootDescriptorTable(1, mBlur0GpuSrv);
cmdList->SetComputeRootDescriptorTable(2, mBlur1GpuUav);

UINT numGroupsX = (UINT)ceilf(mWidth / 256.0f);
cmdList->Dispatch(numGroupsX, mHeight, 1);

13.3.3 Indexing and Sampling Textures
The elements of the textures can be accessed using 2D indices. In the compute
shader defined in §13.2, we index the texture based on the dispatch thread ID
(thread IDs are discussed in §13.4). Each thread is given a unique dispatch ID.

[numthreads(16, 16, 1)]
void CS(int3 dispatchThreadID : SV_DispatchThreadID)
{
 // Sum the xyth texels and store the result in the xyth texel of
 // gOutput.
 gOutput[dispatchThreadID.xy] =
 gInputA[dispatchThreadID.xy] +
 gInputB[dispatchThreadID.xy];
}

Assuming that we dispatched enough thread groups to cover the texture (i.e., so
there is one thread being executed for one texel), then this code sums the texture
images and stores the result in the texture gOutput.

The behavior of out-of-bounds indices are well defi ned in a compute shader. Out-
of-bounds reads return 0, and out-of-bounds writes result in no-ops [Boyd08].

Because the compute shader is executed on the GPU, it has access to the usual
GPU tools. In particular, we can sample textures using texture filtering. There are
two issues, however. First, we cannot use the Sample method, but instead must
use the SampleLevel method. SampleLevel takes an additional third parameter

Note:

478 DIRECT3D FOUNDATIONS

that specifies the mipmap level of the texture; 0 takes the top most level, 1 takes
the second mip level, etc., and fractional values are used to interpolate between
two mip levels of linear mip filtering is enabled. On the other hand, Sample
automatically selects the best mipmap level to use based on how many pixels on
the screen the texture will cover. Since compute shaders are not used for rendering
directly, it does not know how to automatically select a mipmap level like this,
and therefore, we must explicitly specify the level with SampleLevel in a compute
shader. The second issue is that when we sample a texture, we use normalized
texture-coordinates in the range [0, 1]2 instead of integer indices. However, the
texture size (width, height) can be set to a constant buffer variable, and then
normalized texture coordinates can be derived from the integer indices (x, y):

x
u

width
y

v
height





The following code shows a compute shader using integer indices, and a second
equivalent version using texture coordinates and SampleLevel, where it is assumed
the texture size is 512  512 and we only need the top level mip:

//
// VERSION 1: Using integer indices.
//

cbuffer cbUpdateSettings
{
 float gWaveConstant0;
 float gWaveConstant1;
 float gWaveConstant2;

 float gDisturbMag;
 int2 gDisturbIndex;
};

RWTexture2D<float> gPrevSolInput : register(u0);
RWTexture2D<float> gCurrSolInput : register(u1);
RWTexture2D<float> gOutput : register(u2);

[numthreads(16, 16, 1)]
void CS(int3 dispatchThreadID : SV_DispatchThreadID)
{
 int x = dispatchThreadID.x;
 int y = dispatchThreadID.y;

 gNextSolOutput[int2(x,y)] =
 gWaveConstants0*gPrevSolInput[int2(x,y)].r +
 gWaveConstants1*gCurrSolInput[int2(x,y)].r +
 gWaveConstants2*(

THE COMPUTE SHADER 479

 gCurrSolInput[int2(x,y+1)].r +
 gCurrSolInput[int2(x,y-1)].r +
 gCurrSolInput[int2(x+1,y)].r +
 gCurrSolInput[int2(x-1,y)].r);
}

//
// VERSION 2: Using SampleLevel and texture coordinates.
//

cbuffer cbUpdateSettings
{
 float gWaveConstant0;
 float gWaveConstant1;
 float gWaveConstant2;

 float gDisturbMag;
 int2 gDisturbIndex;
};

SamplerState samPoint : register(s0);

RWTexture2D<float> gPrevSolInput : register(u0);
RWTexture2D<float> gCurrSolInput : register(u1);
RWTexture2D<float> gOutput : register(u2);

[numthreads(16, 16, 1)]
void CS(int3 dispatchThreadID : SV_DispatchThreadID)
{
 // Equivalently using SampleLevel() instead of operator [].
 int x = dispatchThreadID.x;
 int y = dispatchThreadID.y;

 float2 c = float2(x,y)/512.0f;
 float2 t = float2(x,y-1)/512.0;
 float2 b = float2(x,y+1)/512.0;
 float2 l = float2(x-1,y)/512.0;
 float2 r = float2(x+1,y)/512.0;

 gNextSolOutput[int2(x,y)] =
 gWaveConstants0*gPrevSolInput.SampleLevel(samPoint, c, 0.0f).r +
 gWaveConstants1*gCurrSolInput.SampleLevel(samPoint, c, 0.0f).r +
 gWaveConstants2*(
 gCurrSolInput.SampleLevel(samPoint, b, 0.0f).r +
 gCurrSolInput.SampleLevel(samPoint, t, 0.0f).r +
 gCurrSolInput.SampleLevel(samPoint, r, 0.0f).r +
 gCurrSolInput.SampleLevel(samPoint, l, 0.0f).r);
}

13.3.4 Structured Buffer Resources
The following examples show how structured buffers are defined in the HLSL:

struct Data

480 DIRECT3D FOUNDATIONS

{
 float3 v1;
 float2 v2;
};

StructuredBuffer<Data> gInputA : register(t0);
StructuredBuffer<Data> gInputB : register(t1);
RWStructuredBuffer<Data> gOutput : register(u0);

A structured buffer is simply a buffer of elements of the same type—essentially an
array. As you can see, the type can be a user-defined structure in the HLSL.

A structured buffer used as an SRV can be created just like we have been
creating our vertex and index buffers. A structured buffer used as a UAV is almost
created the same way, except that we must specify the fl ag D3D12_RESOURCE_FLAG_
ALLOW_UNORDERED_ACCESS, and it is good practice to put it in the D3D12_RESOURCE_
STATE_UNORDERED_ACCESS state.

struct Data
{
 XMFLOAT3 v1;
 XMFLOAT2 v2;
};

// Generate some data to fill the SRV buffers with.
std::vector<Data> dataA(NumDataElements);
std::vector<Data> dataB(NumDataElements);
for(int i = 0; i < NumDataElements; ++i)
{
 dataA[i].v1 = XMFLOAT3(i, i, i);
 dataA[i].v2 = XMFLOAT2(i, 0);

 dataB[i].v1 = XMFLOAT3(-i, i, 0.0f);
 dataB[i].v2 = XMFLOAT2(0, -i);
}

UINT64 byteSize = dataA.size()*sizeof(Data);

// Create some buffers to be used as SRVs.
mInputBufferA = d3dUtil::CreateDefaultBuffer(
 md3dDevice.Get(),
 mCommandList.Get(),
 dataA.data(),
 byteSize,
 mInputUploadBufferA);

mInputBufferB = d3dUtil::CreateDefaultBuffer(
 md3dDevice.Get(),
 mCommandList.Get(),
 dataB.data(),
 byteSize,
 mInputUploadBufferB);

THE COMPUTE SHADER 481

// Create the buffer that will be a UAV.
ThrowIfFailed(md3dDevice->CreateCommittedResource(
 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
 D3D12_HEAP_FLAG_NONE,
 &CD3DX12_RESOURCE_DESC::Buffer(byteSize,
 D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS),
 D3D12_RESOURCE_STATE_UNORDERED_ACCESS,
 nullptr,
 IID_PPV_ARGS(&mOutputBuffer)));

Structured buffers are bound to the pipeline just like textures. We create SRVs
or UAV descriptors to them and pass them as arguments to root parameters that
take descriptor tables. Alternatively, we can define the root signature to take root
descriptors so that we can pass the virtual address of resources directly as root
arguments without the need to go through a descriptor heap (this only works
for SRVs and UAVs to buffer resource, not textures). Consider the following root
signature description:

// Root parameter can be a table, root descriptor or root constants.
CD3DX12_ROOT_PARAMETER slotRootParameter[3];

// Perfomance TIP: Order from most frequent to least frequent.
slotRootParameter[0].InitAsShaderResourceView(0);
slotRootParameter[1].InitAsShaderResourceView(1);
slotRootParameter[2].InitAsUnorderedAccessView(0);

// A root signature is an array of root parameters.
CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(3, slotRootParameter,
 0, nullptr,
 D3D12_ROOT_SIGNATURE_FLAG_NONE);

Then we can bind our buffers like so to be used for a dispatch call:

mCommandList->SetComputeRootSignature(mRootSignature.Get());

mCommandList->SetComputeRootShaderResourceView(0,
 mInputBufferA->GetGPUVirtualAddress());
mCommandList->SetComputeRootShaderResourceView(1,
 mInputBufferB->GetGPUVirtualAddress());
mCommandList->SetComputeRootUnorderedAccessView(2,
 mOutputBuffer->GetGPUVirtualAddress());

mCommandList->Dispatch(1, 1, 1);

There is also such a thing called a raw buffer, which is basically a byte array
of data. Byte offsets are used and the data can then be casted to the proper
type. This could be useful for storing different data types in the same buffer,
for example. To be a raw buffer, the resource must be created with the DXGI_
FORMAT_R32_TYPELESS format, and when creating the UAV we must specify the
D3D12_BUFFER_UAV_FLAG_RAW fl ag. We do not use raw buffers in this book; see the
SDK documentation for further details.

Note:

482 DIRECT3D FOUNDATIONS

13.3.5 Copying CS Results to System Memory
Typically, when we use the compute shader to process a texture, we will display
that processed texture on the screen; therefore, we visually see the result to verify
the accuracy of our compute shader. With structured buffer calculations, and
GPGPU computing in general, we might not display our results at all. So the
question is how do we get our results from GPU memory (remember when we
write to a structured buffer via a UAV, that buffer is stored in GPU memory) back
to system memory. The required way is to create system memory buffer with heap
properties D3D12_HEAP_TYPE_READBACK. Then we can use the ID3D12GraphicsComm
andList::CopyResource method to copy the GPU resource to the system memory
resource. The system memory resource must be the same type and size as the
resource we want to copy. Finally, we can map the system memory buffer with the
mapping API to read it on the CPU. From there we can then copy the data into a
system memory array for further processing on the CPU side, save the data to file,
or what have you.

We have included a structured buffer demo for this chapter called “VecAdd,”
which simply sums the corresponding vector components stored in two structured
buffers:

struct Data
{
 float3 v1;
 float2 v2;
};

StructuredBuffer<Data> gInputA : register(t0);
StructuredBuffer<Data> gInputB : register(t1);
RWStructuredBuffer<Data> gOutput : register(u0);

[numthreads(32, 1, 1)]
void CS(int3 dtid : SV_DispatchThreadID)
{
 gOutput[dtid.x].v1 = gInputA[dtid.x].v1 + gInputB[dtid.x].v1;
 gOutput[dtid.x].v2 = gInputA[dtid.x].v2 + gInputB[dtid.x].v2;
}

For simplicity, the structured buffers only contain thirty-two elements; therefore,
we only have to dispatch one thread group (since one thread group processes
thirty-two elements). After the compute shader completes its work for all threads
in this demo, we copy the results to system memory and save them to file. The
following code shows how to create the system memory buffer and how to copy
the GPU results to CPU memory:

// Create a system memory version of the buffer to read the
// results back from.
ThrowIfFailed(md3dDevice->CreateCommittedResource(

THE COMPUTE SHADER 483

 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_READBACK),
 D3D12_HEAP_FLAG_NONE,
 &CD3DX12_RESOURCE_DESC::Buffer(byteSize),
 D3D12_RESOURCE_STATE_COPY_DEST,
 nullptr,
 IID_PPV_ARGS(&mReadBackBuffer)));

// ...
//
// Compute shader finished!

struct Data
{
 XMFLOAT3 v1;
 XMFLOAT2 v2;
};

// Schedule to copy the data to the default buffer to the readback
buffer.

mCommandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(
 mOutputBuffer.Get(),
 D3D12_RESOURCE_STATE_COMMON,
 D3D12_RESOURCE_STATE_COPY_SOURCE));

mCommandList->CopyResource(mReadBackBuffer.Get(), mOutputBuffer.Get());

mCommandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(
 mOutputBuffer.Get(),
 D3D12_RESOURCE_STATE_COPY_SOURCE,
 D3D12_RESOURCE_STATE_COMMON));

// Done recording commands.
ThrowIfFailed(mCommandList->Close());

// Add the command list to the queue for execution.
ID3D12CommandList* cmdsLists[] = { mCommandList.Get() };
mCommandQueue->ExecuteCommandLists(_countof(cmdsLists), cmdsLists);

// Wait for the work to finish.
FlushCommandQueue();

// Map the data so we can read it on CPU.
Data* mappedData = nullptr;
ThrowIfFailed(mReadBackBuffer->Map(0, nullptr,
 reinterpret_cast<void**>(&mappedData)));

std::ofstream fout("results.txt");

for(int i = 0; i < NumDataElements; ++i)
{
 fout << "(" << mappedData[i].v1.x << ", " <<
 mappedData[i].v1.y << ", " <<
 mappedData[i].v1.z << ", " <<
 mappedData[i].v2.x << ", " <<
 mappedData[i].v2.y << ")" << std::endl;

484 DIRECT3D FOUNDATIONS

}

mReadBackBuffer->Unmap(0, nullptr);
In the demo, we fill the two input buffers with the following initial

data:
std::vector<Data> dataA(NumDataElements);
std::vector<Data> dataB(NumDataElements);
for(int i = 0; i < NumDataElements; ++i)
{
 dataA[i].v1 = XMFLOAT3(i, i, i);
 dataA[i].v2 = XMFLOAT2(i, 0);

 dataB[i].v1 = XMFLOAT3(-i, i, 0.0f);
 dataB[i].v2 = XMFLOAT2(0, -i);
}

The resulting text file contains the following data, which confirms that the
compute shader is working as expected.

(0, 0, 0, 0, 0)
(0, 2, 1, 1, -1)
(0, 4, 2, 2, -2)
(0, 6, 3, 3, -3)
(0, 8, 4, 4, -4)
(0, 10, 5, 5, -5)
(0, 12, 6, 6, -6)
(0, 14, 7, 7, -7)
(0, 16, 8, 8, -8)
(0, 18, 9, 9, -9)
(0, 20, 10, 10, -10)
(0, 22, 11, 11, -11)
(0, 24, 12, 12, -12)
(0, 26, 13, 13, -13)
(0, 28, 14, 14, -14)
(0, 30, 15, 15, -15)
(0, 32, 16, 16, -16)
(0, 34, 17, 17, -17)
(0, 36, 18, 18, -18)
(0, 38, 19, 19, -19)
(0, 40, 20, 20, -20)
(0, 42, 21, 21, -21)
(0, 44, 22, 22, -22)
(0, 46, 23, 23, -23)
(0, 48, 24, 24, -24)
(0, 50, 25, 25, -25)
(0, 52, 26, 26, -26)
(0, 54, 27, 27, -27)
(0, 56, 28, 28, -28)
(0, 58, 29, 29, -29)
(0, 60, 30, 30, -30)
(0, 62, 31, 31, -31)

From Figure 13.1, we see that copying between CPU and GPU memory is the
slowest. For graphics, we never want to do this copy per frame, as it will kill

Note:

THE COMPUTE SHADER 485

performance. For GPGPU programming, it is generally required to get the results
back on the CPU; however, this is usually not a big deal for GPGPU programming,
as the gains of using a GPU outweigh the copy cost from GPU to CPU—moreover,
for GPGPU, the copy will be less frequent than “per frame.” For example, suppose
an application uses GPGPU programming to implement a costly image processing
calculation. After the calculation is done the result is copied to the CPU. The GPU
is not used again until the user requests another calculation.

13.4 THREAD IDENTIFICATION SYSTEM VALUES

Consider Figure 13.4.

1. Each thread group is assigned an ID by the system; this is called the group ID
and has the system value semantic SV_GroupID. If Gx  Gy  Gz are the number
of thread groups dispatched, then the group ID ranges from (0, 0, 0) to (Gx –
1, Gy – 1, Gz – 1).

2. Inside a thread group, each thread is given a unique ID relative to its group. If
the thread group has size X  Y  Z, then the group thread IDs will range from
(0, 0, 0) to (X – 1, Y – 1, Z – 1). The system value semantic for the group thread
ID is SV_GroupThreadID.

3. A Dispatch call dispatches a grid of thread groups. The dispatch thread ID
uniquely identifies a thread relative to all the threads generated by a Dispatch
call. In other words, whereas the group thread ID uniquely identifies a thread
relative to its thread group, the dispatch thread ID uniquely identifies a thread
relative to the union of all the threads from all the thread groups dispatched
by a Dispatch call. Let, ThreadGroupSize = (X,Y,Z) be the thread group size,

Figure 13.4. Consider the marked thread T. Thread T has thread group ID .(1, 1, 0). It has group thread ID (1, 5,
0). It has dispatch thread ID (1, 1, 0)  (8, 8, 0) + (2, 5, 0) = (10, 13, 0). It has group index ID 5·8 + 2 = 42.

486 DIRECT3D FOUNDATIONS

then the dispatch thread ID can be derived from the group ID and the group
thread ID as follows:
dispatchThreadID.xyz = groupID.xyz * ThreadGroupSize.xyz +

groupThreadID.xyz;

The dispatch thread ID has the system value semantic SV_DispatchThreadID. If
3  2 thread groups are dispatched, where each thread group is 10 10, then a
total of 60 threads are dispatched and the dispatch thread IDs will range from (0,
0, 0) to (29, 19, 0).

4. A linear index version of the group thread ID is given to us by Direct3D
through the SV_GroupIndex system value; it is computed as:

groupIndex = groupThreadID.z*ThreadGroupSize.x*ThreadGroupSize.y +
 groupThreadID.y*ThreadGroupSize.x + groupThreadID.x;

Regarding the indexing coordinate order, the fi rst coordinate gives the x-position
(or column) and the second coordinate gives the y-position (or row). This is in
contrast to common matrix notation, where Mij denotes the element in the ith
row and jth column.

So why do we need these thread ID values. Well a compute shader generally takes
some input data structure and outputs to some data structure. We can use the
thread ID values as indexes into these data structures:

Texture2D gInputA;
Texture2D gInputB;
RWTexture2D<float4> gOutput;

[numthreads(16, 16, 1)]
void CS(int3 dispatchThreadID : SV_DispatchThreadID)
{
 // Use dispatch thread ID to index into output and input textures.
 gOutput[dispatchThreadID.xy] =
 gInputA[dispatchThreadID.xy] +
 gInputB[dispatchThreadID.xy];
}

The SV_GroupThreadID is useful for indexing into thread local storage memory
(§13.6).

13.5 APPEND AND CONSUME BUFFERS

Suppose we have a buffer of particles defined by the structure:

struct Particle
{
 float3 Position;
 float3 Velocity;

Note:

THE COMPUTE SHADER 487

 float3 Acceleration;
};

and we want to update the particle positions based on their constant acceleration
and velocity in the compute shader. Moreover, suppose that we do not care about
the order the particles are updated nor the order they are written to the output
buffer. Consume and append structured buffers are ideal for this scenario, and
they provide the convenience that we do not have to worry about indexing:

struct Particle
{
 float3 Position;
 float3 Velocity;
 float3 Acceleration;
};

float TimeStep = 1.0f / 60.0f;

ConsumeStructuredBuffer<Particle> gInput;
AppendStructuredBuffer<Particle> gOutput;
[numthreads(16, 16, 1)]
void CS()
{
 // Consume a data element from the input buffer.
 Particle p = gInput.Consume();

 p.Velocity += p.Acceleration*TimeStep;
 p.Position += p.Velocity*TimeStep;

 // Append normalized vector to output buffer.
 gOutput.Append(p);
}

Once a data element is consumed, it cannot be consumed again by a different
thread; one thread will consume exactly one data element. And again, we
emphasize that the order elements are consumed and appended are unknown;
therefore, it is generally not the case that the ith element in the input buffer gets
written to the ith element in the output buffer.

Append structured buffers do not dynamically grow. They must still be large
enough to store all the elements you will append to it.

13.6 SHARED MEMORY AND SYNCHRONIZATION

Thread groups are given a section of so-called shared memory or thread local
storage. Accessing this memory is fast and can be thought of being as fast as a
hardware cache. In the compute shader code, shared memory is declared like so:

groupshared float4 gCache[256];

Note:

488 DIRECT3D FOUNDATIONS

The array size can be whatever you want, but the maximum size of group shared
memory is 32kb. Because the shared memory is local to the thread group, it is
indexed with the SV_ThreadGroupID; so, for example, you might give each
thread in the group access to one slot in the shared memory.

Using too much shared memory can lead to performance issues [Fung10],
as the following example illustrates. Suppose a multiprocessor supports 32kb
of shared memory, and your compute shader requires 20kb of shared memory.
This means that only one thread group will fi t on the multiprocessor because
there is not enough memory left for another thread group [Fung10], as 20kb 
20kb  40kb > 32kb. This limits the parallelism of the GPU, as a multiprocessor
cannot switch off between thread groups to hide latency (recall from §13.1 that
at least two thread groups per multiprocessor is recommended). Thus, even
though the hardware technically supports 32kb of shared memory, performance
improvements can be achieved by using less.

A common application of shared memory is to store texture values in it. Certain
algorithms, such as blurs, require fetching the same texel multiple times. Sampling
textures is actually one of the slower GPU operations because memory bandwidth
and memory latency have not improved as much as the raw computational
power of GPUs [Möller08]. A thread group can avoid redundant texture fetches
by preloading all the needed texture samples into the shared memory array. The
algorithm then proceeds to look up the texture samples in the shared memory
array, which is very fast. Suppose we implement this strategy with the following
erroneous code:

Texture2D gInput;
RWTexture2D<float4> gOutput;

groupshared float4 gCache[256];

[numthreads(256, 1, 1)]
void CS(int3 groupThreadID : SV_GroupThreadID,
 int3 dispatchThreadID : SV_DispatchThreadID)
{
 // Each thread samples the texture and stores the
 // value in shared memory.
 gCache[groupThreadID.x] = gInput[dispatchThreadID.xy];

 // Do computation work: Access elements in shared memory
 // that other threads stored:

 // BAD!!! Left and right neighbor threads might not have
 // finished sampling tzZhe texture and storing it in shared memory.
 float4 left = gCache[groupThreadID.x - 1];
 float4 right = gCache[groupThreadID.x + 1];

 ...
}

THE COMPUTE SHADER 489

A problem arises with this scenario because we have no guarantee that all the
threads in the thread group finish at the same time. Thus a thread could go to
access a shared memory element that is not yet initialized because the neighboring
threads responsible for initializing those elements have not finished yet. To fix
this problem, before the compute shader can continue, it must wait until all the
threads have done their texture loading into shared memory. This is accomplished
by a synchronization command:

Texture2D gInput;
RWTexture2D<float4> gOutput;

groupshared float4 gCache[256];

[numthreads(256, 1, 1)]
void CS(int3 groupThreadID : SV_GroupThreadID,
 int3 dispatchThreadID : SV_DispatchThreadID)
{
 // Each thread samples the texture and stores the
 // value in shared memory.
 gCache[groupThreadID.x] = gInput[dispatchThreadID.xy];

 // Wait for all threads in group to finish.
 GroupMemoryBarrierWithGroupSync();

 // Safe now to read any element in the shared memory
 //and do computation work.

 float4 left = gCache[groupThreadID.x - 1];
 float4 right = gCache[groupThreadID.x + 1];

 ...
}

13.7 BLUR DEMO

In this section, we explain how to implement a blur algorithm on the compute
shader. We begin by describing the mathematical theory of blurring. Then we
discuss the technique of technique of render-to-texture, which our demo uses
to generate a source image to blur. Finally, we review the code for a compute
shader implementation and discuss how to handle certain details that make the
implementation a little tricky.

13.7.1 Blurring Theory
The blurring algorithm we use is described as follows: For each pixel Pij. in the
source image, compute the weighted average of the m  n matrix of pixels centered

490 DIRECT3D FOUNDATIONS

about the pixel Pij (see Figure 13.5); this weighted average becomes the ijth pixel
in the blurred image. Mathematically,

   , for 1
a b a b

ij rc i r j c rc
r ac b r ac b

Blur P w P w 
   

  

where m  2a  1 and n  2b  1. By forcing m and n to be odd, we ensure that the
m  n matrix always has a natural “center.” We call a the vertical blur radius and
b the horizontal blur radius. If a  b, then we just refer to the blur radius without
having to specify the dimension. The m  n matrix of weights is called the blur
kernel. Observe also that the weights must sum to 1. If the sum of the weights is
less than one, the blurred image will appear darker as color has been removed. If
the sum of the weights is greater than one, the blurred image will appear brighter
as color has been added.

There are various ways to compute the weights so long as they sum to 1. A well-
known blur operator found in many image editing programs is the Gaussian blur,

which obtains its weights from the Gaussian function  2

22
() exp xG x


  . A graph

of this function is shown in Figure 13.6 for different .
Let us suppose we are doing a 1  5 Gaussian blur (i.e., a 1D blur in the

horizontal direction), and let   1. Evaluating G(x) for x  2, 1, 0, 1, 2 we have:

  
2

2(2)
2 exp

2
G e

 
    

 

Figure 13.5. To blur the pixel Pij we compute the weighted average of the m  n matrix of pixels centered
about the pixel. In this example, the matrix is a square 3  3 matrix, with blur radius a = b = 1. Observe that
the center weight w00 aligns with the pixel Pij.

THE COMPUTE SHADER 491

    2 1

2
1

1 exp
2

G e
 

    
 
 

    0 exp 0 1G  

  
12
2

1
1 exp

2
G e

 
   

 

  
2

22
2 exp

2
G e

 
   

 

However, these values are not the weights because they do not sum to 1:

           
2

2

1
22

2 1 0 1 2

1 2 2

2.48373

x

x

G x G G G G G

e e





 

      

  




If we normalize the above equation by dividing by the sum
2

()
2

x
G x

x





, then we
obtain weights based on the Gaussian function that sum to 1:

         

 2

2

2 1 0 1 2
1

x

x

G G G G G

G x




     




Figure 13.6. Plot of G(x) for  = 1, 2, 3. Observe that a larger  flattens the curve out and gives more weight
to the neighboring points.

492 DIRECT3D FOUNDATIONS

Therefore, the Gaussian blur weights are:

  2

2 2 1
222

2
0.0545

() 1 2 2
x

x

G e
w

G x e e



 
 




  

 

 

1

2

1 2 1
222

1
0.2442

() 1 2 2
x

x

G e
w

G x e e



 
 




  

 

 

0 2 1
222

0 1
0.4026

() 1 2 2
x

x

G
w

G x e e


 


  

 

 

1

2

1 2 1
222

1
0.2442

() 1 2 2
x

x

G e
w

G x e e




 



  

 

  2

2 2 1
222

2
0.0545

() 1 2 2
x

x

G e
w

G x e e




 



  

 
The Gaussian blur is known to be separable, which means it can be broken up into
two 1D blurs as follows.

1. Blur the input image I using a 1D horizontal blur:  H HI Blur I .

2. Blur the output from the previous step using a 1D vertical blur:
   V HBlur I Blur I .

Written more succinctly, we have:

     V HBlur I Blur Blur I

Suppose that the blur kernel is a 9  9 matrix, so that we needed a total of 81
samples to do the 2D blur. By separating the blur into two 1D blurs, we only
need 9  9  18 samples. Typically, we will be blurring textures; as mentioned in
this chapter, fetching texture samples is expensive, so reducing texture samples
by separating a blur is a welcome improvement. Even if a blur is not separable
(some blur operators are not), we can often make the simplification and assume
it is for the sake of performance, as long as the final image looks accurate
enough.

THE COMPUTE SHADER 493

13.7.2 Render-to-Texture
So far in our programs, we have been rendering to the back buffer. But what is the
back buffer? If we review our D3DApp code, we see that the back buffer is just a
texture in the swap chain:

Microsoft::WRL::ComPtr<ID3D12Resource> mSwapChainBuffer[SwapChainBuffe
rCount];
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHeapHandle(mRtvHeap->GetCPUDescriptorH

andleForHeapStart());
for (UINT i = 0; i < SwapChainBufferCount; i++)
{
 ThrowIfFailed(mSwapChain->GetBuffer(i,
 IID_PPV_ARGS(&mSwapChainBuffer[i])));
 md3dDevice->CreateRenderTargetView(
 mSwapChainBuffer[i].Get(), nullptr, rtvHeapHandle);
 rtvHeapHandle.Offset(1, mRtvDescriptorSize);
}

We instruct Direct3D to render to the back buffer by binding a render target view
of the back buffer to the OM stage of the rendering pipeline:

// Specify the buffers we are going to render to.
mCommandList->OMSetRenderTargets(1, &CurrentBackBufferView(),
 true, &DepthStencilView());

The contents of the back buffer are eventually displayed on the screen when the
back buffer is presented via the IDXGISwapChain::Present method.

A texture that will be used as a render target must be created with the fl ag
D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET.

If we think about this code, there is nothing that stops us from creating another
texture, creating a render target view to it, and binding it to the OM stage of the
rendering pipeline. Thus we will be drawing to this different “off-screen” texture
(possible with a different camera) instead of the back buffer. This technique is
known as render-to-off-screen-texture or simply render-to-texture. The only
difference is that since this texture is not the back buffer, it does not get displayed
to the screen during presentation.

Consequently, render-to-texture might seem worthless at first as it does not
get presented to the screen. But, after we have rendered-to-texture, we can
bind the back buffer back to the OM stage, and resume drawing geometry to
the back buffer. We can texture the geometry with the texture we generated
during the render-to-texture period. This strategy is used to implement a
variety of special effects. For example, you can render-to-texture the scene
from a bird’s eye view to a texture. Then, when drawing to the back buffer,
you can draw a quad in the lower-right corner of the screen with the bird’s

Note:

494 DIRECT3D FOUNDATIONS

eye view texture to simulate a radar system (see Figure 13.7). Other render-to-
texture techniques include:

1. Shadow mapping

2. Screen Space Ambient Occlusion

3. Dynamic reflections with cube maps

Using render-to-texture, implementing a blurring algorithm on the GPU would
work the following way: render our normal demo scene to an off-screen texture.
This texture will be the input into our blurring algorithm that executes on the
compute shader. After the texture is blurred, we will draw a full screen quad to the
back buffer with the blurred texture applied so that we can see the blurred result
to test our blur implementation. The steps are outlined as follows:

1. Draw scene as usual to an off-screen texture.

2. Blur the off-screen texture using a compute shader program.

3. Restore the back buffer as the render target, and draw a full screen quad with
the blurred texture applied.

Using render-to-texture to implement a blur works fine, and is the required
approach if we want to render the scene to a different sized texture than the back
buffer. However, if we make the assumption that our off-screen textures match
the format and size of our back buffer, instead of redirecting rendering to our off-
screen texture, we can render to the back buffer as usual, and then do a CopyResource
to copy the back-buffer contents to our off-screen texture. Then we can do our
compute work on our off-screen textures, and then draw a full-screen quad to the
back buffer with the blurred texture to produce the final screen output.

// Copy the input (back-buffer in this example) to BlurMap0.
cmdList->CopyResource(mBlurMap0.Get(), input);

Figure 13.7. A camera is placed above the player from a bird’s eye view and renders the scene into an off-
screen texture. When we draw the scene from the player’s eye to the back buffer, we map the texture onto a
quad in the bottom-right corner of the screen to display the radar map.

THE COMPUTE SHADER 495

This is the technique we will use to implement our blur demo, but Exercise 6
asks you to implement a different fi lter using render-to-texture.

The above process requires us to draw with the usual rendering pipeline, switch
to the compute shader and do compute work, and fi nally switch back to the usual
rendering pipeline. In general, try to avoid switching back and forth between
rendering and doing compute work, as there is overhead due to a context switch
[NVIDIA10]. For each frame, try to do all compute work, and then do all
rendering work. Sometimes it is impossible; for example, in the process described
above, we need to render the scene to a texture, blur it with the compute shader,
and then render the blurred results. However, try to minimize the number of
switches.

13.7.3 Blur Implementation Overview
We assume that the blur is separable, so we break the blur down into computing
two 1D blurs—a horizontal one and a vertical one. Implementing this requires
two texture buffers where we can read and write to both; therefore, we need a SRV
and UAV to both textures. Let us call one of the textures A and the other texture B.
The blurring algorithm proceeds as follows:

1. Bind the SRV to A as an input to the compute shader (this is the input image
that will be horizontally blurred).

2. Bind the UAV to B as an output to the compute shader (this is the output
image that will store the blurred result).

3. Dispatch the thread groups to perform the horizontal blur operation. After
this, texture B stores the horizontally blurred result BlurH(I), where I is the
image to blur.

4. Bind the SRV to B as an input to the compute shader (this is the horizontally
blurred image that will next be vertically blurred).

5. Bind the UAV to A as an output to the compute shader (this is the output
image that will store the final blurred result).

6. Dispatch the thread groups to perform the vertical blur operation. After this,
texture A stores the final blurred result Blur (I), where I is the image to blur.

This logic implements the separable blur formula     V HBlur I Blur Blur I .
Observe that both texture A and texture B serve as an input and an output to the
compute shader at some point, but not simultaneously. (It is Direct3D error to
bind a resource as an input and output at the same time.) The combined horizontal
and vertical blur passes constitute one complete blur pass. The resulting image

Note:

496 DIRECT3D FOUNDATIONS

can be blurred further by performing another blur pass on it. We can repeatedly
blur an image until the image is blurred to the desired level.

The texture we render the scene to has the same resolution as the window client
area. Therefore, we need to rebuild the off-screen texture, as well as the second
texture buffer B used in the blur algorithm. We do this on the OnResize method:

void BlurApp::OnResize()
{
 D3DApp::OnResize();

 // The window resized, so update the aspect ratio and
 // recompute the projection matrix.
 XMMATRIX P = XMMatrixPerspectiveFovLH(
 0.25f*MathHelper::Pi, AspectRatio(),
 1.0f, 1000.0f);
 XMStoreFloat4x4(&mProj, P);

 if(mBlurFilter != nullptr)
 {
 mBlurFilter->OnResize(mClientWidth, mClientHeight);
 }
}

void BlurFilter::OnResize(UINT newWidth, UINT newHeight)
{
 if((mWidth != newWidth) || (mHeight != newHeight))
 {
 mWidth = newWidth;
 mHeight = newHeight;

 // Rebuild the off-screen texture resource with new dimensions.
 BuildResources();

 // New resources, so we need new descriptors to that resource.
 BuildDescriptors();
 }
}

The mBlur variable is an instance of a BlurFilter helper class we make. This
class encapsulates the texture resources to textures A and B, encapsulates SRVs
and UAVs to the textures, and provides a method that kicks off the actual blur
operation on the compute shader, the implementation of which we will see in a
moment.

The BlurFilter class encapsulates texture resources. To bind these resources to
the pipeline to use for a draw/dispatch command, we are going to need to create
descriptors to these resources. That means we will have to allocate extra room
in the D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV descriptor heap to store these
descriptors. The BlurFilter::BuildDescriptors method takes descriptor handles
to the starting location in the descriptor heap to store the descriptors used by

THE COMPUTE SHADER 497

BlurFilter. The method caches the handles for all the descriptors it needs and
then creates the corresponding descriptors. The reason it caches the handles is
so that it can recreate the descriptors when the resources change, which happens
when the screen is resized:

void BlurFilter::BuildDescriptors(
 CD3DX12_CPU_DESCRIPTOR_HANDLE hCpuDescriptor,
 CD3DX12_GPU_DESCRIPTOR_HANDLE hGpuDescriptor,
 UINT descriptorSize)
{
 // Save references to the descriptors.
 mBlur0CpuSrv = hCpuDescriptor;
 mBlur0CpuUav = hCpuDescriptor.Offset(1, descriptorSize);
 mBlur1CpuSrv = hCpuDescriptor.Offset(1, descriptorSize);
 mBlur1CpuUav = hCpuDescriptor.Offset(1, descriptorSize);

 mBlur0GpuSrv = hGpuDescriptor;
 mBlur0GpuUav = hGpuDescriptor.Offset(1, descriptorSize);
 mBlur1GpuSrv = hGpuDescriptor.Offset(1, descriptorSize);
 mBlur1GpuUav = hGpuDescriptor.Offset(1, descriptorSize);

 BuildDescriptors();
}

void BlurFilter::BuildDescriptors()
{
 D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
 srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_

MAPPING;
 srvDesc.Format = mFormat;
 srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
 srvDesc.Texture2D.MostDetailedMip = 0;
 srvDesc.Texture2D.MipLevels = 1;

 D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {};

 uavDesc.Format = mFormat;
 uavDesc.ViewDimension = D3D12_UAV_DIMENSION_TEXTURE2D;
 uavDesc.Texture2D.MipSlice = 0;

 md3dDevice->CreateShaderResourceView(mBlurMap0.Get(), &srvDesc,
mBlur0CpuSrv);

 md3dDevice->CreateUnorderedAccessView(mBlurMap0.Get(),
 nullptr, &uavDesc, mBlur0CpuUav);

 md3dDevice->CreateShaderResourceView(mBlurMap1.Get(), &srvDesc,
mBlur1CpuSrv);

 md3dDevice->CreateUnorderedAccessView(mBlurMap1.Get(),
 nullptr, &uavDesc, mBlur1CpuUav);
}

// In BlurApp.cpp...Offset to location in heap to
// store descriptors for BlurFilter

498 DIRECT3D FOUNDATIONS

mBlurFilter->BuildDescriptors(
 CD3DX12_CPU_DESCRIPTOR_HANDLE(
 mCbvSrvUavDescriptorHeap->GetCPUDescriptorHandleForHeapStart(),
 3, mCbvSrvUavDescriptorSize),
 CD3DX12_GPU_DESCRIPTOR_HANDLE(
 mCbvSrvUavDescriptorHeap->GetGPUDescriptorHandleForHeapStart(),
 3, mCbvSrvUavDescriptorSize),
 mCbvSrvUavDescriptorSize);

Blurring is an expensive operation and the time it takes is a function of the
image size being blurred. Often, when rendering the scene to an off-screen
texture, the off-screen texture will be made a quarter of the size of the back
buffer. For example, if the back buffer is 800  600, the off-screen texture will
be 400  30. This speeds up the drawing to the off-screen texture (less pixels to
fi ll); moreover, it speeds up the blur (less pixels to blur), and there is additional
blurring performed by the magnifi cation texture fi lter when the texture is
stretched from a quarter of the screen resolution to the full screen resolution.

Suppose our image has width w and height h. As we will see in the next section
when we look at the compute shader, for the horizontal 1D blur, our thread group
is a horizontal line segment of 256 threads, and each thread is responsible for
blurring one pixel in the image. Therefore, we need to dispatch

256

w
ceil

 
 
 

 thread
groups in the x-direction and h thread groups in the y-direction in order for each
pixel in the image to be blurred. If 256 does not divide evenly into w, the last
horizontal thread group will have extraneous threads (see Figure (13.8)). There
is not really anything we can do about this since the thread group size is fixed. We
take care of out-of-bounds with clamping checks in the shader code.

Note:

Figure 13.8. Consider a 28  14 texture, where our horizontal thread groups are 8  1 and our vertical thread
groups are 1  8 (X  Y format). For the horizontal pass, in order to cover all the pixels we need to dispatch

28
4

8 8

w
ceil ceil

       
   

 thread groups in the x-direction and 14 thread groups in the y-direction. Since 28 is not a multiple of

8, we end of with extraneous threads that do not do any work in the right-most thread groups. For the vertical pass,

in order to cover all the pixels we need to dispatch 14
2

8 8

h
ceil ceil

       
   

 thread groups in the y-direction and 28 thread

groups in the x-direction. Since 14 is not a multiple of 8, we end up with extraneous threads that do not do any work
in the bottom-most thread groups. The same concepts apply to a larger texture with thread groups of size 256.

THE COMPUTE SHADER 499

The situation is similar for the vertical 1D blur. Again, our thread group is a
vertical line segment of 256 threads, and each thread is responsible for blurring
one pixel in the image. Therefore, we need to dispatch

256

h
ceil

 
 
 

 thread groups in

the y-direction and w thread groups in the x-direction in order for each pixel in
the image to be blurred.

The code below fi gures out how many thread groups to dispatch in each
direction, and kicks off the actual blur operation on the compute shader:

void BlurFilter::Execute(ID3D12GraphicsCommandList* cmdList,
 ID3D12RootSignature* rootSig,
 ID3D12PipelineState* horzBlurPSO,
 ID3D12PipelineState* vertBlurPSO,
 ID3D12Resource* input,
 int blurCount)
{
 auto weights = CalcGaussWeights(2.5f);
 int blurRadius = (int)weights.size() / 2;

 cmdList->SetComputeRootSignature(rootSig);

 cmdList->SetComputeRoot32BitConstants(0, 1, &blurRadius, 0);
 cmdList->SetComputeRoot32BitConstants(0, (UINT)weights.size(), weights.
 data(), 1);

 cmdList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(input,
 D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_COPY_SOURCE));

 cmdList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(mBlurMap0.
 Get(),
 D3D12_RESOURCE_STATE_COMMON, D3D12_RESOURCE_STATE_COPY_DEST));

 // Copy the input (back-buffer in this example) to BlurMap0.
 cmdList->CopyResource(mBlurMap0.Get(), input);

 cmdList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(mBlurMap0.
 Get(),
 D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_GENERIC_READ));

 cmdList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(mBlurMap1.
 Get(),
 D3D12_RESOURCE_STATE_COMMON, D3D12_RESOURCE_STATE_UNORDERED_ACCESS));

 for(int i = 0; i < blurCount; ++i)
 {
 //
 // Horizontal Blur pass.
 //

 cmdList->SetPipelineState(horzBlurPSO);

 cmdList->SetComputeRootDescriptorTable(1, mBlur0GpuSrv);
 cmdList->SetComputeRootDescriptorTable(2, mBlur1GpuUav);

500 DIRECT3D FOUNDATIONS

 // How many groups do we need to dispatch to cover a row of pixels, where
 // each group covers 256 pixels (the 256 is defined in the ComputeShader).
 UINT numGroupsX = (UINT)ceilf(mWidth / 256.0f);
 cmdList->Dispatch(numGroupsX, mHeight, 1);

 cmdList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(
 mBlurMap0.Get(),
 D3D12_RESOURCE_STATE_GENERIC_READ,
 D3D12_RESOURCE_STATE_UNORDERED_ACCESS));

 cmdList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(
 mBlurMap1.Get(),
 D3D12_RESOURCE_STATE_UNORDERED_ACCESS,
 D3D12_RESOURCE_STATE_GENERIC_READ));

 //
 // Vertical Blur pass.
 //

 cmdList->SetPipelineState(vertBlurPSO);

 cmdList->SetComputeRootDescriptorTable(1, mBlur1GpuSrv);
 cmdList->SetComputeRootDescriptorTable(2, mBlur0GpuUav);

 // How many groups do we need to dispatch to cover a column of pixels,
 // where each group covers 256 pixels (the 256 is defined in the
 // ComputeShader).
 UINT numGroupsY = (UINT)ceilf(mHeight / 256.0f);
 cmdList->Dispatch(mWidth, numGroupsY, 1);

 cmdList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(
 mBlurMap0.Get(),
 D3D12_RESOURCE_STATE_UNORDERED_ACCESS,
 D3D12_RESOURCE_STATE_GENERIC_READ));

 cmdList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(
 mBlurMap1.Get(),
 D3D12_RESOURCE_STATE_GENERIC_READ,
 D3D12_RESOURCE_STATE_UNORDERED_ACCESS));
 }
}

Figure 13.9. Left: A screenshot of the “Blur” demo where the image has been blurred two times. Right: A
screen shot of the “Blur” demo where the image has been blurred eight times.

THE COMPUTE SHADER 501

13.7.4 Compute Shader Program
In this section, we look the compute shader program that actually does the
blurring. We will only discuss the horizontal blur case. The vertical blur case is
analogous, but the situation transposed.

As mentioned in the previous section, our thread group is a horizontal line
segment of 256 threads, and each thread is responsible for blurring one pixel in
the image. An ineffi cient fi rst approach is to just implement the blur algorithm
directly. That is, each thread simply performs the weighted average of the row
matrix (row matrix because we are doing the 1D horizontal pass) of pixels
centered about the pixel the thread is processing. The problem with this approach
is that it requires fetching the same texel multiple times (see Figure 13.10).

We can optimize by following the strategy described in §13.6 and take
advantage of shared memory. Each thread can read in a texel value and store it in
shared memory. After all the threads are done reading their texel values into shared
memory, the threads can proceed to perform the blur, but where it reads the texels
from the shared memory, which is fast to access. The only tricky thing about this
is that a thread group of n  256 threads requires n  2R texels to perform the blur,
where R is the blur radius (Figure 13.11).

The solution is simple; we allocate n  2R elements of shared memory, and
have 2R threads lookup two texel values. The only thing that is tricky about this is
that it requires a little more book keeping when indexing into the shared memory;
we no longer have the ith group thread ID corresponding to the ith element in the
shared memory. Figure 13.12 shows the mapping from threads to shared memory
for R  4.

Finally, the last situation to discuss is that the left-most thread group and the
right-most thread group can index the input image out-of-bounds, as shown in
Figure 13.13.

Figure 13.10. Consider just two neighboring
pixels in the input image, and suppose that the
blur kernel is 1  7. Observe that six out of the
eight unique pixels are sampled twice—once for
each pixel.

Figure 13.11. Pixels near the boundaries of the thread group
will read pixels outside the thread group due to the blur radius.

502 DIRECT3D FOUNDATIONS

Reading from an out-of-bounds index is not illegal—it is defi ned to return 0
(and writing to an out-of-bounds index results in a no-op). However, we do not
want to read 0 when we go out-of-bounds, as it means 0 colors (i.e., black) will
make their way into the blur at the boundaries. Instead, we want to implement
something analogous to the clamp texture address mode, where if we read an
out-of-bounds value, it returns the same value as the boundary texel. This can be
implemented by clamping the indices:

// Clamp out of bound samples that occur at left image borders.
int x = max(dispatchThreadID.x - gBlurRadius, 0);
gCache[groupThreadID.x] = gInput[int2(x, dispatchThreadID.y)];

// Clamp out of bound samples that occur at right image borders.
int x = min(dispatchThreadID.x + gBlurRadius, gInput.Length.x-1);
gCache[groupThreadID.x+2*gBlurRadius] =
gInput[int2(x, dispatchThreadID.y)];

// Clamp out of bound samples that occur at image borders.
gCache[groupThreadID.x+gBlurRadius] =
gInput[min(dispatchThreadID.xy, gInput.Length.xy-1)];

The full shader code is shown below:

//==
// Performs a separable Guassian blur with a blur radius up to 5 pixels.
//==

cbuffer cbSettings : register(b0)
{
 // We cannot have an array entry in a constant buffer that gets

mapped onto
 // root constants, so list each element.

 int gBlurRadius;

 // Support up to 11 blur weights.
 float w0;

Figure 13.12. In this example, R = 4. The four
leftmost threads each read two texel values and
store them into shared memory. The four rightmost
threads each read two texel values and store them
into shared memory. Every other thread just reads
one texel value and stores it in shared memory. This
gives us all the texel values we need to blur N pixels
with blur radius R.

Figure 13.13. Situations where we can read outside the
bounds of the image.

THE COMPUTE SHADER 503

 float w1;
 float w2;
 float w3;
 float w4;
 float w5;
 float w6;
 float w7;
 float w8;
 float w9;
 float w10;
};

static const int gMaxBlurRadius = 5;

Texture2D gInput : register(t0);
RWTexture2D<float4> gOutput : register(u0);

#define N 256
#define CacheSize (N + 2*gMaxBlurRadius)
groupshared float4 gCache[CacheSize];

[numthreads(N, 1, 1)]
void HorzBlurCS(int3 groupThreadID : SV_GroupThreadID,
 int3 dispatchThreadID : SV_DispatchThreadID)
{
 // Put in an array for each indexing.
 float weights[11] = { w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10 };

 //
 // Fill local thread storage to reduce bandwidth. To blur
 // N pixels, we will need to load N + 2*BlurRadius pixels
 // due to the blur radius.
 //

 // This thread group runs N threads. To get the extra 2*BlurRadius
 // pixels, have 2*BlurRadius threads sample an extra pixel.
 if(groupThreadID.x < gBlurRadius)
 {
 // Clamp out of bound samples that occur at image borders.
 int x = max(dispatchThreadID.x - gBlurRadius, 0);
 gCache[groupThreadID.x] = gInput[int2(x, dispatchThreadID.y)];
 }
 if(groupThreadID.x >= N-gBlurRadius)
 {
 // Clamp out of bound samples that occur at image borders.
 int x = min(dispatchThreadID.x + gBlurRadius, gInput.Length.x-1);
 gCache[groupThreadID.x+2*gBlurRadius] = gInput[int2(x,

dispatchThreadID.y)];
 }

 // Clamp out of bound samples that occur at image borders.
 gCache[groupThreadID.x+gBlurRadius] = gInput[min(dispatchThreadID.xy,

gInput.Length.xy-1)];

504 DIRECT3D FOUNDATIONS

 // Wait for all threads to finish.
 GroupMemoryBarrierWithGroupSync();

 //
 // Now blur each pixel.
 //

 float4 blurColor = float4(0, 0, 0, 0);

 for(int i = -gBlurRadius; i <= gBlurRadius; ++i)
 {
 int k = groupThreadID.x + gBlurRadius + i;

 blurColor += weights[i+gBlurRadius]*gCache[k];
 }

 gOutput[dispatchThreadID.xy] = blurColor;
}

[numthreads(1, N, 1)]
void VertBlurCS(int3 groupThreadID : SV_GroupThreadID,
 int3 dispatchThreadID : SV_DispatchThreadID)
{
 // Put in an array for each indexing.
 float weights[11] = { w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10 };

 //
 // Fill local thread storage to reduce bandwidth. To blur
 // N pixels, we will need to load N + 2*BlurRadius pixels
 // due to the blur radius.
 //

 // This thread group runs N threads. To get the extra 2*BlurRadius
 // pixels, have 2*BlurRadius threads sample an extra pixel.
 if(groupThreadID.y < gBlurRadius)
 {
 // Clamp out of bound samples that occur at image borders.
 int y = max(dispatchThreadID.y - gBlurRadius, 0);
 gCache[groupThreadID.y] = gInput[int2(dispatchThreadID.x, y)];
 }
 if(groupThreadID.y >= N-gBlurRadius)
 {
 // Clamp out of bound samples that occur at image borders.
 int y = min(dispatchThreadID.y + gBlurRadius, gInput.Length.y-1);
 gCache[groupThreadID.y+2*gBlurRadius] =

gInput[int2(dispatchThreadID.x, y)];
 }

 // Clamp out of bound samples that occur at image borders.
 gCache[groupThreadID.y+gBlurRadius] = gInput[min(dispatchThreadID.xy,
 gInput.Length.xy-1)];

 // Wait for all threads to finish.
 GroupMemoryBarrierWithGroupSync();

THE COMPUTE SHADER 505

 //
 // Now blur each pixel.
 //

 float4 blurColor = float4(0, 0, 0, 0);

 for(int i = -gBlurRadius; i <= gBlurRadius; ++i)
 {
 int k = groupThreadID.y + gBlurRadius + i;

 blurColor += weights[i+gBlurRadius]*gCache[k];
 }

 gOutput[dispatchThreadID.xy] = blurColor;
}

For the last line

 gOutput[dispatchThreadID.xy] = blurColor;

it is possible in the right-most thread group to have extraneous threads that do
not correspond to an element in the output texture (Figure 13.13). That is, the
dispatchThreadID.xy will be an out-of-bounds index for the output texture.
However, we do not need to worry about handling this case, as an out-of-bound
write results in a no-op.

13.8 FURTHER RESOURCES

Compute shader programming is a subject in its own right, and there are several
books on using GPUs for compute programs:

1. Programming Massively Parallel Processors: A Hands-on Approach by David B.
Kirk and Wen-mei W. Hwu.

2. OpenCL Programming Guide by Aaftab Munshi, Benedict R. Gaster, Timothy
G. Mattson, James Fung, and Dan Ginsburg.

Technologies like CUDA and OpenCL are just different APIs for accessing the
GPU for writing compute programs. Best practices for CUDA and OpenCL
programs are also best practices for Direct Compute programs, as the programs
are all executed on the same hardware. In this chapter, we have shown the majority
of Direct Compute syntax, and so you should have no trouble porting a CUDA or
OpenCL program to Direct Compute.

Chuck Walbourn has posted a blog page consisting of links to many Direct
Compute presentations:

http://blogs.msdn.com/b/chuckw/archive/2010/07/14/directcompute.aspx

506 DIRECT3D FOUNDATIONS

In addition, Microsoft’s Channel 9 has a series of lecture videos on Direct
Compute programming:

http://channel9.msdn.com/tags/DirectCompute-Lecture-Series/
Finally, NVIDIA has a whole section on CUDA training.

http://developer.nvidia.com/cuda-training
In particular, there are full video lectures on CUDA programming from the
University of Illinois, which we highly recommend. Again, we emphasize that
CUDA is just another API for accessing the compute functionality of the GPU.
Once you understand the syntax, the hard part about GPU computing is learning
how to write efficient programs for it. By studying these lectures on CUDA, you
will get a better idea of how GPU hardware works so that you can write optimal
code.

13.9 SUMMARY

1. The ID3D12GraphicsCommandList::Dispatch API call dispatches a grid of
thread groups. Each thread group is a 3D grid of threads; the number of
threads per thread group is specified by the [numthreads(x,y,z)] attribute in
the compute shader. For performance reasons, the total number of threads
should be a multiple of the warp size (thirty-two for NVIDIA hardware) or a
multiple of the wavefront size (sixty-four ATI hardware).

2. To ensure parallelism, at least two thread groups should be dispatched per
multiprocessor. So if your hardware has sixteen multiprocessors, then at least
thirty-two thread groups should be dispatched so a multiprocessor always
has work to do. Future hardware will likely have more multiprocessors, so
the number of thread groups should be even higher to ensure your program
scales well to future hardware.

3. Once thread groups are assigned to a multiprocessor, the threads in the thread
groups are divided into warps of thirty-two threads on NVIDIA hardware.
The multiprocessor than works on a warp of threads at a time in an SIMD
fashion (i.e., the same instruction is executed for each thread in the warp).
If a warp becomes stalled, say to fetch texture memory, the multiprocessor
can quickly switch and execute instructions for another warp to hide this
latency. This keeps the multiprocessor always busy. You can see why there is
the recommendation of the thread group size being a multiple of the warp
size; if it were not then when the thread group is divided into warps, there will
be warps with threads that are not doing anything.

THE COMPUTE SHADER 507

4. Texture resources can be accessed by the compute shader for input by
creating a SRV to the texture and binding it to the compute shader. A read-
write texture (RWTexture) is a texture the compute shader can read and write
output to. To set a texture for reading and writing to the compute shader,
a UAV (unordered access view) to the texture is created and bound to the
compute shader. Texture elements can be indexed with operator [] notation,
or sampled via texture coordinates and sampler state with the SampleLevel
method.

5. A structured buffer is a buffer of elements that are all the same type, like an
array. The type can be a user-defi ned type defi ned by a struct for example.
Read-only structured buffers are defi ned in the HLSL like this:

StructuredBuffer<DataType> gInputA;

Read-write structured buffers are defi ned in the HLSL like this:

RWStructuredBuffer<DataType> gOutput;

 Read-only buffer resources can be accessed by the compute shader for input
by create a SRV to a structured buffer and binding it to the compute shader.
Read-write buffer resources can be accessed by the compute shader for
reading and writing by creating a UAV to a structured buffer and binding it to
the compute shader.

6. Various thread IDs are passed into the compute shader via the system values.
These IDs are often used to index into resources and shared memory.

7. Consume and append structured buffers are defi ned in the HLSL like this:

ConsumeStructuredBuffer<DataType> gInput;
AppendStructuredBuffer<DataType> gOutput;

 Consume and append structured buffers are useful if you do not care about
the order in which data elements are processed and written to the output
buffer, as it allows you to avoid indexing syntax. Note that append buffers do
not automatically grow, and they must have be large enough to store all the
data elements you will append to it.

8. Thread groups are given a section of so-called shared memory or thread local
storage. Accessing this memory is fast and can be thought of being as fast as a
hardware cache. This shared memory cache can be useful for optimizations or
needed for algorithm implementations. In the compute shader code, shared
memory is declared like so:

groupshared float4 gCache[N];

508 DIRECT3D FOUNDATIONS

 The array size N can be whatever you want, but the maximum size of group
shared memory is 32kb. Assuming a multiprocessor supports the maximum
of 32kb for shared memory, for performance, a thread group should not use
more than 16kb of shared memory; otherwise it is impossible to fit two thread
groups on a single multiprocessor.

9. Avoid switching between compute processing and rendering when possible,
as there is overhead required to make the switch. In general, for each frame try
to do all of your compute work first, then do all of your rendering work.

13.10 EXERCISES

1. Write a compute shader that inputs a structured buffer of sixty-four 3D
vectors with random magnitudes contained in [1, 10]. The compute shader
computes the length of the vectors and outputs the result into a floating-point
buffer. Copy the results to CPU memory and save the results to file. Verify that
all the lengths are contained in [1, 10].

2. Redo the previous exercise using typed buffers; that is, Buffer<float3> for the
input buffer and Buffer<float> for the output buffer.

3. Assume that in the previous exercises that we do not care the order in which
the vectors are normalized. Redo Exercise 1 using Append and Consume
buffers.

4. Research the bilateral blur technique and implement it on the compute shader.
Redo the “Blur” demo using the bilateral blur.

5. So far in our demos we have done a 2D wave equation on the CPU with the
Waves class in Waves.h/.cpp. Port this to a GPU implementation. Use textures
of fl oats to store the previous, current, and next height solutions. Because
UAVs are read/write, we can just use UAVs throughout and not bother with
SRVs:

RWTexture2D<float> gPrevSolInput : register(u0);
RWTexture2D<float> gCurrSolInput : register(u1);
RWTexture2D<float> gOutput : register(u2);

 Use the compute shader to perform the wave update computations. A separate
compute shader can be used to disturb the water to generate waves. After you
have update the grid heights, you can render a triangle grid with the same
vertex resolution as the wave textures (so there is a texel corresponding to
each grid vertex), and bind the current wave solution texture to a new “waves”
vertex shader. Then in the vertex shader, you can sample the solution texture

THE COMPUTE SHADER 509

to offset the heights (this is called displacement mapping) and estimate the
normal.

VertexOut VS(VertexIn vin)
{
 VertexOut vout = (VertexOut)0.0f;

#ifdef DISPLACEMENT_MAP
 // Sample the displacement map using non-transformed [0,1]^2 tex-coords.
 vin.PosL.y += gDisplacementMap.SampleLevel(gsamLinearWrap, vin.TexC, 1.0f).r;
 // Estimate normal using finite difference.
 float du = gDisplacementMapTexelSize.x;
 float dv = gDisplacementMapTexelSize.y;
 float l = gDisplacementMap.SampleLevel(gsamPointClamp,
 vin.TexC-float2(du, 0.0f), 0.0f).r;
 float r = gDisplacementMap.SampleLevel(gsamPointClamp,
 vin.TexC+float2(du, 0.0f), 0.0f).r;
 float t = gDisplacementMap.SampleLevel(gsamPointClamp,
 vin.TexC-float2(0.0f, dv), 0.0f).r;
 float b = gDisplacementMap.SampleLevel(gsamPointClamp,
 vin.TexC+float2(0.0f, dv), 0.0f).r;

 vin.NormalL = normalize(float3(-r+l, 2.0f*gGridSpatialStep, b-t));

#endif

 // Transform to world space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);
 vout.PosW = posW.xyz;

 // Assumes nonuniform scaling; otherwise, need to use inverse-transpose of
 // world matrix.
 vout.NormalW = mul(vin.NormalL, (float3x3)gWorld);

 // Transform to homogeneous clip space.
 vout.PosH = mul(posW, gViewProj);

 // Output vertex attributes for interpolation across triangle.
 float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform);
 vout.TexC = mul(texC, gMatTransform).xy;

 return vout;
}

 Compare your performance results (time per frame) to a CPU implementation
with 512  512 grid points in release mode.

6. The Sobel Operator measures edges in an image. For each pixel, it estimates the
magnitude of the gradient. A pixel with a large gradient magnitude means the
color difference between the pixel and its neighbors has high variation, and so
that pixel must be on an edge. A pixel with a small gradient magnitude means

510 DIRECT3D FOUNDATIONS

the color difference between the pixel and its neighbors has low variation, and
so that pixel is not on an edge. Note that the Sobel Operator does not return a
binary result (on edge or not on edge); it returns a grayscale value in the range
[0, 1] that denotes an edge “steepness” amount, where 0 denotes no edge (the
color is not changing locally about a pixel) and 1 denotes a very steep edge or
discontinuity (the color is changing a lot locally about a pixel). The inverse
Sobel image (1  c) is often more useful, as white denotes no edge and black
denotes edges (see Figure 13.14).

Figure 13.14. Left: In image after applying Sobel Operator, the white pixels denote edges. In the
inverse image of the Sobel Operator, the black pixels denote edge.

 If you color multiply the original image by the inverse of the image generated
by the Sobel Operator, then you get a stylized cartoon/comic book like effect
by making edges look like black pen strokes (see Figure 13.15). You can take
this stylized cartoon/comic book effect even further by first blurring the
original image to wash out details, then applying the Sobel Operator on the
blurred image to build the edge detection image, and finally multiplying the
blurred image by the inverse of the edge detection image.

Figure 13.15. Multiplying the original image by the inverse of the edge detection image to produce a
stylized look where edge look like black pen strokes.

 Use render-to-texture and a compute shader to implement the Sobel Operator.
After you have generated the edge detection image, multiply the original

THE COMPUTE SHADER 511

image with the inverse of the image generated by the Sobel Operator to get the
results shown in Figure 13.15. The necessary shader code is included below:

//==
// Performs edge detection using Sobel operator.
//==

Texture2D gInput : register(t0);
RWTexture2D<float4> gOutput : register(u0);

// Approximates luminance ("brightness") from an RGB value. These weights are
// derived from experiment based on eye sensitivity to different wavelengths
// of light.
float CalcLuminance(float3 color)
{
 return dot(color, float3(0.299f, 0.587f, 0.114f));
}

[numthreads(16, 16, 1)]
void SobelCS(int3 dispatchThreadID : SV_DispatchThreadID)
{
 // Sample the pixels in the neighborhood of this pixel.
 float4 c[3][3];
 for(int i = 0; i < 3; ++i)
 {
 for(int j = 0; j < 3; ++j)
 {
 int2 xy = dispatchThreadID.xy + int2(-1 + j, -1 + i);
 c[i][j] = gInput[xy];
 }
 }

 // For each color channel, estimate partial x derivative using Sobel scheme.
 float4 Gx = -1.0f*c[0][0] - 2.0f*c[1][0] - 1.0f*c[2][0] +
 1.0f*c[0][2] + 2.0f*c[1][2] + 1.0f*c[2][2];

 // For each color channel, estimate partial y derivative using Sobel scheme.
 float4 Gy = -1.0f*c[2][0] - 2.0f*c[2][1] - 1.0f*c[2][1] +
 1.0f*c[0][0] + 2.0f*c[0][1] + 1.0f*c[0][2];

 // Gradient is (Gx, Gy). For each color channel, compute magnitude to
 // get maximum rate of change.
 float4 mag = sqrt(Gx*Gx + Gy*Gy);

 // Make edges black, and nonedges white.
 mag = 1.0f - saturate(CalcLuminance(mag.rgb));

 gOutput[dispatchThreadID.xy] = mag;
}

//**
// Composite.hlsl by Frank Luna (C) 2015 All Rights Reserved.
//

512 DIRECT3D FOUNDATIONS

// Combines two images.
//**

Texture2D gBaseMap : register(t0);
Texture2D gEdgeMap : register(t1);

SamplerState gsamPointWrap : register(s0);
SamplerState gsamPointClamp : register(s1);
SamplerState gsamLinearWrap : register(s2);
SamplerState gsamLinearClamp : register(s3);
SamplerState gsamAnisotropicWrap : register(s4);
SamplerState gsamAnisotropicClamp : register(s5);

static const float2 gTexCoords[6] =
{
 float2(0.0f, 1.0f),
 float2(0.0f, 0.0f),
 float2(1.0f, 0.0f),
 float2(0.0f, 1.0f),
 float2(1.0f, 0.0f),
 float2(1.0f, 1.0f)
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float2 TexC : TEXCOORD;
};

VertexOut VS(uint vid : SV_VertexID)
{
 VertexOut vout;

 vout.TexC = gTexCoords[vid];

 // Map [0,1]^2 to NDC space.
 vout.PosH = float4(2.0f*vout.TexC.x - 1.0f, 1.0f - 2.0f*vout.TexC.y, 0.0f,
 1.0f);

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 float4 c = gBaseMap.SampleLevel(gsamPointClamp, pin.TexC, 0.0f);
 float4 e = gEdgeMap.SampleLevel(gsamPointClamp, pin.TexC, 0.0f);

 // Multiple edge map with original image.
 return c*e;
}

Chapter

513

14Chapter

THE
TESSELLATION
STAGES

The tessellation stages refer to three stages in the rendering pipeline involved in
tessellating geometry. Simply put, tessellation refers to subdividing geometry into
smaller triangles and then offsetting the newly generated vertices in some way.
The motivation to increase the triangle count is to add detail to the mesh. But
why not just create a detailed high-poly mesh to start with and be done? Below are
three reasons for tessellation.

1. Dynamic LOD on the GPU. We can dynamically adjust the detail of a mesh
based on its distance from the camera and other factors. For example, if a
mesh is very far away, it would be wasteful to render a high-poly version of it,
as we would not be able to see all that detail anyway. As the object gets closer
to the camera, we can continuously increase tessellation to increase the detail
of the object.

2. Physics and animation efficiency. We can perform physics and animation
calculations on the low-poly mesh, and then tessellate to the higher polygon
version. This saves computation power by performing the physics and
animation calculations at a lower frequency.

3. Memory savings. We can store lower polygon meshes in memory (on disk,
RAM, and VRAM), and then have the GPU tessellate to the higher polygon
version on the fly.

514 DIRECT3D FOUNDATIONS

Figure 14.1 shows that the tessellation stages sit between the vertex shader and
geometry shader. These stages are optional, as we have not been using them in this
book so far.

Objectives:
1. To discover the patch primitive types used for tessellation.

2. To obtain an understanding of what each tessellation stage does, and what the
expected inputs and outputs are for each stage.

3. To be able to tessellate geometry by writing hull and domain shader programs.

4. To become familiar with different strategies for determining when to tessellate
and to become familiar with performance considerations regarding hardware
tessellation.

5. To learn the mathematics of Bézier curves and surfaces and how to implement
them in the tessellation stages.

14.1 TESSELLATION PRIMITIVE TYPES

When we render for tessellation, we do not submit triangles to the IA stage.
Instead, we submit patches with a number of control points. Direct3D supports

Figure 14.1. A subset of the rendering pipeline showing the tessellation stages.

THE TESSELLATION STAGES 515

patches with 1-32 control points, and these are described by the following
primitive types:

 D3D_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST = 33,
 D3D_PRIMITIVE_TOPOLOGY_2_CONTROL_POINT_PATCHLIST = 34,
 D3D_PRIMITIVE_TOPOLOGY_3_CONTROL_POINT_PATCHLIST = 35,
 D3D_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST = 36,
 .
 .
 .
 D3D_PRIMITIVE_TOPOLOGY_31_CONTROL_POINT_PATCHLIST = 63,
 D3D_PRIMITIVE_TOPOLOGY_32_CONTROL_POINT_PATCHLIST = 64,

A triangle can be thought of a triangle patch with three control points (D3D_
PRIMITIVE_3_CONTROL_POINT_PATCH), so you can still submit your usual triangle
meshes to be tessellated. A simple quad patch can be submitted with four control
points (D3D_PRIMITIVE_4_CONTROL_POINT_PATCH). These patches are eventually
tessellated into triangles by the tessellation stages.

When passing control point primitive types to ID3D12GraphicsCommandList::I
ASetPrimitiveTopology, you need to set the D3D12_GRAPHICS_PIPELINE_STATE_
DESC::PrimitiveTopologyType fi eld to D3D12_PRIMITIVE_TOPOLOGY_TYPE_PATCH:
opaquePsoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_
PATCH;

So what about the patches with a higher number of control points? The idea of
control points comes from the construction of certain kinds of mathematical
curves and surfaces. If you have ever worked with Bézier curves in a drawing
program like Adobe Illustrator, then you know that you mold the shape of the
curve via control points. The mathematics of Bézier curves can be generalized to
Bézier surfaces. For example, you can create a Bézier quad patch that uses nine
control points to shape it or sixteen control points; increasing the number of
control points gives you more degrees of freedom in shaping the patch. So the
motivation for all these control type primitives is to provide support for these
kinds of curved surfaces. We give an explanation and demo of Bézier quad patches
in this chapter.

14.1.1 Tessellation and the Vertex Shader
Because we submit patch control points to the rendering pipeline, the control
points are what get pumped through the vertex shader. Thus, when tessellation is
enabled, the vertex shader is really a “vertex shader for control points,” and we can
do any control point work we need before tessellation starts. Typically, animation
or physics calculations are done in the vertex shader at the lower frequency before
the geometry is tessellated.

Note:

516 DIRECT3D FOUNDATIONS

14.2 THE HULL SHADER

In the following subsections, we explore the hull shader, which actually consists of
two shaders:

1. Constant Hull Shader

2. Control Point Hull Shader

14.2.1 Constant Hull Shader
This constant hull shader is evaluated per patch, and is tasked with outputting
the so-called tessellation factors of the mesh. The tessellation factors instruct the
tessellation stage how much to tessellate the patch. Here is an example of a quad
patch with four control points, where we tessellate it uniformly three times.

struct PatchTess
{
 float EdgeTess[4] : SV_TessFactor;
 float InsideTess[2] : SV_InsideTessFactor;

 // Additional info you want associated per patch.
};

PatchTess ConstantHS(InputPatch<VertexOut, 4> patch,
 uint patchID : SV_PrimitiveID)
{
 PatchTess pt;

 // Uniformly tessellate the patch 3 times.

 pt.EdgeTess[0] = 3; // Left edge
 pt.EdgeTess[1] = 3; // Top edge
 pt.EdgeTess[2] = 3; // Right edge
 pt.EdgeTess[3] = 3; // Bottom edge

 pt.InsideTess[0] = 3; // u-axis (columns)
 pt.InsideTess[1] = 3; // v-axis (rows)

 return pt;
}

The constant hull shader inputs all the control points of the patch, which is
defined by the type InputPatch<VertexOut, 4>. Recall that the control points are
first pumped through the vertex shader, so their type is determined by the output
type of the vertex shader VertexOut. In this example, our patch has four control
points, so we specify 4 for the second template parameter of InputPatch. The
system also provides a patch ID value via the SV_PrimitiveID semantic that can be
used if needed; the ID uniquely identifies the patches in a draw call. The constant

THE TESSELLATION STAGES 517

hull shader must output the tessellation factors; the tessellation factors depend on
the topology of the patch.

Besides the tessellation factors (SV_TessFactor and SV_InsideTessFactor), you
can output other patch information from the constant hull shader. The domain
shader receives the output from the constant hull shader as input, and could
make use of this extra patch information.

Tessellating a quad patch consists of two parts:

1. Four edge tessellation factors control how much to tessellate along each edge.

2. Two interior tessellation factors indicate how to tessellate the quad patch
(one tessellation factor for the horizontal dimension of the quad, and one
tessellation factor for the vertical dimension of the quad).

Figure 14.2 shows examples of different quad patch configurations we can get
when the tessellation factors are not the same. Study these figures until you are
comfortable with how the edge and interior tessellation factors work.

Tessellating a triangle patch also consists of two parts:

1. Three edge tessellation factors control how much to tessellate along each edge.

2. One interior tessellation factor indicates how much to tessellate the triangle
patch.

Figure 14.3 shows examples of different triangle patch configurations we can get
when the tessellation factors are not the same.

The maximum tessellation factor supported by Direct3D 11 hardware is 64. If
all the tessellation factors are zero, the patch is rejected from further processing.
This allows us to implement optimizations such as frustum culling and backface
culling on a per patch basis.

1. If a patch is not visible by the frustum, then we can reject the patch from
further processing (if we did tessellate it, the tessellated triangles would be
rejected during triangle clipping).

2. If a patch is backfacing, then we can reject the patch from further processing
(if we did tessellate it, the tessellated triangles would be rejected in the backface
culling part of rasterization).

A natural question to ask is how much should you tessellate. So remember that
the basic idea of tessellation is to add detail to your meshes. However, we do not
want to unnecessarily add details if they cannot be appreciated by the user. The
following are some common metrics used to determine the amount to tessellate:

Note:

518 DIRECT3D FOUNDATIONS

1. Distance from the camera: The further an object is from the eye, the less
we will notice fine details; therefore, we can render a low-poly version of the
object when it is far away, and tessellate more as it gets closer to the eye.

2. Screen area coverage: We can estimate the number of pixels an object covers
on the screen. If this number is small, then we can render a low-poly version
of the object. As its screen area coverage increases, we can tessellate more.

3. Orientation: The orientation of the triangle with respect to the eye is taken
into consideration with the idea that triangles along silhouette edges will be
more refi ned than other triangles.

4. Roughness: Rough surfaces with lots of details will need more tessellation
than smooth surfaces. A roughness value can be precomputed by examining
the surface textures, which can be used to decide how much to tessellate.

[Story10] gives the following performance advice:

1. If the tessellation factors are 1 (which basically means we are not really
tessellating), consider rendering the patch without tessellation, as we will be
wasting GPU overhead going through the tessellation stages when they are
not doing anything.

2. For performance reasons related to GPU implementations, do not tessellate
such that the triangles are so small they cover less than eight pixels.

3. Batch draw calls that use tessellation (i.e., turning tessellation on and off
between draw calls is expensive).

14.2.2 Control Point Hull Shader
The control point hull shader inputs a number of control points and outputs a
number of control points. The control point hull shader is invoked once per control
point output. One application of the hull shader is to change surface representations,
say from an ordinary triangle (submitted to the pipeline with three control points)
to a cubic Bézier triangle patch (a patch with ten control points). For example,
suppose your mesh is modeled as usual by triangles (three control points); you can
use the hull shader to augment the triangle to a higher order cubic Bézier triangle
patch with 10 control points, then detail can be added with the additional control
points and the triangle patch tessellated to the desired amount. This strategy is the
so-called N-patches scheme or PN triangles scheme [Vlachos01]; it is convenient
because it uses tessellation to improve existing triangle meshes with no modification
to the art pipeline. For our first demo, it will be a simple pass-through shader, where
we just pass the control point through unmodified.

Drivers can detect and optimize pass-through shaders [Bilodeau10b].Note:

THE TESSELLATION STAGES 519

struct HullOut
{
 float3 PosL : POSITION;
};

[domain("quad")]
[partitioning("integer")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(4)]
[patchconstantfunc("ConstantHS")]
[maxtessfactor(64.0f)]
HullOut HS(InputPatch<VertexOut, 4> p,
 uint i : SV_OutputControlPointID,
 uint patchId : SV_PrimitiveID)
{
 HullOut hout;

 hout.PosL = p[i].PosL;

 return hout;
}

The hull shader inputs all of the control points of the patch via the InputPatch
parameter. The system value SV_OutputControlPointID gives an index identifying
the output control point the hull shader is working on. Note that the input patch
control point count does not need to match the output control point count; for
example, the input patch could have 4 control points and the output patch could
have sixteen control points; the additional control points could be derived from
the four input control points.

The control point hull shader introduces a number of attributes:

1. domain: The patch type. Valid arguments are tri, quad, or isoline.

2. partitioning: Specifies the subdivision mode of the tessellation.
 a. integer: New vertices are added/removed only at integer tessellation factor

values. The fractional part of a tessellation factor is ignored. This creates a
noticeable “popping” when a mesh changes is tessellation level.

 b. Fractional tessellation (fractional_even/fractional_odd): New vertices are
added/removed at integer tessellation factor values, but “slide” in gradually
based on the fractional part of the tessellation factor. This is useful when
you want to smoothly transition from a coarser version of the mesh to a
fi ner version through tessellation, rather than abruptly at integer steps. The
difference between integer and fractional tessellation is best understood
by an animation, so the exercises at the end of this chapter will have you
experiment to see the difference fi rst hand.

3. outputtopology: The winding order of the triangles created via subdivision.
 a. triangle_cw: clockwise winding order.

520 DIRECT3D FOUNDATIONS

 b. triangle_ccw: counterclockwise winding order.
 c. line: For line tessellation.

4. outputcontrolpoints: The number of times the hull shader executes, outputting
one control point each time. The system value SV_OutputControlPointID gives
an index identifying the output control point the hull shader is working on.

5. patchconstantfunc: A string specifying the constant hull shader function
name.

6. maxtessfactor: A hint to the driver specifying the maximum tessellation factor
your shader uses. This can potentially enable optimizations by the hardware
if it knows this upper bound, as it will know how much resources are needed
for the tessellation. The maximum tessellation factor supported by Direct3D
11 hardware is 64.

14.3 THE TESSELLATION STAGE

As programmers, we do not have control of the tessellation stage. This stage is all
done by the hardware, and tessellates the patches based on the tessellation factors
output from the constant hull shader program. The following figures illustrate
different subdivisions based on the tessellation factors.

14.3.1 Quad Patch Tessellation Examples

Figure 14.2. Quad subdivisions based on edge and interior tessellation factors.

THE TESSELLATION STAGES 521

14.3.2 Triangle Patch Tessellation Examples

Figure 14.3. Triangle subdivisions based on edge and interior tessellation factors.

14.4 THE DOMAIN SHADER

The tessellation stage outputs all of our newly created vertices and triangles. The
domain shader is invoked for each vertex created by the tessellation stage. With
tessellation enabled, whereas the vertex shader acts as a vertex shader for each
control point, the hull shader is essentially the vertex shader for the tessellated
patch. In particular, it is here that we project the vertices of the tessellated patch to
homogeneous clip space.

For a quad patch, the domain shader inputs the tessellation factors (and any
other per patch information you output from the constant hull shader), the
parametric (u, v) coordinates of the tessellated vertex positions, and all the patch
control points output from the control point hull shader. Note that the domain
shader does not give you the actual tessellated vertex positions; instead it gives
you the parametric (u, v) coordinates (Figure 14.4) of these points in the patch
domain space. It is up to you to use these parametric coordinates and the control
points to derive the actual 3D vertex positions; in the code below, we do this via
bilinear interpolation (which works just like texture linear fi ltering).

struct DomainOut
{

522 DIRECT3D FOUNDATIONS

 float4 PosH : SV_POSITION;
};

// The domain shader is called for every vertex created by the tessellator.
// It is like the vertex shader after tessellation.
[domain("quad")]
DomainOut DS(PatchTess patchTess,
 float2 uv : SV_DomainLocation,
 const OutputPatch<HullOut, 4> quad)
{
 DomainOut dout;

 // Bilinear interpolation.
 float3 v1 = lerp(quad[0].PosL, quad[1].PosL, uv.x);
 float3 v2 = lerp(quad[2].PosL, quad[3].PosL, uv.x);
 float3 p = lerp(v1, v2, uv.y);

 float4 posW = mul(float4(p, 1.0f), gWorld);
 dout.PosH = mul(posW, gViewProj);

 return dout;
}

As shown in Figure 14.4, the ordering of the quad patch control points is row-
by-row.

The domain shader for a triangle patch is similar, except that instead of the
parametric (u, v) values being input, the float3 barycentric (u, v, w) coordinates of
the vertex are input (see §C.3) for an explanation of barycentric coordinates. The
reason for outputting barycentric coordinates for triangle patches is probably due to
the fact that Bézier triangle patches are defined in terms of barycentric coordinates.

14.5 TESSELLATING A QUAD

For our one of the demos in this chapter, we submit a quad patch to the rendering
pipeline, tessellate it based on the distance from the camera, and displace the

Note:

Figure 14.4. The tessellation of a quad patch with 4 control points generating 16 vertices in the normalized
uv-space, with coordinates in [0, 1]2.

THE TESSELLATION STAGES 523

generated vertices by a mathematic function that is similar to the one we have
been using for this “hills” in our past demos.

Our vertex buffer storing the four control points is created like so:

void BasicTessellationApp::BuildQuadPatchGeometry()
{
 std::array<XMFLOAT3,4> vertices =
 {
 XMFLOAT3(-10.0f, 0.0f, +10.0f),
 XMFLOAT3(+10.0f, 0.0f, +10.0f),
 XMFLOAT3(-10.0f, 0.0f, -10.0f),
 XMFLOAT3(+10.0f, 0.0f, -10.0f)
 };

 std::array<std::int16_t, 4> indices = { 0, 1, 2, 3 };

 const UINT vbByteSize = (UINT)vertices.size() * sizeof(Vertex);
 const UINT ibByteSize = (UINT)indices.size() * sizeof(std::uint16_t);

 auto geo = std::make_unique<MeshGeometry>();
 geo->Name = "quadpatchGeo";

 ThrowIfFailed(D3DCreateBlob(vbByteSize, &geo->VertexBufferCPU));
 CopyMemory(geo->VertexBufferCPU->GetBufferPointer(), vertices.data(),

vbByteSize);

 ThrowIfFailed(D3DCreateBlob(ibByteSize, &geo->IndexBufferCPU));
 CopyMemory(geo->IndexBufferCPU->GetBufferPointer(), indices.data(),

ibByteSize);

 geo->VertexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(),
 mCommandList.Get(), vertices.data(), vbByteSize,

geo->VertexBufferUploader);

 geo->IndexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(),
 mCommandList.Get(), indices.data(), ibByteSize,

geo->IndexBufferUploader);

 geo->VertexByteStride = sizeof(XMFLOAT3);
 geo->VertexBufferByteSize = vbByteSize;
 geo->IndexFormat = DXGI_FORMAT_R16_UINT;
 geo->IndexBufferByteSize = ibByteSize;

 SubmeshGeometry quadSubmesh;
 quadSubmesh.IndexCount = 4;
 quadSubmesh.StartIndexLocation = 0;
 quadSubmesh.BaseVertexLocation = 0;

 geo->DrawArgs["quadpatch"] = quadSubmesh;

 mGeometries[geo->Name] = std::move(geo);
}

524 DIRECT3D FOUNDATIONS

Our render-item for the quad patch is created as follows:

void BasicTessellationApp::BuildRenderItems()
{
 auto quadPatchRitem = std::make_unique<RenderItem>();
 quadPatchRitem->World = MathHelper::Identity4x4();
 quadPatchRitem->TexTransform = MathHelper::Identity4x4();
 quadPatchRitem->ObjCBIndex = 0;
 quadPatchRitem->Mat = mMaterials["whiteMat"].get();
 quadPatchRitem->Geo = mGeometries["quadpatchGeo"].get();
 quadPatchRitem->PrimitiveType = D3D_PRIMITIVE_TOPOLOGY_4_CONTROL_

POINT_PATCHLIST;
 quadPatchRitem->IndexCount = quadPatchRitem->Geo-

>DrawArgs["quadpatch"].IndexCount;
 quadPatchRitem->StartIndexLocation =
 quadPatchRitem->Geo->DrawArgs["quadpatch"].StartIndexLocation;
 quadPatchRitem->BaseVertexLocation =
 quadPatchRitem->Geo->DrawArgs["quadpatch"].BaseVertexLocation;
 mRitemLayer[(int)RenderLayer::Opaque].push_back(quadPatchRitem.get());

 mAllRitems.push_back(std::move(quadPatchRitem));
}

We will now turn attention to the hull shader. The hull shader is similar to what we
showed in §14.2.1 and §14.2.2, except that we now determine the tessellation factors
based on the distance from the eye. The idea behind this is to use a low-poly mesh
in the distance, and increase the tessellation (and hence triangle count) as the mesh
approaches the eye (see Figure 14.5). The hull shader is simply a pass-through shader.

struct VertexIn
{
 float3 PosL : POSITION;
};

struct VertexOut
{
 float3 PosL : POSITION;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout;
 vout.PosL = vin.PosL;
 return vout;

Figure 14.5. The mesh is tessellated more as the distance to the eye decreases.

THE TESSELLATION STAGES 525

}

struct PatchTess
{
 float EdgeTess[4] : SV_TessFactor;
 float InsideTess[2] : SV_InsideTessFactor;
};

PatchTess ConstantHS(InputPatch<VertexOut, 4> patch, uint patchID :
SV_PrimitiveID)

{
 PatchTess pt;

 float3 centerL = 0.25f*(patch[0].PosL +
 patch[1].PosL +
 patch[2].PosL +
 patch[3].PosL);

 float3 centerW = mul(float4(centerL, 1.0f), gWorld).xyz;

 float d = distance(centerW, gEyePosW);

 // Tessellate the patch based on distance from the eye such that
 // the tessellation is 0 if d >= d1 and 64 if d <= d0. The interval
 // [d0, d1] defines the range we tessellate in.

 const float d0 = 20.0f;
 const float d1 = 100.0f;
 float tess = 64.0f*saturate((d1-d)/(d1-d0));

 // Uniformly tessellate the patch.

 pt.EdgeTess[0] = tess;
 pt.EdgeTess[1] = tess;
 pt.EdgeTess[2] = tess;
 pt.EdgeTess[3] = tess;

 pt.InsideTess[0] = tess;
 pt.InsideTess[1] = tess;

 return pt;
}

struct HullOut
{
 float3 PosL : POSITION;
};

[domain("quad")]
[partitioning("integer")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(4)]
[patchconstantfunc("ConstantHS")]
[maxtessfactor(64.0f)]
HullOut HS(InputPatch<VertexOut, 4> p,
 uint i : SV_OutputControlPointID,

526 DIRECT3D FOUNDATIONS

 uint patchId : SV_PrimitiveID)
{
 HullOut hout;
 hout.PosL = p[i].PosL;
 return hout;
}

Simply tessellating is not enough to add detail, as the new triangles just lie on the
patch that was subdivided. We must offset those extra vertices in some way to
better approximate the shape of the object we are modeling. This is done in the
domain shader. In this demo, we offset the y-coordinates by the “hills” function
we introduced in §7.7.3.

struct DomainOut
{
 float4 PosH : SV_POSITION;
};

// The domain shader is called for every vertex created by the
tessellator.

// It is like the vertex shader after tessellation.
[domain("quad")]
DomainOut DS(PatchTess patchTess,
 float2 uv : SV_DomainLocation,
 const OutputPatch<HullOut, 4> quad)
{
 DomainOut dout;

 // Bilinear interpolation.
 float3 v1 = lerp(quad[0].PosL, quad[1].PosL, uv.x);
 float3 v2 = lerp(quad[2].PosL, quad[3].PosL, uv.x);
 float3 p = lerp(v1, v2, uv.y);

 // Displacement mapping
 p.y = 0.3f*(p.z*sin(p.x) + p.x*cos(p.z));

 float4 posW = mul(float4(p, 1.0f), gWorld);
 dout.PosH = mul(posW, gViewProj);

 return dout;
}

float4 PS(DomainOut pin) : SV_Target
{
 return float4(1.0f, 1.0f, 1.0f, 1.0f);
}

14.6 CUBIC BÉZIER QUAD PATCHES

In this section, we describe cubic Bézier quad patches to show how surfaces are
constructed via a higher number of control points. Before we get to surfaces,
however, it helps to first start with Bézier curves.

THE TESSELLATION STAGES 527

14.6.1 Bézier Curves
Consider three noncollinear points p0, p1, and p2 which we will call the control
points. These three control points define a Bézier curve in the following way.
A point p(t) on the curve is first found by linearly interpolating between p0 and p1

by t, and p1 and p2 by t to get the intermediate points:

  1
0 0 11 t t  p p p

  1
1 1 21 t t  p p p

Then p(t) is found by linearly interpolating between 1
0p and 1

1p by t:

   
       
   

1 1
0 1

0 1 1 2

2 2
0 1 2

1

1 1 1

1 2 1

t t t

t t t t t t

t t t t

  

      

    

p p p

p p p p

p p p

In other words, this construction by repeated interpolation leads to the parametric
formula for a quadratic (degree 2) Bézier curve:

      2 2
0 1 21 2 1t t t t t    p p p p

In a similar manner, four control points p0, p1, p2,and p3 define a cubic (degree
3) Bézier curve, and a point p(t) on the curve is found again by repeated
interpolation. Figure 14.6 shows the situation. First linearly interpolate along
each line segment the four given control points define to get three first generation
intermediate points:

 
 
 

1
0 0 1

1
1 1 2

1
2 2 3

1

1

1

t t

t t

t t

  

  

  

p p p

p p p

p p p

Figure 14.6. Repeated linear interpolation defined points on the cubic Bézier curve. The figure uses t = 0.5.
(a) The four control points and the curve they define. (b) Linearly interpolate between the control points
to calculate the first generation of intermediate points. (c) Linearly interpolate between the first generation
intermediate points to get the second generation intermediate points. (d) Linearly interpolate between the
second generation intermediate points to get the point on the curve.

528 DIRECT3D FOUNDATIONS

Next, linearly interpolate along each line segment these first generation
intermediate points define to get two second generation intermediate points:

 
   

2 1 1
0 0 1

2 2
0 1 2

1

1 2 1

t t

t t t t

  

    

p p p

p p p

 
   

2 1 1
1 1 2

2 2
1 2 3

1

1 2 1

t t

t t t t

  

    

p p p

p p p

Finally, p(t) is found by linearly interpolating between these last generation
intermediate pints:

   

           
2 2
0 1

2 22 2
0 1 2 1 2 3

1

1 1 2 1 1 2 1

t t t

t t t t t t t t t t

  

          

p p p

p p p p p p

which simplifies to the parametric formula for a cubic (degree 3) Bézier curve:

        3 2 2 3
0 1 2 31 3 1 3 1t t t t t t t      p p p p p (eq. 14.1)

Generally, people stop at cubic curves, as they give enough smoothness and
degrees of freedom for controlling the curve, but you can keep going to higher-
order curves with the same recursive pattern of repeated interpolation.

It turns out, that the formula for Bézier curves of degree n can be written in
terms of the Bernstein basis functions, which are defi ned by:

      !
1

! !

n in i
i

n
B t t t

i n i

 


For degree 3 curves, the Bernstein basis functions are:

        3 0 33 0
0

3!
1 1

0! 3 0 !
B t t t t

   


        3 1 23 1
1

3!
1 3 1

1! 3 1 !
B t t t t t

   


        3 23 2 2
2

3!
1 3 1

2! 3 2 !
B t t t t t

   


      3 33 3 3
3

3!
1

3! 3 3 !
B t t t t

  


THE TESSELLATION STAGES 529

Compare these values to the factors in Equation 14.1. Therefore, we can write a
cubic Bézier curve as:

            


    
3

3 3 3 3 3
0 0 1 1 2 2 3 3

0
j j

j

t B t B t B t B t B tp p p p p p

The derivatives of the cubic Bernstein basis functions can be found by application
of the power and product rules:

   
     
   
 

23
0

23
1

3 2
2

3 2
3

3 1

3 1 6 1

6 1 3

3

B t t

B t t t t

B t t t t

B t t

 









   

  



And the derivative of the cubic Bézier curve is:

            


        
3

3 3 3 3 3
0 0 1 1 2 2 3 3

0
j j

j

t B t B t B t B t B tp p p p p p

Derivatives are useful for computing the tangent vector along the curve.

There are Bézier curve applets online that allow you to set and manipulate the
control points to see how the curves are shaped interactively.

14.6.2 Cubic Bézier Surfaces
Refer to Figure 14.7 throughout this section. Consider a patch of 4  4 control
points. Each row, therefore, contains 4 control points that can be used to define
cubic Bézier curve; the Bézier curve of the ith row is given by:

    
3

3
,

0
i j i j

j

u B u


q p

If we evaluate each of these Bézier curves at say u0, then we get a “column” of 4
points, one along each curve. We can use these 4 points to define another Bézier
curve that lies on the Bézier surface at u0:

      



3

3
0

0
i i

i

v B v up q

Note:

530 DIRECT3D FOUNDATIONS

Now, if we let u vary as well, we sweep out a family of cubic Bézier curves that
form the cubic Bézier surface:

     

   

3
3

0

3 3
3 3

,
0 0

, i i
i

i j i j
i j

u v B v u

B v B u



 







 

p q

p

The partial derivatives of a Bézier surface are useful for computing tangent and
normal vectors:

     

     

33 3
3

,
0 0

3 33
3

,
0 0

,

,

j
i i j

i j

i
j i j

i j

B
u v B v u

u u

B
u v v B u

v v

 

 




 

 


 

 

 

p
p

p
p

14.6.3 Cubic Bézier Surface Evaluation Code
In this section, we give code to evaluate a cubic Bézier surface. To help understand
the code that follows, we expand out the summation notation:

          3 3 3 3
0 0 0,0 1 0,1 2 0,2 3 0,3u B u B u B u B u   q p p p p

          3 3 3 3
1 0 1,0 1 1,1 2 1,2 3 1,3u B u B u B u B u   q p p p p

          3 3 3 3
2 0 2,0 1 2,1 2 2,2 3 2,3u B u B u B u B u   q p p p p

          3 3 3 3
3 0 3,0 1 3,1 2 3,2 3 3,3u B u B u B u B u   q p p p p

Figure 14.7. Constructing a Bézier surface. Some simplifications were made to make the figure easier to
understand—the control points do not all lie in the plane, all the qi(u) need not be the same as the figure
suggests (they would only be the same if the control points were the same for each row to give the same
curves), and p(v) generally would not be a straight line but a cubic Bézier curve.

THE TESSELLATION STAGES 531

                 
         

         

         

       

3 3 3 3
0 0 1 1 2 2 3 3

3 3 3 3 3
0 0 0,0 1 0,1 2 0,2 3 0,3

3 3 3 3 3
1 0 1,0 1 1,1 2 1,2 3 1,3

3 3 3 3 3
2 0 2,0 1 2,1 2 2,2 3 2,3

3 3 3 3
3 0 3,0 1 3,1 2 3,2

,u v B v u B v u B v u B v u

B v B u B u B u B u

B v B u B u B u B u

B v B u B u B u B u

B v B u B u B u

   

     
     
     

   

p q q q q

p p p p

p p p p

p p p p

p p p  3
3 3,3B u  p

The code below maps directly to the formulas just given:

float4 BernsteinBasis(float t)
{
 float invT = 1.0f - t;

 return float4(invT * invT * invT, //  3
0

3() (1)B t t

 3.0f * t * invT * invT,//  3
1 () 3 2(1)B t t t

 3.0f * t * t * invT, //  3 2
2 () 3 (1)B t t t

 t * t * t); // 3 3
3 ()B t t

}

float4 dBernsteinBasis(float t)
{
 float invT = 1.0f - t;

 return float4(
 -3 * invT * invT, //     3 2

0 3(1)B t t

 3 * invT * invT - 6 * t * invT, //    3 2
1 (1)() 3 6 (1)tB t t t

 6 * t * invT - 3 * t * t, //    3 2
2 () 6 (1) 3B t t t t

 3 * t * t); //  3 2
3 () 3B t t

}

float3 CubicBezierSum(const OutputPatch<HullOut, 16> bezpatch,
 float4 basisU, float4 basisV)
{
 float3 sum = float3(0.0f, 0.0f, 0.0f);
 sum = basisV.x * (basisU.x*bezpatch[0].PosL +
 basisU.y*bezpatch[1].PosL +
 basisU.z*bezpatch[2].PosL +
 basisU.w*bezpatch[3].PosL);

 sum += basisV.y * (basisU.x*bezpatch[4].PosL +
 basisU.y*bezpatch[5].PosL +
 basisU.z*bezpatch[6].PosL +
 basisU.w*bezpatch[7].PosL);

 sum += basisV.z * (basisU.x*bezpatch[8].PosL +
 basisU.y*bezpatch[9].PosL +
 basisU.z*bezpatch[10].PosL +
 basisU.w*bezpatch[11].PosL);

532 DIRECT3D FOUNDATIONS

 sum += basisV.w * (basisU.x*bezpatch[12].PosL +
 basisU.y*bezpatch[13].PosL +
 basisU.z*bezpatch[14].PosL +
 basisU.w*bezpatch[15].PosL);

 return sum;
}
The above functions can be utilized like so to evaluate p(u, v) and

compute the partial derivatives:
float4 basisU = BernsteinBasis(uv.x);
float4 basisV = BernsteinBasis(uv.y);

// (,)u vp

float3 p = CubicBezierSum(bezPatch, basisU, basisV);

float4 dBasisU = dBernsteinBasis(uv.x);
float4 dBasisV = dBernsteinBasis(uv.y);

// (,)u v
u




p

float3 dpdu = CubicBezierSum(bezPatch, dbasisU, basisV);

// (,)u v
v




p

float3 dpdv = CubicBezierSum(bezPatch, basisU, dbasisV);

Observe that we pass the evaluated basis function values to CubicBezierSum.
This enables us to use CubicBezierSum for evaluating both p(u, v) and the
partial derivatives, as the summation form is the same, the only differencing
being the basis functions.

14.6.4 Defi ning the Patch Geometry
Our vertex buffer storing the sixteen control points is created like so:

void BezierPatchApp::BuildQuadPatchGeometry()
{
 std::array<XMFLOAT3,16> vertices =
 {
 // Row 0
 XMFLOAT3(-10.0f, -10.0f, +15.0f),
 XMFLOAT3(-5.0f, 0.0f, +15.0f),
 XMFLOAT3(+5.0f, 0.0f, +15.0f),
 XMFLOAT3(+10.0f, 0.0f, +15.0f),

 // Row 1
 XMFLOAT3(-15.0f, 0.0f, +5.0f),
 XMFLOAT3(-5.0f, 0.0f, +5.0f),
 XMFLOAT3(+5.0f, 20.0f, +5.0f),
 XMFLOAT3(+15.0f, 0.0f, +5.0f),

Note:

THE TESSELLATION STAGES 533

 // Row 2
 XMFLOAT3(-15.0f, 0.0f, -5.0f),
 XMFLOAT3(-5.0f, 0.0f, -5.0f),
 XMFLOAT3(+5.0f, 0.0f, -5.0f),
 XMFLOAT3(+15.0f, 0.0f, -5.0f),

 // Row 3
 XMFLOAT3(-10.0f, 10.0f, -15.0f),
 XMFLOAT3(-5.0f, 0.0f, -15.0f),
 XMFLOAT3(+5.0f, 0.0f, -15.0f),
 XMFLOAT3(+25.0f, 10.0f, -15.0f)
 };

 std::array<std::int16_t, 16> indices =
 {
 0, 1, 2, 3,
 4, 5, 6, 7,
 8, 9, 10, 11,
 12, 13, 14, 15
 };

 const UINT vbByteSize = (UINT)vertices.size() * sizeof(Vertex);
 const UINT ibByteSize = (UINT)indices.size() * sizeof(std::uint16_t);

 auto geo = std::make_unique<MeshGeometry>();
 geo->Name = "quadpatchGeo";

 ThrowIfFailed(D3DCreateBlob(vbByteSize, &geo->VertexBufferCPU));
 CopyMemory(geo->VertexBufferCPU->GetBufferPointer(), vertices.data(),

vbByteSize);

 ThrowIfFailed(D3DCreateBlob(ibByteSize, &geo->IndexBufferCPU));
 CopyMemory(geo->IndexBufferCPU->GetBufferPointer(), indices.data(),

ibByteSize);

 geo->VertexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(),
 mCommandList.Get(), vertices.data(), vbByteSize, geo-

>VertexBufferUploader);

 geo->IndexBufferGPU = d3dUtil::CreateDefaultBuffer(md3dDevice.Get(),
 mCommandList.Get(), indices.data(), ibByteSize, geo-

>IndexBufferUploader);

Figure 14.8. Screenshot of the Bézier surface demo.

534 DIRECT3D FOUNDATIONS

 geo->VertexByteStride = sizeof(XMFLOAT3);
 geo->VertexBufferByteSize = vbByteSize;
 geo->IndexFormat = DXGI_FORMAT_R16_UINT;
 geo->IndexBufferByteSize = ibByteSize;

 SubmeshGeometry quadSubmesh;
 quadSubmesh.IndexCount = (UINT)indices.size();
 quadSubmesh.StartIndexLocation = 0;
 quadSubmesh.BaseVertexLocation = 0;

 geo->DrawArgs["quadpatch"] = quadSubmesh;

 mGeometries[geo->Name] = std::move(geo);
}

There is no restriction that the control points need to be equidistant to form a
uniform grid.

Our render-item for the quad patch is created as follows:

void BezierPatchApp::BuildRenderItems()
{
 auto quadPatchRitem = std::make_unique<RenderItem>();
 quadPatchRitem->World = MathHelper::Identity4x4();
 quadPatchRitem->TexTransform = MathHelper::Identity4x4();
 quadPatchRitem->ObjCBIndex = 0;
 quadPatchRitem->Mat = mMaterials["whiteMat"].get();
 quadPatchRitem->Geo = mGeometries["quadpatchGeo"].get();
 quadPatchRitem->PrimitiveType = D3D11_PRIMITIVE_TOPOLOGY_16_CONTROL_

POINT_PATCHLIST;
 quadPatchRitem->IndexCount = quadPatchRitem->Geo-

>DrawArgs["quadpatch"].IndexCount;
 quadPatchRitem->StartIndexLocation =
 quadPatchRitem->Geo->DrawArgs["quadpatch"].StartIndexLocation;
 quadPatchRitem->BaseVertexLocation =
 quadPatchRitem->Geo->DrawArgs["quadpatch"].BaseVertexLocation;
 mRitemLayer[(int)RenderLayer::Opaque].push_back(quadPatchRitem.

get());

 mAllRitems.push_back(std::move(quadPatchRitem));
}

14.7 SUMMARY

1. The tessellation stages are optional stages of the rendering pipeline. They
consist of the hull shader, the tessellator, and the domain shader. The hull
and domain shaders are programmable, and the tessellator is completely
controlled by the hardware.

Note:

THE TESSELLATION STAGES 535

2. Hardware tessellation provides memory benefits, as a low-poly asset can be
stored and then detail can be added on the fly via tessellation. Additionally,
computations such as animation and physics can be done on the low-poly
mesh frequency before tessellation. Finally, continuous LOD algorithms
can now be implemented completely on the GPU, which always had to be
implemented on the CPU before hardware tessellation was available.

3. New primitive types are used only with tessellation to submit control
points to the rendering pipeline. Direct3D 12 supports between one and
thirty-two control points, which are represented by the enumerated types
D3D_PRIMITIVE_1_CONTROL_POINT_PATCH... D3D_PRIMITIVE_32_CONTROL_POINT_

PATCH.

4. With tessellation, the vertex shader inputs control points and generally
animates or performs physics computations per control point. The hull shader
consists of the constant hull shader and the control point hull shader. The
constant hull shader operates per patch and outputs the tessellation factors of
the patch, which instruct the tessellator how much to tessellate the patch, as
well as any other optional per patch data. The control point hull shader inputs
a number of control points and outputs a number of control points. The
control point hull shader is invoked once per control point output. Typically,
the control point hull shader changes the surface representation of the input
patch. For example, this stage might input a triangle with three control points,
and output a Bézier triangle surface patch with ten control points.

5. The domain shader is invoked for each vertex created by the tessellation stage.
Whereas the vertex shader acts as a vertex shader for each control point, with
tessellation enabled the hull shader is essentially the vertex shader for the
tessellated patch vertices. In particular, it is here that we project the vertices of
the tessellated patch to homogeneous clip space and do other per vertex work.

6. If you are not going to tessellate an object (e.g., tessellation factors are close to
1), then do not render the object with the tessellation stages enabled, as there
is overhead. Avoid tessellating so much that triangles are smaller than eight
pixels. Draw all your tessellated objects together to avoid turning tessellation
on and off during a frame. Use back face culling and frustum culling in the
hull shader to discard patches that are not seen from being tessellated.

7. Bézier curves and surfaces, specified by parametric equations, can be used to
describe smooth curves and surfaces. They are “shaped” via control points. In
addition to allowing us to draw smooth surfaces directly, Bézier surfaces are
used in many popular hardware tessellation algorithms such as PN Triangles
and Catmull-Clark approximations.

536 DIRECT3D FOUNDATIONS

14.8 EXERCISES

1. Redo the “Basic Tessellation” demo, but tessellate a triangle patch instead of a
quad patch.

2. Tessellate an iscoahedron into a sphere based on distance.

3. Modify the “Basic Tessellation” demo so that it does fixed tessellation of a flat
quad. Experiment with different edge/interior tessellation factors until you
are comfortable with how the tessellation factors work.

4. Explore fractional tessellation. That is, try the “Basic Tessellation” demo with:
[partitioning("fractional_even")]
[partitioning("fractional_odd")]

5. Compute the Bernstein basis functions 2 2 2
0 1 2

() (, ,) ()B t B t B t for a quadratic Bézier

curve, and compute the derivatives   2 2 2
0 1 2

() (, ,) ()B t B t B t . Derive the parametric
equation for a quadratic Bézier surface.

6. Experiment with the “Bézier Patch” demo by changing the control points to
change the Bézier surface.

7. Redo the “Bézier Patch” demo to use a quadratic Bézier surface with nine
control points.

8. Modify the “Bézier Patch” demo to light and shade the Bézier surface. You will
need to compute vertex normals in the domain shader. A normal at a vertex
position can be found by taking the cross product of the partial derivatives at
the position.

9. Research and implement Bézier triangle patches.

537

Part

In this part, we focus on applying Direct3D to implement several 3D
applications, demonstrating techniques such as sky rendering, ambient
occlusion, character animation, picking, environment mapping, normal

mapping, and shadow mapping. A brief description of the chapters in this part
follows.

Chapter 15, Building a First Person Camera and Dynamic Indexing: In this
chapter, we show how to design a camera system that behaves more as you
would expect in a first person game. We show how to control the camera via
keyboard and mouse input. In addition, we introduce a new Direct3D 12
technique called dynamic indexing, where we can dynamically index an array
of texture objects in a shader.

Chapter 16, Instancing and Frustum Culling: Instancing is a hardware
supported technique that optimizes the drawing of the same geometry
multiple times with different properties (say at different positions in the scene
and with different colors). Frustum culling is an optimization technique where
we discard an entire object from being submitted to the rendering pipeline if it
lies completely outside the virtual camera’s field of view. We also show how to
compute the bounding box and sphere of a mesh.

Chapter 17, Picking: This chapter shows how to determine the particular 3D
object (or 3D primitive) that the user has selected with the mouse. Picking is

3 TOPICS

538 TOPICS

often a necessity in 3D games and applications where the user interacts with the 3D
world with the mouse.

Chapter 18, Cube Mapping: In this chapter, we show how to reflect environments onto
arbitrary meshes with environment mapping; in addition, we use an environment map
to texture a sky-sphere.

Chapter 19, Normal Mapping: This chapter shows how to get more detailed real-time
lighting results by using normal maps, which are textures that store normal vectors.
This gives surface normals at a finer granularity than per-vertex normals resulting in
more realistic lighting.

Chapter 20, Shadow Mapping: Shadow mapping is a real-time shadowing technique,
which shadows arbitrary geometry (it is not limited to planar shadows). In addition, we
learn how projective texturing works.

Chapter 21, Ambient Occlusion: Lighting plays an important role in making our scenes
look realistic. In this chapter, we improve the ambient term of our lighting equation by
estimating how occluded a point in our scene is from incoming light.

Chapter 22, Quaternions: In this chapter, we study mathematical objects called
quaternions. We show that unit quaternions represent rotations and can be interpolated
in a simple way, thereby giving us a way to interpolate rotations. Once we can interpolate
rotations, we can create 3D animations.

Chapter 23, Character Animation: This chapter covers the theory of character
animation and show how to animate a typical human game character with a complex
walking animation.

Chapter

539

15Chapter

BUILDING A FIRST
PERSON CAMERA
AND DYNAMIC
INDEXING

In this chapter, we cover two separate short topics. First, we design a camera system
that behaves more as you would expect in a first person game. This camera system
will replace the orbiting camera system we have been using thus far in the demos.
Second, we introduce a new Direct3D 12 technique called dynamic indexing (new
to shader model 5.1), where we can dynamically index an array of texture objects
(Texture2D gDiffuseMap[n]). This is similar to how we indexed the special texture
array object (Texture2DArray) in Chapter 12, but unlike Texture2DArray the
textures in this array can be different sizes and formats, making it more flexible
than Texture2DArrays.

Objectives:
1. To review the mathematics of the view space transformation.

2. To be able to identify the typical functionality of a first person camera.

3. To learn how to implement a first person camera.

4. To understand how to dynamically index into an array of textures.

540 TOPICS

15.1 VIEW TRANSFORM REVIEW

View space is the coordinate system attached to the camera as shown in Figure 15.1.
The camera sits at the origin looking down the positive z-axis, the x-axis aims to
the right of the camera, and the y-axis aims above the camera. Instead of describing
our scene vertices relative to the world space, it is convenient for later stages of the
rendering pipeline to describe them relative to the camera coordinate system. The
change of coordinate transformation from world space to view space is called the
view transform, and the corresponding matrix is called the view matrix.

If QW  (Qx, Qy, Qz, 1), uW  (ux, uy, uz, 0), vW  (vx, vy, vz, 0), and wW  (wx,
wy, wz, 0) describe, respectively, the origin, x-, y-, and z-axes of view space with
homogeneous coordinates relative to world space, then we know from §3.4.3 that
the change of coordinate matrix from view space to world space is:

0

0

0

1

x y z

x y z

x y z

x y z

u u u

v v v

w w w

Q Q Q

 
 
 
 
 
  

W

However, this is not the transformation we want. We want the reverse
transformation from world space to view space. But recall from §3.4.5 that reverse
transformation is just given by the inverse. Thus W1 transforms from world space
to view space.

Th e world coordinate system and view coordinate system generally diff er by
position and orientation only, so it makes intuitive sense that W = RT (i.e., the
world matrix can be decomposed into a rotation followed by a translation). Th is
form makes the inverse easier to compute:

   11 1 1 1 T      V W RT T R T R

Figure 15.1. The camera coordinate system. Relative to its own coordinate system, the camera sits at the
origin looking down the positive z-axis.

BUILDING A FIRST PERSON CAMERA AND DYNAMIC INDEXING 541

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 1 1

x x x x x x

y y y y y y

z z z z z z

x y z

u v w u v w

u v w u v w

u v w u v w

Q Q Q

     
     
      
     
                    Q u Q v Q w

So the view matrix has the form:

 
 
 
 
       

0

0

0

1

x x x

y y y

z z z

u v w

u v w

u v w
V

Q u Q v Q w

 (eq. 15.1)

As with all change-of-coordinate transformations, we are not moving anything in
the scene. The coordinates change because we are using the camera space frame of
reference instead of the world space frame of reference.

15.2 THE CAMERA CLASS

To encapsulate our camera related code, we define and implement a Camera class.
The data of the camera class stores two key pieces of information. The position,
right, up, and look vectors of the camera defining, respectively, the origin, x-axis,
y-axis, and z-axis of the view space coordinate system in world coordinates, and
the properties of the frustum. You can think of the lens of the camera as defining
the frustum (its field of view and near and far planes). Most of the methods are
trivial (e.g., simple access methods). See the comments below for an overview of
the methods and data members. We review selected methods in the next section.

class Camera
{
public:

 Camera();
 ~Camera();

 // Get/Set world camera position.
 DirectX::XMVECTOR GetPosition()const;
 DirectX::XMFLOAT3 GetPosition3f()const;
 void SetPosition(float x, float y, float z);
 void SetPosition(const DirectX::XMFLOAT3& v);

 // Get camera basis vectors.
 DirectX::XMVECTOR GetRight()const;
 DirectX::XMFLOAT3 GetRight3f()const;

542 TOPICS

 DirectX::XMVECTOR GetUp()const;
 DirectX::XMFLOAT3 GetUp3f()const;
 DirectX::XMVECTOR GetLook()const;
 DirectX::XMFLOAT3 GetLook3f()const;

 // Get frustum properties.
 float GetNearZ()const;
 float GetFarZ()const;
 float GetAspect()const;
 float GetFovY()const;
 float GetFovX()const;

 // Get near and far plane dimensions in view space coordinates.
 float GetNearWindowWidth()const;
 float GetNearWindowHeight()const;
 float GetFarWindowWidth()const;
 float GetFarWindowHeight()const;

 // Set frustum.
 void SetLens(float fovY, float aspect, float zn, float zf);

 // Define camera space via LookAt parameters.
 void LookAt(DirectX::FXMVECTOR pos,
 DirectX::FXMVECTOR target,
 DirectX::FXMVECTOR worldUp);
 void LookAt(const DirectX::XMFLOAT3& pos,
 const DirectX::XMFLOAT3& target,
 const DirectX::XMFLOAT3& up);

 // Get View/Proj matrices.
 DirectX::XMMATRIX GetView()const;
 DirectX::XMMATRIX GetProj()const;

 DirectX::XMFLOAT4X4 GetView4x4f()const;
 DirectX::XMFLOAT4X4 GetProj4x4f()const;

 // Strafe/Walk the camera a distance d.
 void Strafe(float d);
 void Walk(float d);

 // Rotate the camera.
 void Pitch(float angle);
 void RotateY(float angle);

 // After modifying camera position/orientation, call to rebuild the
view matrix.

 void UpdateViewMatrix();

private:

 // Camera coordinate system with coordinates relative to world
space.

 DirectX::XMFLOAT3 mPosition = { 0.0f, 0.0f, 0.0f };
 DirectX::XMFLOAT3 mRight = { 1.0f, 0.0f, 0.0f };
 DirectX::XMFLOAT3 mUp = { 0.0f, 1.0f, 0.0f };
 DirectX::XMFLOAT3 mLook = { 0.0f, 0.0f, 1.0f };

BUILDING A FIRST PERSON CAMERA AND DYNAMIC INDEXING 543

 // Cache frustum properties.
 float mNearZ = 0.0f;
 float mFarZ = 0.0f;
 float mAspect = 0.0f;
 float mFovY = 0.0f;
 float mNearWindowHeight = 0.0f;
 float mFarWindowHeight = 0.0f;

 bool mViewDirty = true;

 // Cache View/Proj matrices.
 DirectX::XMFLOAT4X4 mView = MathHelper::Identity4x4();
 DirectX::XMFLOAT4X4 mProj = MathHelper::Identity4x4();
};

The Camera.h/Camera.cpp fi les are in the Common directory.

15.3 SELECTED METHOD IMPLEMENTATIONS

Many of the camera class methods are trivial get/set methods that we will omit
here. However, we will review a few of the important ones in this section.

15.3.1 XMVECTOR Return Variations
First, we want to remark that we provide XMVECTOR return variations for many of
the “get” methods; this is just for convenience so that the client code does not need
to convert if they need an XMVECTOR:

XMVECTOR Camera::GetPosition()const
{
 return XMLoadFloat3(&mPosition);
}

XMFLOAT3 Camera::GetPosition3f()const
{
 return mPosition;
}

15.3.2 SetLens
We can think of the frustum as the lens of our camera, for it controls our view
of view. We cache the frustum properties and build the projection matrix is the
SetLens method:

void Camera::SetLens(float fovY, float aspect, float zn, float zf)
{
 // cache properties

Note:

544 TOPICS

 mFovY = fovY;
 mAspect = aspect;
 mNearZ = zn;
 mFarZ = zf;

 mNearWindowHeight = 2.0f * mNearZ * tanf(0.5f*mFovY);
 mFarWindowHeight = 2.0f * mFarZ * tanf(0.5f*mFovY);

 XMMATRIX P = XMMatrixPerspectiveFovLH(mFovY, mAspect, mNearZ, mFarZ);
 XMStoreFloat4x4(&mProj, P);
}

15.3.3 Derived Frustum Info
As we just saw, we cache the vertical field of view angle, but additionally provide
a method that derives the horizontal field of view angle. Moreover, we provide
methods to return the width and height of the frustum at the near and far planes,
which are sometimes useful to know. The implementations of these methods are just
trigonometry, and if you have trouble following the equations, then review §5.6.3:

float Camera::GetFovX()const
{
 float halfWidth = 0.5f*GetNearWindowWidth();
 return 2.0f*atan(halfWidth / mNearZ);
}

float Camera::GetNearWindowWidth()const
{
 return mAspect * mNearWindowHeight;
}

float Camera::GetNearWindowHeight()const
{
 return mNearWindowHeight;
}

float Camera::GetFarWindowWidth()const
{
 return mAspect * mFarWindowHeight;
}

float Camera::GetFarWindowHeight()const
{
 return mFarWindowHeight;
}

15.3.4 Transforming the Camera
For a first person camera, ignoring collision detection, we want to be able to:

1. Move the camera along its look vector to move forwards and backwards. This
can be implemented by translating the camera position along its look vector.

BUILDING A FIRST PERSON CAMERA AND DYNAMIC INDEXING 545

2. Move the camera along its right vector to strafe right and left. This can be
implemented by translating the camera position along its right vector.

3. Rotate the camera around its right vector to look up and down. This can be
implemented by rotating the camera’s look and up vectors around its right
vector using the XMMatrixRotationAxis function.

4. Rotate the camera around the world’s y-axis (assuming the y-axis corresponds
to the world’s “up” direction) vector to look right and left. This can be
implemented by rotating all the basis vectors around the world’s y-axis using
the XMMatrixRotationY function.

void Camera::Walk(float d)
{
 // mPosition += d*mLook
 XMVECTOR s = XMVectorReplicate(d);
 XMVECTOR l = XMLoadFloat3(&mLook);
 XMVECTOR p = XMLoadFloat3(&mPosition);
 XMStoreFloat3(&mPosition, XMVectorMultiplyAdd(s, l, p));}

void Camera::Strafe(float d)
{
 // mPosition += d*mRight
 XMVECTOR s = XMVectorReplicate(d);
 XMVECTOR r = XMLoadFloat3(&mRight);
 XMVECTOR p = XMLoadFloat3(&mPosition);
 XMStoreFloat3(&mPosition, XMVectorMultiplyAdd(s, r, p));
}

void Camera::Pitch(float angle)
{
 // Rotate up and look vector about the right vector.

 XMMATRIX R = XMMatrixRotationAxis(XMLoadFloat3(&mRight), angle);

 XMStoreFloat3(&mUp, XMVector3TransformNormal(XMLoadFloat3(&mUp),
R));

 XMStoreFloat3(&mLook, XMVector3TransformNormal(XMLoadFloat3(&mLook),
R));

}

void Camera::RotateY(float angle)
{
 // Rotate the basis vectors about the world y-axis.

 XMMATRIX R = XMMatrixRotationY(angle);

 XMStoreFloat3(&mRight, XMVector3TransformNormal(XMLoadFloat3(&mRig
ht), R));

 XMStoreFloat3(&mUp, XMVector3TransformNormal(XMLoadFloat3(&mUp), R));
 XMStoreFloat3(&mLook, XMVector3TransformNormal(XMLoadFloat3(&mLook),

R));
}

546 TOPICS

15.3.5 Building the View Matrix
The first part of the UpdateViewMatrix method reorthonormalizes the camera’s
right, up, and look vectors. That is to say, it makes sure they are mutually
orthogonal to each other and unit length. This is necessary because after
several rotations, numerical errors can accumulate and cause these vectors to
become non-orthonormal. When this happens, the vectors no longer represent
a rectangular coordinate system, but a skewed coordinate system, which is not
what we want. The second part of this method just plugs the camera vectors into
Equation 15.1 to compute the view transformation matrix.

void Camera::UpdateViewMatrix()
{
 if(mViewDirty)
 {
 XMVECTOR R = XMLoadFloat3(&mRight);
 XMVECTOR U = XMLoadFloat3(&mUp);
 XMVECTOR L = XMLoadFloat3(&mLook);
 XMVECTOR P = XMLoadFloat3(&mPosition);

 // Keep camera’s axes orthogonal to each other and of unit length.
 L = XMVector3Normalize(L);
 U = XMVector3Normalize(XMVector3Cross(L, R));

 // U, L already ortho-normal, so no need to normalize cross
product.

 R = XMVector3Cross(U, L);

 // Fill in the view matrix entries.
 float x = -XMVectorGetX(XMVector3Dot(P, R));
 float y = -XMVectorGetX(XMVector3Dot(P, U));
 float z = -XMVectorGetX(XMVector3Dot(P, L));

 XMStoreFloat3(&mRight, R);
 XMStoreFloat3(&mUp, U);
 XMStoreFloat3(&mLook, L);

 mView(0, 0) = mRight.x;
 mView(1, 0) = mRight.y;
 mView(2, 0) = mRight.z;
 mView(3, 0) = x;

 mView(0, 1) = mUp.x;
 mView(1, 1) = mUp.y;
 mView(2, 1) = mUp.z;
 mView(3, 1) = y;

 mView(0, 2) = mLook.x;
 mView(1, 2) = mLook.y;
 mView(2, 2) = mLook.z;
 mView(3, 2) = z;

BUILDING A FIRST PERSON CAMERA AND DYNAMIC INDEXING 547

 mView(0, 3) = 0.0f;
 mView(1, 3) = 0.0f;
 mView(2, 3) = 0.0f;
 mView(3, 3) = 1.0f;

 mViewDirty = false;
 }
}

15.4 CAMERA DEMO COMMENTS

We can now remove all the old variables from our application class that were
related to the orbital camera system such as mPhi, mTheta, mRadius, mView, and
mProj. We will add a member variable:

Camera mCam;

When the window is resized, we know longer rebuild the projection matrix
explicitly, and instead delegate the work to the Camera class with SetLens:

void CameraApp::OnResize()
{
 D3DApp::OnResize();

 mCamera.SetLens(0.25f*MathHelper::Pi, AspectRatio(), 1.0f, 1000.0f);
}

In the UpdateScene method, we handle keyboard input to move the camera:

void CameraApp::UpdateScene(float dt)
{
 if(GetAsyncKeyState(‘W’) & 0x8000)
 mCamera.Walk(10.0f*dt);

 if(GetAsyncKeyState(‘S’) & 0x8000)
 mCamera.Walk(-10.0f*dt);

 if(GetAsyncKeyState(‘A’) & 0x8000)
 mCamera.Strafe(-10.0f*dt);

 if(GetAsyncKeyState(‘D’) & 0x8000)
 mCamera.Strafe(10.0f*dt);

In the OnMouseMove method, we rotate the camera’s look direction:

void CameraAndDynamicIndexingApp::OnMouseMove(WPARAM btnState, int x,
int y)

{
 if((btnState & MK_LBUTTON) != 0)
 {
 // Make each pixel correspond to a quarter of a degree.
 float dx = XMConvertToRadians(
 0.25f*static_cast<float>(x - mLastMousePos.x));

548 TOPICS

 float dy = XMConvertToRadians(
 0.25f*static_cast<float>(y - mLastMousePos.y));

 mCamera.Pitch(dy);
 mCamera.RotateY(dx);
 }

 mLastMousePos.x = x;
 mLastMousePos.y = y;
}

Finally, for rendering, the view and projection matrices can be accessed from the
camera instance:

mCamera.UpdateViewMatrix();

XMMATRIX view = mCamera.View();
XMMATRIX proj = mCamera.Proj();

15.5 DYNAMIC INDEXING

The idea of dynamic indexing is relatively straightforward. We dynamically index
into an array of resources in a shader program; in this demo, the resources will be
an array of textures. The index can be specified in various ways:

1. The index can be an element in a constant buffer.

2. The index can be a system ID like SV_PrimitiveID, SV_VertexID, SV_

DispatchThreadID, or SV_InstanceID.

3. The index can be the result of come calculation.

4. The index can come from a texture.

5. The index can come from a component of the vertex structure.

Figure 15.2. Screenshot of the camera demo. Use the ‘W’, ‘S’, ‘A’, and ‘D’ keys to move forward, backward,
strafe left, and strafe right, respectively. Hold the left mouse button down and move the mouse to “look” in
different directions.

BUILDING A FIRST PERSON CAMERA AND DYNAMIC INDEXING 549

The following shader syntax declares a texture array of 4 elements and shows how
we can index into the texture array where the index comes from a constant buffer:

cbuffer cbPerDrawIndex : register(b0)
{
 int gDiffuseTexIndex;
};

Texture2D gDiffuseMap[4] : register(t0);

float4 texValue = gDiffuseMap[gDiffuseTexIndex].Sample(
 gsamLinearWrap, pin.TexC);

For this demo, our goal is the following: we want to minimize the number of
descriptors we set on a per render-item basis. Right now we set the object constant
buffer, the material constant buffer, and the diffuse texture map SRV on a per
render-item basis. Minimizing the number of descriptors we need to set will make
our root signature smaller, which means less overhead per draw call; moreover,
this technique of dynamic indexing will prove especially useful with instancing
(the topic of the next chapter). Our strategy is as follows:

1. Create a structured buffer that stores all of the material data. That is,
instead of storing our material data in constant buffers, we will store it in a
structured buffer. A structured buffer can be indexed in a shader program.
This structured buffer will be bound to the rendering pipeline once per frame
making all materials visible to the shader programs.

2. Add a MaterialIndex field to our object constant buffer to specify the index of
the material to use for this draw call. In our shader programs, we use this to
index into the material structured buffer.

3. Bind all of the texture SRV descriptors used in the scene once per frame,
instead of binding one texture SRV per render-item.

4. Add a DiffuseMapIndex field to the material data that specifies the texture map
associated with the material. We use this to index into the array of textures we
bound to the pipeline in the previous step.

With this setup, we only need to set a per object constant buffer for each render-
item. Once we have that, we use the MaterialIndex to fetch the material to use for
the draw call, and from that we use the DiffuseMapIndex to fetch the texture to use
for the draw call.

Recall that a structured buffer is just an array of data of some type that can live
in GPU memory and be accessed by shader programs. Because we still need to be
able to update materials on the fl y, we use an upload buffer rather than a default
buffer. The material structured buffer replaces our material constant buffer in
the frame resources class and is created like so:

Note:

550 TOPICS

struct MaterialData
{
 DirectX::XMFLOAT4 DiffuseAlbedo = { 1.0f, 1.0f, 1.0f, 1.0f };
 DirectX::XMFLOAT3 FresnelR0 = { 0.01f, 0.01f, 0.01f };
 float Roughness = 64.0f;

 // Used in texture mapping.
 DirectX::XMFLOAT4X4 MatTransform = MathHelper::Identity4x4();

 UINT DiffuseMapIndex = 0;
 UINT MaterialPad0;
 UINT MaterialPad1;
 UINT MaterialPad2;
};

MaterialBuffer = std::make_unique<UploadBuffer<MaterialData>>(
 device, materialCount, false);

Other than that, the code for the material structured buffer is not much different
from the code with the material constant buffer.

We update the root signature based on the new data the shader expects as input:

CD3DX12_DESCRIPTOR_RANGE texTable;
texTable.Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 4, 0, 0);

// Root parameter can be a table, root descriptor or root constants.
CD3DX12_ROOT_PARAMETER slotRootParameter[4];

// Perfomance TIP: Order from most frequent to least frequent.
slotRootParameter[0].InitAsConstantBufferView(0);
slotRootParameter[1].InitAsConstantBufferView(1);
slotRootParameter[2].InitAsShaderResourceView(0, 1);
slotRootParameter[3].InitAsDescriptorTable(1, &texTable, D3D12_SHADER_

VISIBILITY_PIXEL);

auto staticSamplers = GetStaticSamplers();

// A root signature is an array of root parameters.
CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(4, slotRootParameter,
 (UINT)staticSamplers.size(), staticSamplers.data(),
 D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

Now, before we draw any render-items, we can bind all of our materials and
texture SRVs once per frame rather than per-render-item, and then each render-
item just sets the object constant buffer:

void CameraAndDynamicIndexingApp::Draw(const GameTimer& gt)
{
 ...
 auto passCB = mCurrFrameResource->PassCB->Resource();
 mCommandList->SetGraphicsRootConstantBufferView(1, passCB-

>GetGPUVirtualAddress());

BUILDING A FIRST PERSON CAMERA AND DYNAMIC INDEXING 551

 // Bind all the materials used in this scene. For structured buffers,
 // we can bypass the heap and set as a root descriptor.
 auto matBuffer = mCurrFrameResource->MaterialBuffer->Resource();
 mCommandList->SetGraphicsRootShaderResourceView(2,
 matBuffer->GetGPUVirtualAddress());

 // Bind all the textures used in this scene. Observe
 // that we only have to specify the first descriptor in the table.
 // The root signature knows how many descriptors are expected in the

table.
 mCommandList->SetGraphicsRootDescriptorTable(3,
 mSrvDescriptorHeap->GetGPUDescriptorHandleForHeapStart());

 DrawRenderItems(mCommandList.Get(), mOpaqueRitems);
 ...
}

void CameraAndDynamicIndexingApp::DrawRenderItems(
 ID3D12GraphicsCommandList* cmdList,
 const std::vector<RenderItem*>& ritems)
{
 ...
 // For each render item...
 for(size_t i = 0; i < ritems.size(); ++i)
 {
 auto ri = ritems[i];
 ...

 cmdList->SetGraphicsRootConstantBufferView(0, objCBAddress);

 cmdList->DrawIndexedInstanced(ri->IndexCount, 1,
 ri->StartIndexLocation, ri->BaseVertexLocation, 0);
 }
}

We note that the ObjectConstants structure has been updated to have a
MaterialIndex. The value you set for this is the same index you would have used to
offset into the material constant buffer:

// UpdateObjectCBs...
ObjectConstants objConstants;
XMStoreFloat4x4(&objConstants.World, XMMatrixTranspose(world));
XMStoreFloat4x4(&objConstants.TexTransform, XMMatrixTranspose(texTransform));
objConstants.MaterialIndex = e->Mat->MatCBIndex;

The modified shader code demonstrating dynamic indexing is included below
with relevant sections bolded:

// Include structures and functions for lighting.
#include “LightingUtil.hlsl”

struct MaterialData
{
 float4 DiffuseAlbedo;

552 TOPICS

 float3 FresnelR0;
 float Roughness;
 float4x4 MatTransform;
 uint DiffuseMapIndex;
 uint MatPad0;
 uint MatPad1;
 uint MatPad2;
};

// An array of textures, which is only supported in shader model 5.1+. Unlike
// Texture2DArray, the textures in this array can be different sizes and
// formats, making it more flexible than texture arrays.
Texture2D gDiffuseMap[4] : register(t0);

// Put in space1, so the texture array does not overlap with these resources.
// The texture array will occupy registers t0, t1, ..., t3 in space0.
StructuredBuffer<MaterialData> gMaterialData : register(t0, space1);

SamplerState gsamPointWrap : register(s0);
SamplerState gsamPointClamp : register(s1);
SamplerState gsamLinearWrap : register(s2);
SamplerState gsamLinearClamp : register(s3);
SamplerState gsamAnisotropicWrap : register(s4);
SamplerState gsamAnisotropicClamp : register(s5);

// Constant data that varies per frame.
cbuffer cbPerObject : register(b0)
{
 float4x4 gWorld;
 float4x4 gTexTransform;
 uint gMaterialIndex;
 uint gObjPad0;
 uint gObjPad1;
 uint gObjPad2;
};

// Constant data that varies per material.
cbuffer cbPass : register(b1)
{
 float4x4 gView;
 float4x4 gInvView;
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gViewProj;
 float4x4 gInvViewProj;
 float3 gEyePosW;
 float cbPerObjectPad1;
 float2 gRenderTargetSize;
 float2 gInvRenderTargetSize;
 float gNearZ;
 float gFarZ;
 float gTotalTime;
 float gDeltaTime;

BUILDING A FIRST PERSON CAMERA AND DYNAMIC INDEXING 553

 float4 gAmbientLight;

 // Indices [0, NUM_DIR_LIGHTS) are directional lights;
 // indices [NUM_DIR_LIGHTS, NUM_DIR_LIGHTS+NUM_POINT_LIGHTS) are point lights;
 // indices [NUM_DIR_LIGHTS+NUM_POINT_LIGHTS,
 // NUM_DIR_LIGHTS+NUM_POINT_LIGHT+NUM_SPOT_LIGHTS)
 // are spot lights for a maximum of MaxLights per object.
 Light gLights[MaxLights];
};

struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
 float2 TexC : TEXCOORD;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 NormalW : NORMAL;
 float2 TexC : TEXCOORD;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout = (VertexOut)0.0f;

 // Fetch the material data.
 MaterialData matData = gMaterialData[gMaterialIndex];

 // Transform to world space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);
 vout.PosW = posW.xyz;

 // Assumes nonuniform scaling; otherwise, need to use inverse-transpose
 // of world matrix.
 vout.NormalW = mul(vin.NormalL, (float3x3)gWorld);

 // Transform to homogeneous clip space.
 vout.PosH = mul(posW, gViewProj);

 // Output vertex attributes for interpolation across triangle.
 float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform);
 vout.TexC = mul(texC, matData.MatTransform).xy;

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 // Fetch the material data.
 MaterialData matData = gMaterialData[gMaterialIndex];

554 TOPICS

 float4 diffuseAlbedo = matData.DiffuseAlbedo;
 float3 fresnelR0 = matData.FresnelR0;
 float roughness = matData.Roughness;
 uint diffuseTexIndex = matData.DiffuseMapIndex;

 // Dynamically look up the texture in the array.
 diffuseAlbedo *= gDiffuseMap[diffuseTexIndex].Sample(gsamLinearWrap, pin.TexC);

 // Interpolating normal can unnormalize it, so renormalize it.
 pin.NormalW = normalize(pin.NormalW);

 // Vector from point being lit to eye.
 float3 toEyeW = normalize(gEyePosW - pin.PosW);

 // Light terms.
 float4 ambient = gAmbientLight*diffuseAlbedo;

 Material mat = { diffuseAlbedo, fresnelR0, roughness };
 float4 directLight = ComputeDirectLighting(gLights, mat, pin.PosW, pin.
NormalW, toEyeW);

 float4 litColor = ambient + directLight;

 // Common convention to take alpha from diffuse albedo.
 litColor.a = diffuseAlbedo.a;

 return litColor;
}

The above shader code demonstrated writing an explicit register space:

StructuredBuffer<MaterialData> gMaterialData : register(t0, space1);

If you do not explicitly specify a space, it defaults to space0. A space just gives you
another dimension to specify a shader register and is used to prevent resource
overlap. For example, we can put multiple resources in register t0 if they are in
different spaces:

Texture2D gDiffuseMap : register(t0, space0);
Texture2D gNormalMap : register(t0, space1);
Texture2D gShadowMap : register(t0, space2);

They are often used when there are arrays of resources. For example, the following
4 element texture array occupies registers t0, t1, t2, and t3:
Texture2D gDiffuseMap[4] : register(t0);

We could have counted and fi gured out that the next free register was t4, or we
could just not worry about it and introduce a new space:

// Put in space1, so the texture array does not overlap with these
// resources.
// The texture array will occupy registers t0, t1, ..., t3 in space0.

 StructuredBuffer<MaterialData> gMaterialData : register(t0, space1);

Note:

BUILDING A FIRST PERSON CAMERA AND DYNAMIC INDEXING 555

To conclude this section, three additional uses of dynamic indexing are given:

1. Merging nearby meshes with different textures into a single render-item so
that they can be drawn with one draw call. The meshes could store the texture/
material to use as an attribute in the vertex structure.

2. Multitexturing in a single rendering-pass where the textures have different
sizes and formats.

3. Instancing render-items with different textures and materials using the
SV_InstanceID value as an index. We will see an example of this in the next
chapter.

15.6 SUMMARY

1. We define the camera coordinate system by specifying its position and
orientation. The position is specified by a position vector relative to the world
coordinate system, and the orientation is specified by three orthonormal
vectors relative to the world coordinate system: a right, up, and look vector.
Moving the camera amounts to moving the camera coordinate system relative
to the world coordinate system.

2. We included projection related quantities in the camera class, as the
perspective projection matrix can be thought of as the “lens” of the camera by
controlling the field of view, and near and far planes.

3. Moving forward and backwards can be implemented simply by translating
the camera position along its look vector. Strafing right and left can be
implemented simply by translating the camera position along its right vector.
Looking up and down can be achieved by rotating the camera’s look and up
vectors around its right vector. Looking left and right can be implemented by
rotating all the basis vectors around the world’s y-axis.

4. Dynamic indexing is new to shader model 5.1 and and allows us to dynamically
index an array of texture resources, where the textures in this array can be
different sizes and formats. One application of this is to bind all of our texture
descriptors once per frame, and then index into the texture array in the pixel
shader to use the appropriate texture for a given pixel.

556 TOPICS

15.7 EXERCISES

1. Given the world space axes and origin in world coordinates: i  (1, 0, 0),
j  (0, 1, 0), k  (0, 0, 1) and O  (0, 0, 0), and the view space axes and origin
in world coordinates: u  (ux, uy, uz), v  (vx, vy, vz), w  (wx, wy, wz) and
Q  (Qx, Qy, Qz), derive the view matrix form

0

0

0

1

x x x

y y y

z z z

u v w

u v w

u v w

 
 
 
 
       

V

Q u Q v Q w

 using the dot product. (Remember, to find the change of coordinate matrix
from world space to view space, you just need to describe the world space axes
and origin with coordinates relative to view space. Then these coordinates
become the rows of the view matrix.)

2. Modify the camera demo to support “roll.” This is where the camera rotates
around its look vector. This could be useful for an ai rcraft game.

3. Suppose you have a scene with five boxes at different positions and each box
has a different texture. Create a single mesh that stores the geometry for the
five boxes at the different positions, and create a single render-item for the five
boxes. Add an additional field to the vertex structure that is an index to the
texture to use. For example, the vertices of box 0 will have a texture index of 0
so that box 0 is textured with texture 0, the vertices of box 1 will have a texture
index of 1 so that box 1 is textured with texture 1, etc. Bind all five textures to
the pipeline once per frame, and use the vertex structure index to select the
texture to use in the pixel shader. Observe that we have drawn five boxes with
five different textures with one draw call. If draw calls were a bottleneck in
your application, merging nearby geometries into one render item like this
could be an optimization for your application.

Chapter

557

16Chapter

INSTANCING
AND FRUSTUM
CULLING

In this chapter, we study instancing and frustum culling. Instancing refers
to drawing the same object more than once in a scene. Instancing can provide
significant optimization, and so there is dedicated Direct3D support for
instancing. Frustum culling refers to rejecting entire groups of triangles from
further processing that are outside the viewing frustum with a simple test.

Objectives:
1. To learn how to implement hardware instancing.

2. To become familiar with bounding volumes, why they are useful, how to
create them, and how to use them.

3. To discover how to implement frustum culling.

16.1 HARDWARE INSTANCING

Instancing refers to drawing the same object more than once in a scene, but with
different positions, orientations, scales, materials, and textures. Here are a few
examples:

1. A few different tree models are drawn multiple times to build a forest.

558 TOPICS

2. A few different asteroid models are drawn multiple times to build an asteroid
field.

3. A few different character models are drawn multiple times to build a crowd
of people.

It would be wasteful to duplicate the vertex and index data for each instance.
Instead, we store a single copy of the geometry (i.e., vertex and index lists) relative
to the object’s local space. Then we draw the object several times, but each time
with a different world matrix and a different material if additional variety is
desired.

Although this strategy saves memory, it still requires per-object API overhead.
That is, for each object, we must set its unique material, its world matrix, and
invoke a draw command. Although Direct3D 12 was redesigned to minimize a
lot of the API overhead that existed in Direct3D 11 when executing a draw call,
there is still some overhead. The Direct3D instancing API allows you to instance
an object multiple times with a single draw call; and moreover, with dynamic
indexing (covered in the previous chapter), instancing is more fl exible than in
Direct3D 11.

Why the concern about API overhead? It was common for Direct3D 11
applications to be CPU bound due to the API overhead (this means the CPU
was the bottleneck, not the GPU). The reason for this is that level designers
like to draw many objects with unique materials and textures, and this requires
state changes and draw calls for each object. When there is a high-level of CPU
overhead for each API call, scenes would be limited to a few thousand draw calls
in order to still maintain real-time rendering speeds. Graphics engines would
then employ batching techniques (see [Wloka03]) to minimize the number
of draw calls. Hardware instancing is one aspect where the API helps perform
batching.

16.1.1 Drawing Instanced Data
Perhaps surprisingly, we have already been drawing instanced data in all the
previous chapter demos. However, the instance count has always been 1 (second
parameter):

 cmdList->DrawIndexedInstanced(ri->IndexCount, ,
 ri->StartIndexLocation, ri->BaseVertexLocation, 0);

The second parameter, InstanceCount, specifies the number of times to instance
the geometry we are drawing. If we specify ten, the geometry will be drawn 10
times.

Note:

INSTANCING AND FRUSTUM CULLING 559

Drawing an object ten times alone does not really help us, though. The object will
be drawn in the same place using the same materials and textures. So the next step
is to figure out how to specify additional per-instance data so that we can vary the
instances by rendering them with different transforms, materials, and textures.

16.1.2 Instance Data
The previous version of this book obtained instance data from the input
assembly stage. When creating an input layout, you can specify that data streams
in per-instance rather than at a per-vertex frequency by using D3D12_INPUT_
CLASSIFICATION_PER_INSTANCE_DATA instead of D3D12_INPUT_CLASSIFICATION_PER_
VERTEX_DATA, respectively. You would then bind a secondary vertex buffer to the
input stream that contained the instancing data. Direct3D 12 still supports this
way of feeding instancing data into the pipeline, but we opt for a more modern
approach.

The modern approach is to create a structured buffer that contains the per-
instance data for all of our instances. For example, if we were going to instance an
object 100 times, we would create a structured buffer with 100 per-instance data
elements. We then bind the structured buffer resource to the rendering pipeline,
and index into it in the vertex shader based on the instance we are drawing.
How do we know which instance is being drawn in the vertex shader? Direct3D
provides the system value identifi er SV_InstanceID which you can use in your
vertex shader. For example, vertices of the fi rst instance will have id 0, vertices of
the second instance will have id 1, and so on. So in our vertex shader, we can index
into the structured buffer to fetch the per-instance data we need. The following
shader code shows how this all works:

// Defaults for number of lights.
#ifndef NUM_DIR_LIGHTS
 #define NUM_DIR_LIGHTS 3
#endif

#ifndef NUM_POINT_LIGHTS
 #define NUM_POINT_LIGHTS 0
#endif

#ifndef NUM_SPOT_LIGHTS
 #define NUM_SPOT_LIGHTS 0
#endif

// Include structures and functions for lighting.
#include "LightingUtil.hlsl"

struct InstanceData
{
 float4x4 World;

560 TOPICS

 float4x4 TexTransform;
 uint MaterialIndex;
 uint InstPad0;
 uint InstPad1;
 uint InstPad2;
};

struct MaterialData
{
 float4 DiffuseAlbedo;
 float3 FresnelR0;
 float Roughness;
 float4x4 MatTransform;
 uint DiffuseMapIndex;
 uint MatPad0;
 uint MatPad1;
 uint MatPad2;
};

// An array of textures, which is only supported in shader model 5.1+.
// Unlike Texture2DArray, the textures in this array can be different
// sizes and formats, making it more flexible than texture arrays.
Texture2D gDiffuseMap[7] : register(t0);

// Put in space1, so the texture array does not overlap with these.
// The texture array above will occupy registers t0, t1, ..., t6 in
// space0.
StructuredBuffer<InstanceData> gInstanceData : register(t0, space1);
StructuredBuffer<MaterialData> gMaterialData : register(t1, space1);

SamplerState gsamPointWrap : register(s0);
SamplerState gsamPointClamp : register(s1);
SamplerState gsamLinearWrap : register(s2);
SamplerState gsamLinearClamp : register(s3);
SamplerState gsamAnisotropicWrap : register(s4);
SamplerState gsamAnisotropicClamp : register(s5);

// Constant data that varies per pass.
cbuffer cbPass : register(b0)
{
 float4x4 gView;
 float4x4 gInvView;
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gViewProj;
 float4x4 gInvViewProj;
 float3 gEyePosW;
 float cbPerObjectPad1;
 float2 gRenderTargetSize;
 float2 gInvRenderTargetSize;
 float gNearZ;
 float gFarZ;
 float gTotalTime;
 float gDeltaTime;
 float4 gAmbientLight;

INSTANCING AND FRUSTUM CULLING 561

 // Indices [0, NUM_DIR_LIGHTS) are directional lights;
 // indices [NUM_DIR_LIGHTS, NUM_DIR_LIGHTS+NUM_POINT_LIGHTS) are

point lights;
 // indices [NUM_DIR_LIGHTS+NUM_POINT_LIGHTS,
 // NUM_DIR_LIGHTS+NUM_POINT_LIGHT+NUM_SPOT_LIGHTS)
 // are spot lights for a maximum of MaxLights per object.
 Light gLights[MaxLights];
};

struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
 float2 TexC : TEXCOORD;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 NormalW : NORMAL;
 float2 TexC : TEXCOORD;

 // nointerpolation is used so the index is not interpolated
 // across the triangle.
 nointerpolation uint MatIndex : MATINDEX;
};

VertexOut VS(VertexIn vin, uint instanceID : SV_InstanceID)
{
 VertexOut vout = (VertexOut)0.0f;

 // Fetch the instance data.
 InstanceData instData = gInstanceData[instanceID];
 float4x4 world = instData.World;
 float4x4 texTransform = instData.TexTransform;
 uint matIndex = instData.MaterialIndex;

 vout.MatIndex = matIndex;

 // Fetch the material data.
 MaterialData matData = gMaterialData[matIndex];

 // Transform to world space.
 float4 posW = mul(float4(vin.PosL, 1.0f), world);
 vout.PosW = posW.xyz;

 // Assumes nonuniform scaling; otherwise, need to use inverse-
transpose

 // of world matrix.
 vout.NormalW = mul(vin.NormalL, (float3x3)world);

 // Transform to homogeneous clip space.

562 TOPICS

 vout.PosH = mul(posW, gViewProj);

 // Output vertex attributes for interpolation across triangle.
 float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), texTransform);
 vout.TexC = mul(texC, matData.MatTransform).xy;

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 // Fetch the material data.
 MaterialData matData = gMaterialData[pin.MatIndex];
 float4 diffuseAlbedo = matData.DiffuseAlbedo;
 float3 fresnelR0 = matData.FresnelR0;
 float roughness = matData.Roughness;
 uint diffuseTexIndex = matData.DiffuseMapIndex;

 // Dynamically look up the texture in the array.
 diffuseAlbedo *= gDiffuseMap[diffuseTexIndex].Sample(gsamLinearWrap,

pin.TexC);

 // Interpolating normal can unnormalize it, so renormalize it.
 pin.NormalW = normalize(pin.NormalW);

 // Vector from point being lit to eye.
 float3 toEyeW = normalize(gEyePosW - pin.PosW);

 // Light terms.
 float4 ambient = gAmbientLight*diffuseAlbedo;

 Material mat = { diffuseAlbedo, fresnelR0, roughness };
 float4 directLight = ComputeDirectLighting(gLights, mat,
 pin.PosW, pin.NormalW, toEyeW);

 float4 litColor = ambient + directLight;

 // Common convention to take alpha from diffuse albedo.
 litColor.a = diffuseAlbedo.a;

 return litColor;
}

Note that we no longer have a per-object constant buffer. The per-object data
comes from the instance buffer. Observe also how we use dynamic indexing to
associate a different material for each instance, and a different texture. We are able
to get quite a lot of per-instance variety in a single draw call! For completeness,
the corresponding root signature description is shown below that corresponds to
the above shader programs:

CD3DX12_DESCRIPTOR_RANGE texTable;
texTable.Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 7, 0, 0);

INSTANCING AND FRUSTUM CULLING 563

// Root parameter can be a table, root descriptor or root constants.
CD3DX12_ROOT_PARAMETER slotRootParameter[4];

// Perfomance TIP: Order from most frequent to least frequent.
slotRootParameter[0].InitAsShaderResourceView(0, 1);
slotRootParameter[1].InitAsShaderResourceView(1, 1);
slotRootParameter[2].InitAsConstantBufferView(0);
slotRootParameter[3].InitAsDescriptorTable(1, &texTable, D3D12_SHADER_

VISIBILITY_PIXEL);

auto staticSamplers = GetStaticSamplers();

// A root signature is an array of root parameters.
CD3DX12_ROOT_SIGNATURE_DESC rootSigDesc(4, slotRootParameter,
 (UINT)staticSamplers.size(), staticSamplers.data(),
 D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

As in the last chapter, we bind all the scene materials and textures once per-frame,
and the only per draw call resource we need to set is the structured buffer with the
instanced data:

void InstancingAndCullingApp::Draw(const GameTimer& gt)
{
 ...
 // Bind all the materials used in this scene. For structured buffers,

we
 // can bypass the heap and set as a root descriptor.
 auto matBuffer = mCurrFrameResource->MaterialBuffer->Resource();
 mCommandList->SetGraphicsRootShaderResourceView(1, matBuffer-

>GetGPUVirtualAddress());

 auto passCB = mCurrFrameResource->PassCB->Resource();
 mCommandList->SetGraphicsRootConstantBufferView(2, passCB-

>GetGPUVirtualAddress());

 // Bind all the textures used in this scene.
 mCommandList->SetGraphicsRootDescriptorTable(3,
 mSrvDescriptorHeap->GetGPUDescriptorHandleForHeapStart());

 DrawRenderItems(mCommandList.Get(), mOpaqueRitems);
 ...
}

void InstancingAndCullingApp::DrawRenderItems(
 ID3D12GraphicsCommandList* cmdList,
 const std::vector<RenderItem*>& ritems)
{
 // For each render item...
 for(size_t i = 0; i < ritems.size(); ++i)
 {
 auto ri = ritems[i];

 cmdList->IASetVertexBuffers(0, 1, &ri->Geo->VertexBufferView());
 cmdList->IASetIndexBuffer(&ri->Geo->IndexBufferView());
 cmdList->IASetPrimitiveTopology(ri->PrimitiveType);

564 TOPICS

 // Set the instance buffer to use for this render-item.
 // For structured buffers, we can bypass
 // the heap and set as a root descriptor.
 auto instanceBuffer = mCurrFrameResource->InstanceBuffer-

>Resource();
 mCommandList->SetGraphicsRootShaderResourceView(
 0, instanceBuffer->GetGPUVirtualAddress());

 cmdList->DrawIndexedInstanced(ri->IndexCount,
 ri->InstanceCount, ri->StartIndexLocation,
 ri->BaseVertexLocation, 0);
 }
}

16.1.3 Creating the Instanced Buffer
The instance buffer stores the data that varies per-instance. It looks a lot like the
data we previously put in our per-object constant buffer. On the CPU side, our
instance data structure looks like this:

struct InstanceData
{
 DirectX::XMFLOAT4X4 World = MathHelper::Identity4x4();
 DirectX::XMFLOAT4X4 TexTransform = MathHelper::Identity4x4();
 UINT MaterialIndex;
 UINT InstancePad0;
 UINT InstancePad1;
 UINT InstancePad2;
};

The per-instance data in system memory is stored as part of the render-item
structure, as the render-item maintains how many times it should be instanced:

struct RenderItem
{
 ...

 std::vector<InstanceData> Instances;

 ...
};

For the GPU to consume the instance data, we need to create a structured buffer
with element type InstanceData. Moreover, this buffer will be dynamic (i.e.,
an upload buffer) so that we can update it every frame; in our demo, we copy
the instanced data of only the visible instances into the structure buffer (this is
related to frustum culling, see §16.3), and the set of visible instances will change
as the camera moves/looks around. Creating a dynamic buffer is simple with our
UploadBuffer helper class:

INSTANCING AND FRUSTUM CULLING 565

struct FrameResource
{
public:

 FrameResource(ID3D12Device* device, UINT passCount,
 UINT maxInstanceCount, UINT materialCount);
 FrameResource(const FrameResource& rhs) = delete;
 FrameResource& operator=(const FrameResource& rhs) = delete;
 ~FrameResource();

 // We cannot reset the allocator until the GPU is done processing the
commands.
 // So each frame needs their own allocator.
 Microsoft::WRL::ComPtr<ID3D12CommandAllocator> CmdListAlloc;

 // We cannot update a cbuffer until the GPU is done processing the commands
 // that reference it. So each frame needs their own cbuffers.
 // std::unique_ptr<UploadBuffer<FrameConstants>> FrameCB = nullptr;
 std::unique_ptr<UploadBuffer<PassConstants>> PassCB = nullptr;
 std::unique_ptr<UploadBuffer<MaterialData>> MaterialBuffer = nullptr;

 // NOTE: In this demo, we instance only one render-item, so we only have
 // one structured buffer to store instancing data. To make this more
 // general (i.e., to support instancing multiple render-items), you
 // would need to have a structured buffer for each render-item, and
 // allocate each buffer with enough room for the maximum number of
 // instances you would ever draw. This sounds like a lot, but it is
 // actually no more than the amount of per-object constant data we
 // would need if we were not using instancing. For example, if we
 // were drawing 1000 objects without instancing, we would create a
 // constant buffer with enough room for a 1000 objects. With instancing,
 // we would just create a structured buffer large enough to store the
 // instance data for 1000 instances.
 std::unique_ptr<UploadBuffer<InstanceData>> InstanceBuffer = nullptr;

 // Fence value to mark commands up to this fence point. This lets us
 // check if these frame resources are still in use by the GPU.
 UINT64 Fence = 0;
};

FrameResource::FrameResource(ID3D12Device* device,
 UINT passCount, UINT maxInstanceCount, UINT materialCount)
{
 ThrowIfFailed(device->CreateCommandAllocator(
 D3D12_COMMAND_LIST_TYPE_DIRECT,
 IID_PPV_ARGS(CmdListAlloc.GetAddressOf())));

 PassCB = std::make_unique<UploadBuffer<PassConstants>>(
 device, passCount, true);
 MaterialBuffer = std::make_unique<UploadBuffer<MaterialData>>(
 device, materialCount, false);
 InstanceBuffer = std::make_unique<UploadBuffer<InstanceData>>(
 device, maxInstanceCount, false);
}

566 TOPICS

Note that InstanceBuffer is not a constant buffer, so we specify false for the last
parameter.

16.2 BOUNDING VOLUMES AND FRUSTUMS

In order to implement frustum culling, we need to become familiar with the
mathematical representation of a frustum and various bounding volumes.
Bounding volumes are primitive geometric objects that approximate the volume
of an object—see Figure 16.1. The tradeoff is that although the bounding volume
only approximates the object its form has a simple mathematical representation,
which makes it easy to work with.

16.2.1 DirectX Math Collision
We use the DirectXCollision.h utility library, which is part of DirectX Math.
This library provides fast implementations to common geometric primitive
intersection tests such as ray/triangle intersection, ray/box intersection, box/box
intersection, box/plane intersection, box/frustum, sphere/frustum, and much
more. Exercise 3 asks you to explore this library to get familiar with what it offers.

16.2.2 Boxes
The axis-aligned bounding box (AABB) of a mesh is a box that tightly surrounds
the mesh and such that its faces are parallel to the major axes. An AABB can
be described by a minimum point vmin and a maximum point vmax (see Figure
16.2). The minimum point vmin is found by searching through all the vertices of
the mesh and finding the minimum x-, y-, and z-coordinates, and the maximum
point vmax is found by searching through all the vertices of the mesh and finding
the maximum x-, y-, and z-coordinates.

Figure 16.1. A mesh rendered with its AABB and bounding sphere.

INSTANCING AND FRUSTUM CULLING 567

Alternatively, an AABB can be represented with the box center point c and
extents vector e, which stores the distance from the center point to the sides of the
box along the coordinate axes (see Figure 16.3).
The DirectX collision library uses the center/extents representation:

struct BoundingBox
{
 static const size_t CORNER_COUNT = 8;

 XMFLOAT3 Center; // Center of the box.
 XMFLOAT3 Extents; // Distance from the center to each side.

 ...

It is easy to convert from one representation to the other. For example, given a
bounding box defined by vmin and vmax, the center/extents representation is given
by:

  0.5 min max c v v

  0.5 max min e v v

The following code shows how we compute the bounding box of the skull mesh in
this chapter’s demo:

XMFLOAT3 vMinf3(+MathHelper::Infinity, +MathHelper::Infinity,
+MathHelper::Infinity);

XMFLOAT3 vMaxf3(-MathHelper::Infinity, -MathHelper::Infinity,
-MathHelper::Infinity);

Figure 16.3. The AABB of a set of points using center
and extents representation.

Figure 16.2. The AABB of a set of points using
minimum and maximum point representation.

568 TOPICS

XMVECTOR vMin = XMLoadFloat3(&vMinf3);
XMVECTOR vMax = XMLoadFloat3(&vMaxf3);

std::vector<Vertex> vertices(vcount);
for(UINT i = 0; i < vcount; ++i)
{
 fin >> vertices[i].Pos.x >> vertices[i].Pos.y >> vertices[i].Pos.z;
 fin >> vertices[i].Normal.x >> vertices[i].Normal.y >> vertices[i].

Normal.z;

 XMVECTOR P = XMLoadFloat3(&vertices[i].Pos);

 // Project point onto unit sphere and generate spherical texture
coordinates.

 XMFLOAT3 spherePos;
 XMStoreFloat3(&spherePos, XMVector3Normalize(P));

 float theta = atan2f(spherePos.z, spherePos.x);

 // Put in [0, 2pi].
 if(theta < 0.0f)
 theta += XM_2PI;

 float phi = acosf(spherePos.y);

 float u = theta / (2.0f*XM_PI);
 float v = phi / XM_PI;

 vertices[i].TexC = { u, v };

 vMin = XMVectorMin(vMin, P);
 vMax = XMVectorMax(vMax, P);
}

BoundingBox bounds;
XMStoreFloat3(&bounds.Center, 0.5f*(vMin + vMax));
XMStoreFloat3(&bounds.Extents, 0.5f*(vMax - vMin));

The XMVectorMin and XMVectorMax functions return the vectors:

    , min(,),min(,),min(,),min(,)x x y y z z w wu v u v u v u vmin u v

  , max(,),max(,),max(,),max(,)x x y y z z w wu v u v u v u vmax(u v)

16.2.2.1 Rotations and Axis-Aligned Bounding Boxes

Figure 16.4 shows that a box axis-aligned in one coordinate system may not be
axis-aligned with a different coordinate system. In particular, if we compute the
AABB of a mesh in local space, it gets transformed to an oriented bounding box
(OBB) in world space. However, we can always transform into the local space of
the mesh and do the intersection there where the box is axis-aligned.

INSTANCING AND FRUSTUM CULLING 569

Alternatively, we can recompute the AABB in the world space, but this can
result in a “fatter” box that is a poorer approximation to the actual volume (see
Figure 16.5).

Yet another alternative is to abandon axis-aligned bounding boxes, and just work
with oriented bounding boxes, where we maintain the orientation of the box
relative to the world space. The DirectX collision library provides the following
structure for representing an oriented bounding box.

struct BoundingOrientedBox
{
 static const size_t CORNER_COUNT = 8;

 XMFLOAT3 Center; // Center of the box.
 XMFLOAT3 Extents; // Distance from the center to each side.
 XMFLOAT4 Orientation; // Unit quaternion representing rotation

(box -> world).
 ...

In this chapter, you will see mention of quaternions for representing rotations/
orientations. Briefl y, a unit quaternion can represent a rotation just like a
rotation matrix can. We cover quaternions in Chapter 22. For now, just think of
it as representing a rotation like a rotation matrix.

An AABB and OBB can also be constructed from a set of points using the DirectX
collision library with the following static member functions:

void BoundingBox::CreateFromPoints(
 Out BoundingBox& Out,
 In size_t Count,
 _In_reads_bytes_(sizeof(XMFLOAT3)+Stride*(Count-1)) const XMFLOAT3* pPoints,
 In size_t Stride);

void BoundingOrientedBox::CreateFromPoints(
 Out BoundingOrientedBox& Out,
 In size_t Count,
 _In_reads_bytes_(sizeof(XMFLOAT3)+Stride*(Count-1)) const XMFLOAT3* pPoints,
 In size_t Stride);

Note:

Figure 16.4. The bounding box is axis aligned with
the xy-frame, but not with the XY-frame.

Figure 16.5. The bounding box is axis aligned with
the XY-frame.

570 TOPICS

If your vertex structure looks like this:

struct Basic32
{
 XMFLOAT3 Pos;
 XMFLOAT3 Normal;
 XMFLOAT2 TexC;
};

And you have an array of vertices forming your mesh:

std::vector<Vertex::Basic32> vertices;

Then you call this function like so:

BoundingBox box;
BoundingBox::CreateFromPoints(
 box,
 vertices.size(),
 &vertices[0].Pos,
 sizeof(Vertex::Basic32));

The stride indicates how many bytes to skip to get to the next position element.

In order to compute bounding volumes of your meshes, you need to have a system
memory copy of your vertex list available, such as one stored in std::vector.
This is because the CPU cannot read from a vertex buffer created for rendering.
Therefore, it is common for applications to keep a system memory copy around
for things like this, as well as picking (Chapter 17), and collision detection.

16.2.3 Spheres
The bounding sphere of a mesh is a sphere that tightly surrounds the mesh. A
bounding sphere can be described with a center point and radius. One way to
compute the bounding sphere of a mesh is to first compute its AABB. We then
take the center of the AABB as the center of the bounding sphere:

 0.5()min max c v v

The radius is then taken to be the maximum distance between any vertex p in the
mesh from the center c:

    max || ||:r meshc p p

Suppose we compute the bounding sphere of a mesh in local space. After the
world transform, the bounding sphere may not tightly surround the mesh due to
scaling. Thus the radius needs to be rescaled accordingly. To compensate for non-
uniform scaling, we must scale the radius by the largest scaling component so
that the sphere encapsulates the transformed mesh. Another possible strategy is
to avoid scaling all together by having all your meshes modeled to the same scale

INSTANCING AND FRUSTUM CULLING 571

of the game world. This way, models will not need to be rescaled once loaded into
the application.

The DirectX collision library provides the following structure for representing
a bounding sphere:

struct BoundingSphere
{
 XMFLOAT3 Center; // Center of the sphere.
 float Radius; // Radius of the sphere.
 ...

And it provides the following static member function for creating one from a set
of points:

void BoundingSphere::CreateFromPoints(
 Out BoundingSphere& Out,
 In size_t Count,
 _In_reads_bytes_(sizeof(XMFLOAT3)+Stride*(Count-1)) const XMFLOAT3* pPoints,
 In size_t Stride);

16.2.4 Frustums
We are well familiar with frustums from Chapter 5. One way to specify a frustum
mathematically is as the intersection of six planes: the left/right planes, the top/
bottom planes, and the near/far planes. We assume the six frustum planes are
“inward” facing—see Figure 16.6.

This six plane representation makes it easy to do frustum and bounding volume
intersection tests.

16.2.4.1 Constructing the Frustum Planes

One easy way to construct the frustum planes is in view space, where the frustum
takes on a canonical form centered at the origin looking down the positive z-axis.

Figure 16.6. The intersection of the positive half spaces of the frustum planes defines the frustum volume.

572 TOPICS

Here, the near and far planes are trivially specified by their distances along the
z-axis, the left and right planes are symmetric and pass through the origin (see
Figure 16.6 again), and the top and bottom planes are symmetric and pass
through the origin. Consequently, we do not even need to store the full plane
equations to represent the frustum in view space, we just need the plane slopes
for the top/bottom/left/right planes, and the z distances for the near and far plane.
The DirectX collision library provides the following structure for representing a
frustum:

struct BoundingFrustum
{
 static const size_t CORNER_COUNT = 8;

 XMFLOAT3 Origin; // Origin of the frustum (and projection).
 XMFLOAT4 Orientation; // Quaternion representing rotation.

 float RightSlope; // Positive X slope (X/Z).
 float LeftSlope; // Negative X slope.
 float TopSlope; // Positive Y slope (Y/Z).
 float BottomSlope; // Negative Y slope.
 float Near, Far; // Z of the near plane and far plane.
 ...

In the local space of the frustum (e.g., view space for the camera), the Origin
would be zero, and the Orientation would represent an identity transform (no
rotation). We can position and orientate the frustum somewhere in the world by
specifying an Origin position and Orientation quaternion.

If we cached the frustum vertical fi eld of view, aspect ratio, near and far planes
of our camera, then we can determine the frustum plane equations in view space
with a little mathematical effort. However, it is also possible to derive the frustum
plane equations in view space from the projection matrix in a number of ways (see
[Lengyel02] or [Möller08] for two different ways). The XNA collision library takes
the following strategy. In NDC space, the view frustum has been warped into the
box [1,1] × [1,1] × [0,1]. So the eight corners of the view frustum are simply:

 // Corners of the projection frustum in homogenous space.
 static XMVECTORF32 HomogenousPoints[6] =
 {
 { 1.0f, 0.0f, 1.0f, 1.0f }, // right (at far plane)
 { -1.0f, 0.0f, 1.0f, 1.0f }, // left
 { 0.0f, 1.0f, 1.0f, 1.0f }, // top
 { 0.0f, -1.0f, 1.0f, 1.0f }, // bottom

 { 0.0f, 0.0f, 0.0f, 1.0f }, // near
 { 0.0f, 0.0f, 1.0f, 1.0f } // far
 };

We can compute the inverse of the projection matrix (as well is invert the
homogeneous divide), to transform the eight corners from NDC space back to

INSTANCING AND FRUSTUM CULLING 573

view space. One we have the eight corners of the frustum in view space, some
simple mathematics is used to compute the plane equations (again, this is simple
because in view space, the frustum is positioned at the origin, and axis aligned).
The following DirectX collision code computes the frustum in view space from a
projection matrix:

//--
// Build a frustum from a persepective projection matrix. The matrix may only
// contain a projection; any rotation, translation or scale will cause the
// constructed frustum to be incorrect.
//--
_Use_decl_annotations_
inline void XM_CALLCONV BoundingFrustum::CreateFromMatrix(
 BoundingFrustum& Out,
 FXMMATRIX Projection)
{
 // Corners of the projection frustum in homogenous space.
 static XMVECTORF32 HomogenousPoints[6] =
 {
 { 1.0f, 0.0f, 1.0f, 1.0f }, // right (at far plane)
 { -1.0f, 0.0f, 1.0f, 1.0f }, // left
 { 0.0f, 1.0f, 1.0f, 1.0f }, // top
 { 0.0f, -1.0f, 1.0f, 1.0f }, // bottom

 { 0.0f, 0.0f, 0.0f, 1.0f }, // near
 { 0.0f, 0.0f, 1.0f, 1.0f } // far
 };

 XMVECTOR Determinant;
 XMMATRIX matInverse = XMMatrixInverse(&Determinant, Projection);

 // Compute the frustum corners in world space.
 XMVECTOR Points[6];

 for(size_t i = 0; i < 6; ++i)
 {
 // Transform point.
 Points[i] = XMVector4Transform(HomogenousPoints[i], matInverse);
 }

 Out.Origin = XMFLOAT3(0.0f, 0.0f, 0.0f);
 Out.Orientation = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);

 // Compute the slopes.
 Points[0] = Points[0] * XMVectorReciprocal(XMVectorSplatZ(Points[0]));
 Points[1] = Points[1] * XMVectorReciprocal(XMVectorSplatZ(Points[1]));
 Points[2] = Points[2] * XMVectorReciprocal(XMVectorSplatZ(Points[2]));
 Points[3] = Points[3] * XMVectorReciprocal(XMVectorSplatZ(Points[3]));

 Out.RightSlope = XMVectorGetX(Points[0]);
 Out.LeftSlope = XMVectorGetX(Points[1]);
 Out.TopSlope = XMVectorGetY(Points[2]);
 Out.BottomSlope = XMVectorGetY(Points[3]);

574 TOPICS

 // Compute near and far.
 Points[4] = Points[4] * XMVectorReciprocal(XMVectorSplatW(Points[4]));
 Points[5] = Points[5] * XMVectorReciprocal(XMVectorSplatW(Points[5]));

 Out.Near = XMVectorGetZ(Points[4]);
 Out.Far = XMVectorGetZ(Points[5]);
}

16.2.4.2 Frustum/Sphere Intersection

For frustum culling, one test we will want to perform is a frustum/sphere
intersection test. This tells us whether a sphere intersects the frustum. Note that
a sphere completely inside the frustum counts as an intersection because we treat
the frustum as a volume, not just a boundary. Because we model a frustum as six
inward facing planes, a frustum/sphere test can be stated as follows: If there exists
a frustum plane L such that the sphere is in the negative half-space of L, then we
can conclude that the sphere is completely outside the frustum. If such a plane
does not exist, then we conclude that the sphere intersects the frustum.

So a frustum/sphere intersection test reduces to six sphere/plane tests. Figure 16.7
shows the setup of a sphere/plane intersection test. Let the sphere have center
point c and radius r. Then the signed distance from the center of the sphere to the
plane is k d  n c (Appendix C). If |k|  r then the sphere intersects the plane.
If k < r then the sphere is behind the plane. If k > r then the sphere is in front of
the plane and the sphere intersects the positive half-space of the plane. For the
purposes of the frustum/sphere intersection test, if the sphere is in front of the
plane, then we count it as an intersection because it intersects the positive half-
space the plane defi nes.

The BoundingFrustum class provides the following member function to test if a
sphere intersects a frustum. Note that the sphere and frustum must be in the same
coordinate system for the test to make sense.

enum ContainmentType
{
 // The object is completely outside the frustum.
 DISJOINT = 0,
 // The object intersects the frustum boundaries.

Figure 16.7. Sphere/plane intersection. (a) k > r and the sphere intersects the positive half-space of the
plane. (b) k < r and the sphere is completely behind the plane in the negative half-space. (c) |k| r and the
sphere intersects the plane.

INSTANCING AND FRUSTUM CULLING 575

 INTERSECTS = 1,
 // The object lies completely inside the frustum volume.
 CONTAINS = 2,
};
ContainmentType BoundingFrustum::Contains(
 In const BoundingSphere& sphere) const;

BoundingSphere contains a symmetrical member function:

ContainmentType BoundingSphere::Contains(
 In const BoundingFrustum& fr) const;

16.2.4.3 Frustum/AABB Intersection

The frustum/AABB intersection test follows the same strategy as the frustum/
sphere test. Because we model a frustum as six inward facing planes, a frustum/
AABB test can be stated as follows: If there exists a frustum plane L such that
the box is in the negative half-space of L, then we can conclude that the box is
completely outside the frustum. If such a plane does not exist, then we conclude
that the box intersects the frustum.

So a frustum/AABB intersection test reduces to six AABB/plane tests. The
algorithm for an AABB/plane test is as follows. Find the box diagonal vector

PQv
uuur

, passing through the center of the box, that is most aligned with the plane
normal n. From Figure 16.8, (a) if P is in front of the plane, then Q must be also
in front of the plane; (b) if Q is behind the plane, then P must be also be behind
the plane; (c) if P is behind the plane and Q is in front of the plane, then the box
intersects the plane.

Finding PQ most aligned with the plane normal vector n can be done with the
following code:

// For each coordinate axis x, y, z...
for(int j = 0; j < 3; ++j)
{
 // Make PQ point in the same direction as
 // the plane normal on this axis.
 if(planeNormal[j] >= 0.0f)
 {
 P[j] = box.minPt[j];

Note:

Figure 16.8. AABB/plane intersection test. The diagonal PQ
uuur

 is always the diagonal most directed with the
plane normal.

576 TOPICS

 Q[j] = box.maxPt[j];
 }
 else
 {
 P[j] = box.maxPt[j];
 Q[j] = box.minPt[j];
 }
}

This code just looks at one dimension at a time, and chooses Pi and Qi such that
Qi  Pi has the same sign as the plane normal coordinate ni (Figure 16.9).

The BoundingFrustum class provides the following member function to test if an
AABB intersects a frustum. Note that the AABB and frustum must be in the same
coordinate system for the test to make sense.

ContainmentType BoundingFrustum::Contains(
 In const BoundingBox& box) const;

BoundingBox contains a symmetrical member function:

ContainmentType BoundingBox::Contains(
 In const BoundingFrustum& fr) const;

16.3 FRUSTUM CULLING

Recall from Chapter 5 that the hardware automatically discards triangles that are
outside the viewing frustum in the clipping stage. However, if we have millions
of triangles, all the triangles are still submitted to the rendering pipeline via draw
calls (which has API overhead), and all the triangles go through the vertex shader,
possibly through the tessellation stages, and possibly through the geometry shader,
only to be discarded during the clipping stage. Clearly, this is wasteful inefficiency.

The idea of frustum culling is for the application code to cull groups of triangles
at a higher level than on a per-triangle basis. Figure 16.10 shows a simple example.
We build a bounding volume, such as a sphere or box, around each object in the
scene. If the bounding volume does not intersect the frustum, then we do not need

Note:

Figure 16.9. (Top) The normal component along the ith axis is positive, so we choose Pi = vMin[i] and
Qi = vMax[i] so that Qi − Pi has the same sign as the plane normal coordinate ni. (Bottom) The normal
component along the ith axis is negative, so we choose Pi = vMax[i] and Qi = vMin[i] so that Qi − Pi has the
same sign as the plane normal coordinate ni.

INSTANCING AND FRUSTUM CULLING 577

to submit the object (which could contain thousands of triangles) to Direct3D
for drawing. This saves the GPU from having to do wasteful computations on
invisible geometry, at the cost of an inexpensive CPU test. Assuming a camera
with a 90º fi eld of view and infi nitely far away far plane, the camera frustum only
occupies 1/6th of the world volume, so 5/6th of the world objects can be frustum
culled, assuming objects are evenly distributed throughout the scene. In practice,
cameras use smaller fi eld of view angles than 90º and a fi nite far plane, which
means we could cull even more than 5/6th of the scene objects.

In our demo, we render a 5  5  5 grid of skull meshes (see Figure 16.11)
using instancing. We compute the AABB of the skull mesh in local space. In the
UpdateInstanceData method, we perform frustum culling on all of our instances.
If the instance intersects the frustum, then we add it to the next available
slot in our structured buffer containing the instance data and increment the
visibleInstanceCount counter. This way, the front of the structured buffer contains
the data for all the visible instances. (Of course, the structured buffer is sized to
match the number of instances in case all the instances are visible.) Because the
AABB of the skull mesh is in local space, we must transform the view frustum into
the local space of each instance in order to perform the intersection test; we could
use alternative spaces, like transform the AABB to world space and the frustum to
world space, for example. The frustum culling update code is given below:

XMMATRIX view = mCamera.GetView();
XMMATRIX invView = XMMatrixInverse(&XMMatrixDeterminant(view), view);

auto currInstanceBuffer = mCurrFrameResource->InstanceBuffer.get();

Figure 16.11. Screenshot of the “Instancing and
Culling” demo.

Figure 16.10. The objects bounded by volumes A
and D are completely outside the frustum, and so
do not need to be drawn. The object corresponding
to volume C is completely inside the frustum,
and needs to be drawn. The objects bounded by
volumes B and E are partially outside the frustum
and partially inside the frustum; we must draw
these objects and let the hardware clip and triangles
outside the frustum.

578 TOPICS

for(auto& e : mAllRitems)
{
 const auto& instanceData = e->Instances;

 int visibleInstanceCount = 0;
 for(UINT i = 0; i < (UINT)instanceData.size(); ++i)
 {
 XMMATRIX world = XMLoadFloat4x4(&instanceData[i].World);
 XMMATRIX texTransform = XMLoadFloat4x4(&instanceData[i].TexTransform);

 XMMATRIX invWorld = XMMatrixInverse(&XMMatrixDeterminant(world), world);

 // View space to the object’s local space.
 XMMATRIX viewToLocal = XMMatrixMultiply(invView, invWorld);

 // Transform the camera frustum from view space to the object’s local space.
 BoundingFrustum localSpaceFrustum;
 mCamFrustum.Transform(localSpaceFrustum, viewToLocal);

 // Perform the box/frustum intersection test in local space.
 if(localSpaceFrustum.Contains(e->Bounds) != DirectX::DISJOINT)
 {
 InstanceData data;
 XMStoreFloat4x4(&data.World, XMMatrixTranspose(world));
 XMStoreFloat4x4(&data.TexTransform, XMMatrixTranspose(texTransform));
 data.MaterialIndex = instanceData[i].MaterialIndex;

 // Write the instance data to structured buffer for the visible objects.
 currInstanceBuffer->CopyData(visibleInstanceCount++, data);
 }
 }

 e->InstanceCount = visibleInstanceCount;

 // For informational purposes, output the number of instances
 // visible over the total number of instances.
 std::wostringstream outs;
 outs.precision(6);
 outs << L"Instancing and Culling Demo" <<
 L" " << e->InstanceCount <<
 L" objects visible out of " << e->Instances.size();
 mMainWndCaption = outs.str();
}

Even though our instanced buffer has room for every instance, we only draw the
visible instances which correspond to instances from 0 to visibleInstanceCount-1:

cmdList->DrawIndexedInstanced(ri->IndexCount,
 ri->InstanceCount,
 ri->StartIndexLocation,
 ri->BaseVertexLocation, 0);

Figure 16.12 shows the performance difference between having frustum culling
enabled and not. With frustum culling, we only submit eleven instances to the

INSTANCING AND FRUSTUM CULLING 579

rendering pipeline for processing. Without frustum culling, we submit all 125
instances to the rendering pipeline for processing. Even though the visible scene
is the same, with frustum culling disabled, we waste computation power drawing
over a 100 skull meshes whose geometry is eventually discarded during the
clipping stage. Each skull has about 60K triangles, so that is a lot of vertices to
process and a lot of triangles to clip per skull. By doing one frustum/AABB test,
we can reject 60K triangles from even being sent to the graphics pipeline—this
is the advantage of frustum culling and we see the difference in the frames per
second.

16.4 SUMMARY

1. Instancing refers to drawing the same object more than once in a scene, but
with different positions, orientations, scales, materials, and textures. To save
memory, we can only create one mesh, and submit multiple draw calls to
Direct3D with a different world matrix, material, and texture. To avoid the
API overhead of issuing resource changes and multiple draw calls, we can bind
an SRV to a structured buffer that contains all of our instance data and index
into it in our vertex shader using the SV_InstancedID value. Furthermore, we
can use dynamic indexing to index into arrays of textures. The number of
instances to draw with one draw call is specified by the second parameter,
InstanceCount, of the ID3D12GraphicsCommandList::DrawIndexedInstanced

method.

2. Bounding volumes are primitive geometric objects that approximate the
volume of an object. The tradeoff is that although the bounding volume only
approximates the object its form has a simple mathematical representation,

Figure 16.12. (Left) Frustum culling is turned off, and we are rendering all 125 instances, and it takes about
33.33 ms to render a frame (Right) Frustum culling is turned on, and we see that 13 out of 125 instances
are visible, and our frame rate doubles.

580 TOPICS

which makes it easy to work with. Examples of bounding volumes are spheres,
axis-aligned bounding boxes (AABB), and oriented bounding boxes (OBB).
The DirectXCollision.h library has structures representing bounding volumes,
and functions for transforming them, and computing various intersection
tests.

3. The GPU automatically discards triangles that are outside the viewing
frustum in the clipping stage. However, clipped triangles are still submitted
to the rendering pipeline via draw calls (which has API overhead), and all
the triangles go through the vertex shader, possibly through the tessellation
stages, and possibly through the geometry shader, only to be discarded during
the clipping stage. To fi x this ineffi ciency, we can implement frustum culling.
The idea is to build a bounding volume, such as a sphere or box, around each
object in the scene. If the bounding volume does not intersect the frustum,
then we do not need to submit the object (which could contain thousands
of triangles) to Direct3D for drawing. This saves the GPU from having to do
wasteful computations on invisible geometry, at the cost of an inexpensive
CPU test.

16.5 EXERCISES

1. Modify the “Instancing and Culling” demo to use bounding spheres instead of
bounding boxes.

2. The plane equations in NDC space take on a very simple form. All points
inside the view frustum are bounded as follows:

 1 1ndcx  

 1 1ndcy  

 0 1ndcz 

 In particular, the left plane equation is given by x  1 and the right plane
equation is given by x  1 in NDC space. In homogeneous clip space before the
perspective divide, all points inside the view frustum are bounded as follows:

 hw x w  

hw y w  

 0 hz w 

 Here, the left plane is defined by w = x and the right plane is defined by
w = x. Let M  VP be the view-projection matrix product, and let

INSTANCING AND FRUSTUM CULLING 581

v  (x, y, z, 1) be a point in world space inside the frustum. Consider

   *,1 *,2 *,3 *,4, , , , , ,h h hx y z w      vM v M v M v M v M to show that the

inward facing frustum planes in world space are given by:

Left  *,1 *,40   v M M

Right  *,4 *,10   v M M

Bottom  *,2 *,40   v M M

Top  *,4 *,20   v M M

Near
*,30  v M

Far  *,4 *,30   v M M

(a) We ask for inward facing normals. That means a point inside the frustum
has a positive distance from the plane; in other words, 0d  n p for a
point p inside the frustum.

(b) Note that vw  1, so the above dot product formulas do yield plane equations
of the form Ax + By + Cz + D  0.

(c) The calculated plane normal vectors are not unit length; see Appendix C for
how to normalize a plane.

3. Examine the DirectXCollision.h header file to get familiar with the functions it
provides for intersection tests and bounding volume transformations.

4. An OBB can be defi ned by a center point C, three orthonormal axis vectors
r0, r1, and r2 defi ning the box orientation, and three extent lengths a0, a1, and
a2 along the box axes r0, r1, and r2, respectively, that give the distance from the
box center to the box sides.

 (a) Consider Figure 16.13 (which shows the situation in 2D) and conclude the
projected “shadow” of the OBB onto the axis defined by the normal vector
is 2r, where

 0 0 1 1 2 2r a a a     r n r n r n

 (b) In the previous formula for r, explain why we must take the absolute values
instead of just computing  0 0 1 1 2 2 ?r a a a   r r r n

 (c) Derive a plane/OBB intersection test that determines if the OBB is in front
of the plane, behind the plane, or intersecting the plane.

Note:

582 TOPICS

 (d) An AABB is a special case of an OBB, so this test also works for an AABB.
However, the formula for r simplifies in the case of an AABB. Find the
simplified formula for r for the AABB case.

Figure 16.13. Plane/OBB intersection setup

Chapter

583

17Chapter

PICKING

In this chapter, we have the problem of determining the 3D object (or primitive)
the user picked with the mouse cursor (see Figure 17.1). In other words, given
the 2D screen coordinates of the mouse cursor, can we determine the 3D object
that was projected onto that point? To solve this problem, in some sense, we must
work backwards; that is to say, we typically transform from 3D space to screen
space, but here we transform from screen space back to 3D space. Of course, we
already have a slight problem: a 2D screen point does not correspond to a unique
3D point (i.e., more than one 3D point could be projected onto the same 2D
projection window point—see Figure 17.2). Thus, there is some ambiguity in
determining which object is really picked. However, this is not such a big problem,
as the closest object to the camera is usually the one we want.

Figure 17.1. The user picking the dodecahedron.

Figure 17.2. A side view of the frustum. Observe that several
points in 3D space can get projected onto a point on the
projection window.

584 TOPICS

Consider Figure 17.3, which shows the viewing frustum. Here p is the point
on the projection window that corresponds to the clicked screen point s. Now,
we see that if we shoot a picking ray, originating at the eye position, through p,
we will intersect the object whose projection surrounds p, namely the cylinder in
this example. Th erefore, our strategy is as follows: Once we compute the picking
ray, we can iterate through each object in the scene and test if the ray intersects
it. Th e object that the ray intersects is the object that was picked by the user. As
mentioned, the ray may intersect several scene objects (or none at all—nothing
was picked), if the objects are along the ray’s path but with diff erent depth values,
for example. In this case, we can just take the intersected object nearest to the
camera as the picked object.

Objectives:
1. To learn how to implement the picking algorithm and to understand how it

works. We break picking down into the following four steps:

(a) Given the clicked screen point s, fi nd its corresponding point on the
projection window and call it p.

(b) Compute the picking ray in view space. That is the ray originating at the
origin, in view space, which shoots through p.

(c) Transform the picking ray and the models to be tested with the ray into the
same space.

(d) Determine the object the picking ray intersects. The nearest (from the
camera) intersected object corresponds to the picked screen object.

Figure 17.3. A ray shooting through p will intersect the object whose projection surrounds p. Note that the
projected point p on the projection window corresponds to the clicked screen point s.

PICKING 585

17.1 SCREEN TO PROJECTION
WINDOW TRANSFORM

The first task is to transform the clicked screen point to normalized device
coordinates (see §5.4.3.3). Recall that the viewport matrix transforms vertices
from normalized device coordinates to screen space; it is given below:

0 0 0
2

0 0 0
2

0 0 0

1
2 2

Width

Height

MaxDepth MinDepth

Width Height
TopLeftX TopLeftY MinDepth

 
 
 
 
 
  
 

   

M

The variables of the viewport matrix refer to those of the D3D12_VIEWPORT structure:

typedef struct D3D12_VIEWPORT
{
 FLOAT TopLeftX;
 FLOAT TopLeftY;
 FLOAT Width;
 FLOAT Height;
 FLOAT MinDepth;
 FLOAT MaxDepth;
} D3D12_VIEWPORT;

Generally, for a game, the viewport is the entire backbuffer and the depth buffer
range is 0 to 1. Thus, TopLeftX  0, TopLeftY  0, MinDepth  0, MaxDepth  1, Width
 w, and Height  h, where w and h, are the width and height of the backbuffer,
respectively. Assuming this is indeed the case, the viewport matrix simplifies to:

/ 2 0 0 0

0 / 2 0 0

0 0 1 0

/ 2 / 2 0 1

w

h

w h

 
  
 
 
 

M

Now let pndc  (xndc, yndc, zndc, 1) be a point in normalized device space (i.e., 1 
xndc  1, 1  yndc  1, and 0  zndc  1). Transforming pndc to screen space yields:

  

/ 2 0 0 0

0 / 2 0 0
, , ,1 , , ,1

0 0 1 0 2 2

/ 2 / 2 0 1

ndc ndc
ndc ndc ndc ndc

w

h x w w y h h
x y z z

w h

 
            
 
 

586 TOPICS

The coordinate zndc is just used by the depth buffer and we are not concerned with
any depth coordinates for picking. The 2D screen point ps  (xs, ys) corresponding
to pndc is just the transformed x- and y-coordinates:

2

ndc
s

x w w
x




2

ndc
s

y h h
y

 


The above equation gives us the screen point ps in terms of the normalized device
point pndc and the viewport dimensions. However, in our picking situation, we are
initially given the screen point ps and the viewport dimensions, and we want to
find pndc. Solving the above equations for pndc yields:

 2
1s

ndc

x
x

w
 

2

1s
ndc

y
y

h
  

We now have the clicked point in NDC space. But to shoot the picking ray, we
really want the screen point in view space. Recall from §5.6.3.3 that we mapped
the projected point from view space to NDC space by dividing the x-coordinate
by the aspect ratio r:

 r x r  

 1 / 1x r  

Thus, to get back to view space, we just need to multiply the x-coordinate in NDC
space by the aspect ratio. The clicked point in view space is thus:

2

1x
v

s
x r

w
   
 

2

1y
v

s
y

h
  

The projected y-coordinate in view space is the same in NDC space. This is
because we chose the height of the projection window in view space to cover the
interval [1, 1].

Now recall from §5.6.3.1 that the projection window lies at a distance cot
2

d
 

  
 

from the origin, where  is the vertical field of view angle. So we could shoot the

Note:

PICKING 587

picking ray through the point (xvyvd  on the projection window. However, this
requires that we compute cot

2
d

   
 

 A simpler way is to observe from Figure 17.4
that:

2

tan 1 tan
2 2

cot
2

v v x
v v

x x s
x x r

d w

                        
 
 

2

tan 1 tan
2 2

cot
2

yv v
v v

sy y
y y

d h

                       
 

Recalling that 
 

 
 

1
00

tan
2

r

P and 
 

 
 

1
11

tan
2

P in the projection matrix, we

can rewrite this as:

00

11

2
1

2
1

x
v

y
v

s
x

w

s
y

h

    
 
     
 

P

P

Thus, we can shoot our picking ray through the point (), ,1 v vx y  instead. Note that
this yields the same picking ray as the one shot through the point (xv,yvd). The
code that computes the picking ray in view space is given below:

void PickingApp::Pick(int sx, int sy)

 XMFLOAT4X4 P  mCamera.GetProj4x4f();

 // Compute picking ray in view space.
 float vx  (2.0f*sx / mClientWidth - 1.0f) / P(0, 0);
 float vy  (-2.0f*sy / mClientHeight  1.0f) / P(1, 1);

Figure 17.4. By similar triangles,
1

y yv v
d


 and

1

x xv v
d


 .

588 TOPICS

 // Ray definition in view space.
 XMVECTOR rayOrigin  XMVectorSet(0.0f, 0.0f, 0.0f, 1.0f);
 XMVECTOR rayDir  XMVectorSet(vx, vy, 1.0f, 0.0f);

Note that the ray originates from the origin in view space since the eye sits at the
origin in view space.

17.2 WORLD/LOCAL SPACE PICKING RAY

So far we have the picking ray in view space, but this is only useful if our objects
are in view space as well. Because the view matrix transforms geometry from
world space to view space, the inverse of the view matrix transforms geometry
from view space to world space. If rvtqtu is the view space picking ray and V
is the view matrix, then the world space picking ray is given by:

1 1()w

w w

t t

t

  
 

r qV uV

q u

Note that the ray origin q is transformed as a point (i.e., qw 1) and the ray
direction u is transformed as a vector (i.e., uw  0).

A world space picking ray can be useful in some situations where you have
some objects defi ned in world space. However, most of the time, the geometry of
an object is defi ned relative to the object’s own local space. Therefore, to perform
the ray/object intersection test, we must transform the ray into the local space
of the object. If W is the world matrix of an object, the matrix W1 transforms
geometry from world space to the local space of the object. Thus the local space
picking ray is:

 1 1()L w wt t  r q W u W

Generally, each object in the scene has its own local space. Therefore, the ray must
be transformed to the local space of each scene object to do the intersection test.

One might suggest transforming the meshes to world space and doing the
intersection test there. However, this is too expensive. A mesh may contain
thousands of vertices, and all those vertices would need to be transformed to
world space. It is much more effi cient to just transform the ray to the local spaces
of the objects.

The following code shows how the picking ray is transformed from view space
to the local space of an object:

// Assume nothing is picked to start, so the picked render-item is invisible.

PICKING 589

mPickedRitem->Visible  false;

// Check if we picked an opaque render item. A real app might keep a separate
// "picking list" of objects that can be selected.
for(auto ri : mRitemLayer[(int)RenderLayer::Opaque])
{
 auto geo  ri->Geo;

 // Skip invisible render-items.
 if(ri->Visible  false)
 continue;

 XMMATRIX V  mCamera.GetView();
 XMMATRIX invView  XMMatrixInverse(&XMMatrixDeterminant(V), V);

 XMMATRIX W  XMLoadFloat4x4(&ri->World);
 XMMATRIX invWorld  XMMatrixInverse(&XMMatrixDeterminant(W), W);

 // Tranform ray to vi space of Mesh.
 XMMATRIX toLocal  XMMatrixMultiply(invView, invWorld);

 rayOrigin  XMVector3TransformCoord(rayOrigin, toLocal);
 rayDir  XMVector3TransformNormal(rayDir, toLocal);

 // Make the ray direction unit length for the intersection tests.
 rayDir  XMVector3Normalize(rayDir);

The XMVector3TransformCoord and XMVector3TransformNormal functions take 3D
vectors as parameters, but note that with the XMVector3TransformCoord function
there is an understood w  1 for the fourth component. On the other hand, with
the XMVector3TransformNormal function there is an understood w  0 for the fourth
component. Thus we can use XMVector3TransformCoord to transform points and
we can use XMVector3TransformNormal to transform vectors.

17.3 RAY/MESH INTERSECTION

Once we have the picking ray and a mesh in the same space, we can perform the
intersection test to see if the picking ray intersects the mesh. The following code
iterates through each triangle in the mesh and does a ray/triangle intersection test.
If the ray intersects one of the triangles, then it must have hit the mesh the triangle
belongs to. Otherwise, the ray misses the mesh. Typically, we want the nearest
triangle intersection, as it is possible for a ray to intersect several mesh triangles if
the triangles overlap with respect to the ray.

// If we hit the bounding box of the Mesh, then we might have
// picked a Mesh triangle, so do the ray/triangle tests.
//
// If we did not hit the bounding box, then it is impossible that we hit
// the Mesh, so do not waste effort doing ray/triangle tests.

590 TOPICS

float tmin  0.0f;
if(ri->Bounds.Intersects(rayOrigin, rayDir, tmin))
{
 // NOTE: For the demo, we know what to cast the vertex/index data to.
 // If we were mixing formats, some metadata would be needed to figure
 // out what to cast it to.
 auto vertices  (Vertex*)geo->VertexBufferCPU->GetBufferPointer();
 auto indices  (std::uint32_t*)geo->IndexBufferCPU->GetBufferPointer();
 UINT triCount  ri->IndexCount / 3;

 // Find the nearest ray/triangle intersection.
 tmin  MathHelper::Infinity;
 for(UINT i  0; i < triCount; i)
 {
 // Indices for this triangle.
 UINT i0  indices[i * 3  0];
 UINT i1  indices[i * 3  1];
 UINT i2  indices[i * 3  2];

 // Vertices for this triangle.
 XMVECTOR v0  XMLoadFloat3(&vertices[i0].Pos);
 XMVECTOR v1  XMLoadFloat3(&vertices[i1].Pos);
 XMVECTOR v2  XMLoadFloat3(&vertices[i2].Pos);

 // We have to iterate over all the triangles in order to find
 // the nearest intersection.
 float t  0.0f;
 if(TriangleTests::Intersects(rayOrigin, rayDir, v0, v1, v2, t))
 {
 if(t < tmin)
 {
 // This is the new nearest picked triangle.
 tmin  t;
 UINT pickedTriangle  i;

 // Set a render item to the picked triangle so that
 // we can render it with a special "highlight" material.
 mPickedRitem->Visible  true;
 mPickedRitem->IndexCount  3;
 mPickedRitem->BaseVertexLocation  0;

 // Picked render item needs same world matrix as object picked.
 mPickedRitem->World  ri->World;
 mPickedRitem->NumFramesDirty  gNumFrameResources;

 // Offset to the picked triangle in the mesh index buffer.
 mPickedRitem->StartIndexLocation  3 * pickedTriangle;
 }
 }
 }
}

Observe that for picking, we use the system memory copy of the mesh geometry
stored in the MeshGeometry class. This is because we cannot access a vertex/index
buffer for reading that is going to be drawn by the GPU. It is common to store

PICKING 591

system memory copies of geometry for things like picking and collision detection.
Sometimes a simplified version of the mesh is stored for these purposes to save
memory and computation.

17.3.1 Ray/AABB Intersection
Observe that we first use the DirectX collision library function BoundingBox::
Intersects to see if the ray intersects the bounding box of the mesh. This is
analogous to the frustum culling optimization in the previous chapter. Performing
a ray intersection test for every triangle in the scene adds up in computation time.
Even for meshes not near the picking ray, we would still have to iterate over each
triangle to conclude the ray misses the mesh; this is wasteful and inefficient. A
popular strategy is to approximate the mesh with a simple bounding volume,
like a sphere or box. Then, instead of intersecting the ray with the mesh, we
first intersect the ray with the bounding volume. If the ray misses the bounding
volume, then the ray necessarily misses the triangle mesh and so there is no need
to do further calculations. If the ray intersects the bounding volume, then we do
the more precise ray/mesh test. Assuming that the ray will miss most bounding
volumes in the scene, this saves us many ray/triangle intersection tests. The
BoundingBox::Intersects function returns true if the ray intersects the box and
false otherwise; it is prototyped as follows:

bool XM_CALLCONV
BoundingBox::Intersects(
 FXMVECTOR Origin, // ray origin
 FXMVECTOR Direction, // ray direction (must be unit length)
 float& Dist); const // ray intersection parameter

Given the ray r(t)  q  tu, the last parameter outputs the ray parameter t0 that
yields the actual intersection point p:

 0 0()t t  p r q u

17.3.2 Ray/Sphere Intersection
There is also a ray/sphere intersection test given in the DirectX collision library:

bool XM_CALLCONV
BoundingSphere::Intersects(
 FXMVECTOR Origin,
 FXMVECTOR Direction,
 float& Dist); const

To give a flavor of these tests, we show how to derive the ray/sphere intersection
test. The points p on the surface of a sphere with center c and radius r satisfy the
equation:
 || || r p c

592 TOPICS

Let r(t)  q  tu be a ray. We wish to solve for t1 and t2 such that r(t1) and r(t2)
satisfy the sphere equation (i.e., the parameters t1 and t2 along the ray that yields
the intersection points).

   
   
   

 

   

     

     

2

2

2

|| () ||

() ()

r t

r t t

r t t

r t t

r c

r c r c

q u c q u c

q c u q c u

For notational convenience, let mqc

    2

2 2

2 2

2

2 0

t t r

t t r

t t r

   

     

      

m u m u

m m m u u u

u u m u m m

This is just a quadratic equation with:

2

2()

a

b

c r

 
 

  

u u

m u

m m

If the ray direction is unit length, then 1.a   u u If the solution has imaginary
components, the ray misses the sphere. If the two real solutions are the same,
the ray intersects a point tangent to the sphere. If the two real solutions are
distinct, the ray pierces two points of the sphere. A negative solution indicates
an intersection point “behind” the ray. The smallest positive solution gives the
nearest intersection parameter.

17.3.3 Ray/Triangle Intersection
For performing a ray/triangle intersection test, we use the DirectX collision library
function TriangleTests::Intersects:

bool XM_CALLCONV
TriangleTests::Intersects(
 FXMVECTOR Origin, // ray origin
 FXMVECTOR Direction, // ray direction (unit length)
 FXMVECTOR V0, // triangle vertex v0
 GXMVECTOR V1, // triangle vertex v1
 HXMVECTOR V2, // triangle vertex v2
 float& Dist); // ray intersection parameter

Let r(t)  q  tu be a ray and T(u, v)  v0  u(v1 – v0)  v(v2 – v0) for u  0, v  0,
u  v  1 be a triangle (see Figure 17.5). We wish to simultaneously solve for t, u, v
such that r(t)  T(u, v) (i.e., the point the ray and triangle intersect):

PICKING 593

 rtTuv


   

   
     

      
0 1 0 2 0

1 0 2 0 0

t u v

t u v

q u v v v v v

u v v v v q v

For notational convenience, let 1 1 0 2 2 0,   e v v e v v and 0 m q v

 1 2t u v   u e e m

 1 2

t

u

v

       
         
           

u e e m

Consider the matrix equation Ax  b, where A is invertible. Then Cramer’s Rule
tells us that xidet Ai/det A, where Ai is found by swapping the ith column vector
in A with b. Therefore,

1 2 1 2det / dett

        
       
           

m e e u e e

 2 1 2det / detu

        
        
           

u m e u e e

Figure 17.5. The point p in the plane of the triangle has coordinates (u, v) relative to the skewed coordinate
system with origin v0 and axes v1  v0 and v2  v0.

594 TOPICS

 1 1 2det / detv

        
        
           

u e m u e e

Using the fact that  det

   
     
    

a b c a b c we can reformulate this as:

   
   
   

1 2 1 2

2 1 2

1 1 2

/

/

/

t

u

v

     

    

    

m e e u e e

u m e u e e

u e m u e e

To optimize the computations a bit, we can use the fact that every time we swap
columns in a matrix, the sign of the determinant changes:



   
   
   

    

    

    

2 1 1 2

2 1 2

1 1 2

/

/

/

t

u

v

e m e e u e

m u e e u e

u m e e u e

And note the common cross products that can be reused in the calculations:
m  e1 and u  e2.

17.4 DEMO APPLICATION

The demo for this chapter renders a car mesh and allows the user to pick a triangle
by pressing the right mouse button, and the selected triangle is rendered using a
“highlight” material (see Figure 17.6). To render the triangle with a highlight, we
need a render-item for it. Unlike the previous render-items in this book where we
defined them at initialization time, this render-item can only be partially filled
out at initialization time. This is because we do not yet know which triangle will
be picked, and so we do not know the starting index location and world matrix. In
addition, a triangle does not need to always be picked. Therefore, we have added
a Visible property to the render-item structure. An invisible render-item will
not be drawn. The below code, which is part of the PickingApp::Pick method,
shows how we fill out the remaining render-item properties based on the selected
triangle:

PICKING 595

// Cache a pointer to the render-item of the picked
// triangle in the PickingApp class.
RenderItem* mPickedRitem;

if(TriangleTests::Intersects(rayOrigin, rayDir, v0, v1, v2, t))
{
 if(t < tmin)
 {
 // This is the new nearest picked triangle.
 tmin  t;
 UINT pickedTriangle  i;

 // Set a render item to the picked triangle so that
 // we can render it with a special "highlight" material.
 mPickedRitem->Visible  true;
 mPickedRitem->IndexCount  3;
 mPickedRitem->BaseVertexLocation  0;

 // Picked render item needs same world matrix as object picked.
 mPickedRitem->World  ri->World;
 mPickedRitem->NumFramesDirty  gNumFrameResources;

 // Offset to the picked triangle in the mesh index buffer.
 mPickedRitem->StartIndexLocation  3 * pickedTriangle;
 }
}

This render-item is drawn after we draw our opaque render-items. It uses a
special highlight PSO, which uses transparency blending and sets the depth test
comparison function to D3D12_COMPARISON_FUNC_LESS_EQUAL. This is needed
because the picked triangle will be drawn twice, the second time with the
highlighted material. The second time the triangle is drawn the depth test would
fail if the comparison function was just D3D12_COMPARISON_FUNC_LESS.

DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)RenderLayer::Opaque]);
mCommandList->SetPipelineState(mPSOs["highlight"].Get());
DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)RenderLayer::Highlight]);

Figure 17.6. The picked triangle is highlighted green.

596 TOPICS

17.5 SUMMARY

1. Picking is the technique used to determine the 3D object that corresponds to
the 2D projected object displayed on the screen that the user clicked on with
the mouse.

2. The picking ray is found by shooting a ray, originating at the origin of the
view space, through the point on the projection window that corresponds to
the clicked screen point.

3. We can transform a ray rt)  qtu by transforming its origin q and direction
u by a transformation matrix. Note that the origin is transformed as a point
(w  1) and the direction is treated as a vector (w  0).

4. To test if a ray has intersected an object, we perform a ray/triangle intersection
test for every triangle in the object. If the ray intersects one of the triangles,
then it must have hit the mesh the triangle belongs to. Otherwise, the ray
misses the mesh. Typically, we want the nearest triangle intersection, as it is
possible for a ray to intersect several mesh triangles if the triangles overlap
with respect to the ray.

5. A performance optimization for ray/mesh intersection tests is to first perform
an intersection test between the ray and a bounding volume that approximates
the mesh. If the ray misses the bounding volume, then the ray necessarily
misses the triangle mesh and so there is no need to do further calculations. If
the ray intersects the bounding volume, then we do the more precise ray/mesh
test. Assuming that the ray will miss most bounding volumes in the scene, this
saves us many ray/triangle intersection tests.

17.6 EXERCISES

1. Modify the “Picking” demo to use a bounding sphere for the mesh instead of
an AABB.

2. Research the algorithm for doing a ray/AABB intersection test.

3. If you had thousands of objects in a scene, you would still have to do
thousands of ray/bounding volume tests for picking. Research octrees, and
explain how they can be used to reduce ray/bounding volume intersection
tests. Incidentally, the same general strategy works for reducing frustum/
bounding volume intersection tests for frustum culling.

Chapter

597

18Chapter

CUBE
MAPPING

In this chapter, we study cube maps, which are basically arrays of six textures
interpreted in a special way. With cube mapping, we can easily texture a sky or
model reflections.

Objectives:
1. To learn what cube maps are and how to sample them in HLSL code.

2. To discover how to create cube maps with the DirectX texturing tools.

3. To find out how we can use cube maps to model reflections.

4. To understand how we can texture a sphere with cube maps to simulate a sky
and distant mountains.

18.1 CUBE MAPPING

The idea of cube mapping is to store six textures and to visualize them as the faces
of a cube—hence the name cube map—centered and axis aligned about some
coordinate system. Since the cube texture is axis aligned, each face corresponds
with a direction along the three major axes; therefore, it is natural to a reference
a particular face on a cube map based on the axis direction (±X, ±Y, ±Z) that
intersects the face.

598 TOPICS

In Direct3D, a cube map is represented by a texture array with six elements
such that

1. index 0 refers to the +X face

2. index 1 refers to the –X face

3. index 2 refers to the +Y face

4. index 3 refers to the –Y face

5. index 4 refers to the +Z face

6. index 5 refers to the –Z face

In contrast to 2D texturing, we can no longer identify a texel with 2D texture
coordinates. To identify a texel in a cube map, we use 3D texture coordinates,
which define a 3D lookup vector v originating at the origin. The texel of the
cube map that v intersects (see Figure 18.1) is the texel corresponding to the 3D
coordinates of v. The concepts of texture filtering discussed in Chapter 9 applies
in the case v intersects a point between texel samples.

The magnitude of the lookup vector is unimportant, only the direction matters.
Two vectors with the same direction but different magnitudes will sample the
same point in the cube map.

In the HLSL, a cube texture is represented by the TextureCube type. The following
code fragment illustrates how we sample a cube map:

TextureCube gCubeMap;
SamplerState gsamLinearWrap : register(s2);

Note:

Figure 18.1. We illustrate in 2D for simplicity; in 3D the square becomes a cube. The square denotes the cube map
centered and axis-aligned with some coordinate system. We shoot a vector v from the origin. The texel v intersects
is the sampled texel. In this illustration, v intersects the cube face corresponding to the +Y axis.

CUBE MAPPING 599

...

// in pixel shader
float3 v = float3(x,y,z); // some lookup vector

The lookup vector should be in the same space the cube map is relative to. For
example, if the cube map is relative to the world space (i.e., the cube faces are
axis aligned with the world space axes), then the lookup vector should have
world space coordinates.

18.2 ENVIRONMENT MAPS

The primary application of cube maps is environment mapping. The idea is to
position a camera at the center of some object O in the scene with a 90 field of
view angle (both vertically and horizontally). Then have the camera look down
the positive x-axis, negative x-axis, positive y-axis, negative y-axis, positive z-axis,
and negative z-axis, and to take a picture of the scene (excluding the object O)
from each of these six viewpoints. Because the field of view angle is 90, these six
images will have captured the entire surrounding environment (see Figure 18.2)
from the perspective of the object O. We then store these six images of the
surrounding environment in a cube map, which leads to the name environment
map. In other words, an environment map is a cube map where the cube faces
store the surrounding images of an environment.

The above description suggests that we need to create an environment map
for each object that is to use environment mapping. While this would be more
accurate, it also requires more texture memory. A compromise would be to use a
few environment maps that capture the environment at key points in the scene.
Then objects will sample the environment map closest to them. This simplifi cation

Note:

Figure 18.2. An example of an environment map after “unfolding” the cube map. Imagine refolding these
six faces into a 3D box, and then imagine being at the center of the box. From every direction you look, you
see the surrounding environment.

600 TOPICS

usually works well in practice because with curved objects inaccurate refl ections
are hard to notice. Another simplifi cation often taken with environment mapping
is to omit certain objects from the scene. For example, the environment map in
Figure 18.2 only captures the distant “background” information of the sky and
mountains that are very far away. Local scene objects are omitted. Although the
background environment map is, in some sense, incomplete, it works well in
practice to create specular refl ections. In order to capture local objects, we would
have to use Direct3D to render the six images of our environment map; this is
discussed in §18.5. In the demo for this chapter (Figure 18.3), all the objects in the
scene share the same environment map shown in Figure 18.2.

If the axis directions the camera looked down to build the environment map
images were the world space axes, then the environment map is said to be generated
relative to the world space. You could, of course, capture the environment from a
different orientation (say the local space of an object). However, the lookup vector
coordinates must be in the space the cube map is relative to.

Because cube maps just store texture data, their contents can be pre-generated
by an artist (just like the 2D textures we’ve been using). Consequently, we do not
need to use real-time rendering to compute the images of a cube map. That is,
we can create a scene in a 3D world editor, and then pre-render the six cube map
face images in the editor. For outdoor environment maps, the program Terragen
(http://www.planetside.co.uk/) is common to use (free for personal use), and can
create photorealistic outdoor scenes. The environment maps we create for this
book, such as the one shown in Figure 18.2, were made with Terragen.

If you choose to try out Terragen, you need to go to the Camera Settings dialog
box and set the zoom factor to 1.0 to achieve a 90 fi eld of view. Also, be sure
to set your output image dimensions to be equal so that both the vertical and
horizontal fi eld of view angles are the same, namely 90.

Note:

Figure 18.3. Screenshot of the “Cube Map” demo.

CUBE MAPPING 601

There is a nice Terragen script on the web (https://developer.valvesoftware.com/
wiki/Skybox_(2D)_with_Terragen) that will use the current camera position,
and render out the six surrounding images with a 90 fi eld of view.

Once you have created the six cube map images using some program, we need
to create a cube map texture, which stores all six. The DDS texture image
format we have been using readily supports cube maps, and we can use the
texassemble tool to build a cube map from six images. Below is an example
of how to create a cube map using texassemble (taken from the texassemble
documentation):

texassemble -cube -w 256 -h 256 -o cubemap.dds lobbyxposjpg lobbyxneg.
jpg lobbyypos.jpg lobbyyneg.jpg lobbyzpos.jpg lobbyzneg.jpg

NVIDIA provides Photoshop plugins for saving .DDS and cubemaps in Photoshop;
see http://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop.

18.2.1 Loading and Using Cube Maps in Direct3D
As mentioned, a cube map is represented in Direct3D by a texture array with
six elements. Our DDS texture loading codeDDSTextureLoader.h/.cpp) already
supports loading cube maps, and we can load the texture like any other. The
loading code will detect that the DDS file contains a cube map, and will create a
texture array and load the face data into each element.

auto skyTex = std::make_unique<Texture>();
skyTex->Name = "skyTex";
skyTex->Filename = L"Textures/grasscube1024.dds";
ThrowIfFailed(DirectX::CreateDDSTextureFromFile12(md3dDevice.Get(),
 mCommandList.Get(), skyTex->Filename.c_str(),
 skyTex->Resource, skyTex->UploadHeap));

When we create an SRV to a cube map texture resource, we specify the dimension
D3D12_SRV_DIMENSION_TEXTURECUBE and use the TextureCube property of the SRV
description:

D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURECUBE;
srvDesc.TextureCube.MostDetailedMip = 0;
srvDesc.TextureCube.MipLevels = skyTex->GetDesc().MipLevels;
srvDesc.TextureCube.ResourceMinLODClamp = 0.0f;
srvDesc.Format = skyTex->GetDesc().Format;
md3dDevice->CreateShaderResourceView(skyTex.Get(), &srvDesc, hDescriptor);

Note:

Note:

602 TOPICS

18.3 TEXTURING A SKY

We can use an environment map to texture a sky. We create a large sphere that
surrounds the entire scene. To create the illusion of distant mountains far in
the horizon and a sky, we texture the sphere using an environment map by the
method shown in Figure 18.4. In this way, the environment map is projected onto
the sphere’s surface.

We assume that the sky sphere is infi nitely far away (i.e., it is centered about
the world space but has infi nite radius), and so no matter how the camera moves
in the world, we never appear to get closer or farther from the surface of the sky
sphere. To implement this infi nitely faraway sky, we simply center the sky sphere
about the camera in world space so that it is always centered about the camera.
Consequently, as the camera moves, we are getting no closer to the surface of the
sphere. If we did not do this, and we let the camera move closer to the sky surface,
the whole illusion would break down, as the trick we use to simulate the sky would
be obvious.

The shader fi le for the sky is given below:

//***
// Sky.hlsl by Frank Luna (C) 2015 All Rights Reserved.
//***

// Include common HLSL code.
#include "Common.hlsl"

Figure 18.4. We illustrate in 2D for simplicity; in 3D the square becomes a cube and the circle becomes a
sphere. We assume that the sky and environment map are centered about the same origin. Then to texture
a point on the surface of the sphere, we use the vector from the origin to the surface point as the lookup
vector into the cube map. This projects the cube map onto the sphere.

CUBE MAPPING 603

struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
 float2 TexC : TEXCOORD;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosL : POSITION;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout;

 // Use local vertex position as cubemap lookup vector.
 vout.PosL = vin.PosL;

 // Transform to world space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);

 // Always center sky about camera.
 posW.xyz += gEyePosW;

 // Set z = w so that z/w = 1 (i.e., skydome always on far plane).
 vout.PosH = mul(posW, gViewProj).xyww;

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 return gCubeMap.Sample(gsamLinearWrap, pin.PosL);
}

The sky shader programs are significantly different than the shader programs for
drawing our objects (Default.hlsl). However, it shares the same root signature so
that we do not have to change root signatures in the middle of drawing. The code
that is common to both Default.hlsl and Sky.hlsl has been moved to Common.hlsl
so that the code is not duplicated. For reference, Common.hlsl looks like this:

//**
// Common.hlsl by Frank Luna (C) 2015 All Rights Reserved.
//**

// Defaults for number of lights.
#ifndef NUM_DIR_LIGHTS
 #define NUM_DIR_LIGHTS 3
#endif

#ifndef NUM_POINT_LIGHTS
 #define NUM_POINT_LIGHTS 0

604 TOPICS

#endif

#ifndef NUM_SPOT_LIGHTS
 #define NUM_SPOT_LIGHTS 0
#endif

// Include structures and functions for lighting.
#include "LightingUtil.hlsl"

struct MaterialData
{
 float4 DiffuseAlbedo;
 float3 FresnelR0;
 float Roughness;
 float4x4 MatTransform;
 uint DiffuseMapIndex;
 uint MatPad0;
 uint MatPad1;
 uint MatPad2;
};

TextureCube gCubeMap : register(t0);

// An array of textures, which is only supported in shader model 5.1+. Unlike
// Texture2DArray, the textures in this array can be different sizes and
// formats, making it more flexible than texture arrays.
Texture2D gDiffuseMap[4] : register(t1);

// Put in space1, so the texture array does not overlap with these resources.
// The texture array will occupy registers t0, t1, ..., t3 in space0.
StructuredBuffer<MaterialData> gMaterialData : register(t0, space1);

SamplerState gsamPointWrap : register(s0);
SamplerState gsamPointClamp : register(s1);
SamplerState gsamLinearWrap : register(s2);
SamplerState gsamLinearClamp : register(s3);
SamplerState gsamAnisotropicWrap : register(s4);
SamplerState gsamAnisotropicClamp : register(s5);

// Constant data that varies per frame.
cbuffer cbPerObject : register(b0)
{
 float4x4 gWorld;
 float4x4 gTexTransform;
 uint gMaterialIndex;
 uint gObjPad0;
 uint gObjPad1;
 uint gObjPad2;
};

// Constant data that varies per material.
cbuffer cbPass : register(b1)
{
 float4x4 gView;

CUBE MAPPING 605

 float4x4 gInvView;
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gViewProj;
 float4x4 gInvViewProj;
 float3 gEyePosW;
 float cbPerObjectPad1;
 float2 gRenderTargetSize;
 float2 gInvRenderTargetSize;
 float gNearZ;
 float gFarZ;
 float gTotalTime;
 float gDeltaTime;
 float4 gAmbientLight;

 // Indices [0, NUM_DIR_LIGHTS) are directional lights;
 // indices [NUM_DIR_LIGHTS, NUM_DIR_LIGHTS+NUM_POINT_LIGHTS) are point lights;
 // indices [NUM_DIR_LIGHTS+NUM_POINT_LIGHTS,
 // NUM_DIR_LIGHTS+NUM_POINT_LIGHT+NUM_SPOT_LIGHTS)
 // are spot lights for a maximum of MaxLights per object.
 Light gLights[MaxLights];
};

In the past, applications would draw the sky fi rst and use it as a replacement to
clearing the render target and depth/stencil buffer. However, the “ATI Radeon
HD 2000 Programming Guide” (http://developer.amd.com/media/gpu_assets/
ATI_Radeon_HD_2000_programming_guide.pdf) now advises against this for
the following reasons. First, the depth/stencil buffer needs to be explicitly cleared
for internal hardware depth optimizations to perform well. The situation is
similar with render targets. Second, typically most of the sky is occluded by other
geometry such as buildings and terrain. Therefore, if we draw the sky fi rst, then
we are wasting resources by drawing pixels that will only get overridden later
by geometry closer to the camera. Therefore, it is now recommended to always
clear, and to draw the sky last.

Drawing the sky requires different shader programs, and hence a new PSO.
Therefore, we draw the sky as a separate layer in our drawing code:

// Draw opaque render-items.
mCommandList->SetPipelineState(mPSOs["opaque"].Get());
DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)

RenderLayer::Opaque]);

// Draw the sky render-item.
mCommandList->SetPipelineState(mPSOs["sky"].Get());
DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)

RenderLayer::Sky]);

In addition, rendering the sky requires some different render states. In particular,
because the camera lies inside the sphere, we need to disable back face culling (or

Note:

606 TOPICS

making counterclockwise triangles front facing would also work), and we need to
change the depth comparison function to LESS_EQUAL so that the sky will pass the
depth test:

D3D12_GRAPHICS_PIPELINE_STATE_DESC skyPsoDesc = opaquePsoDesc;

// The camera is inside the sky sphere, so just turn off culling.
skyPsoDesc.RasterizerState.CullMode = D3D12_CULL_MODE_NONE;

// Make sure the depth function is LESS_EQUAL and not just LESS.
// Otherwise, the normalized depth values at z = 1 (NDC) will
// fail the depth test if the depth buffer was cleared to 1.
skyPsoDesc.DepthStencilState.DepthFunc = D3D12_COMPARISON_FUNC_LESS_EQUAL;
skyPsoDesc.pRootSignature = mRootSignature.Get();
skyPsoDesc.VS =
{
 reinterpret_cast<BYTE*>(mShaders["skyVS"]->GetBufferPointer()),
 mShaders["skyVS"]->GetBufferSize()
};
skyPsoDesc.PS =
{
 reinterpret_cast<BYTE*>(mShaders["skyPS"]->GetBufferPointer()),
 mShaders["skyPS"]->GetBufferSize()
};
ThrowIfFailed(md3dDevice->CreateGraphicsPipelineState(
 &skyPsoDesc, IID_PPV_ARGS(&mPSOs["sky"])));

18.4 MODELING REFLECTIONS

In Chapter 8, we learned that specular highlights come from light sources where
the emitted light strikes a surface and can reflect into the eye based on the Fresnel
effect and surface roughness. However, due to light scattering and bouncing,
light really strikes a surface from all directions above the surface, not just along
the rays from direct light sources. We have modeled indirect diffuse light with
our ambient term in our lighting equation. In this section, we show how to use
environment maps to model specular reflections coming from the surrounding
environment. By specular reflections, we mean that we are just going to look at the
light that is reflected off a surface due to the Fresnel effect. An advanced topic we
do not discuss uses cube maps to compute diffuse lighting from the surrounding
environment as well (e.g., see http://http.developer.nvidia.com/GPUGems2/
gpugems2_chapter10.html).

When we render a scene about a point O to build an environment map, we
are recording light values coming in from all directions about the point O. In
other words, the environment map stores the light values coming in from every
direction about the point O, and we can think of every texel on the environment
map as a source of light. We use this data to approximate specular refl ections of

CUBE MAPPING 607

light coming from the surrounding environment. To see this, consider Figure 18.5.
Light from the environment comes in with incident direction  and refl ects
off the surface (due to the Fresnel effect) and enters the eye in the direction
v = E  p The light from the environment is obtained by sampling the
environment cube map with the lookup vectorr = refl ect(v, n). This makes the
surface have mirror like properties: the eye looks at p and sees the environment
refl ected off p.

We compute the refl ection vector per-pixel and then use it to sample the
environment map:

const float shininess = 1.0f - roughness;

// Add in specular reflections.
float3 r = reflect(-toEyeW, pin.NormalW);
float4 reflectionColor = gCubeMap.Sample(gsamLinearWrap, r);
float3 fresnelFactor = SchlickFresnel(fresnelR0, pin.NormalW, r);
litColor.rgb += shininess * fresnelFactor * reflectionColor.rgb;

Because we are talking about reflections, we need to apply the Fresnel effect,
which determines how much light is reflected from the environment into the
eye based on the material properties of the surface and the angle between the
light vector (reflection vector) and normal. In addition, we scale the amount of
reflection based on the shininess of the material—a rough material should have a
low amount of reflection, but still some reflection.

Figure 18.6 shows that refl ections via environment mapping do not work well
for fl at surfaces.

This is because the refl ection vector does not tell the whole story, as it does
not incorporate position; we really need a refl ection ray and to intersect the ray
with the environment map. A ray has position and direction, whereas a vector
just has direction. From the fi gure, we see that the two refl ection rays, q(t) = p +
trand q(t) = p + tr, intersect different texels of the cube map, and thus should
be colored differently. However, because both rays have the same direction vector
r, and the direction vector r is solely used for the cube map lookup, the same texel
gets mapped to p and pwhen the eye is at E and E, respectively. For fl at objects

Figure 18.5. Here E is the eye point, and n is the surface normal at the point p. The texel that stores the
light that reflects off p and enters the eye is obtained by sampling the cube map with the vector r.

608 TOPICS

this defect of environment mapping is very noticeable. For curvy surfaces, this
shortcoming of environment mapping goes largely unnoticed, since the curvature
of the surface causes the refl ection vector to vary.

One solution is to associate some proxy geometry with the environment map.
For example, suppose we have an environment map for a square room. We can
associate an axis-aligned bounding box with the environment map that has
approximately the same dimensions as the room. Figure 18.7 then shows how we
can do a ray intersection with the box to compute the vector v which gives a better
lookup vector than the refl ection vector r. If the bounding box associated with
the cube map is input into the shader (e.g., via a constant buffer), then the ray/
box intersection test can be done in the pixel shader, and we can compute the
improved lookup vector in the pixel shader to sample the cube map.

The following function shows how the cube map look up vector can be
computed.

float3 BoxCubeMapLookup(float3 rayOrigin, float3 unitRayDir,
 float3 boxCenter, float3 boxExtents)
{
 // Based on slab method as described in Real-Time Rendering
 // 16.7.1 (3rd edition).

 // Make relative to the box center.
 float3 p = rayOrigin - boxCenter;

 // The ith slab ray/plane intersection formulas for AABB are:

Figure 18.6. The reflection vector corresponding
to two different points p and p when the eye is at
positions E and E, respectively.

Figure 18.7. In steading of using the reflection vector r for
the cube map lookup, we use the intersection point v = p + t0r
between the ray and the box. Note that the point p is made
relative to the center of the bounding box proxy geometry so
that the intersection point can be used as a lookup vector for
the cube map.

CUBE MAPPING 609

 //
 // t1 = (-dot(n_i, p) + h_i)/dot(n_i, d) = (-p_i + h_i)/d_i
 // t2 = (-dot(n_i, p) - h_i)/dot(n_i, d) = (-p_i - h_i)/d_i

 // Vectorize and do ray/plane formulas for every slab together.
 float3 t1 = (-p+boxExtents)/unitRayDir;
 float3 t2 = (-p-boxExtents)/unitRayDir;

 // Find max for each coordinate. Because we assume the ray is inside
 // the box, we only want the max intersection parameter.
 float3 tmax = max(t1, t2);

 // Take minimum of all the tmax components:
 float t = min(min(tmax.x, tmax.y), tmax.z);

 // This is relative to the box center so it can be used as a
 // cube map lookup vector.
 return p + t*unitRayDir;
}

18.5 DYNAMIC CUBE MAPS

So far we have described static cube maps, where the images stored in the cube
map are premade and fixed. This works for many situations and is relatively
inexpensive. However, suppose that we want animated actors moving in our
scene. With a pre-generated cube map, you cannot capture these animated
objects, which means we cannot reflect animated objects. To overcome this
limitation, we can build the cube map at runtime. That is, every frame you
position the camera in the scene that is to be the origin of the cube map, and
then render the scene six times into each cube map face along each coordinate
axis direction (see Figure 18.8). Since the cube map is rebuilt every frame, it
will capture animated objects in the environment, and the reflection will be
animated as well (see Figure 18.9).

Rendering a cube map dynamically is expensive. It requires rendering the scene
to six render targets! Therefore, try to minimize the number of dynamic cube
maps needed in a scene. For example, perhaps only use dynamic refl ections for
key objects in your scene that you want to show off or accentuate. Then use
static cube maps for the less important objects were dynamic refl ections would
probably go unnoticed or not be missed. Normally, low resolution cube maps are
used for dynamic cube maps, such as 256 × 256, to save on pixel processing (i.e.,
fi ll rate).

Note:

610 TOPICS

18.5.1 Dynamic Cube Map Helper Class
To help render to a cube map dynamically, we create the following
CubeRenderTarget class, which encapsulates the actual ID3D12Resource object of
the cube map, the various descriptors to the resource, and other useful data for
rendering to the cube map:

class CubeRenderTarget
{
public:
 CubeRenderTarget(ID3D12Device* device,
 UINT width, UINT height,
 DXGI_FORMAT format);

 CubeRenderTarget(const CubeRenderTarget& rhs)=delete;
 CubeRenderTarget& operator=(const CubeRenderTarget& rhs)=delete;
 ~CubeRenderTarget()=default;

 ID3D12Resource* Resource();
 CD3DX12_GPU_DESCRIPTOR_HANDLE Srv();
 CD3DX12_CPU_DESCRIPTOR_HANDLE Rtv(int faceIndex);

 D3D12_VIEWPORT Viewport()const;
 D3D12_RECT ScissorRect()const;

 void BuildDescriptors(
 CD3DX12_CPU_DESCRIPTOR_HANDLE hCpuSrv,
 CD3DX12_GPU_DESCRIPTOR_HANDLE hGpuSrv,
 CD3DX12_CPU_DESCRIPTOR_HANDLE hCpuRtv[6]);

 void OnResize(UINT newWidth, UINT newHeight);

Figure 18.8. The camera is placed at position O in the
scene, centered about the object we want to generate
the dynamic cube map relative to. We render the scene
six times along each coordinate axis direction with a
field of view angle of 90 so that the image of the entire
surrounding environment is captured.

Figure 18.9. Screenshot of the “Dynamic CubeMap”
demo showing off dynamic reflections. The skull
orbits the center sphere, and its reflection in the
sphere animates accordingly. Moreover, because we
are drawing the cube maps ourselves, we can model
the reflections of the local objects as well, such as the
columns, spheres, and floor.

CUBE MAPPING 611

private:
 void BuildDescriptors();
 void BuildResource();

private:

 ID3D12Device* md3dDevice = nullptr;

 D3D12_VIEWPORT mViewport;
 D3D12_RECT mScissorRect;

 UINT mWidth = 0;
 UINT mHeight = 0;
 DXGI_FORMAT mFormat = DXGI_FORMAT_R8G8B8A8_UNORM;

 CD3DX12_CPU_DESCRIPTOR_HANDLE mhCpuSrv;
 CD3DX12_GPU_DESCRIPTOR_HANDLE mhGpuSrv;
 CD3DX12_CPU_DESCRIPTOR_HANDLE mhCpuRtv[6];

 Microsoft::WRL::ComPtr<ID3D12Resource> mCubeMap = nullptr;
};

18.5.2 Building the Cube Map Resource
Creating a cube map texture is done by creating a texture array with six elements
(one for each face). Because we are going to render to the cube map, we must
set the D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET flag. Below is the method that
builds the cube map resource:

void CubeRenderTarget::BuildResource()
{
 D3D12_RESOURCE_DESC texDesc;
 ZeroMemory(&texDesc, sizeof(D3D12_RESOURCE_DESC));
 texDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;
 texDesc.Alignment = 0;
 texDesc.Width = mWidth;
 texDesc.Height = mHeight;
 texDesc.DepthOrArraySize = 6;
 texDesc.MipLevels = 1;
 texDesc.Format = mFormat;
 texDesc.SampleDesc.Count = 1;
 texDesc.SampleDesc.Quality = 0;
 texDesc.Layout = D3D12_TEXTURE_LAYOUT_UNKNOWN;
 texDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET;

 ThrowIfFailed(md3dDevice->CreateCommittedResource(
 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
 D3D12_HEAP_FLAG_NONE,
 &texDesc,
 D3D12_RESOURCE_STATE_GENERIC_READ,
 nullptr,
 IID_PPV_ARGS(&mCubeMap)));
}

612 TOPICS

18.5.3 Extra Descriptor Heap Space
Rendering to a cube map requires six additional render target views, one for each
face, and one additional depth/stencil buffer. Therefore, we must override the D3
DApp::CreateRtvAndDsvDescriptorHeaps method and allocate these additional
descriptors:

void DynamicCubeMapApp::CreateRtvAndDsvDescriptorHeaps()
{
 // Add +6 RTV for cube render target.
 D3D12_DESCRIPTOR_HEAP_DESC rtvHeapDesc;
 rtvHeapDesc.NumDescriptors = SwapChainBufferCount + 6;
 rtvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV;
 rtvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
 rtvHeapDesc.NodeMask = 0;
 ThrowIfFailed(md3dDevice->CreateDescriptorHeap(
 &rtvHeapDesc, IID_PPV_ARGS(mRtvHeap.GetAddressOf())));

 // Add +1 DSV for cube render target.
 D3D12_DESCRIPTOR_HEAP_DESC dsvHeapDesc;
 dsvHeapDesc.NumDescriptors = 2;
 dsvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_DSV;
 dsvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
 dsvHeapDesc.NodeMask = 0;
 ThrowIfFailed(md3dDevice->CreateDescriptorHeap(
 &dsvHeapDesc, IID_PPV_ARGS(mDsvHeap.GetAddressOf())));

 mCubeDSV = CD3DX12_CPU_DESCRIPTOR_HANDLE(
 mDsvHeap->GetCPUDescriptorHandleForHeapStart(),
 1,
 mDsvDescriptorSize);
}

In addition, we will need one extra SRV so that we can bind the cube map as a
shader input after it has been generated.

The descriptor handles are passed into the CubeRenderTarget::BuildDescripto
rs method which saves a copy of the handles and then actually creates the views:

auto srvCpuStart = mSrvDescriptorHeap->GetCPUDescriptorHandleForHeapStart();
auto srvGpuStart = mSrvDescriptorHeap->GetGPUDescriptorHandleForHeapStart();
auto rtvCpuStart = mRtvHeap->GetCPUDescriptorHandleForHeapStart();

// Cubemap RTV goes after the swap chain descriptors.
int rtvOffset = SwapChainBufferCount;

CD3DX12_CPU_DESCRIPTOR_HANDLE cubeRtvHandles[6];
for(int i = 0; i < 6; ++i)
 cubeRtvHandles[i] = CD3DX12_CPU_DESCRIPTOR_HANDLE(
 rtvCpuStart, rtvOffset + i, mRtvDescriptorSize);

mDynamicCubeMap->BuildDescriptors(
 CD3DX12_CPU_DESCRIPTOR_HANDLE(
 srvCpuStart, mDynamicTexHeapIndex, mCbvSrvDescriptorSize),

CUBE MAPPING 613

 CD3DX12_GPU_DESCRIPTOR_HANDLE(
 srvGpuStart, mDynamicTexHeapIndex, mCbvSrvDescriptorSize),
 cubeRtvHandles);

void CubeRenderTarget::BuildDescriptors(CD3DX12_CPU_DESCRIPTOR_HANDLE hCpuSrv,
 CD3DX12_GPU_DESCRIPTOR_HANDLE hGpuSrv,
 CD3DX12_CPU_DESCRIPTOR_HANDLE hCpuRtv[6])
{
 // Save references to the descriptors.
 mhCpuSrv = hCpuSrv;
 mhGpuSrv = hGpuSrv;

 for(int i = 0; i < 6; ++i)
 mhCpuRtv[i] = hCpuRtv[i];

 // Create the descriptors
 BuildDescriptors();
}

18.5.4 Building the Descriptors
In the previous section, we allocated heap space for our descriptors and cached
references to the descriptors, but we did not actually create any descriptors to
resources. We now need to create an SRV to the cube map resource so that we
can sample it in a pixel shader after it is built, and we also need to create a render
target view to each element in the cube map texture array, so that we can render
onto each cube map face one-by-one. The following method creates the necessary
views:

void CubeRenderTarget::BuildDescriptors()
{
 D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
 srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_

MAPPING;
 srvDesc.Format = mFormat;
 srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURECUBE;
 srvDesc.TextureCube.MostDetailedMip = 0;
 srvDesc.TextureCube.MipLevels = 1;
 srvDesc.TextureCube.ResourceMinLODClamp = 0.0f;

 // Create SRV to the entire cubemap resource.
 md3dDevice->CreateShaderResourceView(mCubeMap.Get(), &srvDesc,

mhCpuSrv);

 // Create RTV to each cube face.
 for(int i = 0; i < 6; ++i)
 {
 D3D12_RENDER_TARGET_VIEW_DESC rtvDesc;
 rtvDesc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE2DARRAY;
 rtvDesc.Format = mFormat;
 rtvDesc.Texture2DArray.MipSlice = 0;
 rtvDesc.Texture2DArray.PlaneSlice = 0;

614 TOPICS

 // Render target to ith element.
 rtvDesc.Texture2DArray.FirstArraySlice = i;

 // Only view one element of the array.
 rtvDesc.Texture2DArray.ArraySize = 1;

 // Create RTV to ith cubemap face.
 md3dDevice->CreateRenderTargetView(mCubeMap.Get(), &rtvDesc,

mhCpuRtv[i]);
 }
}

18.5.5 Building the Depth Buffer
Generally, the cube map faces will have a different resolution than the main back
buffer. Therefore, for rendering to the cube map faces, we need a depth buffer with
dimensions that matches the resolution of a cube map face. However, because we
render to the cube faces one at a time, we only need one depth buffer for the cube
map rendering. We build an additional depth buffer and DSV with the following
code:

void DynamicCubeMapApp::BuildCubeDepthStencil()
{
 // Create the depth/stencil buffer and view.
 D3D12_RESOURCE_DESC depthStencilDesc;
 depthStencilDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;
 depthStencilDesc.Alignment = 0;
 depthStencilDesc.Width = CubeMapSize;
 depthStencilDesc.Height = CubeMapSize;
 depthStencilDesc.DepthOrArraySize = 1;
 depthStencilDesc.MipLevels = 1;
 depthStencilDesc.Format = mDepthStencilFormat;
 depthStencilDesc.SampleDesc.Count = 1;
 depthStencilDesc.SampleDesc.Quality = 0;
 depthStencilDesc.Layout = D3D12_TEXTURE_LAYOUT_UNKNOWN;
 depthStencilDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL;

 D3D12_CLEAR_VALUE optClear;
 optClear.Format = mDepthStencilFormat;
 optClear.DepthStencil.Depth = 1.0f;
 optClear.DepthStencil.Stencil = 0;
 ThrowIfFailed(md3dDevice->CreateCommittedResource(
 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
 D3D12_HEAP_FLAG_NONE,
 &depthStencilDesc,
 D3D12_RESOURCE_STATE_COMMON,
 &optClear,
 IID_PPV_ARGS(mCubeDepthStencilBuffer.GetAddressOf())));

 // Create descriptor to mip level 0 of entire resource using
 // the format of the resource.
 md3dDevice->CreateDepthStencilView(

CUBE MAPPING 615

 mCubeDepthStencilBuffer.Get(), nullptr, mCubeDSV);

 // Transition the resource from its initial state to be used as a
depth buffer.

 mCommandList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(
 mCubeDepthStencilBuffer.Get(),
 D3D12_RESOURCE_STATE_COMMON,
 D3D12_RESOURCE_STATE_DEPTH_WRITE));
}

18.5.6 Cube Map Viewport and Scissor Rectangle
Because the cube map faces will have a different resolution than the main back
buffer, we need to define a new viewport and scissor rectangle that covers a cube
map face:

CubeRenderTarget::CubeRenderTarget(ID3D12Device* device,
 UINT width, UINT height,
 DXGI_FORMAT format)
{
 md3dDevice = device;

 mWidth = width;
 mHeight = height;
 mFormat = format;

 mViewport = { 0.0f, 0.0f, (float)width, (float)height, 0.0f, 1.0f };
 mScissorRect = { 0, 0, width, height };

 BuildResource();
}

D3D12_VIEWPORT CubeRenderTarget::Viewport()const
{
 return mViewport;
}

D3D12_RECT CubeRenderTarget::ScissorRect()const
{
 return mScissorRect
}

18.5.7 Setting up the Cube Map Camera
Recall that to generate a cube map idea is to position a camera at the center of
some object O in the scene with a 90° field of view angle (both vertically and
horizontally). Then have the camera look down the positive x-axis, negative x-axis,
positive y-axis, negative y-axis, positive z-axis, and negative z-axis, and to take a
picture of the scene (excluding the object O) from each of these six viewpoints.

616 TOPICS

To facilitate this, we generate six cameras, one for each face, centered at the given
position (x, y, z):

Camera mCubeMapCamera[6];
void DynamicCubeMapApp::BuildCubeFaceCamera(float x, float y, float z)
{
 // Generate the cube map about the given position.
 XMFLOAT3 center(x, y, z);
 XMFLOAT3 worldUp(0.0f, 1.0f, 0.0f);

 // Look along each coordinate axis.
 XMFLOAT3 targets[6] =
 {
 XMFLOAT3(x + 1.0f, y, z), // +X
 XMFLOAT3(x - 1.0f, y, z), // -X
 XMFLOAT3(x, y + 1.0f, z), // +Y
 XMFLOAT3(x, y - 1.0f, z), // -Y
 XMFLOAT3(x, y, z + 1.0f), // +Z
 XMFLOAT3(x, y, z - 1.0f) // -Z
 };

 // Use world up vector (0,1,0) for all directions except +Y/-Y. In
these cases, we

 // are looking down +Y or -Y, so we need a different "up" vector.
 XMFLOAT3 ups[6] =
 {
 XMFLOAT3(0.0f, 1.0f, 0.0f), // +X
 XMFLOAT3(0.0f, 1.0f, 0.0f), // -X
 XMFLOAT3(0.0f, 0.0f, -1.0f), // +Y
 XMFLOAT3(0.0f, 0.0f, +1.0f), // -Y
 XMFLOAT3(0.0f, 1.0f, 0.0f), // +Z
 XMFLOAT3(0.0f, 1.0f, 0.0f) // -Z
 };

 for(int i = 0; i < 6; ++i)
 {
 mCubeMapCamera[i].LookAt(center, targets[i], ups[i]);
 mCubeMapCamera[i].SetLens(0.5f*XM_PI, 1.0f, 0.1f, 1000.0f);
 mCubeMapCamera[i].UpdateViewMatrix();
 }
}

Because rendering to each cube map face utilizes a different camera, each cube
face needs its own set of PassConstants. This is easy enough, as we just increase
our PassConstants count by six when we create our frame resources.

void DynamicCubeMapApp::BuildFrameResources()
{
 for(int i = 0; i < gNumFrameResources; ++i)
 {
 mFrameResources.push_back(std::make_unique<FrameResource>(md3dDevice.Get(),
 7, (UINT)mAllRitems.size(), (UINT)mMaterials.size()));
 }
}

CUBE MAPPING 617

Element 0 will correspond to our main rendering pass, and elements 1-6 will
correspond to our cube map faces.

We implement the following method to set the constant data for each cube
map face:

void DynamicCubeMapApp::UpdateCubeMapFacePassCBs()
{
 for(int i = 0; i < 6; ++i)
 {
 PassConstants cubeFacePassCB = mMainPassCB;

 XMMATRIX view = mCubeMapCamera[i].GetView();
 XMMATRIX proj = mCubeMapCamera[i].GetProj();

 XMMATRIX viewProj = XMMatrixMultiply(view, proj);
 XMMATRIX invView = XMMatrixInverse(&XMMatrixDeterminant(view),

view);
 XMMATRIX invProj = XMMatrixInverse(&XMMatrixDeterminant(proj),

proj);
 XMMATRIX invViewProj = XMMatrixInverse(&XMMatrixDeterminant(viewPr

oj), viewProj);

 XMStoreFloat4x4(&cubeFacePassCB.View, XMMatrixTranspose(view));
 XMStoreFloat4x4(&cubeFacePassCB.InvView,

XMMatrixTranspose(invView));
 XMStoreFloat4x4(&cubeFacePassCB.Proj, XMMatrixTranspose(proj));
 XMStoreFloat4x4(&cubeFacePassCB.InvProj,

XMMatrixTranspose(invProj));
 XMStoreFloat4x4(&cubeFacePassCB.ViewProj,

XMMatrixTranspose(viewProj));
 XMStoreFloat4x4(&cubeFacePassCB.InvViewProj, XMMatrixTranspose(inv

ViewProj));
 cubeFacePassCB.EyePosW = mCubeMapCamera[i].GetPosition3f();
 cubeFacePassCB.RenderTargetSize =
 XMFLOAT2((float)CubeMapSize, (float)CubeMapSize);
 cubeFacePassCB.InvRenderTargetSize =
 XMFLOAT2(1.0f / CubeMapSize, 1.0f / CubeMapSize);

 auto currPassCB = mCurrFrameResource->PassCB.get();

 // Cube map pass cbuffers are stored in elements 1-6.
 currPassCB->CopyData(1 + i, cubeFacePassCB);
 }
}

18.5.8 Drawing into the Cube Map
For this demo we have three render layers:

enum class RenderLayer : int
{
 Opaque = 0,
 OpaqueDynamicReflectors,

618 TOPICS

 Sky,
 Count
};

The OpaqueDynamicReflectors layer contains the center sphere in Figure () which
will use the dynamic cube map to reflect local dynamic objects. Our first step is to
draw the scene to each face of the cube map, but not including the center sphere;
this means we just need to render the opaque and sky layers to the cube map:

void DynamicCubeMapApp::DrawSceneToCubeMap()
{
 mCommandList->RSSetViewports(1, &mDynamicCubeMap->Viewport());
 mCommandList->RSSetScissorRects(1, &mDynamicCubeMap->ScissorRect());

 // Change to RENDER_TARGET.
 mCommandList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(
 mDynamicCubeMap->Resource(),
 D3D12_RESOURCE_STATE_GENERIC_READ,
 D3D12_RESOURCE_STATE_RENDER_TARGET));

 UINT passCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof(Pas
sConstants));

 // For each cube map face.
 for(int i = 0; i < 6; ++i)
 {
 // Clear the back buffer and depth buffer.
 mCommandList->ClearRenderTargetView(
 mDynamicCubeMap->Rtv(i), Colors::LightSteelBlue, 0, nullptr);
 mCommandList->ClearDepthStencilView(mCubeDSV,
 D3D12_CLEAR_FLAG_DEPTH | D3D12_CLEAR_FLAG_STENCIL,
 1.0f, 0, 0, nullptr);

 // Specify the buffers we are going to render to.
 mCommandList->OMSetRenderTargets(1, &mDynamicCubeMap->Rtv(i),
 true, &mCubeDSV);

 // Bind the pass constant buffer for this cube map face so we use
 // the right view/proj matrix for this cube face.
 auto passCB = mCurrFrameResource->PassCB->Resource();
 D3D12_GPU_VIRTUAL_ADDRESS passCBAddress =
 passCB->GetGPUVirtualAddress() + (1+i)*passCBByteSize;
 mCommandList->SetGraphicsRootConstantBufferView(1, passCBAddress);

 DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)
RenderLayer::Opaque]);

 mCommandList->SetPipelineState(mPSOs["sky"].Get());
 DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)

RenderLayer::Sky]);

 mCommandList->SetPipelineState(mPSOs["opaque"].Get());
 }

CUBE MAPPING 619

 // Change back to GENERIC_READ so we can read the texture in a
shader.

 mCommandList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(
 mDynamicCubeMap->Resource(),
 D3D12_RESOURCE_STATE_RENDER_TARGET,
 D3D12_RESOURCE_STATE_GENERIC_READ));
}

Finally, after we rendered the scene to the cube map, we set our main render
targets and draw the scene as normal, but with the dynamic cube map applied to
the center sphere:

...
DrawSceneToCubeMap();

// Set main render target settings.

mCommandList->RSSetViewports(1, &mScreenViewport);
mCommandList->RSSetScissorRects(1, &mScissorRect);

// Indicate a state transition on the resource usage.
mCommandList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(
 CurrentBackBuffer(),
 D3D12_RESOURCE_STATE_PRESENT,
 D3D12_RESOURCE_STATE_RENDER_TARGET));

// Clear the back buffer and depth buffer.
mCommandList->ClearRenderTargetView(CurrentBackBufferView(),
 Colors::LightSteelBlue, 0, nullptr);
mCommandList->ClearDepthStencilView(
 DepthStencilView(),
 D3D12_CLEAR_FLAG_DEPTH | D3D12_CLEAR_FLAG_STENCIL,
 1.0f, 0, 0, nullptr);

// Specify the buffers we are going to render to.
mCommandList->OMSetRenderTargets(1,
 &CurrentBackBufferView(), true, &DepthStencilView());

auto passCB = mCurrFrameResource->PassCB->Resource();
mCommandList->SetGraphicsRootConstantBufferView(1,
 passCB->GetGPUVirtualAddress());

// Use the dynamic cube map for the dynamic reflectors layer.
CD3DX12_GPU_DESCRIPTOR_HANDLE dynamicTexDescriptor(
 mSrvDescriptorHeap->GetGPUDescriptorHandleForHeapStart());
dynamicTexDescriptor.Offset(mSkyTexHeapIndex + 1,

mCbvSrvDescriptorSize);
mCommandList->SetGraphicsRootDescriptorTable(3, dynamicTexDescriptor);

DrawRenderItems(mCommandList.Get(),
mRitemLayer[(int)RenderLayer::OpaqueDynamicReflectors]);

620 TOPICS

// Use the static "background" cube map for the other objects
(including the sky)

mCommandList->SetGraphicsRootDescriptorTable(3, skyTexDescriptor);

DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)
RenderLayer::Opaque]);

mCommandList->SetPipelineState(mPSOs["sky"].Get());
DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)

RenderLayer::Sky]);

// Indicate a state transition on the resource usage.
mCommandList->ResourceBarrier(1,
 &CD3DX12_RESOURCE_BARRIER::Transition(
 CurrentBackBuffer(),
 D3D12_RESOURCE_STATE_RENDER_TARGET,
 D3D12_RESOURCE_STATE_PRESENT));
...

18.6 DYNAMIC CUBE MAPS WITH THE GEOMETRY
SHADER

In the previous section, we redrew the scene six times to generate the cube map—
once for each cube map face. Draw calls are not free, and we should work to
minimize them. There is a Direct3D 10 sample called “CubeMapGS,” which uses
the geometry shader to render a cube map by drawing the scene only once. In this
section, we highlight the main ideas of how this sample works. Note that even
though we show the Direct3D 10 code, the same strategy can be used in Direct3D
12 and porting the code is straightforward.

First, it creates a render target view to the entire texture array (not each
individual face texture):

// Create the 6-face render target view
D3D10_RENDER_TARGET_VIEW_DESC DescRT;
DescRT.Format = dstex.Format;
DescRT.ViewDimension = D3D10_RTV_DIMENSION_TEXTURE2DARRAY;
DescRT.Texture2DArray.FirstArraySlice = 0;
DescRT.Texture2DArray.ArraySize = 6;
DescRT.Texture2DArray.MipSlice = 0;
V_RETURN(pd3dDevice->CreateRenderTargetView(
g_pEnvMap, &DescRT, &g_pEnvMapRTV));

Moreover, this technique requires a cube map of depth buffers (one for each face).
The depth stencil view to the entire texture array of depth buffers is creates as
follows:

// Create the depth stencil view for the entire cube
D3D10_DEPTH_STENCIL_VIEW_DESC DescDS;

CUBE MAPPING 621

DescDS.Format = DXGI_FORMAT_D32_FLOAT;
DescDS.ViewDimension = D3D10_DSV_DIMENSION_TEXTURE2DARRAY;
DescDS.Texture2DArray.FirstArraySlice = 0;
DescDS.Texture2DArray.ArraySize = 6;
DescDS.Texture2DArray.MipSlice = 0;
V_RETURN(pd3dDevice->CreateDepthStencilView(
g_pEnvMapDepth, &DescDS, &g_pEnvMapDSV));

It then binds this render target and depth stencil view to the OM stage of the
pipeline:

ID3D10RenderTargetView* aRTViews[1] = { g_pEnvMapRTV };
pd3dDevice->OMSetRenderTargets(sizeof(aRTViews)/sizeof(aRTViews[0]),
aRTViews, g_pEnvMapDSV);

That is, we have bound a view to an array of render targets and a view to an array
of depth stencil buffers to the OM stage, and we are going to render to each array
slice simultaneously.

Now, the scene is rendered once and an array of six view matrices (one to
look in the corresponding direction of each cube map face) is available in the
constant buffers. The geometry shader replicates the input triangle six times,
and assigns the triangle to one of the six render target array slices. Assigning
a triangle to a render target array slice is done by setting the system value SV_
RenderTargetArrayIndex. This system value is an integer index value that can only
be set as an output from the geometry shader to specify the index of the render
target array slice the primitive should be rendered onto. This system value can
only be used if the render target view is actually a view to an array resource.

struct PS_CUBEMAP_IN
{
 float4 Pos : SV_POSITION; // Projection coord
 float2 Tex : TEXCOORD0; // Texture coord
 uint RTIndex : SV_RenderTargetArrayIndex;
};

[maxvertexcount(18)]
void GS_CubeMap(triangle GS_CUBEMAP_IN input[3],
inout TriangleStream<PS_CUBEMAP_IN> CubeMapStream)
{
 // For each triangle
 for(int f = 0; f < 6; ++f)
 {
 // Compute screen coordinates
 PS_CUBEMAP_IN output;

 // Assign the ith triangle to the ith render target.
 output.RTIndex = f;

 // For each vertex in the triangle
 for(int v = 0; v < 3; v++)
 {

622 TOPICS

 // Transform to the view space of the ith cube face.
 output.Pos = mul(input[v].Pos, g_mViewCM[f]);

 // Transform to homogeneous clip space.
 output.Pos = mul(output.Pos, mProj);

 output.Tex = input[v].Tex;
 CubeMapStream.Append(output);
 }
 CubeMapStream.RestartStrip();
 }
}

Thus we see that we have rendered the scene to each cube map face by rendering
the scene only once instead of six times.

We have summarized the main idea of this sample, but refer to the “CubeMapGS”
Direct3D 10 sample for the full source code to fi ll in any details.

This strategy is interesting and demonstrates simultaneous render targets and the
SV_RenderTargetArrayIndex system value; however, it is not a definite win. There
are two issues that make this method unattractive:

1. It uses the geometry shader to output a large set of data. Recall from Chapter 12
that we mentioned the geometry shader acts inefficiently when outputting a
large set of data. Therefore, using a geometry shader for this purpose could
hurt performance.

2. In a typical scene, a triangle will not overlap more than one cube map face (see
again Figure 18.9). Therefore, the act of replicating a triangle and rendering
it onto each cube face when it will be clipped by five out of six of the faces
is wasteful. Admittedly, our demo for this chapter also renders the entire
scene to each cube map face for simplicity. However, in real applications
(non-demo), we would use frustum culling (Chapter 16), and only render
the objects visible to a particular cube map face. Frustum culling at the object
level cannot be done by a geometry shader implementation.

On the other hand, a situation where this strategy does work well would be
rendering a mesh that surrounds the scene. For example, suppose that you had
a dynamic sky system where the clouds moved and the sky color changed based
on the time of day. Because the sky is changing, we cannot use a prebaked cube
map texture to reflect the sky, so we have to use a dynamic cube map. Since the sky
mesh surrounds the entire scene, it is visible by all six cube map faces. Therefore,
the second bullet point above does not apply, and the geometry shader method
could be a win by reducing draw calls from six to one, assuming usage of the
geometry shader does not hurt performance too much.

Note:

CUBE MAPPING 623

Recent optimizations available in NVIDIA’s Maxwell architecture enables
geometry to be replicated to multiple render targets with without the penalties
of using a geometry shader (see http://docs.nvidia.com/gameworks/content/
gameworkslibrary/graphicssamples/opengl_samples/cascadedshadowmapping.
htm, which uses the Viewport Multicast and Fast Geometry Shader features). At
the time of this writing, these features are not exposed by Direct3D 12, but will
probably be in a future update.

18.7 SUMMARY

1. A cube map consists of six textures that we visualize as the faces of a cube. In
Direct3D 12, a cube map can be represented by the ID3D12Resource interface
as a texture array with six elements. In the HLSL, a cube map is represented
by the TextureCube type. To identify a texel in a cube map, we use 3D texture
coordinates, which define a 3D lookup vector v originating at the center of the
cube map. The texel of the cube map that v intersects is the texel corresponding
to the 3D coordinates of v.

2. An environment map captures the surrounding environment about a
point with six images. These images can then be stored in a cube map. With
environment maps we can easily texture a sky or approximate reflections.

3. Cube maps can be made from six individual images using the texassemble tool.
Cube maps can then be saved to fi le with the DDS image format. Because cube
maps store six 2D textures, which can consume a lot of memory, a compressed
DDS format should be used.

4. Prebaked cube maps do not capture objects that move or objects in the
scene that did not exist when the cube map was generated. To overcome this
limitation, we can build the cube map at runtime. Th at is, every frame you
position the camera in the scene that is to be the origin of the cube map, and
then render the scene six times into each cube map face along each coordinate
axis direction. Since the cube map is rebuilt every frame, it will capture
animated objects and every object in the environment. Dynamic cube maps
are expensive and their use should be minimized to key objects.

5. We can bind a render target view to a texture array to the OM stage. Moreover,
we can render to each array slice in the texture array simultaneously. Assigning
a triangle to a render target array slice is done by setting the system value SV_
RenderTargetArrayIndex. A render target view to a texture array, along with
the SV_RenderTargetArrayIndex system value allows generating a cube map

Note:

624 TOPICS

dynamically by rendering the scene once instead of six times. However, this
strategy might not always be a win over rendering the scene six times with
frustum culling.

18.8 EXERCISES

1. Experiment with different FresnelR0 and Roughness material values in the
“Cube Map” demo. Also try to make the cylinders and box reflective.

2. Find six image that capture an environment (either find cube map images
online or use a program like Terragen to make them), and assemble them into
a cube map using the texassemble tool. Test your cube map out in the “Cube
Map” demo.

3. A dielectric is a transparent material that refracts light; see Figure 18.11. When
a ray strikes a dielectric, some light reflects and some light refracts based on
Snell’s Law of Refraction. The indices of refraction n1 and n2 determine how
much the light bends:

1. If n1 = n2, then 1 = 2 (no bending).

2. If n2 > n1, then 2 < 1 (ray bends toward normal).

3. If n1 > n2, then2 > 1 (ray bends away from normal).

 Thus, in Figure 18.11, n2 > n1 since the ray bends toward the normal when we
enter the block. Physically, the light ray refracts again when leaving the block,
but for real-time graphics, typically only the first refraction is modeled. The
HLSL provides the intrinsic refract function to calculate the refraction
vector:

float3 refract(float3 incident, float3 normal, float eta);

 The incident vector is the incoming light ray vector (v0 in Figure 18.10), and
the normal vector is the outward surface normal nin Figure 18.10). The third
parameter is the ratio of the indices of refractionn1n2 The index of refraction
of a vacuum is 1.0; some other index of refactions: water—1.33; glass—1.51.
For this exercise, modify the “Cube Map” demo to do refraction instead of
reflection (see Figure 18.11); you may need to adjust the Material::Reflect
values. Try out eta = 1.0, eta = 0.95, eta = 0.9

CUBE MAPPING 625

Figure 18.10. The incident vector v0 travels through a medium with index of refraction n1. The ray
strikes a transparent material with index of refraction n2, and refracts into the vector v1. We use the
refracted vector v1 as a look up into the cube map. This is almost like alpha blending transparency,
except alpha blending transparency does not bend the incident vector.

Figure 18.11. “Cube Demo” with refraction instead of reflection.

4. Just like with specular highlights from light sources, roughness will cause
the specular reflections to spread out. Thus rougher surfaces will have blurry
reflections as multiple samples from the environment map will average and
scatter into the same direction into the eye. Research techniques for modeling
blurry reflections with environment maps.

Chapter

627

19Chapter

NORMAL
MAPPING

In Chapter 9, we introduced texture mapping, which enabled us to map fine
details from an image onto our triangles. However, our normal vectors are still
defined at the coarser vertex level and interpolated over the triangle. For part of
this chapter, we study a popular method for specifying surface normals at a higher
resolution. Specifying surface normals at a higher resolution increases the detail
of the lighting, but the mesh geometry detail remains unchanged.

Objectives:
1. To understand why we need normal mapping.

2. To discover how normal maps are stored.

3. To learn how normal maps can be created.

4. To find out the coordinate system the normal vectors in normal maps are
stored relative to and how it relates to the object space coordinate system of a
3D triangle.

5. To learn how to implement normal mapping in a vertex and pixel shader.

628 TOPICS

19.1 MOTIVATION

Consider Figure 19.1 from the Cube Mapping demo of the preceding chapter.
The specular highlights on the cone shaped columns do not look right—they
look unnaturally smooth compared to the bumpiness of the brick texture. This
is because the underlying mesh geometry is smooth, and we have merely applied
the image of bumpy bricks over the smooth cylindrical surface. However, the
lighting calculations are performed based on the mesh geometry (in particular,
the interpolated vertex normals), and not the texture image. Thus the lighting is
not completely consistent with the texture.

Ideally, we would tessellate the mesh geometry so much that the actual bumps
and crevices of the bricks could be modeled by the underlying geometry. Then
the lighting and texture could be made consistent. Hardware tessellation could
help in this area, but we still need a way to specify the normals for the vertices
generated by the tessellator (using interpolated normals does not increase our
normal resolution).

Another possible solution would be to bake the lighting details directly into the
textures. However, this will not work if the lights are allowed to move, as the texel
colors will remain fi xed as the lights move.

Thus our goal is to fi nd a way to implement dynamic lighting such that the fi ne
details that show up in the texture map also show up in the lighting. Since textures
provide us with the fi ne details to begin with, it is natural to look for a texture
mapping solution to this problem. Figure 19.2 shows the same scene shown in
Figure 19.1 with normal mapping; we can see now that the dynamic lighting is
much more consistent with the brick texture.

Figure 19.1. Smooth specular highlights. Figure 19.2. Bumpy specular highlights.

NORMAL MAPPING 629

19.2 NORMAL MAPS

A normal map is a texture, but instead of storing RGB data at each texel, we store a
compressed x-coordinate, y-coordinate, and z-coordinate in the red component,
green component, and blue component, respectively. These coordinates define a
normal vector; thus a normal map stores a normal vector at each pixel. Figure 19.3
shows an example of how to visualize a normal map.

For illustration, we will assume a 24-bit image format, which reserves a byte
for each color component, and therefore, each color component can range from
0-255. (A 32-bit format could be employed where the alpha component goes
unused or stores some other scalar value such as a heightmap or specular map.
Also, a fl oating-point format could be used in which no compression is necessary,
but this requires more memory.)

As Figure 19.3 shows, the vectors are generally mostly aligned with the z-axis.
That is, the z-coordinate has the largest magnitude. Consequently, normal maps
usually appear mostly blue when viewed as a color image. This is because the
z-coordinate is stored in the blue channel and since it has the largest magnitude,
this color dominates.

So how do we compress a unit vector into this format? First note that for a unit
vector, each coordinate always lies in the range [1, 1]. If we shift and scale this
range to [0, 1] and multiply by 255 and truncate the decimal, the result will be an
integer in the range 0-255. That is, if x is a coordinate in the range [1, 1], then the
integer part of f (x) is an integer in the range 0-255, where f is defined by

 () (0.5 0.5) 255f x x  

Note:

Figure 19.3. Normals stored in a normal map relative to a texture space coordinate system defined by the
vectors T (x-axis), B (y-axis), and N (z-axis). The T vector runs right horizontally to the texture image; the B
vector runs down vertically to the texture image; and N is orthogonal to the texture plane.

630 TOPICS

So to store a unit vector in 24-bit image, we just apply f to each coordinate and
write the coordinate to the corresponding color channel in the texture map.

The next question is how to reverse the compression process; that is, given a
compressed texture coordinate in the range 0-255, how can we recover its true
value in the interval [1, 1]. The answer is to simply invert the function f, which
after a little thought, can be seen to be:

  1 2
1

255

x
f x  

That is, if x is an integer in the range 0-255, then f 1(x)is a floating-point number
in the range [1, 1].

We will not have to do the compression process ourselves, as we will use a
Photoshop plug-in to convert images to normal maps. However, when we sample
a normal map in a pixel shader, we will have to do part of the inverse process to
uncompress it. When we sample a normal map in a shader like this:

float3 normalT = gNormalMap.Sample(gTriLinearSam, pin.Tex);

The color vector normalT will have normalized components (r, g, b) such that
0  r, g, b  1.

Thus, the method has already done part of the uncompressing work for us
(namely the divide by 255, which transforms an integer in the range 0-255 to the
fl oating-point interval [0, 1]). We complete the transformation by shifting and
scaling each component in [0, 1] to [1, 1] with the function g: [0, 1]  [1, 1]
defi ned by:

   2 1g x x 

In code, we apply this function to each color component like this:

// Uncompress each component from [0,1] to [-1,1].
 normalT = 2.0f*normalT - 1.0f;

This works because the scalar 1.0 is augmented to the vector (1, 1, 1) so that the
expression makes sense and is done componentwise.

The Photoshop plug-in is available at http://developer.nvidia.com/nvidia-
texture-tools-adobe-photoshop. There are other tools available for generating
normal maps such as http://www.crazybump.com/ and http://shadermap.com/
home/. Also, there are tools that can generate normal maps from high resolution
meshes (see http://www.nvidia.com/object/melody_home.html).

If you want to use a compressed texture format to store normal maps, then use the
BC7 (DXGI_FORMAT_BC7_UNORM) format for the best quality, as it significantly reduces
the errors caused by compressing normal maps. For BC6 and BC7 formats, the

Note:

NORMAL MAPPING 631

DirectX SDK has a sample called “BC6HBC7EncoderDecoder11.” This program
can be used to convert your texture files to BC6 or BC7.

19.3 TEXTURE/TANGENT SPACE

Consider a 3D texture mapped triangle. For the sake of discussion, suppose
that there is no distortion in the texture mapping; in other words, mapping the
texture triangle onto the 3D triangle requires only a rigid body transformation
(translation and rotation). Now, suppose that the texture is like a decal. So we
pick the decal up, translate it, and rotate it onto the 3D triangle. Now Figure 19.4
shows how the texture space axes relate to the 3D triangle: they are tangent to the
triangle and lie in the plane of the triangle. The texture coordinates of the triangle
are, of course, relative to the texture space coordinate system. Incorporating the
triangle face normal N, we obtain a 3D TBN-basis in the plane of the triangle that
we call texture space or tangent space. Note that the tangent space generally varies
from triangle-to-triangle (see Figure 19.5).

Now, as Figure 19.3 shows, the normal vectors in a normal map are defi ned
relative to the texture space. But our lights are defi ned in world space. In order
to do lighting, the normal vectors and lights need to be in the same space. So our
fi rst step is to relate the tangent space coordinate system with the object space
coordinate system the triangle vertices are relative to. Once we are in object space,
we can use the world matrix to get from object space to world space (the details
of this are covered in the next section). Let v0, v1, and v2 defi ne the three vertices
of a 3D triangle with corresponding texture coordinates (u0, v0), (u1, v1), and

Figure 19.5. The texture space is different for each
face of the box.

Figure 19.4. The relationship between the texture
space of a triangle and the object space. The 3D
tangent vector T aims in the u-axis direction of the
texturing coordinate system, and the 3D tangent
vector B aims in the v-axis direction of the texturing
coordinate system.

632 TOPICS

(u2, v2) that defi ne a triangle in the texture plane relative to the texture space axes
(i.e., T and B). Let e0 = v1  v0 and e1 = v2  v0 be two edge vectors of the 3D
triangle with corresponding texture triangle edge vectors (u0, v0) = (u1  u0,
v1  v0) and (u1, v1) = (u2  u0, v2  v0) . From Figure 19.4, it is clear that

0 0 0

1 1 1

u v

u v

  
  

e T B

e T B

Representing the vectors with coordinates relative to object space, we get the
matrix equation:

0, 0, 0, 0 0

1, 1, 1, 1 1

x y z x y z

x y z x y z

e e e T T Tu v

e e e B B Bu v

     
         

Note that we know the object space coordinates of the triangle vertices; hence we
know the object space coordinates of the edge vectors, so the matrix

0, 0, 0,

1, 1, 1,

x y z

x y z

e e e

e e e

 
 
 

is known. Likewise, we know the texture coordinates, so the matrix

0 0

1 1

u v

u v

  
   

is known. Solving for the T and B object space coordinates we get:

1
0, 0, 0,0 0

1, 1, 1,1 1

0, 0, 0,1 0

1, 1, 1,1 00 1 0 1

1

x y z x y z

x y z x y z

x y z

x y z

T T T e e eu v

B B B e e eu v

e e ev v

e e eu uu v v u

     
         

    
           

In the above, we used the fact that the inverse of a matrix
a b

c d

 
  
 

A is given by:

 1 1 d b

c aad bc
  
    

A

Note that the vectors T and B are generally not unit length in object space, and if
there is texture distortion, they will not be orthonormal either.

The T, B, and N vectors are commonly referred to as the tangent, binormal (or
bitangent), and normal vectors, respectively.

NORMAL MAPPING 633

19.4 VERTEX TANGENT SPACE

In the previous section, we derived a tangent space per triangle. However, if we use
this texture space for normal mapping, we will get a triangulated appearance since
the tangent space is constant over the face of the triangle. Therefore, we specify
tangent vectors per vertex, and we do the same averaging trick that we did with
vertex normals to approximate a smooth surface:

1. The tangent vector T for an arbitrary vertex v in a mesh is found by averaging
the tangent vectors of every triangle in the mesh that shares the vertex v.

2. The bitangent vector B for an arbitrary vertex v in a mesh is found by averaging
the bitangent vectors of every triangle in the mesh that shares the vertex v.

Generally, after averaging, the TBN-bases will generally need to be
orthonormalized, so that the vectors are mutually orthogonal and of unit length.
This is usually done using the Gram-Schmidt procedure. Code is available on the
web for building a per-vertex tangent space for an arbitrary triangle mesh: http://
www.terathon.com/code/tangent.html.

In our system, we will not store the bitangent vector B directly in memory.
Instead, we will compute B = N × T when we need B, where N is the usual averaged
vertex normal. Hence, our vertex structure looks like this:

struct Vertex
{
 XMFLOAT3 Pos;
 XMFLOAT3 Normal;
 XMFLOAT2 Tex;
 XMFLOAT3 TangentU;
};

Recall that our procedurally generated meshes created by GeometryGenerator
compute the tangent vector T corresponding to the u-axis of the texture space.
The object space coordinates of the tangent vector T is easily specified at each
vertex for box and grid meshes (see Figure 19.5). For cylinders and spheres,
the tangent vector T at each vertex can be found by forming the vector-valued
function of two variables P(u, v) of the cylinder/sphere and computing p/u,
where the parameter u is also used as the u-texture coordinate.

19.5 TRANSFORMING BETWEEN TANGENT SPACE
AND OBJECT SPACE

At this point, we have an orthonormal TBN-basis at each vertex in a mesh.
Moreover, we have the coordinates of the TBN vectors relative to the object space

634 TOPICS

of the mesh. So now that we have the coordinate of the TBN-basis relative to the
object space coordinate system, we can transform coordinates from tangent space
to object space with the matrix:

x y z

object x y z

x y z

T T T

B B B

N N N

 
 

  
 
 

M

Since this matrix is orthogonal, its inverse is its transpose. Thus, the change of
coordinate matrix from object space to tangent space is:

1

x x x
T

tangent object object y y y

z z z

T B N

T B N

T B N


 
     
  

M M M

In our shader program, we will actually want to transform the normal vector from
tangent space to world space for lighting. One way would be to transform the
normal from tangent space to object space first, and then use the world matrix to
transform from object space to world space:

  world tangent object worldn n M M

However, since matrix multiplication is associative, we can do it like this:

  world tangent object worldn n M M

And note that

x y z

object world world x y z

x y z

T T T

B BB

N N N

          
                 
            



  

T T

M M B M B

N N

where ,world  T T M ,world  B B M and world  N N M . So to go from tangent
space directly to world space, we just have to describe the tangent basis in world
coordinates, which can be done by transforming the TBN-basis from object space
coordinates to world space coordinates.

We will only be interested in transforming vectors (not points). Th us, we only
need a 3 × 3 matrix. Recall that the fourth row of an affi ne matrix is for translation,
but we do not translate vectors.

NORMAL MAPPING 635

19.6 NORMAL MAPPING SHADER CODE

We summarize the general process for normal mapping:

1. Create the desired normal maps from some art program or utility program
and store them in an image file. Create 2D textures from these files when the
program is initialized.

2. For each triangle, compute the tangent vector T. Obtain a per-vertex tangent
vector for each vertex v in a mesh by averaging the tangent vectors of every
triangle in the mesh that shares the vertex v. (In our demo, we use simply
geometry and are able to specify the tangent vectors directly, but this averaging
process would need to be done if using arbitrary triangle meshes made in a
3D modeling program.)

3. In the vertex shader, transform the vertex normal and tangent vector to world
space and output the results to the pixel shader.

4. Using the interpolated tangent vector and normal vector, we build the TBN-
basis at each pixel point on the surface of the triangle. We use this basis to
transform the sampled normal vector from the normal map from tangent
space to the world space. We then have a world space normal vector from the
normal map to use for our usual lighting calculations.

To help us implement normal mapping, we have added the following function to
Common.hlsl:

//--
// Transforms a normal map sample to world space.
//--
float3 NormalSampleToWorldSpace(float3 normalMapSample,
 float3 unitNormalW,
 float3 tangentW)
{
 // Uncompress each component from [0,1] to [-1,1].
 float3 normalT = 2.0f*normalMapSample - 1.0f;

 // Build orthonormal basis.
 float3 N = unitNormalW;
 float3 T = normalize(tangentW - dot(tangentW, N)*N);
 float3 B = cross(N, T);

 float3x3 TBN = float3x3(T, B, N);

 // Transform from tangent space to world space.
 float3 bumpedNormalW = mul(normalT, TBN);

 return bumpedNormalW;
}

636 TOPICS

This function is used like this in the pixel shader:

float3 normalMapSample = gNormalMap.Sample(samLinear, pin.Tex).r gb;
float3 bumpedNormalW = NormalSampleToWorldSpace(
normalMapSample,
pin.NormalW,
pin.TangentW);

Two lines that might not be clear are these:

float3 N = unitNormalW;
float3 T = normalize(tangentW - dot(tangentW, N)*N);

After the interpolation, the tangent vector and normal vector may not be
orthonormal. This code makes sure T is orthonormal to N by subtracting off any
component of T along the direction N (see Figure 19.6). Note that there is the
assumption that unitNormalW is normalized.

Once we have the normal from the normal map, which we call the “bumped
normal,” we use it for all the subsequent calculation involving the normal vector
(e.g., lighting, cube mapping). The entire normal mapping effect is shown below
for completeness, with the parts relevant to normal mapping in bold.

//***
// Default.hlsl by Frank Luna (C) 2015 All Rights Reserved.
//***

// Defaults for number of lights.
#ifndef NUM_DIR_LIGHTS
 #define NUM_DIR_LIGHTS 3
#endif

#ifndef NUM_POINT_LIGHTS
 #define NUM_POINT_LIGHTS 0
#endif

#ifndef NUM_SPOT_LIGHTS
 #define NUM_SPOT_LIGHTS 0
#endif

// Include common HLSL code.

Figure 19.6. Since ||N|| = 1, projN(T) = (T·N)N. The vector T-projN (T) is the portion of T orthogonal to N.

NORMAL MAPPING 637

#include “Common.hlsl”

struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
 float2 TexC : TEXCOORD;
 float3 TangentU : TANGENT;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 NormalW : NORMAL;
 float3 TangentW : TANGENT;
 float2 TexC : TEXCOORD;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout = (VertexOut)0.0f;

 // Fetch the material data.
 MaterialData matData = gMaterialData[gMaterialIndex];

 // Transform to world space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);
 vout.PosW = posW.xyz;

 // Assumes nonuniform scaling; otherwise, need to use
 // inverse-transpose of world matrix.
 vout.NormalW = mul(vin.NormalL, (float3x3)gWorld);

 vout.TangentW = mul(vin.TangentU, (float3x3)gWorld);

 // Transform to homogeneous clip space.
 vout.PosH = mul(posW, gViewProj);

 // Output vertex attributes for interpolation across triangle.
 float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform);
 vout.TexC = mul(texC, matData.MatTransform).xy;

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 // Fetch the material data.
 MaterialData matData = gMaterialData[gMaterialIndex];
 float4 diffuseAlbedo = matData.DiffuseAlbedo;
 float3 fresnelR0 = matData.FresnelR0;
 float roughness = matData.Roughness;
 uint diffuseMapIndex = matData.DiffuseMapIndex;

638 TOPICS

 uint normalMapIndex = matData.NormalMapIndex;

 // Interpolating normal can unnormalize it, so renormalize it.
 pin.NormalW = normalize(pin.NormalW);

 float4 normalMapSample = gTextureMaps[normalMapIndex].Sample(
 gsamAnisotropicWrap, pin.TexC);
 float3 bumpedNormalW = NormalSampleToWorldSpace(
 normalMapSample.rgb, pin.NormalW, pin.TangentW);

 // Uncomment to turn off normal mapping.
 //bumpedNormalW = pin.NormalW;

 // Dynamically look up the texture in the array.
 diffuseAlbedo *= gTextureMaps[diffuseMapIndex].Sample(
 gsamAnisotropicWrap, pin.TexC);

 // Vector from point being lit to eye.
 float3 toEyeW = normalize(gEyePosW - pin.PosW);

 // Light terms.
 float4 ambient = gAmbientLight*diffuseAlbedo;

 // Alpha channel stores shininess at per-pixel level.
 const float shininess = (1.0f - roughness) * normalMapSample.a;
 Material mat = { diffuseAlbedo, fresnelR0, shininess };
 float3 shadowFactor = 1.0f;
 float4 directLight = ComputeLighting(gLights, mat, pin.PosW,
 bumpedNormalW, toEyeW, shadowFactor);

 float4 litColor = ambient + directLight;

 // Add in specular reflections.
 float3 r = reflect(-toEyeW, bumpedNormalW);
 float4 reflectionColor = gCubeMap.Sample(gsamLinearWrap, r);
 float3 fresnelFactor = SchlickFresnel(fresnelR0, bumpedNormalW, r);
 litColor.rgb += shininess * fresnelFactor * reflectionColor.rgb;

 // Common convention to take alpha from diffuse albedo.
 litColor.a = diffuseAlbedo.a;

 return litColor;
}

Observe that the “bumped normal” vector is use in the light calculation, but also
in the reflection calculation for modeling reflections from the environment map.
In addition, in the alpha channel of the normal map we store a shininess mask,
which controls the shininess at a per-pixel level (see Figure 19.7).

NORMAL MAPPING 639

Figure 19.7. The alpha channel of the tile_nmap.dds image from the book’s DVD. The alpha channel
denotes the shininess of the surface. White values indicate a shininess value of 1.0 and black values indicate
a shininess value of 0.0. This gives us per-pixel control of the shininess material property.

19.7 SUMMARY

1. The strategy of normal mapping is to texture our polygons with normal maps.
We then have per-pixel normals, which capture the fine details of a surface
like bumps, scratches, and crevices. We then use these per-pixel normals from
the normal map in our lighting calculations, instead of the interpolated vertex
normal.

2. A normal map is a texture, but instead of storing RGB data at each texel,
we store a compressed x-coordinate, y-coordinate, and z-coordinate in
the red component, green component, and blue component, respectively.
We use various tools to generate normal maps such as the ones located at
http://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop, http://www.
crazybump.com/, and http://shadermap.com/home/.

3. The coordinates of the normals in a normal map are relative to the texture
space coordinate system. Consequently, to do lighting calculations, we need
to transform the normal from the texture space to the world space so that the
lights and normals are in the same coordinate system. The TBN-bases built at
each vertex facilitates the transformation from texture space to world space.

640 TOPICS

19.8 EXERCISES

1. Download the NVIDIA normal map plug-in (http://developer.nvidia.com/
object/nv_texture_tools.html) and experiment with making different normal
maps with it. Try your normal maps out in this chapter’s demo application.

2. Download the trial version of CrazyBump (http://www.crazybump.com/).
Load a color image, and experiment making a normal and displacement map.
Try your maps in this chapter’s demo application.

3. If you apply a rotation texture transformation, then you need to rotate the
tangent space coordinate system accordingly. Explain why. In particular,
this means you need to rotate T about N in world space, which will require
expensive trigonometric calculations (more precisely, a rotation transform
about an arbitrary axis N). Another solution is to transform T from world
space to tangent space, where you can use the texture transformation matrix
directly to rotate T, and then transform back to world space.

4. Instead of doing lighting in world space, we can transform the eye and light
vector from world space into tangent space and do all the lighting calculations
in that space. Modify the normal mapping shader to do the lighting
calculations in tangent space.

5. The idea of displacement mapping is to utilize an additional map, called a
heightmap, which describes the bumps and crevices of a surface. Often it is
combined with hardware tessellation, where it indicates how newly added
vertices should be offset in the normal vector direction to add geometric
detail to the mesh. Displacement mapping can be used to implement ocean
waves. The idea is to scroll two (or more) heightmaps over a flat vertex grid
at different speeds and directions. For each vertex of the grid, we sample the
heightmaps, and add the heights together; the summed height becomes the
height (i.e., y-coordinate) of the vertex at this instance in time. By scrolling
the heightmaps, waves continuously form and fade away giving the illusion
of ocean waves (see Figure 19.8). For this exercise, implement the ocean wave
effect just described using the two ocean wave heightmaps (and corresponding
normal maps) available to download for this chapter (Figure 19.9). Here are a
few hints to making the waves look good:

(a) Tile the heightmaps differently so that one set can be used to model broad
low frequency waves with high amplitude and the other can be used to
model high frequency small choppy waves with low amplitude. So you
will need two sets of texture coordinates for the heightmaps maps and two
texture transformations for the heightmaps.

NORMAL MAPPING 641

(b) The normal map textures should be tiled more than the heightmap
textures. The heightmaps give the shape of the waves, and the normal maps
are used to light the waves per pixel. As with the heightmaps, the normal
maps should translate over time and in different directions to give the
illusion of new waves forming and fading. The two normals can then be
combined using code similar to the following:

float3 normalMapSample0 = gNormalMap0.Sample(samLinear, pin.WaveNormalTex0).rgb;
float3 bumpedNormalW0 = NormalSampleToWorldSpace(
normalMapSample0, pin.NormalW, pin.TangentW);

float3 normalMapSample1 = gNormalMap1.Sample(samLinear, pin.WaveNormalTex1).rgb;
float3 bumpedNormalW1 = NormalSampleToWorldSpace(
normalMapSample1, pin.NormalW, pin.TangentW);

float3 bumpedNormalW = normalize(bumpedNormalW0 + bumpedNormalW1);

(c) Modify the waves’ material to make it more ocean blue, and keep some
refl ection in from the environment map.

Figure 19.8. Ocean waves modeled with heightmaps, normal maps, and environment mapping.

Figure 19.9. (Top Row) Ocean waves normal map and heightmap for high frequency choppy waves.
(Bottom Row) Ocean waves normal map and heightmap for low frequency broad waves

Chapter

643

20Chapter

SHADOW
MAPPING

Shadows indicate to the observer where light originates and helps convey the
relative locations of objects in a scene. This chapter provides an introduction to
the basic shadow mapping algorithm, which is a popular method for modeling
dynamic shadows in games and 3D applications. For an introductory book,
we focus only on the basic shadow mapping algorithm; more sophisticated
shadowing techniques, such as cascading shadow maps [Engel06] which give
better quality results, are built by extending the basic shadow mapping algorithm.

Objectives:
1. To discover the basic shadow mapping algorithm.

2. To learn how projective texturing works.

3. To find out about orthographic projections.

4. To understand shadow map aliasing problems and common strategies for
fixing them.

644 TOPICS

20.1 RENDERING SCENE DEPTH

The shadow mapping algorithm relies on rendering the scene depth from the
viewpoint of the light source—this is essentially a variation of render-to-texture,
which was first described in §13.7.2. By “rendering scene depth” we mean
building the depth buffer from the viewpoint of the light source. Thus, after we
have rendered the scene from the viewpoint of the light source, we will know the
pixel fragments nearest to the light source—such fragments cannot be in shadow.
In this section we review a utility class called ShadowMap that helps us store the
scene depth from the perspective of the light source. It simply encapsulates a
depth/stencil buffer, necessary views, and viewport. A depth/stencil buffer used
for shadow mapping is called a shadow map.

class ShadowMap

{

public:

 ShadowMap(ID3D12Device* device,

 UINT width, UINT height);

 ShadowMap(const ShadowMap& rhs)=delete;

 ShadowMap& operator=(const ShadowMap& rhs)=delete;

 ~ShadowMap()=default;

 UINT Width()const;

 UINT Height()const;

 ID3D12Resource* Resource();

 CD3DX12_GPU_DESCRIPTOR_HANDLE Srv()const;

 CD3DX12_CPU_DESCRIPTOR_HANDLE Dsv()const;

 D3D12_VIEWPORT Viewport()const;

 D3D12_RECT ScissorRect()const;

 void BuildDescriptors(

 CD3DX12_CPU_DESCRIPTOR_HANDLE hCpuSrv,

 CD3DX12_GPU_DESCRIPTOR_HANDLE hGpuSrv,

 CD3DX12_CPU_DESCRIPTOR_HANDLE hCpuDsv);

 void OnResize(UINT newWidth, UINT newHeight);

private:

 void BuildDescriptors();

SHADOW MAPPING 645

 void BuildResource();

private:

 ID3D12Device* md3dDevice = nullptr;

 D3D12_VIEWPORT mViewport;

 D3D12_RECT mScissorRect;

 UINT mWidth = 0;

 UINT mHeight = 0;

 DXGI_FORMAT mFormat = DXGI_FORMAT_R24G8_TYPELESS;

 CD3DX12_CPU_DESCRIPTOR_HANDLE mhCpuSrv;

 CD3DX12_GPU_DESCRIPTOR_HANDLE mhGpuSrv;

 CD3DX12_CPU_DESCRIPTOR_HANDLE mhCpuDsv;

 Microsoft::WRL::ComPtr<ID3D12Resource> mShadowMap = nullptr;

};

The constructor creates the texture of the specified dimensions and viewport. The
resolution of the shadow map affects the quality of our shadows, but at the same
time, a high resolution shadow map is more expensive to render into and requires
more memory.

ShadowMap::ShadowMap(ID3D12Device* device, UINT width, UINT height)
{
 md3dDevice = device;

 mWidth = width;
 mHeight = height;

 mViewport = { 0.0f, 0.0f, (float)width, (float)height, 0.0f, 1.0f };
 mScissorRect = { 0, 0, (int)width, (int)height };

 BuildResource();
}

void ShadowMap::BuildResource()
{
 D3D12_RESOURCE_DESC texDesc;
 ZeroMemory(&texDesc, sizeof(D3D12_RESOURCE_DESC));
 texDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;
 texDesc.Alignment = 0;
 texDesc.Width = mWidth;
 texDesc.Height = mHeight;
 texDesc.DepthOrArraySize = 1;

646 TOPICS

 texDesc.MipLevels = 1;
 texDesc.Format = mFormat;
 texDesc.SampleDesc.Count = 1;
 texDesc.SampleDesc.Quality = 0;
 texDesc.Layout = D3D12_TEXTURE_LAYOUT_UNKNOWN;
 texDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL;

 D3D12_CLEAR_VALUE optClear;
 optClear.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
 optClear.DepthStencil.Depth = 1.0f;
 optClear.DepthStencil.Stencil = 0;

 ThrowIfFailed(md3dDevice->CreateCommittedResource(
 &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
 D3D12_HEAP_FLAG_NONE,
 &texDesc,
 D3D12_RESOURCE_STATE_GENERIC_READ,
 &optClear,
 IID_PPV_ARGS(&mShadowMap)));
}

As we will see, the shadow mapping algorithm requires two render passes. In
the first one, we render the scene depth from the viewpoint of the light into the
shadow map; in the second pass, we render the scene as normal to the back buffer
from our “player” camera, but use the shadow map as a shader input to implement
the shadowing algorithm. We provide a method to access the shader resource and
its views:

ID3D12Resource* ShadowMap::Resource()
{
 return mShadowMap.Get();
}

CD3DX12_GPU_DESCRIPTOR_HANDLE ShadowMap::Srv()const
{
 return mhGpuSrv;
}

CD3DX12_CPU_DESCRIPTOR_HANDLE ShadowMap::Dsv()const
{
 return mhCpuDsv;
}

20.2 ORTHOGRAPHIC PROJECTIONS

So far in this book we have been using a perspective projection. The key property
of perspective projection is that objects are perceived as getting smaller as their
distance from the eye increases. This agrees with how we perceive things in real
life. Another type of projection is an orthographic projection. Such projections

SHADOW MAPPING 647

are primarily used in 3D science or engineering applications, where it is desirable
to have parallel lines remain parallel after projection. However, orthographic
projections will enable us to model shadows that parallel lights generate. With an
orthographic projection, the viewing volume is a box axis-aligned with the view
space with width w, height h, near plane n and far plane f that looks down the
positive z-axis of view space (see Figure 20.1). These numbers, defined relative to
the view space coordinate system, define the box view volume.

With an orthographic projection, the lines of projection are parallel to the view
space z-axis (Figure 20.2). And we see that the 2D projection of a vertex (x, y, z) is
just (x, y).

As with perspective projection, we want to maintain relative depth information,
and we want normalized device coordinates. To transform the view volume from
view space to NDC space, we need to rescale and shift to map the view space view

volume  , , ,
2 2 2 2

w w h h
n f

            
 to the NDC space view volume [1, 1]  [-1,

1]  [0, 1]. We can determine this mapping by working coordinate-by-coordinate.
For the fi rst two coordinates, it is easy to see that the intervals differ only by a
scaling factor:

 

 

2
, 1,1

2 2

2
, 1,1

2 2

w w

w

h h

h

      
      

For the third coordinate, we need to map [n, f] → [0, 1]. We assume the mapping
takes the form g(z) = az + b (i.e., a scaling and translation). We have the conditions
g(n) = 0 and g(f) = 1, which allow us to solve for a and b:

0

1

an b

af b

 
 

Figure 20.1. The orthographic viewing volume is
a box that is axis aligned with the view coordinate
system.

Figure 20.2. The orthographic projection of points
onto the projection plane. The lines of projection are
parallel to the view space z-axis with an orthographic
projection.

648 TOPICS

The first equation implies b = an. Plugging this into the second equation we get:

1

1

af an

a
f n

 




And so:


n

b
f n

 


Thus,

   z n
g z

f n f n
 

 

The reader may wish to graph g(z) over the domain [n, f] for various n and f such
that f > n.

Finally, the orthographic transformation from view space coordinates (x, y, z)
to NDC space coordinates (x, y, z) is:



2

2

x x
w

y y
h

z n
z

f n f n

 

 

  
 

Or in terms of matrices:

    

 
 
 
 
 

     
 
 
 
 
  

2
0 0 0

2
0 0 0

, , , 1 , , , 1 1
0 0 0

0 0 1

w

h
x y z x y z

f n

n

n f

The 4  4 matrix in the above equation is the orthographic projection matrix.
Recall that with the perspective projection transform, we had to split it into

two parts: a linear part described by the projection matrix, and a nonlinear
part described by the divide by w. In contrast, the orthographic projection

SHADOW MAPPING 649

transformation is completely linear—there is no divide by w. Multiplying by the
orthographic projection matrix takes us directly into NDC coordinates.

20.3 PROJECTIVE TEXTURE COORDINATES

Projective texturing is so called because it allows us to project a texture onto
arbitrary geometry, much like a slide projector. Figure 20.3 shows an example of
projective texturing.

Projective texturing can be useful on its own for modeling slide projector
lights, but as we will see in §20.4, it is also used as an intermediate step for shadow
mapping.

The key to projective texturing is to generate texture coordinates for each
pixel in such a way that the applied texture looks like it has been projected onto
the geometry. We will call such generated texture coordinates projective texture
coordinates.

From Figure 20.4, we see that the texture coordinates (u, v) identify the texel
that should be projected onto the 3D point p. But the coordinates (u, v) precisely
identify the projection of p on the projection window, relative to a texture space
coordinate system on the projection window. So the strategy of generating
projective texture coordinates is as follows:

1. Project the point p onto the light’s projection window and transform the
coordinates to NDC space.

2. Transform the projected coordinates from NDC space to texture space,
thereby effectively turning them into texture coordinates.

Step 1 can be implemented by thinking of the light projector as a camera. We
define a view matrix V and projection matrix P for the light projector. Together,
these matrices essentially define the position, orientation, and frustum of the light
projector in the world. The matrix V transforms coordinates from world space to

Figure 20.3. The skull texture (right) is projected onto the scene geometry (left).

650 TOPICS

the coordinate system of the light projector. Once the coordinates are relative to
the light coordinate system, the projection matrix, along with the homogeneous
divide, are used to project the vertices onto the projection plane of the light. Recall
from §5.6.3.5 that after the homogeneous divide, the coordinates are in NDC
space.

Step 2 is accomplished by transforming from NDC space to texture space via
the following change of coordinate transformation:

0.5 0.5

0.5 0.5

u x

v y

 
  

Here, u, v  [0, 1] provided x, y  [1, 1]. We scale the y-coordinate by a negative
to invert the axis because the positive y-axis in NDC coordinates goes in the
direction opposite to the positive v-axis in texture coordinates. The texture space
transformations can be written in terms of matrices (recall Exercise 21 from
Chapter 3):

    

0.5 0 0 0

0 0.5 0 0
, , 0, 1 , , 0, 1

0 0 1 0

0.5 0.5 0 1

x y u v

 
   
 
 
 

Let us call the above matrix T for “texture matrix” that transforms from NDC space
to texture space. We can form the composite transform VPT that takes us from
world space directly to texture space. After we multiply by this transform, we still
need to do the perspective divide to complete the transformation; see Chapter 5
Exercise 8 for why we can do the perspective divide after doing the texture
transform.

Figure 20.4. The texel identified by the coordinates (u, v) relative to the texture space on the projection
window is projected onto the point p by following the line of sight from the light origin to the point p.

SHADOW MAPPING 651

20.3.1 Code Implementation
The code for generating projective texture coordinates is shown below:

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosW : POSITION;
 float3 TangentW : TANGENT;
 float3 NormalW : NORMAL;
 float2 Tex : TEXCOORD0;
 float4 ProjTex : TEXCOORD1;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout;

 [...]

 // Transform to light’s projective space.
 vout.ProjTex = mul(float4(vIn.posL, 1.0f),
 gLightWorldViewProjTexture);

 [...]

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 // Complete projection by doing division by w.
 pin.ProjTex.xyz /= pin.ProjTex.w;

 // Depth in NDC space.
 float depth = pin.ProjTex.z;

 // Sample the texture using the projective tex-coords.
 float4 c = gTextureMap.Sample(sampler, pin.ProjTex.xy);

 [...]
}

20.3.2 Points Outside the Frustum
In the rendering pipeline, geometry outside the frustum is clipped. However, when
we generate projective texture coordinates by projecting the geometry from the
point of view of the light projector, no clipping is done—we simply project vertices.
Consequently, geometry outside the projector’s frustum receives projective texture
coordinates outside the [0, 1] range. Projective texture coordinates outside the [0, 1]
range function just like normal texture coordinates outside the [0, 1] range based on
the enabled address mode (see (§9.6) used when sampling the texture.

652 TOPICS

Generally, we do not want to texture any geometry outside the projector’s
frustum because it does not make sense (such geometry receives no light from the
projector). Using the border color address mode with a zero color is a common
solution. Another strategy is to associate a spotlight with the projector so that
anything outside the spotlight’s fi eld of view cone is not lit (i.e., the surface
receives no projected light). The advantage of using a spotlight is that the light
intensity from the projector is strongest at the center of the spotlight cone, and
can smoothly fade out as the angle  between L and d increases (where L is the
light vector to the surface point and d is the direction of the spotlight).

20.3.3 Orthographic Projections
So far we have illustrated projective texturing using perspective projections
(frustum shaped volumes). However, instead of using a perspective projection for
the projection process, we could have used an orthographic projection. In this case,
the texture is projected in the direction of the z-axis of the light through a box.

Everything we have talked about with projective texture coordinates also
applies when using an orthographic projection, except for a couple things. First,
with an orthographic projection, the spotlight strategy used to handle points
outside the projector’s volume does not work. This is because a spotlight cone
approximates the volume of a frustum to some degree, but it does not approximate
a box. However, we can still use texture address modes to handle points outside
the projector’s volume. This is because an orthographic projection still generates
NDC coordinates and a point (x, y, z) is inside the volume if and only if:


1 1

1 1

0 1

x

y

z

  
  

 

Second, with an orthographic projection, we do not need to do the divide by w;
that is, we do not need the line:

 // Complete projection by doing division by w.

 pin.ProjTex.xyz /= pin.ProjTex.w;

This is because after an orthographic projection, the coordinates are already
in NDC space. This is faster, because it avoids the per-pixel division required
for perspective projection. On the other hand, leaving in the division does not
hurt because it divides by 1 (an orthographic projection does not change the
w-coordinate, so w will be 1). If we leave the division by w in the shader code,
then the shader code works for both perspective and orthographic projections
uniformly. Though, the tradeoff for this uniformity is that you do a superfluous
division with an orthographic projection.

SHADOW MAPPING 653

20.4 SHADOW MAPPING

20.4.1 Algorithm Description
The idea of the shadow mapping algorithm is to render-to-texture the scene
depth from the viewpoint of the light into a depth buffer called a shadow map.
After this is done, the shadow map will contain the depth values of all the visible
pixels from the perspective of the light. (Pixels occluded by other pixels will not be
in the shadow map because they will fail the depth test and either be overwritten
or never written.)

To render the scene from the viewpoint of the light, we need to defi ne a light
view matrix that transforms coordinates from world space to the space of the light
and a light projection matrix, which describes the volume that light emits through
in the world. This can be either a frustum volume (perspective projection) or box
volume (orthographic projection). A frustum light volume can be used to model
spotlights by embedding the spotlight cone inside the frustum. A box light volume
can be used to model parallel lights. However, the parallel light is now bounded
and only passes through the box volume; therefore, it may only strike a subset of
the scene (see Figure 20.5). For a light source that strikes the entire scene (such as
the sun), we can make the light volume large enough to contain the entire scene.

Once we have built the shadow map, we render the scene as normal from the
perspective of the “player” camera. For each pixel p rendered, we also compute its
depth from the light source, which we denote by d(p). In addition, using projective
texturing, we sample the shadow map along the line of sight from the light source
to the pixel p to get the depth value s(p) stored in the shadow map; this value is the
depth of the pixel closest to the light along the line of sight from the position of
the light to p. Then, from Figure 20.6, we see that a pixel p is in shadow if and only
if d(p) > s(p). Hence a pixel is not in shadow if and only if d(p)  s(p).

Figure 20.5. Parallel light rays travel through the light volume, so only a subset of the scene inside the
volume receives light. If the light source needs to strike the entire scene, we can set the light volume size to
contain the entire scene.

654 TOPICS

The depth values compared are in NDC coordinates. This is because the shadow
map, which is a depth buffer, stores the depth values in NDC coordinates. How
this is done exactly will be clear when we look at the code.

20.4.2 Biasing and Aliasing
The shadow map stores the depth of the nearest visible pixels with respect to its
associated light source. However, the shadow map only has some finite resolution.
So each shadow map texel corresponds to an area of the scene. Thus, the shadow
map is just a discrete sampling of the scene depth from the light perspective. This
causes aliasing issues known as shadow acne (see Figure 20.7).

Note:

Figure 20.6. On the left, the depth of the pixel p from the light is d(p). However, the depth of the pixel
nearest to the light along the same line of sight has depth s(p), and d(p) > s(p). We conclude, therefore, that
there is an object in front of p from the perspective of the light and so p is in shadow. On the right, the depth
of the pixel p from the light is d(p) and it also happens to be the pixel nearest to the light along the line of
sight, that is, s(p) = d(p), so we conclude p is not in shadow.

Figure 20.7. Notice the aliasing on the floor plane with the “stair-stepping” alternation between light and
shadow. This aliasing error is often called shadow acne.

SHADOW MAPPING 655

Figure 20.8 shows a simple diagram to explain why shadow acne occurs. A
simple solution is to apply a constant bias to offset the shadow map depth. Figure
20.9 shows how this corrects the problem.

Too much biasing results in an artifact called peter-panning, where the shadow
appears to become detached from the object (see Figure 20.10).

Unfortunately, a fi xed bias does not work for all geometry. In particular,
Figure 20.11 shows that triangles with large slopes (with respect to the light
source) need a larger bias. It is tempting to choose a large enough depth bias to
handle all slopes. However, as Figure 20.10 showed, this leads to peter-panning.

Figure 20.8. The shadow map samples the depth of
the scene. Observe that due to finite resolution of the
shadow map, each shadow map texel corresponds to
an area of the scene. The eye E sees two points on the
scene p1 and p2 that correspond to different screen
pixels. However, from the viewpoint of the light, both
points are covered by the same shadow map texel
(that is, s(p1) = s(p2) = s). When we do the shadow
map test, we have d(p1) > s and d(p2)  s. Thus, p1
will be colored as if it were in shadow, and p2 will be
colored as if it were not in shadow. This causes the
shadow acne.

Figure 20.9. By biasing the depth values in the shadow
map, no false shadowing occurs. We have that d(p1)  s
and d(p2)  s. Finding the right depth bias is usually done
by experimentation.

Figure 20.10. Peter-panning—the shadow becomes
detached from the column due to a large depth
bias.

Figure 20.11. Polygons with large slopes, relative
to the light source, require more bias than polygons
with small slopes relative to the light source.

656 TOPICS

What we want is a way to measure the polygon slope with respect to the light
source, and apply more bias for larger sloped polygons. Fortunately, graphics
hardware has intrinsic support for this via the so-called slope-scaled-bias
rasterization state properties:

typedef struct D3D12_RASTERIZER_DESC {
 [...]
 INT DepthBias;
 FLOAT DepthBiasClamp;
 FLOAT SlopeScaledDepthBias;
 [...]
} D3D12_RASTERIZER_DESC;

1. DepthBias: A fixed bias to apply; see comments below for how this integer
value is used for a UNORM depth buffer format.

2. DepthBiasClamp: A maximum depth bias allowed. This allows us to set a bound
on the depth bias, for we can imagine that for very steep slopes, the bias slope-
scaled-bias would be too much and cause peter-panning artifacts.

3. SlopeScaledDepthBias: A scale factor to control how much to bias based on
the polygon slope; see comments below for the formula.

Note that we apply the slope-scaled-bias when we are rendering the scene to the
shadow map. This is because we want to bias based on the polygon slope with
respect to the light source. Consequently, we are biasing the shadow map values. In
our demo we use the values:

// [From MSDN]
// If the depth buffer currently bound to the output-merger stage
// has a UNORM format or no depth buffer is bound the bias value
// is calculated like this:
//
// Bias = (float)DepthBias * r + SlopeScaledDepthBias * MaxDepthSlope;
//
// where r is the minimum representable value > 0 in the
// depth-buffer format converted to float32.
// [/End MSDN]
//
// For a 24-bit depth buffer, r = 1 / 2^24.
//
// Example: DepthBias = 100000 ==> Actual DepthBias = 100000/2^24 = .006

// These values are highly scene dependent, and you will need
// to experiment with these values for your scene to find the
// best values.
D3D12_GRAPHICS_PIPELINE_STATE_DESC smapPsoDesc = opaquePsoDesc;
smapPsoDesc.RasterizerState.DepthBias = 100000;
smapPsoDesc.RasterizerState.DepthBiasClamp = 0.0f;
smapPsoDesc.RasterizerState.SlopeScaledDepthBias = 1.0f;

SHADOW MAPPING 657

Depth bias happens during rasterization (after clipping), so does not affect
geometry clipping.

For the complete details of depth bias, search the SDK documentation for “Depth
Bias,” and it will give all the rules for how it is applied, and how it works for
fl oating-point depth buffers.

20.4.3 PCF Filtering
The projective texture coordinates (u, v) used to sample the shadow map generally
will not coincide with a texel in the shadow map. Usually, it will be between four
texels. With color texturing, this is solved with bilinear interpolation (§9.5.1).
However, [Kilgard01] points out that we should not average depth values, as
it can lead to incorrect results about a pixel being flagged in shadow. (For the
same reason, we also cannot generate mipmaps for the shadow map.) Instead of
interpolating the depth values, we interpolate the results—this is called percentage
closer filtering (PCF). That is, we use point filtering (MIN_MAG_MIP_POINT) and
sample the texture with coordinates (u, v), (u + x, v), (u, v + x), (u + x,
v + x), where x = 1/SHADOW_MAP_SIZE. Since we are using point sampling,
these four points will hit the nearest four texels s0, s1, s2, and s3, respectively,
surrounding (u, v), as shown in Figure 20.12. We then do the shadow map test for
each of these sampled depths and bilinearly interpolate the shadow map results:

static const float SMAP_SIZE = 2048.0f;
static const float SMAP_DX = 1.0f / SMAP_SIZE;

...

 // Sample shadow map to get nearest depth to light.
 float s0 = gShadowMap.Sample(gShadowSam,

Note:

Note:

Figure 20.12. Taking four shadow map samples.

658 TOPICS

 projTexC.xy).r;
 float s1 = gShadowMap.Sample(gShadowSam,
 projTexC.xy + float2(SMAP_DX, 0)).r;
 float s2 = gShadowMap.Sample(gShadowSam,
 projTexC.xy + float2(0, SMAP_DX)).r;
 float s3 = gShadowMap.Sample(gShadowSam,
 projTexC.xy + float2(SMAP_DX, SMAP_DX)).r;

 // Is the pixel depth <= shadow map value?
 float result0 = depth <= s0;
 float result1 = depth <= s1;
 float result2 = depth <= s2;
 float result3 = depth <= s3;

 // Transform to texel space.
 float2 texelPos = SMAP_SIZE*projTexC.xy;

 // Determine the interpolation amounts.
 float2 t = frac(texelPos);

 // Interpolate results.
 return lerp(lerp(result0, result1, t.x),
 lerp(result2, result3, t.x), t.y);

In this way, it is not an all-or-nothing situation; a pixel can be partially in shadow.
For example, if two of the samples are in shadow and two are not in shadow, then
the pixel is 50% in shadow. This creates a smoother transition from shadowed
pixels to non-shadows pixels (see Figure 20.13).

The HLSL frac function returns the fractional part of a fl oating-point number
(i.e., the mantissa). For example, if SMAP_SIZE = 1024 and projTex.xy = (0.23,
0.68), then texelPos = (235.52, 696.32) and frac(texelPos) = (0.52,

0.32). These fractions tell us how much to interpolate between the samples. The
HLSL lerp(x, y, s) function is the linear interpolation function and returns
x + s(y  x) = (1  s)x + sy.

Note:

Figure 20.13. In the top image, observe the “stair-stepping” artifacts on the shadow boundary. On the
bottom image, these aliasing artifacts are smoothed out a bit with filtering.

SHADOW MAPPING 659

Even with our fi ltering, the shadows are still very hard and the aliasing artifacts
can still be unsatisfactory close up. More aggressive methods can be used; see
[Uralsky05], for example. We also note that using a higher-resolution shadow
map helps, but can be cost prohibitive.

The main disadvantage of PCF filtering as described above is that it requires
four texture samples. Sampling textures is one of the more expensive operations
on a modern GPU because memory bandwidth and memory latency have
not improved as much as the raw computational power of GPUs [Möller08].
Fortunately, Direct3D 11+ graphics hardware has built in support for PCF via the
SampleCmpLevelZero method:

Texture2D gShadowMap : register(t1);
SamplerComparisonState gsamShadow : register(s6);

// Complete projection by doing division by w.
shadowPosH.xyz /= shadowPosH.w;

// Depth in NDC space.
float depth = shadowPosH.z;

// Automatically does a 4-tap PCF.
gShadowMap.SampleCmpLevelZero(gsamShadow,
 shadowPosH.xy, depth).r;

The LevelZero part of the method name means that it only looks at the top mipmap
level, which is fine because that is what we want for shadow mapping (we do not
generate a mipmap chain for the shadow map). This method does not use a typical
sampler object, but instead uses a so-called comparison sampler. This is so that the
hardware can do the shadow map comparison test, which needs to be done before
filtering the results. For PCF, you need to use the filter D3D12_FILTER_COMPARISON_
MIN_MAG_LINEAR_MIP_POINT and set the comparison function to LESS_EQUAL (LESS also
works since we bias the depth). The first and second parameters are the comparison
sampler and texture coordinates, respectively. The third parameter is the value to
compare against the shadow map samples. So settings the compare value to depth,
and the comparison function to LESS_EQUAL we are doing the comparisons:

float result0 = depth <= s0;
float result1 = depth <= s1;
float result2 = depth <= s2;
float result3 = depth <= s3;

Then the hardware bilinearly interpolates the results to finish the PCF.
The following code shows how we describe the comparison sampler for shadow

mapping:

const CD3DX12_STATIC_SAMPLER_DESC shadow(
 6, // shaderRegister
 D3D12_FILTER_COMPARISON_MIN_MAG_LINEAR_MIP_POINT, // filter

Note:

660 TOPICS

 D3D12_TEXTURE_ADDRESS_MODE_BORDER, // addressU
 D3D12_TEXTURE_ADDRESS_MODE_BORDER, // addressV
 D3D12_TEXTURE_ADDRESS_MODE_BORDER, // addressW
 0.0f, // mipLODBias
 16, // maxAnisotropy
 D3D12_COMPARISON_FUNC_LESS_EQUAL,
 D3D12_STATIC_BORDER_COLOR_OPAQUE_BLACK);

From the SDK documentation, only the following formats support comparison
fi lters: R32_FLOAT_X8X24_TYPELESS, R32_FLOAT, R24_UNORM_X8_TYPELESS, R16_
UNORM.

So far in this section, we used a 4-tap PCF kernel. Larger kernels can be used to
make the edges of shadows larger and even smoother, at the expensive of extra
SampleCmpLevelZero calls. In our demo, we call SampleCmpLevelZero in a 3  3 box
filter pattern. Since each SampleCmpLevelZero call performs a 4-tap PCF, we are
using 4  4 unique sample points from the shadow map (based on our pattern
there is some overlap of sample points). Using large filtering kernels can cause the
shadow acne problem to return; we explain why and describe a solution in §20.5.

An observation is that PCF really only needs to be performed at the shadow
edges. Inside the shadow, there is no blending, and outside the shadow there is no
blending. Based on this observation, methods have been devised to only do PCF
at the shadow edges. [Isidoro06b] describes one way to do this. Such a technique
requires a dynamic branch in the shader code: “If we are on a shadow edge, do
expensive PCF, otherwise just take one shadow map sample.”

Note that the extra expensive of doing such a method makes it only worthwhile
if your PCF kernel is large (say 5  5 or greater); however, this is just general advice
and you will need to profi le to verify the cost/benefi t.

One fi nal remark is that your PCF kernel need not be a box fi lter grid. Many
articles have been written about randomly picking points to be in the PCF kernel.

20.4.4 Building the Shadow Map
The first step in shadow mapping is building the shadow map. To do this, we
create a ShadowMap instance:

mShadowMap = std::make_unique<ShadowMap>(
 md3dDevice.Get(), 2048, 2048);

We then define a light view matrix and projection matrix (representing the light
frame and view volume). The light view matrix is derived from the primary light
source, and the light view volume is computed to fit the bounding sphere of the
entire scene.

DirectX::BoundingSphere mSceneBounds;

ShadowMapApp::ShadowMapApp(HINSTANCE hInstance)

Note:

SHADOW MAPPING 661

 : D3DApp(hInstance)
{
 // Estimate the scene bounding sphere manually since we know how the
 // scene was constructed.
 // The grid is the "widest object" with a width of 20 and depth of
 // 30.0f, and centered at
 // the world space origin. In general, you need to loop over every
 // world space vertex
 // position and compute the bounding sphere.
 mSceneBounds.Center = XMFLOAT3(0.0f, 0.0f, 0.0f);
 mSceneBounds.Radius = sqrtf(10.0f*10.0f + 15.0f*15.0f);
}

void ShadowMapApp::Update(const GameTimer& gt)
{
 [...]

 //
 // Animate the lights (and hence shadows).
 //

 mLightRotationAngle += 0.1f*gt.DeltaTime();

 XMMATRIX R = XMMatrixRotationY(mLightRotationAngle);
 for(int i = 0; i < 3; ++i)
 {
 XMVECTOR lightDir = XMLoadFloat3(&mBaseLightDirections[i]);
 lightDir = XMVector3TransformNormal(lightDir, R);
 XMStoreFloat3(&mRotatedLightDirections[i], lightDir);
 }

 AnimateMaterials(gt);
 UpdateObjectCBs(gt);
 UpdateMaterialBuffer(gt);
 UpdateShadowTransform(gt);
 UpdateMainPassCB(gt);
 UpdateShadowPassCB(gt);
}

void ShadowMapApp::UpdateShadowTransform(const GameTimer& gt)
{
 // Only the first "main" light casts a shadow.
 XMVECTOR lightDir = XMLoadFloat3(&mRotatedLightDirections[0]);
 XMVECTOR lightPos = -2.0f*mSceneBounds.Radius*lightDir;
 XMVECTOR targetPos = XMLoadFloat3(&mSceneBounds.Center);
 XMVECTOR lightUp = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f);
 XMMATRIX lightView = XMMatrixLookAtLH(lightPos, targetPos, lightUp);

 XMStoreFloat3(&mLightPosW, lightPos);

 // Transform bounding sphere to light space.
 XMFLOAT3 sphereCenterLS;
 XMStoreFloat3(&sphereCenterLS, XMVector3TransformCoord(targetPos,

lightView));

662 TOPICS

 // Ortho frustum in light space encloses scene.
 float l = sphereCenterLS.x - mSceneBounds.Radius;
 float b = sphereCenterLS.y - mSceneBounds.Radius;
 float n = sphereCenterLS.z - mSceneBounds.Radius;
 float r = sphereCenterLS.x + mSceneBounds.Radius;
 float t = sphereCenterLS.y + mSceneBounds.Radius;
 float f = sphereCenterLS.z + mSceneBounds.Radius;

 mLightNearZ = n;
 mLightFarZ = f;
 XMMATRIX lightProj = XMMatrixOrthographicOffCenterLH(l, r, b, t, n,

f);

 // Transform NDC space [-1,+1]^2 to texture space [0,1]^2
 XMMATRIX T(
 0.5f, 0.0f, 0.0f, 0.0f,
 0.0f, -0.5f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f, 0.0f,
 0.5f, 0.5f, 0.0f, 1.0f);

 XMMATRIX S = lightView*lightProj*T;
 XMStoreFloat4x4(&mLightView, lightView);
 XMStoreFloat4x4(&mLightProj, lightProj);
 XMStoreFloat4x4(&mShadowTransform, S);
}

Rendering the scene into the shadow map is done like so:
void ShadowMapApp::DrawSceneToShadowMap()
{
 mCommandList->RSSetViewports(1, &mShadowMap->Viewport());
 mCommandList->RSSetScissorRects(1, &mShadowMap->ScissorRect());

 // Change to DEPTH_WRITE.
 mCommandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(
 mShadowMap->Resource(),
 D3D12_RESOURCE_STATE_GENERIC_READ,
 D3D12_RESOURCE_STATE_DEPTH_WRITE));

 UINT passCBByteSize = d3dUtil::CalcConstantBufferByteSize(sizeof
 (PassConstants));

 // Clear the back buffer and depth buffer.
 mCommandList->ClearDepthStencilView(mShadowMap->Dsv(),
 D3D12_CLEAR_FLAG_DEPTH | D3D12_CLEAR_FLAG_STENCIL, 1.0f, 0, 0, nullptr);

 // Set null render target because we are only going to draw to
 // depth buffer. Setting a null render target will disable color writes.
 // Note the active PSO also must specify a render target count of 0.
 mCommandList->OMSetRenderTargets(0, nullptr, false, &mShadowMap->Dsv());

 // Bind the pass constant buffer for the shadow map pass.
 auto passCB = mCurrFrameResource->PassCB->Resource();
 D3D12_GPU_VIRTUAL_ADDRESS passCBAddress = passCB->GetGPUVirtualAddress()
 + 1*passCBByteSize;

SHADOW MAPPING 663

 mCommandList->SetGraphicsRootConstantBufferView(1, passCBAddress);

 mCommandList->SetPipelineState(mPSOs["shadow_opaque"].Get());

 DrawRenderItems(mCommandList.Get(), mRitemLayer[(int)RenderLayer::Opaque]);

 // Change back to GENERIC_READ so we can read the texture in a shader.
 mCommandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(
 mShadowMap->Resource(),
 D3D12_RESOURCE_STATE_DEPTH_WRITE,
 D3D12_RESOURCE_STATE_GENERIC_READ));
}

Observe that we set a null render target, which essentially disables color writes.
This is because when we render the scene to the shadow map, all we care about
is the depth values of the scene relative to the light source. Graphics cards are
optimized for only drawing depth; a depth only render pass is significantly faster
than drawing color and depth. The active pipeline state object must also specify a
render target count of 0:

 D3D12_GRAPHICS_PIPELINE_STATE_DESC smapPsoDesc = opaquePsoDesc;
 smapPsoDesc.RasterizerState.DepthBias = 100000;
 smapPsoDesc.RasterizerState.DepthBiasClamp = 0.0f;
 smapPsoDesc.RasterizerState.SlopeScaledDepthBias = 1.0f;
 smapPsoDesc.pRootSignature = mRootSignature.Get();
 smapPsoDesc.VS =
 {
 reinterpret_cast<BYTE*>(mShaders["shadowVS"]->GetBufferPointer()),
 mShaders["shadowVS"]->GetBufferSize()
 };
 smapPsoDesc.PS =
 {
 reinterpret_cast<BYTE*>(mShaders["shadowOpaquePS"]->GetBufferPointer()),
 mShaders["shadowOpaquePS"]->GetBufferSize()
 };

 // Shadow map pass does not have a render target.
 smapPsoDesc.RTVFormats[0] = DXGI_FORMAT_UNKNOWN;
 smapPsoDesc.NumRenderTargets = 0;
 ThrowIfFailed(md3dDevice->CreateGraphicsPipelineState(
 &smapPsoDesc, IID_PPV_ARGS(&mPSOs["shadow_opaque"])));

The shader programs we use for rendering the scene from the perspective of the
light is quite simple because we are only building the shadow map, so we do not
need to do any complicated pixel shader work.

//***
// Shadows.hlsl by Frank Luna (C) 2015 All Rights Reserved.
//***

// Include common HLSL code.
#include "Common.hlsl"

664 TOPICS

struct VertexIn
{
 float3 PosL : POSITION;
 float2 TexC : TEXCOORD;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float2 TexC : TEXCOORD;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout = (VertexOut)0.0f;

 MaterialData matData = gMaterialData[gMaterialIndex];

 // Transform to world space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);

 // Transform to homogeneous clip space.
 vout.PosH = mul(posW, gViewProj);

 // Output vertex attributes for interpolation across triangle.
 float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform);
 vout.TexC = mul(texC, matData.MatTransform).xy;

 return vout;
}

// This is only used for alpha cut out geometry, so that shadows
// show up correctly. Geometry that does not need to sample a
// texture can use a NULL pixel shader for depth pass.
void PS(VertexOut pin)
{
 // Fetch the material data.
 MaterialData matData = gMaterialData[gMaterialIndex];
 float4 diffuseAlbedo = matData.DiffuseAlbedo;
 uint diffuseMapIndex = matData.DiffuseMapIndex;

 // Dynamically look up the texture in the array.
 diffuseAlbedo *= gTextureMaps[diffuseMapIndex].

Sample(gsamAnisotropicWrap, pin.TexC);

#ifdef ALPHA_TEST
 // Discard pixel if texture alpha < 0.1. We do this test as soon
 // as possible in the shader so that we can potentially exit the
 // shader early, thereby skipping the rest of the shader code.
 clip(diffuseAlbedo.a - 0.1f);
#endif
}

SHADOW MAPPING 665

Notice that the pixel shader does not return a value because we only need to
output depth values. The pixel shader is solely used to clip pixel fragments with
zero or low alpha values, which we assume indicate complete transparency. For
example, consider the tree leaf texture in Figure 20.14; here, we only want to draw
the pixels with white alpha values to the shadow map. To facilitate this, we provide
two techniques: one that does the alpha clip operation, and one that does not.
If the alpha clip does not need to be done, then we can bind a null pixel shader,
which would be even faster than binding a pixel shader that only samples a texture
and performs a clip operation.

Although not shown for brevity, the shaders for rendering the depth for tessellated
geometry are slightly more involved. When drawing tessellated geometry into
the shadow map, we need to tessellate the geometry the same way we tessellate it
when being drawn into the back buffer (i.e., based on the distance to the player’s
eye). This is for consistency; the geometry the eye sees should be the same that
the light sees. That being said, if the tessellated geometry is not displaced too
much, the displacement might not even be noticeable in the shadows; therefore,
a possible optimization may be not to tessellate the geometry when rendering the
shadow map. This optimization trades accuracy for speed.

20.4.5 The Shadow Factor
The shadow factor is a new factor we add to the lighting equation. The shadow
factor is a scalar in the range 0 to 1. A value of 0 indicates a point is in shadow, and
a value of 1 indicates a point is not in shadow. With PCF (§20.4.3), a point can
also be partially in shadow, in which case the shadow factor will be between 0 and
1. The CalcShadowFactor implementation is in Common.hlsl.

float CalcShadowFactor(float4 shadowPosH)
{
 // Complete projection by doing division by w.
 shadowPosH.xyz /= shadowPosH.w;

Note:

Figure 20.14. Leaf texture.

666 TOPICS

 // Depth in NDC space.
 float depth = shadowPosH.z;

 uint width, height, numMips;
 gShadowMap.GetDimensions(0, width, height, numMips);

 // Texel size.
 float dx = 1.0f / (float)width;

 float percentLit = 0.0f;
 const float2 offsets[9] =
 {
 float2(-dx, -dx), float2(0.0f, -dx), float2(dx, -dx),
 float2(-dx, 0.0f), float2(0.0f, 0.0f), float2(dx, 0.0f),
 float2(-dx, +dx), float2(0.0f, +dx), float2(dx, +dx)
 };

 [unroll]
 for(int i = 0; i < 9; ++i)
 {
 percentLit += gShadowMap.SampleCmpLevelZero(gsamShadow,
 shadowPosH.xy + offsets[i], depth).r;
 }

 return percentLit / 9.0f;
}

In our model, the shadow factor will be multiplied against the direct lighting
(diffuse and specular) terms:

// Only the first light casts a shadow.
float3 shadowFactor = float3(1.0f, 1.0f, 1.0f);
shadowFactor[0] = CalcShadowFactor(pin.ShadowPosH);

const float shininess = (1.0f - roughness) * normalMapSample.a;
Material mat = { diffuseAlbedo, fresnelR0, shininess };
float4 directLight = ComputeLighting(gLights, mat, pin.PosW,
 bumpedNormalW, toEyeW, shadowFactor);

float4 ComputeLighting(Light gLights[MaxLights], Material mat,
 float3 pos, float3 normal, float3 toEye,
 float3 shadowFactor)
{
 float3 result = 0.0f;

 int i = 0;

#if (NUM_DIR_LIGHTS > 0)
 for(i = 0; i < NUM_DIR_LIGHTS; ++i)
 {
 result += shadowFactor[i] * ComputeDirectionalLight(gLights[i],

mat, normal, toEye);
 }
#endif

SHADOW MAPPING 667

#if (NUM_POINT_LIGHTS > 0)
 for(i = NUM_DIR_LIGHTS; i < NUM_DIR_LIGHTS+NUM_POINT_LIGHTS; ++i)
 {
 result += ComputePointLight(gLights[i], mat, pos, normal, toEye);
 }
#endif

#if (NUM_SPOT_LIGHTS > 0)
 for(i = NUM_DIR_LIGHTS + NUM_POINT_LIGHTS; i < NUM_DIR_LIGHTS +
 NUM_POINT_LIGHTS + NUM_SPOT_LIGHTS; ++i)
 {
 result += ComputeSpotLight(gLights[i], mat, pos, normal, toEye);
 }
#endif

 return float4(result, 0.0f);
}

The shadow factor does not affect ambient light since that is indirect light, and it
also does not affect reflective light coming from the environment map.

20.4.6 The Shadow Map Test
After we have built the shadow map by rendering the scene from the perspective of
the light, we can sample the shadow map in our main rendering pass to determine
if a pixel is in shadow or not. The key issue is computing d(p) and s(p) for each
pixel p. The value d(p) is found by transforming the point to the NDC space of the
light; then the z-coordinate gives the normalized depth value of the point from
the light source. The value s(p) is found by projecting the shadow map onto the
scene through the light’s view volume using projective texturing. Note that with
this setup, both d(p) and s(p) are measured in the NDC space of the light, so they
can be compared. The transformation matrix gShadowTransform transforms from
world space to the shadow map texture space (§20.3).

// Generate projective tex-coords to project shadow map onto scene
// in vertex shader.
vout.ShadowPosH = mul(posW, gShadowTransform);

// Do the shadow map test in pixel shader.
float3 shadowFactor = float3(1.0f, 1.0f, 1.0f);
shadowFactor[0] = CalcShadowFactor(pin.ShadowPosH);

The gShadowTransform matrix is stored as a per-pass constant.

20.4.7 Rendering the Shadow Map
For this demo, we also render the shadow map onto a quad that occupies the lower-
right corner of the screen. This allows us to see what the shadow map looks like for
each frame. Recall that the shadow map is just a depth buffer texture and we can
create an SRV to it so that it can be sampled in a shader program. The shadow map

668 TOPICS

is rendered as a grayscale image since it stores a one-dimensional value at each pixel
(a depth value). Figure 20.15 shows a screenshot of the “Shadow Map” demo.

20.5 LARGE PCF KERNELS

In this section, we discuss problem occurs when using a large PCF kernel. Our
demos do not use a large PCF kernel, so this section is in some sense optional, but
it introduces some interesting ideas.

Refer to Figure 20.16, where we are computing the shadow test for a pixel p
visible by the eye. With no PCF, we compute the distance d = d(p) and compare
it to the corresponding shadow map value s0 = s(p). With PCF, we also compare
neighboring shadow map values s-1 and s1 against d. However, it is not valid to
compare d with s-1 and s1. The texels s1 and s1 describe the depths of different
areas of the scene that may or may not be on the same polygon as p.

The scenario in Figure 20.16 actually results in an error in the PCF. Specifi cally,
when we do the shadow map test we compute:

0 0

1 1

1 1

 ()

 ()

 ()

lit d s true

lit d s true

lit d s false
 

 
 
 

When the results are interpolated, we get that p is is 1/3rd in shadow, which is
incorrect as nothing is occluding p.

Observe from Figure 20.16 that more depth biasing would fi x the error.
However, in this example, we are only sampling the next door neighbor texels in
the shadow map. If we widen the PCF kernel, then even more biasing is needed.
Thus for small PCF kernels, simply doing the depth bias as explained in §20.4.2
is enough to counter this problem and it is nothing to worry about. But for large

Figure 20.15. Screenshot of the shadow map demo.

SHADOW MAPPING 669

PCF kernels such as 5  5 or 9  9, which are used to make soft shadows, this can
become a real problem.

20.5.1 The DDX and DDY Functions
Before we can look at an approximate solution to this problem, we first need
to discuss the ddx and ddy HLSL functions. These functions estimate p/x and
p/y, respectively, where x is the screen space x-axis and y is the screen space
y-axis. With these functions you can determine how per pixel quantities p vary
from pixel to pixel. Examples of what the derivative functions could be used for:

1. Estimate how colors are changing pixel by pixel.

2. Estimate how depths are changing pixel by pixel.

3. Estimate how normals are changing pixel by pixel.

How the hardware estimates these partial derivatives is not complicated. The
hardware processes pixels in 2  2 quads at a time in parallel. Then the partial
derivative in the x-direction can be estimated by the forward difference equation
qx+1,y  qx,y (estimates how the quantity q changes from pixel (x, y) to pixel (x + 1,
y)), and similarly for the partial derivative in the y direction.

20.5.2 Solution to the Large PCF Kernel Problem
The solution we describe is from [Tuft10]. The strategy is to make the assumption
the neighboring pixels of p lie on the same plane as p. This assumption is not
always true, but it is the best we have to work with.

Let p = (u, v, z) be the coordinates in light space. The coordinates (u, v) are
used to index into the shadow map, and the value z is the distance from the light

source used in the shadow map test. We can compute the vectors     
      

, ,
u v z

x x x x

p and

Figure 20.16. Comparing the depth d(p) with s0 is correct, since the texel s0 covers the scene area p is
contained in. However, it is not correct to compare d(p) with s-1 and s1, as those texels cover areas of the
scene that are unrelated to p.

670 TOPICS

           
, ,

u v z
y y y y

p with ddx and ddy, which lie in the tangent plane of the polygon. This

tells us how we move in light space when we move in screen space. In particular,

if we move (x, y) units in screen space, we move , , , ,
u v z u v z

x y
x x x y y y

                   
 units in

light space in the directions of the tangent vectors. Ignoring the depth term for

the moment, if we move (x, y) units in screen space, we move , ,
u v u v

x y
x x y y

               
units in light space on the uv-plane; this can be expressed by the matrix equation:

    , , , ,

u v

x x u v u v
x y x y u v

u v x x y y
y y

  
                            
   

Therefore,

   

 

1

, ,

1
,

u v

x x
x y u v

u v

y y

v v

y x
u v

u v v u u u
x y x y y x

  
       
  
   

                      

 (eq. 20.1)

Recall from Chapter 2 that

1

11 12 22 12

21 22 21 1111 22 12 21

1A A A A

A A A AA A A A

    
      

This new equation tells us that if we move (u, v) units in light space on the
uv-plane, then we move (x, y) units in screen space. So why is Equation 20.1
important to us? Well, when we build our PCF kernel, we offset our texture
coordinates to sample neighboring values in the shadow map:

// Texel size.
 const float dx = SMAP_DX;

 float percentLit = 0.0f;
 const float2 offsets[9] =
 {
 float2(-dx, -dx), float2(0.0f, -dx), float2(dx, -dx),
 float2(-dx, 0.0f), float2(0.0f, 0.0f), float2(dx, 0.0f),
 float2(-dx, +dx), float2(0.0f, +dx), float2(dx, +dx)
 };

Note:

SHADOW MAPPING 671

 // 3x3 box filter pattern. Each sample does a 4-tap PCF.
 [unroll]
 for(int i = 0; i < 9; ++i)
 {
 percentLit += shadowMap.SampleCmpLevelZero(samShadow,
 shadowPosH.xy + offsets[i], depth).r;
 }

In other words, we know how much we are displacing in light space in the uv-
plane—we know (u, v) . Equation 20.1 tells us that when we move (u, v)
units in light space we are moving (x, y) in screen space.

Now, let us return to the depth term we have been ignoring. If we move

(x, y) units in screen space, then the light space depth moves by .
z z

z x y
x y

 
    

 

Thus, when we offset our texture coordinates to do the PCF, we can modify the

depth value used in the depth test accordingly: z = z + z (see Figure 20.17).

Let us summarize:

1. In our PCF implementation, we offset our texture coordinates to sample
neighboring values in the shadow map. So for each sample, we know (u, v).

2. We can use Equation 20.1 to find the screen space offset (x, y) when we
offset (u, v) units in light space.

3. With (x, y) solved for, apply
z z

z x y
x y

 
  

  to figure out the light space depth
change.

The “CascadedShadowMaps11” demo in the DirectX 11 SDK implements this
method in the CalculateRightAndUpTexelDepthDeltas and CalculatePCFPercentLit
functions.

20.5.3 An Alternative Solution to the Large PCF Kernel Problem
This solution presented in [Isidoro06] is in the same spirit as the previous section,
but takes a slightly different approach.

Figure 20.17. We illustrate in 2D for simplicity. If we offset from p = (u, z) by u in the u-direction to get (u + u, z),
then we need to offset by z in order to remain on the polygon to get p = (u + u, z + z).

672 TOPICS

Let p = (u, v, z) be the coordinates in light space. The coordinates (u, v) are used
to index into the shadow map, and the value z is the distance from the light source
used in the shadow map test. We can compute , ,

u v z
x x x x

    
      

p and , ,
u v z

y y y y

           

p with
ddx and ddy.

In particular, the fact that we can take these derivatives means u = u(x, y), v =
v(x, y) and z = z(x, y) are all functions of x and y. However, we can also think of z
as a function of u and v—that is, z = z(u, v); as we move in light space in the u- and
v-directions, the depth z changes along the polygon plane. By the chain rule, we have:

z z u z v

x u x v x
z z u z v

y u y v y

    
 

    
    

 
    

Or in matrix notation:

u u

x yz z z z

v vx y u v

x y

  
                     
   

Taking the inverse yields:

1
u u

x yz z z z

v vu v x y

x y

z z v u

x y y y
u v u v v u
x y y x x x

  
                      
   

                             

We now have solved for z

u




 and z

v




 directly (everything on the right-side of the

equation is known). If we move (u, v) units in light space on the uv-plane, then

the light space depth moves by z z
z u v

u v

 
  

 
.

So with this approach, we do not have to transform to screen space, but can stay
in light space—the reason being that we fi gured out directly how depth changes
when u and v change, whereas in the previous section, we only knew how depth
changed when x and y changed in screen space.

SHADOW MAPPING 673

20.6 SUMMARY

1. The back buffer need not always be the render target; we can render to a
different texture. Rendering to texture provides an efficient way for the GPU
to update the contents of a texture at runtime. After we have rendered to a
texture, we can bind the texture as a shader input and map it onto geometry.
Many special effects require render to texture functionality like shadow maps,
water simulations, and general purpose GPU programming.

2. With an orthographic projection, the viewing volume is a box (see Figure 20.1)
with width w, height h, near plane n and far plane f, and the lines of projection
are parallel to the view space z-axis. Such projections are primarily used in
3D science or engineering applications, where it is desirable to have parallel
lines remain parallel after projection. However, we can use orthographic
projections to model shadows that parallel lights generate.

3. Projective texturing is so called because it allows us to project a texture onto
arbitrary geometry, much like a slide projector. The key to projective texturing
is to generate texture coordinates for each pixel in such a way that the applied
texture looks like it has been projected onto the geometry. Such texture
coordinates are called projective texture coordinates. We obtain the projective
texture coordinates for a pixel by projecting it onto the projection plane of the
projector, and then mapping it to the texture coordinate system.

4. Shadow mapping is a real-time shadowing technique, which shadows
arbitrary geometry (it is not limited to planar shadows). The idea of shadow
mapping is to render the depth of the scene from the light’s viewpoint into a
shadow map; thus, after which, the shadow map stores the depth of all pixels
visible from the light’s perspective. We then render the scene again from the
camera’s perspective, and we project the shadow map onto the scene using
projective texturing. Let s(p) be the depth value projected onto a pixel p from
the shadow map and let d(p) be the depth of the pixel from the light source.
Then p is in shadow if d(p) > s(p); that is, if the depth of the pixel is greater
than the projected pixel depth s(p), then there must exist a pixel closer to the
light which occludes p, thereby casting p in shadow.

5. Aliasing is the biggest challenge with shadow maps. The shadow map stores
the depth of the nearest visible pixels with respect to its associated light source.
However, the shadow map only has some finite resolution. So each shadow
map texel corresponds to an area of the scene. Thus, the shadow map is just
a discrete sampling of the scene depth from the light perspective. This causes
aliasing issues known as shadow acne. Using the graphics hardware intrinsic
support for slope-scaled-bias (in the rasterization render state) is a common

674 TOPICS

strategy to fix shadow acne. The finite resolution of the shadow map also
causes aliasing at the shadow edges. PCF is a popular solution to this. More
advanced solutions utilized for the aliasing problem are cascaded shadow maps
and variance shadow maps.

20.7 EXERCISES

1. Write a program that simulates a slide projector by projecting a texture onto
the scene. Experiment with both perspective and orthographic projections.

2. Modify the solution to the previous exercise by using texture address modes
so that points outside the projector’s frustum do not receive light.

3. Modify the solution to Exercise 1 by using a spotlight so that points outside
the spotlight cone do not receive any light from the projector.

4. Modify this chapter’s demo application by using a perspective projection.
Note that the slope-scaled-bias that worked for an orthographic projection
might not work well for a perspective projection. When using a perspective
projection, notice that the depth map is heavily biased to white (1.0). Does
this make sense considering the graph in Figure 5.25?

5. Experiment with the following shadow map resolutions: 4096  4096, 1024 
1024, 512  512, 256  256

6. Derive the matrix that maps the box [,] [,] [,] [1,1] [1,1] [0,1].l r b t n f      
This is an “off center” orthographic view volume (i.e., the box is not centered
about the view space origin). In contrast, the orthographic projection matrix
derived in §20.2 is an “on center” orthographic view volume.

7. In Chapter 17, we learned about picking with a perspective projection matrix.
Derive picking formulas for an off-centered orthographic projection.

8. Modify the “Shadow Demo” to use a single point sampling shadow test (i.e.,
no PCF). You should observe hard shadows and jagged shadow edges.

9. Turn off the slope-scaled-bias to observe shadow acne.

10. Modify the slope-scaled-bias to have a very large bias to observe the peter-
panning artifact.

11. An orthographic projection can be used to generate the shadow map for
directional lights, and a perspective projection can be used to generate the
shadow map for spotlights. Explain how cube maps and six 90 field of view
perspective projections can be used to generate the shadow map for a point light.

Hint: (Recall how dynamic cube maps were generated in Chapter 18.) Explain
how the shadow map test would be done with a cube map.

Hint:

Chapter

675

21Chapter

AMBIENT
OCCLUSION

Due to performance constraints, it is common for real-time lighting models not
to take indirect light (i.e., light that has bounced off other objects in the scene)
into consideration. However, much light we see in the real world is indirect. In
Chapter 8 we introduced the ambient term to the lighting equation:

a L d c A m

The color AL specifies the total amount of indirect (ambient) light a surface receives
from a light source, and the diffuse albedo md specifies the amount of incoming
light that the surface reflects due to diffuse reflectance. All the ambient term does
is uniformly brighten up the object a bit so that it does not go completely black
in shadow—there is no real physics calculation at all. The idea is that the indirect
light has scattered and bounced around the scene so many times that it strikes the
object equally in every direction. Figure 21.1 shows that if we draw a model using
only the ambient term, it is rendered out as a constant color.

Figure 21.1 makes it clear that our ambient term could use some improvement.
In this chapter, we discuss the popular technique of ambient occlusion to improve
our ambient term.

676 TOPICS

Objectives:
1. To understand the basic idea behind ambient occlusion and how to implement

ambient occlusion via ray casting.

2. To learn how to implement a real-time approximation of ambient occlusion
in screen space called screen space ambient occlusion.

21.1 AMBIENT OCCLUSION VIA RAY CASTING

The idea of ambient occlusion is that the amount of indirect light a point p on a
surface receives is proportional to how occluded it is to incoming light over the
hemisphere about p—see Figure 21.2.

One way to estimate the occlusion of a point p is via ray casting. We randomly
cast rays over the hemisphere about p, and check for intersections against the
mesh (Figure 21.3). If we cast N rays, and h of them intersect the mesh, then the
point has the occlusion value:

 occlusion [0,1]
h

N
 

Figure 21.1. A mesh rendered with only the ambient term appears as a solid color.

Figure 21.2. (a) A point p is completely unoccluded and all incoming light over the hemisphere about p
reaches p. (b) Geometry partially occludes p and blocks incoming light rays over the hemisphere about p.

AMBIENT OCCLUSION 677

Only rays with an intersection point q whose distance from p is less than some
threshold value d should contribute to the occlusion estimate; this is because an
intersection point q far away from p is too far to occlude it.

The occlusion factor measures how occluded the point is (i.e., how much light
it does not receive). For the purposes of calculations, we like to work with the
inverse of this. That is, we want to know how much light the point does receive—
this is called accessibility (or we call it ambient-access) and is derived from
occlusion as:

  1 0,1accessiblity occlusion  

The following code performs the ray cast per triangle, and then averages the
occlusion results with the vertices that share the triangle. The ray origin is the
triangle’s centroid, and we generate a random ray direction over the hemisphere
of the triangle.

void AmbientOcclusionApp::BuildVertexAmbientOcclusion(
 std::vector<Vertex::AmbientOcclusion>& vertices,
 const std::vector<UINT>& indices)
{
 UINT vcount = vertices.size();
 UINT tcount = indices.size()/3;

 std::vector<XMFLOAT3> positions(vcount);
 for(UINT i = 0; i < vcount; ++i)
 positions[i] = vertices[i].Pos;

 Octree octree;
 octree.Build(positions, indices);

 // For each vertex, count how many triangles contain the vertex.
 std::vector<int> vertexSharedCount(vcount);

 // Cast rays for each triangle, and average triangle occlusion
 // with the vertices that share this triangle.
 for(UINT i = 0; i < tcount; ++i)

Figure 21.3. Estimating ambient occlusion via ray casting.

678 TOPICS

 {
 UINT i0 = indices[i*3+0];
 UINT i1 = indices[i*3+1];
 UINT i2 = indices[i*3+2];

 XMVECTOR v0 = XMLoadFloat3(&vertices[i0].Pos);
 XMVECTOR v1 = XMLoadFloat3(&vertices[i1].Pos);
 XMVECTOR v2 = XMLoadFloat3(&vertices[i2].Pos);

 XMVECTOR edge0 = v1 - v0;
 XMVECTOR edge1 = v2 - v0;

 XMVECTOR normal = XMVector3Normalize(
 XMVector3Cross(edge0, edge1));

 XMVECTOR centroid = (v0 + v1 + v2)/3.0f;

 // Offset to avoid self intersection.
 centroid += 0.001f*normal;

 const int NumSampleRays = 32;
 float numUnoccluded = 0;
 for(int j = 0; j < NumSampleRays; ++j)
 {
 XMVECTOR randomDir = MathHelper::RandHemisphereUnitVec3(normal);

 // Test if the random ray intersects the scene mesh.
 //
 // TODO: Technically we should not count intersections
 // that are far away as occluding the triangle, but
 // this is OK for demo.
 if(!octree.RayOctreeIntersect(centroid, randomDir))
 {
 numUnoccluded++;
 }
 }

 float ambientAccess = numUnoccluded / NumSampleRays;

 // Average with vertices that share this face.
 vertices[i0].AmbientAccess += ambientAccess;
 vertices[i1].AmbientAccess += ambientAccess;
 vertices[i2].AmbientAccess += ambientAccess;

 vertexSharedCount[i0]++;
 vertexSharedCount[i1]++;
 vertexSharedCount[i2]++;
 }

 // Finish average by dividing by the number of samples we added,
 // and store in the vertex attribute.
 for(UINT i = 0; i < vcount; ++i)

AMBIENT OCCLUSION 679

 {
 vertices[i].AmbientAccess /= vertexSharedCount[i];
 }
}

The demo uses an octree to speed up the ray/triangle intersection tests. For a
mesh with thousands of triangles, it would be very slow to test each random
ray with every mesh triangle. An octree sorts the triangles spatially, so we can
quickly fi nd only the triangles that have a good chance of intersecting the ray; this
reduces the number of ray/triangle intersection tests substantially. An octree is a
classic spatial data structure, and Exercise 1 asks you to research them further.

Figure 21.4 shows a screenshot of a model rendered only with ambient occlusion
generated by the previous algorithm (there are no light sources in the scene). The
ambient occlusion is generated as a precomputation step during initialization and
stored as vertex attributes. As we can see, it is a huge improvement over Figure
21.1—the model actually looks 3D now.

Precomputing ambient occlusion works well for static models; there are even
tools (http://www.xnormal.net) that generate ambient occlusion maps—textures
that store ambient occlusion data. However, for animated models these static
approaches break down. If you load and run the “Ambient Occlusion” demo, you
will notice that it takes a few seconds to precompute the ambient occlusion for
just one model. Hence, casting rays at runtime to implement dynamic ambient
occlusion is not feasible. In the next section, we examine a popular technique for
computing ambient occlusion in real-time using screen space information.

Note:

Figure 21.4. The mesh is rendered only with ambient occlusion—there are no scene lights. Notice how the
crevices are darker; this is because when we cast rays out they are more likely to intersect geometry and
contribute to occlusion. On the other hand, the skull cap is white (unoccluded) because when we cast rays
out over the hemisphere for points on the skull cap, they will not intersect any geometry of the skull.

680 TOPICS

21.2 SCREEN SPACE AMBIENT OCCLUSION

The strategy of screen space ambient occlusion (SSAO) is, for every frame, render
the scene view space normals to a full screen render target and the scene depth
to the usual depth/stencil buffer, and then estimate the ambient occlusion at
each pixel using only the view space normal render target and the depth/stencil
buffer as input. Once we have a texture that represents the ambient occlusion at
each pixel, we render the scene as usual to the back buffer, but apply the SSAO
information to scale the ambient term at each pixel.

21.2.1 Render Normals and Depth Pass
First we render the view space normal vectors of the scene objects to a screen
sized DXGI_FORMAT_R16G16B16A16_FLOAT texture map, while the usual depth/stencil
buffer is bound to lay down the scene depth. The vertex/pixel shaders used for this
pass are as follows:

// Include common HLSL code.
#include “Common.hlsl”

struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
 float2 TexC : TEXCOORD;
 float3 TangentU : TANGENT;
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 NormalW : NORMAL;
 float3 TangentW : TANGENT;
 float2 TexC : TEXCOORD;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout = (VertexOut)0.0f;

 // Fetch the material data.
 MaterialData matData = gMaterialData[gMaterialIndex];

 // Assumes nonuniform scaling; otherwise, need to use
 // inverse-transpose of world matrix.
 vout.NormalW = mul(vin.NormalL, (float3x3)gWorld);
 vout.TangentW = mul(vin.TangentU, (float3x3)gWorld);

 // Transform to homogeneous clip space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);

AMBIENT OCCLUSION 681

 vout.PosH = mul(posW, gViewProj);

 float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform);
 vout.TexC = mul(texC, matData.MatTransform).xy;

 return vout;
}

float4 PS(VertexOut pin) : SV_Target
{
 // Fetch the material data.
 MaterialData matData = gMaterialData[gMaterialIndex];
 float4 diffuseAlbedo = matData.DiffuseAlbedo;
 uint diffuseMapIndex = matData.DiffuseMapIndex;
 uint normalMapIndex = matData.NormalMapIndex;

 // Dynamically look up the texture in the array.
 diffuseAlbedo *= gTextureMaps[diffuseMapIndex].

Sample(gsamAnisotropicWrap, pin.TexC);

#ifdef ALPHA_TEST
 // Discard pixel if texture alpha < 0.1. We do this test as soon
 // as possible in the shader so that we can potentially exit the
 // shader early, thereby skipping the rest of the shader code.
 clip(diffuseAlbedo.a - 0.1f);
#endif

 // Interpolating normal can unnormalize it, so renormalize it.
 pin.NormalW = normalize(pin.NormalW);

 // NOTE: We use interpolated vertex normal for SSAO.

 // Write normal in view space coordinates
 float3 normalV = mul(pin.NormalW, (float3x3)gView);
 return float4(normalV, 0.0f);
}

As the code shows, the pixel shader outputs the normal vector in view space.
Observe that we are writing to a floating-point render target, so there is no
problem writing out arbitrary floating-point data.

21.2.2 Ambient Occlusion Pass
After we have laid down the view space normals and scene depth, we disable the
depth buffer (we do not need it for generating the ambient occlusion texture),
and draw a full screen quad to invoke the SSAO pixel shader at each pixel. The
pixel shader will then use the normal texture and depth buffer to generate an
ambient accessibility value at each pixel. We call the generated texture map
in this pass the SSAO map. Although we render the normal/depth map at full
screen resolution (i.e., the resolution of our back buffer), we render to the
SSAO map at half the width and height of the back buffer for performance

682 TOPICS

reasons. Rendering at half the dimensions does not affect quality too much, as
ambient occlusion is a low frequency effect. Refer to Figure 21.5 throughout the
following subsections.

21.2.2.1 Reconstruct View Space Position

When we draw the full screen quad to invoke the SSAO pixel shader at each pixel
of the SSAO map, we can use the inverse of the projection matrix to transform the
quad corner points in NDC space to points on the near projection plane window:

static const float2 gTexCoords[6] =
{
 float2(0.0f, 1.0f),
 float2(0.0f, 0.0f),
 float2(1.0f, 0.0f),
 float2(0.0f, 1.0f),
 float2(1.0f, 0.0f),
 float2(1.0f, 1.0f)
};

// Draw call with 6 vertices
VertexOut VS(uint vid : SV_VertexID)
{
 VertexOut vout;

 vout.TexC = gTexCoords[vid];

 // Quad covering screen in NDC space.
 vout.PosH = float4(2.0f*vout.TexC.x - 1.0f, 1.0f - 2.0f*vout.TexC.y,

0.0f, 1.0f);

Figure 21.5. The points involved in SSAO. The point p corresponds to the current pixel we are processing, and it is
reconstructed from the depth value stored in the depth buffer and the vector v that passes through the near plane
at this pixel. The point q is a random point in the hemisphere of p. The point r corresponds to the nearest visible
point along the ray from the eye to q. The point r contributes to the occlusion of p if |pz  rz| is sufficiently small
and the angle between r  p and n is less than 90°. In the demo, we take 14 random sample points and average the
occlusion from each to estimate the ambient occlusion in screen space.

AMBIENT OCCLUSION 683

 // Transform quad corners to view space near plane.
 float4 ph = mul(vout.PosH, gInvProj);
 vout.PosV = ph.xyz / ph.w;

 return vout;
}

These to-near-plane vectors are interpolated across the quad and give us a
vector v (Figure 21.5) from the eye to the near plane for each pixel. Now, for
each pixel, we sample the depth buffer so that we have the z-coordinate pz of the
nearest visible point to the eye in NDC coordinates. The goal is to reconstruct the
view space position p = (px, py, pz) from the sampled NDC z-coordinate pz and
the interpolated to-near-plane vector v. This reconstruction is done as follows.
Since the ray of v passes through p, there exists a t such that p = tv. In particular,

pz = tvz so that t = pz/vz. Thus
pz
vz

p v . The reconstruction code in the pixel

shader is as follows:

float NdcDepthToViewDepth(float z_ndc)
{
 // We can invert the calculation from NDC space to view space for the
 // z-coordinate. We have that
 // z_ndc = A + B/viewZ, where gProj[2,2]=A and gProj[3,2]=B.
 // Therefore...
 float viewZ = gProj[3][2] / (z_ndc - gProj[2][2]);
 return viewZ;
}

float4 PS(VertexOut pin) : SV_Target
{
 // Get z-coord of this pixel in NDC space from depth map.
 float pz = gDepthMap.SampleLevel(gsamDepthMap, pin.TexC, 0.0f).r;
 // Transform depth to view space.
 pz = NdcDepthToViewDepth(pz);

 // Reconstruct the view space position of the point with depth pz.
 float3 p = (pz/pin.PosV.z)*pin.PosV;

 [...]
}

21.2.2.2 Generate Random Samples

This step is analogous to the random ray cast over the hemisphere. We randomly
sample N points q about p that are also in front of p and within a specified
occlusion radius. The occlusion radius is an artistic parameter to control how far
away from p we want to take the random sample points. Choosing to only sample
points in front of p is analogous to only casting rays over the hemisphere instead
of the whole sphere when doing ray casted ambient occlusion.

The next question is how to generate the random samples. We can generate
random vectors and store them in a texture map, and then sample this texture

684 TOPICS

map at N different positions to get N random vectors. However, since they are
random we have no guarantee that the vectors we sample will be uniformly
distributed—they may all clump together in roughly the same direction, which
would give a bad occlusion estimate. To overcome this, we do the following trick.
In our implementation, we use N = 14 samples, and we generate fourteen equally
distributed vectors in the C++ code:

void Ssao::BuildOffsetVectors()
{
 // Start with 14 uniformly distributed vectors. We choose the
 // 8 corners of the cube and the 6 center points along each
 // cube face. We always alternate the points on opposite sides
 // of the cubes. This way we still get the vectors spread out
 // even if we choose to use less than 14 samples.

 // 8 cube corners
 mOffsets[0] = XMFLOAT4(+1.0f, +1.0f, +1.0f, 0.0f);
 mOffsets[1] = XMFLOAT4(-1.0f, -1.0f, -1.0f, 0.0f);

 mOffsets[2] = XMFLOAT4(-1.0f, +1.0f, +1.0f, 0.0f);
 mOffsets[3] = XMFLOAT4(+1.0f, -1.0f, -1.0f, 0.0f);

 mOffsets[4] = XMFLOAT4(+1.0f, +1.0f, -1.0f, 0.0f);
 mOffsets[5] = XMFLOAT4(-1.0f, -1.0f, +1.0f, 0.0f);

 mOffsets[6] = XMFLOAT4(-1.0f, +1.0f, -1.0f, 0.0f);
 mOffsets[7] = XMFLOAT4(+1.0f, -1.0f, +1.0f, 0.0f);

 // 6 centers of cube faces
 mOffsets[8] = XMFLOAT4(-1.0f, 0.0f, 0.0f, 0.0f);
 mOffsets[9] = XMFLOAT4(+1.0f, 0.0f, 0.0f, 0.0f);

 mOffsets[10] = XMFLOAT4(0.0f, -1.0f, 0.0f, 0.0f);
 mOffsets[11] = XMFLOAT4(0.0f, +1.0f, 0.0f, 0.0f);

 mOffsets[12] = XMFLOAT4(0.0f, 0.0f, -1.0f, 0.0f);
 mOffsets[13] = XMFLOAT4(0.0f, 0.0f, +1.0f, 0.0f);

 for(int i = 0; i < 14; ++i)
 {
 // Create random lengths in [0.25, 1.0].
 float s = MathHelper::RandF(0.25f, 1.0f);

 XMVECTOR v = s * XMVector4Normalize(XMLoadFloat4(&mOffsets[i]));

 XMStoreFloat4(&mOffsets[i], v);
 }
}

We use 4D homogeneous vectors just so we do not have to worry about any
alignment issues when setting the array of offset vectors to the effect.

Note:

AMBIENT OCCLUSION 685

Now, in the pixel shader we just sample the random vector texture map once, and
use it to reflect our fourteen equally distributed vectors. This results in 14 equally
distributed random vectors.

21.2.2.3 Generate the Potential Occluding Points

We now have random sample points q surrounding p. However, we know nothing
about them—whether they occupy empty space or a solid object; therefore, we
cannot use them to test if they occlude p. To find potential occluding points,
we need depth information from the depth buffer. So what we do is generate
projective texture coordinates for each q with respect to the camera, and use these
to sample the depth buffer to get the depth in NDC space, and then transform to
view space to obtain the depth rz of the nearest visible pixel along the ray from
the eye to q. With the z-coordinates rz known, we can reconstruct the full 3D view
space position r in an analogous way we did in §21.2.2.1. Because the vector from
the eye to q passes through r there exists a t such that r = tq. In particular, rz =

tqz so t = rz/qz. Therefore, z

z

r

qr q . The points r, one generated for each random

sample point q, are our potential occluding points.

21.2.2.4 Perform the Occlusion Test

Now that we have our potential occluding points r, we can perform our occlusion
test to estimate if they occlude p. The test relies on two quantities:

1. The view space depth distance |pz  rz|. We linearly scale down the occlusion as
the distance increases since points farther away from have less of an occluding
effect. If the distance is beyond some specified maximum distance, then no
occlusion occurs. Also, if the distance is very small, then we assume p and q
are on the same plane so q cannot occlude p.

2. The angle between n and r  p measured by   || ||
max ,0


 r p

r p
n . This is to

prevent self-intersection (see Figure 21.6).

Figure 21.6. If r lies on the same plane as p, it can pass the first condition that the distance |pz  rz| is small
enough that r occludes p. However, the figure shows this is incorrect as r does not occlude p since they lie

on the same plane. Scaling the occlusion by   || ||
max ,0


 r p

r p
n prevents this situation.

686 TOPICS

21.2.2.5 Finishing the Calculation

After we have summed the occlusion from each sample, we compute the average
occlusion by dividing by the sample count. Then we compute the ambient-access,
and finally raise the ambient-access to a power to increase the contrast. You may
also wish to increase the brightness of the ambient map by adding some number
to increase the intensity. You can experiment with different contrast/brightness
values.

occlusionSum /= gSampleCount;

float access = 1.0f - occlusionSum;

// Sharpen the contrast of the SSAO map to make the SSAO affect more dramatic.
return saturate(pow(access, 4.0f));

21.2.2.6 Implementation

The previous section outlined the key ingredients for generating the SSAO map.
Below are the HLSL programs:

//==
// Ssao.hlsl by Frank Luna (C) 2015 All Rights Reserved.
//==

cbuffer cbSsao : register(b0)
{
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gProjTex;
 float4 gOffsetVectors[14];

 // For SsaoBlur.hlsl
 float4 gBlurWeights[3];

 float2 gInvRenderTargetSize;

 // Coordinates given in view space.
 float gOcclusionRadius;
 float gOcclusionFadeStart;
 float gOcclusionFadeEnd;
 float gSurfaceEpsilon;
};

cbuffer cbRootConstants : register(b1)
{
 bool gHorizontalBlur;
};

// Nonnumeric values cannot be added to a cbuffer.
Texture2D gNormalMap : register(t0);
Texture2D gDepthMap : register(t1);
Texture2D gRandomVecMap : register(t2);

SamplerState gsamPointClamp : register(s0);

AMBIENT OCCLUSION 687

SamplerState gsamLinearClamp : register(s1);
SamplerState gsamDepthMap : register(s2);
SamplerState gsamLinearWrap : register(s3);

static const int gSampleCount = 14;

static const float2 gTexCoords[6] =
{
 float2(0.0f, 1.0f),
 float2(0.0f, 0.0f),
 float2(1.0f, 0.0f),
 float2(0.0f, 1.0f),
 float2(1.0f, 0.0f),
 float2(1.0f, 1.0f)
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float3 PosV : POSITION;
 float2 TexC : TEXCOORD0;
};

VertexOut VS(uint vid : SV_VertexID)
{
 VertexOut vout;

 vout.TexC = gTexCoords[vid];

 // Quad covering screen in NDC space.
 vout.PosH = float4(2.0f*vout.TexC.x - 1.0f, 1.0f - 2.0f*vout.TexC.y,

0.0f, 1.0f);

 // Transform quad corners to view space near plane.
 float4 ph = mul(vout.PosH, gInvProj);
 vout.PosV = ph.xyz / ph.w;

 return vout;
}

// Determines how much the sample point q occludes the point p as a
function

// of distZ.
float OcclusionFunction(float distZ)
{
 //
 // If depth(q) is “behind” depth(p), then q cannot occlude p.

Moreover, if
 // depth(q) and depth(p) are sufficiently close, then we also assume

q cannot
 // occlude p because q needs to be in front of p by Epsilon to

occlude p.
 //
 // We use the following function to determine the occlusion.
 //

688 TOPICS

 //
 // 1.0 -------------\
 // | | \
 // | | \
 // | | \
 // | | \
 // | | \
 // | | \
 // ------|------|-----------|-------------|---------|--> zv
 // 0 Eps z0 z1
 //

 float occlusion = 0.0f;
 if(distZ > gSurfaceEpsilon)
 {
 float fadeLength = gOcclusionFadeEnd - gOcclusionFadeStart;

 // Linearly decrease occlusion from 1 to 0 as distZ goes
 // from gOcclusionFadeStart to gOcclusionFadeEnd.
 occlusion = saturate((gOcclusionFadeEnd-distZ)/fadeLength);
 }

 return occlusion;
}

float NdcDepthToViewDepth(float z_ndc)
{
 // z_ndc = A + B/viewZ, where gProj[2,2]=A and gProj[3,2]=B.
 float viewZ = gProj[3][2] / (z_ndc - gProj[2][2]);
 return viewZ;
}

float4 PS(VertexOut pin) : SV_Target
{
 // p -- the point we are computing the ambient occlusion for.
 // n -- normal vector at p.
 // q -- a random offset from p.
 // r -- a potential occluder that might occlude p.

 // Get viewspace normal and z-coord of this pixel.
 float3 n = gNormalMap.SampleLevel(gsamPointClamp, pin.TexC, 0.0f).

xyz;
 float pz = gDepthMap.SampleLevel(gsamDepthMap, pin.TexC, 0.0f).r;
 pz = NdcDepthToViewDepth(pz);

 //
 // Reconstruct full view space position (x,y,z).
 // Find t such that p = t*pin.PosV.
 // p.z = t*pin.PosV.z
 // t = p.z / pin.PosV.z
 //
 float3 p = (pz/pin.PosV.z)*pin.PosV;

 // Extract random vector and map from [0,1] --> [-1, +1].
 float3 randVec = 2.0f*gRandomVecMap.SampleLevel(
 gsamLinearWrap, 4.0f*pin.TexC, 0.0f).rgb - 1.0f;

AMBIENT OCCLUSION 689

 float occlusionSum = 0.0f;

 // Sample neighboring points about p in the hemisphere oriented by n.
 for(int i = 0; i < gSampleCount; ++i)
 {
 // Are offset vectors are fixed and uniformly distributed (so that
 // our offset vectors do not clump in the same direction). If we
 // reflect them about a random vector then we get a random uniform
 // distribution of offset vectors.
 float3 offset = reflect(gOffsetVectors[i].xyz, randVec);

 // Flip offset vector if it is behind the plane defined by (p, n).
 float flip = sign(dot(offset, n));

 // Sample a point near p within the occlusion radius.
 float3 q = p + flip * gOcclusionRadius * offset;

 // Project q and generate projective tex-coords.
 float4 projQ = mul(float4(q, 1.0f), gProjTex);
 projQ /= projQ.w;

 // Find the nearest depth value along the ray from the eye to q
 // (this is not the depth of q, as q is just an arbitrary point
 // near p and might occupy empty space). To find the nearest depth
 // we look it up in the depthmap.

 float rz = gDepthMap.SampleLevel(gsamDepthMap, projQ.xy, 0.0f).r;
 rz = NdcDepthToViewDepth(rz);

 // Reconstruct full view space position r = (rx,ry,rz). We know r
 // lies on the ray of q, so there exists a t such that r = t*q.
 // r.z = t*q.z ==> t = r.z / q.z

 float3 r = (rz / q.z) * q;

 //
 // Test whether r occludes p.
 // * The product dot(n, normalize(r - p)) measures how much in
 // front of the plane(p,n) the occluder point r is. The more in
 // front it is, the more occlusion weight we give it. This also
 // prevents self shadowing where a point r on an angled plane (p,n)
 // could give a false occlusion since they have different depth
 // values with respect to the eye.
 // * The weight of the occlusion is scaled based on how far the
 // occluder is from the point we are computing the occlusion of. If
 // the occluder r is far away from p, then it does not occlude it.
 //

 float distZ = p.z - r.z;
 float dp = max(dot(n, normalize(r - p)), 0.0f);
 float occlusion = dp * OcclusionFunction(distZ);

 occlusionSum += occlusion;
 }

690 TOPICS

 occlusionSum /= gSampleCount;

 float access = 1.0f - occlusionSum;

 // Sharpen the contrast of the SSAO map to make the SSAO affect more
 // dramatic.
 return saturate(pow(access, 2.0f));
}

For scenes with large viewing distances, rendering errors can result due to the
limited accuracy of the depth buffer. A simple solution is to fade out the affect of
SSAO with distance.

21.2.3 Blur Pass
Figure 21.7 shows what our ambient occlusion map currently looks like. The noise
is due to the fact that we have only taken a few random samples. Taking enough
samples to hide the noise is impractical for real-time. The common solution is to
apply an edge preserving blur (i.e., bilateral blur) to the SSAO map to smooth it out.
If we used a non-edge preserving blur, then we lose definition in the scene as sharp
discontinuities become smoothed out. The edge preserving blur is similar to the
blur we implemented in Chapter 13, except we add a conditional statement so that
we do not blur across edges (edges are detected from the normal/depth map):

//==
// SsaoBlur.hlsl by Frank Luna (C) 2015 All Rights Reserved.
//
// Performs a bilateral edge preserving blur of the ambient map. We use
// a pixel shader instead of compute shader to avoid the switch from
// compute mode to rendering mode. The texture cache makes up for some
// of the loss of not having shared memory. The ambient map uses 16-bit
// texture format, which is small, so we should be able to fit a lot of
// texels in the cache.

Note:

Figure 21.7. SSAO appears noisy due to the fact that we have only taken a few random samples.

AMBIENT OCCLUSION 691

//===

cbuffer cbSsao : register(b0)
{
 float4x4 gProj;
 float4x4 gInvProj;
 float4x4 gProjTex;
 float4 gOffsetVectors[14];

 // For SsaoBlur.hlsl
 float4 gBlurWeights[3];

 float2 gInvRenderTargetSize;

 // Coordinates given in view space.
 float gOcclusionRadius;
 float gOcclusionFadeStart;
 float gOcclusionFadeEnd;
 float gSurfaceEpsilon;

};

cbuffer cbRootConstants : register(b1)
{
 bool gHorizontalBlur;
};

// Nonnumeric values cannot be added to a cbuffer.
Texture2D gNormalMap : register(t0);
Texture2D gDepthMap : register(t1);
Texture2D gInputMap : register(t2);

SamplerState gsamPointClamp : register(s0);
SamplerState gsamLinearClamp : register(s1);
SamplerState gsamDepthMap : register(s2);
SamplerState gsamLinearWrap : register(s3);

static const int gBlurRadius = 5;

static const float2 gTexCoords[6] =
{
 float2(0.0f, 1.0f),
 float2(0.0f, 0.0f),
 float2(1.0f, 0.0f),
 float2(0.0f, 1.0f),
 float2(1.0f, 0.0f),
 float2(1.0f, 1.0f)
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float2 TexC : TEXCOORD;
};

692 TOPICS

VertexOut VS(uint vid : SV_VertexID)
{
 VertexOut vout;

 vout.TexC = gTexCoords[vid];

 // Quad covering screen in NDC space.
 vout.PosH = float4(2.0f*vout.TexC.x - 1.0f, 1.0f - 2.0f*vout.TexC.y,

0.0f, 1.0f);

 return vout;
}

float NdcDepthToViewDepth(float z_ndc)
{
 // z_ndc = A + B/viewZ, where gProj[2,2]=A and gProj[3,2]=B.
 float viewZ = gProj[3][2] / (z_ndc - gProj[2][2]);
 return viewZ;
}

float4 PS(VertexOut pin) : SV_Target
{
 // unpack into float array.
 float blurWeights[12] =
 {
 gBlurWeights[0].x, gBlurWeights[0].y, gBlurWeights[0].z,

gBlurWeights[0].w,
 gBlurWeights[1].x, gBlurWeights[1].y, gBlurWeights[1].z,

gBlurWeights[1].w,
 gBlurWeights[2].x, gBlurWeights[2].y, gBlurWeights[2].z,

gBlurWeights[2].w,
 };

 float2 texOffset;
 if(gHorizontalBlur)
 {
 texOffset = float2(gInvRenderTargetSize.x, 0.0f);
 }
 else
 {
 texOffset = float2(0.0f, gInvRenderTargetSize.y);
 }

 // The center value always contributes to the sum.
 float4 color = blurWeights[gBlurRadius] * gInputMap.SampleLevel(
 gsamPointClamp, pin.TexC, 0.0);
 float totalWeight = blurWeights[gBlurRadius];

 float3 centerNormal = gNormalMap.SampleLevel(gsamPointClamp, pin.

TexC, 0.0f).xyz;
 float centerDepth = NdcDepthToViewDepth(
 gDepthMap.SampleLevel(gsamDepthMap, pin.TexC, 0.0f).r);

 for(float i = -gBlurRadius; i <=gBlurRadius; ++i)
 {

AMBIENT OCCLUSION 693

 // We already added in the center weight.
 if(i == 0)
 continue;

 float2 tex = pin.TexC + i*texOffset;

 float3 neighborNormal = gNormalMap.SampleLevel(gsamPointClamp, tex,
0.0f).xyz;

 float neighborDepth = NdcDepthToViewDepth(
 gDepthMap.SampleLevel(gsamDepthMap, tex, 0.0f).r);

 //
 // If the center value and neighbor values differ too much
 // (either in normal or depth), then we assume we are
 // sampling across a discontinuity. We discard such
 // samples from the blur.
 //

 if(dot(neighborNormal, centerNormal) >= 0.8f &&
 abs(neighborDepth - centerDepth) <= 0.2f)
 {
 float weight = blurWeights[i + gBlurRadius];

 // Add neighbor pixel to blur.
 color += weight*gInputMap.SampleLevel(
 gsamPointClamp, tex, 0.0);

 totalWeight += weight;
 }
 }

 // Compensate for discarded samples by making total weights sum to 1.
 return color / totalWeight;
}

Figure 21.8 shows the ambient map after an edge preserving blur.

Figure 21.8. An edge preserving blur smoothes out the noise. In our demo, we blur the image four times.

694 TOPICS

21.2.4 Using the Ambient Occlusion Map
Thus far we have constructed the ambient occlusion map. The final step is to apply
it to the scene. One might think to use alpha blending and modulate the ambient
map with the back buffer. However, if we do this, then the ambient map modifies
not just the ambient term, but also the diffuse and specular term of the lighting
equation, which is incorrect. Instead, when we render the scene to the back buffer,
we bind the ambient map as a shader input. We then generate projective texture
coordinates (with respect to the camera), sample the SSAO map, and apply it only
to the ambient term of the lighting equation:

// In Vertex shader, generate projective tex-coords
// to project SSAO map onto scene.
vout.SsaoPosH = mul(posW, gViewProjTex);

// In pixel shader, finish texture projection and sample SSAO map.
pin.SsaoPosH /= pin.SsaoPosH.w;
float ambientAccess = gSsaoMap.Sample(gsamLinearClamp, pin.SsaoPosH.xy,

0.0f).r;

// Scale ambient term of lighting equation.
float4 ambient = ambientAccess*gAmbientLight*diffuseAlbedo;

Figure 21.9 shows the scene with the SSAO map applied. The SSAO can be
subtle, and your scene has to reflect enough ambient light so that scaling it by the
ambient-access makes enough of a noticeable difference. The advantage of SSAO
is most apparent when objects are in shadow. For when objects are in shadow,
the diffuse and specular terms are killed; thus only the ambient term shows up.
Without SSAO, objects in shadow will appear flatly lit by a constant ambient term,
but with SSAO they will keep their 3D definition.

When we render the scene view space normals, we also build the depth buffer
for the scene. Consequently, when we render the scene the second time with the

Figure 21.9. Screenshot of the demo. The affects are subtle as they only affect the ambient term, but you
can see darkening at the base of the columns and box, under the spheres, and around the skull.

AMBIENT OCCLUSION 695

SSAO map, we modify the depth comparison test to “EQUALS.” This prevents any
overdraw in the second rendering pass, as only the nearest visible pixels will pass
this depth comparison test. Moreover, the second rendering pass does not need to
write to the depth buffer because we already wrote the scene to the depth buffer in
the normal render target pass.

opaquePsoDesc.DepthStencilState.DepthFunc = D3D12_COMPARISON_FUNC_
EQUAL;

opaquePsoDesc.DepthStencilState.DepthWriteMask = D3D12_DEPTH_WRITE_
MASK_ZERO;

ThrowIfFailed(md3dDevice->CreateGraphicsPipelineState(
 &opaquePsoDesc, IID_PPV_ARGS(&mPSOs[“opaque”])));

21.3 SUMMARY

1. The ambient term of the lighting equation models indirect light. In our
lighting model, the ambient term is simply a constant value. Therefore,
when an object is in shadow and only ambient light is applied to the surface,
the model appears very flat with no solid definition. The goal of ambient
occlusion is to find a better estimate for the ambient term so that the object
still looks 3D even with just the ambient term applied.

2. The idea of ambient occlusion is that the amount of indirect light a point p on
a surface receives is proportional to how occluded it is to incoming light over
the hemisphere about p. One way to estimate the occlusion of a point p is via
ray casting. We randomly cast rays over the hemisphere about p, and check for
intersections against the mesh. If the rays do not intersect any geometry, then
the point is completely unoccluded; however, the more intersections there are,
the more occluded p must be.

3. Ray casted ambient occlusion is too expensive to do in real-time for dynamic
objects. Screen space ambient occlusion (SSAO) is a real-time approximation
that is based on the view space normal/depth values. You can definitely find
flaws and situations where it gives wrong results, but the results are very good
in practice with the limited information it has to work with.

21.4 EXERCISES

1. Research on the web: KD-Trees, quadtrees, and octrees.

2. Modify the “Ssao” demo to do a Gaussian blur instead of an edge preserving
blur. Which one do you like better?

696 TOPICS

3. Can SSAO be implemented on the compute shader? If yes, sketch out an
implementation.

4. Figure 21.10 shows what happens to the SSAO map if we do not include a
check for self-intersection (§21.2.2.4). Modify the “Ssao” demo to remove the
self-intersection check and reproduce the results in Figure 21.10.

Figure 21.10. False occlusions everywhere.

Chapter

697

22Chapter

QUATERNIONS

In Chapter 1, we introduced a new class of mathematical objects called vectors.
In particular, we learned that a 3D vector consists of an ordered 3-tuple of real
numbers, and we defined operators on vectors that are useful geometrically.
Likewise, in Chapter 2 we introduced matrices, which are rectangular tables
of real numbers with operations defined on them that are useful; for example,
we saw how matrices can represent linear and affine transformations, and
how matrix multiplication corresponds to transformation composition.
In this chapter, we learn about another type of mathematical objects called
quaternions. We will see that a unit quaternion can be used to represent a 3D
rotation, and has convenient interpolation properties. For readers looking for
a comprehensive treatment of quaternions (and rotations), we like the book
devoted to the topic by [Kuipers99].

Objectives:
1. To review the complex numbers and recall how complex number

multiplication performs a rotation in the plane.

2. To obtain an understanding of quaternions and the operations defined on
them.

3. To discover how the set of unit quaternions represent 3D rotations.

4. To find out how to convert between the various rotation representations.

698 TOPICS

5. To learn how to interpolate between unit quaternions, and understand that
this is geometrically equivalent to interpolating between 3D orientations.

6. To become familiar with the DirectX Math library’s quaternion functions and
classes.

22.1 REVIEW OF THE COMPLEX NUMBERS

The quaternions can be viewed as a generalization of the complex numbers; this
motivates us to study complex numbers before quaternions. In particular, our
main goal in this section is to show that multiplying a complex number p (thought
of as a 2D vector or point) by a unit complex number results in a rotation of p.
We will then show in §22.3 that a special quaternion product involving a unit
quaternion results in a 3D rotation of a vector or point p.

22.1.1 Defi nitions
There are different ways to introduce complex numbers. We introduce them in
such a way that they immediately cause us to think of complex numbers as 2D
points or vectors.

An ordered pair of real numbers z  (a, b) is a complex number. The fi rst
component is called the real part and the second component is called the
imaginary part. Moreover, equality, addition, subtraction, multiplication and
division are defi ned as follows:

1. (a, b)  (c, d) if and only if a  c and b  d.

2. (a, b)(c, d)  (ac, bd).

3. (a, b)(c, d)  (ac – bd, ad  bc).

4. 2 2 2 2

(,)
, if (,) (0, 0)

(,)

a b ac bd bc ad
c d

c d c d c d

      
.

It is easy to verify that the usual arithmetic properties of real numbers also hold
for complex arithmetic (e.g., commutativity, associativity, distributive laws); see
Exercise 1.

If a complex number is of the form (x, 0), then it is customary to identify it by
the real number x and write x  (x, 0); thus any real number can be thought of as
a complex number with a zero imaginary component. Observe then that a real
number times a complex number is given by x(a, b)  (x, 0)(a, b)  (xa, xb)  (a, b)
(x, 0)  (a, b)x, which is reminiscent of scalar-vector multiplication.

We defi ne the imaginary unit i  (0, 1). Using our defi nition of complex
multiplication, observe that i2  (0, 1)(0, 1)  (1, 0)  1, which implies 1i   .
This tells us that i solves the equation x2  1.

QUATERNIONS 699

The complex conjugate of a complex number z  (a, b) is denoted by z and
given by (,)a b z . A simple way to remember the complex division formula is
to multiply the numerator and denominator by the conjugate of the denominator
so that the denominator becomes a real number:

 
 

 
 

 
 

 
2 2 2 2 2 2

, , , ,
,

, , ,

a b a b c d ac bd bc ad ac bd bc ad

c d c d c d c d c d c d

             

Next, we show that a complex number (a, b) can be written in the form a  ib. We
have a  (a, 0), b  (b, 0) and i  (0, 1), so

 (,0) (0,1)(,0) (,0) (0,) (,)a ib a b a b a b     

Using the form a  ib, we can recast the formulas for addition, subtraction,
multiplication and division as follows:

1.    a ib c id a c i b d       .

2.       a ib c id ac bd i ad bc      .

3.
2 2 2 2

 if (,) (0,0)
a ib ac bd bc ad

i c d
c id c d c d

  
  

  

Furthermore, in this form, the complex conjugate of z  a  ib is given by a ib z .

22.1.2 Geometric Interpretation
The ordered pair form a  ib  (a, b) of a complex number naturally suggests
that we think of a complex number geometrically as a 2D point or vector in the
complex plane. In fact, our definition of complex number addition matches
our definition of vector addition; see Figure 22.1. We will give a geometric
interpretation to complex number multiplication in the next section.

Figure 22.1. Complex addition is reminiscent of vector addition in the plane.

700 TOPICS

The absolute value, or magnitude, of the complex number a  ib is defi ned as
the length of the vector it represents (Figure 22.2), which we know is given by:

 2 2a ib a b  

We say that a complex number is a unit complex number if it has a magnitude of
one.

22.1.3 Polar Representation and Rotations
Because complex numbers can be viewed as just points or vectors in the 2D
complex plane, we can just as well express their components using polar
coordinates (see Figure 22.3):

 cos sin cos sin

r a ib

a ib r ir r i

 

      

The right-hand-side of the equation is called the polar representation of the
complex number a  ib.

Figure 22.2. The magnitude of a complex number.

Figure 22.3. Polar representation of a complex number.

QUATERNIONS 701

Let us multiply two complex numbers in polar form. Let 1 1 1 1cos s n()ir i   z
and 2 2 2 2().cos sinr i   z Then

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

cos cos sin sin (cos sin sin cos)()

cos() s(in())

r r i

r r i

           
     

z z

where we employed the trigonometric identities

sin() sin cos cos sin

cos() cos cos sin sin

     
     

Thus, geometrically, the product z1z2 is the complex number representing the
vector with magnitude r1r2 and which makes an angle 1 2  with the real
axis. In particular, if r2  1, then  1 2 1 1 2 1 2cos() sin()r i     z z , which,
geometrically, rotates z1 by the angle 2; see Figure 22.4. Therefore, multiplying a
complex number z1 (thought of as a 2D vector or point) by a unit complex number z2
results in a rotation of z1.

22.2 QUATERNION ALGEBRA

22.2.1 Defi nition and Basic Operations
An ordered 4-tuple of real numbers q  (x, y, z, w)  (q1, q2, q3, q4) is a quaternion.
This is commonly abbreviated as q  (u, w)  (x, y, z, w), and we call u  (x, y,
z) the imaginary vector part and w the real part. Moreover, equality, addition,
subtraction, multiplication, and division are defined as follows:

1. (u, a)  (v, b) if and only if u  v and a  b.

2. (u, a)  (v, b)  (u  v, a  b).

3. (u, a)(v, b)  (av  bu  u × v, ab  u · v)

Figure 22.4. z1  r1(cos1  isin1), z2  (cos2  isin2). The product z1z2 rotates z1 by the angle 2.

702 TOPICS

The definition of multiplication may seem “weird,” but these operations are
definitions, so we can define them however we want—and this definition turns
out to be useful. The definition of matrix multiplication may have seemed weird
at first, but it turned out to be useful.

Let p  (u, p4)  (p1, p2, p3, p4) and q  (v, q4)  (q1, q2, q3, q4). Then u × v  (p2q3
– p3q2, p3q1 – p1q3, p1q2 – p2q1) and u·v  p1q1  p2q2  p3q3. Now, in component
form, the quaternion product r  pq takes on the form:

1 4 1 4 1 2 3 3 2 1 4 2 3 3 2 4 1

2 4 2 4 2 3 1 1 3 1 3 2 4 3 1 4 2

3 4 3 4 3 1 2 2 1 1 2 2 1 3 4 4 3

4 4 4 1 1 2 2 3 3 1 1 2 2 3 3 4 4

r p q q p p q p q q p q p q p q p

r p q q p p q p q q p q p q p q p

r p q q p p q p q q p q p q p q p

r p q p q p q p q q p q p q p q p

       
       
        
        

This can be written as a matrix product:

4 3 2 1 1

3 4 1 2 2

2 1 4 3 3

1 2 3 4 4

p p p p q

p p p p q

p p p p q

p p p p q

   
      
   
        

pq

If you prefer row vector-matrix multiplication, simply take the transpose:

4 3 2 1 4 3 2 11 1

3 4 1 2 3 4 1 22 2

2 1 4 3 2 1 4 33 3

1 2 3 4 1 2 3 44 4

T TT
p p p p p p p pq q

p p p p p p p pq q

p p p p p p p pq q

p p p p p p p pq q

        
                       
                    

22.2.2 Special Products
Let i  (1, 0, 0, 0), j  (0, 1, 0, 0), k  (0, 0, 1, 0) be quaternions. Then we have
the special products, some of which are reminiscent of the behavior of the cross
product:

2 2 2 1    
  
  
  

i j k ijk

ij k ji

jk i kj

ki j ik

Note:

QUATERNIONS 703

These equations follow directly from our definition of quaternion multiplication.
For example,

0 0 0 1 0 0

0 0 1 0 1 0

0 1 0 0 0 1

1 0 0 0 0 0

     
            
     
          

ij k

22.2.3 Properties
Quaternion multiplication is not commutative; for instance, §22.2.2 showed that
ij  ji. Quaternion multiplication is associative, however; this can be seen from
the fact that quaternion multiplication can be written using matrix multiplication
and matrix multiplication is associative. The quaternion e  (0, 0, 0, 1) serves as a
multiplicative identity:

4 3 2 1 1 1

3 4 1 2 2 2

2 1 4 3 3 3

1 2 3 4 4 4

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 1

p p p p p p

p p p p p p

p p p p p p

p p p p p p

         
                     
         
                    

pe ep

We also have that quaternion multiplication distributes over quaternion addition:
p(q  r)  pq  pr and (q  r)p  qp  rp. To see this, write the quaternion
multiplication and addition in matrix form, and note that matrix multiplication
distributes over matrix addition.

22.2.4 Conversions
We relate real numbers, vectors (or points), and quaternions in the following way:
Let s be a real number and let u  (x, y, z) be a vector. Then

1. s  (0, 0, 0, s)

2. u  (x, y, z)  (u, 0)  (x, y, z, 0)

In other words, any real number can be thought of as a quaternion with a zero
vector part, and any vector can be thought of as a quaternion with zero real part.
In particular, note that for the identity quaternion, 1  (0, 0, 0, 1). A quaternion
with zero real part is called a pure quaternion.

Observe, using the defi nition of quaternion multiplication, that a real number
times a quaternion is just “scalar multiplication” and it is commutative:

704 TOPICS

1 1

2 2
1 2 3 4 1 2 3 4

3 3

4 4

0 0 0

0 0 0
(, , ,) (0,0,0,)(, , ,)

0 0 0

0 0 0

s p sp

s p sp
s p p p p s p p p p

s p sp

s p sp

     
     
       
     
     
     

Similarly,

4 3 2 1 1

3 4 1 2 2
1 2 3 4 1 2 3 4

2 1 4 3 3

1 2 3 4 4

0

0
(, , ,) (, , ,)(0,0,0,)

0

p p p p sp

p p p p sp
p p p p s p p p p s

p p p p sp

p p p p s sp

     
            
     
            

22.2.5 Conjugate and Norm
The conjugate of a quaternion q  (q1, q2, q3, q4)  (u, q4) is denoted by q* and
defined by

 1 2 3 4 4* (,)q q q q q      q u

In other words, we just negate the imaginary vector part of the quaternion;
compare this to the complex number conjugate. The conjugate has the following
properties:

1.  * * *pq q p

2. ()* * *  p q p q

3.  * * q q

4. ()* *s sq q for s
5. 4 4 4 4(,) (,) (0, 2) 2q q q q     q q* u u

6.
2 2 2 2 2 2
1 2 3 4 4|| ||q q q q q      qq* q * q u

In particular, note that *q q and * *qq q q evaluate to real numbers.
The norm (or magnitude) of a quaternion is defi ned by:

 2 2 2 2 2 2
1 2 3 4 4|| || || ||q q q q q      q qq * u

We say that a quaternion is a unit quaternion if it has a norm of one. The norm has
the following properties:

1. || * || ||q q ||

2. || || || |||| ||pq p q

QUATERNIONS 705

In particular, property 2 tells us that the product of two unit quaternions is a
unit quaternion; also if ||p||  1, then ||pq||  ||q||.

The conjugate and norm properties can be derived straightforwardly from the
defi nitions. For example,

      *
4 4* * , , q q   q u u q

   2 2 2 2
4 4 4|| || || , || || || || || || |* |q q q       q u u u q

2

2

2

2 2

|| || ()()*

*

|| || *

* || ||

|| || || ||

*










pq pq pq

pqq p

p q p

pp q

p q

The reader ought to try and derive the other properties (see Exercises).

22.2.6 Inverses
As with matrices, quaternion multiplication is not commutative, so we cannot
define a division operator. (We like to reserve division only for when multiplication
is commutative so that we have: 1 1a

ab b a
b

 
 ) However, every nonzero quaternion

has an inverse. (The zero quaternion has zeros for all its components.) Let q  (q1,
q2, q3, q4)  (u, q4) be a nonzero quaternion, then the inverse is denoted by q1 and
given by:

*

1
2|| ||

 
q

q
q

It is easy to check that this is indeed the inverse, for we have:

 

 

* 2
1

2 2

2
1

2 2

|| ||
1 0,0,0,1

|| || || ||

* || ||
1 0,0,0,1

|| || || ||





   

   

qq q
qq

q q

q q q
q q

q q

Observe that if q is a unit quaternion, then || q ||2  1 and so
1 * q q .

The following properties hold for the quaternion inverse:

1.   11  q q

2.   1 1 1  pq q p

706 TOPICS

22.2.7 Polar Representation
If q  (q1, q2, q3, q4)  (u, q4) is a unit quaternion, then

 2 2 2
4|| || || || 1q  q u

This implies 2
4 4 41 1 1 1.q q q       Figure 22.5 shows there exists an

angle [0,]  such that 4 cos .q   Employing the trigonometric identity
2 2sin cos 1,   we have that

 2 2 2 2
4sin 1 cos 1 || ||q       u

This implies

 || || sin sin for [0,]     u

Now label the unit vector in the same direction as u by n:

|| || sin

 


u u
n

u

Hence, u  sinn and, we may therefore write the unit quaternion q  (u, q4) in
the following polar representation where n is a unit vector:

  sin ,cos for [0,]    q n

For example, suppose we are given the quaternion 1 3
0, , 0,

2 2

 
  
 

q . To convert to polar

representation, we find 3
arccos

2 6


   ,  

1
0, , 0

2
0,1, 0

sin
6

 
 
  n . So  sin 0,1,0 , cos

6 6

    
 

q .

The restriction of   [0, ] is for when converting a quaternion q  (q1, q2,
q3, q4) to polar representation. That is, we need the angle restriction in order
to associate a unique angle with the quaternion q  (q1, q2, q3, q4). Nothing

Note:

Figure 22.5. For a number y  [1, 1] there exists an angle  such that y  cos 

QUATERNIONS 707

stops us, however, from constructing a quaternion q  (sinn, cos) from any
angle , but observe that q  (sin(  2n)n, cos(  2n)) for all integers n. So
the quaternion does not have a unique polar representation without the angle
restriction   [0, ].

Observe that substituting  for  is equivalent to negating the vector part of the
quaternion:

    sin(),cos() sin ,cos *      n n p

In the next section we will see that n represents the axis of rotation, and so we can
rotate in the other direction by negating the axis of rotation.

22.3 UNIT QUATERNIONS AND ROTATIONS

22.3.1 Rotation Operator
Let q  (u, w) be a unit quaternion and let v be a 3D point or vector. Then
we can think of v as the pure quaternion p  (v, 0). Also recall that since q is
a unit quaternion, we have that

1 * q q . Recall the formula for quaternion
multiplication:

 (,)(,) (,)a b a b ab     m n n m m n m n

Now consider the product:

    
  

1 *

, , 0 ,

, ,

w w

w

 

 

   

qpq qpq

u v u

u w v v u v u

Simplifying this is a little lengthy, so we will do the real part and vector part
separately. We make the symbolic substitutions:

a w

b

w


 

  

v u

m u

n v v u
Real Part

() ()

() ()

() () 0

0

ab

w w

w w

w w

 
     
      
    


m n

v u u v v u

v u u v u v u

v u v u

708 TOPICS

Note that () 0  u v u because (v × u) is orthogonal to u by the definition of the
cross product.

Vector Part

 
 

2

2

2

2

2

2

() () ()

() ()

() ()

2 () ()

2 () () ()

() 2 () 2()

() 2() 2 (

a b

w w w

w w w

w w w

w w

w w

w w

w w

  
        

         

         

       

        

      

     

n m m n

v v u v u u u v v u

v v u u v u u v u u v

v u v u v u u v u u v

v u v u v u u u v

v u v v u u u v u u v v

u u v u v u u v

u u v u v u u) v

Where we applied the triple product identity () () ()     a b c a c b a b c to
() u u v .

We have shown:

  2 2 2 (), 0w w      qpq* (u u)v (u v)u u v (eq. 22.1)

Observe that this results in a vector or point since the real component is zero
(which is necessary if this operator is to rotate a vector or point—it must evaluate
to a vector or point). Therefore, in the subsequent equations, we drop the real
component.

Now, because q is a unit quaternion, it can be written as

 (sin ,cos) for || || 1 and [0,]     q n n

Substituting this into Equation 22.1 yields:

2 2

2 2 2

* (cos sin) 2(sin)sin 2cos (sin)

(cos sin) 2sin () 2cos sin ()

          

         

qpq v n v n n v

v n v n n v

To simplify this further, we apply the trigonometric identities:

2 2

2

cos sin cos(2)

2cos sin sin(2)

cos(2) 1 2sin

   
   

   

2 2 2(cos sin) 2sin () 2cos sin ()

cos(2) (1 cos(2))() sin(2)()

         
        

qpq* v n v n n v

v n v n n v
 (eq. 22.2)

QUATERNIONS 709

Now, compare Equation 22.2 with the axis-angle rotation Equation 3.5 to see that
this is just the rotation formula ()nR v ; that is, it rotates the vector (or point) v
about the axis n by an angle 2.

  () cos 1 cos () sin ()        nR v v n v n n v

Consequently, we define the quaternion rotation operator by:

1()

*

cos(2) (1 cos(2))() sin(2)()

R 


        

q v qvq

qvq

v n v n n v

 (eq. 22.3)

We have shown that the quaternion rotation operator 1()R q v qvq rotates a
vector (or point) v about the axis n by an angle 2.

So suppose you are given an axis n and angle  to rotate about the axis n. You
construct the corresponding rotation quaternion by:

 sin ,cos
2 2

              
q n

Then apply the formula Rq(v). The division by 2 is to compensate for the 2
because we want to rotate by the angle , not 2.

22.3.2 Quaternion Rotation Operator to Matrix
Let q  (u, w)  (q1, q2, q3, q4) be a unit quaternion. From Equation 22.1, we know

 2() () 2() 2 ()R w w        qr v qvq* u u v u v u u v

Note that 2 2 2 2
1 2 3 4 1q q q q    implies that 2 2 2 2

4 1 2 31 ,q q q q     and so

2 2 2 2 2
4 1 2 3

2
4

() ()

(2 1)

w q q q q

q

     

 

u u v v

v

The three terms in Rq(v) can be written in terms of matrices:

2
4

2 2
4

2
4

2 1 0 0

() 0 2 1 0

0 0 2 1

x y z

q

w v v v q

q

 
 

       
  

u u v

710 TOPICS

  

2
1 1 2 1 3

2
1 2 2 2 3

2
1 3 2 3 3

2 2 2

2 2 2 2

2 2 2

x y z

q q q q q

v v v q q q q q

q q q q q

 
 

      
 
 

u v u

4 3 4 2

4 3 4 1

4 2 4 1

0 2 2

2 () 2 0 2

2 2 0
x y z

q q q q

w v v v q q q q

q q q q

 
       
  

u v

Summing the terms yields:

2 2
1 4 1 2 3 4 1 3 2 4

2 2
1 2 3 4 2 4 2 3 1 4

2 2
1 3 2 4 2 3 1 4 3 4

2 2 1 2 2 2 2

() 2 2 2 2 1 2 2

2 2 2 2 2 2 1

x y z

q q q q q q q q q q

R v v v q q q q q q q q q q

q q q q q q q q q q

    
 

        
      

q v vQ

The unit length property 2 2 2 2
1 2 3 4 1q q q q    of q implies:

2 2 2 2
1 4 2 3

2 2 2 2
2 4 1 3

2 2 2 2
3 4 1 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

q q q q

q q q q

q q q q

   

   

   

We can, therefore, rewrite this matrix equation as:

2 2
2 3 1 2 3 4 1 3 2 4

2 2
1 2 3 4 1 3 2 3 1 4

2 2
1 3 2 4 2 3 1 4 1 2

1 2 2 2 2 2 2

() 2 2 1 2 2 2 2

2 2 2 2 1 2 2

x y z

q q q q q q q q q q

R v v v q q q q q q q q q q

q q q q q q q q q q

    
 

        
      

q v vQ (eq. 22.4)

Many graphics books use matrix-column vector ordering for transforming
vectors. Hence you will see the transpose of the matrix Q in many graphics
books: () T TR q v Q v .

22.3.3 Matrix to Quaternion Rotation Operator
Given the rotation matrix

11 12 13

21 22 23

31 32 33

R R R

R R R

R R R

 
   
  

R

Note:

QUATERNIONS 711

we want to find the quaternion q  (q1, q2, q3, q4) such that if we build the Equation 22.4
matrix Q from q we get R. So our strategy is to set:

2 2
2 3 1 2 3 4 1 3 2 411 12 13

2 2
21 22 23 1 2 3 4 1 3 2 3 1 4

2 2
31 32 33 1 3 2 4 2 3 1 4 1 2

1 2 2 2 2 2 2

2 2 1 2 2 2 2

2 2 2 2 1 2 2

q q q q q q q q q qR R R

R R R q q q q q q q q q q

R R R q q q q q q q q q q

                          
and solve for q1, q2, q3, q4. Note that we are given R, so all the elements on the left-
hand-side of the equation are known.

We start by summing the diagonal elements (which is called the trace of a
matrix):

11 22 33

2 2 2 2 2 2
2 3 1 3 1 2

2 2 2
1 2 3

2 2 2
1 2 3

2
4

2
4

trace()

1 2 2 1 2 2 1 2 2

3 4 4 4

3 4()

3 4(1)

1 4

R R R

q q q q q q

q q q

q q q

q

q

  

        

   

   

  

  

R

4

trace() 1

2
q


 

R

Now we combine diagonally opposite elements to solve for q1, q2, q3 (because we
eliminate terms):

23 32 2 3 1 4 2 3 1 4

1 4

2 2 2 2

4

R R q q q q q q q q

q q

    


 23 32R R
 

 31 13 1 3 2 4 1 3 2 4

2 4

2 2 2 2

4

R R q q q q q q q q

q q

    


 31 13
2

44

R R
q

q


 

12 21 1 2 3 4 1 2 3 4

3 4

2 2 2 2

4

R R q q q q q q q q

q q

    


12 21

3
44

R R
q

q


 

712 TOPICS

If q4  0 then these equations are undefined. In this case, we will find the largest
diagonal element of R to divide by, and choose other combinations of matrix
elements. Suppose R11 is the maximum diagonal:

2 2 2 2 2 2

11 22 33 2 3 1 3 1 2

2
1

1 2 2 1 2 2 1 2 2

1 4

R R R q q q q q q

q

          

  

 11 22 33
1

1

2

R R R
q

  
 

12 21 1 2 3 4 1 2 3 4

1 2

2 2 2 2

4

R R q q q q q q q q

q q

    


 12 21
2

14

R R
q

q


 

13 31 1 3 2 4 1 3 2 4

1 3

2 2 2 2

4

R R q q q q q q q q

q q

    


 13 31
3

14

R R
q

q


 

23 32 2 3 1 4 2 3 1 4

1 4

2 2 2 2

4

R R q q q q q q q q

q q

    


 23 32
4

14

R R
q

q


 

A similar pattern is taken if R22 or R33 is the maximum diagonal.

22.3.4 Composition
Suppose p and q are unit quaternions with corresponding rotational operators
given by Rp and Rq, respectively. Letting (),R  pv v the composition is given by:

1 1 1 1 1 1() () () () () (())R R R           q p qv v qv q q(pvp)q qp v p q qp v qp

Because p and q are both unit quaternions, the product pq is also a unit quaternion
since ||pq||  ||p||||q||  1; thus, the quaternion product pq also represents a
rotation; namely, the net rotation given by the composition  ) .(R Rq p v

QUATERNIONS 713

22.4 QUATERNION INTERPOLATION

Since quaternions are 4-tuples of real numbers, geometrically, we can visualize
them as 4D vectors. In particular, unit quaternions are 4D unit vectors that lie on
the 4D unit sphere. With the exception of the cross product (which is only defined
for 3D vectors), our vector math generalizes to 4-space—and even n-space.
Specifically, the dot product holds for quaternions. Let p  (u, s) and q  (v, t),
then:

 || || || || cosst     p q u v p q

where  is the angle between the quaternions. If the quaternions p and q are unit
length, then pq = cos The dot product allows us to talk about the angle between
two quaternions, as a measure of how “close” they are to each other on the unit
sphere.

For the purposes of animation, we want to interpolate from one orientation to
another orientation. To interpolate quaternions, we want to interpolate on the arc
of the unit sphere so that our interpolated quaternion is also a unit quaternion. To
derive such a formula, consider Figure 22.6, where we want to interpolate between
a to b by an angle t. We want to fi nd weights c1 and c2 such that p  c1a  c2b,
where ||p||  ||a||  ||b||. We setup two equations for the two unknowns as follows:

1 2

1 2cos() cos()

c c

t c c

    
   

a p a a a b

1 2

1 2cos((1)) cos()

c c

t c c

    
    

p b a b b b

Figure 22.6. Interpolating along the 4D unit sphere from a to b by an angle t. The angle between a and b
is , the angle between a and p is t, and the angle between p and b is (1  t).

714 TOPICS

This yields the matrix equation:

1

2

1 cos() cos()

cos() 1 cos((1))

c t

c t

      
            

Consider the matrix equation Ax  b, where A is invertible. Then Cramer’s Rule
tells us that det /det ,i ix  A A where Ai is found by swapping the ith column
vector in A with b. Therefore:

 1 2

cos() cos()
det

cos((1)) 1 cos() cos()cos((1))
1 cos() 1 cos ()

det
cos() 1

t

t t t
c

  
         

   
  

 2 2

1 cos()
det

cos() cos((1)) cos((1)) cos()cos()
1 cos() 1 cos

det
cos() 1

()

t

t t t
c

 
          

   
  

From the trigonometric Pythagorean identity and addition formulas, we have:

2 21 cos () sin ()

cos((1)) cos() cos()cos() sin()sin()

sin((1)) sin() sin()cos() cos()sin()

t t t t

t t t t

   
          
          

Therefore,

 

 

1 2

2

2

2

2

2

cos() cos() cos()cos() sin()sin()

sin ()

cos() cos()cos()cos() cos()sin()sin()

sin ()

cos() 1 cos () cos()sin()sin()

sin ()

cos()sin () cos()sin()sin()

sin ()

sin()c

t t t
c

t t t

t t

t t

       



        




      




     






os() cos()sin()

sin()

sin((1))

sin()

t t

t

   


 




QUATERNIONS 715

and

2 2

cos()cos() sin()sin() cos()cos()

sin ()

sin()

sin()

t t t
c

t

       








Thus we define the spherical interpolation formula:

sin((1)) sin()

slerp(, ,) for [0,1]
sin

t t
t t

   
 


a b

a b

Thinking of unit quaternions as 4D unit vectors allows us to solve for the angle
between the quaternions: arccos().  a b

If , the angle between a and b is near zero, sin is near zero, and the division
can cause problems due to fi nite numerical precision. In this case, perform linear
interpolation between the quaternions and normalize the result, which is actually
a good approximation for small  (see Figure 22.7).

Observe from Figure 22.8 that linear interpolation followed by projecting the
interpolated quaternion back on to the unit sphere results in a nonlinear rate
of rotation. Thus is you used linear interpolation for large angles, the speed of
rotation will speed up and slow down. This effect is often undesirable, and one
reason why spherical interpolation is preferred (which rotates at a constant speed).

We now point out an interesting property of quaternions. Note that since
()* *s sq q and scalar-quaternion multiplication is commutative, we have that:

() ()*

(1) (1) *

*

R   

  


q v qv q

qv q

qvq

Figure 22.7. For small angles  between a and b,
linear interpolation is a good approximation for
spherical interpolation. However, when using linear
interpolation, the interpolated quaternion no longer
lies on the unit sphere, so you must normalize the
result to project it back on to the unit sphere.

Figure 22.8. Linear interpolation results in nonlinear
interpolation over the unit sphere after normalization.
This means the rotation speeds up and slows down as it
interpolates, rather than moving at a constant speed.

716 TOPICS

We therefore have q and q representing the same rotation. To see this another
way, if sin , cos

2 2

  
  
 

q n , then

sin , cos
2 2

sin ,cos
2 2

2 2
sin ,cos

2 2

      
 

                
               

q n

n

n

That is, Rq rotates  about the axis n, and R-q rotates 2   about the axis n.
Geometrically, a unit quaternion q on the 4D unit sphere and its polar opposite
q represent the same orientation. Figure 22.9 shows that these two rotations take
us to the same place. However, we see that one will take the shorter angle around
and the other will take the longer angle around.

Because b and -b representing the same orientation, we have two choices
for interpolation: slerp(a, b, t) or slerp(a, b, t). One will interpolate between
the orientations in the most direct way that minimizes spinning (analogous
to Figure 22.9a), and one will take the long way around (analogous to Figure
22.9b). Referring to Figure 22.10, we want to choose b or b based on which one
interpolates over a shorter arc on the 4D unit sphere. Choosing the shorter arc
results in interpolating through the most direct path; choosing the longer arc
results in extra spinning of the object [Eberly01], as it rotates the long way around.

From [Watt92], to fi nd the quaternion that gives the shortest arc around the
4D unit sphere, we compare ||a – b||2 and ||a – (b)||2  ||a  b||2. If ||a  b||2 <
||a – b||2 then we choose b for interpolation instead of b because b is closer to a,
and thus will give the shorter arc.

Figure 22.9. Rq rotates  about the axis n, and Rq rotates 2π   about the axis n.

QUATERNIONS 717

// Linear interpolation (for small theta).
public static Quaternion LerpAndNormalize(Quaternion p, Quaternion q,

float s)
{
 // Normalize to make sure it is a unit quaternion.
 return Normalize((1.0f - s)*p  s*q);
}

public static Quaternion Slerp(Quaternion p, Quaternion q, float s)
{
 // Recall that q and -q represent the same orientation, but
 // interpolating between the two is different: One will take the
 // shortest arc and one will take the long arc. To find
 // the shortest arc, compare the magnitude of p-q with the
 // magnitude p-(-q)  pq.

 if(LengthSq(p-q) > LengthSq(pq))
 q  -q;

 float cosPhi  DotP(p, q);

 // For very small angles, use linear interpolation.
 if(cosPhi > (1.0f - 0.001))
 return LerpAndNormalize(p, q, s);

 // Find the angle between the two quaternions.
 float phi  (float)Math.Acos(cosPhi);

 float sinPhi  (float)Math.Sin(phi);

 // Interpolate along the arc formed by the intersection of the 4D
 // unit sphere and the plane passing through p, q, and the origin of
 // the unit sphere.

Figure 22.10. Interpolating from a to b results in interpolating over the larger arc 1 on the 4D unit sphere,
whereas interpolating from a to b results in interpolating over the shorter arc 2 on the 4D unit sphere. We
want to choose the shortest arc on the 4D unit sphere.

718 TOPICS

 return ((float)Math.Sin(phi*(1.0-s))/sinPhi)*p 
 ((float)Math.Sin(phi*s)/sinPhi)*q;
}

22.5 DIRECTX MATH QUATERNION FUNCTIONS

The DirectX math library supports quaternions. Because the “data” of a
quaternion is four real numbers, DirectX math uses the XMVECTOR type for storing
quaternions. Then some of the common quaternion functions defined are:

// Returns the quaternion dot product Q1·Q2.

XMVECTOR XMQuaternionDot(XMVECTOR Q1, XMVECTOR Q2);

// Returns the identity quaternion (0, 0, 0, 1).
XMVECTOR XMQuaternionIdentity();

// Returns the conjugate of the quaternion Q.
XMVECTOR XMQuaternionConjugate(XMVECTOR Q);

// Returns the norm of the quaternion Q.
XMVECTOR XMQuaternionLength(XMVECTOR Q);

// Normalizes a quaternion by treating it as a 4D vector.
XMVECTOR XMQuaternionNormalize(XMVECTOR Q);

// Computes the quaternion product Q1Q2.
XMVECTOR XMQuaternionMultiply(XMVECTOR Q1, XMVECTOR Q2);

// Returns a quaternions from axis-angle rotation representation.
XMVECTOR XMQuaternionRotationAxis(XMVECTOR Axis, FLOAT Angle);

// Returns a quaternions from axis-angle rotation representation, where the axis
// vector is normalized—this is faster than XMQuaternionRotationAxis.
XMVECTOR XMQuaternionRotationNormal(XMVECTOR NormalAxis,FLOAT Angle);

// Returns a quaternion from a rotation matrix.
XMVECTOR XMQuaternionRotationMatrix(XMMATRIX M);

// Returns a rotation matrix from a unit quaternion.
XMMATRIX XMMatrixRotationQuaternion(XMVECTOR Quaternion);

QUATERNIONS 719

// Extracts the axis and angle rotation representation from the quaternion Q.
VOID XMQuaternionToAxisAngle(XMVECTOR *pAxis, FLOAT *pAngle, XMVECTOR Q);

// Returns slerp(Q1, Q2, t)
XMVECTOR XMQuaternionSlerp(XMVECTOR Q0, XMVECTOR Q1, FLOAT t);

22.6 ROTATION DEMO

For this chapter’s demo, we animate a skull mesh around a simple scene. The
position, orientation, and scale of the mesh are animated. We use quaternions
to represent the orientation of the skull, and use slerp to interpolate between
orientations. We use linear interpolation to interpolate between position and
scale. This demo also serves as an animation “warm up” to the next chapter on
character animation.

A common form of animation is called key frame animation. A key frame
specifi es the position, orientation, and scale of an object at an instance in time.
In our demo (in AnimationHelper.h/.cpp), we defi ne the following key frame
structure:

struct Keyframe
{
 Keyframe();
 ~Keyframe();

 float TimePos;
 XMFLOAT3 Translation;
 XMFLOAT3 Scale;
 XMFLOAT4 RotationQuat;
};
An animation is a list of key frames sorted by time:
struct BoneAnimation
{
 float GetStartTime()const;
 float GetEndTime()const;

 void Interpolate(float t, XMFLOAT4X4& M)const;

 std::vector<Keyframe> Keyframes;
};

The reason for using the term “bone” will be made clear in the next section. For
now, you can just think of animating a single bone as animating a single object.
The method GetStartTime just returns the time of the first key frame. For example,
maybe the object does not start animating until after ten seconds relative to some
timeline. Similarly, the method GetEndTime returns the time of the last key frame.
This is useful to know when the animation ends, and we can stop animating it.

720 TOPICS

We now have a list of key frames, which defi ne the rough overall look of the
animation. So how will the animation look at time between the key frames? This
is where interpolation comes in. For times t between two key frames, say Ki and
Ki1, we interpolate between the two key frames Ki and Ki1.

void BoneAnimation::Interpolate(float t, XMFLOAT4X4& M)const
{
 // t is before the animation started, so just return the first key

frame.
 if(t < Keyframes.front().TimePos)
 {
 XMVECTOR S  XMLoadFloat3(&Keyframes.front().Scale);
 XMVECTOR P  XMLoadFloat3(&Keyframes.front().Translation);
 XMVECTOR Q  XMLoadFloat4(&Keyframes.front().RotationQuat);

 XMVECTOR zero  XMVectorSet(0.0f, 0.0f, 0.0f, 1.0f);
 XMStoreFloat4x4(&M, XMMatrixAffineTransformation(S, zero, Q, P));
 }
 // t is after the animation ended, so just return the last key frame.
 else if(t > Keyframes.back().TimePos)
 {
 XMVECTOR S  XMLoadFloat3(&Keyframes.back().Scale);
 XMVECTOR P  XMLoadFloat3(&Keyframes.back().Translation);
 XMVECTOR Q  XMLoadFloat4(&Keyframes.back().RotationQuat);

 XMVECTOR zero  XMVectorSet(0.0f, 0.0f, 0.0f, 1.0f);
 XMStoreFloat4x4(&M, XMMatrixAffineTransformation(S, zero, Q, P));
 }
 // t is between two key frames, so interpolate.
 else
 {
 for(UINT i  0; i < Keyframes.size()-1; i)
 {
 if(t > Keyframes[i].TimePos && t < Keyframes[i1].TimePos)
 {
 float lerpPercent  (t - Keyframes[i].TimePos) /
 (Keyframes[i1].TimePos - Keyframes[i].TimePos);

 XMVECTOR s0  XMLoadFloat3(&Keyframes[i].Scale);
 XMVECTOR s1  XMLoadFloat3(&Keyframes[i1].Scale);

 XMVECTOR p0  XMLoadFloat3(&Keyframes[i].Translation);
 XMVECTOR p1  XMLoadFloat3(&Keyframes[i1].Translation);

 XMVECTOR q0  XMLoadFloat4(&Keyframes[i].RotationQuat);
 XMVECTOR q1  XMLoadFloat4(&Keyframes[i1].RotationQuat);

 XMVECTOR S  XMVectorLerp(s0, s1, lerpPercent);
 XMVECTOR P  XMVectorLerp(p0, p1, lerpPercent);
 XMVECTOR Q  XMQuaternionSlerp(q0, q1, lerpPercent);

 XMVECTOR zero  XMVectorSet(0.0f, 0.0f, 0.0f, 1.0f);
 XMStoreFloat4x4(&M, XMMatrixAffineTransformation(S, zero, Q, P));

QUATERNIONS 721

 break;
 }
 }
 }
}

Figure 22.11 shows the in-between frames generated by interpolating from Key 1
to Key 2.

Figure 22.11 appeared in the book by Frank D. Luna, Introduction to 3D Game
Programming with DirectX 9.0c: A Shader Approach, 2006: Jones and Bartlett
Learning, Burlington, MA. www.jblearning.com. Reprinted with permission.

After interpolation, we construct a transformation matrix because
ultimately we use matrices for transformations in our shader programs. The
XMMatrixAffineTransformation function is declared as follows:

XMMATRIX XMMatrixAffi neTransformation(

 XMVECTOR Scaling,

 XMVECTOR RotationOrigin,

 XMVECTOR RotationQuaternion,

 XMVECTOR Translation);

Now that our simple animation system is in place, the next part of our demo is to
define some key frames:

// Member data

float mAnimTimePos  0.0f;
BoneAnimation mSkullAnimation;

//
// In constructor, define the animation keyframes

Note:

Figure 22.11. Key frame interpolation. The key frames define the “key” poses of the animation. The interpolated
values represent the values between the key frames.

722 TOPICS

//

void QuatApp::DefineSkullAnimation()
{
 //
 // Define the animation keyframes
 //

 XMVECTOR q0  XMQuaternionRotationAxis(
 XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f), XMConvertToRadians(30.0f));
 XMVECTOR q1  XMQuaternionRotationAxis(
 XMVectorSet(1.0f, 1.0f, 2.0f, 0.0f), XMConvertToRadians(45.0f));
 XMVECTOR q2  XMQuaternionRotationAxis(
 XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f), XMConvertToRadians(-30.0f));
 XMVECTOR q3  XMQuaternionRotationAxis(
 XMVectorSet(1.0f, 0.0f, 0.0f, 0.0f), XMConvertToRadians(70.0f));

 mSkullAnimation.Keyframes.resize(5);
 mSkullAnimation.Keyframes[0].TimePos  0.0f;
 mSkullAnimation.Keyframes[0].Translation  XMFLOAT3(-7.0f, 0.0f,

0.0f);
 mSkullAnimation.Keyframes[0].Scale  XMFLOAT3(0.25f, 0.25f, 0.25f);
 XMStoreFloat4(&mSkullAnimation.Keyframes[0].RotationQuat, q0);

 mSkullAnimation.Keyframes[1].TimePos  2.0f;
 mSkullAnimation.Keyframes[1].Translation  XMFLOAT3(0.0f, 2.0f,

10.0f);
 mSkullAnimation.Keyframes[1].Scale  XMFLOAT3(0.5f, 0.5f, 0.5f);
 XMStoreFloat4(&mSkullAnimation.Keyframes[1].RotationQuat, q1);

 mSkullAnimation.Keyframes[2].TimePos  4.0f;
 mSkullAnimation.Keyframes[2].Translation  XMFLOAT3(7.0f, 0.0f,

0.0f);
 mSkullAnimation.Keyframes[2].Scale  XMFLOAT3(0.25f, 0.25f, 0.25f);
 XMStoreFloat4(&mSkullAnimation.Keyframes[2].RotationQuat, q2);

 mSkullAnimation.Keyframes[3].TimePos  6.0f;
 mSkullAnimation.Keyframes[3].Translation  XMFLOAT3(0.0f, 1.0f,

-10.0f);
 mSkullAnimation.Keyframes[3].Scale  XMFLOAT3(0.5f, 0.5f, 0.5f);
 XMStoreFloat4(&mSkullAnimation.Keyframes[3].RotationQuat, q3);

 mSkullAnimation.Keyframes[4].TimePos  8.0f;
 mSkullAnimation.Keyframes[4].Translation  XMFLOAT3(-7.0f, 0.0f,

0.0f);
 mSkullAnimation.Keyframes[4].Scale  XMFLOAT3(0.25f, 0.25f, 0.25f);
 XMStoreFloat4(&mSkullAnimation.Keyframes[4].RotationQuat, q0);
}

Our key frames position the skull at different locations in the scene, at different
orientations, and at different scales. You can have fun experimenting with this
demo by adding your own key frames or changing the key frame values. For
example, you can set all the rotations and scaling to identity, to see what the
animation looks like when only position is animated.

QUATERNIONS 723

The last step to get the animation working is to perform the interpolation to
get the new skull world matrix, which changes over time:

void QuatApp::UpdateScene(float dt)
{
 ...

 // Increase the time position.
 mAnimTimePos  dt;
 if(mAnimTimePos > mSkullAnimation.GetEndTime())
 {
 // Loop animation back to beginning.
 mAnimTimePos  0.0f;
 }

 // Get the skull’s world matrix at this time instant.
 mSkullAnimation.Interpolate(mAnimTimePos, mSkullWorld);

 ...
}

The skull’s world matrix is now changing every frame in order to animate the
skull.

22.7 SUMMARY

1. An ordered 4-tuple of real numbers q  (x, y, z, w)  (q1, q2, q3, q4) is a quaternion.
This is commonly abbreviated as q  (u, w)  (x, y, z, w), and we call u  (x, y,
z) the imaginary vector part and w the real part. Moreover, equality, addition,
subtraction, multiplication and division are defined as follows:

(a) (u, a)  (v, b) if and only if u  v and a  b.

Figure 22.12. Screenshot of the quaternion demo.

724 TOPICS

(b) (u, a)  (v, b)  (u  v, a  b).

(c) (u, a)(v, b)  (av  bu  u × v, ab  u · v)

2. Quaternion multiplication is not commutative, but it is associative. The
quaternion e  (0, 0, 0, 1) serves as a multiplicative identity. Quaternion
multiplication distributes over quaternion addition: p(q  r)  pq  pr and
(q  r)p  qp  rp.

3. We can convert a real number s to quaternion space by writing s  (0, 0, 0, s),
and we can convert a vector u to quaternion space by writing u  (u, 0). A
quaternion with zero real part is called a pure quaternion. It is then possible
to multiply a scalar and a quaternion, and the result is s(p1, p2, p3, p4)  (sp1,
sp2, sp3, sp4)  (p1, p2, p3, p4)s. The special case of scalar multiplication is
commutative.

4. The conjugate of a quaternion q  (q1, q2, q3, q4)  (u, q4) is denoted by q* and
defined by 1 2 3 4 4* (,)q q q q q      q u . The norm (or magnitude) of a

quaternion is defined by: 2 2 2 2 2 2
1 2 3 4 4|| || * || || .q q q q q      q qq u We

say that a quaternion is a unit quaternion if it has a norm of one.

5. Let q  (q1, q2, q3, q4)  (u, q4) be a nonzero quaternion, then the inverse is

denoted by
1q and given by:

1
2

*
. 

q
q

q
 If q is a unit quaternion, then

1 * . q q

6. A unit quaternion q  (u, q4) can be written in the polar representation
 sin ,cos  q n , where n is a unit vector.

7. If q is a unit quaternion, then  sin ,cos  q n for ||n||  1 and [0,]. 

The quaternion rotation operator is defined by 1() *R  q v qvq qvq and
rotates the point/vector v around the axis n by an angle 2. Rq has a matrix
representation, and any rotation matrix can be converted to a quaternion
representing the rotation.

8. A common task in animation is to interpolate between two orientations.
Representing each orientation by a unit quaternion, we can use spherical
interpolation to interpolate the unit quaternions to find the interpolated
orientation.

22.8 EXERCISES

1. Perform the indicated complex number operation.

(a) (3  2i)  (1  i)

QUATERNIONS 725

(b) (3  2i)  (1  i)

(c) (3  2i) (1  i)

(d) 4(1  i)

(e) (3  2i)/(1  i)

(f) (3  2i)*

(g) |3  2i|

2. Write the complex number (1, 3) in polar notation.

3. Rotate the vector (2, 1) 30° using complex number multiplication.

4. Show using the definition of complex division that 1
a ib

a ib






5. Let z  a  ib. Show
2 z zz .

6. Let M be a 2 × 2 matrix. Prove that det M  1 and 1 T M M if and only if
cos sin

sin cos

  
 
    

M . That is, if and only if M is a rotation matrix. This gives us a way

of testing if a matrix is a rotation matrix.

7. Let p  (1, 2, 3, 4) and q  (2, 1, 1, 2) be quaternions. Perform the indicated
quaternion operations.

(a) p  q

(b) p  q

(c) pq

(d) p*

(e) q*

(f) p*p

(g) ||p||

(h) ||q||

(i) p1

(j) q1

8. Write the unit quaternion 1 1 1
, ,0,

2 2 2

 
  
 

q in polar notation.

9. Write the unit quaternion 3 1
, 0, 0,

2 2

 
  
 

q in polar notation.

10. Find the unit quaternion that rotates 45° about the axis (1, 1, 1).

11. Find the unit quaternion that rotates 60° about the axis (0, 0, 1).

12. Let 1 3
, 0, 0,

2 2

 
  
 

p and 3 1
, 0, 0,

2 2

 
  
 

q . Compute 1
slerp , ,

2

 
 
 

p q and verify it is a unit

quaternion.

726 TOPICS

13. Show that a quaternion (x, y, z, w) can be written in the form xi  yj  zk  w.

14. Prove that
2 2 2 2 2 2
1 2 3 4 4* || ||q q q q q      qq q * q u

15. Let p  (u, 0)and q  (v, 0) be pure quaternions (i.e., real part 0). Show
 ,   pq p q p q .

16. Prove the following properties:

(a) (* *)* pq q p

(b) ()* *  p q p q *

(c) ()* *s sq q for s
(d) 2 2 2 2

1 2 3 4** q q q q    qq q q

(e) ||pq||  ||p||||q||

17. Prove
sin((1)) sin()

cos()
sin

t t
t

   
  


a b

a algebraically.

18. Let a, b, c be 3D vectors. Prove the identities:

(a) () () ()     a b c a c b a b c

(b) () () ()      a b c c b a c a b

Chapter

727

23Chapter

CHARACTER
ANIMATION

Portions of this chapter appeared in the book by Frank D. Luna, Introduction
to 3D Game Programming with DirectX 9.0c: A Shader Approach, 2006: Jones
and Bartlett Learning, Burlington, MA. www.jblearning.com. Reprinted with
permission.

In this chapter, we learn how to animate complex characters like a human or
animal. Characters are complex because they have many moving parts that all
move at the same time. Consider a human running—every bone is moving in
some way. Creating such complicated animations is not practical by hand, and
there are special modeling and animation tools for this task. Assuming we already
have a character and its corresponding animation data created, in this chapter we
will learn how to animate and render it using Direct3D.

Objectives:
1. To become familiar with the terminology of animated skinned meshes.

2. To learn the mathematics of mesh hierarchy transformations and how to
traverse tree-based mesh hierarchies.

3. To understand the idea and mathematics of vertex blending.

4. To find out how to load animation data from file.

5. To discover how to implement character animation in Direct3D.

Note:

728 TOPICS

23.1 FRAME HIERARCHIES

Many objects are composed of parts, with a parent-child relationship, where one or
more child objects can move independently on their own (with possible physical
motion constraints—e.g., human joints have a particular range of motion),
but are also forced to move when their parent moves. For example, consider an
arm divided into the parts: upper arm, forearm, and hand. The hand can rotate
in isolation about its wrist joint; however, if the forearm rotates about its elbow
joint, then the hand must rotate with it. Similarly, if the upper arm rotates about
the shoulder joint, the forearm rotates with it, and if the forearm rotates, then the
hand rotates with it (see Figure 23.1). Thus we see a definite object hierarchy: The
hand is a child of the forearm; the forearm is a child of the upper arm, and if we
extended our situation, the upper arm would be a child of the torso, and so on and
so forth, until we have completed the skeleton (Figure 23.2 shows a more complex
hierarchy example).

The aim of this section is to show how to place an object in the scene based
on its position, and also the position of its ancestors (i.e., its parent, grandparent,
great-grandparent, etc.).

Figure 23.1. Hierarchy transforms; observe that the parent transformation of a bone influences itself and
all of its children.

Figure 23.2. A more complex tree hierarchy to model a bipedal humanoid character. Down arrows
represent “first child” relationships, and right arrows represent “sibling” relationships. For example, “Left
Thigh,” “Right Thigh,” and “Lower Spine” are all children of the “Pelvis” bone.

CHARACTER ANIMATION 729

23.1.1 Mathematical Formulation

The reader may wish to review Chapter 3 of this book, specifi cally the topic of
change-of-coordinate transformations.

To keep things simple and concrete, we work with the upper arm (the root),
forearm, and hand hierarchy, which we label as Bone 0, Bone 1, and Bone 2,
respectively (see Figure 23.3).

Once the basic concept is understood, a straightforward generalization is used
to handle more complex situations. So given an object in the hierarchy, how do
we correctly transform it to world space? Obviously, we cannot just transform
it directly into the world space because we must also take into consideration the
transformations of its ancestors since they also infl uence its placement in the
scene.

Each object in the hierarchy is modeled about its own local coordinate system
with its pivot joint at the origin to facilitate rotation (see Figure 23.4).

Because all the coordinate systems exist in the same universe, we can relate
them; in particular, for an arbitrary instant in time (we fi x time and study a
snapshot because, in general, these mesh hierarchies are animated and so these
relationships change as a function of time), we describe each coordinate system
relative to its parent coordinate system. (The parent coordinate system of the root
frame F0 is the world space coordinate system W; that is, the coordinate system
F0 is described relative to the world coordinate system.) Now that we have related
the child and parent coordinate systems, we can transform from a child’s space
to its parent’s space with a transformation matrix. (This is the same idea as the

Note:

Figure 23.3. A simple hierarchy.

Figure 23.4. The geometry of each bone is described relative to its own local coordinate system.
Furthermore, because all the coordinate systems exist in the same universe, we can relate them to one
another.

730 TOPICS

local-to-world transformation. However, instead of transforming from local space
to world space, we transform from the local space to the space of the parent.)
Let A2 be a matrix that transforms geometry from frame F2 into F1, let A1 be a
matrix that transform geometry from frame F1 into F0, and let A0 be a matrix that
transform geometry from frame F0 into W. (We call Ai a to-parent matrix since it
transforms geometry from a child’s coordinate system into its parent’s coordinate
system.) Then, we can transform the ith object in the arm hierarchy into world
space by the matrix Mi defi ned as follows:

1 1 0i i iM A A A AL (eq. 23.1)

Specifically, in our example, 2 2 1 0 1 1 0, M A A A M A A and 0 0M A transforms
the hand into world space, the forearm into world space, and the upper arm into
world space, respectively. Observe that an object inherits the transformations of
its ancestors; this is what will make the hand move if the upper arm moves, for
example.

Figure 23.5 illustrates what Equation 23.1 says graphically; essentially, to
transform an object in the arm hierarchy, we just apply the to-parent transform
of the object and all of its ancestors (in ascending order) to percolate up the
coordinate system hierarchy until the object arrives in the world space.

The example we have been working with is a simple linear hierarchy. But
the same idea generalizes to a tree hierarchy; that being, for any object in the
hierarchy, its world space transformation is found by just applying the to-parent
transform of the object and all of its ancestors (in ascending order) to percolate
up the coordinate system hierarchy until the object arrives in the world space (we

Figure 23.5. Because the coordinate systems exist in the same universe we can relate them, and therefore,
transform from one to the other. In particular, we relate them by describing each bone’s coordinate system relative
to its parent’s coordinate system. From that, we can construct a to-parent transformation matrix that transforms
the geometry of a bone from its local coordinate system to its parent’s coordinate system. Once in the parent’s
coordinate system, we can then transform by the parent’s to-parent matrix to transform to the grandparent’s
coordinate system, and so on and so forth, until we have visited each ancestor’s coordinate system and finally
reached the world space.

CHARACTER ANIMATION 731

again stipulate that the parent coordinate system of the root is the world space).
The only real difference is that we have a more complicated tree data structure to
traverse instead of a linear list.

As an example, consider the left clavicle in Figure 23.2. It is a sibling of the
neck bone, and therefore a child of the upper spine. The upper spine is a child of
the lower spine, and the lower spine is a child of the pelvis. Therefore, the world
transform of the left clavicle it formed by concatenating the left clavicle’s to-
parent transform, followed by the upper spine’s to-parent transform, followed by
the lower spine’s to-parent transform, followed by the pelvis’ to-parent transform.

23.2 SKINNED MESHES

23.2.1 Defi nitions
Figure 23.6 shows a character mesh. The highlighted chain of bones in the
figure is called a skeleton. A skeleton provides a natural hierarchal structure for
driving a character animation system. The skeleton is surrounded by an exterior
skin, which we model as 3D geometry (vertices and polygons). Initially, the skin
vertices are relative to the bind space, which is the local coordinate system that
the entire skin is defined relative to (usually the root coordinate system). Each
bone in the skeleton influences the shape and position of the subset of skin
it influences (i.e., the vertices it influences), just like in real life. Thus, as we
animate the skeleton, the attached skin is animated accordingly to reflect the
current pose of the skeleton.

Figure 23.6. A character mesh. The highlighted bone chain represents the character’s skeleton. The dark
colored polygons represent the character’s skin. The skin vertices are relative to the bind space, which is the
coordinate system the mesh was modeled in.

732 TOPICS

23.2.2 Reformulating the Bones To-Root Transform
One difference from §23.1 is that here we will transform from the root coordinate
system to the world coordinate system in a separate step. So rather than finding
the to-world matrix for each bone, we find the to-root (i.e., the transformation that
transforms from the bone’s local coordinate system to the root bone’s coordinate
system) matrix for each bone.

A second difference is that in §23.1, we traversed the ancestry of a node in
a bottom-up fashion, where we started at a bone and moved up its ancestry.
However, it is actually more effi cient to take a top-down approach (see Equation
23.2), where we start at the root and move down the tree. Labeling the n bones with
an integer number 0, 1, …, n  1, we have the following formula for expressing the
ith bone’s to-root transformation:

  i i ptoRoot toParent toRoot (eq. 23.2)

Here, p is the bone label of the parent of bone i. Does this make sense? Indeed,
toRootp gives us a direct map that sends geometry from the coordinate system
of bone p to the coordinate system of the root. So to get to the root coordinate
system, it follows that we just need to get geometry from the coordinate system of
bone i to the coordinate system of its parent bone p, and toParenti does that job.

The only issue is that for this to work, when we go to process the ith bone, we
must have already computed the to-root transformation of its parent. However, if
we traverse the tree top-down, then a parent’s to-root transformation will always
be computed before its children’s to-root transformation.

We can also see why this is more effi cient. With the top-down approach, for
any bone i, we already have the to-root transformation matrix of its parent; thus,
we are only one step away from the to-root transformation for bone i. With a
bottoms-up technique, we’d traverse the entire ancestry for each bone, and many
matrix multiplications would be duplicated when bones share common ancestors.

23.2.3 The Offset Transform
There is a small subtlety that comes from the fact that the vertices influenced by a
bone are not relative to the coordinate system of the bone (they are relative to the
bind space, which is the coordinate system the mesh was modeled in). So before
we apply Equation 15.2, we first need to transform the vertices from bind space to
the space of the bone that influences the vertices. A so-called offset transformation
does this; see Figure 23.7.

Thus, by transforming the vertices by the offset matrix of some arbitrary bone
B, we move the vertices from the bind space to the bone space of B. Then, once we
have the vertices in bone space of B, we can use B’s to-root transform to position it
back in character space in its current animated pose.

CHARACTER ANIMATION 733

We now introduce a new transform, call it the fi nal transform, which combines
a bone’s offset transform with its to-root transform. Mathematically, the fi nal
transformation matrix of the ith bone Fi is given by:

 i i ioffset toRoot F (eq. 23.3)

23.2.4 Animating the Skeleton
In the demo of the last chapter, we showed how to animate a single object. We
defined that a key frame specifies the position, orientation, and scale of an object
at an instance in time, and that an animation is a list of key frames sorted by time,
which roughly define the look of the overall animation. We then showed how to
interpolate between key frames to calculate the placement of the object at times
between key frames. We now extend our animation system to animating skeletons.
These animation classes are defined in SkinnedData.h/.cpp in the “Skinned Mesh”
demo of this chapter.

Animating a skeleton is not much harder than animating a single object.
Whereas we can think of a single object as a single bone, a skeleton is just
a collection of connected bones. We will assume that each bone can move
independently. Therefore, to animate a skeleton, we just animate each bone locally.
Then after each bone has done its local animation, we take into consideration the
movement of its ancestors, and transform it to the root space.

We defi ne an animation clip to be a list of animations (one for each bone in
the skeleton) that work together to form a specifi c animation of the skeleton. For
example, “walking,” “running,” “fi ghting,” “ducking,” and “jumping” are examples
of animation clips.

///<summary>
/// Examples of AnimationClips are "Walk", "Run", "Attack", "Defend".
/// An AnimationClip requires a BoneAnimation for every bone to form
/// the animation clip.
///</summary>
struct AnimationClip
{
 // Smallest end time over all bones in this clip.
 float GetClipStartTime()const;

Figure 23.7. We first transform the vertices influenced by a bone from bind space to the space of the
influencing bone via the offset transform. Then, once in the space of the bone, we apply the bone’s to-root
transformation to transform the vertices from the space of the bone to the space of the root bone. The final
transformation is the combination of the offset transform, followed by the to-root transform.

734 TOPICS

 // Largest end time over all bones in this clip.
 float GetClipEndTime()const;

 // Loops over each BoneAnimation in the clip and interpolates
 // the animation.
 void Interpolate(float t, std::vector<XMFLOAT4X4>& boneTransforms)

const;

 // Animation for each bone.
 std::vector<BoneAnimation> BoneAnimations;
};

A character will generally have several animation clips for all the animations the
character needs to perform in the application. All the animation clips work on the
same skeleton, however, so they use the same number of bones (although some
bones may be stationary for a particular animation). We can use an unordered_map
data structure to store all the animation clips and to refer to an animation clip by
a readable name:

std::unordered_map<std::string, AnimationClip> mAnimations;
AnimationClip& clip = mAnimations["attack"];

Finally, as already mentioned, each bone needs an offset transform to transform
the vertices from bind space to the space of the bone; and additionally, we need a
way to represent the skeleton hierarchy (we use an array—see the next section for
details). This gives us our final data structure for storing our skeleton animation
data:

class SkinnedData
{
public:

 UINT BoneCount()const;

 float GetClipStartTime(const std::string& clipName)const;
 float GetClipEndTime(const std::string& clipName)const;

 void Set(
 std::vector<int>& boneHierarchy,
 std::vector<DirectX::XMFLOAT4X4>& boneOffsets,
 std::unordered_map<std::string, AnimationClip>& animations);

 // In a real project, you’d want to cache the result if there was a
 // chance that you were calling this several times with the same
 // clipName at the same timePos.
 void GetFinalTransforms(const std::string& clipName, float timePos,
 std::vector<DirectX::XMFLOAT4X4>& finalTransforms)const;

private:
 // Gives parentIndex of ith bone.
 std::vector<int> mBoneHierarchy;

CHARACTER ANIMATION 735

 std::vector<DirectX::XMFLOAT4X4> mBoneOffsets;

 std::unordered_map<std::string, AnimationClip> mAnimations;
};

23.2.5 Calculating the Final Transform
Our frame hierarchy for a character will generally be a tree, similar to the one
in Figure 23.2. We model the hierarchy with an array of integers such that the
ith array entry gives the parent index of the ith bone. Moreover, the ith entry
corresponds to the ith BoneAnimation in the working animation clip and the ith
entry corresponds to the ith offset transform. The root bone is always at element
0 and it has no parent. So for example, the animation and offset transform of the
grandparent of bone i is obtained by:

int parentIndex = mBoneHierarchy[i];
int grandParentIndex = mBoneHierarchy[parentIndex];

XMFLOAT4X4 offset = mBoneOffsets[grandParentIndex];

AnimationClip& clip = mAnimations["attack"];
BoneAnimation& anim = clip.BoneAnimations[grandParentIndex];

We can therefore compute the final transform for each bone like so:

void SkinnedData::GetFinalTransforms(const std::string& clipName,
float timePos, std::vector<XMFLOAT4X4>& finalTransforms)const
{
 UINT numBones = mBoneOffsets.size();

 std::vector<XMFLOAT4X4> toParentTransforms(numBones);

 // Interpolate all the bones of this clip at the given time instance.
 auto clip = mAnimations.find(clipName);
 clip->second.Interpolate(timePos, toParentTransforms);

 //
 // Traverse the hierarchy and transform all the bones to the
 // root space.
 //

 std::vector<XMFLOAT4X4> toRootTransforms(numBones);

 // The root bone has index 0. The root bone has no parent, so
 // its toRootTransform is just its local bone transform.
 toRootTransforms[0] = toParentTransforms[0];

 // Now find the toRootTransform of the children.
 for(UINT i = 1; i < numBones; ++i)
 {
 XMMATRIX toParent = XMLoadFloat4x4(&toParentTransforms[i]);

736 TOPICS

 int parentIndex = mBoneHierarchy[i];
 XMMATRIX parentToRoot = XMLoadFloat4x4(&toRootTransforms[parentInd

ex]);

 XMMATRIX toRoot = XMMatrixMultiply(toParent, parentToRoot);

 XMStoreFloat4x4(&toRootTransforms[i], toRoot);
 }

 // Premultiply by the bone offset transform to get the final
transform.

 for(UINT i = 0; i < numBones; ++i)
 {
 XMMATRIX offset = XMLoadFloat4x4(&mBoneOffsets[i]);
 XMMATRIX toRoot = XMLoadFloat4x4(&toRootTransforms[i]);
 XMStoreFloat4x4(&finalTransforms[i], XMMatrixMultiply(offset,

toRoot));
 }
}

There is one requirement needed to make this work. When we traverse the bones
in the loop, we look up the to-root transform of the bone’s parent:

int parentIndex = mBoneHierarchy[i];
XMMATRIX parentToRoot = XMLoadFloat4x4(&toRootTransforms[parentIndex]);

This only works if we are guaranteed that the parent bone’s to-root transform has
already been processed earlier in the loop. We can, in fact, make this guarantee
if we ensure that the bones are always ordered in the arrays such that a parent
bone always comes before a child bone. Our sample 3D data has been generated
such that this is the case. Here is some sample data of the first ten bones in the
hierarchy array of some character model:

ParentIndexOfBone0: -1
ParentIndexOfBone1: 0
ParentIndexOfBone2: 0
ParentIndexOfBone3: 2
ParentIndexOfBone4: 3
ParentIndexOfBone5: 4
ParentIndexOfBone6: 5
ParentIndexOfBone7: 6
ParentIndexOfBone8: 5
ParentIndexOfBone9: 8

So take Bone9. Its parent is Bone8, the parent of Bone8 is Bone5, the parent of
Bone5 is Bone4, the parent of Bone4 is Bone3, the parent of Bone3 is Bone2, and
the parent of Bone2 is the root node Bone0. Notice that a child bone never comes
before its parent bone in the ordered array.

CHARACTER ANIMATION 737

23.3 VERTEX BLENDING

We have showed how to animate the skeleton. In this section we will focus on
animating the skin of vertices that cover the skeleton. The algorithm for doing this
is called vertex blending.

The strategy of vertex blending is as follows. We have an underlying bone
hierarchy, but the skin itself is one continuous mesh (i.e., we do not break the
mesh up into parts to correspond with each bone and animate them individually).
Moreover, one or more bones can infl uence a vertex of the skin; the net result being
determined by a weighted average of the infl uencing bones’ fi nal transforms (the
weights are specifi ed by an artist when the model is being made and saved to fi le).
With this setup, a smooth transitional blend can be achieved at joints (which are
typically the troubled areas), thereby making the skin feel elastic; see Figure 23.8.

In practice, [Möller08] notes that we usually do not need more than four bone
infl uences per vertex. Therefore, in our design we will consider a maximum of
four infl uential bones per vertex. So to implement vertex blending, we model
the character mesh’s skin as one continuous mesh. Each vertex contains up
to four indices that index into a bone matrix palette, which is the array of fi nal
transformation matrices (one entry for each bone in the skeleton). Additionally,
each vertex also has up to four weights that describe the respective amount of
infl uence each of the four infl uencing bones has on that vertex. Thus we have the
following vertex structure for vertex blending (Figure 23.9):

A continuous mesh whose vertices have this format is ready for vertex blending,
and we call it a skinned mesh.

The vertex-blended position v of any vertex v, relative to the root frame
(remember we perform the world transformation as a last step once we have
everything in the root coordinate system), can be calculated with the following
weighted average formula:

 0 0 1 1 2 2 3 3w w w w    v vF vF vF vF

Figure 23.8. The skin is one continuous mesh that covers both bones. Observe that the vertices near the
joint are influenced by both bone A and bone B to create a smooth transitional blend to simulate a flexible
skin.

738 TOPICS

Where w0 + w1 + w2 + w3 = 1; that is, the sum of the weights sums to one.
Observe that in this equation, we transform a given vertex v individually by all

of the fi nal bone transforms that infl uence it (i.e., matrices F0, F1, F2, F3). We then
take a weighted average of these individually transformed points to compute the
fi nal vertex blended position v.

Transforming normals and tangents are done similarly:

 0 0 1 1 2 2 3 3

0 0 1 1 2 2 3 3

normalize()

normalize()

w w w w

w w w w

    
    

n nF nF nF nF

t tF tF tF tF

Here we assume that the transformation matrices Fi do not contain any
nonuniform scaling. Otherwise, we need to use the inverse-transpose 1()T

i
F

when transforming the normals (see §8.2.2).
The following vertex shader fragment shows the key code that does vertex

blending with a maximum of four bone infl uences per vertex:

cbuffer cbSkinned : register(b1)
{
 // Max support of 96 bones per character.
 float4x4 gBoneTransforms[96];
};

struct VertexIn
{
 float3 PosL : POSITION;
 float3 NormalL : NORMAL;
 float2 TexC : TEXCOORD;
 float4 TangentL : TANGENT;
#ifdef SKINNED
 float3 BoneWeights : WEIGHTS;
 uint4 BoneIndices : BONEINDICES;

Figure 23.9. The matrix palette stores the final transformation for each bone. Observe how the four bone
indices index into the matrix palette. The bone indices identify the bones of the skeleton that influence the
vertex. Note that the vertex is not necessarily influenced by four bones; for instance, only two of the four
indices might be used, thereby indicating that only two bones influence the vertex. We can set a bone weight
to zero to effectively remove the bone from influencing the vertex.

CHARACTER ANIMATION 739

#endif
};

struct VertexOut
{
 float4 PosH : SV_POSITION;
 float4 ShadowPosH : POSITION0;
 float4 SsaoPosH : POSITION1;
 float3 PosW : POSITION2;
 float3 NormalW : NORMAL;
 float3 TangentW : TANGENT;
 float2 TexC : TEXCOORD;
};

VertexOut VS(VertexIn vin)
{
 VertexOut vout = (VertexOut)0.0f;

 // Fetch the material data.
 MaterialData matData = gMaterialData[gMaterialIndex];

#ifdef SKINNED
 float weights[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
 weights[0] = vin.BoneWeights.x;
 weights[1] = vin.BoneWeights.y;
 weights[2] = vin.BoneWeights.z;
 weights[3] = 1.0f - weights[0] - weights[1] - weights[2];

 float3 posL = float3(0.0f, 0.0f, 0.0f);
 float3 normalL = float3(0.0f, 0.0f, 0.0f);
 float3 tangentL = float3(0.0f, 0.0f, 0.0f);
 for(int i = 0; i < 4; ++i)
 {
 // Assume no nonuniform scaling when transforming normals, so
 // that we do not have to use the inverse-transpose.

 posL += weights[i] * mul(float4(vin.PosL, 1.0f),
 gBoneTransforms[vin.BoneIndices[i]]).xyz;
 normalL += weights[i] * mul(vin.NormalL,
 (float3x3)gBoneTransforms[vin.BoneIndices[i]]);
 tangentL += weights[i] * mul(vin.TangentL.xyz,
 (float3x3)gBoneTransforms[vin.BoneIndices[i]]);
 }

 vin.PosL = posL;
 vin.NormalL = normalL;
 vin.TangentL.xyz = tangentL;
#endif

 // Transform to world space.
 float4 posW = mul(float4(vin.PosL, 1.0f), gWorld);
 vout.PosW = posW.xyz;

 // Assumes nonuniform scaling; otherwise, need to
 // use inverse-transpose of world matrix.

740 TOPICS

 vout.NormalW = mul(vin.NormalL, (float3x3)gWorld);

 vout.TangentW = mul(vin.TangentL, (float3x3)gWorld);

 // Transform to homogeneous clip space.
 vout.PosH = mul(posW, gViewProj);

 // Generate projective tex-coords to project SSAO map onto scene.
 vout.SsaoPosH = mul(posW, gViewProjTex);

 // Output vertex attributes for interpolation across triangle.
 float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform);
 vout.TexC = mul(texC, matData.MatTransform).xy;

 // Generate projective tex-coords to project shadow map onto scene.
 vout.ShadowPosH = mul(posW, gShadowTransform);

 return vout;
}

If the above vertex shader does vertex blending with a maximum of four bone
influences per vertex, then why do we only input three weights per vertex instead
of four? Well, recall that the total weight must sum to one; thus, for four weights
we have: 0 1 2 3 3 0 1 21 1        w w w w w w w w .

23.4 LOADING ANIMATION DATA FROM FILE

We use a text file to store a 3D skinned mesh with animation data. We call this an
.m3d file for “model 3D.” The format has been designed for simplicity in loading
and readability—not for performance—and the format is just used for this book.

23.4.1 Header
At the beginning, the .m3d format defines a header which specifies the number of
materials, vertices, triangles, bones, and animations that make up the model:

***************m3d-File-Header***************
#Materials 3
#Vertices 3121
#Triangles 4062
#Bones 44
#AnimationClips 15

1. #Materials: The number of distinct materials the mesh uses.
2. #Vertices: The number of vertices of the mesh.
3. #Triangles: The number of triangles in the mesh.

CHARACTER ANIMATION 741

4. #Bones: The number of bones in the mesh.
5. #AnimationClips: The number of animation clips in the mesh.

23.4.2 Materials
The next “chunk” in the .m3d format is a list of materials. Below is an example of
the first two materials in the soldier.m3d file:

***************Materials*********************

Name: soldier_head

Diffuse: 1 1 1

Fresnel0: 0.05 0.05 0.05

Roughness: 0.5

AlphaClip: 0

MaterialTypeName: Skinned

DiffuseMap: head_diff.dds

NormalMap: head_norm.dds

Name: soldier_jacket

Diffuse: 1 1 1

Fresnel0: 0.05 0.05 0.05

Roughness: 0.8

AlphaClip: 0

MaterialTypeName: Skinned

DiffuseMap: jacket_diff.dds

NormalMap: jacket_norm.dds

The file contains the material data we are familiar with (diffuse, roughness, etc.),
but also contains additional information such as the textures to apply, whether
alpha clipping needs to be applied, and the material type name. The material type
name is used to indicate which shader programs are needed for the given material.
In the example above, the “Skinned” type indicates that the material will need to
be rendered with shader programs that support skinning.

23.4.3 Subsets
A mesh consists of one or more subsets.subset is a group of triangles in a mesh
that can all be rendered using the same material. Figure 23.10 illustrates how a
mesh representing a car may be divided into several subsets.

There is a subset corresponding to each material and the ith subset corresponds
to the ith material. The ith subset defi nes a contiguous block of geometry that
should be rendered with the ith material.

742 TOPICS

***************SubsetTable*******************
SubsetID: 0 VertexStart: 0 VertexCount: 3915 FaceStart: 0 FaceCount: 7230
SubsetID: 1 VertexStart: 3915 VertexCount: 2984 FaceStart: 7230 FaceCount: 4449
SubsetID: 2 VertexStart: 6899 VertexCount: 4270 FaceStart: 11679 FaceCount: 6579
SubsetID: 3 VertexStart: 11169 VertexCount: 2305 FaceStart: 18258 FaceCount: 3807
SubsetID: 4 VertexStart: 13474 VertexCount: 274 FaceStart: 22065 FaceCount: 442

In the above example, the first 7230 triangles of the mesh (which reference vertices
[0, 3915)) should be rendered with material 0, and the next 4449 triangles of the
mesh (which reference vertices [3915, 6899)) should be rendered with material 1.

23.4.4 Vertex Data and Triangles
The next two chunks of data are just lists of vertices and indices (3 indices per
triangle):

***************Vertices**********************
Position: -14.34667 90.44742 -12.08929
Tangent: -0.3069077 0.2750875 0.9111171 1
Normal: -0.3731041 -0.9154652 0.150721
Tex-Coords: 0.21795 0.105219
BlendWeights: 0.483457 0.483457 0.0194 0.013686
BlendIndices: 3 2 39 34

Position: -15.87868 94.60355 9.362272
Tangent: -0.3069076 0.2750875 0.9111172 1
Normal: -0.3731041 -0.9154652 0.150721
Tex-Coords: 0.278234 0.091931
BlendWeights: 0.4985979 0.4985979 0.002804151 0
BlendIndices: 39 2 3 0
...

***************Triangles*********************

Figure 23.10. A car broken up by subset. Here only the materials per subset differ, but we could also
imagine textures being added and differing as well. In addition, the render states may differ; for example, the
glass windows may be rendered with alpha blending for transparency.

CHARACTER ANIMATION 743

0 1 2
3 4 5
6 7 8
9 10 11
12 13 14
...

23.4.5 Bone Offset Transforms
The bone offset transformation chunk, just stores a list of 4  4 matrices, one for
each bone.

***************BoneOffsets*******************
BoneOffset0 -0.8669753 0.4982096 0.01187624 0
0.04897417 0.1088907 -0.9928461 0
-0.4959392 -0.8601914 -0.118805 0
-10.94755 -14.61919 90.63506 1

BoneOffset1 1 4.884964E-07 3.025227E-07 0
-3.145564E-07 2.163151E-07 -1 0
4.884964E-07 0.9999997 -9.59325E-08 0
3.284225 7.236738 1.556451 1
...

23.4.6 Hierarchy
The hierarchy chunk stores the hierarchy array—an array of integers such that the
ith array entry gives the parent index of the ith bone.

***************BoneHierarchy*****************
ParentIndexOfBone0: -1
ParentIndexOfBone1: 0
ParentIndexOfBone2: 1
ParentIndexOfBone3: 2
ParentIndexOfBone4: 3
ParentIndexOfBone5: 4
ParentIndexOfBone6: 5
ParentIndexOfBone7: 6
ParentIndexOfBone8: 7
ParentIndexOfBone9: 7
ParentIndexOfBone10: 7
ParentIndexOfBone11: 7
ParentIndexOfBone12: 6
ParentIndexOfBone13: 12
...

23.4.7 Animation Data
The last chunk we need to read are the animation clips. Each animation has a
readable name and a list of key frames for each bone in the skeleton. Each key
frame stores the time position, the translation vector specifying the position of the

744 TOPICS

bone, the scaling vector specifying the bone scale, and the quaternion specifying
the orientation of the bone.

***************AnimationClips****************
AnimationClip run_loop
{
 Bone0 #Keyframes: 18
 {
 Time: 0 Pos: 2.538344 101.6727 -0.52932
 Scale: 1 1 1
 Quat: 0.4042651 0.3919331 -0.5853591 0.5833637
 Time: 0.0666666
 Pos: 0.81979 109.6893 -1.575387
 Scale: 0.9999998 0.9999998 0.9999998
 Quat: 0.4460441 0.3467651 -0.5356012 0.6276384
 ...
 }

 Bone1 #Keyframes: 18
 {
 Time: 0
 Pos: 36.48329 1.210869 92.7378
 Scale: 1 1 1
 Quat: 0.126642 0.1367731 0.69105 0.6983587
 Time: 0.0666666
 Pos: 36.30672 -2.835898 93.15854
 Scale: 1 1 1
 Quat: 0.1284061 0.1335271 0.6239273 0.7592083
 ...
 }
 ...
}

AnimationClip walk_loop
{
 Bone0 #Keyframes: 33
 {
 Time: 0
 Pos: 1.418595 98.13201 -0.051082
 Scale: 0.9999985 0.999999 0.9999991
 Quat: 0.3164562 0.6437552 -0.6428624 0.2686314
 Time: 0.0333333
 Pos: 0.956079 96.42985 -0.047988
 Scale: 0.9999999 0.9999999 0.9999999
 Quat: 0.3250651 0.6395872 -0.6386833 0.2781091
 ...
 }

 Bone1 #Keyframes: 33
 {
 Time: 0
 Pos: -5.831432 2.521564 93.75848
 Scale: 0.9999995 0.9999995 1
 Quat: -0.033817 -0.000631005 0.9097761 0.4137191
 Time: 0.0333333

CHARACTER ANIMATION 745

 Pos: -5.688324 2.551427 93.71078
 Scale: 0.9999998 0.9999998 1
 Quat: -0.033202 -0.0006390021 0.903874 0.426508
 ...
 }
 ...
}

...
The following code shows how we read the animation clips from file:
void M3DLoader::ReadAnimationClips(
 std::ifstream& fin,
 UINT numBones,
 UINT numAnimationClips,
 std::unordered_map<std::string,
 AnimationClip>& animations)
{
 std::string ignore;
 fin >> ignore; // AnimationClips header text
 for(UINT clipIndex = 0; clipIndex < numAnimationClips; ++clipIndex)
 {
 std::string clipName;
 fin >> ignore >> clipName;
 fin >> ignore; // {

 AnimationClip clip;
 clip.BoneAnimations.resize(numBones);

 for(UINT boneIndex = 0; boneIndex < numBones; ++boneIndex)
 {
 ReadBoneKeyframes(fin, numBones, clip.BoneAnimations[boneIndex]);
 }
 fin >> ignore; // }

 animations[clipName] = clip;
 }
}

void M3DLoader::ReadBoneKeyframes(
 std::ifstream& fin,
 UINT numBones,
 BoneAnimation& boneAnimation)
{
 std::string ignore;
 UINT numKeyframes = 0;
 fin >> ignore >> ignore >> numKeyframes;
 fin >> ignore; // {

 boneAnimation.Keyframes.resize(numKeyframes);
 for(UINT i = 0; i < numKeyframes; ++i)
 {
 float t = 0.0f;
 XMFLOAT3 p(0.0f, 0.0f, 0.0f);
 XMFLOAT3 s(1.0f, 1.0f, 1.0f);
 XMFLOAT4 q(0.0f, 0.0f, 0.0f, 1.0f);

746 TOPICS

 fin >> ignore >> t;
 fin >> ignore >> p.x >> p.y >> p.z;
 fin >> ignore >> s.x >> s.y >> s.z;
 fin >> ignore >> q.x >> q.y >> q.z >> q.w;

 boneAnimation.Keyframes[i].TimePos = t;
 boneAnimation.Keyframes[i].Translation = p;
 boneAnimation.Keyframes[i].Scale = s;
 boneAnimation.Keyframes[i].RotationQuat = q;
 }

 fin >> ignore; // }
}

23.4.8 M3DLoader
The code to load the data from an .m3d file is contained in LoadM3D.h/.cpp, in
particular, the LoadM3d function:

bool M3DLoader::LoadM3d(
 const std::string& filename,
 std::vector<SkinnedVertex>& vertices,
 std::vector<USHORT>& indices,
 std::vector<Subset>& subsets,
 std::vector<M3dMaterial>& mats,
 SkinnedData& skinInfo)
{
 std::ifstream fin(filename);

 UINT numMaterials = 0;
 UINT numVertices = 0;
 UINT numTriangles = 0;
 UINT numBones = 0;
 UINT numAnimationClips = 0;

 std::string ignore;

 if(fin)
 {
 fin >> ignore; // file header text
 fin >> ignore >> numMaterials;
 fin >> ignore >> numVertices;
 fin >> ignore >> numTriangles;
 fin >> ignore >> numBones;
 fin >> ignore >> numAnimationClips;

 std::vector<XMFLOAT4X4> boneOffsets;
 std::vector<int> boneIndexToParentIndex;
 std::unordered_map<std::string, AnimationClip> animations;

 ReadMaterials(fin, numMaterials, mats);
 ReadSubsetTable(fin, numMaterials, subsets);
 ReadSkinnedVertices(fin, numVertices, vertices);
 ReadTriangles(fin, numTriangles, indices);

CHARACTER ANIMATION 747

 ReadBoneOffsets(fin, numBones, boneOffsets);
 ReadBoneHierarchy(fin, numBones, boneIndexToParentIndex);
 ReadAnimationClips(fin, numBones, numAnimationClips, animations);

 skinInfo.Set(boneIndexToParentIndex, boneOffsets, animations);

 return true;
 }
 return false;
}

The helper functions ReadMaterials, and etc., are straightforward text file parsing
using std::ifstream. We leave it to the read to examine the source code for the
implementation details.

23.5 CHARACTER ANIMATION DEMO

As we saw in the skinned mesh shader code, the final bone transforms are stored in
a constant buffer where they are accessed in the vertex shader to do the animation
transformations.

cbuffer cbSkinned : register(b1)

{

 // Max support of 96 bones per character.

 fl oat4x4 gBoneTransforms[96];

};

We therefore need to add these new constant buffers, one for each skinned mesh
object, to our frame resources:

struct SkinnedConstants
{
 DirectX::XMFLOAT4X4 BoneTransforms[96];
};

std::unique_ptr<UploadBuffer<SkinnedConstants>> SkinnedCB = nullptr;

SkinnedCB = std::make_unique<UploadBuffer<SkinnedConstants>>(
 device, skinnedObjectCount, true);

We will need one SkinnedConstants for each instance of an animated character. An
animated character instance will generally be composed of multiple render-items
(one per material), but all render-items for the same character instance can share the
same SkinnedConstants since they all use the same underlying animated skeleton.

To represent an animated character instance at an instance in time, we defi ne
the following structure:

struct SkinnedModelInstance
{

748 TOPICS

 SkinnedData* SkinnedInfo = nullptr;

 // Storage for final transforms at the given time position.
 std::vector<DirectX::XMFLOAT4X4> FinalTransforms;

 // Current animation clip.
 std::string ClipName;

 // Animation time position.
 float TimePos = 0.0f;

 // Call every frame to increment the animation.
 void UpdateSkinnedAnimation(float dt)
 {
 TimePos += dt;

 // Loop animation
 if(TimePos > SkinnedInfo->GetClipEndTime(ClipName))
 TimePos = 0.0f;

 // Called every frame and increments the time position,
 // interpolates the animations for each bone based on
 // the current animation clip, and generates the final
 // transforms which are ultimately set to the effect
 // for processing in the vertex shader.
 SkinnedInfo->GetFinalTransforms(ClipName, TimePos,

FinalTransforms);
 }
};

Then we add the following data members to our render-item structure:

struct RenderItem
{
 [...]
 // Index to bone transformation constant buffer.
 // Only applicable to skinned render-items.
 UINT SkinnedCBIndex = -1;

 // Pointer to the animation instance associated with this render

item.
 // nullptr if this render-item is not animated by skinned mesh.
 SkinnedModelInstance* SkinnedModelInst = nullptr; [...]
};

Every frame we update the animated character instances (in our demo we only
have one):

void SkinnedMeshApp::UpdateSkinnedCBs(const GameTimer& gt)
{
 auto currSkinnedCB = mCurrFrameResource->SkinnedCB.get();

 // We only have one skinned model being animated.
 mSkinnedModelInst->UpdateSkinnedAnimation(gt.DeltaTime());

CHARACTER ANIMATION 749

 SkinnedConstants skinnedConstants;
 std::copy(
 std::begin(mSkinnedModelInst->FinalTransforms),
 std::end(mSkinnedModelInst->FinalTransforms),
 &skinnedConstants.BoneTransforms[0]);

 currSkinnedCB->CopyData(0, skinnedConstants);
}
And when we draw the render-items, we bind the associated final bone

transforms if the render-item is animated by a skinned mesh:
if(ri->SkinnedModelInst != nullptr)
{
 D3D12_GPU_VIRTUAL_ADDRESS skinnedCBAddress =
 skinnedCB->GetGPUVirtualAddress() +
 ri->SkinnedCBIndex*skinnedCBByteSize;
 cmdList->SetGraphicsRootConstantBufferView(1, skinnedCBAddress);
}
else

{

 cmdList->SetGraphicsRootConstantBufferView(1, 0);

}

Figure 23.10 shows a screenshot or our demo. The original animated model and
textures were taken from the DirectX SDK and converted to the .m3d format for
demoing purposes. This sample model only has one animation clip called Take1.

Figure 23.10. Screenshot of the “Skinned Mesh” demo.

750 TOPICS

23.6 SUMMARY

1. Many real world objects we wish to model graphically in a computer program
consist of parts with a parent-children relationship, where a child object can
move independently on its own, but is also forced to move when its parent
moves. For example, a tank turret can rotate independently of the tank, but it
is still fixed to the tank and moves with the tank. Another classic example is
skeletons, in which bones are attached to other bones and must move when
they move. Consider game characters on a train. The characters can move
independently inside the train, but they also move as the train moves. This
example illustrates how, in a game, the hierarchy can change dynamically and
must be updated. That is, before a character enters a train, the train is not part
of the character’s hierarchy, but once the player does enter a train, the train
does become part of the character’s hierarchy (the character inherits the train
transformation).

2. Each object in a mesh hierarchy is modeled about its own local coordinate
system with its pivot joint at the origin to facilitate rotation. Because the
coordinate systems exist in the same universe we can relate them, and
therefore, transform from one to the other. In particular, we relate them by
describing each object’s coordinate system relative to its parent’s coordinate
system. From that, we can construct a to-parent transformation matrix
that transforms the geometry of an object from its local coordinate system
to its parent’s coordinate system. Once in the parent’s coordinate system,
we can then transform by the parent’s to-parent matrix to transform to the
grandparent’s coordinate system, and so on and so forth, until we have visited
each ancestor’s coordinate system and finally reach the world space. Stated in
other words, to transform an object in a mesh hierarchy from its local space
to world space, we apply the to-parent transform of the object and all of its
ancestors (in ascending order) to percolate up the coordinate system hierarchy
until the object arrives in the world space. In this way, the object inherits the
transformations of its parents and moves when they move.

3. We can express the to-root transformation of the ith bone with the recurrence
relation: toRooti = toParentitoRootp where p refers to the parent bone of the ith
bone.

4. The bone-offset transformation transforms vertices from bind space to the
space of the bone. There is an offset transformation for each bone in the
skeleton.

5. In vertex blending, we have an underlying bone hierarchy, but the skin itself
is one continuous mesh, and one or more bones can influence a vertex. The

CHARACTER ANIMATION 751

magnitude in which a bone influences a vertex is determined by a bone
weight. For four bones, the transformed vertex v, relative to the root of the
skeleton, is given by the weighted averaging formula v = w0vF0 + w1vF1 +
w2vF2 + w3vF3, where w0 + w1 + w2 + w3 = 1. By using a continuous mesh, and
several weighted bone influences per vertex, a more natural elastic skin effect
is achieved.

6. To implement vertex blending, we store an array of final transformation
matrices for each bone (the array is called a matrix palette). (The ith bone’s
final transformation is defined as

i i ioffset toRoot F —that is, the bone’s
offset transformation followed by its to-root transformation.) Then, for each
vertex, we store a list of vertex weights and matrix palette indices. The matrix
palette indices of a vertex identify the final transformations of the bones that
influence the vertex.

23.7 EXERCISES

1. Model and render an animated linear hierarchy by hand. For example, you
might model a simple robot arm built from sphere and cylinder meshes; the
sphere could model a joint and the cylinder an arm.

2. Model and render an animated tree hierarchy by hand s uch as the one shown
in Figure 23.11. You can again use spheres and cylinders.

Figure 23.11. Simple mesh hierarchy.

3. If you have access to an animation package (Blender http://www.blender.org/ is
free), try learning how to model a simple animated character using bones and
blend weights. Export your data to the .x file format which supports vertex
blending, and try to convert the file data to the .m3d format for rendering in
the “Skinned Mesh” demo. This is not a short project.

753

INTRODUCTION TO
WINDOWS PROGRAMMING

To use the Direct3D API (Application Programming Interface), it is necessary
to create a Windows (Win32) application with a main window, upon which we
will render our 3D scenes. This appendix serves as an introduction to writing
Windows applications using the native Win32 API. Loosely, the Win32 API is a
set of low-level functions and structures exposed to us in the C programming
language that enables us to create Windows applications. For example, to
define a window class, we fill out an instance of the Win32 API WNDCLASS
structure; to create a window, we use the Win32 API CreateWindow function; to
notify Windows to show a particular window, we use the Win32 API function
ShowWindow.

Windows programming is a huge subject, and this appendix introduces only
the amount necessary for us to use Direct3D. For readers interested in learning
more about Windows programming with the Win32 API, the book Programming
Windows by Charles Petzold, now in its fi fth edition, is the standard text on the
subject. Another invaluable resource when working with Microsoft technologies
is the MSDN library, which is usually included with Microsoft’s Visual Studio but
can also be read online at www.msdn.microsoft.com. In general, if you come upon
a Win32 function or structure that you would like to know more about, go to
MSDN and search for that function or structure for its full documentation. If we
mention a Win32 function or structure in this appendix and do not elaborate on
it, it is an implicit suggestion that the reader look the function up in MSDN.

Appendix A

754 APPENDIX A

Objectives:
1. To learn and understand the event driven programming model used in

Windows programming.

2. To learn the minimal code necessary to create a Windows application that is
necessary to use Direct3D.

To avoid confusion, we will use a capital ‘W’ to refer to Windows the OS and we
will use a lower case ‘w’ to refer to a particular window running in Windows.

A.1 OVERVIEW

As the name suggests, one of the primary themes of Windows programming is
programming windows. Many of the components of a Windows application are
windows, such as, the main application window, menus, toolbars, scroll bars,
buttons, and other dialog controls. Therefore, a Windows application typically
consists of several windows. These next subsections provide a concise overview of
Windows programming concepts we should be familiar with before beginning a
more complete discussion.

A.1.1 Resources
In Windows, several applications can run concurrently. Therefore, hardware
resources such as CPU cycles, memory, and even the monitor screen must be
shared amongst multiple applications. In order to prevent chaos from ensuing due
to several applications accessing/modifying resources without any organization,
Windows applications do not have direct access to hardware. One of the main
jobs of Windows is to manage the presently instantiated applications and handle
the distribution of resources amongst them. Thus, in order for our application to
do something that might affect another running application, it must go through
Windows. For example, to display a window you must call the Win32 API function
ShowWindow; you cannot write to video memory directly.

A.1.2 Events, the Message Queue, Messages,
and the Message Loop

A Windows application follows an event-driven programming model. Typically,
a Windows application sits and waits1 for something to happen—an event. An

1 We note that an application can perform idle processing; that is, perform a certain task when no events are
occurring.

Note:

INTRODUCTION TO WINDOWS PROGRAMMING 755

event can be generated in a number of ways; some common examples are key
presses, mouse clicks, and when a window is created, resized, moved, closed,
minimized, maximized, or becomes visible.

When an event occurs, Windows sends a message to the application the event
occurred for, and adds the message to the application’s message queue, which is simply
a priority queue that stores messages for an application. The application constantly
checks the message queue for messages in a message loop and, when it receives one,
it dispatches the message to the window procedure of the particular window the
message is for. (Remember, an application can contain several windows within
it.) Every window has with it an associated function called a window procedure.2
Window procedures are functions we implement which contain code that is to be
executed in response to specifi c messages. For instance, we may want to destroy a
window when the Escape key is pressed. In our window procedure we would write:

case WM_KEYDOWN:
 if(wParam == VK_ESCAPE)
 DestroyWindow(ghMainWnd);
 return 0;

The messages a window does not handle should be forwarded to the default
window procedure, which then handles the message. The Win32 API supplies the
default window procedure, which is called DefWindowProc.

To summarize, the user or an application does something to generate an event.
The OS fi nds the application the event was targeted towards, and it sends that
application a message in response. The message is then added to the application’s
message queue. The application is constantly checking its message queue for
messages. When it receives a message, the application dispatches it to the window
procedure of the window the message is targeted for. Finally, the window
procedure executes instructions in response to the message.

Figure (A.1) summarizes the event driven programming model.

A.1.3 GUI
Most Windows programs present a GUI (Graphical User Interface) that users can
work from. A typical Windows application has one main window, a menu, toolbar,
and perhaps some other controls. Figure A.2 shows and identifies some common
GUI elements. For Direct3D game programming, we do not need a fancy GUI. In
fact, all we need is a main window, where the client area will be used to render our
3D worlds.

2 Every window has a window procedure, but several windows can share the same window procedure;
therefore, we do not necessarily have to write a unique window procedure for each window. Two different
windows would have different window procedures if we wanted them to respond to messages differently.

756 APPENDIX A

A.1. The event driven programming model.

INTRODUCTION TO WINDOWS PROGRAMMING 757

A.1.4 Unicode
Essentially, Unicode (http://unicode.org/) uses 16-bit values to represent a
character. This allows us to represent a larger character set to support international
characters, and other symbols. For Unicode in C++, we use the wide-characters
type wchar_t. In 32- and 64-bit Windows, a wchar_t is 16-bits. When using wide
characters, we must prefix a string literal with a capital L; for example:

const wchar_t* wcstrPtr = L"Hello, World!";

The L tells the compiler to treat the string literal as a string of wide-characters (i.e.,
as wchar_t instead of char). The other important issue is that we need to use the
wide-character versions of the string functions. For example, to get the length of a
string we need to use wcslen instead of strlen; to copy a string we need to use wcscpy
instead of strcpy; to compare two strings we need to use wcscmp instead of strcmp.
The wide-character versions of these functions work with wchar_t pointers instead
of char pointers. The C++ standard library also provides a wide-character version
of its string class: std::wstring. The Windows header file WinNT.h also defines:

typedef wchar_t WCHAR; // wc, 16-bit UNICODE character

A.2 BASIC WINDOWS APPLICATION

Below is the code to a fully functional, yet simple, Windows program. Follow the
code as best you can, and read the explanatory comments. The next section will

A.2. The A typical Windows application GUI. The client area is the entire large white rectangular space of
the application. Typically, this area is where the user views most of the program output. When we program
our Direct3D applications, we render our 3D scenes into the client area of a window.

758 APPENDIX A

explain the code a bit at a time. It is recommended that you create a project with
your development tool, type the code in by hand, compile it and execute it as an
exercise. Note that for Visual C++, you must create a “Win32 application project,”
not a “Win32 console application project.”

//===
// Win32Basic.cpp by Frank Luna (C) 2008 All Rights Reserved.
//
// Illustrates the minimal amount of the Win32 code needed for
// Direct3D programming.
//===

// Include the windows header file; this has all the Win32 API
// structures, types, and function declarations we need to program
// Windows.
#include <windows.h>

// The main window handle; this is used to identify a
// created window.
HWND ghMainWnd = 0;

// Wraps the code necessary to initialize a Windows
// application. Function returns true if initialization
// was successful, otherwise it returns false.
bool InitWindowsApp(HINSTANCE instanceHandle, int show);

// Wraps the message loop code.
int Run();

// The window procedure handles events our window receives.
LRESULT CALLBACK
WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam);

// Windows equivalant to main()
int WINAPI
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR pCmdLine, int nShowCmd)
{
 // First call our wrapper function (InitWindowsApp) to create
// and initialize the main application window, passing in the
// hInstance and nShowCmd values as arguments.
 if(!InitWindowsApp(hInstance, nShowCmd))
 return 0;

 // Once our application has been created and initialized we
// enter the message loop. We stay in the message loop until
// a WM_QUIT mesage is received, indicating the application
 // should be terminated.
 return Run();
}

bool InitWindowsApp(HINSTANCE instanceHandle, int show)
{

INTRODUCTION TO WINDOWS PROGRAMMING 759

 // The first task to creating a window is to describe some of its
 // characteristics by filling out a WNDCLASS structure.
 WNDCLASS wc;

 wc.style = CS_HREDRAW | CS_VREDRAW;
 wc.lpfnWndProc = WndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = instanceHandle;
 wc.hIcon = LoadIcon(0, IDI_APPLICATION);
 wc.hCursor = LoadCursor(0, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 wc.lpszMenuName = 0;
 wc.lpszClassName = L"BasicWndClass";

 // Next, we register this WNDCLASS instance with Windows so
// that we can create a window based on it.
 if(!RegisterClass(&wc))
 {
 MessageBox(0, L"RegisterClass FAILED", 0, 0);
 return false;
 }

 // With our WNDCLASS instance registered, we can create a
// window with the CreateWindow function. This function
// returns a handle to the window it creates (an HWND).
// If the creation failed, the handle will have the value
 // of zero. A window handle is a way to refer to the window,
 // which is internally managed by Windows. Many of the Win32 API
 // functions that operate on windows require an HWND so that
// they know what window to act on.

 ghMainWnd = CreateWindow(
 L"BasicWndClass", // Registered WNDCLASS instance to use.
 L"Win32Basic", // window title
 WS_OVERLAPPEDWINDOW, // style flags
 CW_USEDEFAULT, // x-coordinate
 CW_USEDEFAULT, // y-coordinate
 CW_USEDEFAULT, // width
 CW_USEDEFAULT, // height
 0, // parent window
 0, // menu handle
 instanceHandle, // app instance
 0); // extra creation parameters

 if(ghMainWnd == 0)
 {
 MessageBox(0, L"CreateWindow FAILED", 0, 0);
 return false;
 }

 // Even though we just created a window, it is not initially
 // shown. Therefore, the final step is to show and update the

760 APPENDIX A

 // window we just created, which can be done with the following
 // two function calls. Observe that we pass the handle to the
 // window we want to show and update so that these functions know
 // which window to show and update.
 ShowWindow(ghMainWnd, show);
 UpdateWindow(ghMainWnd);

 return true;
}

int Run()
{
 MSG msg = {0};

 // Loop until we get a WM_QUIT message. The function
// GetMessage will only return 0 (false) when a WM_QUIT message
// is received, which effectively exits the loop. The function
// returns -1 if there is an error. Also, note that GetMessage
// puts the application thread to sleep until there is a
// message.
 BOOL bRet = 1;
 while((bRet = GetMessage(&msg, 0, 0, 0)) != 0)
 {
 if(bRet == -1)
 {
 MessageBox(0, L"GetMessage FAILED", L"Error", MB_OK);
 break;
 }
 else
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 return (int)msg.wParam;
}

LRESULT CALLBACK
WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
 // Handle some specific messages. Note that if we handle a
 // message, we should return 0.
 switch(msg)
 {
 // In the case the left mouse button was pressed,
 // then display a message box.
 case WM_LBUTTONDOWN:
 MessageBox(0, L"Hello, World", L"Hello", MB_OK);
 return 0;

 // In the case the escape key was pressed, then
 // destroy the main application window.
 case WM_KEYDOWN:
 if(wParam == VK_ESCAPE)

INTRODUCTION TO WINDOWS PROGRAMMING 761

 DestroyWindow(ghMainWnd);
 return 0;

 // In the case of a destroy message, then send a
 // quit message, which will terminate the message loop.
 case WM_DESTROY:
 PostQuitMessage(0);
 return 0;
 }

 // Forward any other messages we did not handle above to the
 // default window procedure. Note that our window procedure
// must return the return value of DefWindowProc.
return DefWindowProc(hWnd, msg, wParam, lParam);
}

A.3. A screenshot of the above program. Note that the message box appears when you press the left mouse
button in the window’s client area. Also try exiting the program by pressing the Escape key.

A.3 EXPLAINING THE BASIC WINDOWS
APPLICATION

We will examine the code from top to bottom, stepping into any function that
gets called along the way. Refer back to the code listing in the “Basic Windows
Application” section throughout the following subsections.

A.3.1 Includes, Global Variables, and Prototypes
The first thing we do is include the windows.h header file. By including the
windows.h file we obtain the structures, types, and function declarations needed
for using the basic elements of the Win32 API.

#include <windows.h>

762 APPENDIX A

The second statement is an instantiation of a global variable of type HWND. This
stands for “handle to a window” or “window handle.” In Windows programming,
we often use handles to refer to objects maintained internally by Windows. In this
sample, we will use an HWND to refer to our main application window maintained
by Windows. We need to hold onto the handles of our windows because many
calls to the API require that we pass in the handle of the window we want the
API call to act on. For example, the call UpdateWindow takes one argument that is
of type HWND that is used to specify the window to update. If we did not pass in a
handle to it, the function would not know which window to update.

HWND ghMainWnd = 0;

The next three lines are function declarations. Briefly, InitWindowsApp creates and
initializes our main application window; Run encapsulates the message loop for our
application; and WndProc is our main window’s window procedure. We will examine
these functions in more detail when we come to the point where they are called.

bool InitWindowsApp(HINSTANCE instanceHandle, int show);
int Run();
LRESULT CALLBACK
WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam);

A.3.2 WinMain
WinMain is the Windows equivalent to the main function in normal C++
programming. WinMain is prototyped as follows:

int WINAPI
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR pCmdLine, int nShowCmd)

1. hInstance: Handle to the current application instance. It serves as a way of
identifying and referring to this application. Remember there may be several
Windows applications running concurrently, so it is useful to be able to refer
to each one.

2. hPrevInstance: Not used in Win32 programming and is zero.

3. pCmdLine: The command line argument string used to run the program.

4. nCmdShow: Specifies how the application should be displayed. Some common
commands that show the window in its current size and position, maximized,
and minimized, respectively, are SW_SHOW, SW_SHOWMAXIMIZED, and SW_
SHOWMINIMIZED. See the MSDN library for a complete list of show commands.

If WinMain succeeds, it should return the wParam member of the WM_QUIT message.
If the function exits without entering the message loop, it should return zero. The
WINAPI identifier is defined as:

#define WINAPI __stdcall

INTRODUCTION TO WINDOWS PROGRAMMING 763

This specifies the calling convention of the function, which means how the
function arguments get placed on the stack.

A.3.3 WNDCLASS and Registration
Inside WinMain we call the function InitWindowsApp. As you can guess, this function
does all the initialization of our program. Let us take a closer look at this function
and its implementation. InitWindowsApp returns either true or false: true if the
initialization was a success and false otherwise. In the WinMain definition, we pass
as arguments a copy of our application instance and the show command variable
into InitWindowsApp. Both are obtained from the WinMain parameter list.

if(!InitWindowsApp(hInstance, nShowCmd))

The first task at hand in initialization of a window is to describe some basic
properties of the window by filling out a WNDCLASS (window class) structure.
Its definition is:

typedef struct _WNDCLASS {
 UINT style;
 WNDPROC lpfnWndProc;
 int cbClsExtra;
 int cbWndExtra;
 HANDLE hInstance;
 HICON hIcon;
 HCURSOR hCursor;
 HBRUSH hbrBackground;
 LPCTSTR lpszMenuName;
 LPCTSTR lpszClassName;
} WNDCLASS;

1. style: Specifies the class style. In our example we use CS_HREDRAW combined
with CS_VREDRAW. These two bit flags indicate that the window is to be
repainted when either the horizontal or vertical window size is changed. For
the complete list of the various styles with description, see the MSDN library.

wc.style = CS_HREDRAW | CS_VREDRAW;

2. lpfnWndProc: Pointer to the window procedure function to associate with
this WNDCLASS instance. Windows that are created based on this WNDCLASS
instance will use this window procedure. Thus, to create two windows with the
same window procedure, you just create the two windows based on the same
WNDCLASS instance. If you want to create two windows with different window
procedures, you will need to fill out a different WNDCLASS instance for each of the
two windows. The window procedure function is explained in section A.3.6.

wc.lpfnWndProc = WndProc;

764 APPENDIX A

3. cbClsExtra and cbWndExtra: These are extra memory slots you can use for your
own purpose. Our program does not require any extra space and therefore
sets both of these to zero.

wc.cbClsExtra = 0;
wc.cbWndExtra = 0;

4. hInstance: This field is a handle to the application instance. Recall the
application instance handle is originally passed in through WinMain.

wc.hInstance = instanceHandle;

5. hIcon: Here you specify a handle to an icon to use for the windows created
using this window class. You can use your own designed icon, but there are
several built-in icons to choose from; see the MSDN library for details. The
following uses the default application icon:

wc.hIcon = LoadIcon(0, IDI_APPLICATION);

6. hCursor: Similar to hIcon, here you specify a handle to a cursor to use when
the cursor is over the window’s client area. Again, there are several built-
in cursors; see the MSDN library for details. The following code uses the
standard “arrow” cursor.

wc.hCursor = LoadCursor(0, IDC_ARROW);

7. hbrBackground: This field is used to specify a handle to brush which specifies
the background color for the client area of the window. In our sample code, we
call the Win32 function GetStockObject, which returns a handle to a prebuilt
white colored brush; see the MSDN library for other types of built in brushes.

wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

8. lpszMenuName: Specifies the window’s menu. Since we have no menu in our
application so, we set this to zero.
wc.lpszMenuName = 0;

9. lpszClassName: Specifies the name of the window class structure we are
creating. This can be anything you want. In our application, we named it
“BasicWndClass”. The name is simply used to identify the class structure so
that we can reference it later by its name.
wc.lpszClassName = L"BasicWndClass";

Once we have filled out a WNDCLASS instance, we need to register it with Windows
so that we can create windows based on it. This is done with the RegisterClass
function which takes a pointer to a WNDCLASS structure. This function returns zero
upon failure.

if(!RegisterClass(&wc))

INTRODUCTION TO WINDOWS PROGRAMMING 765

 {
 MessageBox(0, L"RegisterClass FAILED", 0, 0);
 return false;
 }

A.3.4 Creating and Displaying the Window
After we have registered a WNDCLASS variable with Windows, we can create a
window based on that class description. We can refer to a registered WNDCLASS
instance via the class name we gave it (lpszClassName). The function we use to
create a window is the CreateWindow function, which is declared as follows:

HWND CreateWindow(
 LPCTSTR lpClassName,
 LPCTSTR lpWindowName,
 DWORD dwStyle,
 int x,
 int y,
 int nWidth,
 int nHeight,
 HWND hWndParent,
 HMENU hMenu,
 HANDLE hInstance,
 LPVOID lpParam
);

1. lpClassName: The name of the registered WNDCLASS structure that describes
some of the properties of the window we want to create.

2. lpWindowName: The name we want to give our window; this is also the name
that appears in the window’s caption bar.

3. dwStyle: Defines the style of the window. WS_OVERLAPPEDWINDOW is a
combination of several flags: WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_
THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX. The names of these flags
describe the characteristics of the window they produce. See the MSDN
library for the complete list of styles.

4. x: The x position at the top left corner of the window relative to the screen.
You can specify CW_USEDEFAULT for this parameter, and Windows will choose
an appropriate default.

5. y: The y position at the top left corner of the window relative to the screen.
You can specify CW_USEDEFAULT for this parameter, and Windows will choose
an appropriate default.

6. nWidth: The width of the window in pixels. You can specify CW_USEDEFAULT for
this parameter, and Windows will choose an appropriate default.

7. nHeight: The height of the window in pixels. You can specify CW_USEDEFAULT
for this parameter, and Windows will choose an appropriate default.

766 APPENDIX A

8. hWndParent: Handle to a window that is to be the parent of this window. Our
window has no relationship with any other windows, and therefore we set this
value to zero.

9. hMenu: A handle to a menu. Our program does not use a menu, so we specify 0
for this field.

10. hInstance: Handle to the application the window will be associated with.

11. lpParam: A pointer to user-defined data that you want to be available to a
WM_CREATE message handler. The WM_CREATE message is sent to a window
when it is being created, but before CreateWindow returns. A window handles
the WM_CREATE message if it wants to do something when it is created (e.g.,
initialization).

When we specify the (x, y) coordinates of the window’s position, they are relative
to the upper-left corner of the screen. Also, the positive x-axis runs to the right as
usual but the positive y-axis runs downward. Figure (A.4) shows this coordinate
system, which is called screen coordinates, or screen space.

CreateWindow returns a handle to the window it creates (an HWND). If the creation
failed, the handle will have the value of zero (null handle). Remember that the
handle is a way to refer to the window, which is managed by Windows. Many of
the API calls require a HWND so that it knows what window to act on.

ghMainWnd = CreateWindow(L"BasicWndClass", L"Win32Basic",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 0, 0, instanceHandle, 0);
 if(ghMainWnd == 0)
 {
 MessageBox(0, L"CreateWindow FAILED", 0, 0);
 return false;
 }

The last two function calls in the InitWindowsApp function have to do with
displaying the window. First we call ShowWindow and pass in the handle of our

Note:

A.4. Screen space.

INTRODUCTION TO WINDOWS PROGRAMMING 767

newly created window so that Windows knows which window to show. We also
pass in an integer value that defines how the window is to be initially shown (e.g.,
minimized, maximized, etc.). This value should be nShowCmd, which is a parameter
of WinMain. After showing the window, we should refresh it. UpdateWindow does
this; it takes one argument that is a handle to the window we wish to update.

ShowWindow(ghMainWnd, show);
 UpdateWindow(ghMainWnd);

If we made it this far in InitWindowsApp, then the initialization is complete; we
return true to indicate everything went successfully.

A.3.5 The Message Loop
Having successfully completed initialization we can begin the heart of the
program—the message loop. In our Basic Windows Application, we have wrapped
the message loop in a function called Run.

int Run()
{
 MSG msg = {0};

 BOOL bRet = 1;
 while((bRet = GetMessage(&msg, 0, 0, 0)) != 0)
 {
 if(bRet == -1)
 {
 MessageBox(0, L"GetMessage FAILED", L"Error", MB_OK);
 break;
 }
 else
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 return (int)msg.wParam;
}

The first thing done in Run is an instantiation of a variable called msg of type MSG,
which is the structure that represents a Windows message. Its definition is as follows:

typedef struct tagMSG {
 HWND hwnd;
 UINT message;
 WPARAM wParam;
 LPARAM lParam;
 DWORD time;
 POINT pt;
} MSG;

768 APPENDIX A

1. hwnd: The handle to the window whose window procedure is to receive the
message.

2. message: A predefined constant value identifying the message (e.g., WM_QUIT).

3. wParam: Extra information about the message. This is dependent upon the
specific message.

4. lParam: Extra information about the message. This is dependent upon the
specific message.

5. time: The time the message was posted.

6. pt: The (x, y) coordinates of the mouse cursor, in screen coordinates, when
the message was posted.

Next, we enter the message loop. The GetMessage function retrieves a message from
the message queue, and fills out the msg argument with the details of the message.
The second, third, and fourth parameters of GetMessage may be set to zero, for our
purposes. If an error occurs in GetMessage, then GetMessage returns -1. If a WM_QUIT
message is received, then GetMessage returns 0, thereby terminating the message
loop. If GetMessage returns any other value, then two more functions get called:
TranslateMessage and DispatchMessage. TranslateMessage has Windows perform
some keyboard translations; specifically, virtual key to character messages.
DispatchMessage finally dispatches the message off to the appropriate window
procedure.

If the application successfully exits via a WM_QUIT message, then the WinMain
function should return the wParam of the WM_QUIT message (exit code).

A.3.6 The Window Procedure
We mentioned previously that the window procedure is where we write the code
that we want to execute in response to a message our window receives. In the Basic
Windows Application program, we name the window procedure WndProc and it is
prototyped as:

LRESULT CALLBACK
WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam);

This function returns a value of type LRESULT (defined as an integer), which
indicates the success or failure of the function. The CALLBACK identifier specifies
that the function is a callback function, which means that Windows will be calling
this function outside of the code space of the program. As you can see from the
Basic Windows Application source code, we never explicitly call the window
procedure ourselves—Windows calls it for us when the window needs to process
a message.

INTRODUCTION TO WINDOWS PROGRAMMING 769

The window procedure has four parameters in its signature:

1. hWnd: The handle to the window receiving the message.

2. msg: A predefined value that identifies the particular message. For example,
a quit message is defined as WM_QUIT. The prefix WM stands for “Window
Message.” There are over a hundred predefined window messages; see the
MSDN library for details.

3. wParam: Extra information about the message which is dependent upon the
specific message.

4. lParam: Extra information about the message which is dependent upon the
specific message.

Our window procedure handles three messages: WM_LBUTTONDOWN, WM_KEYDOWN,
and WM_DESTROY messages. A WM_LBUTTONDOWN message is sent when the user clicks
the left mouse button on the window’s client area. A WM_KEYDOWN message is sent
to a window in focus when a key is pressed. A WM_DESTROY message is sent when a
window is being destroyed.

Our code is quite simple; when we receive a WM_LBUTTONDOWN message we display
a message box that prints out “Hello, World”:

case WM_LBUTTONDOWN:
 MessageBox(0, L"Hello, World", L"Hello", MB_OK);
 return 0;

When our window gets a WM_KEYDOWN message, we test if the Escape key was pressed,
and if it was, we destroy the main application window using the DestroyWindow
function. The wParam passed into the window procedure specifies the virtual key
code of the specific key that was pressed. Think of virtual key codes as an identifier
for a particular key. The Windows header files have a list of virtual key code
constants we can use to then test for a particular key; for example to test if the
escape key was pressed, we use the virtual key code constant VK_ESCAPE.

case WM_KEYDOWN:
 if(wParam == VK_ESCAPE)
 DestroyWindow(ghMainWnd);
 return 0;

Remember, the wParam and lParam parameters are used to specify extra information
about a particular message. For the WM_KEYDOWN message, the wParam specifies the
virtual key code of the specific key that was pressed. The MSDN library will specify
the information the wParam and lParam parameters carry for each Windows message.

When our window gets destroyed, we post a WM_QUIT message with the
PostQuitMessage function (which terminates the message loop):

case WM_DESTROY:
 PostQuitMessage(0);
 return 0;

770 APPENDIX A

At the end of our window procedure, we call another function named
DefWindowProc. This function is the default window procedure. In our Basic
Windows Application program, we only handle three messages; we use the default
behavior specified in DefWindowProc for all the other messages we receive but
do not necessarily need to handle ourselves. For example, the Basic Windows
Application program can be minimized, maximized, resized, and closed. This
functionality is provided to us through the default window procedure, as we did
not handle the messages to perform this functionality.

A.3.7 The MessageBox Function
There is one last API function we have not yet covered, and that is the MessageBox
function. This function is a very handy way to provide the user with information
and to get some quick input. The declaration to the MessageBox function looks like
this:

int MessageBox(
 HWND hWnd, // Handle of owner window, may specify null.
 LPCTSTR lpText, // Text to put in the message box.
 LPCTSTR lpCaption,// Text to put for the title of the message box.
 UINT uType // Style of the message box.
);

The return value for the MessageBox function depends on the type of message box.
See the MSDN library for a list of possible return values and styles; one possible
style is a Yes/No message box; see Figure A.5.

A.5. Yes/No message box.

A.4 A BETTER MESSAGE LOOP

Games are very different application than traditional Windows applications such
as office type applications and web browsers. Typically, games do not sit around
waiting for a message, but are constantly being updated. This presents a problem,

INTRODUCTION TO WINDOWS PROGRAMMING 771

because if there are no messages in the message queue, the function GetMessage
puts the thread to sleep and waits for a message. For a game, we do not want
this behavior; if there are no Windows messages to be processed, then we want
to run our own game code. The fix is to use the PeekMessage function instead
of GetMessage. The PeekFunction message returns immediately if there are no
messages. Our new message loop is as follows:

int Run()
{
 MSG msg = {0};

 while(msg.message != WM_QUIT)
 {
 // If there are Window messages then process them.
 if(PeekMessage(&msg, 0, 0, 0, PM_REMOVE))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 // Otherwise, do animation/game stuff.
 else
 {

 }
 }
 return (int)msg.wParam;
}

After we instantiate msg, we enter into an endless loop. We first call the API
function PeekMessage, which checks the message queue for a message. See MSDN
for the parameter descriptions. If there is a message it returns true and we handle
the message. If there are no messages, PeekMessage returns false and we execute
our own specific game code.

A.5 SUMMARY

1. To use Direct3D we must create a Windows application that has a main
window onto which we can render our 3D scenes. Furthermore, for games we
create a special message loop that checks for messages. If there are messages, it
processes them; otherwise, it executes our game logic.

2. Several Windows applications can be running concurrently, and therefore
Windows must manage resource between them and direct messages to
the applications for which they were intended. Messages are sent to an
application’s message queue when an event (key press, mouse click, timer,
etc.) has occurred for that application.

772 APPENDIX A

3. Every Windows application has a message queue in which messages an
application receives are stored. The application’s message loop constantly checks
the queue for messages and dispatches them off to their intended window
procedure. Note that a single application can have several windows within it.

4. The window procedure is a special callback function we implement that
Windows calls when a window in our application receives a message. In the
window procedure, we write the code we want to be executed when a window
in our application receives a particular message. Messages we do not specifically
handle are forwarded to a default window procedure for default handling.

A.6 EXERCISES

1. Modify the program in §A.2 to use a different icon, cursor, and background
color.

Hint: Look up the LoadIcon, LoadCursor, and GetStockObject functions in
MSDN.)

2. Modify the program in §A.2 by handling the WM_CLOSE message. This message
is sent to a window or application indicating that the window or application
should close. Use the message box function to ask the user if they really want to
exit by displaying a Yes/No styled message box. If the user chooses “Yes,” then
destroy the window; otherwise do not destroy the window. You could also use
this technique to ask the user if they want to save their work before closing.

3. Modify the program in §A.2 by handling the WM_CREATE message. This message
is sent to a window when it is being created, but before CreateWindow returns.
Output a message, via the message box function, indicating that the window
has been created.

4. Look up the Sleep function in MSDN and summarize, in your own words,
what the function does.

5. Look up the messages WM_SIZE and WM_ACTIVATE in MSDN and summarize, in
your own words, when the messages are sent.

Hint:

773

HIGH LEVEL SHADER
LANGUAGE REFERENCE

VARIABLE TYPES

 Scalar Types

1. bool: True or false value. Note that the HLSL provides the true and false
keywords like in C++.

2. int: 32-bit signed integer.
3. half: 16-bit floating point number.
4. float: 32-bit floating point number.
5. double: 64-bit floating point number.

Some platforms might not support int, half, and double. If this is the case these
types will be emulated using float.

Vector Types
1. float2: 2D vector, where the components are of type float.
2. float3: 3D vector, where the components are of type float.
3. float4: 4D vector, where the components are of type float.

Appendix B

774 APPENDIX B

You can create vectors where the components are of a type other than fl oat. For
example: int2, half3, bool4.

We can initialize a vector using an array like syntax or constructor like syntax:

float3 v = {1.0f, 2.0f, 3.0f};
float2 w = float2(x, y);
float4 u = float4(w, 3.0f, 4.0f); // u = (w.x, w.y, 3.0f, 4.0f)

We can access a component of a vector using an array subscript syntax. For
example, to set the ith component of a vector vec we would write:

vec[i] = 2.0f;

In addition, we can access the components of a vector vec, as we would access the
members of a structure, using the defined component names x, y, z, w, r, g, b, and
a.

vec.x = vec.r = 1.0f;
vec.y = vec.g = 2.0f;
vec.z = vec.b = 3.0f;
vec.w = vec.a = 4.0f;

The names r, g, b, and a refer to the exact same component as the names x, y, z,
and w, respectively. When using vectors to represent colors, the RGBA notation is
more desirable since it reinforces the fact that the vector is representing a color.

Swizzles

Consider the vector u = (ux, uy, uz, uw) and suppose we want to copy the
components of u to a vector v such that v = (uw, uy, uy, ux). The most immediate
solution would be to individually copy each component of u over to v as necessary.
However, the HLSL provides a special syntax for doing these kinds of out of order
copies called swizzles:

float4 u = {1.0f, 2.0f, 3.0f, 4.0f};
float4 v = {0.0f, 0.0f, 5.0f, 6.0f};

v = u.wyyx; // v = {4.0f, 2.0f, 2.0f, 1.0f}

Another example:
float4 u = {1.0f, 2.0f, 3.0f, 4.0f};

fl oat4 v = {0.0f, 0.0f, 5.0f, 6.0f};

v = u.wzyx; // v = {4.0f, 3.0f, 2.0f, 1.0f}

When copying vectors, we do not have to copy every component over. For
example, we can only copy the x- and y-components over as this code snippet
illustrates:

float4 u = {1.0f, 2.0f, 3.0f, 4.0f};

Note:

HIGH LEVEL SHADER LANGUAGE REFERENCE 775

float4 v = {0.0f, 0.0f, 5.0f, 6.0f};

v.xy = u; // v = {1.0f, 2.0f, 5.0f, 6.0f}

Matrix Types
We can define an m  n matrix, where m and n are between 1 and 4, using the
following syntax:

fl oatmxn matmxn;

☞ Examples:

1. float2x2: 2  2 matrix, where the entries are of type float.
2. float3x3: 3  3 matrix, where the entries are of type float.
3. float4x4: 4  4 matrix, where the entries are of type float.
4. float3x4: 3  4 matrix, where the entries are of type float.

You can create matrices where the components are of a type other than fl oat.
For example: int2x2, half3x3, bool4x4.

We can access an entry in a matrix using a double array subscript syntax. For
example, to set the ijth entry of a matrix M we would write:

M[i][j] = value;

In addition, we can refer to the entries of a matrix M as we would access the
members of a structure. The following entry names are defined:

One-Based Indexing:
M._11 = M._12 = M._13 = M._14 = 0.0f;
M._21 = M._22 = M._23 = M._24 = 0.0f;
M._31 = M._32 = M._33 = M._34 = 0.0f;
M._41 = M._42 = M._43 = M._44 = 0.0f;

Zero-Based Indexing:
M._m00 = M._m01 = M._m02 = M._m03 = 0.0f;
M._m10 = M._m11 = M._m12 = M._m13 = 0.0f;
M._m20 = M._m21 = M._m22 = M._m23 = 0.0f;
M._m30 = M._m31 = M._m32 = M._m33 = 0.0f;

Sometimes we want to refer to a particular row vector in a matrix. We can do so
using a single array subscript syntax. For example, to extract the ith row vector in
a 3  3 matrix M, we would write:

float3 ithRow = M[i]; // get the ith row vector in M

Note:

776 APPENDIX B

In this next example, we insert three vectors into the first, second and third row of
a matrix:

float3 N = normalize(pIn.normalW);
float3 T = normalize(pIn.tangentW - dot(pIn.tangentW, N)*N);
float3 B = cross(N,T);
float3x3 TBN;
TBN[0] = T; // sets row 1
TBN[1] = B; // sets row 2

TBN[2] = N; // sets row 3

We can also construct a matrix from vectors:

float3 N = normalize(pIn.normalW);
float3 T = normalize(pIn.tangentW - dot(pIn.tangentW, N)*N);
float3 B = cross(N,T);

float3x3 TBN = float3x3(T, B, N);

Instead of using fl oat4 and fl oat4x4 to represent 4D vectors and 4  4 matrices,
you can equivalently use the vector and matrix type:
vector u = {1.0f, 2.0f, 3.0f, 4.0f};
matrix M; // 4x4 matrix

Arrays
We can declare an array of a particular type using familiar C++ syntax, for
example:

float M[4][4];
half p[4];
float3 v[12]; // 12 3D vectors

Structures
Structures are defined exactly as they are in C++. However, structures in the HLSL
cannot have member functions. Here is an example of a structure in the HLSL:

struct SurfaceInfo
{
 float3 pos;
 float3 normal;
 float4 diffuse;
 float4 spec;
};

SurfaceInfo v;
litColor += v.diffuse;
dot(lightVec, v.normal);
float specPower = max(v.spec.a, 1.0f);

Note:

HIGH LEVEL SHADER LANGUAGE REFERENCE 777

The typedef Keyword
The HLSL typedef keyword functions exactly the same as it does in C++. For
example, we can give the name point to the type vector<float, 3> using the
following syntax:

typedef float3 point;

Then instead of writing:

float3 myPoint;

We can just write:

point myPoint;

Here is another example showing how to use the typedef keyword with the HLSL
const keyword (which works as in C++):

typedef const float CFLOAT;

Variable Prefi xes
The following keywords can prefix a variable declaration.

1. static: Essentially the opposite of extern; this means that the shader variable
will not be exposed to the C++ application.
static float3 v = {1.0f, 2.0f, 3.0f};

2. uniform: This means that the variable does not change per vertex/pixel—it is
constant for all vertices/pixels until we change it at the C++ application level.
Uniform variables are initialized from outside the shader program (e.g., by
the C++ application).

3. extern: This means that the C++ application can see the variable (i.e., the
variable can be accessed outside the shader file by the C++ application code.
Global variables in a shader program are, by default, uniform and extern.

4. const: Th e const keyword in the HLSL has the same meaning it has in C++.
Th at is, if a variable is prefi xed with the const keyword then that variable is
constant and cannot be changed.
const float pi = 3.14f;

Casting
The HLSL supports a very flexible casting scheme. The casting syntax in the HLSL
is the same as in the C programming language. For example, to cast a float to a
matrix we write:

float f = 5.0f;
float4x4 m = (float4x4)f; // copy f into each entry of m.

778 APPENDIX B

What this scalar-matrix cast does is copy the scalar into each entry of the matrix.
Consider the following example:

float3 n = float3(...);
float3 v = 2.0f*n - 1.0f;

The 2.0f*n is just scalar-vector multiplication, which is well defined. However,
to make this a vector equation, the scalar 1.0f is augmented to the vector (1.0f,
1.0f, 1.0f). So the above statement is like:

float3 v = 2.0f*n – float3(1.0f, 1.0f, 1.0f);

For the examples in this book, you will be able to deduce the meaning of the cast
from the syntax. For a complete list of casting rules, search the SDK documentation
index for “Casting and Conversion”).

KEYWORDS AND OPERATORS
Keywords

For reference, here is a list of the keywords the HLSL defines:

asm, bool, compile, const, decl, do,
double, else, extern, false, float, for,
half, if, in, inline, inout, int,
matrix, out, pass, pixelshader, return, sampler,
shared, static, string, struct, technique, texture,
true, typedef, uniform, vector, vertexshader, void,
volatile, while

This next set of keywords displays identifiers that are reserved and unused, but
may become keywords in the future:

auto, break, case, catch, char, class,
const_cast, continue, default, delete, dynamic_cast, enum,
explicit, friend, goto, long, mutable, namespace,
new, operator, private, protected, public, register,
reinterpret_cast, short, signed, sizeof, static_cast, switch,
template, this, throw, try, typename, union,
unsigned, using, virtual

Operators
HLSL supports many familiar C++ operators. With a few exceptions noted below,
they are used exactly the same way as they are in C++. The following table, lists
the HLSL operators:

[] . > < <= >= != == !
&& || ? : + += - -= * *=
/ /= % %= ++ -- = () ,

HIGH LEVEL SHADER LANGUAGE REFERENCE 779

Although the operators’ behavior is very similar to C++, there are some differences.
First of all, the modulus % operator works on both integer and floating-point
types. And in order to use the modulus operator, both the left hand side value and
right hand side value must have the same sign (e.g., both sides must be positive or
both sides must be negative).

Secondly, observe that many of the HLSL operations work on a per component
basis. Th is is due to the fact that vectors and matrices are built into the language
and these types consist of several components. By having the operations work
on a component level, operations such as vector/matrix addition, vector/matrix
subtraction, and vector/matrix equality tests can be done using the same operators
we use for scalar types. See the following examples.

The operators behave as expected for scalars, that is, in the usual C++ way.

float4 u = {1.0f, 0.0f, -3.0f, 1.0f};
float4 v = {-4.0f, 2.0f, 1.0f, 0.0f};

// adds corresponding components
float4 sum = u + v; // sum = (-3.0f, 2.0f, -2.0f, 1.0f)

Incrementing a vector increments each component:

// before increment: sum = (-3.0f, 2.0f, -2.0f, 1.0f)

sum++; // after increment: sum = (-2.0f, 3.0f, -1.0f, 2.0f)

Multiplying vectors component wise:

float4 u = {1.0f, 0.0f, -3.0f, 1.0f};
float4 v = {-4.0f, 2.0f, 1.0f, 0.0f};

// multiply corresponding components
float4 product = u * v; // product = (-4.0f, 0.0f, -3.0f, 0.0f)

If you have two matrices:

float4x4 A;
float4x4 B;

Th e syntax A*B does componentwise multiplication, not matrix multiplication.
You need to use the mul function for matrix multiplication.

Comparison operators are also done per component and return a vector or matrix
where each component is of type bool. The resulting “bool” vector contains the
results of each compared component. For example:

float4 u = { 1.0f, 0.0f, -3.0f, 1.0f};
float4 v = {-4.0f, 0.0f, 1.0f, 1.0f};

float4 b = (u == v); // b = (false, true, false, true)

Note:

Note:

780 APPENDIX B

Finally, we conclude by discussing variable promotions with binary operations:

1. For binary operations, if the left hand side and right hand side differ in
dimension, then the side with the smaller dimension is promoted (cast) to
have the same dimension as the side with the larger dimension. For example,
if x is of type float and y is of type float3, in the expression (x + y), the
variable x is promoted to float3 and the expression evaluates to a value of
type float3. The promotion is done using the defined cast, in this case we are
casting Scalar-to-Vector, therefore, after x is promoted to float3, x = (x, x,
x) as the Scalar-to-Vector cast defines. Note that the promotion is not defined
if the cast is not defined. For example, we can’t promote float2 to float3
because there exists no such defined cast.

2. For binary operations, if the left hand side and right hand side differ in type.
Then the side with the lower type resolution is promoted (cast) to have the
same type as the side with the higher type resolution. For example, if x is of
type int and y is of type half, in the expression (x + y), the variable x is
promoted to a half and the expression evaluates to a value of type half.

PROGRAM FLOW

The HLSL supports many familiar C++ statements for selection, repetition, and
general program flow. The syntax of these statements is exactly like C++.

The Return Statement:

return (expression);

Th e If and If…Else Statements:
if(condition)
{
 statement(s);
}

if(condition)
{
 statement(s);
}
else
{
 statement(s);
}

Th e for statement:
for(initial; condition; increment)

{
 statement(s);

HIGH LEVEL SHADER LANGUAGE REFERENCE 781

}

Th e while statement:
while(condition)
{
 statement(s);
}

Th e do…while statement:
do
{
 statement(s);
}while(condition);

FUNCTIONS

User Defi ned Functions
Functions in the HLSL have the following properties:

1. Functions use a familiar C++ syntax.

2. Parameters are always passed by value.

3. Recursion is not supported.

4. Functions are always inlined.

Furthermore, the HLSL adds some extra keywords that can be used with functions.
For example, consider the following function written in the HLSL:

bool foo(in const bool b, // input bool
 out int r1, // output int
 inout float r2) // input/output float
{
 if(b) // test input value
 {
 r1 = 5; // output a value through r1
 }
 else
 {
 r1 = 1; // output a value through r1
 }

 // since r2 is inout we can use it as an input
 // value and also output a value through it
 r2 = r2 * r2 * r2;

 return true;

}

782 APPENDIX B

The function is almost identical to a C++ function except for the in, out, and
inout keywords.

1. in: Specifies that the argument (particular variable we pass into a parameter)
should be copied to the parameter before the function begins. It is not
necessary to explicitly specify a parameter as in because a parameter is in by
default. For example, the following are equivalent:

float square(in float x)
{
 return x * x;
}

 And without explicitly specifying in:
float square(float x)
{
 return x * x;
}

2. out: Specifies that the parameter should be copied to the argument when
the function returns. This is useful for returning values through parameters.
The out keyword is necessary because the HLSL doesn’t allow us to pass by
reference or to pass a pointer. We note that if a parameter is marked as out the
argument is not copied to the parameter before the function begins. In other
words, an out parameter can only be used to output data—it can’t be used for
input.
void square(in float x, out float y)
{
 y = x * x;
}

 Here we input the number to be squared through x and return the square of x
through the parameter y.

3. inout: Shortcut that denotes a parameter as both in and out. Specify inout if
you wish to use a parameter for both input and output.
void square(inout float x)
{
 x = x * x;
}

 Here we input the number to be squared through x and also return the square
of x through x.

Built-in Functions
The HLSL has a rich set of built in functions that are useful for 3D graphics. The
following table describes an abridged list of them.

HIGH LEVEL SHADER LANGUAGE REFERENCE 783

S. No. Function Description

1. abs(x) Returns |x|.

2. ceil(x) Returns the smallest integer  x.

3. cos(x) Returns the cosine of x, where x is in radians.

4. clamp(x, a, b) Clamps x to the range [a, b] and returns the result.

5. clip(x) This function can only be called in a pixel shader, and
it discards the current pixel from further processing
if x < 0.

6. cross(u, v) Returns u  v.

7. ddx(p) Estimates screen space partial derivative p/x. This
allows you can determine how per pixel quantities
p vary from pixel to pixel in the screen space
x-direction.

8. ddy(p) Estimates screen space partial derivative p/y. This
allows you can determine how per pixel quantities
p vary from pixel to pixel in the screen space
y-direction.

9. degrees(x) Converts x from radians to degrees.

10. determinant(M) Returns the determinant of a matrix.

11. distance(u, v) Returns the distance ||v  u|| between the points u
and v.

12. dot(u, v) Returns u · v.

13. floor(x) Returns the greatest integer  x.

14. frac(x) This function returns the fractional part of a
floating-point number (i.e., the mantissa). For
example, if x = (235.52, 696.32) and frac(x) =
(0.52, 0.32).

15. length(v) Returns v.

16. lerp(u, v, t) Linearly interpolates between u and v based on the
parameter t  [0, 1].

17. log(x) Returns ln (x).

18. log10(x) Returns log10(x).

19. log2(x) Returns log2(x).

20. max(x, y) Returns x if x  y, else returns y.

21. min(x, y) Returns x if x ≤ y, else returns y.

784 APPENDIX B

S. No. Function Description

22. mul(M, N) Returns the matrix product MN. Note that the
matrix product MN must be defined. If M is a vector,
it is treated as a row vector so that the vector-matrix
product is defined. Likewise, if N is a vector, it is
treated as a column vector so that the matrix-vector
product is defined.

23. normalize(v) Returns v/||v||.

24. pow(b, n) Returns bn.

25. radians(x) Converts x from degrees to radians.

26. saturate(x) Returns clamp(x, 0.0, 1.0).

27. sin(x) Returns the sine of x, where x is in radians.

28. sincos(in x, out s, out

c)
Returns the sine and cosine of x, where x is in
radians.

29. sqrt(x)
Returns x .

30. reflect(v, n) Computes the reflection vector given the incident
vector v and the surface normal n.

31. refract(v, n, eta) Computes the refraction vector given the incident
vector v, the surface normal n, and the ratio of the
two indices of refraction of the two materials eta.

32. rsqrt(x)
Returns

1

x
.

33. tan(x) Returns the tangent of x, where x is in radians.

34. transpose(M) Returns the transpose MT.

35. Texture2D::Sample

(S, texC)
Returns a color from a 2D texture map based on the
SamplerState object S, and 2D texture coordinates
texC.

36. Texture2D::SampleLevel

(S, texC, mipLevel)
Returns a color from a 2D texture map based on the
SamplerState object S, 2D texture coordinates texC,
and mipmap level mipLevel. This function differs
from Texture2D::Sample in that the third parameter
manually specifies the mipmap level to use. For
example, we would specify 0 to access the topmost
mipmap LOD.

37. TextureCube::Sample(S, v) Returns a color from a cube map based on the
SamplerState object S, and 3D lookup vector v.

HIGH LEVEL SHADER LANGUAGE REFERENCE 785

S. No. Function Description

38. Texture2DArray::Sample

(S, texC)
Returns a color from a 2D texture array based on
the SamplerState object S (recall a sampler state
specifies texture filters and texture address modes),
and 3D texture coordinates texC, where the first two
coordinates are the usual 2D texture coordinates, and
the third coordinate specifies the array index.

Most of the functions are overloaded to work with all the built-in types that
the function makes sense for. For instance, abs makes sense for all scalar types
and so is overloaded for all of them. As another example, the cross product
cross only makes sense for 3D vectors so it is only overloaded for 3D vectors
of any type (e.g., 3D vectors of ints, fl oats, doubles etc.). On the other hand,
linear interpolation, lerp, makes sense for scalars, 2D, 3D, and 4D vectors and
therefore is overloaded for all types.

If you pass in a non-scalar type into a “scalar” function, that is a function
that traditionally operates on scalars (e.g., cos(x)), the function will act per
component. For example, if you write:

float3 v = float3(0.0f, 0.0f, 0.0f);

v = cos(v);

Then the function will act per component: v = (cos(x), cos(y), cos(z)).

For further reference, the complete list of the built in HLSL functions can be found
in the DirectX documentation. Search the index for “HLSL Intrinsic Functions”).

Constant Buffer Packing
In the HLSL, constant buffer padding occurs so that elements are packed into 4D
vectors, with the restriction that a single element cannot be split across two 4D
vectors. Consider the following example:

// HLSL
cbuffer cb : register(b0)
{
 float3 Pos;
 float3 Dir;
};

If we have to pack the data into 4D vectors, you might think it is done like this:

vector 1: (Pos.x, Pos.y, Pos.z, Dir.x)
vector 2: (Dir.y, Dir.z, empty, empty)

Note:

Note:

786 APPENDIX B

However, this splits the element dir across two 4D vectors, which is not allowed
by the HLSL rules—an element is not allowed to straddle a 4D vector boundary.
Therefore, it has to be packed like this in shader memory:

vector 1: (Pos.x, Pos.y, Pos.z, empty)

vector 2: (Dir.x, Dir.y, Dir.z, empty)

Now suppose our C++ structure that mirrors the constant buffer was defined like
so:

// C++
struct Data
{
 XMFLOAT3 Pos;
 XMFLOAT3 Dir;
};

If we did not pay attention to these packing rules, and just blindly called copied
the bytes over when writing to the constant buffer with a memcpy, then we would
end up with the incorrect first situation and the constant values would be wrong:

vector 1: (Pos.x, Pos.y, Pos.z, Dir.x)
vector 2: (Dir.y, Dir.z, empty, empty)

Thus we must define our C++ structures so that the elements copy over correctly
into the HLSL constants based on the HLSL packing rules; we use “pad” variables
for this. We redefine the constant buffer to make the padding explicit:

cbuffer cb : register(b0)
{
 float3 Pos;
 float __pad0;
 float3 Dir;
 float __pad1;
};

Now we can define a C++ structure that matches the constant buffer exactly:

// C++
struct Data
{
 XMFLOAT3 Pos;
 float __pad0;
 XMFLOAT3 Dir;
 float __pad1;
};

If we do a memcpy now, the data gets copied over correctly to the constant buffer:
vector 1: (Pos.x, Pos.y, Pos.z, __pad0)
vector 2: (Dir.x, Dir.y, Dir.z, __pad1)

We use padding variables in our constant buffers when needed in this book. In
addition, when possible we order our constant buffer elements to reduce empty

HIGH LEVEL SHADER LANGUAGE REFERENCE 787

space to avoid padding. For example, we define our Light structure as follows so
that we do not need to pad the w-coordinates—the structure elements are ordered
so that the scalar data naturally occupies the w-coordinates:

struct Light
{
 DirectX::XMFLOAT3 Strength;
 float FalloffStart = 1.0f;
 DirectX::XMFLOAT3 Direction;
 float FalloffEnd = 10.0f;
 DirectX::XMFLOAT3 Position;
 float SpotPower = 64.0f;
};

When written to a constant buffer, these data elements will tightly pack three 3D
vectors:

vector 1: (Strength.x, Strength.y, Strength.z, FalloffStart)
vector 2: (Direction.x, Direction.y, Direction.z, FalloffEnd)
vector 3: (Position.x, Position.y, Position.z, SpotPower).

You should defi ne your C++ constant buffer data structures to match the
memory layout of the constant buffer in shader memory so that you can do a
simple memory copy.

Just to make the HLSL packing/padding clearer, let us look at a few more examples
of how HLSL constants are packed. If we have a constant buffer like this:

cbuffer cb : register(b0)
{
 float3 v;
 float s;
 float2 p;
 float3 q;
};

The structure would be padded and the data will be packed into three 4D vectors
like so:

vector 1: (v.x, v.y, v.z, s)
vector 2: (p.x, p.y, empty, empty)
vector 3: (q.x, q.y, q.z, empty)

Here we can put the scalar s in the fourth component of the first vector. However,
are are not able to fit all of q in the remaining slots of vector 2, so q has to get its
own vector.

As another example, consider the constant buffer:

cbuffer cb : register(b0)
{
 float2 u;

Note:

788 APPENDIX B

 float2 v;
 float a0;
 float a1;
 float a2;
};

This would be padded and packed like so:

vector 1: (u.x, u.y, v.x, v.y)
vector 2: (a0, a1, a2, empty)

Arrays are handled differently. From the SDK documentation, “every element
in an array is stored in a four-component vector.” So for example, if you have an
array of fl oat2:

float2 TexOffsets[8];

you might assume that two fl oat2 elements will be packed into one fl oat4 slot, as
the examples above suggest. However, arrays are the exception, and the above
is equivalent to:
float4 TexOffsets[8];

Th erefore, from the C++ code you would need to set an array of 8 XMFLOAT4s,
not an array of 8 XMFLOAT2s for things to work properly. Each element wastes
two fl oats of storage since we really just wanted a fl oat2 array. Th e SDK
documentation points out that you can use casting and additional address
computation instructions to make it more memory effi cient:
float4 array[4];
static float2 aggressivePackArray[8] = (float2[8])array;

Note:

789

SOME ANALYTIC
GEOMETRY

In this appendix, we use vectors and points as building blocks for more
complicated geometry. These topics are used in the book, but not as frequently as
vectors, matrices, and transformations; hence, we have put them in an appendix,
rather than the main text.

C.1 RAYS, LINES, AND SEGMENTS

A line can be described by a point p0 on the line and a vector u that aims parallel to
the line (see Figure C.1). The vector line equation is:

 0() for t t t  p p u 
By plugging in different values for t (t can be any real number) we obtain different
points on the line.

If we restrict t to nonnegative numbers, then the graph of the vector line
equation is a ray with origin p0 and direction u (see Figure C.2).

Now suppose we wish to defi ne a line segment by the endpoints p0 and p1. We
fi rst construct the vector u = p1  p0 from p0 to p1; see Figure C.3. Then, for t  [0, 1],
the graph of the equation p(t) = p0 + tu = p0 + (p1  p0) is the line segment defi ned
by p0 and p1. Note that if you go outside the range t  [0, 1], then you get a point
on the line that coincides with the segment, but which is not on the segment.

Appendix C

790 APPENDIX C

Figure C.1. A line described by a point p0 on the line and a vector u that aims parallel to the line. We can
generate points on the line by plugging in any real number t.

Figure C.2 A ray described by an origin p0 and direction u. We can generate points on the ray by plugging in
scalars for t that are greater than or equal to zero.

Figure C.3. We generate points on the line segment by plugging in different values for t in [0, 1]. For
example, the midpoint of the line segment is given at t = 0.5. Also note that if t = 0, we get the endpoint p0
and if t = 1, we get the endpoint p1.

C.2 PARALLELOGRAMS

Let q be a point, and u and v be two vectors that are not scalar multiples of one
another (i.e., ku v for any scalar k). Then the graph of the following function is
a parallelogram (see Figure C.4):

  (,) for , 0,1s t s t s t   p q u v

Figure C.4. Parallelogram. By plugging in different s, t  [0, 1] we generate different points on the
parallelogram.

SOME ANALYTIC GEOMETRY 791

The reason for the “ ku v for any scalar k” requirement can be seen as follows:
If u = kv then we could write:

(,)

()

s t s t

sk t

sk t

t

  
  
  
 

p q u v

q v v

q v

q v

which is just the equation of a line. In other words, we only have one degree of
freedom. To get a 2D shape like a parallelogram, we need two degrees of freedom,
so the vectors u and v must not be scalar multiples of each another.

C.3 TRIANGLES

The vector equation of a triangle is similar to that of the parallelogram equation,
except that we restrict the domain of the parameters further:

 0(,) for 0, 0, 1s t s t s t s t      p p u v

Observe from Figure C.5 that if any of the conditions on s and t do not hold, then
p(s, t) will be a point “outside” the triangle, but on the plane of the triangle.

We can obtain the above parametric equation of a triangle given three points
defi ning a triangle. Consider a triangle defi ned by three vertices p0, p1, p2. Then for
that s  0, t  0, s + t  1 a point on the triangle can be given by:

 0 1 0 2 0(,) () () s t s t    p p p p p p

We can take this further and distribute the scalars:

0 1 0 2 0

0 1 2

0 1 2

(,)

(1)

s t s s t t

s t s t

r s t

    
    
  

p p p p p p

p p p

p p p

Figure C.5. Triangle. By plugging in different s, t such that s ≥ 0, t ≥ 0, s + t ≤ 1, we generate different points
on the triangle.

792 APPENDIX C

where we have let r = (1  s  t). The coordinates (r, s, t) are called barycentric
coordinates. Note that r + s + t = 1 and the barycentric combination p(r, s, t) = rp0 +
sp1 + tp2 expresses the point p as a weighted average of the vertices of the triangle.
There are interesting properties of barycentric coordinates, but we do not need
them for this book; the reader may wish to further research barycentric coordinates.

C.4 PLANES

A plane can be viewed as an infinitely thin, infinitely wide, and infinitely long
sheet of paper. A plane can be specified with a vector  and a point p0 on the plane.
The vector n, not necessarily unit length, is called the plane’s normal vector and
is perpendicular to the plane; see Figure C.6. A plane divides space into a positive
half-space and a negative half-space. The positive half space is the space in front
of the plane, where the front of the plane is the side the normal vector emanates
from. The negative half space is the space behind the plane.

By Figure C.6, we see that the graph of a plane is all the points p that satisfy the

plane equation:

 0() 0  n p p

When describing a particular plane, the normal n and a known point p0 on the
plane are fixed, so it is typical to rewrite the plane equation as:

 0 0() 0d         n p p n p n p n p

where 0d   n p . If n = (a, b, c) and p = (x, y, z), then the plane equation can be
written as:

 0ax by cz d   

If the plane’s normal vector n is of unit length, then 0d   n p gives the shortest
signed distance from the origin to the plane (see Figure C.7).

Figure C.6. A plane defined by a normal vector
n and a point p0 on the plane. If p0 is a point on
the plane, then the point p is also on the plane if
and only if the vector p  p0 is orthogonal to the
plane’s normal vector.] Figure C.7. Shortest distance from a plane to the origin.

SOME ANALYTIC GEOMETRY 793

To make the pictures easier to draw, we sometimes draw our fi gures in 2D and
use a line to represent a plane. A line, with a perpendicular normal, can be
thought of as a 2D plane since the line divides the 2D space into a positive half
space and negative half space.

C.4.1 DirectX Math Planes
When representing a plane in code, it suffices to store only the normal vector n
and the constant d. It is useful to think of this as a 4D vector, which we denote
as (n, d) = (a, b, c, d). Therefore, because the XMVECTOR type stores a 4-tuple of
floating-point values, the DirectX Math library overloads the XMVECTOR type to
also represent planes.

C.4.2 Point/Plane Spatial Relation
Given any point p, observe from Figure C.6 and Figure C.8 that

1. If 0() 0d     n p p n p then p is in front of the plane.

2. If 0() 0d     n p p n p then p is behind the plane.

3. If 0() 0d     n p p n p then p is on the plane.

These tests are useful for testing the spatial location of points relative to a plane.
This next DirectX Math function evaluates d n p for a particular plane and

point:

XMVECTOR XMPlaneDotCoord(// Returns d n p replicated in each coordinate
 XMVECTOR P, // plane
 XMVECTOR V); // point with w = 1

// Test the locality of a point relative to a plane.
XMVECTOR p = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f);

XMVECTOR v = XMVectorSet(3.0f, 5.0f, 2.0f);

float x = XMVectorGetX(XMPlaneDotCoord(p, v));

Note:

Figure C.8. Point/plane spatial relation.

794 APPENDIX C

if(x approximately equals 0.0f) // v is coplanar to the plane.
if(x > 0) // v is in positive half-space.
if(x < 0) // v is in negative half-space.

We say approximately equals due to fl oating point imprecision.

A similar function is:

XMVECTOR XMPlaneDotNormal(XMVECTOR Plane, XMVECTOR Vec);

This returns the dot product of the plane normal vector and the given 3D
vector.

C.4.3 Construction
Besides directly specifying the plane coefficients (n, d) = (a, b, c, d), we can
calculate these coefficients in two other ways. Given the normal n and a known
point on the plane p0 we can solve for the d component:

 0 00d d      n p n p

The DirectX Math library provides the following function to construct a plane
from a point and normal in this way:

XMVECTOR XMPlaneFromPointNormal(
 XMVECTOR Point,
 XMVECTOR Normal);

The second way we can construct a plane is by specifying three distinct points on
the plane.

Given the points p0, p1, p2, we can form two vectors on the plane:

1 0

2 0

 
 

u p p

v p p

From that we can compute the normal of the plane by taking the cross product of
the two vectors on the plane. (Remember the left hand thumb rule.)

 n = u × v

Then, we compute 0 .d   n p
The DirectX Math library provides the following function to compute a plane

given three points on the plane:

XMVECTOR XMPlaneFromPoints(
 XMVECTOR Point1,
 XMVECTOR Point2,
 XMVECTOR Point3);

Note:

SOME ANALYTIC GEOMETRY 795

C.4.4 Normalizing a Plane
Sometimes we might have a plane and would like to normalize the normal vector.
At first thought, it would seem that we could just normalize the normal vector as
we would any other vector. But recall that the d component also depends on the
normal vector: 0 .d   n p Therefore, if we normalize the normal vector, we must
also recalculate d. This is done as follows:

 0

d
d    

n
p

n n

Thus, we have the following formula to normalize the normal vector of the plane
(n, d):

1

(,) ,
d

d
   
 

n
n

n n n

We can use the following DirectX Math function to normalize a plane’s normal
vector:

XMVECTOR XMPlaneNormalize(XMVECTOR P);

C.4.5 Transforming a Plane
[Lengyel02] shows that we can transform a plane (n, d) by treating it as a 4D
vector and multiplying it by the inverse-transpose of the desired transformation
matrix. Note that the plane’s normal vector must be normalized first. We use the
following DirectX Math function to do this:

XMVECTOR XMPlaneTransform(XMVECTOR P, XMMATRIX M);

Sample Code:
XMMATRIX T(...); // Initialize T to a desired transformation.
XMMATRIX invT = XMMatrixInverse(XMMatrixDeterminant(T), T);
XMMATRIX invTransposeT = XMMatrixTranspose(invT);

XMVECTOR p = (...); // Initialize Plane.
p = XMPlaneNormalize(p); // make sure normal is normalized.

XMVECTOR transformedPlane = XMPlaneTransform(p, &invTransposeT);

C.4.6 Nearest Point on a Plane to a Given Point
Suppose we have a point p in space and we would like to find the point q on the
plane (n, d) that is closest to p. From Figure C.9, we see that

 0proj ()  nq p p p

796 APPENDIX C

Assuming ||n|| = 1 so that  0 0proj () ,     n p p p p n n we can rewrite this as:

 
 
 

0

0

d

     
    

   

q p p p n n

p p n p n n

p p n n

C.4.7 Ray/Plane Intersection
Given a ray p(t) = p0 + tu and the equation of a plane 0d  n p , we would
like to know if the ray intersects the plane and also the point of intersection. To
do this, we plug the ray into the plane equation and solve for the parameter t
that satisfies the plane equation, thereby giving us the parameter that yields the
intersection point:

() 0t d  n p Plug ray into plane equation

0() 0t d   n p u Substitute

0 0t d    n p n u Distributive property

0t d    n u n p Add 0 d  n p to both sides

0 d
t

  



n p

n u

Solve for t

If nu = 0 then the ray is parallel to the plane and there are either no solutions or
infinite many solutions (infinite if the ray coincides with the plane). Ift is not in
the interval [0, ), the ray does not intersect the plane, but the line coincident with
the ray does. If t is in the interval [0, ), then the ray does intersect the plane and

the intersection point is found by evaluating the ray equation at 0
0

d
t

  



n p

n u
.

The ray/plane intersection test can be modifi ed to a segment/plane test. Given
two points defi ning a line segment p and q, then we form the ray r(t) = p + t(q 
p). We use this ray for the intersection test. If t  [0, 1], then the segment intersects

Figure C.9. The nearest point on a plane to a point p. The point p0 is a point on the plane.

SOME ANALYTIC GEOMETRY 797

the plane, otherwise it does not. The DirectX Math library provides the following
function:

XMVECTOR XMPlaneIntersectLine(
 XMVECTOR P,
 XMVECTOR LinePoint1,
 XMVECTOR LinePoint2);

C.4.8 Refl ecting Vectors
Given a vector I we wish to reflect it about a plane with normal n. Because vectors
do not have positions, only the plane normal is involved when reflecting a vector.
Figure C.10 shows the geometric situation, from which we conclude the reflection
vector is given by:

  2  r I n I n

C.4.9 Refl ecting Points
Points reflect differently from vectors since points have position. Figure C.11
shows that the reflected point q is given by:

 02proj ()  nq p p p

C.4.10 Refl ection Matrix
Let (n, d) = (nx, ny, nz, d) be the coefficients of a plane, where 0d   n p . Then,
using homogeneous coordinates, we can reflect both points and vectors about this
plane using a single 4  4 reflection matrix:

Figure C.10. Geometry of vector reflection. Figure C.11. Geometry of point reflection.

798 APPENDIX C

1 2 2 2 0

2 1 2 2 0

2 2 1 2 0

2 2 2 1

x x x y x z

x y y y y z

x z y z z z

x y z

n n n n n n

n n n n n n

n n n n n n

dn dn dn

   
    
   
     

R

This matrix assumes the plane is normalized so that

   

 
 

0 0

0

proj

d

     
   

  

n p p n p p n

n p n p n

n p n

If we multiply a point by this matrix, we get the point refl ection formula:

1 2 2 2 0

2 1 2 2 0
, , ,1

2 2 1 2 0

2 2 2 1

x x x y x z

x y y y y z
x y z

x z y z z z

x y z

n n n n n n

n n n n n n
p p p

n n n n n n

dn dn dn

   
          
     

2 2 2 2

2 2 2 2

2 2 2 2

1

T
x x x x y x y z x z x

x x y y y y y z y z y

x x z y y z z z z z z

p p n n p n n p n n dn

p n n p p n n p n n dn

p n n p n n p p n n dn

    
      
     
 
 

 
 
 

2

2

2
1

0

T
T x x x y y z z

x

y y x x y y z z

z
z x x y y z z

n p n p n p n dp

p n p n p n p n d

p n p n p n p n d

       
          
         
    

 
 
 

2

2

2

1 0

TT
x x

y y

z z

p n d

p n d

p n d

    
        
     
  

   

n p

n p

n p

  2 d   p n p n

  02proj  np p p

We take the transpose to turn row vectors into column vectors. This is just to
make the presentation neater—otherwise, we would get very long row vectors.

Note:

SOME ANALYTIC GEOMETRY 799

And similarly, if we multiply a vector by this matrix, we get the vector reflection
formula:

1 2 2 2 0

2 1 2 2 0
, , , 0

2 2 1 2 0

2 2 2 1

x x x y x z

x y y y y z
x y z

x z y z z z

x y z

n n n n n n

n n n n n n
v v v

n n n n n n

dn dn dn

   
          
     

2()  v n v n

The following DirectX Math function can be used to construct the above reflection
matrix given a plane:

XMMATRIX XMMatrixReflect(XMVECTOR ReflectionPlane);

C.5 EXERCISES

1. Let p(t) = (1, 1) + t(2, 1) be a ray relative to some coordinate system. Plot the
points on the ray at t = 0.0, 0.5, 1.0, 2.0, and 5.0.

2. Let p0 and p1 define the endpoints of a line segment. Show that the equation
for a line segment can also be written as pt) = (1  t)p0 + tp1 for t  [0, 1].

3. For each part, find the vector line equation of the line passing through the two
points.

(a) p1 = (2, 1), p2 = (4, 1)

(b) p1 = (4, 2, 1), p2 = (2, 3, 2)

4. Let L(t) = p + tu define a line in 3-space. Let q be any point in 3-space. Prove
that the distance from q to the line can be written as:

()

d
 


q p u

u

Figure C.12. Distance from q to the line.

800 APPENDIX C

5. Let L(t) = (4, 2, 2) + t(1, 1, 1) be a line. Find the distance from the following
points to the line:

(a) q = (0, 0, 0)

(b) q = (4, 2, 0)

(c) q = (0, 2, 2)

6. Let p0 = (0, 1, 0), p1 = (-1, 3, 6), and p2 = (8, 5, 3) be three points. Find the
plane these points define.

7. Let
1 1 1

, , , 5
3 3 3

  
 

 be a plane. Define the locality of the following points

relative to the plane:  3 3,5 3,0 ,  2 3, 3,2 3 , and  3, 3, 0 .

8. Let
1 1 5

, ,0,
2 2 2

  
 

 be a plane. Find the point on the plane nearest to the

point (0, 1, 0).

9. Let
1 1 5

, ,0,
2 2 2

  
 

 be a plane. Find the reflection of the point (0, 1, 0)

about the plane.

10. Let
1 1 1

, , , 5
3 3 3

  
 

 be a plane, and let r(t) = (1, 1, 1) + t(1, 0, 0) be a

ray. Find the point at which the ray intersects the plane. Then write a short
program using the XMPlaneIntersectLine function to verify your answer.

801

SOLUTIONS TO
SELECTED EXERCISES

Solutions (including figures) to selected exercises in the text may be found on the
companion DVD.

Appendix D

803

BIBLIOGRAPHY AND
FURTHER READING

[Angel00] Angel, Edward, Interactive Computer Graphics: A Top-Down Approach with
OpenGL, Second Edition, Addison-Wesley, 2000.

[ATI1] ATI. “Dark Secrets of Shader Development or What Your Mother Never Told
You About Shaders” Presentation available at http://amd-dev.wpengine.netdna-cdn.
com/wordpress/media/2012/10/Dark_Secrets_of_shader_Dev-Mojo.pdf

[Bilodeau10] Bilodeau, Bill. “Efficient Compute Shader Programming,” Game
Developers Conference, AMD slide presentation, 2010. (http://developer.amd.com/
gpu_assets/Efficient%20Compute%20Shader%20Programming.pps)

[Bilodeau10b] Bilodeau, Bill. “Direct3D 11 Tutorial: Tessellation,” Game Developers
Conference, AMD slide presentation, 2010. (http://developer.amd.com/gpu_assets/
Direct3D%2011%20Tessellation%20Tutorial.ppsx)

[Blinn78] Blinn, James F., and Martin E. Newell. “Clipping using Homogeneous
Coordinates.” In Computer Graphics (SIGGRAPH ’78 Proceedings), pages 245-251,
New York, 1978.

[Blinn96] Blinn, Jim, Jim Blinn’s Corner: A Trip Down the Graphics Pipeline, Morgan
Kaufmann Publishers, Inc, San Francisco CA, 1996.

[Boyd08] Boyd, Chas. “DirectX 11 Compute Shader,” Siggraph slide presentation, 2008.
(http://s08.idav.ucdavis.edu/boyd-dx11-compute-shader.pdf)

Appendix E

804 APPENDIX E

[Boyd10] Boyd, Chas. “DirectCompute Lecture Series 101: Introduction to
DirectCompute,” 2010. (http://channel9.msdn.com/Blogs/gclassy/DirectCompute-
Lecture-Series-101-Introduction-to-DirectCompute)

[Brennan02] Brennan, Chris. “Accurate Reflections and Refractions by Adjusting for
Object Distance,” Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks.

Wordware Publishing Inc., 2002.

[Burg10] Burg, John van der, “Building an Advanced Particle System.” Gamasutra, June
2000. (http://www.gamasutra.com/features/20000623/vanderburg_01.htm)

[Crawfis12] Crawfis, Roger. “Modern GPU Architecture.” Course notes available at
http://web.cse.ohio-state.edu/~crawfis/cse786/ReferenceMaterial/CourseNotes/
Modern%20GPU%20Architecture.ppt

[De berg00] de Berg, M., M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications Second Edition. Springer-
Verlag Berlin Heidelberg, 2000.

[Dietrich] Dietrich, Sim. “Texture Space Bump Maps.” (http://developer.nvidia.com/
object/texture_space_bump_mapping.html)

[Dunlop03] Dunlop, Robert. “FPS Versus Frame Time,” 2003. (http://www.mvps.org/
directx/articles/fps_versus_frame_time.htm)

[DirectXMath] DirectXMath Online Documentation, Microsoft Corporation.
http://msdn.microsoft.com/en-us/library/windows/desktop/hh437833(v=vs.85).aspx

[DXSDK] Microsoft DirectX June 2010 SDK Documentation, Microsoft Corporation.

[Eberly01] Eberly, David H., 3D Game Engine Design, Morgan Kaufmann Publishers,
Inc, San Francisco CA, 2001.

[Engel02] Engel, Wolfgang (Editor), Direct3D ShaderX: Vertex and Pixel Shader Tips
and Tricks, Wordware Publishing, Plano TX, 2002.

[Engel04] Engel, Wolfgang (Editor), ShaderX2: Shader Programming Tips & Tricks with
DirectX 9, Wordware Publishing, Plano TX, 2004.

[Engel06] Engel, Wolfgang (Editor), ShaderX5: Shader Advanced Rendering Techniques,
Charles River Media, Inc., 2006.

[Engel08] Engel, Wolfgang (Editor), ShaderX6: Shader Advanced Rendering Techniques,
Charles River Media, Inc., 2008.

[Farin98] Farin, Gerald, and Dianne Hansford. The Geometry Toolbox: For Graphics and
Modeling. AK Peters, Ltd., 1998.

[Fernando03] Fernando, Randima, and Mark J. Kilgard. The CG Tutorial: The Definitive
Guide to Programmable Real-Time Graphics. Addison-Wesley, 2003.

[Fraleigh95] Fraleigh, John B., and Raymond A. Beauregard. Linear Algebra 3rd Edition.
Addison-Wesley, 1995.

BIBLIOGRAPHY AND FURTHER READING 805

[Friedberg03] Friedberg, Stephen H., Arnold J. Insel, and Lawrence E. Spence. Linear
Algebra Fourth Edition. Pearson Education, Inc., 2003.

[Fung10] Fung, James. “DirectCompute Lecture Series 210: GPU Optimizations and
Performance,” 2010. (http://channel9.msdn.com/Blogs/gclassy/DirectCompute-
Lecture-Series-210-GPU-Optimizations-and-Performance)

[Halliday01] Halliday, David, Robert Resnick, and Jearl Walker. Fundamentals of
Physics: Sixth Edition. John Wiley & Sons, Inc, 2001.

[Hausner98] Hausner, Melvin. A Vector Space Approach to Geometry. Dover
Publications, Inc. (www.doverpublications.com), 1998

[Hoffmann75] Hoffmann, Banesh. About Vectors. Dover Publications, Inc. (www.
doverpublications.com), 1975.

[Isidoro06] Isidoro, John R. “Shadow Mapping: GPU-based Tips and Techniques,”
Game Developers Conference, ATI slide presentation, 2006. (http://developer.amd.
com/media/gpu_assets/Isidoro-ShadowMapping.pdf)

[Isidoro06b] Isidoro, John R. “Edge Masking and Per-Texel Depth Extent Propagation
for Computation Culling During Shadow Mapping,” ShaderX 5: Advanced
Rendering Techniques. Charles River Media, 2007.

[Kilgard99] Kilgard, Mark J., “Creating Reflections and Shadows Using Stencil Buffers,”
Game Developers Conference, NVIDIA slide presentation, 1999. (http://developer.
nvidia.com/docs/IO/1407/ATT/stencil.ppt)

[Kilgard01] Kilgard, Mark J. “Shadow Mapping with Today’s OpenGL Hardware,”
Computer Entertainment Software Association’s CEDEC, NVIDIA presentation,
2001. (http://developer.nvidia.com/object/cedec_shadowmap.html)

[Kryachko05] Kryachko, Yuri. “Using Vertex Texture Displacement for Realistic Water
Rendering,” GPU Gems 2: Programming Techniques for High-Performance Graphics
and General Purpose Computation. Addison-Wesley, 2005.

[Kuipers99] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with
Applications to Orbits, Aerospace, and Virtual Reality. Princeton University Press,
1999.

[Lengyel02] Lengyel, Eric, Mathematics for 3D Game Programming and Computer
Graphics. Charles River Media, Inc., 2002.

[Möller08] Möller, Tomas, and Eric Haines. Real-Time Rendering: Third Edition. AK
Peters, Ltd., 2008.

[Mortenson99] Mortenson, M.E. Mathematics for Computer Graphics Applications.
Industrial Press, Inc., 1999.

[NVIDIA05] Antialiasing with Transparency, NVIDIA Corporation, 2005. (ftp://
download.nvidia.com/developer/SDK/Individual_Samples/DEMOS/Direct3D9/src/
AntiAliasingWithTransparency/docs/AntiAliasingWithTransparency.pdf)

806 APPENDIX E

[NVIDIA08] GPU Programming Guide GeForce 8 and 9 Series, NVIDIA Corporation,
2008. (http://developer.download.nvidia.com/GPU_Programming_Guide/GPU_
Programming_Guide_G80.pdf)

[NVIDIA09] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,
NVIDIA Corporation, 2009. (http://www.nvidia.com/content/PDF/fermi_white_
papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf)

[NVIDIA10] DirectCompute Programming Guide, NVIDIA Corporation, 2007–2010
(http://developer.download.nv idia.com/compute/DevZone/docs/html/
DirectCompute/doc/DirectCompute_Programming_Guide.pdf)

[Thibieroz13] Thibieroz, Nick and Holger Gruen. “DirectX Performance Reloaded.”
Presentation at Game Developers Conference 2013.

[Oliveira10] Oliveira, Gustavo. “Designing Fast Cross-Platform SIMD Vector Libraries,”
2010. (http://www.gamasutra.com/view/feature/4248/designing_fast_crossplatform_
simd_.php)

[Parent02] Parent, Rick. Computer Animation: Algorithms and Techniques. Morgan
Kaufmann Publishers (www.mkp.com), 2002.

[Pelzer04] Pelzer, Kurt. “Rendering Countless Blades of Waving Grass,” GPU Gems:
Programming Techniques, Tips, and Tricks for Real-Time Graphics. Addison-Wesley,
2004.

[Pettineo12] Pettineo, Matt. “A Closer Look at Tone Mapping,” 2012. (https://
mynameismjp.wordpress.com/2010/04/30/a-closer-look-at-tone-mapping/)

[Petzold99] Petzold, Charles, Programming Windows, Fifth Edition, Microsoft Press,
Redmond WA, 1999.

[Prosise99] Prosise, Jeff, Programming Windows with MFC, Second Edition, Microsoft
Press, Redmond WA, 1999.

[Reinhard10] Reinhard, Erik, et al, High Dynamic Range Imaging, Second Edition,
Morgan Kaufmann, 2010.

[Santrock03] Santrock, John W. Psychology 7. The McGraw-Hill Companies, Inc., 2003.

[Savchenko00] Savchenko, Sergei, 3D Graphics Programming: Games and Beyond, Sams
Publishing, 2000.

[Schneider03] Schneider, Philip J., and David H. Eberly. Geometric Tools for Computer
Graphics. Morgan Kaufmann Publishers (www.mkp.com), 2003.

[Snook03] Snook, Greg. Real-Time 3D Terrain Engines using C++ and DirectX9. Charles
River Media, Inc., 2003.

[Story10] Story, Jon, and Cem Cebenoyan, “Tessellation Performance,” Game Developers
Conference, NVIDIA slide presentation, 2010. (http://developer.download.nvidia.
com/presentations/2010/gdc/Tessellation_Performance.pdf)

BIBLIOGRAPHY AND FURTHER READING 807

[Sutherland74] Sutherland, I. E., and G. W. Hodgeman. Reentrant Polygon Clipping.
Communications of the ACM, 17(1):32-42, 1974.

[Tuft10] Tuft, David. “Cascaded Shadow Maps,” 2010. (http://msdn.microsoft.com/en-
us/library/ee416307%28v=vs.85%29.aspx)

[Uralsky05] Uralsky, Yuri. “Efficient Soft-Edged Shadows Using Pixel Shader
Branching,” GPU Gems 2: Programming Techniques for High-Performance Graphics
and General Purpose Computation. Addison-Wesley, 2005.

[Verth04] Verth, James M. van, and Lars M. Bishop. Essential Mathematics for Games
& Interactive Applications: A Programmer’s Guide. Morgan Kaufmann Publishers
(www.mkp.com), 2004.

[Vlachos01] Vlachos, Alex, Jörg Peters, Chas Boyd, and Jason L. Mitchell, “Curved PN
Triangles,” ACM Symposium on Interactive 3D Graphics 2001, pp. 159-166, 2001.
(http://alex.vlachos.com/graphics/CurvedPNTriangles.pdf)

[Watt92] Watt, Alan, and Mark Watt, Advanced Animation and Rendering Techniques:
Theory and Practice, Addison-Wesley, 1992.

[Watt00] Watt, Alan, 3D Computer Graphics, Third Edition, Addison-Wesley, 2000.

[Watt01] Watt, Alan, and Fabio Policarpo, 3D Games: Real-time Rendering and Software
Technology, Addison-Wesley, 2001.

[Weinreich98] Weinreich, Gabriel, Geometrical Vectors. The University of Chicago
Press, Chicago, 1998.

[Whatley05] Whatley, David. “Toward Photorealism in Virtual Botany,” GPU Gems
2: Programming Techniques for High-Performance Graphics and General Purpose
Computation. Addison-Wesley, 2005.

[Wloka03] Wloka, Matthias. “Batch, Batch, Batch: What Does It Really Mean? ”
Presentation at Game Developers Conference 2003. http://developer.nvidia.com/
docs/IO/8230/BatchBatchBatch.pdf

809

8-bit color components, 166–167
24-bit depth buffer, 96, 420
32-bit color values, 165, 262
32-bit fl oating-point components, 92, 360
128-bit color values, 165, 262

A
AABB (axis-aligned bounding box), 566–580, 608
AABB/plane tests, 574, 575
acceleration, 90, 487
adapters, default, 94, 118, 127
address modes, 360, 376, 378, 394
affi ne transformations, 59, 66–68, 84
aliasing, 98–100, 446, 463, 654–658
alpha channel, 92, 403, 408–417, 452, 639
alpha component, 92, 165, 197, 365, 398, 629
alpha-to-coverage, 402, 463–465
alpha-to-coverage blend state object, 402, 446, 463–465
alpha value, 399, 408–10, 665
ambient-access, 677, 686, 694
ambient light, 326–327
ambient map, 686, 693–694
ambient occlusion, 494, 537–538, 675–696
ambient occlusion demo, 679
ambient occlusion map, 679, 694–695
ambient term, 327, 341 346, 538,675–676
angle
 acute, 10–11
 obtuse, 11

angle restriction, 706–707
animating, 719, 733–735
animation, 93, 131–139, 393, 538, 719–724
 entire frame of, 93, 155
 frames of, 131, 134
 given frame of, 93, 155
 next frame of, 93, 155
API overhead, 214, 558, 576
application code, 146–147, 298, 384, 576
application-defi ned masking value, 421
application instance, 142, 762–764
application message loop, 135, 139, 142
application window, main, 139, 143–144
array, 58, 91–92, 106–109, 124–130, 233, 245, 259
aspect ratio, 142, 183–186, 572, 586
assembly code, 239
attribute values, 196
average, weighted, 18, 319, 411, 489, 490, 501
average frames, 143, 156
averaged pixel color, 98
axis-aligned bounding box see AABB
axis directions, 600

B
backface culling, 194–195
background color, 764
basic input/output system (BIOS), 133
basic tessellation demo, 536
basis, per-triangle, 576

INDEX

810 INDEX

basis vectors, 62, 71, 85, 554–555
 standard, 60, 62, 71–72
 transformed, 71–2
Bernstein basis functions, 528
Bézier curves, 514–515, 527–529
Bézier Patch demo, 536
Bézier quad patches, 526
Bézier surfaces, 515, 529
 cubic, 88, 526
 quadratic, 536
Bézier triangle patches, 522
Bézier triangle surface patch, 535
biasing, 654–56
binding, 211, 233, 235, 370
BIOS (basic input/output system), 133
bird’s eye, 451, 493–494
blend, 88, 397
blend demo, 410–411, 439, 441
blend factor color, 401
blend factors, 400–401
 destination, 398, 403–406
blend operations, 399–400
blend operator, 400, 404–406
blend state, 244, 400–403
 default, 401
blender, 163, 400, 751
blending, 88, 197, 397–417
blending equation, 398–399
blending method, 406–407
blending operators, 401
blending transparency, 625
BlendState, 244,
blocks, 95, 126
blur, 376, 410, 489–494
 preserving, 690, 693,
 vertical, 490, 495,
blur radius, 490, 501,
blurred result, 494–495
blurring, 489, 498
blurring algorithm, 489, 495,
bone infl uences, 728, 740, 751
bone space, 732
bounding box, 428, 537, 566–569
bounding sphere, 566, 570–571
bounding volumes, 557, 566–575, 579
branching, dynamic, 239, 341
buffer, 31, 88, 93–98, 121, 124–130, 143–144, 152, 155,

168, 207–212, 224–235, 309
 32-bit fl oating-point depth, 96, 420
 allocated, 167
 depth stencil, 96, 125, 420, 422, 425
 entire, 129, 209,
 fl oating-point, 30, 92
 fl oating-point depth, 96, 420,
 normal/depth, 681, 690

 off-screen, 93, 155, 419, 438, 493
 raw, 481
 second texture, 460
 static, 310
buffer alpha values, 399,
buffer defi nitions, 240
buffer dimensions, 147, 183
buffer form, 93, 155, 438
buffer of elements, 480, 507
buffer pixel color, 407
buffer pixels, 427, 436
 mirror stencil, 436
buffer resources, 122–126, 224, 479, 507
buffer textures, 93
buffer width, 142
buffering, double, 87, 93, 121, 155

C
camera, 17, 87, 144, 155, 160, 179, 181–182, 261,

411–412, 452–453, 494, 518, 537, 539–555, 600, 615
 fi rst person, 537, 539, 545
 void, 21
camera basis vectors, 541
camera class, 541–542
camera coordinate system, 180–181, 540
camera demo, 547–548
camera frustum, 577
camera position, 160, 181, 411, 601
camera space, 179, 541
camera system, 537, 539, 547
camera vectors, 546
cast, 361, 432–434, 679
cast rays, 676, 679
character, 208, 358, 538, 558, 727–751
character animation, 538, 727–751
character mesh, 731
clamp, 165, 376, 377
clip, 182, 191, 733, 783,
clip function, 88, 222, 409
clipping, 191–193, 408, 657
color
 32-bit, 165–168
 128-bit, 165
 blue, 92, 163
 border, 376–377
 destination, 398, 405
 fog, 410–416
 fogged, 411–413
 green, 92, 99, 163–168, 595
 lit, 412
 new, 163–164, 398
 per-vertex, 356, 538
 pixel’s, 385
color channels, 365–367, 418
color ck, 441

INDEX 811

color component, 163–167, 629–630
 additional, 165, 197
color elements, 261
color image, 629, 640
color information, 92–93,
color intensity, 443
color operations, 164–165
color pixels, 362
color texturing, 657
color value, 167, 257, 262, 345
color vectors, 164, 197, 398
 single, 442
colored cube, 260
COM (Component Object Model), 90–91, 155
COM interfaces, 90–91, 155
COM objects, 90–91
comparison function, 422–424, 441
compiler, 22, 52, 236, 239, 757
complex numbers, 657, 698–700
complicated pixel shader work, 663
component object model see COM
components
 bit fl oating point, 92
 fl oating-point, 30
 normal, 576
 unsigned integer, 92, 96
composition, 72
compressed formats, 365
compressed texture formats, 365
Compute shader 88, 310, 311, 470
ComputeBoundingAxisAligned

BoxFromPoints, 519–20
ComputeBoundingSphereFromPoints, 520
ComputeFrustumFromProjection, 523
constant acceleration, 487
constant buffer values, 430
constant buffer variable, 262, 389
constant buffers, 97, 224–234
 omit, 385, 600
constant color, 196, 675
constant hull shader, 516–518
constant interpolation, 373–374
constant vectors, 23–24, 32
constant XMVECTOR instances, 23
control point output, 518, 535
control points, 172, 514–516
 additional, 518
 vertex shader inputs, 445, 535,
convert spherical to Cartesian coordinates, 230, 252
coordinate matrices, 76–77
coordinate matrix, change of, 76–78
coordinate representation, 5–7, 73
coordinates
 barycentric, 83, 522
 fl oating-point, 30–31

 ith, 433
 normal, 576
 normalized device, 185–189, 585, 647
 object’s, 175
 u-texture, 633
 vector’s, 5
corner to-far-plane vector,
crate demo, 359, 385, 390, 395
crate pixels, 397
creating vertex buffers, 454
crevices, 628, 679
cube map, 365, 367, 494, 538, 597–625
 dynamic, 609–620, 674,
cube map demo, 600, 624
cube map faces, 614–615
cube map texture, 598, 601, 622
cube mapping, 538, 597–625
cube texture, 369, 597
CUDA, 469,
CUDA cores, 471
current time value, 132, 156
CXMVECTOR, 22, 32

D
D3D_DRIVER_TYPE_HARDWARE, 142
D3D_FEATURE_LEVEL, 101
D3D11_BLEND, 402,
D3D11_BLEND_DESC, 402
D3D11_INPUT_ELEMENT_DESC, 205, 217
D3D11_MAX_MULTISAMPLE_SAMPLE_COUNT, 100
D3D11_RENDER_TARGET_BLEND_DESC, 402
data elements, 91, 155, 226, 360, 469, 507
 array of, 91
 matrix of, 91, 360
data members, 19, 21
data structures, 486, 787
DDS fi le, 366–367, 461
DDS texture image format, 601
debug output window, 221
depth bias, 655–657
depth buffer, 87, 93–96, 100, 125, 161
depth buffer range, 585
depth buffering, 87, 93–96
depth buffering algorithm, 187, 188, 195
depth comparison test, 695
depth complexity, 420, 440–443
depth coordinates, 188, 586
depth in NDC space, 651, 685
DepthStencilState, 244–246, 419
depth settings, 423
depth stencil, 96, 125–129, 245, 420, 422, 425, 429
depth/stencil buffer, 96, 117, 125–129, 207, 404
depth/stencil buffering, 420
depth/stencil state, 245, 422, 425, 429
depth/stencil state block, 425

812 INDEX

depth/stencil texture, 128, 460
depth test, 95, 223, 407, 420, 440, 442, 671
depth values, 93, 95, 188, 195, 442, 584, 654, 655
 corresponding, 95
 normalized, 187–189, 667
 pixel shader modifi es, 442
derivatives, partial, 353, 530, 669
destination blend factor Fdst, 403
destination pixel colors, 398
diffuse light, 325–326, 334
diffuse light color, 326
diffuse lighting, 325–326
diffuse lighting calculation, 326
diffuse material, 351, 408
diffuse material color, 326
Direct3D functions, 153, 155
Direct3D resources, 88, 155, 470
direction vector, 339, 607
directional lights, 88, 316, 342, 346
directional shadow matrix, 433
DirectX SDK, 23, 631, 749
DirectX Texture Tool, 394
displacement mapping, 175, 509, 526, 640
displacements, 2, 4, 68, 175, 509, 526, 640, 665
distance
 fog start, 411, 417
 function of, 340, 412
domain, 168, 376, 391, 514, 517, 519, 521
 normalized texture space, 391
domain shader, 168, 236, 244, 514, 517, 521, 536
dot product, 10–12, 32, 40, 67, 164, 345, 581, 713
dot product properties, 34
driver, 90, 518, 520
DXGI_FORMAT R32G32_UINT, 92, 360
DXGI_FORMAT_D16_UNORM, 96
DXGI_FORMAT_D24_UNORM_S8_UINT, 96, 142,

420, 438
DXGI_FORMAT_D32_FLOAT, 96
DXGI_FORMAT_D32_FLOAT_S8X24_UINT, 96
DXGI_FORMAT_R16G16B16A16_ UNORM, 92, 360
DXGI_FORMAT_R32_UINT, 213
DXGI_FORMAT_R8G8B8A8_SINT, 92, 205, 361
DXGI_FORMAT_R8G8B8A8_SNORM, 92, 360
DXGI_SAMPLE_DESC structure, 99
DXGI_SWAP_CHAIN_DESC, 120–122
DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_

SWITCH, 121
dynamic buffers, 310–312

E
edge vectors, 632
 corresponding texture triangle, 632
edges
 triangle’s, 34, 319, 677
elements, vertex shader output, 217, 222–223

environment map, 599–601
environment mapping, 537, 599–601
equation, parametric, 136, 163, 536, 791,
eye position, 270, 323, 326, 346

F
far plane, 183, 192, 199–201
far plane values, 199
fetch, vertex texture, 311, 553, 559–562
fetching texture samples, 492
fi eld, horizontal, 184
fi ltering, 374–376, 657–659
 anisotropic, 376
 linear, 374–376, 380
fi lters, 375, 394, 785
fi nal transformation matrices, 751
fl ashlight, 341, 356
fl atten, 239, 436
fl oat
 16-bit, 773
 32-bit, 773
 lookup vector, 598
 return, 349, 526, 531
 static, 145, 310, 777
 texture, 371
fl oat access, 686, 690
fl oat occlusion, 687, 689
fl oat offset, 80
fl oating-point imprecision, 30
fl oating-point number, 30, 630
fl oating-point numbers, 30
fl oating-point values, 362, 793
forces, 2, 4, 8–9, 143
format, 143, 155, 167, 169, 205, 213, 221, 245, 352, 360,

365–370,
 depth-buffer, 656
format DXGI, 32-bit pixel, 92, 96, 361
FPS (frames per second), 134, 143, 156, 316, 579
frame
 camera space, 541
 complete, 93, 112, 155
 origin of, 75
 previous, 134–136
 y-axes of, 74–75
 z-axes of, 74–75, 81
frame F0, 729
frame matrix, change of, 76, 81
frame of reference, 5–6, 73, 79, 81, 136, 541
frame rate, 131, 146, 156, 579
frames per second see FPS
framework, 139–154
 vector algebra, 2, 18
framework functions, 139, 149
 virtual, 139,
framework methods, 143–145

INDEX 813

front buffer, 93, 153
frustum, 94, 182–185, 191–201, 411, 517
 projector’s, 651, 674
frustum culling, 517, 537, 557–582
frustum plane equations, 193, 572
frustum planes, 571, 581
frustum properties, 542, 543
function
 interpolating, 374
 vector-valued, 633
functionality, vertex texture fetch, 310, 311

G
GameTimer, 133–134
Gaussian blur, 490, 492
Gaussian function, 490, 491
geometric interpretation, 8, 12, 44, 70, 395, 699–700
geometric primitives, 88, 168–169
geometric transformations, 2, 37, 59, 72
geometry
 arbitrary, 538, 649
 blended, 407
 non-blended, 407–8
 object’s, 175
geometry buffers, 282
geometry resolution, projected screen, 375
geometry shader, 88, 168, 171–172, 191, 219, 244, 311,

445–467
 optional, 445, 464
geometry shader body, 446, 448
geometry shader implementation, 447, 622
geometry shader inputs, 176, 399
geometry shader outputs, 445
geometry shader programs, 445, 454
geometry shader signatures, 448
geometry shader stage, 168, 191
geosphere, 279
GPGPU programming, 469–471, 485
GPU (graphics processing unit), 88, 90
GPU memory, 107, 167, 175, 191, 208, 259, 310, 365
GPU resources, 96, 126, 156, 168, 470
grass texture, 390, 392
green light, 164
grid, using triangle, 301
grid points, 309, 509
grid texture coordinate generation, 391–392
grid triangles, 304
grid vertex, 391
 ijth, 302, 391
grid vertices, 302–304
ground plane, 181, 436

H
hardware instancing, 557–558
hardware tessellation, 311, 535, 628, 640

height
 proper, 607, 610, 627
 wave, 309
height function, 305–307
heightmap, 629, 640–641
hemisphere, 676, 678, 679, 689, 695
high level shading language see HLSL
highlight, 332, 345, 594, 595, 628, 731
hills, 265, 305, 336, 390, 523, 526
HLSL (high level shading language), 216
HLSL function outputs, 346–347
HLSL shader compiler, 240
homogeneous clip space, 182–183, 189, 191, 193, 445
homogeneous coordinates, 66–67
hull shader, 168, 244, 516–520, 535
 control point, 516, 518–520

I
icosahedron, 279, 465–466
identity matrix, 43–44, 55, 67, 77, 321, 390
IDXGIFactory, 102
IDXGISwapChain::GetBuffer, 124
IDXGISwapChain::Present, 93, 144, 153, 493
IDXGISwapChain::Present method, 144, 153, 493
IDXGISwapChain::ResizeBuffers, 93
IDXGISwapChain interface, 93, 102, 155
illusion, 159, 160–162, 393, 420, 602
image
 blurred, 490, 495, 510
 grayscale, 366, 668
image borders, 502–504
image color, 99
image data, 88, 91, 93, 155, 359–370
image fi le, 364, 365, 393–395, 635
implementation, 133–135, 143–146, 216, 342–346, 453,

469
incident, 187, 218, 323, 327, 596, 607
increment, 113, 275, 290, 312, 425, 436, 577
index, linear, 462, 486
index buffer stores indices, 212
index buffers, 172, 212–216, 230, 282, 311, 474, 480
 large, 215, 262
index of refraction, 316, 327–328, 624–625
indexing, 477–479, 537, 539, 548, 558, 775
indexing and sampling textures, 477–479
indices, matrix palette, 737
indices of refraction, 327
indirect light, 318, 326, 333, 341, 357, 667, 675, 695
information, real-time using screen space, 679
initialization code, 139, 143–144
input assembler, 168–174, 211, 459, 465
input assembler stage, 168–174
input buffer, 484, 508
input image, 461, 492, 501
input layout, 203–206, 219–221, 379,

814 INDEX

 using, 206
input layout description, 204, 219–221
input parameters, 23, 216–222
input primitives, 447
input registers, 221, 293, 312
input signature, 204, 217, 219–221
input slots, 206, 211, 261
 single, 261
input texture, 389–390, 474
input texture coordinates, 389–390
input texture resources, 474
input triangle, 621
instanced buffer, 564–566, 578
 dynamic, 564
instancing, 177, 206, 212, 282, 537, 555, 557–581
instancing, advanced technique of, 206
integer indices, 478
 using, 478
integer tessellation factor values, 519
integers, unsigned, 92, 96, 166, 205, 360, 420, 458
intensity of red light, 163–164
interchanging, 42, 55
intermediate points, 527–528
interpolate rotations, 538
interpolate texture coordinates, 449
interpolated to-near-plane vector input, 683
interpolation
 bilinear, 373, 521, 657,
 repeated, 527–528
 spherical, 715, 724
intersection, nearest triangle, 589, 596
intersection points, 192, 433, 435, 592
intersection tests, 566, 571, 580, 679
 frustum/AABB, 575
 frustum/sphere, 574
 ray/sphere, 591
 ray/triangle, 566, 589, 592–594
inverses and change of coordinate matrices, 77–78
inward facing planes, 574–575
iterate, 275, 304–305, 348, 591

K
key frames, 720–723
 fi rst, 719
 last, 719
 list of, 719, 743
key texturing topics, 88

L
Lambert’s Cosine Law, 323–325, 334
large PCF kernels, 668–672
layers, 617–618
light
 array of, 354
 blue, 163–164, 316, 326

 fi rst, 666
 incoming, 316–317, 325–334, 624
 key, 357
 spot, 339, 342–355
 using colored, 357
light colors, 316
light intensity, 316, 340, 652
light mixture, 163–164
light projector, 649–651
light rays, 317–318, 339, 435, 653, 676
light receptors, 317
light scatters, 325–326, 333, 357
light source, 88, 161–162, 197, 261, 316–318, 326, 333,

339–357, 426, 432–434
light source emits, 316–7
light space, 662, 669–672
light space depth, 671–672
light strikes, 316–317, 328, 356, 606
light vector, 323–334, 339–357, 607, 640, 652
light vector aims, 333, 339, 346
lighting
 direct, 318, 357, 666
 dynamic, 628
 specular, 327–333
lighting calculations, 341, 352–356, 628
lighting demo, 351–356
lighting equation, 164, 316, 327, 333
lighting models, 315, 317, 334, 675
 real-time, 538, 675
line segment, 4–9, 31, 86, 162, 319, 466–467, 790, 799
line strip, 170, 172
linear combination, 37, 42, 56, 61, 71–2, 83
linear interpolation, 196, 373–376, 521, 527, 657
linear transformation, 45, 60–2, 65, 67–8, 70,

72, 83–4
load time, 364, 394
location, base vertex, 215
loop, 113, 135–142, 277, 661, 754
 ray/triangle intersection, 566
low intensity colors, 443

M
magnifi cation, 330, 373–375, 394, 463
magnitude, 4, 6, 9–10, 18, 31, 67, 83
map, normal/depth, 681, 690, 695
map vertex shader outputs, 217, 222
maps frame, 76, 81, 83, 85
match vertex elements, 217, 222
material mat, 337–351, 458
material values, 335, 356, 370
mathematical objects, 2, 538, 697
matrices row vectors, 38
matrix
 initialize, 50
 orthogonal, 64, 81, 85

INDEX 815

 row, 501
 square, 43–5, 48, 55
 to-parent, 730–731, 750
matrix addition, 39, 55, 703, 779
matrix algebra, 2, 37, 39, 41, 43, 45, 47–9, 51, 53, 55, 57
matrix-column vector ordering, 710
matrix elements, 712
matrix equation, 48, 55, 59, 435, 593, 632
matrix equation Ax, 593, 714
matrix inverses, 47, 48
matrix-matrix multiplication, 59, 72–3, 78, 83
matrix minors, 45
matrix multiplication, 37–48, 55–68, 72–3, 78, 81–85,

186, 218, 272, 321
matrix of pixels, 98–100, 489–490
matrix product, 40–42, 55–56, 72–76
matrix representation, 60–61, 65, 67–77, 186, 201, 724
 standard, 82–85
matrix types, 50–51
maxtessfactor, 51–520, 525
memory
 run-time, 149, 250
 video, 470, 754
mesh
 continuous, 737, 750–751
 land, 353, 390–392
 skull, 313, 567, 577, 719
mesh geometry, 590, 627–628
mesh hierarchies, 727, 729
mesh index buffer, 590, 595
mesh surface, 318, 339, 356, 392
mesh triangles, 589, 596
mesh vertices, 282, 309
messages, 118, 145–157, 238, 754–755
meters, 4–5
minifi cation, 375, 380
minimum point, 62–69, 566
mipmap chain, 375, 394–395, 462, 659
mipmap levels, 92, 126, 360, 367, 369–370, 375, 380, 394
mipmaps, 92, 126, 360, 367, 369–370, 375, 380, 394
mirror, 607, 786, 327, 330, 336, 343, 344
mirror demo, 432, 436, 439, 443
mirror pixels, 419–20
 visible, 653–4, 673
mirror plane, 426
mode
 debug, 117, 118, 149, 157, 221
 full-screen, 101, 104, 121, 129, 494,
 wireframe, 203, 242, 243, 262
model formats
 custom, 203
 standard, 753
model refl ections, 597
modelers, 162
mountains, distant, 597, 602,

multiplication, 7, 8, 778
multiprocessor, 133, 469, 471, 488
multisampling, 87, 98–101, 105, 207
 using, 209, 211

N
name, 659, 734–5, 741, 743, 745, 754, 764–5, 768, 770,

774–5, 777
NDC coordinates, 186, 649–54, 683
NDC space, 186, 193, 200, 512, 572, 580, 586, 647–52,

652, 662, 666
nearest ray/triangle intersection, 590
non-xMVECTOR parameters, 23
normal/depth, 681, 690
normal mapping, 91, 360, 371, 537–8, 627–39
normal maps, 366, 538, 573, 627–30
normal vector direction, 640
normal vector visualization technique, 466
normal vectors, 530, 538, 631, 680, 318–19
 sampled, 581
 transformed, 321
normalized range, 130, 335, 164, 187
normalized texture-coordinates, 478
normals, per-pixel, 639
null depth/stencil buffer, 207, 230, 245,404
null pixel shader, 664–5
number, random, 683
numthreads, 473, 477–9, 482, 486
NVIDIA hardware, 506, 472
NVIDIA texture tools, 601

O
OBB (oriented bounding box), 568, 580–2,
object space, 631
object space coordinates, 627–634
objects
 animated, 609, 623
 blend state, 401–3
 blended, 436, 442, 737
 cbuffer, 413–14, 455, 472, 478, 502
 child, 728–735
 distant, 410–11
 effect, 114,
 geometric, 566, 579
 global illumination models light, 318
 group of, 94, 161
 key, 609, 623
 multiple, 281,
 output XMVECTOR, 23, 25, 28, 35, 53
 sampler, 378–9
 semi-transparent, 397, 416
 single, 719, 733
 solid, 194, 685
 state, 120, 784, 785
 state group, 243–45

816 INDEX

 transparent, 316, 328, 406–7
 tree, 176,
occludes, 673, 676, 685, 687, 689
 front-facing triangles, 194, 242,
occluding points, potential, 685
occlusion, 494, 537, 538, 675
 average triangle, 677
offset transform, 732–37,
offset transformation, 732,
offset vectors, 684, 689
OM see Output Merger
OM stage, 124, 167, 197–8, 400, 442, 656
one-by-one, texture animation frames, 191, 216, 262, 613
opacity, 165, 197, 406
opaque, 617–620, 656, 660, 663
opaque scene objects, 155
operations, 360, 372,395, 399
operator, 399–406,417, 422
 overloaded, 24,27, 51, 785
oriented bounding box see OBB,568–9, 580–2
origin, 275, 279, 326, 339,
orthogonalization, 13, 14, 16, 17
orthogonalize, 13–14, 16, 17
orthographic projections, 643, 646–7, 652–3, 673
orthonormal set, 13–14
output buffer, 487, 507–8
output control point, 419–20
output image, 495,600
output merger, 124, 167–8, 197, 400,442
output merger (OM), 197–8
output merger stage, 124, 556, 167, 197
output parameters, 216–7, 223
output primitives, 445, 464
output resources, 473–4,
output signature, 240, 400
output texture, 505
output triangle lists, 448
output vertex attributes, 664, 740, 389. 415, 509
output window, 118, 157, 221, 238
output XMVECTOR, 23, 25, 28, 35, 53
outputcontrolpoints, 519–20, 525,
outputtopology, 519–20, 525,

P
parallel light rays, 339, 435, 653
parallel lights, 339, 435, 647, 553, 673
parallelogram, 35, 58, 71, 85, 790, 791
parameter passing, 21, 23, 346
parameters
 attenuation, 340, 341
 fi rst, 348, 644, 646, 648, 652, 660, 661, 669,680, 685,

702, 719, 720, 728, 732, 733, 736, 771
 second, 100, 106, 107, 129, 227, 385, 401, 558, 579,

659,
particle systems, 88, 309, 469

partitioning, 519, 525, 536
pass vertex color, 216–218, 223, 224, 272
patch
 tessellated, 190, 515, 517, 518, 521, 535, 665
patch control points, 515, 521, 522
patch vertices, tessellated, 535
patchconstantfunc, 519, 520, 525.
paused time, 136–8
 track of, 6, 131
PCF (percentage closer fi ltering), 657
PCF kernel, 660, 668–671
per-vertex materials, 556
percentage closer fi ltering see PCF, 657
performance, peak 446
performance counter, 87, 89, 132–4, 156
performance timer, 132, 156
perspective projection, 182, 189, 199, 200, 434, 555,

647–8, 652–3, 674
perspective projection matrix, 189, 199, 200,

555, 674
picking, 6, 70, 247, 537, 570, 583
picking ray, 584–9,596
ping-ponging vertex buffers, 207
pipeline, rendering, 230, 232, 234, 237, 242, 269, 361,

366, 425, 464, 470, 493, 493, 495,513, 515, 522, 534,
535, 540

pipeline stages, 88, 97, 156, 167–8,180
pixel block colors, 98
pixel center, 463, 99
pixel color, 193, 262
 fi nal, 694, 733–38
 lit, 161
 resolved, 98, 99
pixel colors,193, 262, 398,
 object’s, 265, 269
pixel formats, 87, 365–6
pixel fragments,407, 419, 438, 440, 443, 664, 665, 197,
pixel nearest, 654
pixel shader,272, 294, 319, 346–7, 358, 400, 403, 408–10,

417–8, 442, 459
 simple, 223
pixel shader alpha, 463
pixel shader body, 459
pixel shader input, 222–3
pixel shader input parameters, 222
pixel shader instructions, 410
pixel shader modifi es, 433, 694
pixel shader stage, 167–8, 196
pixels
 changing, 366, 669
 clipping408, 410
 current, 682,783
 discard, 222, 409, 410, 415, 458, 664
 edge, 463,
 extra, 504

INDEX 817

 ijth, 40, 47, 475,55, 94,302, 391, 398, 419, 440, 490
 less, 518
 neighbor, 501, 510–11, 669
 neighboring, 501,669
 opaque, 463
 particular, 95
 reject, 421, 438, 442
 rendering, 409, 417
 single, 440
 time processing, 440
 transparent, 417
 visible, 427, 653–4, 685, 695
Pixel Shader, 87–8, 167, 196
plane
 bottom, 571, 572
 complex, 699, 700
plane equations, 572–3, 581–82, 193,
player, 646, 653, 750, 4, 107, 130–1, 136
PN triangles and Catmull-clark approximations, 535
PN triangles scheme, 518
point fi ltering, 375, 380, 657
point light source, 340, 346, 434
point lights, 316, 339, 340, 346
point list, 170, 447, 171, 261
point primitives, 453, 466,
point/vector, 69, 724, 73
points, vanishing, 160–1, 182, 197
polar representation, 700, 706, 707, 724
polygon slope, 656
polygons, convex, 192
position
 given, 616
 particle, 309 487
 standard, 5, 17, 32, 86
 vertex-blended, 737
position element, 260, 442, 570
position vector, 17, 66, 71, 81, 465, 555
primitive IDs, 88, 446, 459, 460–467, 468
primitive topologies, 170
primitives, geometry shader outputs, 445
problem, depth buffer precision, 188
product, vector-matrix, 702, 784, 37, 41, 61, 72,

218, 272
program geometry shaders, 88, 446
programming geometry shaders, 446–447
project vertices, 651, 281
projection frustum, 572–3
projection matrix, 555, 572–3, 580, 587, 648–50, 653,

660,682, 144, 186–9
 orthographic, 643, 646–49, 652, 673–4
projection plane, , 647, 650, 673, 682, 182–4
projection transformation, 182, 186
projection window, 649–50, 182–7, 196, 440–1, 583–7,

596
projective texturing, 643, 649,652, 667, 673, 200, 538

 using, 652
PS see Pixel Shader

Q
quad patch, 88, 515–6, 521–22, 524, 527–34
 cubic Bézier, 526
quad vertices, 452
quality levels, 100, 105–6, 116, 119, 121, 126, 245
quantities, vector-valued, 4–5
quaternion multiplication, 703–5, 707, 715, 724
quaternion rotation operator, 709–10, 724
quaternion space, 724
quaternions, 538, 569, 701–05, 712, 713, 715, 718, 719,

724, 725, 726
 interpolated, 713, 715
 nonzero, 705, 724
QueryPerformanceCounter, 132, 134–35, 137
 using, 132
QueryPerformanceCounter function, 132, 156

R
random vectors, 683, 684
ray casting, 676, 695
ray direction, 434, 588, 592, 677
ray intersects, 584, 589, 591–92, 596, 796, 800
ray misses, 589, 591–92, 596
ray origin, 339, 584, 588, 677,
ray/triangle intersection, 566, 589, 591, 592–594, 596, 679
real numbers, 7, 30, 33, 38, 40, 44, 54, 55, 697, 698, 699,

701, 703, 704, 713, 718, 723, 789,
 properties of, 33
real part, 698, 701, 703, 707, 723, 724, 726
rebuild, 213, 457, 500, 505
rectangles, 117, 131, 246, 373, 421
 scissor, 131, 246
red light, 164, 317, 326, 357
reference vectors, 64
reference vertices, 198
refl ectance, 327, 333, 344, 675
refl ection, 88, 196, 323, 327, 328–29, 335, 420, 426, 428,

431, 494, 607, 609, 623, 625, 638, 784, 797, 799
 dynamic, 494, 610
 specular, 606–9
refl ection vector, 323, 784
refl ection vector per-pixel, 607
reinterpret, 92, 98, 221, 227–28, 245–46, 258, 361, 362,

410, 451, 483, 606, 663, 778
render-to-texture, 361, 489, 493–95, 510, 644, 653,
rendering effects, 114, 169, 259, 260
rendering pass, 270, 271, 273, 355, 555, 617, 667
 second, 695
representation, axis-angle rotation, 718
resolution textures, 374
resource, single, 155
resource bindings, 234

818 INDEX

resource format, 97, 362
result, short distances, 463
RGB components, 398, 399, 417
RGBA color vector, 197, 352, 398
right-handed coordinate systems, 6–7
rotation matrices, 64, 70, 81, 85
rotation matrix, 65, 72, 82, 85, 177, 569, 710, 718,

724, 725
 general, 84, 87
rotation transformation, 71, 88
row vector-matrix multiplication, 702
row vectors, 40–2, 49, 55, 64, 67, 70, 71, 81, 177

S
sample
 bound, 379,
 random, 684–85, 690,
 thread, 449–50
sample code, 134, 139, 764, 795
sample count, 100, 121, 245, 686
sample framework, 121, 156, 348, 464
sample framework code, 89
sample neighboring value, 670–1
sample points, random, 683, 685
sample texture, 379, 477
sampler, 97, 232, 378–384, 659, 785
 comparison, 659
sampler states, 385, 507, 784–785,
scalar multiplication, 7–8, 24, 28, 32–3, 39–40, 55, 164–5,

703, 724
scaling 2-units, 86
scaling matrix, 62, 72, 79, 82, 83, 85, 177
scaling transformation, 61, 321
scene, entire, 93, 116, 129, 155, 440, 602, 622, 653, 660
scene depth, 443, 644–46, 653–54, 673, 680–81
scene geometry, 281, 649,
scene lights, 175, 356, 431, 679
scene objects, 116, 155, 317, 577, 584, 600, 680
scene vertices, 180, 540
screen pixels, 375, 394
screen point, clicked, 533–5, 546
screen point ps, 586
screen quad, 494, 681–2
screen resolution, 98–99, 126, 498, 681
screen space, 195, 494, 583, 585, 669–72, 676,

680–695
screen space ambient occlusion see SSAO
shader
 compiled, 235, 238, 242, 418, 451
 specialized, 259–60, 389, 409,
 vertex/pixel, 680
shader code, 205, 236, 335, 409, 413, 415, 458, 487, 498,

502, 507, 511, 551, 554, 559, 635–39, 652, 660, 664,
681, 747

shader generator mechanism, 226–7

shader input, 191, 204, 217, 219, 222–23, 232, 259, 293,
312, 361, 445, 518, 519, 612, 646, 673, 694,

 control point hull, 516, 518–20, 521, 535
shader programs, 224, 230, 232–33, 235, 241, 259, 270,

293, 301, 312, 341, 356, 368, 372, 381, 386, 514, 549,
562, 603, 605, 663, 721, 741

shader resource, 97, 114, 230, 361–62, 371, 470, 474, 646,
 corresponding, 400
shader variations, 242
shades, 163, 165,
shadow, planar, 88, 162, 432–438, 538, 673
shadow acne, 654–5, 660, 673–74,
shadow cast, 433,
shadow edges, 660, 674,
shadow factor, 665–67
shadow map, 494, 537, 643–6, 649, 653–74, 740,
shadow map demo, 668
shadow map samples, 655, 657
shadow map stores, 654, 673
shadow map test, 655, 657, 667–68, 672, 674
shadow map texel, 654–5, 673
shadow map texture space, 667
shadow map values, 656, 668
shadow mapping, 261, 380, 494, 537, 643–6, 649, 653–68,

673
shadow mapping algorithm, basic, 643
shadow matrix, 434, 436, 439
 general, 435,
shadow plane, 433, 435
shadowing techniques, 538, 643
 real-time, 673
shared memory, 471–2, 487–9, 501–2, 507
shared memory array, 488
shares, 98, 99, 173, 320, 463, 603, 633, 635,
shear transform, 201, 322
SIMD, 18–20, 27, 32, 50–1, 55, 165, 197, 471, 506,
SIMD instructions, 18–19
size, wavefront, 472, 473, 506,
sized triangles, 449
 equal, 279
skin vertices, 731
skinned mesh demo, 733, 749, 751,
skull, 162, 313, 420, 426, 427, 430, 436–38, 443, 567, 577,

579, 649, 679, 694, 719, 722–23
 refl ected, 426–9,
slices, 275, 279, 621
slope-scaled-bias, 656, 673–4
SMAP, 679–80, 686–7, 694, 698
source, parallel light, 339–40, 443, 435, 647, 653,
source alpha component, 406, 408
source blend factor, 398, 403, 405–6,
source data, 96–97,
source image, 489,
source pixels, 397–8, 404–8, 416–417
space

INDEX 819

 homogeneous, 177, 180, 182–83, 193, 200, 217, 223,
434, 445, 464

 homogenous, 219, 572–3
 positive half, 191, 571, 574, 792–3
 volume of, 160, 179, 182
space coordinate system, 175–6, 541, 627, 631, 634,

639–640, 647, 649, 729
space coordinates, 179, 391, 599, 632, 633–34, 648
space depth, 671, 685
space normals, 680–81, 694
space position, 682–3, 685
space z-axis, 647, 673
spaceship, 162
specify DXGI, 121
specifying texture coordinates, 385
specular, 316, 328, 600, 606, 625, 628, 666, 694,
specular light, 327–333, 357,
 amount of, 323, 326–28, 330–31, 333,
specular term, 666, 694
sphere
 lit, 161, 315
 unlit, 144, 315
sphere intersects, 574
sphere vertices box vertices cylinder vertices, 215
spotlight, 88, 316, 341–2, 347, 356, 358, 652, 653, 674
spotlight cone, 342, 652–3, 674
spotlight factor, 342
square, 63, 65, 68, 71, 82, 84, 85, 178, 340, 598, 602, 608,

782
square matrices, 47, 49, 55
SRC, 350, 353–4, 356
SRT, 72, 161–2
SRV, 419, 435–6, 440–2, 456–7, 467–8, 562, 665
SSAO (screen space ambient occlusion), 680–82, 686,

690, 694–6
SSAO map, 681–2, 686, 690, 694–6, 740
SSAO pixel shader, 681–82
SSE2, 18–19, 21, 23, 32, 52
stacks, 275, 279
stage, clipping, 198, 576, 579–80
stencil, 88, 96–7, 99, 117, 122, 398, 404, 419–22
stencil buffer, 88, 96, 117, 122, 125–29, 143, 147, 152, 167,

197, 223, 230, 245, 404, 419–21, 424, 426–29, 432,
436–37, 605, 612, 621, 644, 680

 8-bit, 425
 updated, 427
stencil buffer entry, 425, 427–8, 436–437, 440
 corresponding, 428, 437, 440
stencil buffer operation, 441
stencil buffer pixels, 427, 436
stencil buffer tests, 197, 223
stencil buffer to prevent double blending, 432, 436–7
stencil buffer value, 436
stencil test, 99, 245, 398, 421–8, 436–38, 463
strikes, 163–4, 316–8, 324–28, 333, 339, 356–7, 606, 624,

653, 675
string, 154, 204, 236, 238, 520, 757, 762,
strips, 173, 447,
structure
 output vertex type, 446
structured buffer resources, 479–81
structured buffers, 479, 481–82, 487, 507
subdivide, 99, 279, 448, 465–6, 526
subpixels, 98–9, 463,
 visible, 99
subrectangle, 129–30
supersampling, 98–9
surface, smooth, 330–32, 335, 342, 518, 535, 633
surface colors, 356
surface normals, 318, 356, 538, 627
 specifying, 627
surface point, 323, 333–34, 353–54, 356, 411, 413, 417,

602, 652,
surface textures, 518
SV_DispatchThreadID, 473, 477–79, 482, 486, 488–89,

503–04, 511, 548
SV_GroupID, 485
SV_GroupIndex, 486
SV_GroupThreadID, 485–6, 488–89, 503–4
SV_InstanceID, 548, 555, 559, 561
SV_PrimitiveID, 454, 456–59, 464, 516, 519, 525–26, 548
SV_RenderTargetArrayIndex, 621–23
SV_TessFactor, 516–17, 525
SWAP, 153, 171,
swap chain, 93, 100–1, 116, 118, 120–22, 124–25, 143–44,

153, 155, 493
switch, 95, 121, 133, 404, 409, 471, 488, 495, 506, 508,

690, 778
system
 three-point lighting, 357–58
system memory, 208–9, 227, 247, 259, 273, 336–37, 470,

482, 564, 570, 590–91
system memory buffer, 482
system memory copy, 570, 590
system memory resource, 482
system values, 217, 507, 566

T
tangent, 261, 318, 321–22, 353–4, 529–30, 592, 738, 784
tangent plane, 318, 353, 356, 670
tangent space, 631–35, 640
tangent vectors, 261, 353–54, 385, 633, 635, 670
 per-vertex, 356
 transformed, 631
target array slice, 621, 623
target point, 181
TBN-bases, 633, 639,
technique
 advanced, 91, 130–31, 144, 152, 191, 206, 212, 214,

244, 360, 403

820 INDEX

 billboard, 451
 multi-texturing, 395
 multiple, 131, 144, 152
 render-to-texture, 489
 rendering, 144
terragen, 600–1, 624
terrain, 208, 301, 307, 397, 605
terrain surface, 353
tessellate, 88, 190, 311, 513–14, 516–18, 520, 522, 535, 628
tessellated geometry, 665
tessellating, 280, 466, 513, 517–18, 526, 535,
tessellation, 88, 172, 190–91, 198, 279, 311, 445, 464, 513,

514, 516, 520–21, 524, 535, 576, 580, 628, 640
 fractional, 519, 536
tessellation factors, 516–8, 520–1, 524, 535
 interior, 517, 520, 536
tessellation stages, 88, 190–1, 198, 311, 445, 464, 513–15,

518, 534–35, 576, 580
tessellator, 522, 526, 534–35, 628
 ray/triangle, 589
test scene, 443, 466,
tex-coords, 509, 651, 667, 689, 694, 740, 742
texel points, 373–74
texel values, 501–2
texture alpha, 409, 415, 458, 664, 681
texture animation, 360, 393
texture array, 88, 126, 365, 367, 446, 454, 459–62, 465,

539, 549, 554–55, 598, 601, 604, 611, 613, 620,
623, 785

 entire, 620–2
texture array index, 462
texture array stores, 459, 465
texture artists, 364
texture atlas, 364, 372
texture buffers, 93, 495
texture color, 375,
texture coordinate system, 362, 673
texture coordinate transformations, 390
texture coordinates
 compressed, 630
 corresponding, 363, 631
 generated, 649
 generating projective, 649, 651
 interpolated, 373, 385
 normal, 651
 normalized, 373, 478
 pair of, 363, 373
 projective, 649, 651–3, 667, 673, 685, 694
 respective, 363, 395
 transforming, 394
 unique, 373
 using, 478
texture data, 367, 369, 378, 385, 600
texture dimensions, 362, 369
texture distortion, 364, 632

texture elements, 460, 465, 507
texture fi les, 631
texture fi ltering, 378, 394, 477, 598
texture format, 100, 105, 365, 630
texture function, 376
texture functionality, 311, 673
texture geometry, 476
texture gOutput, 477
texture image, 477, 601, 628
 entire, 364, 385
texture map, 370–1, 373, 375, 380, 385, 417, 549, 628,

630, 680–1, 683, 685, 784
 random vector, 685
texture mapping, 88, 336, 359, 364, 627–8, 631
texture matrix, 390, 393, 650
 water’s, 391
texture objects, 360, 537, 539
texture outputs and unordered access, 474–77
texture plane, 390, 393, 629, 632
texture resolution, 373, 378
texture resources, 125, 167, 207, 360, 367–9, 372, 379,

474–5, 496, 507, 555, 601
texture samples, 488, 659
 reducing, 492
texture size, 478
texture space, 363, 391, 393, 631–33, 639, 649–50, 667
texture space axes, 631–2
texture space coordinates, 391
texture space plane, 393
texture stores, 91, 360, 460
texture subresources, 462
texture tiling, 88, 332
texture transform, 650
texture transformation matrix, 392, 640
texture transformations, 640
 animated, 88
texture triangle, 363, 631
texture values, 374, 488
texture vertex, 363
Texture2D, 126, 128, 208, 232, 296, 299, 360, 369–70, 384,

387, 413, 460, 472–5, 478, 486, 488–9, 497, 503, 511,
539, 549, 554, 560, 611, 645, 659, 686, 691, 784

TextureCube, 369, 598, 601, 604, 614, 623, 784
texturing, 88, 97, 126, 169, 200, 295, 335, 370–1, 374–5,

387, 538, 597–8, 602, 643, 649, 652–3, 657, 667, 673
texturing coordinate system, 631
thread group sizes, 472, 485, 498, 506
thread groups, 471–3, 477, 482, 485–9, 495, 498–99, 501,

505–8
thread ID values, 486
thread IDs, 471, 477, 485–6, 507
threads, 116, 471–3, 477, 482, 485–6, 489, 498–9, 501,
 extraneous, 498, 505
 main rendering, 113
thumb points, 6, 15

INDEX 821

time, 131–9, 144–7, 156, 160, 176, 208, 225, 237–9, 264,
281–2, 285, 301, 309, 327, 360, 362, 367, 394, 402,
428, 436, 440, 448, 464, 489, 495, 501, 506, 516,
558, 5776, 588, 645, 719,

 current, 132, 135–6
 function of, 136, 262, 357, 390–1, 393, 395, 466, 729
 initialization, 98, 110, 116, 246, 375, 386, 404, 594
 real number, 697, 698
 total, 136–7, 139
time intervals, 131, 156
time position, 743
timer, 89, 131–3, 137, 147, 156
 to-near-plane vectors, 683
 interpolated, 683
to-parent transform, 730–1, 750
transform, 69–70, 72, 79, 81, 86, 130, 175–6, 179–80,

187, 193, 195, 200–1, 217, 225, 279, 316, 321–2,
356, 389–90, 434, 445, 540, 559, 569–70, 572, 577,
583–5, 588, 596, 634–5, 639–40, 647–50, 653, 672,
682, 685, 729–38, 750, 795

transform coordinates, 2, 634
transform geometry, 730
transform quad vertices, 457
transformation matrices, 59, 80, 175, 281, 390, 737, 751,
 constructing, 59
 creating multiple world, 281
transformation matrix, 69, 81, 200, 262, 321, 392, 546,

596, 640, 667, 721, 719, 729, 732–3, 795
 affi ne, 67, 70, 185–6
 net, 59, 72
 single, 82
 to-parent, 730, 750
 translation affi ne, 78
transformations, 1–2, 37, 45, 59, 60, 66, 69–72, 75, 84, 88,

175, 177, 179, 390, 541, 581, 640, 650, 697, 721,
727, 729–30, 789

 active, 78–9, 81
 body, 70, 631
 change-of-coordinate, 541, 729
 fi nal, 733, 735, 747, 751
 identity, 67
 reverse, 180, 540
 rotation texture, 640
 sequence of, 177–8
 texture space, 650
 to-root, 732–3, 736, 750–51
transformed normal vector nA, 321
transformed point, 71, 738
transformed tangent vector, 321
 associated, 322
transforming normal vectors, 322
transforming normals, 738–9
transitions, smooth, 334, 358, 463, 519, 658, 737,
translation, 2, 37, 59, 66–8, 70, 72–3, 78–79, 81–3, 86,

177, 180, 188, 201, 322, 540, 631, 434, 647, 743, 768

translation matrix, 68, 72, 82–83, 86, 177, 201, 322
translation transformations, 68, 79
transparency, 88, 92, 195, 197, 316, 336, 398, 406, 408,

410, 428, 432, 436, 463, 595, 625, 665, 742
transpose, 37, 42–3, 47, 55–6, 58, 65, 81, 322, 634, 702,

710, 738, 795, 798
traverse, 727, 731–2, 736
tree billboard demo, 451–4, 461, 463, 467
trees, 208, 451, 460, 464
triangle centroid, 677
triangle clipping, 517
triangle count, 88, 513, 524
 low, 190
triangle density, 275
triangle duplicates, 173
triangle grid, 508
triangle grid mesh, 301, 309
triangle grid mesh vertices, 309
triangle input, 466
triangle lists, 170, 172–4, 191, 212, 445, 448
 using, 172, 174
triangle mesh, 162, 197, 318, 320, 336, 339, 356, 515, 518,

591, 596, 633, 635
 arbitrary, 308, 579
 using arbitrary, 581
triangle mesh approximation, 162
triangle patch, 515–8, 521–2, 536
 cubic Bézier, 518
 order cubic Bézier, 518
triangle patch confi gurations, 517
triangle patch tessellation examples, 521
triangle shares, 321
triangle strip, 170–73, 261, 447,
 using, 171
triangle strip vertices, 457
triangle subdivisions, 521
triangle-to-triangle, 631
triangle topology, 311
triangle vertex, 592
triangle vertices, 194, 466, 631–2
triangles
 acute angled, 364
 adjacent, 170–2
 back-facing, 194–5, 242
 clipped, 192, 580
 corresponding, 363
 discards, 576, 580
 extra, 190
 facing, 424–5
 fl attened, 436
 front-facing, 194, 242–3
 left, 194
 mapped, 631
 neighboring, 171
 new, 190, 526

822 INDEX

 ordinary, 518
 overlapping, 436
 picked, 590, 594–5
 right, 194
 right angled, 364
 slice, 278
 subdivided, 448
 tessellated, 515
 top, 450
 translating, 466
 using, 279
triangles form, 162
triple buffering, 93
trivial access function, 142
typeless formats, 92, 361–2

U
UAV (Unordered Access Views), 474–77, 480–82, 495,

496, 507, 508
unit length, 10, 12–14, 64, 81, 85, 322, 331, 333, 354, 466,

546, 581, 592, 632, 633, 710, 713, 792
unit quaternions, 538, 697–98, 705, 707–12, 715, 724
unit sphere, 280, 354, 465, 713, 715–16
unordered access views see UAV
UNORM depth buffer format, 656
UNORM format, 263, 630, 656
updating, 227, 271, 354–55, 453

V
valid depth/stencil buffer formats, 438
valleys, 265, 307, 309
values
 approximate, 373
 decremented, 425
 incremented, 425
 maximum, 425
 stencil, 152
vector addition, 7–8, 19, 24, 28, 32
 geometric interpretation of, 8, 12, 70–71, 395
vector coordinates, 6, 600
 lookup, 598–609, 623, 784
vector dot product function, 345
vector functions, 3, 26–30, 165, 197
vector-matrix multiplications, 72, 77
vector operations, 7, 26, 33, 164, 197
vector part, 701–708
 imaginary, 701, 704
vector/point, 75, 81
vector properties, 33
vector subtraction, 8, 28
vectors
 32-bit fl oat, 205
 bitangent, 633
 column, 38–41, 55
 coordinate, 61

 displacement, 68, 70
 distributed, 684–685
 fi rst, 15, 787
 incident, 624–625, 784
 incoming light ray, 624
 ith column, 593, 714
 jth column, 40, 55
 lookup, 598–609, 623, 784
 normalized, 30, 487
 orthogonal, 12, 16, 34
 orthogonal set of, 13–14
 orthonormal, 17, 555
 orthonormal axis, 581
 returned, 15, 27
 right, 545, 555
 signed integer, 205
 texture coordinate, 390
 transform, 322, 589
 transforming, 80, 634, 710
 translation, 67, 743
 unsigned integer, 205
 using, 9, 17–18
vectors and coordinate systems, 5–6
velocities, 2, 4
vertex
 arbitrary, 320, 633
 fi rst, 212, 215
 ijth, 391
 last, 277
 middle, 320
 object’s, 176
vertex arrays, 172
vertex attributes, 195–6, 222, 415
vertex basis, 259, 335
vertex buffer storing, 523, 532
vertex buffers, 207–212
 array of, 211
 concatenated, 282
 corresponding, 214
 corresponding local, 215
 dynamic, 265, 309–311
 global, 214
 ith, 213
 large, 262
 special initialization, 000
 start binding, 211
 static, 453,312
 using, 214
 using dynamic, 265, 311–12
vertex buffer’s memory, 212
vertex colors, 316, 336, 356
vertex component, 206
vertex data, 309, 311, 352, 363
vertex depth values, 195
vertex elements, 205, 206, 217, 221, 284

INDEX 823

vertex formats, 169, 204
 custom, 203, 259
vertex heights change, 311
vertex IDs, 459, 465, 467
vertex/index buffers, 172, 286
vertex index values, 459, 465, 467
vertex level, 339, 352, 627
vertex lighting calculation, 319
vertex list, 174, 198, 445, 570
vertex normals, 318–321, 339, 352, 466
vertex points, 318–19, 356
vertex positions, 191, 265, 445, 521
 fi rst sphere, 215
 tessellated, 521
vertex shader, simple, 472–73
vertex shader acts, 521, 535, 622
vertex shader body, 459
vertex shader fragment, 738
vertex shader function, 175, 416
vertex shader input parameters, 217
vertex shader input signature, 204, 259
vertex shader output, 222–23
vertex shader parameters, 217, 222
vertex shader signature, 459, 465
vertex shader stage, 175
vertex shader structure order, corresponding, 263
vertex structure, 204–7, 453–54
 custom, 217
vertex structure order, 263
vertex texture coordinates, 363, 373, 395
vertex type, 210, 446–47
vertex vertices, 210
vertical fi eld, 183–84
vertices
 array of, 173–174
 duplicate, 173
 generated, 88, 513, 523
 list of, 169, 445, 447
 maximum number of, 446, 457
 new, 279, 311, 465, 519
 object’s, 433, 435
 outgoing, 447, 459
 unique, 174, 275
 vertex shader inputs, 445, 535
vertices output, 448
viewer, 93–96, 155–161, 179, 194–195, 317, 464
viewpoint, 194, 326, 328, 599, 615, 646, 653, 655, 673
viewport, 109, 117, 129–131, 150, 193–194, 246, 263,

585–586, 611–623, 644–645
viewport matrix, 585
virtual camera, 17, 87, 159, 167, 179, 198
vM, vector-matrix product, 80

W
w-coordinate, negative, 434

wall, 88, 318, 326, 373–375, 408, 420, 426–427
water, 6, 73, 301, 316, 329, 354, 391
water geometry, 391
water pixels, 397
water texture, 391, 393
waves, 301–302, 307–311, 351, 390, 508, 640–641
waves demo, 301–302, 307–311, 351, 390
waves vertex shader, 508
weights, 83, 320, 490–491
winding order, 171, 173, 195, 431–432
wireframe, 203, 243, 302, 466
work
 computation, 488–489
 specialized, 259–260
world, combined, 225, 229
world coordinate system, 176, 179–180, 198
world coordinates, 541, 556, 634
world matrices, 282
world matrix, 176–180, 229, 271, 438, 540, 631, 634
 skull’s, 723
world space axes, 556, 599, 600
world space coordinates, 179, 599, 634
world space fl oat, 351
world transform, 176–179, 262, 279, 281, 434, 570, 730,

731, 737
world transformation matrix, 262
world-view-projection matrix, combined, 229
world y-axis, 181, 545

X
XM_NO_OPERATOR_OVERLOADS, 24–28, 50–55
XMCOLOR, 166–69, 197, 260,
XMColorModulate, 165
XMConvertToDegrees, 25, 29
XMConvertToRadians, 25, 229, 254, 547–48, 722
XMFLOAT, 20
XMFLOAT2, 19–21
XMFLOAT3, 19–21
XMFLOAT4, 19–21
XMFLOAT4X4 ,51, 55
XMLoadColor, 167
XMMATRIX ViewProj, 272, 617
XMMATRIX world, 230, 252, 271, 578
XMMATRIX class, 50, 53, 55
XMMatrixAffi neTransformation, 720–21
XMMatrixDeterminant, 52, 54–55, 272, 577–78, 617, 795
XMMatrixIdentity, 52–3, 55
XMMatrixInverse, 52, 54, 55, 272, 322, 573, 577–78, 617,

795
XMMatrixIsIdentity, 52
XMMatrixLookAtLH, 181–2,230, 661
XMMatrixMultiply, 52,55, 272, 578, 589,617, 736
XMMatrixPerspectiveFovLH, 189–90, 252, 469, 544
XMMatrixRefl ect, 431, 799
XMMatrixRotationAxis, 80, 545

824 INDEX

XMMatrixRotationAxis function, 545
XMMatrixRotationX, 79
XMMatrixRotationY, 79, 545, 661
XMMatrixRotationZ, 79
XMMatrixScaling, 79, 286, 393
XMMatrixScalingFromVector, 79
XMMatrixShadow, 436,
XMMatrixTranslation, 80, 286–7, 438
XMMatrixTranslationFromVector, 80
XMMatrixTranspose, 52–4, 230, 252, 271, 501, 617
XMPlaneDotCoord, 793
XMPlaneDotNormal, 794
XMPlaneFromPointNormal, 794
XMPlaneFromPoints, 794
XMPlaneIntersectLine, 797, 800
XMPlaneNormalize, 794–5
XMPlaneTransform, 794–5
XMQuaternionConjugate, 718
XMQuaternionIdentity, 718
XMQuaternionLength, 718
XMQuaternionMultiply, 718
XMQuaternionNormalize, 718
XMQuaternionRotationAxis, 718, 722
XMQuaternionRotationNormal, 718
XMQuaternionSlerp, 719–20
XMStoreColor, 167

XMStoreFloat, 21
XMStoreFloat2, 21
XMStoreFloat3, 281,354–55, 431,545
XMStoreFloat4, 21, 36, 722,
XMStoreFloat4x4, 55, 230, 272, 287, 393, 438, 496, 544,

617, 720
XMVector3AngleBetweenVectors, 27, 29
XMVector3ComponentsFromNormal, 27, 29
XMVector3Cross, 27–8, 32, 276, 319, 546, 678
XMVector3Dot, 27–8, 32, 546
XMVector3Equal, 27, 29
XMVector3Length, 26–8, 30, 32
XMVector3LengthSq, 27, 32,
XMVector3Normalize, 27–8, 30, 32, 276, 218, 319, 354,

546, 568, 589, 678
XMVector3NotEqual, 27, 29
XMVector3Orthogonal, 27
XMVector3Transform, 80
XMVector3TransformCoord, 80, 589, 661
XMVector3TransformNormal, 80, 431, 545, 589, 661
XMVectorReplicate, 25–6, 545
XMVectorSet, 21,26, 28, 30, 36, 182, 230, 252, 322, 431,

438, 588, 661, 720, 722, 793
XMVectorSplatOne, 25–6
XNA collision library, 572

