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INTRODUCTION

Direct3D 12 is a rendering library for writing high-performance 3D graphics
applications using modern graphics hardware on various Windows 10 platforms
(Windows Desktop, Mobile, and Xbox One). Direct3D is a low-level library
in the sense that its application programming interface (API) closely models
the underlying graphics hardware it controls. The predominant consumer of
Direct3D is the games industry, where higher level rendering engines are built
on top of Direct3D. However, other industries need high performance interactive
3D graphics as well, such as medical and scientific visualization and architectural
walkthrough. In addition, with every new PC being equipped with a modern
graphics card, non-3D applications are beginning to take advantage of the GPU
(graphics processing unit) to offload work to the graphics card for intensive
calculations; this is known as general purpose GPU computing, and Direct3D
provides the compute shader API for writing general purpose GPU programs.
Although Direct3D 12 is usually programmed from native C++, the SharpDX
team (http://sharpdx.org/) is working on .NET wrappers so that you can access
this powerful 3D graphics API from managed applications.

This book presents an introduction to programming interactive computer
graphics, with an emphasis on game development, using Direct3D 12. It teaches
the fundamentals of Direct3D and shader programming, after which the reader
will be prepared to go on and learn more advanced techniques. The book is
divided into three main parts. Part I explains the mathematical tools that will be
used throughout this book. Part II shows how to implement fundamental tasks

XXV
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in Direct3D, such as initialization; defining 3D geometry; setting up cameras;
creating vertex, pixel, geometry, and compute shaders; lighting; texturing;
blending; stenciling; and tessellation. Part III is largely about applying Direct3D
to implement a variety of interesting techniques and special effects, such as
working with animated character meshes, picking, environment mapping, normal
mapping, real-time shadows, and ambient occlusion.

For the beginner, this book is best read front to back. The chapters have been
organized so that the difficulty increases progressively with each chapter. In this
way, there are no sudden jumps in complexity leaving the reader lost. In general,
for a particular chapter, we will use the techniques and concepts previously
developed. Therefore, it is important that you have mastered the material of a
chapter before continuing. Experienced readers can pick the chapters of interest.

Finally, you may be wondering what kinds of games you can develop after
reading this book. The answer to that question is best obtained by skimming
through this book and seeing the types of applications that are developed. From
that you should be able to visualize the types of games that can be developed based
on the techniques taught in this book and some of your own ingenuity.

INTENDED AUDIENCE

This book was designed with the following three audiences in mind:
1. Intermediate level C++ programmers who would like an introduction to 3D
programming using the latest iteration of Direct3D.

2. 3D programmers experienced with an API other than DirectX (e.g., OpenGL)
who would like an introduction to Direct3D 12

3. Experienced Direct3D programmers wishing to learn the latest version of
Direct3D.

PREREQUISITES

It should be emphasized that this is an introduction to Direct3D 12, shader
programming, and 3D game programming; it is #ot an introduction to general
computer programming. The reader should satisfy the following prerequisites:

1. High School mathematics: algebra, trigonometry, and (mathematical)
functions, for example.

2. Competence with Visual Studio: should know how to create projects, add files,
and specify external libraries to link, for example.
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3. Intermediate C++ and data structure skills: comfortable with pointers,
arrays, operator overloading, linked lists, inheritance and polymorphism, for
example.

4. Familiarity with Windows programming with the Win32 API is helpful, but
not required; we provide a Win32 primer in Appendix A.

REQUIRED DEVELOPMENT TOOLS AND
HARDWARE

The following are needed to program Direct3D 12 applications:

1. Windows 10.
2. Visual Studio 2015 or later.

3. A graphics card that supports Direct3D 12. The demos in this book were
tested on a Geforce GTX 760.

USING THE DIRECTX SDK DOCUMENTATION AND
SDK SAMPLES

Direct3D is a huge API and we cannot hope to cover all of its details in this one
book. Therefore, to obtain extended information it is imperative that you learn
how to use the DirectX SDK documentation. The most up to date documentation
will be available on MSDN:

https://msdn.microsoft.com/en-us/library/windows/desktop/
dn899121%28v=v5.85%29.aspx

Figure 1 shows a screenshot of the online documentation.

The DirectX documentation covers just about every part of the DirectX APIL
therefore it is very useful as a reference, but because the documentation doesn’t go
into much depth or assumes some previous knowledge, it isn’t the best learning
tool. However, it does get better and better with every new DirectX version released.

As said, the documentation is primarily useful as a reference. Suppose you
come across a DirectX related type or function, say the function 1p3p12pevice::c
reateCommittedResource, Which you would like more information on. You simply
do a search in the documentation and get a description of the object type, or in
this case function; see Figure 2.

ooy [ this book we may direct you to the documentation for further details from
time to time.
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We would also like to point out the available Direct3D 12 sample programs that
are available online:
https://github.com/Microsoft/DirectX-Graphics-Samples
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More samples should come in the future, and also be on the lookout for
Direct3D 12 samples on NVIDIA’s, AMD’s, and Intel’s websites.

CLARITY

Although we strive to write efficient code and follow best Direct3D 12
programming practices, the main goal of each sample program is to demonstrate
Direct3D concepts or graphics programming techniques. Writing the most
optimal code was not the goal, and would likely obfuscate the ideas trying to be
illustrated. Keep this in mind if you are using any of the sample code in your own
projects, as you may wish to rework it for better efficiency. Moreover, in order
to focus on the Direct3D API, we have built minimal infrastructure on top of
Direct3D. This means we hardcode values and define things in the source code
that might normally be data driven. In a large 3D application, you will likely
implement a rendering engine on top of Direct3D; however, the topic of this book
is the Direct3D API, not rendering engine design.

SAMPLE PROGRAMS AND ONLINE SUPPLEMENTS

The website for this book (www.d3dcoder.net and www.merclearning.com) plays
an integral part in getting the most out of this book. On the website you will find
the complete source code and project files for every samples in this book. In many
cases, DirectX programs are too large to fully embed in a textbook; therefore, we
only embed relevant code fragments based on the ideas being shown. It is highly
recommended that the reader study the corresponding demo code to see the
program in its entirety. (We have aimed to make the demos small and focused for
easy study.) As a general rule, the reader should be able to implement a chapter’s
demo(s) on his or her own after reading the chapter and spending some time
studying the demo code. In fact, a good exercise is trying to implement the
samples on your own using the book and sample code as a reference.

DEMO PROJECT SETUP IN VISUAL STUDIO 2010

The demos for this book can be opened simply by double clicking the
corresponding project file (.vcxproj) or solution file (.sln). This section describes
how to create and build a project from scratch using the book’s demo application
framework using Visual Studio 2015 (VS15). As a working example, we will show
how to recreate and build the “Box” demo of Chapter 6.
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Download the Book’s Source Code

First, download the book’s source code to some folder on your hard drive. For
the sake of discussion, we will assume this folder is C:\d3d12book. In the source
code folder, you will see a list of folders for each chapter. Each folder contains the
code projects for the given chapter. Note also a folder called Common; this folder
contains shared source code that is reused in all of the demo projects. Now, in
the source code folder, create a new folder where you want to store your demos.
For example, C:\d3d12book\MyDemos. This folder is where you will create new
projects based on the book’s sample framework.

oo~ ['his directory structure is not completely necessary, but it is the structure the

book demos follow. If you are comfortable with setting additional include paths,
you can put your demo projects anywhere so long as you direct Visual Studio
how to find the source code in the Common directory.

Create a Win32 Project

First launch VS15, then go to the main menu and select File->New->Project, as
shown in Figure 3.

The New Project dialog box will appear (Figure 4). Select Visual C++ > Win32
from the Visual C++ Project Types tree control on the left. On the right, select
Win32 Project. Next, give the project a name and specify the location you wish
to store the project folder. Also uncheck Create directory for solution, if it is
initially checked by default. Now hit OK.

A new dialog box will appear. On the left, there are two options: Overview and
Application Settings. Select Application Settings, which produces the dialog box
shown in Figure 5. From here, be sure that Windows application is chosen, and
the Empty project box is checked. Now press the Finish button. At this point, you
have successfully created an empty Win32 project, but there are still some things
to do before you can build a DirectX project demo.

Start Page - Microsoft Visual Studio

File

|

Edit View Debug Team Data Tools Test Window Help

New * |G Project.. Ctrl+Shift+N
Gy * | '@ Website. Shift+Alt+N
Close 33 Team Project...

Close Solution 1 File.. Ctrl+N

Save Selected Items Ctrl+S Project From Existing Code...

Save Selected Items As... |

Figure 3. Creating a new project.
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Figure 5. Application settings.

Linking the DirectX Libraries

XXXI

We link the necessary library files through the source code using #pragmas in

Common/d3dApp.h like so:

// Link
#pragma
#pragma
#pragma

necessary d3dl2 libraries.
comment (lib, "d3dcompiler.lib")
comment (1lib, "D3D12.1lib")
comment (1lib, "dxgi.lib")
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For making demo applications, this saves us from the additional step of
opening the project property pages and specifying additional dependencies under
the Linker settings.

Adding the Source Code and Building the Project

Finally, our project setup is complete. We can now add our source code files to the
project and build it. First, copy the “Box” demo source code (d3d12book\Chapter 6
Drawing in Direct3D\Box) BoxApp.cpp and the Shaders folder to your project’s
directory.

Solution Explorer
2 O ﬁl ‘@v = @r@|’.—

Search Solution Explorer (Ctrl+;) Pl

RJ Solution 'MyD3D12Project’ (1 project)
4 [%] MyD3D12Project
& External Dependencies
4 o] Header Files
Camera.h
b d3dApp.h
b d3dUtil.h
b A didx12h
b [ DDSTextureLoader.h
b [ GameTimer.h
[A GeometryGenerator.h
b [B MathHelper.h
b [@ UploadBuffer.h
b =@ References
Resource Files
4 .| Source Files
b ++ BoxApp.cpp
++ Camera.cpp
++ d3dApp.cpp
++ d3dUtil.cpp
++ DDSTextureLoader.cpp
++ GameTimer.cpp
++ GeometryGenerator.cpp
++ MathHelper.cpp

LM LY SSILIETY Team Explorer Class View

Figure 6. Solution Explorer after adding the required source code files for the “Box” demo.

After you copy the files, follow these steps to add the code to your project.

1. Right click on the project name under the Solution Explorer and select Add
> Existing Item... from the dropdown menu, and add BoxApp.cpp to the
project.



INTRODUCTION  XXXIII

2. Right click on the project name under the Solution Explorer and select Add >
Existing Item... from the dropdown menu, navigate to where you placed the
book’s Common directory code, and add all the .h/.cpp files from that directory
to the project. Your solution explorer should look like Figure 6.

3. Right click on the project name under the Solution Explorer and select
Properties from the context menu. Under Configuration Properties >
General tab, make sure the Target Platform Version is set to version 10.x to
target Windows 10. Then click Apply.

4. The source code files are now part of the project, and you can now go to
the main menu, and select Debug->Start Debugging to compile, link, and
execute the demo. The application in Figure 7 should appear.

;Bﬂdlw’pu‘;ﬂmm;ﬁ‘ﬁm - B x|

Figure 7. Screenshot of the “Box” demo.

ooy Alotof the code in the Common directory is built up over the course of the book.
So we recommend that you do not start looking through the code. Instead, wait
until you are reading the chapter in the book where that code is covered.






MATHEMATICAL
Part PREREQUISITES

“For the things of this world cannot be made
known without a knowledge of mathematics. "

Roger Bacon, Opus Majus part 4 Distinctia Prima cap 1, 1267.

by their very nature, crunch numbers. Thus the problem of how to

convey a world to a computer arises. The answer is to describe our
worlds, and the interactions therein, completely mathematically. Consequently,
mathematics plays a fundamental role in video game development.

In this prerequisites part, we introduce the mathematical tools that will be
used throughout this book. The emphasis is on vectors, coordinate systems,
matrices, and transformations, as these tools are used in just about every
sample program of this book. In addition to the mathematical explanations,
a survey and demonstration of the relevant classes and functions from the
DirectX Math library are provided.

Note that the topics covered here are only those essential to understanding
the rest of this book; it is by no means a comprehensive treatment of video
game mathematics, as entire books are devoted to this topic. For readers
desiring a more complete reference to video game mathematics, we recommend
[Verth04] and [Lengyel02].

‘ r ideo games attempt to simulate a virtual world. However, computers,
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Chapter 1, Vector Algebra: Vectors are, perhaps, the most fundamental mathematical
objects used in computer games. We use vectors to represent positions, displacements,
directions, velocities, and forces, for example. In this chapter, we study vectors and the
operations used to manipulate them.

Chapter 2, Matrix Algebra: Matrices provide an efficient and compact way of
representing transformations. In this chapter, we become familiar with matrices and
the operations defined on them.

Chapter 3, Transformations: This chapter examines three fundamental geometric
transformations: scaling, rotation, and translation. We use these transformations
to manipulate 3D objects in space. In addition, we explain change of coordinate
transformations, which are used to transform coordinates representing geometry from
one coordinate system into another.



VECTOR
ALGEBRA

Chapter

Vectors play a crucial role in computer graphics, collision detection, and physical
simulation, all of which are common components in modern video games. Our
approach here is informal and practical; for a book dedicated to 3D game/graphics
math, we recommend [Verth04]. We emphasize the importance of vectors by
noting that they are used in just about every demo program in this book.

Objectives:

1. To learn how vectors are represented geometrically and numerically.
2. To discover the operations defined on vectors and their geometric applications.

3. To become familiar with the vector functions and classes of the DirectXMath
library.
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1.1 VECTORS

A vector refers to a quantity that possesses both magnitude and direction. Quantities
that possess both magnitude and direction are called vector-valued quantities.
Examples of vector-valued quantities are forces (a force is applied in a particular
direction with a certain strength—magnitude), displacements (the net direction
and distance a particle moved), and velocities (speed and direction). Thus, vectors
are used to represent forces, displacements, and velocities. In addition, we also use
vectors to specify pure directions, such as the direction the player is looking in a 3D
game, the direction a polygon is facing, the direction in which a ray of light travels,
or the direction in which a ray of light reflects off a surface.

A first step in characterizing a vector mathematically is geometrically: We
graphically specify a vector by a directed line segment (see Figure 1.1), where the
length denotes the magnitude of the vector and the aim denotes the direction
of the vector. We note that the location in which we draw a vector is immaterial
because changing the location does not change the magnitude or direction (the
two properties a vector possesses). Therefore, we say two vectors are equal if and
only if they have the same length and they point in the same direction. Thus, the
vectors u and v drawn in Figure 1.1a are actually equal because they have the same
length and point in the same direction. In fact, because location is unimportant
for vectors, we can always translate a vector without changing its meaning (since a
translation changes neither length nor direction). Observe that we could translate
u such that it completely overlaps with v (and conversely), thereby making them
indistinguishable—hence their equality. As a physical example, the vectors u and v
in Figure 1.1b both tell the ants at two different points A and B to move north ten

v
Head

wot

S u
Tail %{\
4 %(\ A
X

(@ (b)

[so]

Figure 1.1. (a) Vectors drawn on a 2D plane. (b) Vectors instructing ants to move 10 meters north.



VECTOR ALGEBRA O

meters from where they are. Again we have that u = v. The vectors themselves are
independent of position; they simply instruct the ants how to move from where
they are. In this example, they tell the ants to move north (direction) ten meters

(length).

1.1.1 Vectors and Coordinate Systems

We could now define useful geometric operations on vectors, which can then
be used to solve problems involving vector-valued quantities. However, since
the computer cannot work with vectors geometrically, we need to find a way of
specifying vectors numerically instead. So what we do is introduce a 3D coordinate
system in space, and translate all the vectors so that their tails coincide with the
origin (Figure 1.2). Then we can identify a vector by specifying the coordinates
of its head, and write v = (x, y, z) as shown in Figure 1.3. Now we can represent a
vector with three £1o0ats in a computer program.

o~y [fworking in 2D, then we just use a 2D coordinate system and the vector only
has two coordinates: v = (x, y) and we can represent a vector with two floats in
a computer program.

Consider Figure 1.4, which shows a vector v and two frames in space. (Note
that we use the terms frame, frame of reference, space, and coordinate system to
all mean the same thing in this book.) We can translate v so that it is in standard
position in either of the two frames. Observe, however, that the coordinates of
the vector v relative to frame A are different than the coordinates of the vector v
relative to frame B. In other words, the same vector v has a different coordinate
representation for distinct frames.

+Y
A
+Y
\'4
7 v=(y.2)
> X y
z

Figure 1.2. We translate v so that its tail coincides with = +X

the origin of the coordinate system. When a vector’s

tail coincides with the origin, we say that it is in standard Figure 1.3. A vector specified by coordinates relative

position. to a coordinate system.
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v=(%y)
x

y 1 v=Ly)

Frame A

Frame B

Figure 1.4. The same vector v has different coordinates when described relative to different frames.

The idea is analogous to, say, temperature. Water boils at 100° Celsius or 212°
Fahrenheit. The physical temperature of boiling water is the same no matter the
scale (i.e., we can’t lower the boiling point by picking a different scale), but we
assign a different scalar number to the temperature based on the scale we use.
Similarly, for a vector, its direction and magnitude, which are embedded in the
directed line segment, does not change; only the coordinates of it change based
on the frame of reference we use to describe it. This is important because it means
whenever we identify a vector by coordinates, those coordinates are relative to
some frame of reference. Often in 3D computer graphics, we will utilize more
than one frame of reference and, therefore, we will need to keep track of which
frame a vector’s coordinates are relative to; additionally, we will need to know how
to convert vector coordinates from one frame to another.

o~y We see that both vectors and points can be described by coordinates (x, y, z)
relative to a frame. However, they are not the same; a point represents a location
in 3-space, whereas a vector represents a magnitude and direction. We will have
more to say about points in §1.5.

1.1.2 Left-Handed Versus Right-Handed Coordinate Systems

Direct3D uses a so-called left-handed coordinate system. If you take your left
hand and aim your fingers down the positive x-axis, and then curl your fingers
towards the positive y-axis, your thumb points roughly in the direction of the
positive z-axis. Figure 1.5 illustrates the differences between a left-handed and
right-handed coordinate system.

Observe that for the right-handed coordinate system, if you take your right
hand and aim your fingers down the positive x-axis, and then curl your fingers
towards the positive y-axis, your thumb points roughly in the direction of the
positive z-axis.
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+Y +Y

+Z

+X +X

+Z

Figure 1.5. On the left we have a left-handed coordinate system. Observe that the positive z-axis goes into
the page. On the right we have a right-handed coordinate system. Observe that the positive z-axis comes
out of the page.

1.1.3 Basic Vector Operations

We now define equality, addition, scalar multiplication, and subtraction on vectors
using the coordinate representation. For these four definitions, let u = (u,, u, ;)
and v=(v,, v, vz).

1. Two vectors are equal if and only if their corresponding components are
equal. Thatis,u=vifand onlyifu,=v, u,=v, and u,=v,

2. We add vectors component-wise: u+v= (1, + v, , + v, u, +v,) Observe that it
only makes sense to add vectors of the same dimension.

3. We can multiply a scalar (i.e., a real number) and a vector and the result
is a vector. Let k be a scalar, then ku = (ku,, ku,, ku,). This is called scalar
multiplication.

4. We define subtraction in terms of vector addition and scalar multiplication.
Thatis,u—v=u+(=1-v)=u+ (=) = (U= Vs, tty = V), ti,— V).

I=" Example 1.1

Letu=(1,2,3),v=(1,2,3),w=(3,0,-2),and k= 2. Then,
1. u+w=(1,2,3)+(3,0,-2)=(4,2,1);

2. u=v;
3.u-v=u+(-v)=(1,2,3)+(-1,-2,-3)=(0,0,0) =0;
4. kw=2(3,0,-2) = (6,0, —4)

The difference in the third bullet illustrates a special vector, called the zero-vector,
which has zeros for all of its components and is denoted by 0.
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I=" Example 1.2

We will illustrate this example with 2D vectors to make the drawings simpler. The
ideas are the same as in 3D; we just work with one less component in 2D.

1. Let v=(2, 1) How do v and —1v compare geometrically? We note that
—1iv= (_1, —%) Graphing both v and —1v (Figure 1.6a), we notice that

—1v is in the direction directly opposite of v and its length is 1/2 that of
v. Thus, geometrically, negating a vector can be thought of as “flipping" its
direction, and scalar multiplication can be thought of as scaling the length of

a vector.

2. Let u=(2, %) and v = (1, 2). Then u+v =(3,%). Figure 1.6b shows what
vector addition means geometrically: We parallel translate u so that its tail
coincided with the head of v. Then, the sum is the vector originating at the
tail of v and ending at the head of the translated u. (We get the same result if
we keep u fixed and translate v so that its tail coincided with the head of u. In
this case, u + v would be the vector originating at the tail of u and ending at
the head of the translated v.) Observe also that our rules of vector addition
agree with what we would intuitively expect to happen physically when we
add forces together to produce a net force: If we add two forces (vectors) in
the same direction, we get another stronger net force (longer vector) in that
direction. If we add two forces (vectors) in opposition to each other, then we
get a weaker net force (shorter vector). Figure 1.7 illustrates these ideas.

3. Let u= (2, %) andv=(1,2).Then v—u= (—1, %) Figure 1.6¢ shows what
vector subtraction means geometrically. Essentially, the difference v — u gives
us a vector aimed from the head of u to the head of v. If we instead interpret
u and v as points, then v — u gives us a vector aimed from the point u to
the point v; this interpretation is important as we will often want the vector

+Y +Y

>
A
2 2

v=(21)

>
) w= @’HB

+X +X

—1/2v = (-1,-1/2)

(2) (b) ()
Figure 1.6. (a) The geometric interpretation of scalar multiplication. (b) The geometric interpretation of vector
addition. (c) The geometric interpretation of vector subtraction.



VECTOR ALGEBRA 9

&
J
%
F Qv
F, +F,

/ / =F

Figure 1.7. Forces applied to a ball. The forces are combined using vector addition to get a net force.

aimed from one point to another. Observe also that the length of v — u is the
distance from u to v, when thinking of u and v as points.

1.2 LENGTH AND UNIT VECTORS

Geometrically, the magnitude of a vector is the length of the directed line
segment. We denote the magnitude of a vector by double vertical bars (e.g., ||ul|
denotes the magnitude of u). Now, given a vector u = (x, y, z), we wish to compute
its magnitude algebraically. The magnitude of a 3D vector can be computed by
applying the Pythagorean theorem twice; see Figure 1.8.

First, we look at the triangle in the xz-plane with sides x, z, and hypotenuse a.

From the Pythagorean theorem, we have a =+/x* +z>. Now look at the triangle
with sides 4, y, and hypotenuse ||u||. From the Pythagorean theorem again, we
arrive at the following magnitude formula:

2
[ul[=/y”* +a’ =\/y2+(\/x2 +zz) =\/x2 +y +2° (eq.1.1)

For some applications, we do not care about the length of a vector because
we want to use the vector to represent a pure direction. For such direction-only

+Y
A

7 u=(xy2)

Figure 1.8. The 3D length of a vector can be computed by applying the Pythagorean theorem twice.
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vectors, we want the length of the vector to be exactly 1. When we make a vector
unit length, we say that we are normalizing the vector. We can normalize a vector
by dividing each of its components by its magnitude:

=2 (x 4 ZJ (eq. 1.2)

[l Clell uf]full
To verify that this formula is correct, we can compute the length of u:

i - -

||| ||ul]

A

u

So u isindeed a unit vector.

12" Example 1.3
Normalize the vector v= (-1, 3, 4). We have ||v||= \/(—1)2 +32+4% =\26. Thus,

Q—JL—(_ 1 3 4j
vl \ v26 V26 V26 )

To verify that v is indeed a unit vector, we compute its length:
2 2 2
1 3 4 1 9 16
=/ - + + = |—+—+—=1=1.
J( =) &) E) e

1.3 THE DOT PRODUCT

The dot product is a form of vector multiplication that results in a scalar value; for
this reason, it is sometimes referred to as the scalar product. Let u = (u,, u,, u,) and
v = (v, vy, V), then the dot product is defined as follows:

A

A\

wv=uy, tuy, +uy, (eq. 1.3)

In words, the dot product is the sum of the products of the corresponding

components.
The dot product definition does not present an obvious geometric meaning.
Using the law of cosines (see Exercise 10), we can find the relationship,

u-v =|[ul|||v|| cosO (eq. 1.4)
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(a) (b)

Figure 1.9. In the left figure, the angle 6 between u and v is an acute angle. In the right figure, the angle 0
between u and v is an obtuse angle. When we refer to the angle between two vectors, we always mean the
smallest angle, that is, the angle 0 such that 0< 0 < m.

where 0 is the angle between the vectors u and v such that 0 <0 <1 ; see Figure 1.9.
So, Equation 1.4 says that the dot product between two vectors is the cosine of the
angle between them scaled by the vectors’ magnitudes. In particular, if both u and v
are unit vectors, then u - v is the cosine of the angle between them (i.e.,u - v=cos 0).
Equation 1.4 provides us with some useful geometric properties of the dot
product:
1. Ifu-v=0, then u_L v (i.e., the vectors are orthogonal).

2. If u - v > 0, then the angle 6 between the two vectors is less than 90 degrees
(i.e., the vectors make an acute angle).

3. Ifu-v <0, the angle 6 between the two vectors is greater than 90 degrees (i.e.,
the vectors make an obtuse angle).

oo~y Theword “orthogonal” can be used as a synonym for “perpendicular.”

I=" Example 1.4

Let u = (1, 2, 3) and v = (-4, 0, —1). Find the angle between u and v. First we
compute:

u’V:(la 2) 3)(_4$ 0, _1):_4_32—7
| =P 2" +3 =13
M= y(—4) +0* +(-1)* =17

Now, applying Equation 1.4 and solving for theta, we get:

u-v

-7
lulllIvll - V1417

O0=cos ' ——~117°
14

cos0 =
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I=" Example 1.5

Consider Figure 1.10. Given v and the unit vector n, find a formula for p in terms
of vand n using the dot product.

First, observe from the figure that there exists a scalar k such that p = kn;
moreover, since we assumed ||n|| = 1, we have ||p|| = ||kn|| = |k|||n|| = |k|. (Note
that k may be negative if and only if p and n aim in opposite directions.) Using
trigonometry, we have that k= ||v|| cosb; therefore, p = kn = (||v|| cos6)n. However,
because n is a unit vector, we can say this in another way:

p =([Ivll cos8)n =(|Iv||-Lcos0)n = | v}l Inlfcos®)n = (v-m)n

In particular, this shows k = v - n, and this illustrates the geometric interpretation
of v- n when n is a unit vector. We call p the orthogonal projection of v on n, and it
is commonly denoted by

p =proj,(v)

If we interpret v as a force, p can be thought of as the portion of the force v that
acts in the direction n. Likewise, the vector w = perp,(v) = v — p is the portion of
the force v that acts orthogonal to the direction n (which is why we also denote
it by perp,(v) for perpendicular). Observe that v =p+w = proj, (v)+ perp,(v),
which is to say we have decomposed the vector v into the sum of two orthogonal
vectors p and w.

If n is not of unit length, we can always normalize it first to make it unit length.
Replacing n by the unit vector H_ZH gives us the more general projection formula:

PZPrOjH(V):(v. n jiz(v-rz)n
]l )llall ~ {[nl]
Y

x¥ x¥

Figure 1.10. The orthogonal projection of v on n.
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1.3.1 Orthogonalization

A set of vectors {vy, ..., v,1} is called orthonormal if the vectors are mutually
orthogonal (every vector in the set is orthogonal to every other vector in the set)
and unit length. Sometimes we have a set of vectors that are almost orthonormal,
but not quite. A common task is to orthogonalize the set and make it orthonormal.
In 3D computer graphics we might start off with an orthonormal set, but due to
numerical precision issues, the set gradually becomes un-orthonormal. We are
mainly concerned with the 2D and 3D cases of this problem (that is, sets that
contain two and three vectors, respectively).

We examine the simpler 2D case first. Suppose we have the set of vectors
{vo, v1} that we want to orthogonalize into an orthonormal set {wg, w;} as shown
in Figure 1.11. We start with wy = v, and modify v, to make it orthogonal to wy;
this is done by subtracting out the portion of v, that acts in the w, direction:

w, =V, —proj, (v,)

We now have a mutually orthogonal set of vectors {wy wi}; the last step to
constructing the orthonormal set is to normalize w, and w; to make them unit
length.

The 3D case follows in the same spirit as the 2D case, but with more steps.
Suppose we have the set of vectors {vo, v}, v,} that we want to orthogonalize into
an orthonormal set {w, w; w,}as shown in Figure 1.12. We start with wy, =v,and
modify v, to make it orthogonal to wy; this is done by subtracting out the portion
of v, that acts in the wj, direction:

w, =V, —proj, (v,)

+Y
~ PrOjw, (V1)
A 1 - prOjWQ (v1) +Z
w; w1ﬂ
rojwu (VZ) Vz
= +X
Wy =V Wo = Vg

Figure 1.11. 2D orthogonalization. Figure 1.12. 3D orthogonalization.
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Next, we modify v, to make it orthogonal to both wy, and w;. This is done by
subtracting out the portion of v, that acts in the w, direction and the portion of v,
that acts in the w; direction:

W, =V, —proj, (v,)—proj, (v,)

We now have a mutually orthogonal set of vectors {wy w; w»}; the last step to
constructing the orthonormal set is to normalize wy, w; and w;, to make them unit
length.

For the general case of n vectors {v, ..., v,_1} that we want to orthogonalize into
an orthonormal set {wy, ..., w,_1}, we have the following procedure commonly
called the Gram-Schmidt Orthogonalization process:

Base Step: Set wy=v,
i-1
For 1<i<n-1, Setw; =v, —ZProjwj (v,)
j:
. w;
Normalization Step: Set w; =——
[Iwil
Again, the intuitive idea is that when we pick a vector v; from the input set to
add to the orthonormal set, we need to subtract out the components of v; that
act in the directions of the other vectors (wy, wy . w,;;) that are already in the
orthonormal set to ensure the new vector being added is orthogonal to the other
vectors already in the orthonormal set.

1.4 THE CROSS PRODUCT

The second form of multiplication vector math defines is the cross product. Unlike
the dot product, which evaluates to a scalar, the cross product evaluates to another
vector; moreover, the cross product is only defined for 3D vectors (in particular,
there is no 2D cross product). Taking the cross product of two 3D vectorsu and v
yields another vector, w that is mutually orthogonal to u and v. By that we mean w
is orthogonal to u, and w is orthogonal to v; see Figure 1.13. If u = (u,, u,, u,) and
v = (Vy, ¥y, V), then the cross product is computed like so:

w=uxv=(v, —uy,uy, —uv, uy, —uy) (eq. 1.5)

oo If you are working in a right-handed coordinate system, then you use the
right-hand-thumb rule: If you take your right hand and aim the fingers in the
direction of the first vectoru, and then curl your fingers toward v along an angle
0<0<n, then your thumb roughly points in the direction of w=u X v,
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AX“=M

A"

Figure 1.13. The cross product of two 3D vectors u and v yields another vector w that is mutually orthogonal
to u and v. If you take your left hand and aim the fingers in the direction of the first vector u, and then curl
your fingers toward v along an angle 0 <0 <, then your thumb roughly points in the direction of w=u x v;
this is called the left-hand-thumb rule.

Example 1.6

Letu=(2,1,3) and v= (2,0, 0). Compute w=u X vand z = v X u, and then verify
that w is orthogonal to u and that w is orthogonal to v. Applying Equation 1.5 we
have,
w=uXxv
=(2,1,3) x (2,0,0)
=(1-0 - 3:0,3-2 - 2:0,2:0 — 1-2)
=(0,6,-2)
And
z=vXu
=(2,0,0)x(2,1,3)
=(0-3-0-1,0-2 - 2:3,2:1 - 0-2)
=(0,-6,2)

This result makes one thing clear, generally speaking u X v # v X u. Therefore, we
say that the cross product is anti-commutative. In fact, it can be shown that u X v
= — v X u. You can determine the vector returned by the cross product by the left-
hand-thumb rule. If you first aim your fingers in the direction of the first vector,
and then curl your fingers towards the second vector (always take the path with
the smallest angle), your thumb points in the direction of the returned vector, as
shown in Figure 1.11.

To show that w is orthogonal to u and that w is orthogonal to v, we recall from
§1.3 thatifu-v=0, then u L v (i.e., the vectors are orthogonal). Because

w-u=(0,6,-2)(2,1,3)=0-2+6-1+(-2)-3=0
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+Y
V= (—uy,ux) A

u= (uxvuy)

o +X

Figure 1.14. The 2D Pseudo Cross Product of a vector u evaluates to an orthogonal vector v.
and
w-v=(0,6,-2)-(2,0,0)=0-2+6-0+(-2)-0=0

we conclude that w is orthogonal to u and that w is orthogonal to v.

1.4.1 Pseudo 2D Cross Product

The cross product allows us to find a vector orthogonal to two given 3D vectors. In
2D we do not quite have the same situation, but given a 2D vector u= (u,, u,) it can
be useful to find a vector v orthogonal to u. Figure 1.14 shows the geometric setup
from which it is suggested that v = (—u,, u,). The formal proof is straightforward:

ll-V=(ux,uy)-(—uy,ux)=—uxuy tuu, =0

Thus u L v. Observe that u-—v=uu, +u, (-u,)=0, too, so we also have that
ul-v.

1.4.2 Orthogonalization with the Cross Product

In §1.3.1, we looked at a way to orthogonalize a set of vectors using the Gram-
Schmidt process. For 3D, there is another strategy to orthogonalize a set of vectors
{vo, V1, v} that are almost orthonormal, but perhaps became un-orthonormal
due to accumulated numerical precision errors, using the cross product. Refer to
Figure 1.15 for the geometry of this process:

1. Set —”
W, XV
2. Set w, =—>—L
[[woxv]|

3. Set w; = w, X wy By Exercise 14,||w, X wy|| = 1 because w, L wy and ||w,|| =
|[wol| = 1, so we do not need to do any normalization in this last step.
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---------- +Z

Wy Vo +X
Figure 1.15. 3D orthogonalization with the cross product.

At this point, the set of vectors {w,, wy, w,} is orthonormal.

ooy [nthe above example, we started with W, = ”:ﬁ which means we did not change
the direction when going from v, to wy; we only changed the length. However, the
directions of wy and w; could be different from v, and v,, respectively. Depending
on the specific application, the vector you choose not to change the direction of
might be important. For example, later in this book we represent the orientation
of the camera with three orthonormal vectors {vy, V1, v,} where the third vector v,
describes the direction the camera is looking. When orthogonalizing these vectors,
we often do not want to change the direction we are looking, and so we will start

the above algorithm with v, and modify v, and v, to orthogonalize the vectors.

1.5 POINTS

So far we have been discussing vectors, which do not describe positions. However,
we will also need to specify positions in our 3D programs, for example, the
position of 3D geometry and the position of the 3D virtual camera. Relative to
a coordinate system, we can use a vector in standard position (Figure 1.16) to
represent a 3D position in space; we call this a position vector. In this case, the
location of the tip of the vector is the characteristic of interest, not the direction or
magnitude. We will use the terms “position vector" and “point" interchangeably
since a position vector is enough to identify a point.

One side effect of using vectors to represent points, especially in code, is that
we can do vector operations that do not make sense for points; for instance,
geometrically, what should the sum of two points mean? On the other hand, some
operations can be extended to points. For example, we define the difference of two
points q — p to be the vector from p to q  Also, we define a point p plus a vector v to
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+Y

+Z p=(xy72)

+X

Figure 1.16. The position vector, which extends from the origin to the point, fully describes where
the point is located relative to the coordinate system.

+Y +Y
A

® o

q=p+v
| 4

+X +X

(@) (b)
Figure 1.17. (a) The difference q — p between two points is defined as the vector from p to q.
(b) A point p plus the vector v is defined to be the point q obtained by displacing p by the vector v.

be the point q obtained by displacing p by the vector v. Conveniently, because we
are using vectors to represent points relative to a coordinate system, no extra work
needs to be done for the point operations just discussed, as the vector algebra
framework already takes care of them; see Figure 1.17.

oy Actually there is a geometric meaningful way to define a special sum of points,
called an affine combination, which is like a weighted average of points.

1.6 DIRECTX MATH VECTORS

For Windows 8 and above, DirectX Math is a 3D math library for Direct3D
application that is part of the Windows SDK. The library uses the SSE2 (Streaming
SIMD Extensions 2) instruction set. With 128-bit wide SIMD (single instruction
multiple data) registers, SIMD instructions can operate on four 32-bit f1oats or
ints with one instruction. This is very useful for vector calculations; for example,
if you look at vector addition:

u+v=(u, +v,u,+v,u,+v,)
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we see that we just add corresponding components. By using SIMD, we can do
4D vector addition with one SIMD instruction instead of four scalar instructions.
If we only required three coordinates for 3D work, we can still use SIMD, but we
would just ignore the fourth coordinate; likewise, for 2D we would ignore the
third and fourth coordinates.

Our coverage of the DirectX Math library is not comprehensive, and we only
cover the key parts needed for this book. For all the details, we recommend the
online documentation [DirectXMath]. For readers wishing to understand how
an SIMD vector library might be developed optimally, and, perhaps, to gain
some insight why the DirectX Math library made some of the design decisions
that it did, we recommend the article Designing Fast Cross-Platform SIMD Vector
Libraries by [Oliveira2010].

To use the DirectX Math library, you need to #include <DirectxMath.h>,
and for some additional data types #include <DirectXPackedVector.h>. There
are no additional library files, as all the code is implemented inline in the
header file. The DirectXMath.h code lives in the pirectx namespace, and the
DirectXPackedVector.h code lives in the pirectx::Packedvector namespace.
In addition, for the x86 platform you should enable SSE2 (Project Properties
> Configuration Properties > C/C++ > Code Generation > Enable Enhanced
Instruction Set), and for all platforms you should enable the fast floating point
model /fp:fast (Project Properties > Configuration Properties > C/C++ > Code
Generation > Floating Point Model). You do not need to enable SSE2 for the
x64 platform because all x64 CPUs support SSE2 (http://en.wikipedia.org/wiki/
SSE2).

1.6.1 Vector Types

In DirectX Math, the core vector type is xuvecTor, which maps to SIMD hardware
registers. This is a 128-bit type that can process four 32-bit floats with a single
SIMD instruction. When SSE2 is available, it is defined like so for x86 and x64
platforms:

typedef ml28 XMVECTOR;

where __m128 is a special SIMD type. When doing calculations, vectors must be
of this type to take advantage of SIMD. As already mentioned, we still use this
type for 2D and 3D vectors to take advantage of SIMD, but we just zero out the
unused components and ignore them.

xMvECTOR needs to be 16-byte aligned, and this is done automatically for local
and global variables. For class data members, it is recommended to use xuFLoAT2
(2D), xmrrLoaT3 (3D), and xurroaTa (4D) instead; these structures are defined
below:
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struct XMFLOATZ2
{

float x;

float y;

XMFLOAT2 () {}

XMFLOAT2 (float x, float _y) : x( x), y(vy) {}

explicit XMFLOAT2 ( In reads_ (2) const float *pArray)
x (pArray[0]), y(pArray[1l]) {}

XMFLOAT2& operator= (const XMFLOAT2& Float2)
{ x = Float2.x; y = Float2.y; return *this; }
i

struct XMFLOAT3

{
float x;
float y;
float z;

XMFLOAT3 () {}

XMFLOAT3 (float x, float _y, float z) : x( x), v(y), z(z) {}

explicit XMFLOAT3( In reads_ (3) const float *pArray)
x (pArray(0]), y(pArray([l]), z(pArray([2]) {}

XMFLOAT3& operator= (const XMFLOAT3& Float3)
{ x = Float3.x; y = Float3.y; z = Float3.z; return *this; }
i

struct XMFLOAT4
{
float x;
float y;
float z;
float w;

XMFLOAT4 () {}
XMFLOAT4 (float _x, float _y, float =z, float _w)
x(x), y(y), z(2), w(w) {}
explicit XMFLOAT4 ( In reads_ (4) const float *pArray)
x (pArray([0]), y(pArray[l]), z(pArray([2]), w(pArray[3]) {}

XMFLOAT4& operator= (const XMFLOAT4& Float4)
{ x = Float4.x; y = Float4.y; z = Floatd4.z; w = Float4.w; return
*this; }
bi

However, if we use these types directly for calculations, then we will not take
advantage of SIMD. In order to use SIMD, we need to convert instances of
these types into the xwmvecror type. This is done with the DirectX Math loading
functions. Conversely, DirectX Math provides storage functions which are used to
convert data from xmvecTor into the xurroaTn types above.
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To summarize,

1. Use xmvecTor for local or global variables.
2. Use xMFLOAT2, XMFLOAT3, and xMrLoaT4 for class data members.

3. Use loading functions to convert from xmrrLoaTn to xmvecTor before doing
calculations.

4. Do calculations with xvvecToRr instances.

5. Use storage functions to convert from xMvECTOR tO XMFLOAT .

1.6.2 Loading and Storage Methods
We use the following methods to load data from xurLoATR into xMvECTOR:

// Loads XMFLOAT2 into XMVECTOR
XMVECTOR XM CALLCONV XMLoadFloat2 (const XMFLOAT2 *pSource);

// Loads XMFLOAT3 into XMVECTOR
XMVECTOR XM CALLCONV XMLoadFloat3(const XMFLOAT3 *pSource);

// Loads XMFLOAT4 into XMVECTOR
XMVECTOR XM CALLCONV XMLoadFloat4 (const XMFLOAT4 *pSource);

We use the following methods to store data from xMveCTOR into xMFLOATA:

// Loads XMVECTOR into XMFLOAT2
void XM CALLCONV XMStoreFloat2 (XMFLOAT2 *pDestination, FXMVECTOR V) ;

// Loads XMVECTOR into XMFLOAT3
void XM CALLCONV XMStoreFloat3 (XMFLOAT3 *pDestination, FXMVECTOR V) ;

// Loads XMVECTOR into XMFLOAT4
void XM CALLCONV XMStoreFloat4 (XMFLOAT4 *pDestination, FXMVECTOR V) ;

Sometimes we just want to get or set one component of an xwmvecTor; the
following getter and setter functions facilitate this:

float XM CALLCONV XMVectorGetX (FXMVECTOR V) ;

float XM CALLCONV XMVectorGetY (FXMVECTOR V) ;
( )
( )

’

float XM CALLCONV XMVectorGetZ (FXMVECTOR V
float XM CALLCONV XMVectorGetW (FXMVECTOR V

’

XMVECTOR XM CALLCONV XMVectorSetX (FXMVECTOR V, float x)
XMVECTOR XM CALLCONV XMVectorSetY (FXMVECTOR V, float y);
XMVECTOR XM CALLCONV XMVectorSetZ (FXMVECTOR V, float z)
XMVECTOR XM CALLCONV XMVectorSetW (FXMVECTOR V, float w)

1.6.3 Parameter Passing

For efficiency purposes, xmvecTor values can be passed as arguments to functions
in SSE/SSE2 registers instead of on the stack. The number of arguments that
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can be passed this way depends on the platform (e.g., 32-bit Windows, 64-bit
Windows, and Windows RT) and compiler. Therefore, to be platform/compiler
independent, we use the types FxMvECTOR, GXMVECTOR, HXMVECTOR and CXMVECTOR
for passing xuvecror parameters; these are defined to the right type based on
the platform and compiler. Furthermore, the calling convention annotation xu_
carrconv must be specified before the function name so that the proper calling
convention is used, which again depends on the compiler version.
Now the rules for passing xuvecTor parameters are as follows:

1. The first three xmvecTor parameters should be of type rxuvecToRr;
2. The fourth xmvecTor should be of type cxuvecTor;
3. The fifth and sixth xuvecTor parameter should be of type mxuveCcTOR;

4. Any additional xuvecTor parameters should be of type cxmvecTor.

We illustrate how these types are defined on 32-bit Windows with a compiler
that supports the  fastcal1 calling convention and a compiler that supports the
newer vectorcall calling convention:

// 32-bit Windows _ fastcall passes first 3 XMVECTOR arguments
// via registers, the remaining on the stack.

typedef const XMVECTOR FXMVECTOR;

typedef const XMVECTOR& GXMVECTOR;

typedef const XMVECTOR& HXMVECTOR;

typedef const XMVECTOR& CXMVECTOR;

// 32-bit Windows _ vectorcall passes first 6 XMVECTOR arguments
// via registers, the remaining on the stack.

typedef const XMVECTOR FXMVECTOR;

typedef const XMVECTOR GXMVECTOR;

typedef const XMVECTOR HXMVECTOR;

typedef const XMVECTOR& CXMVECTOR;

For the details on how these types are defined for the other platforms, see “Calling
Conventions" under “Library Internals" in the DirectX Math documentation
[DirectXMath]. The exception to these rules is with constructor methods.
[DirectXMath] recommends using rxmvector for the first three xuvecror
parameters and cxmvecrtor for the rest when writing a constructor that takes
xmvECTOR parameters. Furthermore, do not use the annotation xv carnconv for
constructors
Here is an example from the DirectXMath library:
inline XMMATRIX XM CALLCONV XMMatrixTransformation (
FXMVECTOR ScalingOrigin,
FXMVECTOR ScalingOrientationQuaternion,
FXMVECTOR Scaling,
GXMVECTOR RotationOrigin,

HXMVECTOR RotationQuaternion,
HXMVECTOR Translation) ;
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This function takes 6 xuvecTor parameters, but following the parameter passing
rules, it uses rxmvecTor for the first three parameters, cxuvector for the fourth, and
axuvecTor for the fifth and sixth.

You can have non-xuvecTor parameters between xwmvector parameters. The
same rules apply and the xmvecTor parameters are counted as if the non-xwvecTor
parameters were not there. For example, in the following function, the first three
XMVECTOR parameters are of type rxmvector as and the fourth xmvecTor parameter
is of type GxMvECTOR.

inline XMMATRIX XM CALLCONV XMMatrixTransformation2D (

FXMVECTOR ScalingOrigin,
float ScalingOrientation,
FXMVECTOR Scaling,
FXMVECTOR RotationOrigin,

float Rotation,
GXMVECTOR Translation);

The rules for passing xuvecTor parameters apply to “input” parameters. “Output”
xMVECTOR parameters (xmvecTor& or xmvecTor* ) will not use the SSE/SSE2 registers
and so will be treated like non-xmvecTOR parameters.

1.6.4 Constant Vectors

Constant xmvecTor instances should use the xuvecTorr32 type. Here are some
examples from the DirectX SDK’s CascadedShadowMaps11 sample:

static const XMVECTORF32 g vHalfVector = { 0.5f, 0.5f, 0.5f, 0.5f };
static const XMVECTORF32 g vZero = { 0.0f, 0.0f, 0.0f, 0.0f };

XMVECTORF32 vRightTop = {
vViewFrust.RightSlope,
vViewFrust.TopSlope,
1.0£,1.0f

}i

XMVECTORF32 vLeftBottom = {
vViewFrust.LeftSlope,
vViewFrust.BottomSlope,
1.0£,1.0f

}i

Essentially, we use xuvecTorF32 whenever we want to use initialization syntax.

XMVECTORF32 is a 16-byte aligned structure with a xuvecTor conversion operator;
it is defined as follows:

// Conversion types for constants

__declspec(align(16)) struct XMVECTORF32
{

union
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float f£[41];

XMVECTOR v;
bi
inline operator XMVECTOR() const { return v; }
inline operator const float* () const { return f; }

#if !defined(_XM_NO_INTRINSICS_) && defined(_XM_SSE_INTRINSICS_)
inline operator _ ml28i() const { return mm castps sil28(v); }
inline operator _ ml28d() const { return mm castps pd(v); }

#endif

bi

You can also create a constant xuvecTor of integer data using xMveECTORU32:

static const XMVECTORU32 vGrabY = {
0x00000000, OXFFFFFFFF, 0x00000000, 0x00000000
bi

1.6.5 Overloaded Operators

The xmvector has several overloaded operators for doing vector addition,
subtraction, and scalar multiplication.

XMVECTOR XM_CALLCONV operator+ (FXMVECTOR V) ;
XMVECTOR XM _CALLCONV operator- (FXMVECTOR V) ;

XMVECTOR& XM CALLCONV operator+= (XMVECTOR& V1, FXMVECTOR V2);
XMVECTOR& XM CALLCONV operator-= (XMVECTOR& V1, FXMVECTOR V2);
XMVECTOR& XM CALLCONV operator*= (XMVECTOR& V1, FXMVECTOR V2);
XMVECTOR& XM CALLCONV operator/= (XMVECTOR& V1, FXMVECTOR V2);

XMVECTOR& operator*= (XMVECTOR& V, float S);
XMVECTOR& operator/= (XMVECTOR& V, float S);

XMVECTOR XM CALLCONV operator+ (FXMVECTOR V1, FXMVECTOR V2);
XMVECTOR XM CALLCONV operator- (FXMVECTOR V1, FXMVECTOR V2);
XMVECTOR XM CALLCONV operator* (FXMVECTOR V1, FXMVECTOR V2);
XMVECTOR XM CALLCONV operator/ (FXMVECTOR V1, FXMVECTOR V2);
XMVECTOR XM CALLCONV operator* (FXMVECTOR V, float S);
XMVECTOR XM CALLCONV operator* (float S, FXMVECTOR V) ;
XMVECTOR XM CALLCONV operator/ (FXMVECTOR V, float S);

1.6.6 Miscellaneous

The DirectX Math library defined the following constants useful for approximating
different expressions involving 7

const float XM PI
const float XM 2PI
const float XM _1DIVPI
const float XM 1DIV2PI

.141592654f;

.283185307f£;
0.318309886f;
0.159154943f;

3
=6
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const float XM PIDIV2 = 1.570796327f;
const float XM PIDIV4 = 0.785398163f;

In addition, it defines the following inline functions for converting between
radians and degrees:

inline float XMConvertToRadians (float fDegrees)
{ return fDegrees * (XM PI / 180.0f); }
inline float XMConvertToDegrees (float fRadians)
{ return fRadians * (180.0f / XM PI); }

It also defines min/max functions:

template<class T> inline T XMMin(T a, T b) { return (a < b) 2?2 a : b; }
template<class T> inline T XMMax (T a, T b) { return (a > b) 2?2 a : b; }

1.6.7 Setter Functions
DirectX Math provides the following functions to set the contents of an xuvecTor:

// Returns the zero vector 0
XMVECTOR XM CALLCONV XMVectorZero () ;

// Returns the vector (1, 1,1, 1)
XMVECTOR XM CALLCONV XMVectorSplatOne();

/] Returns the vector (x, y, z, w)
XMVECTOR XM CALLCONV XMVectorSet (float x, float y, float z, float w);

// Returns the vector (s, s, s, s)
XMVECTOR XM CALLCONV XMVectorReplicate (float Value);

/] Returns the vector (vy, vy, vy, Vi)
XMVECTOR XM CALLCONV XMVectorSplatX (FXMVECTOR V) ;

// Returns the vector (v, v,, v, v,)
XMVECTOR XM CALLCONV XMVectorSplatY (FXMVECTOR V) ;

/] Returns the vector (v, v, v, v,)
XMVECTOR XM CALLCONV XMVectorSplatZ (FXMVECTOR V) ;

The following program illustrates most of these functions:

#include <windows.h> // for XMVerifyCPUSupport
#include <DirectXMath.h>

#include <DirectXPackedVector.h>

#include <iostream>

using namespace std;

using namespace DirectX;

using namespace DirectX::PackedVector;

// Overload the "<<" operators so that we can use cout to
// output XMVECTOR objects.
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ostream& XM CALLCONV operator<<(ostream& os, FXMVECTOR v)
{

XMFLOAT3 dest;

XMStoreFloat3 (&dest, v);

0s << "(" << dest.x << ", " <K< dest.y <<« ", " << dest.z << ")";
return os;

}

int main ()
{

cout.setf (ios _base::boolalpha);

// Check support for SSE2 (Pentium4, AMD K8, and above).
if (!XMVerifyCPUSupport ()
{

cout << "directx math not supported" << endl;

return O;

}

XMVECTOR p = XMVectorZero();

XMVECTOR g = XMVectorSplatOne () ;

XMVECTOR u = XMVectorSet(l1.0f, 2.0f, 3.0f, 0.0f);
XMVECTOR v = XMVectorReplicate (-2.0f);

XMVECTOR w = XMVectorSplatZ(u);

cout << "p =" << p << endl;

cout << "g = " << g << endl;

cout << "u = " << u << endl;

cout << "v = " << v << endl;

cout << "w = " << w << endl;

return 0;

Figure 1.18. Output for the above program.

1.6.8 Vector Functions

DirectX Math provides the following functions to do various vector operations.
We illustrate with the 3D versions, but there are analogous versions for 2D and
4D; the 2D and 4D versions have the same names as the 3D versions, with the
exception of a 2 and 4 substituted for the 3, respectively.

XMVECTOR XM CALLCONV XMVector3Length ( /I Returns ||v]|
FXMVECTOR V) ; /] Input v
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XMVECTOR XM _CALLCONV XMVector3LengthSq( // Returns |[v||?

FXMVECTOR V) ; /I Input v
XMVECTOR XM CALLCONV XMVector3Dot ( // Returns v;-v,
FXMVECTOR V1, // Input vy
FXMVECTOR V2) ; /I Input v,
XMVECTOR XM CALLCONV XMVector3Cross ( // Returns v, X v,
FXMVECTOR V1, // Input vy
FXMVECTOR V2) ; /I Inputv,

XMVECTOR XM _CALLCONV XMVector3Normalize ( //Returnsv/||v||
FXMVECTOR V) ; /I Input v

XMVECTOR XM CALLCONV XMVector3Orthogonal (// Returns a vector orthogonal to v
FXMVECTOR V) ; /] Input v

XMVECTOR XM CALLCONV

XMVector3AngleBetweenVectors ( /] Returns the angle between v, and v,
FXMVECTOR V1, /I Input v,
FXMVECTOR V2) ; // Input v,

void XM CALLCONV XMVector3ComponentsFromNormal (

XMVECTOR* pParallel, /] Returns proj,(v)
XMVECTOR* pPerpendicular, /] Returns perpy(v)
FXMVECTOR V, /I Input v
FXMVECTOR Normal) ; // Input n

bool XM CALLCONV XMVector3Equal ( // Returns v; = v,
FXMVECTOR V1, /I Input v,
FXMVECTOR V2) ; // Input v,

bool XM CALLCONV XMVector3NotEqual ( // Returns v; # v,
FXMVECTOR V1, /I Input v,
FXMVECTOR V2) ; // Input v,

o~y Observe that these functions return xmvectors even for operations that

mathematically return a scalar (for example, the dot product k = v, - v,). The
scalar result is replicated in each component of the xuvecTor. For example, for the
dot product, the returned vector would be (v -V, V|-V, V| - V5,V - V,) One reason
for this is to minimize mixing of scalar and SIMD vector operations; it is more
efficient to keep everything SIMD until you are done with your calculations.

The following demo program shows how to use most of these functions, as well as
some of the overloaded operators:

#include <windows.h> // for XMVerifyCPUSupport
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#include <DirectXMath.h>

#include <DirectXPackedVector.h>
#include <iostream>

using namespace std;

using namespace DirectX;

using namespace DirectX::PackedVector;

// Overload the "<<" operators so that we can use cout to
// output XMVECTOR objects.
ostream& XM CALLCONV operator<<(ostream& os, FXMVECTOR v)
{

XMFLOAT3 dest;

XMStoreFloat3 (&dest, v);

0s << "(" << dest.x << ", " <K< dest.y << ", " << dest.z <<
return os;

int main ()
{

cout.setf (ios_base::boolalpha);

// Check support for SSE2 (Pentium4, AMD K8, and above).
if (!XMVerifyCPUSupport ()
{

cout << "directx math not supported" << endl;

return 0;

XMVECTOR n XMVectorSet (1.0f, 0.0f, 0.0f, 0.0f);
XMVECTOR u XMVectorSet (1.0f, 2.0f, 3.0f, 0.0f);
XMVECTOR v = XMVectorSet (-2.0f, 1.0f, -3.0f, 0.0f);
XMVECTOR w XMVectorSet (0.707£, 0.707f, 0.0f, 0.0f);

// Vector addition: XMVECTOR operator +
XMVECTOR a = u + v;

// Vector subtraction: XMVECTOR operator -
XMVECTOR b = u - v;

// Scalar multiplication: XMVECTOR operator *
XMVECTOR ¢ = 10.0f*u;

/7 Tlall
XMVECTOR L = XMVector3Length (u);

// d=u/ |lull
XMVECTOR d = XMVector3Normalize (u);

// s = u dot v
XMVECTOR s = XMVector3Dot (u, v);

// e =uxv
XMVECTOR e = XMVector3Cross(u, Vv);
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// Find proj n(w) and perp n(w)

XMVECTOR projW;

XMVECTOR perpW;
XMVector3ComponentsFromNormal (&projW, &perpW, w, n);

// Does projW + perpW == w?
bool equal = XMVector3Equal (projW + perpW, w) != 0;
bool notEqual = XMVector3NotEqual (projW + perpW, w) != 0;

// The angle between projW and perpW should be 90 degrees.
XMVECTOR angleVec = XMVector3AngleBetweenVectors (projW, perpW);
float angleRadians = XMVectorGetX (angleVec) ;

float angleDegrees = XMConvertToDegrees (angleRadians) ;

cout << "u =" << u << endl;
cout << "v " << v << endl;
cout << "w =" << w << endl;
cout << "n = " << n << endl;
cout << "a =u + v =" << a << endl;
cout << "b =u - v =" << b << endl;
cout << "¢ =10 * u = " << ¢ << endl;
cout << "d =u / |]|ul| = " << d << endl;
cout << "e = u x Vv =" << e << endl;
cout << "L = | |u]| = " << L << endl;
cout << "s = u.v =" << s << endl;
cout << "projwWw = " << projW << endl;
cout << "perpW = " << perpW << endl;
cout << "projW + perpW == w = " << equal << endl;
cout << "projW + perpW != w = " << notEqual << endl;
cout << "angle = " << angleDegrees << endl;
return O;
CA\WINDOWS\system32\cmd.exe - olEN]|

s 3

Figure 1.19. Output for the above program.

29
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oo~y ['he DirectX Math library also includes some estimation methods, which are
less accurate but faster to compute. If you are willing to sacrifice some accuracy
for speed, then use the estimate methods. Here are two examples of estimate

functions:
XMVECTOR XM CALLCONV XMVector3LengthEst ( /I Returns estimated ||v||
FXMVECTOR V) ; // Input v

XMVECTOR XM _CALLCONV XMVector3NormalizeEst( // Returns estimated v/||v]|
FXMVECTOR V) ; // Input v

1.6.9 Floating-Point Error

While on the subject of working with vectors on a computer, we should be
aware of the following. When comparing floating-point numbers, care must
be taken due to floating-point imprecision. Two floating-point numbers that
we expect to be equal may differ slightly. For example, mathematically, we’d
expect a normalized vector to have a length of 1, but in a computer program,
the length will only be approximately 1. Moreover, mathematically, 1? = 1 for
any real number p, but when we only have a numerical approximation for 1,
we see that the approximation raised to the pth power increases the error; thus,
numerical error also accumulates. The following short program illustrates these
ideas:

#include <windows.h> // for XMVerifyCPUSupport

#include <DirectXMath.h>

#include <DirectXPackedVector.h>

#include <iostream>

using namespace std;

using namespace DirectX;
using namespace DirectX::PackedVector;

int main ()
{

cout.precision(8);

// Check support for SSE2 (Pentium4, AMD K8, and above).
if (!XMVerifyCPUSupport ())
{

cout << "directx math not supported" << endl;

return 0;

XMVECTOR u = XMVectorSet (1.0f, 1.0f, 1.0f, 0.0f);
XMVECTOR n = XMVector3Normalize (u);
float LU = XMVectorGetX (XMVector3Length(n)) ;

// Mathematically, the length should be 1. Is it numerically?
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cout << LU << endl;
if (LU == 1.0f)

cout << "Length 1" << endl;
else

cout << "Length not 1" << endl;

// Raising 1 to any power should still be 1. Is it?
float powLU = powf (LU, 1.0e6f);
cout << "LU”(107%6) = " << powLU << endl;

h not 1

876> A.94
;s any key to

Figure 1.20. Output for the above program.

To compensate for floating-point imprecision, we test if two floating-point
numbers are approximately equal. We do this by defining an Epsilon constant,
which isa very small value we use as a “buffer." We say two values are approximately
equal if their distance is less than £psilon. In other words, Epsilon gives us some
tolerance for floating-point imprecision. The following function illustrates how
Epsilon can be used to test if two floating-point values are equal:

const float Epsilon = 0.001f;

bool Equals(float lhs, float rhs)

{
// Is the distance between lhs and rhs less than EPSILON?
return fabs(lhs - rhs) < Epsilon ? true : false;

}

The DirectX Math library provides the xmvector3nearEqual function when
testing the equality of vectors with an allowed tolerance Fpsi1on parameter:

// Returns

// abs(U.x - V.x) <= Epsilon.x &&

// abs(U.y - V.y) <= Epsilon.y &&

// abs(U.z - V.z) <= Epsilon.z

XMFINLINE bool XM CALLCONV XMVector3NearEqual (
FXMVECTOR U,
FXMVECTOR V,
FXMVECTOR Epsilon);

1.7 SUMMARY

1. Vectors are used to model physical quantities that possess both magnitude and
direction. Geometrically, we represent a vector with a directed line segment.
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2.

3.

A vector is in standard position when it is translated parallel to itself so that
its tail coincides with the origin of the coordinate system. A vector in standard
position can be described numerically by specifying the coordinates of its
head relative to a coordinate system.

If u=(u,u,u,) and v= (v, v,,v,), then we have the following vector operations:
(a) Addition:u+v= (1 + vy, Uy + V), U+ 1)
(b) Subtraction: u— v = (1, — vy, Uy, — VU, — ;)

(c) Scalar Multiplication: ku = (ku, ku,, ku,)
(d) Length: |[ulj=+/x* +y* +2°

A u X
(e) Normalization: u=——- [ J Z J
Il Ul ||

(f) Dot Product: u-v =[ul|||[v||cos®=uv +u,v, +uy,

(g) Cross Product: uxv=(uy —UY UV —UY U, UV

z"y? x"z?
We use the DirectX Math xwmvecror type to describe vectors efficiently in
code using SIMD operations. For class data members, we use the xurroAT2,
xMFLOAT3, and xmrLoaT4 classes, and then use the loading and storage methods
to convert back and forth between xmvector and xvrroarn. Constant vectors
that require initialization syntax should use the xuvecTore32 type.

. For efficiency purposes, xuvector values can be passed as arguments to

functions in SSE/SSE2 registers instead of on the stack. To do this in a
platform independent way, we use the types FxMvECTOR, GXMVECTOR, HXMVECTOR
and cxuvector for passing xwvector parameters. Then the rule for passing
xMvECTOR parameters is that the first three xmvector parameters should be of
type rxmvecTor; the fourth xmvecTor should be of type cxuvecTor; the fifth and
sixth xmvecTor parameter should be of type mxmvector; and any additional
xMvECTOR parameters should be of type cxmvecTor.

The xwvecTor class overloads the arithmetic operators to do vector addition,
subtraction, and scalar multiplication. Moreover, the DirectX Math library
provides the following useful functions for computing the length of a vector,
the squared length of a vector, computing the dot product of two vectors,
computing the cross product of two vectors, and normalizing a vector:
XMVECTOR XM CALLCONV XMVector3Length (FXMVECTOR V) ;

XMVECTOR XM CALLCONV XMVector3LengthSq (FXMVECTOR V) ;

XMVECTOR XM CALLCONV XMVector3Dot (FXMVECTOR V1, FXMVECTOR V2);

XMVECTOR XM CALLCONV XMVector3Cross (FXMVECTOR V1, FXMVECTOR V2);
XMVECTOR XM CALLCONV XMVector3Normalize (FXMVECTOR V) ;
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1.8 EXERCISES

1. Letu=(1,2) and v = (3, —4). Perform the following computations and draw
the vectors relative to a 2D coordinate system.

(a) u+v
(b)) u-v
(c) 2u+%v
(d) 2u+v
2. Letu=(-1,3,2) and v= (3, —4, 1). Perform the following computations.
(a) u+v
(b) u—v
(c) 3u+2v
(d) 2u+v
3. This exercise shows that vector algebra shares many of the nice properties
of real numbers (this is not an exhaustive list). Assume u = (u,, u, u,),

V= (Vy V) v;), and w = (w,, w,, w,). Also assume that cand kare scalars. Prove
the following vector properties.

(a) u+v=v+u(Commutative Property of Addition)

(b) u+ (v+w) = (u+v) +w(Associative Property of Addition)
(c) (ck)u=c(ku) (Associative Property of Scalar Multiplication)
(d) k(u+v)=ku+ kv (Distributive Property 1)

(e) u(k+ c) =ku+ cu(Distributive Property 2)

‘H Just use the definition of the vector operations and the properties of real numbers.

For example,

(ck)u = (ck)(uy, u, u,)
= ((ck)uy, (ck)u,, (ck)u,
= (c(kyy, c(kuy,), c(ku,))
= c(kuy, ku,, ku,)
=c(ku)

4. Solve the equation 2((1, 2, 3) —x) — (-2,0,4) =-2(1, 2, 3) forx.
5. Letu=(-1,3,2) and v=(3,—4, 1) . Normalize u and v.
6. Let k be a scalar and let u = (uy, 1y, 1,). Prove that ||ku|| = |k|||u]|.
7. Is the angle between u and v orthogonal, acute, or obtuse?

(@) u=(1,1,1),v=(2,3,4)

(b) u=(1,1,0),v=(-2,2,0)
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(C) u= (_1>_1>_1))V: (3> 1) O)
8. Letu=(-1,3,2) and v=(3, —4, 1). Find the angle 6 between u and v.

9. Let u = (uy, Uy, 1), v= (v v, v,), and w = (wy, w,, w,). Also let ¢ and k be
scalars. Prove the following dot product properties.

(a) u-v=v-u

(b) uw(v+w)=u-v+u-w
(c) k(u-v)=(ku)-v=u- (kv)
(d) vv=||v|?

(e) 0-v=0

‘E Just use the definitions, for example,

VVEVY VY YL,
2 2 2
=vet+v, +v,

2
(e
=[IviF

10. Use the law of cosines (¢* = a* + b* — 2abcos0), where a, b, and ¢ are the lengths
of the sides of a triangle and 0 is the angle between sides a and b) to show

UV Uy, Ly, =||u]| ||v]| cos 6

Consider Figure 1.9 and set ¢ = ||u — v||, a*> = |[u||> and b* = ||v||>, and use the dot

product properties from the previous exercise.

11. Let n = (=2, 1). Decompose the vector g = (0, —9.8) into the sum of two
orthogonal vectors, one parallel to n and the other orthogonal to n. Also, draw
the vectors relative to a 2D coordinate system.

12.Letu=(-2,1,4) and v= (3, —4, 1). Find w=u X v, and show w- u=0 and
w-v=0.

13. Let the following points define a triangle relative to some coordinate system:
A=(0,0,0),B=(0,1,3),and C = (5, 1, 0). Find a vector orthogonal to this
triangle.

s Find two vectors on two of the triangle’s edges and use the cross product.

14. Prove that |lux v||=[|u]|||v|| sin6 -
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Start  with  ||u||||v||sin®| and wuse the trigonometric identity
cos*0+sin’ 0 =1=>sin0=+/1—cos’ 0, then apply Equation 1.4.

15. Prove that |juxv]|| gives the area of the parallelogram spanned by u and v; see
Figure 1.21.

Figure 1.21. Parallelogram spanned by two 3D vectors u andyv; the parallelogram has base ||v|| and

height h

16. Give an example of 3D vectors u, v, and w such that ux(v X w) # (ux v) X W.
This shows the cross product is generally not associative.

Consider combinations of the simple vectors i= (1, 0, 0),j = (0, 1, 0), and
k=1(0,0,1).

17. Prove that the cross product of two nonzero parallel vectors results in the null
vector; thatis,u X ku=0.

(" Just use the cross product definition.

18. Orthonormalize the set of vectors {(1, 0, 0), (1, 5, 0), (2, 1, —4)} using the
Gram-Schmidt process.

19. Consider the following program and output. Make a conjecture of what each
xmvector* function does; then look up each function in the DirectXMath
documentation.

#include
#include
#include
#include

<windows.h> // for XMVerifyCPUSupport
<DirectXMath.h>
<DirectXPackedVector.h>

<iostream>

using namespace std;
using namespace DirectX;
using namespace DirectX::PackedVector;

// Overload the "<<" operators so that we can use cout to
// output XMVECTOR objects.

ostreamé&

{

XM CALLCONV operator<<(ostream& os, FXMVECTOR V)

XMFLOAT4 dest;
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XMStoreFloat4 (&dest, v);

0s << "(" << dest.x << ", " << dest.y << ", "
<< dest.z << ", " << dest.w << "M)";
return os;

int main ()

{

cout.setf (ios base::boolalpha);

// Check support for SSE2 (Pentium4, AMD K8, and above).
if (!XMVerifyCPUSupport ()
{

cout << "directx math not supported" << endl;

return O;
}
XMVECTOR p = XMVectorSet(2.0f, 2.0f, 1.0f, 0.0f);
XMVECTOR g = XMVectorSet(2.0f, -0.5f, 0.5f, 0.1f);
XMVECTOR u = XMVectorSet (1.0f, 2.0f, 4.0f, 8.0f);
XMVECTOR v = XMVectorSet (-2.0f, 1.0f, -3.0f, 2.5f);
XMVECTOR w = XMVectorSet (0.0f, XM_PIDIV4, XM_PIDIVZ, XM_PI);

cout << "XMVectorAbs
cout << "XMVectorCos
cout << "XMVectorLog
cout << "XMVectorExp

V) = " << XMVectorAbs (v) << endl;
w) = " << XMVectorCos (w) << endl;
u) = " << XMVectorLog (u) << endl;
P)

(
(
(
( = " << XMVectorExp(p) << endl;

cout << "XMVectorPow(u, p) = " << XMVectorPow (u, p) << endl;
cout << "XMVectorSgrt (u) = " << XMVectorSqgrt (u) << endl;
cout << "XMVectorSwizzle(u, 2, 2, 1, 3) ="
<< XMVectorSwizzle(u, 2, 2, 1, 3) << endl;
cout << "XMVectorSwizzle(u, 2, 1, 0, 3) ="
<< XMVectorSwizzle(u, 2, 1, 0, 3) << endl;
cout << "XMVectorMultiply(u, V) = " << XMVectorMultiply(u, v) <<
endl;
cout << "XMVectorSaturate (q) = " << XMVectorSaturate(q) << endl;
cout << "XMVectorMin (p, v = " << XMVectorMin(p, v) << endl;

cout << "XMVectorMax (p, V)

" << XMVectorMax (p, v) << endl;

return 0;

Figure 1.22. Output for the above program.



2 MATRIX
ALGEBRA

Chapter

In 3D computer graphics, we use matrices to compactly describe geometric
transformations such as scaling, rotation, and translation, and also to change the
coordinates of a point or vector from one frame to another. This chapter explores
the mathematics of matrices.

Objectives:

1. To obtain an understanding of matrices and the operations defined on them.

2. To discover how a vector-matrix multiplication can be viewed as a linear
combination.

3. To learn what the identity matrix is, and what the transpose, determinant, and
inverse of a matrix are.

4. To become familiar with the subset of classes and functions provided by the
DirectX Math library used for matrix mathematics.

37
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2.1 DEFINITION

An m X n matrix M is a rectangular array of real numbers with m rows and n
columns. The product of the number of rows and columns gives the dimensions
of the matrix. The numbers in a matrix are called elements or entries. We identify
a matrix element by specifying the row and column of the element using a double
subscript notation Mj;, where the first subscript identifies the row and the second
subscript identifies the column.

Example 2.1

Consider the following matrices:

35 0 0 O s g X

0 1 0 0 11 12 5

A=l o o o5 of BT|Ba Ba|uslmmm] v=| o
By, B,

2 5 V21 .

—
.

The matrix A is a 4 X 4 matrix; the matrix Bis a 3 X 2 matrix; the matrix uis a
1 X 3 matrix; and the matrix vis a4 X 1 matrix.

2. We identify the element in the fourth row and second column of the matrix A
by A4, =—5. We identify the element in the second row and first column of the
matrix B by B,;.

3. The matrices uand vare special matrices in the sense that they contain a
single row or column, respectively. We sometimes call these kinds of matrices
row vectors or column vectors because they are used to represent a vector in
matrix form (e.g., we can freely interchange the vector notations (x, y, z) and
[%, 9, z]). Observe that for row and column vectors, it is unnecessary to use
a double subscript to denote the elements of the matrix—we only need one
subscript.

Occasionally we like to think of the rows of a matrix as vectors. For example, we
might write:

A, A, A, «—A.—>

Ay, A, Ap =< AL—>

Ay Ay, Aj — A >

where A, =[A,A;AL ] Ay =[A),A5,A)], and A, =[A;,A;,,A5]. In
this notation, the first index specifies the row, and we put a < in the second index
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to indicate that we are referring to the entire row vector. Likewise, we like to do the
same thing for the columns:

A, A, A, S N
Ay A, Ay l=|A A, AL
A, A, A, !

where
Ay Ap Ap
A =14y ), A*,z =| Ay | A*,s =| Ay
Ay A Ass

In this notation, the second index specifies the column, and we put a * in the first
index to indicate that we are referring to the entire column vector.

We now define equality, addition, scalar multiplication, and subtraction on
matrices.

1. Two matrices are equal if and only if their corresponding elements are equal;
as such, two matrices must have the same number of rows and columns in
order to be compared.

2. We add two matrices by adding their corresponding elements; as such, it only
makes sense to add matrices that the same number of rows and columns.

3. We multiply a scalar and a matrix by multiplying the scalar with every element
in the matrix.

4. We define subtraction in terms of matrix addition and scalar multiplication.
Thatis, A—B=A+(-1-B)=A+ (-B).

12" Example 2.2

Let
1 5 6 2 1 5 2 1 -3
A= ,B= ,C= ,D=
-2 3 5 -8 -2 3 -6 3 0

1 5] [6 2 1+6 542 7 7
(i) A+B= + = =
{—2 3} {5 —8} {—2+5 3+(—8)} L —5}
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(ii) A=C
G 3D:3{2 1 —3}:{3(2) 3(1) 3(—3)}{ 6 3 —9}
—6 3 0] |3(-6) 33) 30)| |-18 9 0

(iv) A-B= {_12 ﬂ —[2 _28} = {_12‘_65 3 i(__zg)} - {j 131}

Because addition and scalar multiplication is done element-wise, matrices
essentially inherit the following addition and scalar multiplication properties
from real numbers:

1. A+B=B+A Commutative law of addition

2. (A+B)+C=A+(B+C) Associative law of addition

3. 7(A+B)=rA+rB Scalar distribution over matrices
4, (r+s)A=rA+sA Matrix distribution over scalars

2.2 MATRIX MULTIPLICATION

2.2.1 Definition

If A is a m X n matrix and B is a n X p matrix, then the product AB is defined and
is a m X p matrix C, where the 7jth entry of the product C is given by taking the dot
product of the ith row vector in A with the jth column vector in B, that is,

C;=A,."B.; (eq.2.1)

So note that in order for the matrix product AB to be defined, we require that
the number of columns in A equal the number of rows in B, which is to say, we
require that the dimension of the row vectors in A equal the dimension of the
column vectors in B. If these dimensions did not match, then the dot product in
Equation 2.1 would not make sense.

12" Example 2.3
Let
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The product AB is not defined since the row vectors in A have dimension 2 and
the column vectors in B have dimension 3. In particular, we cannot take the dot
product of the first row vector in A with the first column vector in B because we
cannot take the dot product of a 2D vector with a 3D vector.

I=° Example 2.4

Let
2 1 0
-1 5 4
A= and B=| 0 -2 1
3 2 1
-1 2 3

We first point out that the product AB is defined (and is a 2 X 3 matrix) because
the number of columns of A equals the number of rows of B. Applying Equation

2.1yields:
- 1 0
-1 5 -4
AB = 0 -2 1
3 2 1
- -1 2 3

(-1,5,-4)-(2,0,-1) (-1,5,-4)-(1,-2,2) (-1,5,-4)-(0,1,3)
L (321)(20-1)  (321)-(L-22)  (3,21)-(0,1,3)

(2 —-19 -7
5 1 s

Observe that the product BA is not defined because the number of columns in
B does not equal the number of rows in A. This demonstrates that, in general,
matrix multiplication is not commutative; that is, AB = BA.

2.2.2 Vector-Matrix Multiplication
Consider the following vector-matrix multiplication:
Ay Ay A (I
uA=[xy.z]| Ay Ay Ay |=[xyz]| A A, Al
Ay Ay, A ool
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Observe that uA evaluates to a 1 X 3 row vector in this case. Now, applying
Equation 2.1 gives:

uA=[u-A., uwA., uwA,
=[xA), + YAy, + 245, XA, + YA, +7ZA5, XA+ YAy +2ZA]
=[ XA, %A, XA |+ [ YAy YAy YA |+ [ 245152455, 2455 |
=x[A A A |+ 7 [ A Ay s Ay |+ 2[ Ay, Ay, Ass
=xA . +yA,. +zA;.
Thus,

uA =xA . +yA,. +zA;. (eq.2.2)

Equation 2.2 is an example of a linear combination, and it says that the vector-
matrix product uA is equivalent to a linear combination of the row vectors of
the matrix A with scalar coefficients x, y, and z given by the vector u. Note that,
although we showed this for a 1 X 3 row vector and a 3 X 3 matrix, the result is
true in general. That is, for a1 X n row vector u and a n X m matrix A, we have
that uA is a linear combination of the row vectors in A with scalar coefficients
given by u:

A 1m
[, ]| 50 0 = AL+ AL (eq.2.3)
A

11

2.2.3 Associativity

Matrix multiplication has some nice algebraic properties. For example, matrix
multiplication distributes over addition: A(B + C) = AB + AC) and (A + B)
C = AC + BQ). In particular, however, we will use the associative law of matrix
multiplication from time to time, which allows us to choose the order we multiply
matrices:

(AB)C=A(BC)

2.3 THE TRANSPOSE OF A MATRIX

The transpose of a matrix is found by interchanging the rows and columns of the
matrix. Thus the transpose of an m X n matrix is an n X m matrix. We denote the
transpose of a matrix M as M”.
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I=" Example 2.5

Find the transpose for the following three matrices:

1
a b ¢
2 -1 8 2
A= ,B=|d e f| C=
3 6 -4 no 3
i
g 4

To reiterate, the transposes are found by interchanging the rows and columns, thus

2 3 a d g
A'=/-1 6 |,B'=lb e h|,C'=[1 2 3 4]
8 —4 c f i

The transpose has the following useful properties:
. (A+B)T=AT+BT

. (cA)T=CcAT

. (AB)T=B"A"

. (ADT=A

. (AT)T=(AD"

N h W N =

2.4 THE IDENTITY MATRIX

There is a special matrix called the identity matrix. The identity matrix is a square
matrix that has zeros for all elements except along the main diagonal; the elements
along the main diagonal are all ones.

For example, below are 2 x 2,3 X 3 and 4 X 4 identity matrices.

1 0 00O
1 00
1 0 01 00
, |01 0f,
01 0 010
0 0 1
0 0 01

The identity matrix acts as a multiplicative identity; that is, if A is an m X n matrix,
B is an n X p matrix, and I is the # X n identity matrix, then

Al=A and IB=B
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In other words, multiplying a matrix by the identity matrix does not change the
matrix. The identity matrix can be thought of as the number 1 for matrices. In
particular, if M is a square matrix, then multiplication with the identity matrix is
commutative:

MI=IM=M
I=" Example 2.6

1 2 10
Let M:{O J and let I:{O J . Verify that MI=IM = M.

Applying Equation 2.1 yields:
wi=ly o 1 om o) Gayion) Lo o

ol o SHign e

(1,0) (0,1)-(2,4)
Thus it is true that MI =IM = M.

and
1,0
)1

)(

12" Example 2.7
10 _
Let u=[-1,2] and let I:{O J . Verify that ul = u.
Applying Equation 2.1 yields:
I=[-1 2]1 0—[ 1,2)-(1,0 1,2)-(0,1)]=[-1, 2]
ul=[-1, 01—(,),),(,)(,)—,

Note that we cannot take the product Iu because the matrix multiplication is not
defined.

2.5 THE DETERMINANT OF A MATRIX

The determinant is a special function which inputs a square matrix and outputs
a real number. The determinant of a square matrix A is commonly denoted
by det A. It can be shown that the determinant has a geometric interpretation
related to volumes of boxes and that the determinant provides information on
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how volumes change under linear transformations. In addition, determinants are
used to solve systems of linear equations using Cramer’s Rule. However, for our
purposes, we are mainly motivated to study the determinant because it gives us an
explicit formula for finding the inverse of a matrix (the topic of §2.7). In addition,
it can be proved that: A square matrix A is invertible if and only if det A # 0. This
fact is useful because it gives us a computational tool for determining if a matrix
is invertible. Before we can define the determinant, we first introduce the concept
of matrix minors.

2.5.1 Matrix Minors

Given an n x n matrix A, the minor matrix Kij isthe (n — 1) X (n — 1) matrix
found by deleting the ith row and jth column of A.

12" Example 2.8

Find the minor matrices A, A,,, and A, of the following matrix:

Ay Ay Ay
A=A, A, A23
Ay Ay Agg

For Ku we eliminate the first row and first column to obtain:

A = Ay Ay
11 — A A
L*732 33 |
For A,, we eliminate the second row and second column to obtain:
— Ay A
22 A A
L*731 33 |

For A, we eliminate the first row and third column to obtain:

Ay Ay

KIS =
_A31 A32_

2.5.2 Definition

The determinant of a matrix is defined recursively; for instance, the determinant
of a 4 x 4 matrix is defined in terms of the determinant of a 3 x 3 matrix, and
the determinant of a 3 x 3 matrix is defined in terms of the determinant of a
2 x 2 matrix, and the determinant of a 2 X 2 matrix is defined in terms of the
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determinant of a 1 X 1 matrix (the determinant of a 1 X 1 matrix A = [A,;] is
trivially defined to be det [A;;] =Ay)).
Let A be an n X n matrix. Then for n > 1 we define:

detA = A,;(-1)"" detA,; (eq. 2.4)
=
Recalling the definition of the minor matrix Kij , for 2 X 2 matrices, this gives the
formula:

All A12

det =A, det[A22 ] -A, det[AZI] =A,A, —ALA,y,
21 AZZ

For 3 x 3 matrices, this gives the formula:

All A12 Al3
det| A,, A,, A,
A31 A32 A33
A, Ayl A, A A, A
:Ande{ n Al de{ 2 za}AB de{ g }
A32 A33 _ A31 33 A3l 32
And for 4 X 4 matrices, this gives the formula:
All A12 A13 Al4 ]
A A A A A22 A23 A24 A21 A23 A24
21 22 23 24 | _
det =A, det| Ay, Ay, Ay |—A,det| Ay Ay Ay
A31 A32 A33 A34 A A A A A A
A A A A 42 43 44 41 43 44
41 42 43 44 |
A21 A22 A24 A21 A22 A23
+A;det| Ay A;, Ay |—Adet] Ay A;, Agg
A41 A42 A44 A41 A42 A43

In 3D graphics, we primarily work with 4 X 4 matrices, and so we do not need to
continue generating explicit formulas for n > 4.

12" Example 2.9

Find the determinant of the matrix
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We have that:
Ay A A, A A, A
detA:Ande{ . 23}—A12d€t[ 2 23}+A13de{ 2 22}
A Ass Ay Ay Ay Ay

3 4 1 4 1 3
det A =2det —(—5)det +3det
3 7 -2 7 -2 3

=2(3-7-4-3)+5(1-7-4-(-2))+3(1-3-3-(-2))
=2(9)+5(15)+3(9)

=18+75+27

=120

2.6 THE ADJOINT OF A MATRIX

Let A be an n X n matrix. The product C; = (—1)i+j det Kij is called the cofactor of

Aj;. If we compute Cj;and place it in the 7jth position of a corresponding matrix Ca
for every element in A, we obtain the cofactor matrix of A:

Cll C12 Cln
CA = C:21 C‘zz C.Zn
Cnl Cn2 e Crm

If we take the transpose of C, we get a matrix that is called adjoint of A, which we
denote by

A =C} (eq. 2.5)

In the next section, we learn that the adjoint enables us to find an explicit formula
for computing matrix inverses.

2.7 THE INVERSE OF A MATRIX

Matrix algebra does not define a division operation, but it does define a
multiplicative inverse operation. The following list summarizes the important
information about inverses:

1. Only square matrices have inverses; therefore, when we speak of matrix
inverses, we assume we are dealing with a square matrix.
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2. The inverse of an # X n matrix M is an n X n matrix denoted by M.

3. Not every square matrix has an inverse. A matrix that does have an inverse is
said to be invertible, and a matrix that does not have an inverse is said to be
singular.

4. The inverse is unique when it exists.

5. Multiplying a matrix with its inverse results in the identity matrix: MM =
MM =I. Note that multiplying a matrix with its own inverse is a case when
matrix multiplication is commutative.

Matrix inverses are useful when solving for other matrices in a matrix equation.
For example, suppose that we are given the matrix equation p’ = pM. Further
suppose that we are given p’ and M, and want to solve for p. Assuming that M is
invertible (i.e., M exists), we can solve for p like so:

p'=pM

p'M'=pMM™ Multiplying both sides of the equation by M~
pM'=pl MM =1, by definition of inverse.

pM'=p pI = p, by definition of the identity matrix.

A formula for finding inverses, which we do not prove here but should be proved
in any college level linear algebra text, can be given in terms of the adjoint and
determinant:

A A (eq.2.6)

I=° Example 2.10

A A
Find a general formula for the inverse of a 2 X 2 matrix A = { u 12} ,and use
21 22

3 0
this formula to find the inverse of the matrix M = { }
We have that -1 2

detA=Aj A, —ApAy

(=) detA,, (<1)"7 detA,, _{Azz _A211|
(_1)2Jrl det KZI (_1)2+2 det Kzz _A12 All
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Therefore,

_ — — A22 AIZ
detA  detA A, A, ALA,| A, A,

3 0
Now we apply this formula to invert M = { . 2} :

M- = 1 2 0' 1/3 0
3.2-0-(-1)[1 3] [1/6 1/2

To check out work we verify MM =M"'M=1:

3 0|[1/3 0 1 0] [1/3 013 0
-1 2|[1/6 1/2] |0 1] |1/6 1/2][-1 2
ooy Forsmallmatrices (sizes4 x 4and smaller), theadjoint methodis computationally
efficient. For larger matrices, other methods are used like Gaussian elimination.
However, the matrices we are concerned about in 3D computer graphics have
special forms, which enable us to determine the inverse formulas ahead of time,
so that we do not need to waste CPU cycles finding the inverse of a general
matrix. Consequently, we rarely need to apply Equation 2.6 in code.

To conclude this section on inverses, we present the following useful algebraic
property for the inverse of a product:

(AB)'=B'A!

This property assumes both A and B are invertible and that they are both square
matrices of the same dimension. To prove that B*A™ is the inverse of AB, we
must show (AB)(B!A™) =1 and (B!A!)(AB) =1. This is done as follows:

(AB)(B'A)=A(BB)A'=AIA' = AA' =1
(B'A")(AB)=B'(A'A)B=B'IB=B'B=1

2.8 DIRECTX MATH MATRICES

For transforming points and vectors, we use 1 X 4 row vectors and 4 X 4 matrices.
The reason for this will be explained in the next chapter. For now, we just
concentrate on the DirectX Math types used to represent 4 X 4 matrices.
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2.8.1 Matrix Types

To represent 4 X 4 matrices in DirectX math, we use the xmvatr1x class, which is
defined as follows in the DirectXMath.h header file (with some minor adjustments
we have made for clarity):

#if (defined( M IX86) || defined( M X64) || defined( M ARM)) &&
defined( XM NO INTRINSICS )
struct XMMATRIX
f#else
__declspec(align(16)) struct XMMATRIX
#endif
{
// Use 4 XMVECTORs to represent the matrix for SIMD.
XMVECTOR r[4];

XMMATRIX () {}

// Initialize matrix by specifying 4 row vectors.
XMMATRIX (FXMVECTOR RO, FXMVECTOR R1, FXMVECTOR R2, CXMVECTOR R3)

{ r[0] = RO; r[l] = R1l; r[2] = R2; r[3] = R3; }

// Initialize matrix by specifying 4 row vectors.
XMMATRIX (float m00, float mOl, float m02, float mO03,
float ml0, float mll, float ml2, float ml3,
float m20, float m21, float m22, float m23,

float m30, float m31l, float m32, float m33);

// Pass array of sixteen floats to construct matrix.
explicit XMMATRIX( In reads_ (16) const float *pArray);

XMMATRIX& operator= (const XMMATRIX& M)
{ r[0] = M.r[0]; r[l] = M.r[1l]; r[2] = M.r[2]; r[3] = M.r[3];
return *this; }

XMMATRIX operator+ () const { return *this; }
XMMATRIX operator- () const;

XMMATRIX& XM CALLCONV operator+= (FXMMATRIX M) ;
XMMATRIX& XM CALLCONV operator-= (FXMMATRIX M) ;
XMMATRIX& XM CALLCONV operator*= (FXMMATRIX M) ;
XMMATRIX& operator*= (float S);
XMMATRIX& operator/= (float S);

XMMATRIX XM CALLCONV operator+ (FXMMATRIX M) const;
XMMATRIX XM CALLCONV operator- (FXMMATRIX M) const;
XMMATRIX XM CALLCONV operator* (FXMMATRIX M) const;
XMMATRIX operator* (float S) const;
XMMATRIX operator/ (float S) const;

friend XMMATRIX XM CALLCONV operator* (float S, FXMMATRIX M) ;
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As you can see, xmMATRTX uses four xuvecTor instances to use SIMD. Moreover,

xmMATRTX provides overloaded operators for matrix arithmetic.

In addition to using the various constructors, an xmvaTrIx instance can be

created using the xmmatrixset function:

XMMATRIX XM CALLCONV XMMatrixSet (
float m00, float m0l, float m02, float m03,
float ml0, float mll, float ml2, float ml3,
float m20, float m21, float m22, float m23,
float m30, float m31l, float m32, float m33);

Just as we use xmrroat2 (2D), xurroats (3D), and xwrroaT4 (4D) when storing
vectors in a class, it is recommended, by the DirectXMath documentation to use

the xurLoAT4x4 type to store matrices as class data members.

struct XMFLOAT4X4
{
union
{
struct
{
float 11, 12, 13, 14;
float _21, 22, 23, _24;
float _31, _32, 33, _34;
float 41, 42, 43, 44;
}i
float m[4][4];
}i

XMFLOAT4X4 () {}
XMFLOAT4X4 (float m00, float mOl, float m02, float m03,
float ml0, float mll, float ml2, float ml3,
float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33);
explicit XMFLOAT4X4 (_In reads (16) const float *pArray);

float operator() (size t Row, size t Column) const { return m[Row]
[Column]; }

floaté operator() (size_t Row, size t Column) { return m[Row]
[Column]; }

XMFLOAT4X4& operator= (const XMFLOAT4X4& Floatdx4);
}i

We use the following method to load data from xvFLoAT4x4 Into XMMATRIX:

inline XMMATRIX XM CALLCONV
XMLoadFloat4x4 (const XMFLOAT4X4* pSource);

We use the following method to store data from xMuaTRIX into xMFLOAT4X4:

inline void XM CALLCONV
XMStoreFloat4x4 (XMFLOAT4X4* pDestination, FXMMATRIX M) ;
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2.8.2 Matrix Functions

The DirectX Math library includes the following useful matrix related functions:

XMMATRIX XM CALLCONV XMMatrixIdentity(); // Returns the identity matrix I

bool XM CALLCONV XMMatrixIsIdentity ( // Returns true if M is the identity matrix
FXMMATRIX M) ; // InputM

XMMATRIX XM _CALLCONV XMMatrixMultiply ( // Returns the matrix product AB
FXMMATRIX A, // Input A
CXMMATRIX B); // InputB

XMMATRIX XM CALLCONV XMMatrixTranspose ( // Returns M"
FXMMATRIX M) ; // InputM

XMVECTOR XM _CALLCONV XMMatrixDeterminant ( // Returns(det M, det M, det M, det M)

FXMMATRIX M) ; // InputM

XMMATRIX XM _CALLCONV XMMatrixInverse ( // Returns M~
XMVECTOR* pDeterminant, // Input (det M, det M, det M, det M)
FXMMATRIX M) ; // InputM

When we declare a xmvaTrTx parameter to a function, we use the same rules we
used when passing xuvecTor parameters (see §1.6.3), except that an xuvaTRIX
counts as four xmvecror parameters. Assuming there are no more than two
additional FxmvEcToR parameters in total to the function, the first xuvarr1x should
be of type rxmmatr1x, and any other xumvatr1x should be of type cxmvarrix. We
illustrate how these types are defined on 32-bit Windows with a compiler that
supports the __fastcall calling convention and a compiler that supports the newer
__vectorcall calling convention:

// 32-bit Windows _ fastcall passes first 3 XMVECTOR arguments

// via registers, the remaining on the stack.

typedef const XMMATRIX& FXMMATRIX;
typedef const XMMATRIX& CXMMATRIX;

// 32-bit Windows _ vectorcall passes first 6 XMVECTOR arguments
// via registers, the remaining on the stack.

typedef const XMMATRIX FXMMATRIX;

typedef const XMMATRIX& CXMMATRIX;

Observe that on 32-bit Windows with  fastcall, a xMMaTRIX cannot be passed
through SSE/SSE2 registers because only three xvvecTor arguments via registers
are supported, and a xmvatrIx requires four; thus the matrix is just passed on
the stack by reference. For the details on how these types are defined for the
other platforms, see “Calling Conventions” under “Library Internals” in the
DirectXMath documentation [DirectXMath]. The exception to these rules is
with constructor methods. [DirectXMath] recommends always using cxmvaTrIx
for constructors that takes xmvatr1x parameters. Furthermore, do not use the
annotation xv_carrconv for constructors.
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2.8.3 DirectX Math Matrix Sample Program

The following code provides some examples on how to use the xmvarr1x class and
most of the functions listed in the previous section.

#include <windows.h> // for XMVerifyCPUSupport
#include <DirectXMath.h>

#include <DirectXPackedVector.h>

#include <iostream>

using namespace std;

using namespace DirectX;

using namespace DirectX::PackedVector;

// Overload the "<<" operators so that we can use cout to
// output XMVECTOR and XMMATRIX objects.
ostream& XM CALLCONV operator << (ostream& os, FXMVECTOR v)
{

XMFLOAT4 dest;

XMStoreFloat4d (&dest, v);

0s << "(" << dest.x << ", " << dest.y << ", " <K< dest.z << ", "
dest.w << ") ";
return os;

ostream& XM CALLCONV operator << (ostream& os, FXMMATRIX m)
{
for (int i = 0; 1 < 4; ++1)

{

0s << XMVectorGetX (m.r[i]) << "\t";
0s << XMVectorGetY (m.r[i]) << "\t";
0s << XMVectorGetZ (m.r[i]) << "\t";
0os << XMVectorGetW (m.r[i]);

os << endl;

}

return os;

int main ()
{
// Check support for SSE2 (Pentium4, AMD K8, and above).
if (!XMVerifyCPUSupport())
{
cout << "directx math not supported" << endl;
return 0;

XMMATRIX A(1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 2.0f, 0.0f, 0.0f,
0.0f, 0.0f, 4.0f, 0.0f,
1.0f, 2.0f, 3.0f, 1.0f);

XMMATRIX B = XMMatrixIdentity();
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XMMATRIX C A * B;

XMMATRIX D = XMMatrixTranspose (A) ;

XMVECTOR det = XMMatrixDeterminant (A) ;
XMMATRIX E = XMMatrixInverse (&det, A);

XMMATRIX F = A * E;

cout << "A = " << endl << A << endl;

cout << "B = " << endl << B << endl;

cout << "C = A*B = " << endl << C << endl;

cout << "D = transpose(A) = " << endl << D << endl;

cout << "det = determinant (A) = " << det << endl << endl;
cout << "E = inverse(A) = " << endl << E << endl;

cout << "F = A*E = " << endl << F << endl;

return 0;

Figure 2.1. Output of the above program.

2.9 SUMMARY

1. An m X n matrix M is a rectangular array of real numbers with m rows and
n columns. Two matrices of the same dimensions are equal if and only if
their corresponding components are equal. We add two matrices of the same
dimensions by adding their corresponding elements. We multiply a scalar and
a matrix by multiplying the scalar with every element in the matrix.
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. If Ais am X n matrix and B is a n X p matrix, then the product AB is defined
and is a m X p matrix C, where the ijth entry of the product C is given by taking
the dot product of the ith row vector in A with the jth column vector in B, that
iS, Cl] = Ai,* 'B»’]‘ .
. Matrix multiplication is not commutative (i.e., AB # BA, in general). Matrix
multiplication is associative: (AB)C = A(BC).

. The transpose of a matrix is found by interchanging the rows and columns
of the matrix. Thus the transpose of an m X n matrix is an # X m matrix. We
denote the transpose of a matrix M as M”.

. The identity matrix is a square matrix that has zeros for all elements except
along the main diagonal, and the elements along the main diagonal are all
ones.

. The determinant, det A, is a special function which inputs a square matrix and
outputs a real number. A square matrix A is invertible if and only if det A #0.
The determinant is used in the formula for computing the inverse of a matrix.

. Multiplying a matrix with its inverse results in the identity matrix: MM =
MM =1. The inverse of a matrix, if it exists, is unique. Only square matrices
have inverses and even then, a square matrix may not be invertible. The inverse
of a matrix can be computed with the formula: A™ = A" /detA , where A’ is
the adjoint (transpose of the cofactor matrix of A).

. We use the DirectX Math xmuatr1x type to describe 4 x 4 matrices efficiently in
code using SIMD operations. For class data members, we use the xvrLoaT4x4
class,and then use theloading (xMLoadFloat4x4) and storage (xMStoreFloat4x4)
methods to convert back and forth between xmvatr1x and xurroaTax4. The
xmMaTRTX class overloads the arithmetic operators to do matrix addition,
subtraction, matrix multiplication, and scalar multiplication. Moreover,
the DirectX Math library provides the following useful matrix functions for
computing the identity matrix, product, transpose, determinant, and inverse:

XMMATRIX XM CALLCONV XMMatrixIdentity();

XMMATRIX XM CALLCONV XMMatrixMultiply (FXMMATRIX A, CXMMATRIX B);

XMMATRIX XM CALLCONV XMMatrixTranspose (FXMMATRIX M) ;

XMVECTOR XM CALLCONV XMMatrixDeterminant (FXMMATRIX M) ;

XMMATRIX XM CALLCONV XMMatrixInverse (XMVECTOR* pDeterminant,
FXMMATRIX M) ;

2.10 EXERCISES

-2 0 -2 0
1. Solve the following matrix equation for X: 3[{ ) 3} - ZXJ = 2[ ] 3} .
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2. Compute the following matrix products:

(a) 2 =1

-2 0 3
0 6

4 1 -1
- -3

b) [1 2][-2 0

3 4]/ 1 1
o2 o 2171
0 -1 =32
0 0 11

3. Compute the transpose of the following matrices:
@ [1, 2, 3]

(b) |x )’},
z W
(o [1 2
3 4
5 6
7 8

4. Write the following linear combinations as vector-matrix products:
(a) v=2(1,2,3) —4(-5,0,-1) +3(2,-2,3)
(b) v=3(2,-4)+2(1,4) -1(-2,-3) +5(1, 1)

5. Show that

Ay Ay Ays || By, B, B «<A.B—>
AB=|A, A,, A;||B, B, By|=|<« AZ,*B —
Ay Ay, Ay || By, By, B <~ A;. B>

6. Show that
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11.

12.

13.
14.
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. Prove that the cross product can be expressed by the matrix product:

2 0 1 /2 0 -1/2

.Let=|{0 -1 -3|.IsB=| 0 -1 -3 | theinverseof A?

0 0 1 0 0 1

1 2 2 1 .
. Let A ={3 4} s Bz{ } the inverse of A?

3/2 1/2

Find the determinants of the following matrices:
21 -4
10 7
Find the inverse of the following matrices:
21 -4
10 7

Is the following matrix invertible?

0

(=]

o

S O =

2 3
4 5
0 0

Show that (A™)" = (AT)™, assuming A is invertible.

57

Let A and B be n x n matrices. A fact proved in linear algebra books is that
det(AB) = det A - det B. Use this fact along with the fact that det I = 1 to prove

1 . .. .
detA™! = % assuming A is invertible.
et
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MX u . .

15. Prove that the 2D determinant { g } gives the signed area of the
v, v
x Yy

parallelogram spanned by u = (u,, u,) and v= (v,, v,). The result is positive if u
can be rotated counterclockwise to coincide with v by an angle 0 € (0, ), and
negative otherwise.

+Y
A

16. Find the area of the parallelogram spanned by:
(a) u=(3,0)bandv=(1,1)
(b) u=(-1,-1)andv=(0,1)
A, A B, B c, C
17. Let Az{ H 12},B=[ H 12}, and Cz{ H 12] Show that
A21 A22 BZI 22 CZI C22

A(BC) = (AB)C. This shows that matrix multiplication is associative for
2 x 2 matrices. (In fact, matrix multiplication is associative for general sized
matrices, whenever the multiplication is defined.)

18. Write a computer program that computes the transpose of an m X n matrix
without using DirectX Math (just use an array of arrays in C++).

19. Write a computer program that computes the determinant and inverse of
4 x 4 matrices without using DirectX Math (just use an array of arrays in
C++).



3 TRANSFORMATIONS

Chapter

We describe objects in our 3D worlds geometrically; that is, as a collection of
triangles that approximate the exterior surfaces of the objects. It would be an
uninteresting world if our objects remained motionless. Thus we are interested in
methods for transforming geometry; examples of geometric transformations are
translation, rotation, and scaling. In this chapter, we develop matrix equations,
which can be used to transform points and vectors in 3D space.

Objectives:
1. To understand how linear and affine transformations can be represented by
matrices.

2. To learn the coordinate transformations for scaling, rotating, and translating
geometry.

3. To discover how several transformation matrices can be combined into one
net transformation matrix through matrix-matrix multiplication.

4. To find out how we can convert coordinates from one coordinate system to
another, and how this change of coordinate transformation can be represented
by a matrix.

5. To become familiar with the subset of functions provided by the DirectX
Math library used for constructing transformation matrices.

59
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3.1 LINEAR TRANSFORMATIONS

3.1.1 Definition

Consider the mathematical function t(v) = t(x, y, z) = (x', ¥, 2'). This function
inputs a 3D vector and outputs a 3D vector. We say that t is a linear transformation
if and only if the following properties hold:

tT(u+v)=1(u) +t(v)
1(ku) = kt(u) (eq.3.1)

where u = (u,, u,, u,) and v= (v, v, v,) are any 3D vectors, and k is a scalar.

ooy A linear transformation can consist of input and output values other than 3D
vectors, but we do not need such generality in a 3D graphics book.

I=° Example 3.1

Define the function t(x, y, z) = (x% y?, 2%); for example, (1, 2, 3) = (1, 4, 9). This
function is not linear since, for k=2 and u= (1, 2, 3) we have:

t(ku) =7(2,4,6) = (4, 16, 36)
but
kt(u)=2(1,4,9)= (2,8, 18)

So property 2 of Equation 3.1 is not satisfied.
If t is linear, then it follows that:

t(au+bv+cw)= T(au+(bv +cw))
=at(u)+1(bv+cw) (eq.3.2)
=at(u)+bt(v)+ct(w)

We will use this result in the next section.

3.1.2 Matrix Representation
Let u = (x, y, z). Observe that we can always write this as:
u=(xy2) =xi+yj+zk=x(1,0,0) +y(0,1,0) +2(0,0, 1)

The vectorsi=(1,0,0),j=(0,1,0),and k = (0, 0, 1), which are unit vectors that
aim along the working coordinate axes, respectively, are called the standard basis
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Figure 3.1. The left pawn is the original object. The middle pawn is the original pawn scaled 2 units on the
y-axis making it taller. The right pawn is the original pawn scaled 2 units on the x-axis making it fatter.

vectors for R’. (R? denotes the set of all 3D coordinate vectors (x, ¥, z)). Now let t
be a linear transformation; by linearity (i.e., Equation 3.2), we have:

t(u)=1(xi+yj+zk)=xt(i)+yt(j)+z7(k) (eq.3.3)

Observe that this is nothing more than a linear combination, which, as we learned
in the previous chapter, can be written by a vector-matrix multiplication. By
Equation 2.2 we may rewrite Equation 3.3 as:

t(u)=xt(i)+ yr(j)+zt(k)

< T(i) - All AIZ Al3
—uA=[x, y, z]| <1(j)= |=[x . 2]|A, A, A,| (eq.3.4)
< ‘C(k) - A3l A32 A33

where (i) = (A1), A1, A13), T(j) = (Az1, Az, As), and t(k) = (A3, Asy, Ass). We call
the matrix A the matrix representation of the linear transformation .

3.1.3 Scaling

Scaling refers to changing the size of an object as shown in Figure 3.1.
We define the scaling transformation by:

S(x, y5 2) = (5%, 5,0 5:2)

This scales the vector by s, units on the x-axis, s, units on the y-axis, and s, units on
the z-axis, relative to the origin of the working coordinate system. We now show
that S is indeed a linear transformation. We have that:

S(u+v)=(sx(ux +VX),sy(uy +v},),sz(u2 +v, ))

= (sxux TS VoS U, +SV 58,0, +szvz)
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=(sattos s+ (s705,9,05.0.)
= S(u)-l—S(v)

S(ku)= (sxkux,sykuy,szkuz)
=k(sxux,syuy,szuz)
=kS(u)

Thus both properties of Equation 3.1 are satisfied, so S is linear, and thus there
exists a matrix representation. To find the matrix representation, we just apply
S to each of the standard basis vectors, as in Equation 3.3, and then place the
resulting vectors into the rows of a matrix (as in Equation 3.4):

S(i)=(s,1,5,-0,5,-0) =(5,,0,0)
S(j)= (5,05, 15,-0)=(0,5,,0)
S(k)=(s,0,5,-0,5,-1)=(0,0,5,)

Thus the matrix representation of S is:

s, 0 0
S=|0 S, 0
0 0 s

We call this matrix the scaling matrix.
The inverse of the scaling matrix is given by:

/s, 0 0
s'=| 0 /s, 0
0 0 /s,

I=" Example 3.2

Suppose we have a square defined by a minimum point (—4,—4, 0) and a maximum
point (4, 4, 0). Suppose now that we wish to scale the square 0.5 units on the
x-axis, 2.0 units on the y-axis, and leave the z-axis unchanged. The corresponding
scaling matrix is:

w

I

o
(=N SN
- o O



TrANSFORMATIONS 63

+Y Scaling: +Y
_—

(2,8,0)

(4,4,0)

+X +X

(—4,—4,0)

(-2,-8,0)

Figure 3.2. Scaling by one-half units on the x-axis and two units on the y-axis. Note that when looking down
the negative z-axis, the geometry is basically 2D since z= 0.

Now to actually scale (transform) the square, we multiply both the minimum
point and maximum point by this matrix:

05 0 0 05 0 0
[-4-4,0]] 0 2 0|=[-2,-8,0] [44,0]] 0 2 0|=[238,0]
0 01 0 0 1

The result is shown in Figure 3.2.

3.1.4 Rotation

In this section, we describe rotating a vector v about an axis n by an angle 6; see
Figure 3.3. Note that we measure the angle clockwise when looking down the axis
n; moreover, we assume ||n|| = 1.

Figure 3.3. The geometry of rotation about a vector n.
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First, decompose v into two parts: one part parallel to n and the other part
orthogonal to n. The parallel part is just proj,(v) (recall Example 1.5); the
orthogonal part is given by v, = perp,(v) =v— proj,(v). (Recall, also from Example
1.5, that since n is a unit vector, we have proj,(v) = (n - v)n.) The key observation
is that the part proj,(v) that is parallel to n is invariant under the rotation, so we
only need to figure out how to rotate the orthogonal part. That is, the rotated
vector Ry (V) = proj,(v) + R,(v, ), by Figure 3.3.

To find R,(v,), we set up a 2D coordinate system in the plane of rotation. We
will use v, as one reference vector. To get a second reference vector orthogonal
to v, and n we take the cross product n x v (left-hand-thumb rule). From the
trigonometry of Figure 3.3 and Exercise 14 of Chapter 1, we see that

[nxv||=[[n]l||v[[sino=]]v][sina=[[v,|]

where a is the angle between n and n. So both reference vectors have the same
length and lie on the circle of rotation. Now that we have set up these two reference
vectors, we see from trigonometry that:

R,(v,)=cosbv, +sinB(nxv)

This gives us the following rotation formula:
Ry ()= proj (V)4 2, (v.)
=(n-v)n+cosbv, +sinB(nxv)
= (n-v)n+cos(v—(n-v)n)-+sin0(nxv) (q.35)
=cosBv +(1—cosB)(n-v)n+sinB(nxv)

We leave it as an exercise to show that this is a linear transformation. To find the
matrix representation, we just apply R, to each of the standard basis vectors, as in
Equation 3.3, and then place the resulting vectors into the rows of a matrix (as in
Equation 3.4). The final result is:

c+(l-c)x* (1-c)xy+sz (1-c)xz—sy
R, = (l—c)xy—sz c+(1—c)y2 (1—c)yz+sx

n

(1-c)xz+sy (1-c)yz—sx c+(1-c)z*

where we let ¢ = cos and s = sinf.

The rotation matrices have an interesting property. Each row vector is unit
length (verify) and the row vectors are mutually orthogonal (verify). Thus the
row vectors are orthonormal (i.e., mutually orthogonal and unit length). A matrix
whose rows are orthonormal is said to be an orthogonal matrix. An orthogonal
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matrix has the attractive property that its inverse is actually equal to its transpose.
Thus, the inverse of R,, is:

c+(1—c)x2 (l—c)xy—sz (1—c)xz+sy
R sz = (1—c)xy+sz c+(1—c)y2 (l—c)yz—sx
(l—c)xz—sy (l—c)yz+sx ch(l—c)z2
In general, orthogonal matrices are desirable to work with since their inverses are
easy and efficient to compute.
In particular, if we choose the x-, y-, and z-axes for rotation (i.e., n = (1, 0, 0),

n = (0, 1, 0), and n = (0, 0, 1), respectively), then we get the following rotation
matrices which rotate about the x-, y-, and z-axis, respectively:

1 0 0 0 cosO 0 —sin® 0 cosO sin® 0 O

0 cosO sin® O 0 1 0 0 —sin® cos® 0 O
Rx = . > R, = . > Rz =

0 —sin® cos® 0| 7 |sin® 0 cos® O 0 0 10

0 0 0 1 0 0 0 1 0 0 0 1

12" Example 3.3

Suppose we have a square defined by a minimum point (-1, 0, —1) and a
maximum point (1, 0, 1). Suppose now that we wish to rotate the square —30°
clockwise about the y-axis (i.e., 30° counterclockwise). In this case, n = (0, 1, 0),
which simplifies R, considerably; the corresponding ,-axis rotation matrix is:

V3oL

cos® 0 —sinB]| |cos(—30°) 0 —sin(-30°)| | 2 2

RY = 0 1 0 = 0 1 0 = 0 1 0
sin® 0 cosH sin(—30°) 0 cos(—30°) 1 0 NE)
L 2 2

Now to actually rotate (transform) the square, we multiply both the minimum
point and maximum point by this matrix:

NERA NERA
2 2 2 2
[-10,-1] 0 1 0 |=[-0.36,0,-1.36] [L0,]]] 0 1 0 |~[0.36,0,1.36]
Ly B Ly B
2 2 | 2 2

The result is shown in Figure 3.4.
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+Z Rotation: +Z
A _— A
(0.36,0,1.36)
(1,0,1)
+X [ +X

s

Y

(-1,0,—-1)
(—0.36,0,—1.36)

Figure 3.4. Rotating —30° clockwise around the y-axis. Note that when looking down the positive y-axis, the
geometry is basically 2D since y = 0.

3.2 AFFINE TRANSFORMATIONS

3.2.1 Homogeneous Coordinates

We will see in the next section that an affine transformation is a linear
transformation combined with a translation. However, translation does not
make sense for vectors because a vector only describes direction and magnitude,
independent of location; in other words, vectors should be unchanged under
translations. Translations should only be applied to points (i.e., position vectors).
Homogeneous coordinates provide a convenient notational mechanism that enables
us to handle points and vectors uniformly. With homogeneous coordinates, we
augment to 4-tuples and what we place in the fourth w-coordinate depends on
whether we are describing a point or vector. Specifically, we write:

1. (x,y,2,0) for vectors

2. (x,y,2, 1) for points

We will see later that setting w = 1 for points allows translations of points to work
correctly, and setting w = 0 for vectors prevents the coordinates of vectors from
being modified by translations (we do not want to translate the coordinates of a
vector, as that would change its direction and magnitude—translations should
not alter the properties of vectors).

ooy ['he notation of homogeneous coordinates is consistent with the ideas shown in
Figure 1.17. That is, the difference between two points qQ — p = (qx Gy 4 1) —
(Po Py P2 1) = (@x = P Gy — Py» - — P> 0) results in a vector, and a point plus a
vector p+V = (Py Pys Pos 1) + (Vo V) Vi 1) = (P + Vo Py + VP, + Vi 1) results
in a point.
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3.2.2 Definition and Matrix Representation

A linear transformation cannot describe all the transformations we wish to do;
therefore, we augment to a larger class of functions called affine transformations.
An affine transformation is a linear transformation plus a translation vector b;
that is:

oc(u) =t(u)+b

Or in matrix notation:

All A12 A13
a(u)zuAer:[x, Vs z] A, A, Ay +[bx, b,, bz]:[x’, ¥, z']
A31 A32 A33

where A is the matrix representation of a linear transformation.
If we augment to homogeneous coordinates with w = 1, then we can write this
more compactly as:

Ay Ay A 0

[x’ i 1] Ay Ay Ay O :[x,’ y, 7z, 1] (eq. 3.6)
Ay Ay Ay 0
b, by b, 1

The 4 x 4 matrix in Equation 3.6 is called the matrix representation of the affine
transformation.

Observe that the addition by b is essentially a translation (i.e., change in
position). We do not want to apply this to vectors because vectors have no position.
However, we still want to apply the linear part of the affine transformation to
vectors. If we set w = 0 in the fourth component for vectors, then the translation
by b is not applied (verify by doing the matrix multiplication).

oo Because the dot product of the row vector with the fourth column of the above
4 x 4 affine transformation matrix is: [x, y, z, w]-[0, 0, 0, 1] =w, this matrix does
not modify the w-coordinate of the input vector.

3.2.3 Translation

The identity transformation is a linear transformation that just returns its
argument; that is, I(u) = u. It can be shown that the matrix representation of this
linear transformation is the identity matrix.



68  MaTHEMATICAL PREREQUISITES

u+b

M

Figure 3.5. Displacing the position of the ant by some displacement vector b.

Now, we define the translation transformation to be the affine transformation
whose linear transformation is the identity transformation; that is,

t(u)=ul+b=u+b

As you can see, this simply translates (or displaces) point u by b. Figure 3.5
illustrates how this could be used to displace objects—we translate every point on
the object by the same vector b to move it.

By Equation 3.6, T has the matrix representation:

1 0 0 O

0O 1 0 0
T=

0O 0 1 0

b, b, b, 1

This is called the translation matrix.
The inverse of the translation matrix is given by:

()

o

p—
—_ o O

12" Example 3.4

Suppose we have a square defined by a minimum point (-8, 2, 0) and a maximum
point (-2, 8, 0). Suppose now that we wish to translate the square 12 units on
the x-axis, —10.0 units on the y-axis, and leave the z-axis unchanged. The
corresponding translation matrix is:

o

—_
S = O O
- o O O
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+Y Translation: +Y
— IS
(=2,8,0)
(-8,2,0) X X
(10,-2,0)
(4,-8,0)

Figure 3.6. Translating 12 units on the x-axis and =10 units on the y-axis. Note that when looking
down the negative z-axis, the geometry is basically 2D since z= 0.

Now to actually translate (transform) the square, we multiply both the minimum
point and maximum point by this matrix:

1 0 00
0 00
[-8 2, 0, 1] =[4, -8 0, 1]
0 0 10
12 -10 0 1
1 0 00
0 00
[-2, 8 0, 1] =[10, -2, 0, 1]
0 0 10
12 -10 0 1
The result is shown in Figure 3.6.
oy Let T be a transformation matrix, and recall that we transform a point/vector

by computing the product vT = v'. Observe that if we transform a point/vector
by T and then transform it again by the inverse T~' we end up with the original
vector: VI'T™ = vl = v. In other words, the inverse transformation undoes the
transformation. For example, if we translate a point 5 units on the x-axis, and
then translate by the inverse -5 units on the x-axis, we end up where we started.
Likewise, if we rotate a point 30° about the y-axis, and then rotate by the inverse
—30° about the y-axis, then we end up with our original point. In summary, the
inverse of a transformation matrix does the opposite transformation such that
the composition of the two transformations leaves the geometry unchanged.
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3.2.4 Affine Matrices for Scaling and Rotation

Observe that if b= 0, the affine transformation reduces to a linear transformation.
Thus we can express any linear transformation as an affine transformation with
b = 0. This, in turn, means we can represent any linear transformation by a 4 x 4
affine matrix. For example, the scaling and rotation matrices written using 4 x 4
matrices are given as follows:

s, 0.0 0
o_| 0 5 00
0 0 s, 0
0 0 0 1

c+(1—c)x2 (1—c)xy+sz (l—c)xz—sy

R - (1—c)xy—sz c+(1—c)y2 (1—c)yz+sx

n

(1—c)xz+5y (l—c)yz—sx c+(1—c)z2
0 0 0

— o o O

In this way, we can express all of our transformations consistently using 4 x 4
matrices and points and vectors using 1 x 4 homogeneous row vectors.

3.2.5 Geometric Interpretation of an Affine
Transformation Matrix

In this section, we develop some intuition of what the numbers inside an affine
transformation matrix mean geometrically. First, let us consider a rigid body
transformation, which is essentially a shape preserving transformation. A real
world example of a rigid body transformation might be picking a book off your
desk and placing it on a bookshelf; during this process you are translating the book
from your desk to the bookshelf, but also very likely changing the orientation of
the book in the process (rotation). Let T be a rotation transformation describing
how we want to rotate an object and let b define a displacement vector describing
how we want to translate an object. This rigid body transform can be described by
the affine transformation:

a(x,y,z)=1(xy,2)+b=xt(i)+yt(j)+zt(k)+b

In matrix notation, using homogeneous coordinates (w = 1 for points and w=0
for vectors so that the translation is not applied to vectors), this is written as:
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(i)

%
<—1:())—)
%

< 1(k)

«~b—>

! ! !

[, » 2 W] =[x, y, 2, w] (eq.3.7)

Now, to see what this equation is doing geometrically, all we need to do is graph the
row vectors in the matrix (see Figure 3.7). Because 7 is a rotation transformation
it preserves lengths and angles; in particular, we see that T is just rotating the
standard basis vectors i, j, and k into a new orientation t(i), t(j), and t(k). The
vector b is just a position vector denoting a displacement from the origin. Now
Figure 3.7 shows how the transformed point is obtained geometrically when o.(x,
¥, z) =x1(i) + yt(j) + zt(k) + b is computed.

The same idea applies to scaling or skew transformations. Consider the linear
transformation t that warps a square into a parallelogram as shown in Figure 3.8.
The warped point is simply the linear combination of the warped basis vectors.

a(p) =x1(i) + yr(j) + zt(K) +b

(§)

p=xi+yj+2zk

@ ¥ i (b) i
Figure 3.7. The geometry of the rows of an affine transformation matrix. The transformed point, a(p), is
given as a linear combination of the transformed basis vectors (i) ,1(j), T(k), and the offset b.

+Y tY

Figure 3.8. For a linear transformation that warps a square into a parallelogram, the transformed point
t(p) = (x,y) is given as a linear combination of the transformed basis vectors (i), t(j).
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3.3 COMPOSITION OF TRANSFORMATIONS

Suppose S is a scaling matrix, R is a rotation matrix, and T is a translation matrix.
Assume we have a cube made up of eight vertices v; for i=0, 1, ..., 7, and we wish
to apply these three transformations to each vertex successively. The obvious way
to do this is step-by-step:

((viS)R)T = (v: R)T =v/T=v! fori=0,1..,7

However, because matrix multiplication is associative, we can instead write this
equivalently as:

Vv, (SRT) =v! for i=0,1,...,7

We can think of the matrix C = SRT as a matrix that encapsulates all three
transformations into one net transformation matrix. In other words, matrix-
matrix multiplication allows us to concatenate transforms.

This has performance implications. To see this, assume that a 3D object
is composed of 20,000 points and that we want to apply these three successive
geometric transformations to the object. Using the step-by-step approach, we
would require 20,000 x 3 vector-matrix multiplications. On the other hand, using
the combined matrix approach requires 20,000 vector-matrix multiplications and
2 matrix-matrix multiplications. Clearly, two extra matrix-matrix multiplications
is a cheap price to pay for the large savings in vector-matrix multiplications.

oy Again we point out that matrix multiplication is not commutative. This is
even seen geometrically. For example, a rotation followed by a translation,
which we can describe by the matrix product RT, does not result in the same
transformation as the same translation followed by the same rotation, that is,
TR. Figure 3.9 demonstrates this.

(a) )

Figure 3.9. (a) Rotating first and then translating. (b) Translating first and then rotating.
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3.4 CHANGE OF COORDINATE
TRANSFORMATIONS

The scalar 100°C represents the temperature of boiling water relative to the Celsius
scale. How do we describe the same temperature of boiling water relative to the
Fahrenheit scale? In other words, what is the scalar, relative to the Fahrenheit scale,
that represents the temperature of boiling water? To make this conversion (or
change of frame), we need to know how the Celsius and Fahrenheit scales relate.

They are related as follows: Ty = %TC +32°. Therefore, the temperature of boiling

9
water relative to the Fahrenheit scale is given by T = E(IOO)O +32°=212°F.

This example illustrates that we can convert a scalar k that describes some
quantity relative to a frame A into a new scalar k' that describes the same quantity
relative to a different frame B, provided that we knew how frame A and B were
related. In the following subsections, we look at a similar problem, but instead
of scalars, we are interested in how to convert the coordinates of a point/vector
relative to one frame into coordinates relative to a different frame (see Figure
3.10). We call the transformation that converts coordinates from one frame into
coordinates of another frame a change of coordinate transformation.

It is worth emphasizing that in a change of coordinate transformation, we
do not think of the geometry as changing; rather, we are changing the frame of
reference, which thus changes the coordinate representation of the geometry. This
is in contrast to how we usually think about rotations, translations, and scaling,
where we think of actually physically moving or deforming the geometry.

In 3D computer graphics, we employ multiple coordinate systems, so we need
to know how to convert from one to another. Because location is a property of

v=Wwy)
X

‘ ! I
y Jov=0Ly)

Frame A Frame B

4

Figure 3.10. The same vector v has different coordinates when described relative to different frames.
It has coordinates (x, y) relative to frame A and coordinates (x, y') relative to frame B.
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points, but not of vectors, the change of coordinate transformation is different for
points and vectors.

3.4.1 Vectors

Consider Figure 3.11, in which we have two frames A and B and a vector p.
Suppose we are given the coordinates p4 = (x, y) of p relative to frame A, and we
wish to find the coordinates py = (x, ') of p relative to frame B. In other words,
given the coordinates identifying a vector relative to one frame, how do we find
the coordinates that identify the same vector relative to a different frame?

o Pa = ()

Frame A Frame B

Figure 3.11. The geometry of finding the coordinates of p relative to frame B.
From Figure 3.11, it is clear that

p=xu+yv
where u and v are unit vectors which aim, respectively, along the x- and y-axes of
frame A. Expressing each vector in the above equation in frame B coordinates we get:

Ps=Xxug+ yvy
Thus, if we are given p4 = (x, y) and we know the coordinates of the vectors u and
v relative to frame B, that is if we know ug = (u,, u,) and vz = (v, v,), then we can
always find pp = (x', ).
Generalizing to 3D, if p4 = (x, 3 z), then
PB = Xup +yVB + ZWpg

where u, v, and w are unit vectors which aim, respectively, along the x-, y- and
z-axes of frame A.

3.4.2 Points

The change of coordinate transformation for points is slightly different than it is
for vectors; this is because location is important for points, so we cannot translate
points as we translated the vectors in Figure 3.11.
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+Y
pa=(x,y) b
1O T e y
xu_ 7!
YV
i x*
y L x
v -
i Q
Frame A
b +X
x
Frame B
y

Figure 3.12. The geometry of finding the coordinates of p relative to frame B.

Figure 3.12 shows the situation, and we see that the point p can be expressed by

the equation:
p=xu+yv+Q
where u and v are unit vectors which aim, respectively, along the x- and y-axes of
frame A, and Q is the origin of frame A. Expressing each vector/point in the above
equation in frame B coordinates we get:
ps=xup+yvp+ Qs

Thus, if we are given p4 = (x, y) and we know the coordinates of the vectors u and
v, and origin Q relative to frame B, that is if we know uz = (u,, u,), vz = (v, v,), and
Qi =(Q, Q)), then we can always find pg = (x', y/').

Generalizing to 3D, if p4 = (x, ¥, 2), then

ps=xup+yvp +zwp+ Qp

where u, v, and w are unit vectors which aim, respectively, along the x-, y- and
z-axes of frame A, and Q is the origin of frame A.

3.4.3 Matrix Representation

To review so far, the vector and point change of coordinate transformations are:
(x,y,2) =xup+ yvp+ zwp for vectors
(x',y',2') =xup+yvg+zwp+ Qg  for points
If we use homogeneous coordinates, then we can handle vectors and points by
one equation:
(x',y',2', w) = xup + yvg + zwp + wQg (eq.3.8)
If w = 0, then this equation reduces to the change of coordinate transformation

for vectors; if w = 1, then this equation reduces to the change of coordinate
transformation for points. The advantage of Equation 3.8 is that it works for both
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vectors and points, provided we set the w-coordinates correctly; we no longer
need two equations (one for vectors and one for points). Equation 2.3 says that we
can write Equation 3.8 in the language of matrices:
[ uy;—
“— vV,
[x', y', Z, w] = [x, y,  Z w] B
“—w; >

| < Qz—>
= (eq.3.9)
Y

<
<

N

N

u,
Ve v
W,

=[x, y,» z w]

N

y

<=
<
— O O O

o =
o =

Q,

=xUyz+yvp+zwy +wQy,

y

where Qp = (Q,, Qy) Q 1), up= (uy, Uy, Uy, 0),vg=(vy Vys Vas 0),and wg= (w,, Wys Wy
0) describe the origin and axes of frame A with homogeneous coordinates relative
to frame B. We call the 4 x 4 matrix in Equation 3.9 a change of coordinate matrix
or change of frame matrix, and we say it converts (or maps) frame A coordinates
into frame B coordinates.

3.4.4 Associativity and Change of Coordinate Matrices

Suppose now that we have three frames F, G, and H. Moreover, let A be the change
of frame matrix from F to G, and let B be the change of frame matrix from G to H.
Suppose we have the coordinates pr of a vector relative to frame F and we want the
coordinates of the same vector relative to frame H, that is, we want py. One way to
do this is step-by-step:

(PFA)B =PH
(Pc)B=pu

However, because matrix multiplication is associative, we can instead rewrite
(prA)B =ppas:
p+(AB) =py
In this sense, the matrix product C = AB can be thought of as the change of frame
matrix from F directly to H; it combines the affects of A and B into a net matrix.
(The idea is like composition of functions.)
This has performance implications. To see this, assume that a 3D object is
composed of 20,000 points and that we want to apply two successive change of
frame transformation to the object. Using the step-by-step approach, we would
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require 20,000 x 2 vector-matrix multiplications. On the other hand, using the
combined matrix approach requires 20,000 vector-matrix multiplications and
1 matrix-matrix multiplication to combine the two change of frame matrices.
Clearly, one extra matrix-matrix multiplication is a cheap price to pay for the
large savings in vector-matrix multiplications.

oy Again, matrix multiplication is not commutative, so we expect that AB and BA
do not represent the same composite transformation. More specifically, the order
in which you multiply the matrices is the order in which the transformations are
applied, and in general, it is not a commutative process.

3.4.5 Inverses and Change of Coordinate Matrices

Suppose that we are given pp (the coordinates of a vector p relative to frame B),
and we are given the change of coordinate matrix M from frame A to frame B; that
is, ps = paM. We want to solve for p4. In other words, instead of mapping from
frame A into frame B, we want the change of coordinate matrix that maps us from
Binto A. To find this matrix, suppose that M is invertible (i.e., M exists). We can
solve for py like so:

P3=psM

psM™' =p,MM™! Multiplying both sides of the equation by M~
psM ' =pul MM =1, by definition of inverse.

psM ' =pa pal =pa, by definition of the identity matrix.

Thus the matrix M™" is the change of coordinate matrix from B into A.

Figure 3.13 illustrates the relationship between a change of coordinate matrix
and its inverse. Also note that all of the change of frame mappings that we do in this
book will be invertible, so we won’t have to worry about whether the inverse exists.

Frame B

M

Frame A
Figure 3.13. M maps A into B and M™ maps from B into A.
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AB

B

D
-
" —

Frame G

Frame F B-1A-! Frame H

Figure 3.14. A maps from Finto G, B maps from G into H, and AB maps from F directly into H. B
maps from H into G, A" maps from G into Fand B"'A™" maps from H directly into F.

Figure 3.14 shows how the matrix inverse property (AB)™! = B'A™! can be
interpreted in terms of change of coordinate matrices.

3.5 TRANSFORMATION MATRIX VERSUS CHANGE
OF COORDINATE MATRIX

So far we have distinguished between “active” transformations (scaling, rotation,
translation) and change of coordinate transformations. We will see in this section
that mathematically, the two are equivalent, and an active transformation can be
interpreted as a change of coordinate transformation, and conversely.

Figure 3.15 shows the geometric resemblance between the rows in Equation 3.7
(rotation followed by translation affine transformation matrix) and the rows in
Equation 3.9 (change of coordinate matrix).

Frame A

Frame B

(®)

Figure 3.15. We see that b=Q, t(i) = u, 1(j) = v, and 1(k) = w. (a) We work with one coordinate system,
call it frame B, and we apply an affine transformation to the cube to change its position and orientation
relative to frame B: a(x, y, z, w) = xt(i) + y1(j) + zt(k) + wb. (b) We have two coordinate systems called frame
A and frame B. The points of the cube relative to frame A can be converted to frame B coordinates by the
formula pg = xug + yvg + zwp + wQg, where p4 =(x, y, z, w). In both cases, we have a(p) = (X, y', 2, w) = ps
with coordinates relative to frame B.



TRANSFORMATIONS 79

If we think about this, it makes sense. For with a change of coordinate
transformation, the frames differ in position and orientation. Therefore, the
mathematical conversion formula to go from one frame to the other would
require rotating and translating the coordinates, and so we end up with the
same mathematical form. In either case, we end up with the same numbers; the
difference is the way we interpret the transformation. For some situations, it is
more intuitive to work with multiple coordinate systems and convert between the
systems where the object remains unchanged, but its coordinate representation
changes since it is being described relative to a different frame of reference (this
situation corresponds with Figure 3.15b). Other times, we want to transform an
object inside a coordinate system without changing our frame of reference (this
situation corresponds with Figure 3.154).

oo~y [n particular, this discussion shows that we can interpret a composition of
active transformations (scaling, rotation, translation) as a change of coordinate
transformation. This is important because we will often define our world space
(Chapter 5) change of coordinate matrix as a composition of scaling, rotation,
and translation transformations.

3.6 DIRECTX MATH TRANSFORMATION
FUNCTIONS

We summarize the DirectX Math related transformation functions for reference.

// Constructs a scaling matrix:

XMMATRIX XM CALLCONV XMMatrixScaling (

float ScaleX,

float ScaleY,

float Scalez); /I Scaling factors

// Constructs a scaling matrix from components in vector:
XMMATRIX XM CALLCONV XMMatrixScalingFromVector (
FXMVECTOR Scale) ; /1 Scaling factors (s, 5,5, 5,)

s, Constructs a x—-axis rotation matrix Ry.
XMMATRIX XM CALLCONV XMMatrixRotationX (
float Angle); /I Clockwise angle 0 to rotate

// Constructs a y-axis rotation matrix Ry,
XMMATRIX XM CALLCONV XMMatrixRotationY (
float Angle); /I Clockwise angle 0 to rotate

// Constructs a z-axis rotation matrix R,.
XMMATRIX XM CALLCONV XMMatrixRotationZ (
float Angle); /I Clockwise angle 0 to rotate
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// Constructs an arbitrary axis rotation matrix Ry,

XMMATRIX XM CALLCONV XMMatrixRotationAxis (
FXMVECTOR Axis, // Axis n to rotate about
float Angle); /I Clockwise angle 0 to rotate

Constructs a translation matrix:

XMMATRIX XM CALLCONV XMMatrixTranslation (

float OffsetX,

float Offsety,

float OffsetZ); // Translation factors

Constructs a translation matrix from components in a vector:
XMMATRIX XM CALLCONV XMMatrixTranslationFromVector (
FXMVECTOR Offset) ; // Translation factors (t,, t,, t,)

// Computes the vector-matrix product VM where v,, = 1 for transforming points:
XMVECTOR XM CALLCONV XMVector3TransformCoord (
FXMVECTOR V, /] Input v
CXMMATRIX M) ; // Input M

// Computes the vector-matrix product vM where v,, = 0 for transforming vectors:
XMVECTOR XM CALLCONV XMVector3TransformNormal (
FXMVECTOR V, // Input v
CXMMATRIX M) ; // Input M

Forthelasttwo functions xMvector3TransformCoordand xMvector3TransformNormal,
you do not need to explicitly set the w coordinate. The functions will always use

w = 1 and Vy = 0 for xMvector3TransformCoord and XMVector3TransformNormal,
respectively.

3.7 SUMMARY

1. The fundamental transformation matrices—scaling, rotation, and
translation—are given by:

s, 0 0
0

A%
=

S:= T‘:

SZ

—_— o O O

1 0 0 O
0 1 0 O
0 0 1 O
b, b, b, 1

o O

SN~—"
§
Q

(1-c)xy—sz c+(1-c)y* (1- c)yz+5x
1 cxz+sy (l—c)yz—sx c+(l—c)z

0

0

0
c+( cx2 (1—c)xy+sz (1 c
0 0

- o o O
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2. We use 4 x 4 matrices to represent transformations and 1 x 4 homogeneous
coordinates to describe points and vectors, where we denote a point by setting
the fourth component to w = 1 and a vector by setting w = 0. In this way,
translations are applied to points but not to vectors.

3. A matrix is orthogonal if all of its row vectors are of unit length and mutually
orthogonal. An orthogonal matrix has the special property that its inverse
is equal to its transpose, thereby making the inverse easy and efficient to
compute. All the rotation matrices are orthogonal.

4. From the associative property of matrix multiplication, we can combine
several transformation matrices into one transformation matrix, which
represents the net effect of applying the individual matrices sequentially.

5. Let Qg, up, vz, and Wj describe the origin, x-, y-, and z-axes of frame A with
coordinates relative to frame B, respectively. If a vector/point p has coordinates
P4 = (%, ¥, z) relative to frame A, then the same vector/point relative to frame
B has coordinates:

(a) pp=(x',y',2') =xup+ yvp+zwp For vectors (direction and magnitude)
(b) ps=(x',y',2") =Qp+xup+ yvg+zwg  For position vectors (points)

These change of coordinate transformations can be written in terms of
matrices using homogeneous coordinates.

6. Suppose we have three frames, F, G, and H, and let A be the change of frame
matrix from Fto G, and let B be the change of frame matrix from G to H. Using
matrix-matrix multiplication, the matrix C = AB can be thought of as the
change of frame matrix F directly to H; that is, matrix-matrix multiplication
combines the effects of A and B into one net matrix, and so we can write:
p-(AB) =pp.

7. If the matrix M maps frame A coordinates into frame B coordinates, then the
matrix M~ maps frame B coordinates into frame A coordinates.

8. An active transformation can be interpreted as a change of coordinate
transformation, and conversely. For some situations, it is more intuitive to
work with multiple coordinate systems and convert between the systems
where the object remains unchanged, but its coordinate representation
changes since it is being described relative to a different frame of reference.
Other times, we want to transform an object inside a coordinate system
without changing our frame of reference of reference.
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3.8 EXERCISES

1. Let ©: R* > R’ be defined by t(x, y, 2) = (x + y, x — 3, 2). Is T a linear
transformation? If it is, find its standard matrix representation.

2. Let t: R? - R’ be defined by t(x, y, z) = (3x + 42, 2x — 2z, x + y + z). Is T a linear
transformation? If it is, find its standard matrix representation.

3. Assume that t: R* — R’ is a linear transformation. Further suppose that t(1,
0,0)=(3,1,2),t(0,1,0)=(2,-1,3),and ©(0,0, 1) = (4,0, 2). Find t(1, 1, 1).

4. Build a scaling matrix that scales 2 units on the x-axis, —3 units on the y-axis,
and keeps the z-dimension unchanged.

5. Build a rotation matrix that rotates 30° along the axis (1, 1, 1).

6. Build a translation matrix that translates 4 units on the x-axis, no units on the
y-axis, and -9 units on the z-axis.

7. Build a single transformation matrix that first scales 2 units on the x-axis, —3
units on the y-axis, and keeps the z-dimension unchanged, and then translates
4 units on the x-axis, no units on the y-axis, and -9 units on the z-axis.

8. Build a single transformation matrix that first rotates 45° about the y-axis and
then translates —2 units on the x-axis, 5 units on the y-axis, and 1 unit on the
z-axis.

9. Redo Example 3.2, but this time scale the square 1.5 units on the x-axis, 0.75
units on the y-axis, and leave the z-axis unchanged. Graph the geometry
before and after the transformation to confirm your work.

10. Redo Example 3.3, but this time rotate the square —45° clockwise about the
y-axis (i.e., 45° counterclockwise). Graph the geometry before and after the
transformation to confirm your work.

11. Redo Example 3.4, but this time translate the square —5 units on the x-axis,

-3.0 units on the y-axis, and 4.0 units on the z-axis. Graph the geometry before
and after the transformation to confirm your work.

12. Show that R,(v) = cosOv + (1 — cosO) (n-v)n + sinO(n x v) is a linear
transformation and find its standard matrix representation.

13. Prove that the rows of R, are orthonormal. For a more computational intensive
exercise, the reader can do this for the general rotation matrix (rotation matrix
about an arbitrary axis), too.

14. Prove the matrix M is orthogonal if and only if M" =M.
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15. Compute:

16.

17.

18.

1 0 0 O 1 0 0 O
0 1 0 O 0 1 0 O
[x,7,2,1] 0o 0 1 0 and [x,y,z,0] o 0 1 o
b, b, b, 1 b, b b, 1

Does the translation translate points? Does the translation translate vectors?
Why does it not make sense to translate the coordinates of a vector in standard
position?

Verify that the given scaling matrix inverse is indeed the inverse of the scaling
matrix; that is, show, by directly doing the matrix multiplication, §§' = §™'S
= I. Similarly, verify that the given translation matrix inverse is indeed the
inverse of the translation matrix; that is, show that TT ' =T 'T =1

Suppose that we have frames A and B. Let p4 = (1, -2, 0) and q4 = (1, 2, 0)
represent a point and force, respectively, relative to frame A. Moreover, let

1 1 1 1
Qs = (-6,2,0), uy (ﬁ,ﬁ,oj, Vp [ \/E’\/E’Oj’ and wz = (0,0, 1)
describe frame A with coordinates relative to frame B. Build the change of
coordinate matrix that maps frame A coordinates into frame B coordinates,
and find ps= (x, 5, z) and qz = (%, , z). Draw a picture on graph paper to verify
that your answer is reasonable.

The analog for points to a linear combination of vectors is an affine
combination: p=ap, + ... +a,p, wherea,; + ... +a,=land py, ..., p, are points.
The scalar coefficient a; can be thought of as a “point” weight that describe
how much influence the point py has in determining p; loosely speaking, the
closer ay is to 1, the closer p will be to p, and a negative a; “repels” p from p.
(The next exercise will help you develop some intuition on this.) The weights
are also known as barycentric coordinates. Show that an affine combination
can be written as a point plus a vector:

p=p +a,(p,—p))+...+a,(p,—P))

19. Consider the triangle defined by the points p; = (0,0, 0), p,=(0,1,0),and p; =

(2,0,0). Graph the following points:
1 1 1
(a) gpl +§P2 +§P3
(b) 07p1 + 0.2P2 + O.1p3
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20.

21.

(c) 0.0p; + 0.5p, + 0.5p;

(d) —0.2p; + 0.6p, + 0.6p;

(e) 0.6p, + 0.5p, — 0.1p;

(f) 0.8p; — 0.3p, + 0.5p;
What is special about the point in part (a)? What would be the barycentric
coordinates of p, and the point (1, 0, 0) in terms of p;, p», p3¢ Can you make

a conjecturer about where the point p will be located relative to the triangle if
one of the barycentric coordinates is negative?

One of the defining factors of an affine transformation is that it preserves
affine combinations. Prove that the affine transformation o(u) preserves
affine transformations; that is,o.(a,p, +...+4a,p, ) =a,a(p,)+...+a,0(p,)
wherea, +... +a,=1.

Consider Figure 3.16. A common change of coordinate transformation in
computer graphics is to map coordinates from frame A (the square [-1, 1]?)
to frame B (the square [0, 1]*> where the y-axes aims opposite to the one in
Frame A). Prove that the change of coordinate transformation from Frame A
to Frame B is given by:

05 0 0 0
: 01]0—0.500[,,01]
X, , =X, 5
J 0 0 1 0 Y
05 05 0 1
+Y
@
(0'0) +X
+X
------------ e A
(-1,-1) 1D
+Y

Figure 3.16. Change of coordinates from frame A (the square [-1, 1]?) to frame B (the square [0, 1]

2

where the y-axes aims opposite to the one in Frame A)



TRANSFORMATIONS 85

22. It was mentioned in the last chapter that the determinant was related to

the change in volume of a box under a linear transformation. Find the
determinant of the scaling matrix and interpret the result in terms of volume.

23. Consider the transformation t that warps a square into a parallelogram given

by:
t(x,y)=(3x+y,x+2y)

Find the standard matrix representation of this transformation, and show
that the determinant of the transformation matrix is equal to the area of the
parallelogram spanned by t(i) and t(j).

+Y tY

iu
+X

i

Figure 3.17. Transformation that maps square into parallelogram.

24. Show that the determinant of the y-axis rotation matrix is 1. Based on the

above exercise, explain why it makes sense that it is 1. For a more computational
intensive exercise, the reader can show the determinant of the general rotation
matrix (rotation matrix about an arbitrary axis) is 1.

25. A rotation matrix can be characterized algebraically as an orthogonal matrix

with determinant equal to 1. If we reexamine Figure 3.7 along with Exercise 24
this makes sense; the rotated basis vectors t(i) , ©(j), and t(k) are unit length
and mutually orthogonal; moreover, rotation does not change the size of the
object, so the determinant should be 1. Show that the product of two rotation
matrices R;R, = R is a rotation matrix. That is, show RR”=R’R =1 (to show R
is orthogonal), and show det R =1.

26. Show that the following properties hold for a rotation matrix R:

(@) (uR) - (VR)=u-v Preservation of dot product
(b) [|uR]| = ||ul| Preservation of length
(c) 6(uR,vR) =6(u, V) Preservation of angle, where 6(x;, y)
evaluates to the angle between x and y:
L X'y
0(x,y)=cos ' ——I—
1=yl

Explain why all these properties make sense for a rotation transformation.



86 MatHEMATICAL PREREQUISITES

27. Find a scaling, rotation, and translation matrix whose product transforms the
line segment with start point p = (0, 0, 0) and endpoint q = (0, 0, 1) into the
line segment with length 2, parallel to the vector (1, 1, 1), with start point
(3,1,2).

28. Suppose we have a box positioned at (x, y, z). The scaling transform we have
defined uses the origin as a reference point for the scaling, so scaling this box
(not centered about the origin) has the side effect of translating the box (Figure
3.18); this can be undesirable in some situations. Find a transformation that
scales the box relative to its center point.

Change coordinates to the box coordinate system with origin at the center of the
(e box, scale the box, then transform back to the original coordinate system.

+Y +Y
(3.3) PP > | (63)
(€%} T @D
F—t+—1 +X F——t—t—t—t+X
(a)
+Y Y
----------- >
(3.3) It (4.3)
T ' T ‘@2
T (0,1)
1 +X F——t—t—t—t+X
(®)

Figure 3.18. (a) Scaling 2-units on the x-axis relative to the origin results in a translation of the rectangle.
(b) Scaling 2-units on the x-axis relative to the center of the rectangle does not result in a translation (the
rectangle maintains its original center point).
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that are used throughout the rest of this book. With these fundamentals
mastered, we can move on to writing more interesting applications. A brief
description of the chapters in this part follows.

In this part, we study fundamental Direct3D concepts and techniques

Chapter 4, Direct3D Initialization: In this chapter, we learn what Direct3D is
about and how to initialize it in preparation for 3D drawing. Basic Direct3D
topics are also introduced, such as surfaces, pixel formats, page flipping, depth
buffering, and multisampling. We also learn how to measure time with the
performance counter, which we use to compute the frames rendered per
second. In addition, we give some tips on debugging Direct3D applications. We
develop and use our own application framework—not the SDK's framework.

Chapter 5, The Rendering Pipeline: In this long chapter, we provide a
thorough introduction to the rendering pipeline, which is the sequence of
steps necessary to generate a 2D image of the world based on what the virtual
camera sees. We learn how to define 3D worlds, control the virtual camera, and
project 3D geometry onto a 2D image plane.

Chapter 6, Drawing in Direct3D: This chapter focuses on the Direct3D API
interfaces and methods needed to define 3D geometry, configure the rendering
pipeline, create vertex and pixel shaders, and submit geometry to the rendering
pipeline for drawing. By the end of this chapter, you will be able to draw a 3D
box and transform it.
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Chapter 7, Drawing in Direct3D Part II: This chapter introduces a number of drawing
patterns that will be used throughout the remainder of the book. From improving
the workload balance between CPU and GPU, to organizing how our renderer draws
objects. The chapter concludes by showing how to draw more complicated objects like
grids, spheres, cylinders, and an animated wave simulation.

Chapter 8, Lighting: This chapter shows how to create light sources and define the
interaction between light and surfaces via materials. In particular, we show how to
implement directional lights, point lights, and spotlights with vertex and pixel shaders.

Chapter 9, Texturing: This chapter describes texture mapping, which is a technique
used to increase the realism of the scene by mapping 2D image data onto a 3D primitive.
For example, using texture mapping, we can model a brick wall by applying a 2D brick
wall image onto a 3D rectangle. Other key texturing topics covered include texture
tiling and animated texture transformations.

Chapter 10, Blending: Blending allows us to implement a number of special effects
like transparency. In addition, we discuss the intrinsic clip function, which enables us
to mask out certain parts of an image from showing up; this can be used to implement
fences and gates, for example. We also show how to implement a fog effect.

Chapter 11, Stenciling: This chapter describes the stencil buffer, which, like a stencil,
allows us to block pixels from being drawn. Masking out pixels is a useful tool for a variety
of situations. To illustrate the ideas of this chapter, we include a thorough discussion on
implementing planar reflections and planar shadows using the stencil buffer.

Chapter 12, The Geometry Shader: This chapter shows how to program geometry
shaders, which are special because they can create or destroy entire geometric primitives.
Some applications include billboards, fur rendering, subdivisions, and particle systems.
In addition, this chapter explains primitive IDs and texture arrays.

Chapter 13, The Compute Shader: The Compute Shader is a programmable
shader Direct3D exposes that is not directly part of the rendering pipeline. It
enables applications to use the graphics processing unit (GPU) for general purpose
computation. For example, an imaging application can take advantage of the GPU to
speed up image processing algorithms by implementing them with the compute shader.
Because the Compute Shader is part of Direct3D, it reads from and writes to Direct3D
resources, which enables us integrate results directly to the rendering pipeline.
Therefore, in addition to general purpose computation, the compute shader is still
applicable for 3D rendering.

Chapter 14, The Tessellation Stages: This chapter explores the tessellation stages of the
rendering pipeline. Tessellation refers to subdividing geometry into smaller triangles
and then offsetting the newly generated vertices in some way. The motivation to
increase the triangle count is to add detail to the mesh. To illustrate the ideas of this
chapter, we show how to tessellate a quad patch based on distance, and we show how to
render cubic Bézier quad patch surfaces.



Chapter

4 DirecTt3D
INITIALIZATION

The initialization process of Direct3D requires us to be familiar with some basic
Direct3D types and basic graphics concepts; the first and second sections of this
chapter address these requirements. We then detail the necessary steps to initialize
Direct3D. Next, a small detour is taken to introduce accurate timing and the time
measurements needed for real-time graphics applications. Finally, we explore the
sample framework code, which is used to provide a consistent interface that all
demo applications in this book follow.

Objectives:

1.

To obtain a basic understanding of Direct3D’s role in programming 3D
hardware.

. To understand the role COM plays with Direct3D.

. To learn fundamental graphics concepts, such as how 2D images are stored,

page flipping, depth buffering, multi-sampling, and how the CPU and GPU
interact.

. To learn how to use the performance counter functions for obtaining high-

resolution timer readings.

. To find out how to initialize Direct3D.

. To become familiar with the general structure of the application framework

that all the demos of this book employ.
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4.1 PRELIMINARIES

The Direct3D initialization process requires us to be familiar with some basic
graphics concepts and Direct3D types. We introduce these ideas and types in this
section, so that we do not have to digress when we cover the initialization process.

4.1.1 Direct3D 12 Overview

Direct3D is a low-level graphics API (application programming interface) used to
control and program the GPU (graphics processing unit) from our application,
thereby allowing us to render virtual 3D worlds using hardware acceleration.
For example, to submit a command to the GPU to clear a render target (e.g., the
screen), we would call the Direct3D method 1p3pi2commandList::ClearRenderT
argetview. The Direct3D layer and hardware drivers will translate the Direct3D
commands into native machine instructions understood by the system’s GPUj
thus, we do not have to worry about the specifics of the GPU, so long as it
supports the Direct3D version we are using. To make this work, GPU vendors
like NVIDIA, Intel, and AMD must work with the Direct3D team and provide
compliant Direct3D drivers.

Direct3D 12 adds some new rendering features, but the main improvement
over the previous version is that it has been redesigned to significantly reduce
CPU overhead and improve multi-threading support. In order to achieve
these performance goals, Direct3D 12 has become a much lower level API than
Direct3D 11; it has less abstraction, requires additional manual “bookkeeping”
from the developer, and more closely mirrors modern GPU architectures. The
improved performance is, of course, the reward for using this more difficult API.

4.1.2 COM

Component Object Model (COM) is the technology that allows DirectX to be
programming-language independent and have backwards compatibility. We
usually refer to a COM object as an interface, which for our purposes can be
thought of and used as a C++ class. Most of the details of COM are hidden to
us when programming DirectX with C++. The only thing that we must know is
that we obtain pointers to COM interfaces through special functions or by the
methods of another COM interface—we do not create a COM interface with the
C++ new keyword. In addition, COM objects are reference counted; when we are
done with an interface we call its re1ease method (all COM interfaces inherit
functionality from the 1unknown COM interface, which provides the release
method) rather than deiete it—COM objects will free their memory when their
reference count goes to 0.
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To help manage the lifetime of COM objects, the Windows Runtime Library
(WRL) provides the Microsoft: :WRL: : ComPtr class (#include <wrl.h>), which can
be thought of as a smart pointer for COM objects. When a comptr instance goes
out of scope, it will automatically call release on the underlying COM object,
thereby saving us from having to manually call re1ease. The three main comptr
methods we use in this book are:

1. cet: Returns a pointer to the underlying COM interface. This is often used
to pass arguments to functions that take a raw COM interface pointer. For
example:

ComPtr<ID3D12RootSignature> mRootSignature;

// SetGraphicsRootSignature expects ID3Dl12RootSignature* argument.

mCommandList->SetGraphicsRootSignature (mRootSignature.Get ()) ;

2. Getaddressof: Returns the address of the pointer to the underlying COM
interface. This is often used to return a COM interface pointer through a
function parameter. For example:

ComPtr<ID3Dl2CommandAllocator> mDirectCmdListAlloc;

ThrowIfFailed (md3dDevice->CreateCommandAllocator (
D3D12 COMMAND LIST TYPE DIRECT,
mDirectCmdListAlloc.GetAddressOf()));

3. reset: Sets the comptr instance to nullptr and decrements the reference count
of the underlying COM interface. Equivalently, you can assign nuliptr to a
ComPtr Instance.

There is, of course, much more to COM, but more detail is not necessary for
using DirectX effectively.

oo~y COM interfaces are prefixed with a capital 1. For example, the COM interface
that represents a command list is called 103p12GraphicsCommandList.

4.1.3 Textures Formats

A 2D texture is a matrix of data elements. One use for 2D textures is to store 2D
image data, where each element in the texture stores the color of a pixel. However,
this is not the only usage; for example, in an advanced technique called normal
mapping, each element in the texture stores a 3D vector instead of a color.
Therefore, although it is common to think of textures as storing image data, they
are really more general purpose than that. A 1D texture is like a 1D array of data
elements, a 2D texture is like a 2D array of data elements, and a 3D texture is like
a 3D array of data elements. As will be discussed in later chapters, textures are



92

DirRecT3D FOUNDATIONS

actually more than just arrays of data; they can have mipmap levels, and the GPU
can do special operations on them, such as apply filters and multi-sampling. In
addition, a texture cannot store arbitrary kinds of data elements; it can only store
certain kinds of data element formats, which are described by the pxc1 rorvaT
enumerated type. Some example formats are:

1. DxGI_FORMAT R32G32B32 rLOAT: Each element has three 32-bit floating-point
components.

2. DxGI_FORMAT R16G16B16a16 UNORM: Each element has four 16-bit components
mapped to the [0, 1] range.

3. pxe1_rorMar R32632 UINT: Each element has two 32-bit unsigned integer
components.

4. pxGI_FORMAT R8G8B8A8 UNORM: FEach element has four 8-bit unsigned
components mapped to the [0, 1] range.

5. pxGc1_rorMAT Rr8GeBgag sNorM: Each element has four 8-bit signed components
mapped to the [-1, 1] range.

6. pxc1_rorvMAT R8GeB8as_sINT: Each element has four 8-bit signed integer
components mapped to the [-128, 127] range.

7. pxGI_FORMAT R8G8B8AS UINT: Each element has four 8-bit unsigned integer
components mapped to the [0, 255] range.

Note that the R, G, B, A letters are used to stand for red, green, blue, and alpha,
respectively. Colors are formed as combinations of the basis colors red, green, and
blue (e.g., equal red and equal green makes yellow). The alpha channel or alpha
component is generally used to control transparency. However, as we said earlier,
textures need not store color information even though the format names suggest
that they do; for example, the format

DXGI_FORMAT R32G32B32_ FLOAT

has three floating-point components and can therefore store any 3D vector with
floating-point coordinates. There are also typeless formats, where we just reserve
memory and then specify how to reinterpret the data at a later time (sort of like
a C++ reinterpret cast) when the texture is bound to the pipeline; for example,
the following typeless format reserves elements with four 16-bit components, but
does not specify the data type (e.g., integer, floating-point, unsigned integer):

DXGI_FORMAT R16G16B16Al6_ TYPELESS

We will see in Chapter 6 that the pxcr roruaT enumerated type is also used to
describe vertex data formats and index data formats.
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4.1.4 The Swap Chain and Page Flipping

To avoid flickering in animation, it is best to draw an entire frame of animation
into an off-screen texture called the back buffer. Once the entire scene has been
drawn to the back buffer for the given frame of animation, it is presented to the
screen as one complete frame; in this way, the viewer does not watch as the frame
gets drawn—the viewer only sees complete frames. To implement this, two texture
buffers are maintained by the hardware, one called the front buffer and a second
called the back buffer. The front buffer stores the image data currently being
displayed on the monitor, while the next frame of animation is being drawn to
the back buffer. After the frame has been drawn to the back buffer, the roles of the
back buffer and front buffer are reversed: the back buffer becomes the front buffer
and the front buffer becomes the back buffer for the next frame of animation.
Swapping the roles of the back and front buffers is called presenting. Presenting is
an efficient operation, as the pointer to the current front buffer and the pointer to
the current back buffer just need to be swapped. Figure 4.1 illustrates the process.
The front and back buffer form a swap chain. In Direct3D, a swap chain is
represented by the 1pxciswapchain interface. This interface stores the front
and back buffer textures, as well as provides methods for resizing the buffers
(IDXGISwapChain: :ResizeBuffers) and presenting (IDXGISwapChain: :Present).

Frame n Frame m+1 Frame n+2

Front Buffer Ptr

Back Buffer Pir

Figure 4.1. For frame n, Buffer A is currently being displayed and we render the next frame to Buffer B,
which is serving as the current back buffer. Once the frame is completed, the pointers are swapped and
Buffer B becomes the front buffer and Buffer A becomes the new back buffer. We then render the next frame
n+1 to Buffer A. Once the frame is completed, the pointers are swapped and Buffer A becomes the front
buffer and Buffer B becomes the back buffer again.

Using two bulffers (front and back) is called double buffering. More than two
buffers can be employed; using three buffers is called triple buffering. Two buffers
are usually sufficient, however.

ooy Even though the back buffer is a texture (so an element should be called a texel),

Note:

we often call an element a pixel since, in the case of the back buffer, it stores color
information. Sometimes people will call an element of a texture a pixel, even if
it doesn’t store color information (e.g., “the pixels of a normal map”).

4.1.5 Depth Buffering

The depth buffer is an example of a texture that does not contain image data, but
rather depth information about a particular pixel. The possible depth values range
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Figure 4.2. A group of objects that partially obscure each other.

from 0.0 to 1.0, where 0.0 denotes the closest an object in the view frustum can
be to the viewer and 1.0 denotes the farthest an object in the view frustum can be
from the viewer. There is a one-to-one correspondence between each element in
the depth buffer and each pixel in the back buffer (i.e., the ijth element in the back
buffer corresponds to the ijth element in the depth buffer). So if the back buffer
had a resolution of 1280 x 1024, there would be 1280 x 1024 depth entries.

Figure 4.2 shows a simple scene, where some objects partially obscure the
objects behind them. In order for Direct3D to determine which pixels of an object
are in front of another, it uses a technique called depth buffering or z-buffering. Let
us emphasize that with depth buffering, the order in which we draw the objects
does not matter.

oo~y [0 handle the depth problem, one might suggest drawing the objects in the scene
in the order of farthest to nearest. In this way, near objects will be painted over
far objects, and the correct results should be rendered. This is how a painter
would draw a scene. However, this method has its own problems—sorting a
large data set in back-to-front order and intersecting geometry. Besides, the
graphics hardware gives us depth buffering for free.

To illustrate how depth buffering works, let us look at an example. Consider
Figure 4.3, which shows the volume the viewer sees and a 2D side view of that
volume. From the figure, we observe that three different pixels compete to be
rendered onto the pixel P on the view window. (Of course, we know the closest
pixel should be rendered to P since it obscures the ones behind it, but the computer
does not.) First, before any rendering takes place, the back buffer is cleared to a
default color, and the depth buffer is cleared to a default value—usually 1.0 (the
farthest depth value a pixel can have). Now, suppose that the objects are rendered
in the order of cylinder, sphere, and cone. The following table summarizes how



Direct3D INmiaLizaTion 95

View Window

Eye

Eye

dy dy ds

View Window

Figure 4.3. The view window corresponds to the 2D image (back buffer) we generate of the 3D scene. We
see that three different pixels can be projected to the pixel P. Intuition tells us that P; should be written

to Psince it is closer to the viewer and blocks the other two pixels. The depth buffer algorithm provides a
mechanical procedure for determining this on a computer. Note that we show the depth values relative to
the 3D scene being viewed, but they are actually normalized to the range [0.0, 1.0] when stored in the depth
buffer.

the pixel P and its corresponding depth value d are updated as the objects are
drawn; a similar process happens for the other pixels.

Operation ‘ P ‘ d ‘ Description
Clear Black | 1.0 | Pixel and corresponding depth entry initialized.
Operation

Draw Cylinder P, d; | Since d; < d = 1.0 the depth test passes and we update
the buffers by setting P = P; and d = d;.

Draw Sphere P d; | Since d, < d = d; the depth test passes and we update
the buffers by setting P=P; and d =d,.

Draw Cone P, d, | Since d, > d = d, the depth test fails and we do not
update the buffers.

As you can see, we only update the pixel and its corresponding depth value in
the depth buffer when we find a pixel with a smaller depth value. In this way,
after all is said and done, the pixel that is closest to the viewer will be the one
rendered. (You can try switching the drawing order around and working through
this example again if you are still not convinced.)

To summarize, depth buffering works by computing a depth value for each
pixel and performing a depth test. The depth test compares the depths of pixels
competing to be written to a particular pixel location on the back buffer. The
pixel with the depth value closest to the viewer wins, and that is the pixel that gets
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written to the back buffer. This makes sense because the pixel closest to the viewer
obscures the pixels behind it.

The depth bulffer is a texture, so it must be created with certain data formats.
The formats used for depth buffering are as follows:

1. DXGI_FORMAT D32 FLOAT s8x24 UINT: Specifies a 32-bit floating-point depth
buffer, with 8-bits (unsigned integer) reserved for the stencil buffer mapped
to the [0, 255] range and 24-bits not used for padding.

2. pxGI_FORMAT D32 FLOAT: Specifies a 32-bit floating-point depth buffer.

3. DxGI_FORMAT D24 UNORM s8 UINT: Specifies an unsigned 24-bit depth buffer
mapped to the [0, 1] range with 8-bits (unsigned integer) reserved for the
stencil buffer mapped to the [0, 255] range.

4. pxGI_rFOoRMAT D16 UNORM: Specifies an unsigned 16-bit depth buffer mapped to
the [0, 1] range.

oy An application is not required to have a stencil buffer, but if it does, the stencil
buffer is always attached to the depth buffer. For example, the 32-bit format

DXGI_FORMAT D24 UNORM S8 UINT

uses 24-bits for the depth buffer and 8-bits for the stencil buffer. For this reason,
the depth buffer is better called the depth/stencil buffer. Using the stencil buffer is
a more advanced topic and will be explained in Chapter 11.

4.1.6 Resources and Descriptors

During the rendering process, the GPU will write to resources (e.g., the back
buffer, the depth/stencil buffer), and read from resources (e.g., textures that
describe the appearance of surfaces, buffers that store the 3D positions of
geometry in the scene). Before we issue a draw command, we need to bind (or
link) the resources to the rendering pipeline that are going to be referenced in
that draw call. Some of the resources may change per draw call, so we need to
update the bindings per draw call if necessary. However, GPU resources are not
bound directly. Instead, a resource is referenced through a descriptor object, which
can be thought of as lightweight structure that describes the resource to the GPU.
Essentially, it is a level of indirection; given a resource descriptor, the GPU can
get the actual resource data and know the necessary information about it. We
bind resources to the rendering pipeline by specifying the descriptors that will be
referenced in the draw call.

Why go to this extra level of indirection with descriptors? The reason is that
GPU resources are essentially generic chunks of memory. Resources are kept
generic so they can be used at different stages of the rendering pipeline; a common
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example is to use a texture as a render target (i.e., Direct3D draws into the texture)
and later as a shader resource (i.e., the texture will be sampled and serve as input
data for a shader). A resource by itself does not say if it is being used as a render
target, depth/stencil buffer, or shader resource. Also, perhaps we only want to bind
a subregion of the resource data to the rendering pipeline—how can we do that
given the whole resource? Moreover, a resource can be created with a typeless
format, so the GPU would not even know the format of the resource.

This is where descriptors come in. In addition to identifying the resource data,
descriptors describe the resource to the GPU: they tell Direct3D how the resource
will be used (i.e., what stage of the pipeline you will bind it to), where applicable
we can specify a subregion of the resource we want to bind in the descriptor, and
if the resource format was specified as typeless at creation time, then we must now
state the type when creating the descriptor.

ooy A view is a synonym for descriptor. The term “view” was used in previous
versions of Direct3D, and it is still used in some parts of the Direct3D 12 APL
We use both interchangeably in this book; for example, constant buffer view and
constant buffer descriptor mean the same thing.

Descriptors have a type, and the type implies how the resource will be used. The
types of descriptors we use in this book are:

1. CBV/SRV/UAV descriptors describe constant buffers, shader resources and
unordered access view resources.

2. Sampler descriptors describe sampler resources (used in texturing).
3. RTV descriptors describe render target resources.

4. DSV descriptors describe depth/stencil resources.

A descriptor heap is an array of descriptors; it is the memory backing for all the
descriptors of a particular type your application uses. You will need a separate
descriptor heap for each type of descriptor. You can also create multiple heaps of
the same descriptor type.

We can have multiple descriptors referencing the same resource. For example,
we can have multiple descriptors referencing different subregions of a resource.
Also, as mentioned, resources can be bound to different stages of the rendering
pipeline. For each stage, we need a separate descriptor. For the example of using
a texture as a render target and shader resource, we would need to create two
descriptors: an RTV typed descriptor, and an SRV typed descriptor. Similarly,
if you create a resource with a typeless format, it is possible for the elements of
a texture to be viewed as floating-point values or as integers, for example; this
would require two descriptors, where one descriptor specifies the floating-point
format, and the other the integer format.
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Descriptors should be created at initialization time. This is because there
is some type checking and validation that occurs, and it is better to do this at
initialization time rather than runtime.

o~y he August 2009 SDK documentation says: “Creating a fully-typed resource
restricts the resource to the format it was created with. This enables the runtime
to optimize access [...].” Therefore, you should only create a typeless resource
if you really need the flexibility they provide (the ability to reinterpret the data
in multiple ways with multiple views); otherwise, create a fully typed resource.

4.1.7 Multisampling Theory

Because the pixels on a monitor are not infinitely small, an arbitrary line cannot
be represented perfectly on the computer monitor. Figure 4.4 illustrates a “stair-
step” (aliasing) effect, which can occur when approximating a line by a matrix of
pixels. Similar aliasing effects occur with the edges of triangles.

Shrinking the pixel sizes by increasing the monitor resolution can alleviate the
problem significantly to where the stair-step effect goes largely unnoticed.

When increasing the monitor resolution is not possible or not enough, we
can apply antialiasing techniques. One technique, called supersampling, works by
making the back buffer and depth buffer 4X bigger than the screen resolution.
The 3D scene is then rendered to the back buffer at this larger resolution. Then,
when it comes time to present the back buffer to the screen, the back buffer is
resolved (or downsampled) such that 4 pixel block colors are averaged together
to get an averaged pixel color. In effect, supersampling works by increasing the
resolution in software.

Supersampling is expensive because it increases the amount of pixel processing
and memory by fourfold. Direct3D supports a compromising antialiasing
technique called multisampling, which shares some computational information
across subpixels making it less expensive than supersampling. Assuming we are
using 4X multisampling (4 subpixels per pixel), multisampling also uses a back

Figure 4.4. On the top we observe aliasing (the stairstep effect when trying to represent a line by a matrix of

pixels) On the bottom, we see an antialiased line, which generates the final color of a pixel by sampling and
using its neighboring pixels; this results in a smoother image and dilutes the stairstep effect.
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(b)

Figure 4.5. We consider one pixel that crosses the edge of a polygon. (a) The green color evaluated at the
pixel center is stored in the three visible subpixels that are covered by the polygon. The subpixel in the fourth
quadrant is not covered by the polygon and so does not get updated with the green color—it just keeps

its previous color computed from previously drawn geometry or the Clear operation. (b) To compute the
resolved pixel color, we average the four subpixels (three green pixels and one white pixel) to get a light green
along the edge of the polygon. This results in a smoother looking image by diluting the stairstep effect along
the edge of the polygon.

buffer and depth buffer 4X bigger than the screen resolution; however, instead of
computing the image color for each subpixel, it computes it only once per pixel, at
the pixel center, and then shares that color information with its subpixels based on
visibility (the depth/stencil test is evaluated per subpixel) and coverage (does the
subpixel center lie inside or outside the polygon?). Figure 4.5 shows an example.

ooy Observe the key difference between supersampling and multisampling. With
supersampling, the image color is computed per subpixel, and so each subpixel
could potentially be a different color. With multisampling (Figure 4.5), the
image color is computed once per pixel and that color is replicated into all
visible subpixels that are covered by the polygon. Because computing the image
color is one of the most expensive steps in the graphics pipeline, the savings
from multisampling over supersampling is significant. On the other hand,
supersampling is more accurate.

In Figure 4.5, we show a pixel subdivided into four subpixels in a uniform grid
pattern. The actual pattern used (the points where the subpixels are positioned)
can vary across hardware vendors, as Direct3D does not define the placement of
the subpixels. Some patterns do better than others in certain situations.

4.1.8 Multisampling in Direct3D

In the next section, we will be required to fill out a pxcr_sampLE_DESC structure.
This structure has two members and is defined as follows:

typedef struct DXGI_SAMPLE DESC
{
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UINT Count;
UINT Quality;
} DXGI_SAMPLE DESC;

The count member specifies the number of samples to take per pixel, and the
ouality member is used to specify the desired quality level (what “quality level”
means can vary across hardware manufacturers). Higher sample counts or higher
quality is more expensive to render, so a tradeoff between quality and speed
must be made. The range of quality levels depends on the texture format and the
number of samples to take per pixel.

We can query the number of quality levels for a given texture format and
sample count using the 1p3p12Device: : CheckFeatureSupport method like so:

typedef struct D3D12 FEATURE DATA MULTISAMPLE QUALITY LEVELS ({

DXGI_ FORMAT Format;

UINT SampleCount;

D3D12 MULTISAMPLE QUALITY LEVELS FLAG Flags;
UINT NumQualityLevels;

} D3D12 FEATURE DATA MULTISAMPLE QUALITY LEVELS;

D3D12_FEATURE_DATA_MULTISAMPLE_QUALITY_LEVELS msQualityLevels;
msQualityLevels.Format = mBackBufferFormat;
msQualityLevels.SampleCount = 4;
msQualityLevels.Flags = D3D12_MULTISAMPLE_QUALITY_LEVELS_FLAG_NONE;
msQualityLevels.NumQualityLevels = 0;
ThrowIfFailed (md3dDevice->CheckFeatureSupport (
D3D12_FEATURE_MULTISAMPLE_QUALITY_LEVELS,
&msQualityLevels,
sizeof (msQualityLevels)));

Note that the second parameter is both an input and output parameter. For the
input, we must specify the texture format, sample count, and flag we want to query
multisampling support for. The function will then fill out the quality level as the
output. Valid quality levels for a texture format and sample count combination
range fI’Ol’I‘l zero to NumQualityLevels-—1.

The maximum number of samples that can be taken per pixel is defined by:

#define D3D11 MAX MULTISAMPLE SAMPLE COUNT  ( 32 )

However, a sample count of 4 or 8 is common in order to keep the performance
and memory cost of multisampling reasonable. If you do not wish to use
multisampling, set the sample count to 1 and the quality level to 0. All Direct3D
11 capable devices support 4X multisampling for all render target formats.

ooy A pxc1_sampLe_pESC structure needs to be filled out for both the swap chain
buffers and the depth buffer. Both the back buffer and depth buffer must be
created with the same multisampling settings.
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4.1.9 Feature Levels

Direct3D 11 introduces the concept of feature levels (represented in code by
the p3p reaTure LEVEL enumerated type), which roughly correspond to various
Direct3D versions from version 9 to 11:

enum D3D FEATURE LEVEL
{

D3D_FEATURE LEVEL 9 1 = 0x9100,
D3D FEATURE LEVEL 9 2 = 0x9200,
D3D FEATURE LEVEL 9 3 = 0x9300,
D3D FEATURE LEVEL 10 0 = 0xa000,
D3D FEATURE LEVEL 10 1 = 0xal00,
D3D_FEATURE LEVEL 11 0 = 0xb000,
D3D FEATURE LEVEL 11 1 = 0xb100

}D3D FEATURE LEVEL;

Feature levels define a strict set of functionality (see the SDK documentation for
the specific capabilities each feature level supports). For example, a GPU that
supports feature level 11 must support the entire Direct3D 11 capability set, with
few exceptions (some things like the multisampling count still need to be queried,
as they are allowed to vary between different Direct3D 11 hardware). Feature sets
make development easier—once you know the supported feature set, you know
the Direct3D functionality you have at your disposal.

If a user’s hardware did not support a certain feature level, the application
could fallback to an older feature level. For example, to support a wider audience,
an application might support Direct3D 11, 10, and 9.3 level hardware. The
application would check feature level support from newest to oldest: That is,
the application would first check if Direct3D 11 is supported, second Direct3D
10, and finally Direct3D 9.3. In this book, we always require support for feature
level p3p_rEaTURE LEVEL 11 0. However, real-world applications do need to worry
about supporting older hardware to maximize their audience.

4.1.10 DirectX Graphics Infrastructure

DirectX Graphics Infrastructure (DXGI) is an API used along with Direct3D. The
basic idea of DXGI is that some graphics related tasks are common to multiple
graphics APIs. For example, a 2D rendering API would need swap chains and page
flipping for smooth animation just as much as a 3D rendering API; thus the swap
chain interface 1pxGIswapchain (§4.1.4) is actually part of the DXGI API. DXGI
handles other common graphical functionality like full-screen mode transitions,
enumerating graphical system information like display adapters, monitors, and
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supported display modes (resolution, refresh rate, and such); it also defines the
various supported surface formats (pxGr_rorwar).

We briefly describe some DXGI concepts and interfaces that will be used during
our Direct3D initialization. One of the key DXGI interfaces is the 1pxGTFactory
interface, which is primarily used to create the 1pxGIswapchain interface and
enumerate display adapters. Display adapters implement graphical functionality.
Usually, the display adapter is a physical piece of hardware (e.g., graphics card);
however, a system can also have a software display adapter that emulates hardware
graphics functionality. A system can have several adapters (e.g., if it has several
graphics cards). An adapter is represented by the rpxcradapter interface. We can
enumerate all the adapters on a system with the following code:

void D3DApp::LogAdapters ()
{
UINT 1 = 0;
IDXGIAdapter* adapter = nullptr;
std::vector<IDXGIAdapter*> adapterList;
while (mdxgiFactory->EnumAdapters (i, &adapter) != DXGI_ERROR NOT
FOUND)

{
DXGI_ADAPTER DESC desc;
adapter->GetDesc (&desc) ;

std::wstring text = L"***Adapter: ";
text += desc.Description;
text += L"\n";

OutputDebugString (text.c_str());
adapterList.push_back (adapter);

++1i;
}
for(size t 1 = 0; i < adapterList.size(); ++1i)
{

LogAdapterOutputs (adapterList[i]);
ReleaseCom (adapterList[i]);

}

An example of the output from this method is the following:

***Adapter: NVIDIA GeForce GTX 760
***Adapter: Microsoft Basic Render Driver

The “Microsoft Basic Render Driver” is a software adapter included with Windows
8 and above.

A system can have several monitors. A monitor is an example of a display
output. An output is represented by the 1pxcroutput interface. Each adapter is
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associated with a list of outputs. For instance, consider a system with two graphics
cards and three monitors, where two monitors are hooked up to one graphics
card, and the third monitor is hooked up to the other graphics card. In this case,
one adapter has two outputs associated with it, and the other adapter has one
output associated with it. We can enumerate all the outputs associated with an
adapter with the following code:

void D3DApp::LogAdapterOutputs (IDXGIAdapter* adapter)
{

UINT i = 0;
IDXGIOutput* output = nullptr;
while (adapter->EnumOutputs (i, &output) != DXGI ERROR NOT FOUND)

{
DXGI_OUTPUT_DESC desc;
output->GetDesc (&desc) ;

std::wstring text = L"***Output: ";
text += desc.DeviceName;

text += L"\n";
OutputDebugString (text.c str());

LogOutputDisplayModes (output, DXGI FORMAT B8G8R8A8 UNORM) ;
ReleaseCom (output) ;
++1i;

}

Note that, per the documentation, the “Microsoft Basic Render Driver” has no
display outputs.

Each monitor has a set of display modes it supports. A display mode refers to
the following data in pxc1_mope pEsc:

typedef struct DXGI MODE DESC
{

UINT Width; // Resolution width

UINT Height; // Resolution height

DXGI_ RATIONAL RefreshRate;

DXGI_FORMAT Format; // Display format

DXGI_MODE_ SCANLINE ORDER ScanlineOrdering; //Progressive vs.
interlaced

DXGI_MODE_SCALING Scaling; // How the image is stretched

// over the monitor.
} DXGI_MODE_DESC;

typedef struct DXGI RATIONAL
{

UINT Numerator;

UINT Denominator;
} DXGI_ RATIONAL;
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typedef enum DXGI MODE SCANLINE ORDER

{
DXGI MODE SCANLINE ORDER UNSPECIFIED =0,
DXGI MODE SCANLINE ORDER PROGRESSIVE =1
DXGI MODE SCANLINE ORDER UPPER FIELD FIRST
DXGI MODE SCANLINE ORDER LOWER FIELD FIRST = 3

} DXGI MODE SCANLINE ORDER;

typedef enum DXGI_MODE_SCALING

{
DXGI_MODE_SCALING UNSPECIFIED =
DXGI_MODE_SCALING CENTERED =1,
DXGI_MODE_SCALING STRETCHED =2

} DXGI_MODE_SCALING;

0,

Fixing a display mode format, we can get a list of all supported display modes an
output supports in that format with the following code:

void D3DApp::LogOutputDisplayModes (IDXGIOutput* output, DXGI_ FORMAT
format)

{
UINT count = 0;
UINT flags = 0;

// Call with nullptr to get list count.
output->GetDisplayModelList (format, flags, &count, nullptr);

std::vector<DXGI_MODE DESC> modeList (count);
output->GetDisplayModelList (format, flags, &count, &modeList[0]);

for (auto& x : modeList)

{
UINT n = x.RefreshRate.Numerator;
UINT d = x.RefreshRate.Denominator;
std::wstring text =

L"Width = " + std::to_wstring(x.Width) + L" " +

L"Height = " + std::to wstring(x.Height) + L" " +

L"Refresh = " + std::to_wstring(n) + L"/" + std::to _wstring(d) +
L"\n";

::OutputDebugString (text.c_str());
}

An example of some of the output from this code is as follows:

***Output: \\.\DISPLAY2

wWidth 1920 Height 1080 Refresh 59950/1000
Width = 1920 Height = 1200 Refresh = 59950/1000

Enumerating display modes is particularly important when going into full-screen
mode. In order to get optimal full-screen performance, the specified display mode
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(including refresh rate), must match exactly a display mode the monitor supports.
Specifying an enumerated display mode guarantees this.

For more reference material on DXGI, we recommend reading the following
articles “DXGI Overview,” “DirectX Graphics Infrastructure: Best Practices,” and
“DXGI 1.4 Improvements” available online at:

DXGI Overview: http://msdn.microsoft.com/en-us/library/windows/desktop/
bb205075(v=vs.85).aspx

DirectX Graphics Infrastructure: Best Practices: http://msdn.microsoft.com/
en-us/library/windows/desktop/ee417025(v=vs.85).aspx

DXGI 1.4 Improvements: https://msdn.microsoft.com/en-us/library/windows/
desktop/mt427784%28v=vs.85%29.aspx

4.1.11 Checking Feature Support

We already used the 1D3p12Device::CheckFeaturesupport method to check
multisampling support by the current graphics driver. However, that is just one
feature support we can check for with this function. The prototype of this method
is as follows:
HRESULT ID3Dl12Device::CheckFeatureSupport (
D3D12 FEATURE Feature,

void *pFeatureSupportData,
UINT FeatureSupportDataSize);

1. reature: A member of the p3pi2 reaTurRe enumerated type identifying the
type of features we want to check the support:

a) p3p12_rraTURE D3p12 opTIoNs: Checks support for various Direct3D 12
features.

b) p3p12_reaTure arcHITECTURE: Checks support for hardware architecture
features.

¢) p3n12_rEaTURE_FEATURE_LEVELS: Checks feature level support.

d) p3p12_reature rorMaT supporT: Check feature support for a given texture
format (e.g., can the format be used as a render target, can the format be
used with blending).

e) p3D12_FEATURE MULTISAMPLE QUALITY LEVELs: Check multisampling feature
support.

2. pFeatureSupportData: Pointer to a data structure to retrieve the feature
support information. The type of structure you use depends on what you
specified for the Feature parameter:

a) If you specified p3p12 reaTURE D3D12 oPTIONS, then pass an instance of
D3D12 FEATURE DATA D3D12 OPTIONS.
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b) If you specified p3p12 rFEATURE ARCHITECTURE, then pass an instance of
D3D12_FEATURE_DATA ARCHITECTURE.

¢) If you specified p3p12_rEATURE FEATURE LEVELS, then pass an instance of
D3D12_FEATURE DATA FEATURE LEVELS.

d) If you specified p3p12_reaTURE FORMAT suppoRT, then pass an instance of
D3D12 FEATURE DATA FORMAT SUPPORT.

e) If you specified p3p12 FEATURE MULTISAMPLE QUALITY LEVELS, then pass
an instance of D3D12_ FEATURE DATA MULTISAMPLE QUALITY LEVELS.

3. FeaturesSupportbDatasize: The size of the data structure passed into
pFeatureSupportData the parameter.

The 1D3D12Device: :CheckFeaturesupport function checks support for a lot of
features, many of which we do not need to check in this book and are advanced;
see the SDK documentation for details on the data members for each feature
structure. However, as an example, we show below how to check for supported
feature levels (§4.1.9):

typedef struct D3D12 FEATURE DATA FEATURE LEVELS {
UINT NumFeatureLevels;
const D3D FEATURE LEVEL *pFeaturelLevelsRequested;
D3D FEATURE LEVEL MaxSupportedFeatureLevel;
} D3D12 FEATURE DATA FEATURE_LEVELS;

D3D FEATURE LEVEL featureLevels[3] =

{
D3D_FEATURE_LEVEL 11 0, // First check D3D 11 support
D3D_FEATURE_LEVEL 10 0, // Next, check D3D 10 support
D3D_FEATURE_LEVEL 9 3 // Finally, check D3D 9.3 support

}i

D3D12 FEATURE DATA FEATURE LEVELS featureLevelsInfo;
featurelLevelsInfo.NumFeatureLevels = 3;
featurelLevelsInfo.pFeaturelLevelsRequested = featurelevels;
md3dDevice->CheckFeatureSupport (

D3D12 FEATURE FEATURE LEVELS,

&featurelevelsInfo,

sizeof (featurelLevelsInfo));

Note that the second parameter is both an input and output parameter. For
the input, we specify the number of elements (NumreatureLevels) in a feature
level array, and a pointer to a feature level array (pFeatureLevelsRequested)
which contains a list of feature levels we want to check hardware support
for. The function outputs the maximum supported feature level through the
MaxSupportedFeatureLeve1.ﬁeki
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4.1.12 Residency

A complex game will use a lot of resources such as textures and 3D meshes, but
many of these resources will not be needed by the GPU all the time. For example,
if we imagine a game with an outdoor forest that has a large cave in it, the cave
resources will not be needed until the player enters the cave, and when the player
enters the cave, the forest resources will no longer be needed.

In Direct3D 12, applications manage resource residency (essentially, whether
a resource is in GPU memory) by evicting resources from GPU memory and
then making them resident on the GPU again as needed. The basic idea is to
minimize how much GPU memory the application is using because there might
not be enough to store every resource for the entire game, or the user has other
applications running that require GPU memory. As a performance note, the
application should avoid the situation of swapping the same resources in and out
of GPU memory within a short time frame, as there is overhead for this. Ideally, if
you are going to evict a resource, that resource should not be needed for a while.
Game level/area changes are good examples of times to change resource residency.

By default, when a resource is created it is made resident and it is evicted when
it is destroyed. However, an application can manually control residency with the
following methods:

HRESULT ID3Dl12Device::MakeResident (

UINT NumObjects,
ID3D12Pageable *const *ppObjects);

HRESULT ID3Dl2Device::Evict (
UINT NumObjects,
ID3D12Pageable *const *ppObjects);

For both methods, the second parameter is an array of rp3pi2pageable
resources, and the first parameter is the number of resources in the array.

In this book, for simplicity and due to our demos being small compared to
a game, we do not manage residency. See the documentation on residency for
more information: https://msdn.microsoft.com/en-us/library/windows/desktop/
mt186622%28v=vs.85%29.aspx

4.2 CPU/GPU INTERACTION

We must understand that with graphics programming we have two processors
at work: the CPU and GPU. They work in parallel and sometimes need to be
synchronized. For optimal performance, the goal is to keep both busy for as long
as possible and minimize synchronizations. Synchronizations are undesirable
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because it means one processing unit is idle while waiting on the other to finish
some work; in other words, it ruins the parallelism.

4.2.1 The Command Queue and Command Lists

The GPU has a command queue. The CPU submits commands to the queue
through the Direct3D API using command lists (see Figure 4.6). It is important
to understand that once a set of commands have been submitted to the command
queue, they are not immediately executed by the GPU. They sit in the queue until
the GPU is ready to process them, as the GPU is likely busy processing previously
inserted commands.

If the command queue gets empty, the GPU will idle because it does not have
any work to do; on the other hand, if the command queue gets too full, the CPU
will at some point have to idle while the GPU catches up [Crawfis12]. Both of
these situations are undesirable; for high performance applications like games,
the goal is to keep both CPU and GPU busy to take full advantage of the hardware
resources available.

CPU submits commands

s

; GPU gets and processes

| next command

Figure 4.6. The command queue.

In Direct3D 12, the command queue is represented by the 103p12commandoueue
interface. It is created by filling out a p3p12 comvanp QueuE DEsc structure
describing the queue and then calling 1p3pi2pevice: :CreateCommandgueue. The
way we create our command queue in this book is as follows:

Microsoft::WRL::ComPtr<ID3Dl12CommandQueue> mCommandQueue;
D3D12 COMMAND QUEUE DESC queueDesc = {};
queueDesc.Type = D3D12 COMMAND LIST TYPE DIRECT;
queueDesc.Flags = D3D12 COMMAND QUEUE FLAG_NONE;
ThrowIfFailed (md3dDevice->CreateCommandQueue (

&queueDesc, IID PPV _ARGS (&mCommandQueue))) ;
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The 11p_ppv_arcs helper macro is defined as:

#define IID PPV _ARGS (ppType) _ uuidof (** (ppType)), IID PPV ARGS
Helper (ppType)

where  uuidof (** (ppType)) evaluates to the COM interface ID of (*+ (ppType)),
which in the above code is 1p3p12commandQueue. The 110 PPV 2RGS Helper function
essentially casts ppType to a void*x+. We use this macro throughout this book, as
many Direct3D 12 API calls have a parameter that requires the COM ID of the
interface we are creating and take a void*~.
One of the primary methods of this interface is the ExecutecommandLists
method which adds the commands in the command lists to the queue:
void ID3Dl2CommandQueue: :ExecuteCommandLists (
// Number of commands lists in the array
UINT Count,

// Pointer to the first element in an array of command lists
ID3D12CommandList *const *ppCommandLists) ;

The command lists are executed in order starting with the first array element.

As the above method declarations imply, a command list for graphics is
represented by the 1p3p12Graphicscommandrist interface which inherits from
the 1p3D12Commandrist interface. The 1p3p12GraphicsCommandList interface has
numerous methods for adding commands to the command list. For example, the
following code adds commands that set the viewport, clear the render target view,
and issue a draw call:

// mCommandList pointer to ID3D12CommandList

mCommandList->RSSetViewports (l, &mScreenViewport) ;

mCommandList->ClearRenderTargetView (mBackBufferView,

Colors::LightSteelBlue, 0, nullptr);
mCommandList->DrawIndexedInstanced (36, 1, 0, 0, 0);

The names of these methods suggest that the commands are executed immediately,
but they are not. The above code just adds commands to the command list. The
ExecuteCommandLists method adds the commands to the command queue, and
the GPU processes commands from the queue. We will learn about the various
commands 1D3D12GraphicsCommandList supports as we progress through this
book. When we are done adding commands to a command list, we must indicate
that we are finished recording commands by calling the 103p126raphicsCommandri
st::Close method:

// Done recording commands.
mCommandList->Close () ;

The command list must be closed before passing it off to 1p3p12commandoueue: :Ex

ecuteCommandLists.
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Associated with a command list is a memory backing class called an
ID3D12CommandAllocator. As commands are recorded to the command list, they
will actually be stored in the associated command allocator. When a command list
is executed via TD3D12CommandQueue: : ExecuteCommandLists, the command queue
will reference the commands in the allocator. A command allocator is created
from the 1p3D12Device:

HRESULT ID3Dl2Device::CreateCommandAllocator (

D3D12 COMMAND LIST TYPE type,

REFIID riid,
void **ppCommandAllocator);

1. type: The type of command lists that can be associated with this allocator. The
two common types we use in this book are:

a) D3D12_COMMAND LIST TYPE DIRECT: Stores a list of commands to directly be
executed by the GPU (the type of command list we have been describing
thus far).

b) p3p12_commanp r1st TYPE BUNDLE: Specifies the command list represents
a bundle. There is some CPU overhead in building a command list, so
Direct3D 12 provides an optimization that allows us to record a sequence
of commands into a so-called bundle. After a bundle has been recorded,
the driver will preprocess the commands to optimize their execution
during rendering. Therefore, bundles should be recorded at initialization
time. The use of bundles should be thought of as an optimization to use if
profiling shows building particular command lists are taking significant
time. The Direct3D 12 drawing API is already very efficient, so you should
not need to use bundles often, and you should only use them if you
can demonstrate a performance gain by them; that is to say, do not use
them by default. We do not use bundles in this book; see the DirectX 12
documentation for further details.

2. riid: The COM ID of the 1p3p12commandallocator interface we want to create.

3. ppCommandAllocator: Qutputs a pointer to the created command allocator.

Command lists are also created from the 1p3p12Device:

HRESULT ID3Dl2Device: :CreateCommandList (
UINT nodeMask,
D3D12 COMMAND LIST TYPE type,
ID3D12CommandAllocator *pCommandAllocator,
ID3D12PipelineState *pInitialState,
REFIID riid,
void **ppCommandList) ;
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1. nodeMask: Set to 0 for single GPU system. Otherwise, the node mask identifies
the physical GPU this command list is associated with. In this book we assume
single GPU systems.

2. type: The type of command list: either comvanp 11ST TYPE DIRECT OT D3D12_
COMMAND_LIST TYPE_BUNDLE.

3. pcommandallocator: The allocator to be associated with the created command
list. The command allocator type must match the command list type.

4. pinitialstate: Specifies the initial pipeline state of the command list. This can
be null for bundles, and in the special case where a command list is executed
for initialization purposes and does not contain any draw commands. We
discuss 1p3p12Pipelinestate in Chapter 6.

5. riid: The COM ID of the 1p3p12commandrist interface we want to create.

6. ppcommandrist: Qutputs a pointer to the created command list.

ooy You can use the 1p3p12Device: :GetNodeCount method to query the number of
GPU adapter nodes on the system.

You can create multiple command lists associated with the same allocator, but
you cannot record at the same time. That is, all command lists must be closed
except the one whose commands we are going to record. Thus, all commands
from a given command list will be added to the allocator contiguously. Note
that when a command list is created or reset, it is in an “open” state. So if we
tried to create two command lists in a row with the same allocator, we would get
an error:

D3D12 ERROR: ID3Dl12CommandList::{Create,Reset}CommandList: The command
allocator is currently in-use by another command list.

After we have called 1p3p12CommandQueue: : ExecuteCommandList (C), it is safe to
reuse the internal memory of c to record a new set of commands by calling the
ID3D12CommandList: :Reset Mmethod. The parameters of this method are the same
as the matching parameters in 1p3Dp12Device: : CreateCommandList.

HRESULT ID3Dl2CommandList::Reset (

ID3D12CommandAllocator *pAllocator,
ID3D12PipelineState *pInitialState);

This method puts the command list in the same state as if it was just created, but
allows us to reuse the internal memory and avoid deallocating the old command
list and allocating a new one. Note that resetting the command list does not affect
the commands in the command queue because the associated command allocator
still has the commands in memory that the command queue references.
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Figure 4.7. This is an error because C draws the geometry with p, or draws while R is in the middle of being
updated. In any case, this is not the intended behavior.

After we have submitted the rendering commands for a complete frame to the
GPU, we would like to reuse the memory in the command allocator for the next
frame. The 1p3p12Commandallocator: :Reset method may be used for this:

HRESULT ID3Dl12CommandAllocator::Reset (void) ;

The idea of this is analogous to calling std: :vector: :clear, which resizes a vector
back to zero, but keeps the current capacity the same. However, because the
command queue may be referencing data in an allocator, a command allocator
must not be reset until we are sure the GPU has finished executing all the
commands in the allocator; how to do this is covered in the next section.

4.2.2 CPU/GPU Synchronization

Due to having two processors running in parallel, a number of synchronization
issues appear.

Suppose we have some resource R that stores the position of some geometry we
wish to draw. Furthermore, suppose the CPU updates the data of R to store position
p1 and then adds a drawing command C that references R to the command queue
with the intent of drawing the geometry at position p;. Adding commands to the
command queue does not block the CPU, so the CPU continues on. It would be an
error for the CPU to continue on and overwrite the data of R to store a new position
P2 before the GPU executed the draw command C (see Figure 4.7).

One solution to this situation is to force the CPU to wait until the GPU has
finished processing all the commands in the queue up to a specified fence point.
We call this flushing the command queue. We can do this using a fence. A fence is
represented by the 1p3p12rence interface and is used to synchronize the GPU and
CPU. A fence object can be created with the following method:

HRESULT ID3Dl2Device: :CreateFence (
UINT64 InitialValue,



Direct3D INnmiauization 113

D3D12_FENCE_FLAGS Flags,
REFIID riid,
void **ppFence);

// Example

ThrowIfFailed (md3dDevice->CreateFence (
0 ’
D3D12 FENCE FLAG NONE,
IID_PPV_ARGS (&mFence))) ;

A fence object maintains a UINT64 value, which is just an integer to identify a
fence point in time. We start at value zero and every time we need to mark a new
fence point, we just increment the integer. Now, the following code/comments
show how we can use a fence to flush the command queue.

UINT64 mCurrentFence = 0;

void D3DApp: :FlushCommandQueue ()

{

// Advance the fence value to mark commands up to this fence point.
mCurrentFence++;

// Add an instruction to the command queue to set a new fence point.
// Because we are on the GPU timeline, the new fence point won’t be
// set until the GPU finishes processing all the commands prior to
// this Signal().

ThrowIfFailed (mCommandQueue->Signal (mFence.Get (), mCurrentFence));

// Wait until the GPU has completed commands up to this fence point.
if (mFence->GetCompletedValue () < mCurrentFence)

{
HANDLE eventHandle = CreateEventEx (nullptr, false, false, EVENT
ALL ACCESS) ;

// Fire event when GPU hits current fence.
ThrowIfFailed (mFence->SetEventOnCompletion (mCurrentFence,
eventHandle)) ;

// Wait until the GPU hits current fence event is fired.
WaitForSingleObject (eventHandle, INFINITE) ;
CloseHandle (eventHandle) ;

}

Figure 4.8 explains this code graphically.

So in the previous example, after the CPU issued the draw command C, it would
flush the command queue before overwriting the data of R to store a new position
P> This solution is not ideal because it means the CPU is idle while waiting for the
GPU to finish, but it provides a simple solution that we will use until Chapter 7.
You can flush the command queue at almost any point (not necessarily only once
per frame); if you have some initialization GPU commands, you can flush the
command queue to execute the initialization before entering the main rendering
loop, for example.
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Figure 4.8. At this snapshot, the GPU has processed commands up to x,,and the CPU has just called the
ID3D12CommandQueue: :Signal (fence, n+1) method. This essentially adds an instruction to the
end of the queue to change the fence value to n + 1. However, nFence->GetCompletedvalue () will
continue to return n until the GPU processes all the commands in the queue that were added prior to the
Signal (fence, n+1) instruction.

Note that flushing the command queue also can be used to solve the problem
we mentioned at the end of the last section; that is, we can flush the command
queue to be sure that all the GPU commands have been executed before we reset
the command allocator.

4.2.3 Resource Transitions

To implement common rendering effects, it is common for the GPU to write
to a resource R in one step, and then, in a later step, read from the resource R.
However, it would be a resource hazard to read from a resource if the GPU has
not finished writing to it or not started writing at all. To solve this problem,
Direct3D associates a state to resources. Resources are in a default state when
they are created, and it is up to the application to tell Direct3D any state
transitions. This enables the GPU to do any work it needs to do to make the
transition and prevent resource hazards. For example, if we are writing to a
resource, say a texture, we will set the texture state to a render target state; when
we need to read the texture, we will change its state to a shader resource state. By
informing Direct3D of a transition, the GPU can take steps to avoid the hazard,
for example, by waiting for all the write operations to complete before reading
from the resource. The burden of resource transition falls on the application
developer for performance reasons. The application developer knows when
these transitions are happening. An automatic transition tracking system would
impose additional overhead.

A resource transition is specified by setting an array of transition resource
barriers on the command list; it is an array in case you want to transition multiple
resources with one API call. In code, a resource barrier is represented by the
D3D12 RESOURCE BARRTER DEsSC structure. The following helper function (defined
in d3dx12.h) returns a transition resource barrier description for a given resource,
and specifies the before and after states:

struct CD3DX12 RESOURCE BARRIER : public D3D12 RESOURCE BARRIER
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// [...] convenience methods

static inline CD3DX12 RESOURCE BARRIER Transition(
_In ID3Dl2Resource* pResource,
D3D12 RESOURCE_STATES stateBefore,
D3D12_RESOURCE_STATES stateAfter,
UINT subresource = D3D12_RESOURCE_BARRIER_ALL_SUBRESOURCES,
D3D12_RESOURCE_BARRIER_FLAGS flags = D3D12_RESOURCE_BARRIER_FLAG_
NONE)

CD3DX12_RESOURCE_BARRIER result;

ZeroMemory (&result, sizeof (result));
D3D12_RESOURCE_BARRIER &pbarrier = result;

result.Type = D3D12_RESOURCE_BARRIER_TYPE_TRANSITION;
result.Flags = flags;

barrier.Transition.pResource = pResource;

barrier.Transition.StateBefore = stateBefore;
barrier.Transition.StateAfter = stateAfter;
barrier.Transition.Subresource = subresource;

return result;

}

// [...] more convenience methods

bi

Observe that cp3px12 RESOURCE BARRIER extends D3D12 RESOURCE BARRIER DESC
and adds convenience methods. Most Direct3D 12 structures have extended
helper variations, and we prefer those variations for the convenience. The
CD3DX12 variations are all defined in d3dx12.h. This file is not part of the core
DirectX 12 SDK, but is available for download from Microsoft. For convenience, a
copy is included in the Common directory of the book’s source code.

An example of this function from this chapter’s sample application is as follows:

mCommandList->ResourceBarrier (1,

&CD3DX12 RESOURCE BARRIER::Transition/(
CurrentBackBuffer (),

D3D12 RESOURCE_STATE PRESENT,
D3D12 RESOURCE_STATE RENDER TARGET)) ;

This code transitions a texture representing the image we are displaying on screen
from a presentation state to a render target state. Observe that the resource barrier
is added to the command list. You can think of the resource barrier transition
as a command itself instructing the GPU that the state of a resource is being
transitioned, so that it can take the necessary steps to prevent a resource hazard
when executing subsequent commands.

ooy [here are other types of resource barriers besides transition types. For now, we
only need the transition types. We will introduce the other types when we need
them.
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4.2.4 Multithreading with Commands

Direct3D 12 was designed for efficient multithreading. The command list
design is one way Direct3D takes advantage of multithreading. For large scenes
with lots of objects, building the command list to draw the entire scene can take
CPU time. So the idea is to build command lists in parallel; for example, you
might spawn four threads, each responsible for building a command list to draw
25% of the scene objects.

A few things to note about command list multithreading:

1. Command list are not free-threaded; that is, multiple threads may not share
the same command list and call its methods concurrently. So generally, each
thread will get its own command list.

2. Command allocators are not free-threaded; that is, multiple threads may
not share the same command allocator and call its methods concurrently. So
generally, each thread will get its own command allocator.

3. The command queue is free-threaded, so multiple threads can access the
command queue and call its methods concurrently. In particular, each thread
can submit their generated command list to the thread queue concurrently.

4. For performance reasons, the application must specify at initialization time
the maximum number of command lists they will record concurrently.

For simplicity, we will not use multithreading in this book. Once the reader is
finished with this book, we recommend they study the Multithreading12 SDK
sample to see how command lists can be generated in parallel. Applications that
want to maximize system resources should definitely use multithreading to take
advantage of multiple CPU cores.

4.3 INITIALIZING DIRECT3D

The following subsections show how to initialize Direct3D for our demo
framework. It is a long process, but only needs to be done once. Our process of
initializing Direct3D can be broken down into the following steps:

1. Create the 1p3p12Device using the p3pi2createbevice function.
. Create an 1p3p12Fence object and query descriptor sizes.
. Check 4X MSAA quality level support.
. Create the command queue, command list allocator, and main command list.

. Describe and create the swap chain.

N K1t A WDN

. Create the descriptor heaps the application requires.
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7. Resize the back buffer and create a render target view to the back buffer.
8. Create the depth/stencil buffer and its associated depth/stencil view.

9. Set the viewport and scissor rectangles.

4.3.1 Create the Device

Initializing Direct3D begins by creating the Direct3D 12 device (1p3p12pevice).
The device represents a display adapter. Usually, the display adapter is a physical
piece of 3D hardware (e.g., graphics card); however, a system can also have a
software display adapter that emulates 3D hardware functionality (e.g., the WARP
adapter). The Direct3D 12 device is used to check feature support, and create all
other Direct3D interface objects like resources, views, and command lists. The
device can be created with the following function:
HRESULT WINAPI D3Dl2CreateDevice(
IUnknown* pAdapter,
D3D FEATURE LEVEL MinimumFeatureLevel,

REFIID riid, // Expected: ID3Dl2Device
void** ppDevice );

1. padapter: Specifies the display adapter we want the created device to represent.
Specifying null for this parameter uses the primary display adapter. We always
use the primary adapter in the sample programs of this book. §4.1.10 showed
how to enumerate all the system’s display adapters.

2. MinimunFeaturelevel: The minimum feature level our application requires
support for; device creation will fail if the adapter does not support this
feature level. In our framework, we specify p3p reature rever 11 0 (i.e.,
Direct3D 11 feature support).

3. riid: The COM ID of the 1p3p12pevice interface we want to create.

4. pppevice: Returns the created device.

Here is an example call of this function:

#if defined(DEBUG) || defined( DEBUG)

// Enable the D3D12 debug layer.

{
ComPtr<ID3D12Debug> debugController;
ThrowIfFailed(D3D12GetDebuglInterface (IID PPV

ARGS (&debugController)));

debugController->EnableDebuglLayer () ;

}

#endif

ThrowIfFailed(CreateDXGIFactoryl (IID PPV ARGS (&mdxgiFactory)));

// Try to create hardware device.
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HRESULT hardwareResult = D3Dl2CreateDevice (
nullptr, // default adapter
D3D FEATURE LEVEL 11 0,
IID PPV_ARGS (&md3dDevice)) ;

// Fallback to WARP device.
if (FAILED (hardwareResult))

{
ComPtr<IDXGIAdapter> pWarpAdapter;
ThrowIfFailed (mdxgiFactory->EnumWarpAdapter (IID_ PPV
ARGS (&pWarpAdapter))) ;

ThrowIfFailed (D3D12CreateDevice (
pWarpAdapter.Get (),
D3D_FEATURE LEVEL 11 0,

IID PPV_ARGS (&md3dDevice)));
}

Observe that we first enable the debug layer for debug mode builds. When the
debug layer is enabled, Direct3D will enable extra debugging and send debug
messages to the VC++ output window like the following:

D3D12 ERROR: ID3Dl2CommandList::Reset: Reset fails because the command
list was not closed.

Also observe that if our call to p3p12createpevice fails, we fallback to a WARP
device, which is a software adapter. WARP stands for Windows Advanced
Rasterization Platform. On Windows 7 and lower, the WARP device supports up
to feature level 10.1; on Windows 8, the WARP device supports up to feature level
11.1.In order to create a WARP adapter, we need to create an 1pxGiractory4 object
so that we can enumerate the warp adapter:

ComPtr<IDXGIFactory4> mdxgiFactory;

CreateDXGIFactoryl (IID PPV ARGS (&mdxgiFactory)) ;

mdxgiFactory->EnumWarpAdapter (
IID PPV ARGS (&pWarpAdapter)) ;

The mdxgirFactory object will also be used to create our swap chain since it is part
of the DXGI.

4.3.2 Create the Fence and Descriptor Sizes

After we have created our device, we can create our fence object for CPU/GPU
synchronization. In addition, once we get to working with descriptors, we are
going to need to know their size. Descriptor sizes can vary across GPUs so we need
to query this information. We cache the descriptor sizes so that it is available when
we need it for various descriptor types:

ThrowIfFailed (md3dDevice->CreateFence (
0, D3D12 FENCE FLAG NONE, IID PPV ARGS (&mFence)));
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mRtvDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize (
D3D12 DESCRIPTOR HEAP TYPE RTV);

mDsvDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize (
D3D12 DESCRIPTOR HEAP TYPE DSV);

mCbvSrvDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize (
D3D12 DESCRIPTOR HEAP TYPE CBV_SRV_UAV) ;

4.3.3 Check 4X MSAA Quality Support

In this book, we check support for 4X MSAA. We choose 4X because it gives a
good improvement without being overly expensive, and because all Direct3D 11
capable devices support 4X MSAA with all render target formats. Therefore, it is
guaranteed to be available on Direct3D 11 hardware and we do not have to verify
support for it. However, we do have to check the supported quality level, which
can be done with the following method:

D3D12 FEATURE DATA MULTISAMPLE QUALITY LEVELS msQualityLevels;
msQualityLevels.Format = mBackBufferFormat;
msQualityLevels.SampleCount = 4;
msQualitylLevels.Flags = D3D12 MULTISAMPLE QUALITY LEVELS FLAG NONE;
msQualityLevels.NumQualityLevels = 0;
ThrowIfFailed (md3dDevice->CheckFeatureSupport (

D3D12 FEATURE MULTISAMPLE QUALITY LEVELS,

&msQualityLevels,

sizeof (msQualityLevels)));

m4xMsaaQuality = msQualityLevels.NumQualityLevels;
assert (m4xMsaaQuality > 0 && "Unexpected MSAA quality level.");

Because 4X MSAA is always supported, the returned quality should always be
greater than 0; therefore, we assert that this is the case.

4.3.4 Create Command Queue and Command List

Recall from §4.2.1 thata command queue is represented by the 10301 2commandoueue
interface, a command allocator is represented by the 1p3p12c0ommandallocator
interface, and a command list is represented by the 1p3p126raphicscommandrList
interface. The following function shows how we create a command queue,
command allocator, and command list:

ComPtr<ID3Dl2CommandQueue> mCommandQueue;
ComPtr<ID3Dl2CommandAllocator> mDirectCmdListAlloc;
ComPtr<ID3D12GraphicsCommandList> mCommandList;
void D3DApp::CreateCommandObjects ()
{
D3D12 COMMAND QUEUE DESC queueDesc = {};
queueDesc.Type = D3D12 COMMAND LIST TYPE DIRECT;
queueDesc.Flags = D3D12 COMMAND QUEUE FLAG_NONE;
ThrowIfFailed (md3dDevice->CreateCommandQueue (
&queueDesc, IID PPV _ARGS (&mCommandQueue))) ;
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ThrowIfFailed (md3dDevice->CreateCommandAllocator (
D3D12_ COMMAND LIST TYPE DIRECT,
IID PPV_ARGS (mDirectCmdListAlloc.GetAddressOf())));

ThrowIfFailed (md3dDevice->CreateCommandList (
O 4
D3D12 COMMAND LIST TYPE DIRECT,
mDirectCmdListAlloc.Get (), // Associated command allocator
nullptr, // Initial PipelineStateObject
IID PPV _ARGS (mCommandList.GetAddressOf())));

// Start off in a closed state. This is because the first time we
// refer to the command list we will Reset it, and it needs to be
// closed before calling Reset.

mCommandList->Close () ;

}

Observe that for createcommandrist, we specify null for the pipeline state object
parameter. In this chapter’s sample program, we do not issue any draw commands,
so we do not need a valid pipeline state object. We will discuss pipeline state
objects in Chapter 6.

4.3.5 Describe and Create the Swap Chain

The next step in the initialization process is to create the swap chain. This is
done by first filling out an instance of the pxcr swap cHain DEsc structure,
which describes the characteristics of the swap chain we are going to create. This
structure is defined as follows:

typedef struct DXGI_SWAP_ CHAIN DESC
{
DXGI_MODE DESC BufferDesc;
DXGI_SAMPLE DESC SampleDesc;
DXGI_USAGE BufferUsage;
UINT BufferCount;
HWND OutputWindow;
BOOL Windowed;
DXGI_SWAP EFFECT SwapEffect;
UINT Flags;
} DXGI_SWAP CHAIN DESC;

The pxcr_mope pEsc type is another structure, defined as:

typedef struct DXGI MODE DESC
{

UINT Width; // Buffer resolution width
UINT Height; // Buffer resolution height
DXGI RATIONAL RefreshRate;

DXGI_FORMAT Format; // Buffer display format

DXGI_MODE_SCANLINE ORDER ScanlineOrdering; //Progressive vs.
interlaced
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DXGI_MODE_SCALING Scaling; // How the image is stretched
// over the monitor.

} DXGI_MODE_DESC;

In the following data member descriptions, we only cover the common flags and
options that are most important to a beginner at this point. For a description of
further flags and options, refer to the SDK documentation.

1. Bufferbesc: This structure describes the properties of the back buffer we
want to create. The main properties we are concerned with are the width and
height, and pixel format; see the SDK documentation for further details on
the other members.

2. samplepesc: The number of multisamples and quality level; see §4.1.8. For
single sampling, specify a sample count of 1 and quality level of 0.

3. BufferUsage: Specify DXGI_USAGE RENDER_TARGET OUTPUT Since we are going to
be rendering to the back buffer (i.e., use it as a render target).

4. Burfercount: The number of buffers to use in the swap chain; specify two for
double buffering.

5. outputwindow: A handle to the window we are rendering into.

6. windowed: Specify true to run in windowed mode or faise for full-screen
mode.

7. swapEffect: Specify DXGI_swAP EFFECT FLIP DISCARD.

8. rlags: Optional flags. If you specify DXGI SWAP CHAIN FLAG ALLOW MODE
swrtcH, then when the application is switching to full-screen mode, it will
choose a display mode that best matches the current application window
dimensions. If this flag is not specified, then when the application is switching
to full-screen mode, it will use the current desktop display mode.

After we have described out swap chain, we can create it with the
IDXGIFactory: :CreateSwapChain method:
HRESULT IDXGIFactory::CreateSwapChain (
IUnknown *pDevice, // Pointer to ID3Dl2CommandQueue.

DXGI_SWAP CHAIN DESC *pDesc, // Pointer to swap chain description.
IDXGISwapChain **ppSwapChain);// Returns created swap chain interface.

The following code shows how we create the swap chain in our sample framework.
Observe that this function has been designed so that it can be called multiple
times. It will destroy the old swap chain before creating the new one. This allows
us to recreate the swap chain with different settings; in particular, we can change
the multisampling settings at runtime.

DXGI_FORMAT mBackBufferFormat = DXGI_ FORMAT R8G8B8A8 UNORM;
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void D3DApp::CreateSwapChain ()

{
// Release the previous swapchain we will be recreating.
mSwapChain.Reset () ;

DXGI_SWAP_CHAIN DESC sd;
sd.BufferDesc.Width = mClientWidth;
sd.BufferDesc.Height = mClientHeight;
sd.BufferDesc.RefreshRate.Numerator = 60;
sd.BufferDesc.RefreshRate.Denominator = 1;
sd.BufferDesc.Format = mBackBufferFormat;
sd.BufferDesc.ScanlineOrdering = DXGI_MODE SCANLINE ORDER
UNSPECIFIED;
sd.BufferDesc.Scaling = DXGI_MODE_SCALING UNSPECIFIED;
sd.SampleDesc.Count = m4xMsaaState ? 4 : 1;
sd.SampleDesc.Quality = m4xMsaaState ? (m4xMsaaQuality - 1) : 0;
sd.BufferUsage = DXGI_USAGE_RENDER TARGET OUTPUT;
sd.BufferCount = SwapChainBufferCount;
sd.OutputWindow = mhMainWnd;
sd.Windowed = true;
sd.SwapEffect = DXGI_SWAP EFFECT FLIP DISCARD;
sd.Flags = DXGI_SWAP CHAIN FLAG ALLOW MODE_SWITCH;
// Note: Swap chain uses queue to perform flush.
ThrowIfFailed (mdxgiFactory->CreateSwapChain (
mCommandQueue.Get (),
&sd,
mSwapChain.GetAddressOf ()));

4.3.6 Create the Descriptor Heaps

We need to create the descriptor heaps to store the descriptors/views (§4.1.6) our
application needs. A descriptor heap is represented by the 1p3p12Descriptorteap
interface. A heap is created with the 1p3p12Device::CreateDescriptorHeap
method. In this chapter’s sample program, we need swapChainBufferCount many
render target views (RTVs) to describe the buffer resources in the swap chain
we will render into, and one depth/stencil view (DSV) to describe the depth/
stencil buffer resource for depth testing. Therefore, we need a heap for storing
swapChainBuffercount RTVs, and we need a heap for storing one DSV. These
heaps are created with the following code:

ComPtr<ID3Dl2DescriptorHeap> mRtvHeap;

ComPtr<ID3Dl2DescriptorHeap> mDsvHeap;

void D3DApp::CreateRtvAndDsvDescriptorHeaps ()
{
D3D12 DESCRIPTOR HEAP DESC rtvHeapDesc;
rtvHeapDesc.NumDescriptors = SwapChainBufferCount;
rtvHeapDesc.Type = D3D12 DESCRIPTOR HEAP TYPE RTV;
rtvHeapDesc.Flags = D3D12 DESCRIPTOR HEAP FLAG NONE;
rtvHeapDesc.NodeMask = 0;
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ThrowIfFailed (md3dDevice->CreateDescriptorHeap (
&rtvHeapDesc, IID PPV_ARGS (mRtvHeap.GetAddressOf())));

D3D12 DESCRIPTOR HEAP DESC dsvHeapDesc;

dsvHeapDesc.NumDescriptors = 1;

dsvHeapDesc.Type = D3D12 DESCRIPTOR HEAP TYPE DSV;

dsvHeapDesc.Flags = D3D12 DESCRIPTOR HEAP FLAG NONE;
dsvHeapDesc.NodeMask = 0;

ThrowIfFailed (md3dDevice->CreateDescriptorHeap (
&dsvHeapDesc, IID PPV_ARGS (mDsvHeap.GetAddressOf())));

}

In our application framework, we define

static const int SwapChainBufferCount = 2;
int mCurrBackBuffer = 0;

and we keep track of the current back buffer index with ncurrBacksutrer (recall
that the front and back buffers get swapped in page flipping, so we need to track
which buffer is the current back buffer so we know which one to render to).
After we create the heaps, we need to be able to access the descriptors they

store. Our application references descriptors through handles. A handle to the
first descriptor in a heap is obtained with the 1p3p12pescriptorteap: : GetcPUDesc
riptorHandleForHeapstart method. The following functions get the current back
buffer RTV and DSV, respectively:

D3D12_CPU_DESCRIPTOR HANDLE CurrentBackBufferView ()const

{ // CD3DX12 constructor to offset to the RIV of the current back buffer.

return CD3DX12 CPU DESCRIPTOR HANDLE (
mRtvHeap->GetCPUDescriptorHandleForHeapStart (), // handle start

mCurrBackBuffer, // index to offset
mRtvDescriptorSize); // byte size of descriptor

D3D12_ CPU_DESCRIPTOR HANDLE DepthStencilView ()const
{
return mDsvHeap->GetCPUDescriptorHandleForHeapStart () ;

We now see an example of where the descriptor size is needed. In order to offset
to the current back buffer RTV descriptor, we need to know the RTV descriptor
byte size.

4.3.7 Create the Render Target View

As said in §4.1.6, we do not bind a resource to a pipeline stage directly; instead, we
must create a resource view (descriptor) to the resource and bind the view to the
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pipeline stage. In particular, in order to bind the back buffer to the output merger
stage of the pipeline (so Direct3D can render onto it), we need to create a render
target view to the back buffer. The first step is to get the buffer resources which are
stored in the swap chain:

HRESULT IDXGISwapChain::GetBuffer (
UINT Buffer,

REFIID riid,
void **ppSurface);

1. Butfer: An index identifying the particular back buffer we want to get (in case
there is more than one).

2. riid: The COM ID of the 1p3p12Resource interface we want to obtain a
pointer to.

3. ppsurface: Returns a pointer to an 1p3pi2resource that represents the back

buffer.

The call to 1pxGISwapChain::GetBuffer increases the COM reference count to
the back buffer, so we must release it when we are finished with it. This is done
automatically if using a conptr.
To create the render target view, we use the ID3D12Device: :CreateRenderTarge
tview method:
void ID3Dl2Device: :CreateRenderTargetView (
ID3D12Resource *pResource,

const D3D12 RENDER TARGET VIEW DESC *pDesc,
D3D12 CPU DESCRIPTOR HANDLE DestDescriptor);

1. presource: Specifies the resource that will be used as the render target, which,
in the example above, is the back buffer (i.e., we are creating a render target
view to the back buffer).

2. ppesc: A pointer to a D3D12_RENDER TARGET VIEW DESC. Among other things,
this structure describes the data type (format) of the elements in the resource.
If the resource was created with a typed format (i.e., not typeless), then this
parameter can be null, which indicates to create a view to the first mipmap
level of this resource (the back buffer only has one mipmap level) with the
format the resource was created with. (Mipmaps are discussed in Chapter
9.) Because we specified the type of our back buffer, we specify null for this
parameter.

3. pestbescriptor: Handle to the descriptor that will store the created render
target view.
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Below is an example of calling these two methods where we create an RTV to each
buffer in the swap chain:

ComPtr<ID3Dl2Resource> mSwapChainBuffer[SwapChainBufferCount];
CD3DX12 CPU_DESCRIPTOR HANDLE rtvHeapHandle (
mRtvHeap->GetCPUDescriptorHandleForHeapStart());
for (UINT i = 0; 1 < SwapChainBufferCount; i++)
{
// Get the ith buffer in the swap chain.
ThrowIfFailed (mSwapChain->GetBuffer (
i, IID PPV_ARGS (&mSwapChainBuffer([i])));

// Create an RTV to it.
md3dDevice->CreateRenderTargetView (
mSwapChainBuffer[i].Get (), nullptr, rtvHeapHandle);

// Next entry in heap.
rtvHeapHandle.Offset (1, mRtvDescriptorSize);

4.3.8 Create the Depth/Stencil Buffer and View

We now need to create the depth/stencil buffer. As described in §4.1.5, the
depth buffer is just a 2D texture that stores the depth information of the nearest
visible objects (and stencil information if using stenciling). A texture is a kind
of GPU resource, so we create one by filling out a p3p12_RESOURCE_DESC structure
describing the texture resource, and then calling the 1p3p12pevice: :createcommi
ttedresource method. The p3p12 rEsource pesc structure is defined as follows:

typedef struct D3D12 RESOURCE_DESC

{

D3D12 RESOURCE DIMENSION Dimension;

UINT64 Alignment;

UINT64 Width;

UINT Height;

UINT16 DepthOrArraySize;

UINT16 MipLevels;

DXGI_FORMAT Format;

DXGI_SAMPLE_DESC SampleDesc;

D3D12_ TEXTURE LAYOUT Layout;

D3D12 RESOURCE MISC FLAG MiscFlags;
} D3D12 RESOURCE DESC;

1. pimension: The dimension of the resource, which is one of the following
enumerated types:

enum D3D12 RESOURCE DIMENSION

{
D3D12 RESOURCE DIMENSION UNKNOWN = O,
D3D12 RESOURCE DIMENSION BUFFER = 1,

D3D12 RESOURCE DIMENSION TEXTURE1D 2,
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9.

D3Dl2_RESOURCE_DIMENSION_TEXTURE2D = 3,
D3Dl2_RESOURCE_DIMENSION_TEXTURE3D =4
} D3Dl2_RESOURCE_DIMENSION;
width: The width of the texture in texels. For buffer resources, this is the

number of bytes in the buffer.
seight: The height of the texture in texels.

DepthorArraySize: The depth of the texture in texels, or the texture array size
(for 1D and 2D textures). Note that you cannot have a texture array of 3D
textures.

MipLevels: The number of mipmap levels. Mipmaps are covered in Chapter 9
on texturing. For creating the depth/stencil buffer, our texture only needs one
mipmap level.

rormat: A member of the pxcr_roruaT enumerated type specifying the format
of the texels. For a depth/stencil buffer, this needs to be one of the formats
shown in §4.1.5.

samplepesc: The number of multisamples and quality level; see §4.1.7 and
§4.1.8. Recall that 4X MSAA uses a back buffer and depth buffer 4X bigger than
the screen resolution, in order to store color and depth/stencil information
per subpixel. Therefore, the multisampling settings used for the depth/stencil
buffer must match the settings used for the render target.

Layout: A member of the p3p12_texTURE LAYOUT enumerated type that specifies
the texture layout. For now, we do not have to worry about the layout and can
specify D3p12 TEXTURE LAYOUT UNKNOWN.

MiscFlags: Miscellaneous resource flags. For a depth/stencil buffer resource,
specify D3D12 RESOURCE MISC DEPTH STENCTL.

GPU resources live in heaps, which are essentially blocks of GPU memory with
certain properﬁes.ffhe ID3D12Device: :CreateCommittedResource method creates
and commits a resource to a particular heap with the properties we specify.

HRESULT ID3Dl2Device::CreateCommittedResource (
const D3D12 HEAP PROPERTIES *pHeapProperties,
D3D12 HEAP MISC FLAG HeapMiscFlags,
const D3D12 RESOURCE DESC *pResourceDesc,
D3D12 RESOURCE USAGE InitialResourceState,
const D3D12 CLEAR VALUE *pOptimizedClearValue,
REFIID riidResource,
void **ppvResource) ;

typedef struct D3D12 HEAP_ PROPERTIES {
D3D12_HEAP_TYPE Type;
D3D12_CPU_PAGE_PROPERTIES CPUPageProperties;
D3D12_ MEMORY POOL MemoryPoolPreference;
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UINT CreationNodeMask;
UINT VisibleNodeMask;
} D3D12_HEAP_PROPERTIES;

1. pHeapProperties: The properties of the heap we want to commit the resource
to. Some of these properties are for advanced usage. For now, the main
property we need to worry about is the p3p12_sEar TveE, which can be one of
the following members of the p3p12_rEar prOPERTIES enumerated type:

a) p3p12_ueap_TypE_DpEFAULT: Default heap. This is where we commit resources
that will be solely accessed by the GPU. Take the depth/stencil buffer as an
example: The GPU reads and writes to the depth/stencil buffer. The CPU
never needs access to it, so the depth/stencil buffer would be placed in the
default heap.

b) p3p12_wEar TvPE uProAD: Upload heap. This is where we commit resources
where we need to upload data from the CPU to the GPU resource.

c) p3p12 HEAP TYPE READBACK: Read-back heap. This is where we commit
resources that need to be read by the CPU.

d) p3p12_mEap TyPE custoM: For advanced usage scenarios—see the MSDN
documentation for more information.

2. HeapMiscFlags: Additional flags about the heap we want to commit the
resource to. This will usually be p3p12_#EAP MISC NONE.

3. presourceDesc: Pointer to a p3p12 RESOURCE DEsC instance describing the
resource we want to create.

4. TnitialResourceState: Recall from §4.2.3 that resources have a current usage
state. Use this parameter to set the initial state of the resource when it is
created. For the depth/stencil buffer, the initial state will be p3p12_rESOURCE
USAGE_INITIAL, and then we will want to transition it to the p3p12 RESOURCE
USAGE_DEPTH $0 it can be bound to the pipeline as a depth/stencil buffer.

5. poptimizedClearvalue: Pointer to a p3p12_crear varLue object that describes
an optimized value for clearing resources. Clear calls that match the optimized
clear value can potentially be faster than clear calls that do not match the
optimized clear value. Null can also be specified for this value to not specify
an optimized clear value.

struct D3D12 CLEAR VALUE
{
DXGI FORMAT Format;
union
{
FLOAT Color[ 4 ];
D3D127DEPTH75TENCIL7VALUE DepthStencil;
}i
} D3D12 CLEAR VALUE;
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6. riidresource: The COM ID of the 1p3p12Resource interface we want to obtain
a pointer to.

7. ppvResource: Returns pointer to an 1p3p12resource that represents the newly
created resource.

oo~y Resources should be placed in the default heap for optimal performance. Only

use upload or read back heaps if you need those features.

In addition, before using the depth/stencil buffer, we must create an associated
depth/stencil view to be bound to the pipeline. This is done similarly to creating
the render target view. The following code example shows how we create the
depth/stencil texture and its corresponding depth/stencil view:

// Create the depth/stencil buffer and view.

D3D12 RESOURCE DESC depthStencilDesc;

depthStencilDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTUREZD;
depthStencilDesc.Alignment = 0;

depthStencilDesc.Width = mClientWidth;

depthStencilDesc.Height = mClientHeight;
depthStencilDesc.DepthOrArraySize = 1;

depthStencilDesc.MipLevels = 1;

depthStencilDesc.Format = mDepthStencilFormat;
depthStencilDesc.SampleDesc.Count = m4xMsaaState ? 4 : 1;
depthStencilDesc.SampleDesc.Quality = mé4xMsaaState ? (m4xMsaaQuality - 1) : O;
depthStencilDesc.Layout = D3D12 TEXTURE LAYOUT UNKNOWN;
depthStencilDesc.Flags = D3D12 RESOURCE FLAG ALLOW DEPTH STENCIL;

D3D12 CLEAR VALUE optClear;

optClear.Format = mDepthStencilFormat;

optClear.DepthStencil.Depth = 1.0f;

optClear.DepthStencil.Stencil = 0;

ThrowIfFailed (md3dDevice->CreateCommittedResource (
&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
D3D12 HEAP FLAG NONE,

&depthStencilDesc,

D3D12_RESOURCE_STATE_COMMON,

&optClear,

IID PPV_ARGS (mDepthStencilBuffer.GetAddressOf())));

// Create descriptor to mip level 0 of entire resource using the
// format of the resource.
md3dDevice->CreateDepthStencilView (

mDepthStencilBuffer.Get (),

nullptr,

DepthStencilView());

// Transition the resource from its initial state to be used as a depth buffer.
mCommandList->ResourceBarrier (

ll

&CD3DX12 RESOURCE BARRIER::Transition(

mDepthStencilBuffer.Get(),
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D3D12 RESOURCE STATE COMMON,
D3D12 RESOURCE STATE DEPTH WRITE));

Note that we use the cp3px12 neap propErTIES helper constructor to create the
heap properties structure, which is implemented like so:
explicit CD3DX12 HEAP PROPERTIES (
D3D12_HEAP TYPE type,

UINT creationNodeMask = 1,
UINT nodeMask = 1 )

Type = type;
CPUPageProperty = D3D12 CPU PAGE_PROPERTY UNKNOWN;
MemoryPoolPreference = D3D12 MEMORY POOL UNKNOWN;
CreationNodeMask = creationNodeMask;
VisibleNodeMask = nodeMask;

}

The second parameter of createbepthStencilview is a pointer to a b3p12 DEPTH
sTENCIL vIEW DESC. Among other things, this structure describes the data type
(format) of the elements in the resource. If the resource was created with a typed
format (i.e., not typeless), then this parameter can be null, which indicates to
create a view to the first mipmap level of this resource (the depth/stencil buffer
was created with only one mipmap level) with the format the resource was created
with. (Mipmaps are discussed in Chapter 9.) Because we specified the type of our
depth/stencil buffer, we specify null for this parameter.

4.3.9 Set the Viewport

Usually we like to draw the 3D scene to the entire back buffer, where the back
buffer size corresponds to the entire screen (full-screen mode) or the entire client
area of a window. However, sometimes we only want to draw the 3D scene into a
subrectangle of the back buffer; see Figure 4.9.

WY L1 Appication =i E‘|
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Figure 4.9. By modifying the viewport, we can draw the 3D scene into a subrectangle of the back buffer.
The back buffer then gets presented to the client area of the window.
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The subrectangle of the back buffer we draw into is called the viewport and it is
described by the following structure:
typedef struct D3D12 VIEWPORT {
FLOAT TopLeftX;
FLOAT TopLeftY;
FLOAT Width;
FLOAT Height;
FLOAT MinDepth;

FLOAT MaxDepth;
} D3D12_VIEWPORT;

The first four data members define the viewport rectangle relative to the back
buffer (observe that we can specify fractional pixel coordinates because the data
members are of type float). In Direct3D, depth values are stored in the depth
buffer in a normalized range of 0 to 1. The Minpepth and Maxpepth members
are used to transform the depth interval [0, 1] to the depth interval [Minpepth,
MaxDepth]. Being able to transform the depth range can be used to achieve certain
effects; for example, you could set MinDepth=0 and MaxDepth=0, so that all objects
drawn with this viewport will have depth values of 0 and appear in front of all
other objects in the scene. However, usually minpepth is set to 0 and MaxDepth is set
to 1 so that the depth values are not modified.

Once we have filled out the p3p12_vrizweorr structure, we set the viewport with
Direct3D with the 1p3pi2commandList::RSsetviewports method. The following
example creates and sets a viewport that draws onto the entire back buffer:

D3D12 VIEWPORT vp;

vp.TopLeftX = 0.0f;

vp.TopLeftY = 0.0f;

vp.Width = static cast<float>(mClientWidth);

vp.Height = static cast<float>(mClientHeight);

vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;

mCommandList->RSSetViewports (1, &vp):;

The first parameter is the number of viewports to bind (using more than one
is for advanced effects), and the second parameter is a pointer to an array of
viewports.

oy You cannot specify multiple viewports to the same render target. Multiple
viewports are used for advanced techniques that render to multiple render
targets at the same time.

——y The viewport needs to be reset whenever the command list is reset.

Note:

You could use the viewport to implement split screens for two-player game
modes, for example. You would create two viewports, one for the left half of the
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screen and one for the right half of the screen. Then you would draw the 3D scene
from the perspective of Player 1 into the left viewport and draw the 3D scene from
the perspective of Player 2 into the right viewport.

4.3.10 Set the Scissor Rectangles

We can define a scissor rectangle relative to the back buffer such that pixels outside
this rectangle are culled (i.e., not rasterized to the back buffer). This can be used
for optimizations. For example, if we know an area of the screen will contain a
rectangular Ul element on top of everything, we do not need to process the pixels
of the 3D world that the Ul element will obscure.

A scissor rectangle is defined by a p3p12 rect structure which is typedefed to
the following structure:

typedef struct tagRECT
{

LONG left;

LONG top;

LONG right;

LONG bottom;
} RECT;

We set the scissor rectangle with Direct3D with the 1p3p12commandList: :RSSetsci
ssorrects method. The following example creates and sets a scissor rectangle that
covers the upper-left quadrant of the back buffer:

mScissorRect = { 0, 0, mClientWidth/2, mClientHeight/2 };
mCommandList->RSSetScissorRects (1, &mScissorRect);

Similar to rssetviewports, the first parameter is the number of scissor rectangles
to bind (using more than one is for advanced effects), and the second parameter is
a pointer to an array of rectangles.

oy You cannot specify multiple scissor rectangles on the same render target. Multiple
scissor rectangles are used for advanced techniques that render to multiple render
targets at the same time.

ooy [he scissors rectangles need to be reset whenever the command list is reset.

4.4 TIMING AND ANIMATION

To do animation correctly, we will need to keep track of the time. In particular,
we will need to measure the amount of time that elapses between frames of
animation. If the frame rate is high, these time intervals between frames will be
very short; therefore, we need a timer with a high level of accuracy.
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4.4.1 The Performance Timer

For accurate time measurements, we use the performance timer (or performance
counter). To use the Win32 functions for querying the performance timer, we
must #include <windows.h>.

The performance timer measures time in units called counts. We obtain the
current time value, measured in counts, of the performance timer with the
QueryPerformanceCounter function like so:

_ int64 currTime;
QueryPerformanceCounter ( (LARGE INTEGER*) &currTime) ;

Observe that this function returns the current time value through its parameter,
which is a 64-bit integer value.

To get the frequency (counts per second) of the performance timer, we use the
QueryPerformanceFrequencyfunCﬁODJ

__int64 countsPerSec;
QueryPerformanceFrequency ( (LARGE INTEGER*) &countsPerSec) ;

Then the number of seconds (or fractions of a second) per count is just the
reciprocal of the counts per second:

mSecondsPerCount = 1.0 / (double)countsPerSec;

Thus, to convert a time reading valueIncounts to seconds, we just multiply it by
the conversion factor nsecondspercount

valueInSecs = valueInCounts * mSecondsPerCount;

The values returned by the gueryperformancecounter function are not particularly
interesting in and of themselves. What we do is get the current time value using
QueryPerformanceCounter, and then get the current time value a little later using
QueryPerformanceCounter again. Then the time that elapsed between those two
time calls is just the difference. That is, we always look at the relative difference
between two time stamps to measure time, not the actual values returned by the
performance counter. The following better illustrates the idea:

__int64 A = 0;
QueryPerformanceCounter ( (LARGE INTEGER*) &A) ;

/* Do work */

__inte4 B = 0;
QueryPerformanceCounter ( (LARGE INTEGER*) &B) ;

So it took (B-») counts to do the work, or (8-a) *msecondspercount seconds to do
the work.
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oo MSDN has the following remark about oueryperformanceCounter: “On
a multiprocessor computer, it should not matter which processor is called.
However, you can get different results on different processors due to bugs in the
basic input/output system (BIOS) or the hardware abstraction layer (HAL).”
You can use the setThreadaffinityMask function so that the main application
thread does not get switch to another processor.

4.4.2 Game Timer Class

In the next two sections, we will discuss the implementation of the following
GameTimer class.

class GameTimer

{

public:
GameTimer () ;

float GameTime ()const; // in seconds
float DeltaTime ()const; // in seconds

void Reset(); // Call before message loop.
void Start(); // Call when unpaused.
void Stop(); // Call when paused.
void Tick(); // Call every frame.
private:

double mSecondsPerCount;
double mDeltaTime;

~ int64 mBaseTime;
~ int64 mPausedTime;
~ int64 mStopTime;
~ int64 mPrevTime;
~ int64 mCurrTime;

bool mStopped;
}i

The constructor, in particular, queries the frequency of the performance counter.
The other member functions are discussed in the next two sections.

GameTimer: :GameTimer ()
: mSecondsPerCount (0.0), mDeltaTime (-1.0), mBaseTime (0),
mPausedTime (0), mPrevTime (0), mCurrTime (0), mStopped(false)
{
__int64 countsPerSec;
QueryPerformanceFrequency ( (LARGE_INTEGER*) &countsPerSec) ;
mSecondsPerCount = 1.0 / (double)countsPerSec;
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The caneTimer class and implementations are in the GameTimer.h and GameTimer.
cpp files, which can be found in the Common directory of the sample code.

4.4.3 Time Elapsed Between Frames

When we render our frames of animation, we will need to know how much time
has elapsed between frames so that we can update our game objects based on how
much time has passed. Computing the time elapsed between frames proceeds as
follows. Let t; be the time returned by the performance counter during the ith
frame and let ¢, be the time returned by the performance counter during the
previous frame. Then the time elapsed between the ¢, reading and the ¢, reading
is At =t; — t;,. For real-time rendering, we typically require at least 30 frames per
second for smooth animation (and we usually have much higher rates); thus,
At =t;—t;_; tends to be a relatively small number.
The following code shows how At is computed in code:

void GameTimer::Tick ()
{
if ( mStopped )
{
mDeltaTime = 0.0;
return;

}

// Get the time this frame.

~ int64 currTime;
QueryPerformanceCounter ( (LARGE INTEGER*) &currTime) ;
mCurrTime = currTime;

// Time difference between this frame and the previous.
mDeltaTime = (mCurrTime - mPrevTime) *mSecondsPerCount;

// Prepare for next frame.
mPrevTime = mCurrTime;

// Force nonnegative. The DXSDK’s CDXUTTimer mentions that if the
// processor goes into a power save mode or we get shuffled to
// another processor, then mDeltaTime can be negative.
if (mDeltaTime < 0.0)
{
mDeltaTime = 0.0;

float GameTimer::DeltaTime () const
{

return (float)mDeltaTime;



DIRECT3D INITIALIZATION

The function rick is called in the application message loop as follows:

int D3DApp::Run()

{

}

MSG msg = {0};

mTimer.Reset () ;

while (msg.message != WM QUIT)

{

// 1If there are Window messages then process them.
if (PeekMessage( &msg, O, 0, 0, PM REMOVE ))
{
TranslateMessage ( &msg );
DispatchMessage ( &msg );
}
// Otherwise, do animation/game stuff.
else
{

mTimer.Tick () ;

if ( !'mAppPaused )
{
CalculateFrameStats();
Update (mTimer) ;
Draw (mTimer) ;
}
else
{
Sleep (100) ;

return (int)msg.wParam;

135

In this way, At is computed every frame and fed into the vpdatescene method
so that the scene can be updated based on how much time has passed since the
previous frame of animation. The implementation of the reset method is:

void GameTimer: :Reset ()

{

}

__int64 currTime;
QueryPerformanceCounter ( (LARGE INTEGER*) &currTime) ;

mBaseTime = currTime;
mPrevTime = currTime;
mStopTime = 0;

mStopped = false;

Some of the variables shown have not been discussed yet (see §4.4.4). However,
we see that this initializes mprevTime to the current time when reset is called. It is
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important to do this because for the first frame of animation, there is no previous
frame, and therefore, no previous time stamp ¢; ;. Thus this value needs to be
initialized in the reset method before the message loop starts.

4.4.4 Total Time

Another time measurement that can be useful is the amount of time that has
elapsed since the application start, not counting paused time; we will call this fotal
time. The following situation shows how this could be useful. Suppose the player
has 300 seconds to complete a level. When the level starts, we can get the time
tyarr Which is the time elapsed since the application started. Then after the level
has started, every so often we can check the time t since the application started. If
t — tyare > 300s (see Figure 4.10) then the player has been in the level for over 300
seconds and loses. Obviously in this situation, we do not want to count any time
the game was paused against the player.

Another application of total time is when we want to animate a quantity as a
function of time. For instance, suppose we wish to have a light orbit the scene as a
function of time. Its position can be described by the parametric equations:

x =10cost
y=20
z=10sint

Here t represents time, and as ¢ (time) increases, the coordinates of the light are
updated so that the light moves in a circle with radius 10 in the y = 20 plane. For
this kind of animation, we also do not want to count paused time; see Figure 4.11.
To implement total time, we use the following variables:
__int64 mBaseTime;

__int64 mPausedTime;
__int64 mStopTime;

As we saw in §4.4.3, mBaseTime is initialized to the current time when Rreset was
called. We can think of this as the time when the application started. In most cases,

t — tstart

Figure 4.10. Computing the time since the level started. Note that we choose the application start time as
the origin (0), and measure time values relative to that frame of reference.
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Figure 4.11. If we paused at t; and unpaused at t,, and counted paused time, then when we unpause, the
position will jump abruptly from p(t;) to p(t,).

you will only call reset once before the message loop, so nBaseTime stays constant
throughout the application’s lifetime. The variable mpausedrime accumulates all
the time that passes while we are paused. We need to accumulate this time so we
can subtract it from the total running time, in order to not count paused time.
The nstoprime variable gives us the time when the timer is stopped (paused); this
is used to help us keep track of paused time.

Two important methods of the GaneTimer class are stop and start. They should
be called when the application is paused and unpaused, respectively, so that the
GameTimer can keep track of paused time. The code comments explain the details
of these two methods.

void GameTimer::Stop ()

{
// 1f we are already stopped, then don’t do anything.

if( !'mStopped )

{
__int64 currTime;
QueryPerformanceCounter ( (LARGE INTEGER*) &currTime) ;

// Otherwise, save the time we stopped at, and set
// the Boolean flag indicating the timer is stopped.
mStopTime = currTime;

mStopped = true;

}

void GameTimer::Start ()

{
__int64 startTime;
QueryPerformanceCounter ( (LARGE INTEGER*) &startTime) ;

// Accumulate the time elapsed between stop and start pairs.

//
// | <-mmmmm 4=~ >
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/] —————————————— Ko Hmmmmmm o= > time
// mStopTime startTime

// 1f we are resuming the timer from a stopped state...
if( mStopped )
{

// then accumulate the paused time.

mPausedTime += (startTime - mStopTime);

// since we are starting the timer back up, the current

// previous time is not valid, as it occurred while paused.
// So reset it to the current time.

mPrevTime = startTime;

// no longer stopped...
mStopTime = 0;
mStopped = false;

}

Finally, the TotalTime member function, which returns the time elapsed since
reset was called not counting paused time, is implemented as follows:

float GameTimer::TotalTime ()const

// 1f we are stopped, do not count the time that has passed

// since we stopped. Moreover, if we previously already had

// a pause, the distance mStopTime - mBaseTime includes paused
// time,which we do not want to count. To correct this, we can
// subtract the paused time from mStopTime:

//

// previous paused time

// [<m=mmmmmm - >

/] —mmKemmm e X Ko mm e Xmm o > time
// mBaseTime mStopTime mCurrTime

if ( mStopped )
{
return (float) (((mStopTime - mPausedTime) -
mBaseTime) *mSecondsPerCount) ;

// The distance mCurrTime - mBaseTime includes paused time,
// which we do not want to count. To correct this, we can subtract
// the paused time from mCurrTime:

//

// (mCurrTime - mPausedTime) - mBaseTime

//

// | <--paused time-->|

[/ ————Fem e e H e * e > time
// mBaseTime mStopTime startTime mCurrTime

else

{
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return (float) (((mCurrTime-mPausedTime) -
mBaseTime) *mSecondsPerCount) ;

}

Our demo framework creates an instance of cameTimer for measuring the total
time since the application started, and the time elapsed between frames; however,
you can also create additional instances and use them as generic “stopwatches.”
For example, when a bomb is ignited, you could start a new GanmeTimer, and when
the Tota1Time reached 5 seconds, you could raise an event that the bomb exploded.

4.5 THE DEMO APPLICATION FRAMEWORK

The demos in this book use code from the d3dUtil.h, d3dUtil.cpp, d3dApp.h, and
d3dApp.cpp files, which can be downloaded from the book’s website. The d3dUtil.h
and d3dUtil.cpp files contain useful utility code, and the d3dApp.h and d3dApp.cpp
files contain the core Direct3D application class code that is used to encapsulate
a Direct3D sample application. The reader is encouraged to study these files after
reading this chapter, as we do not cover every line of code in these files (e.g., we do
not show how to create a window, as basic Win32 programming is a prerequisite
of this book). The goal of this framework was to hide the window creation code
and Direct3D initialization code; by hiding this code, we feel it makes the demos
less distracting, as you can focus only on the specific details the sample code is
trying to illustrate.

4.5.1 D3DApp

The p3papp class is the base Direct3D application class, which provides functions
for creating the main application window, running the application message loop,
handling window messages, and initializing Direct3D. Moreover, the class defines
the framework functions for the demo applications. Clients are to derive from
Dp3DApp, override the virtual framework functions, and instantiate only a single
instance of the derived p3papp class. The p3papp class is defined as follows:

#include "d3dUtil.h"
#include "GameTimer.h"

// Link necessary d3dl2 libraries.
#pragma comment (1ib, "d3dcompiler.lib")
#pragma comment (1ib, "D3D12.1ib")
#pragma comment (1ib, "dxgi.lib")

class D3DApp
{
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protected:

D3DApp (HINSTANCE hInstance);

D3DApp (const D3DApp& rhs) = delete;

D3DAppé& operator=(const D3DAppé& rhs) = delete;
virtual ~D3DApp();

public:
static D3DApp* GetApp ()

HINSTANCE AppInst()const;
HWND MainWnd () const;
float AspectRatio () const;

bool GetdxMsaaState()const;
void Set4xMsaaState (bool value);

int Run{();

virtual bool Initialize();
virtual LRESULT MsgProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM
lParam) ;

protected:
virtual void CreateRtvAndDsvDescriptorHeaps () ;
virtual void OnResize();
virtual void Update (const GameTimer& gt)=0;
virtual void Draw(const GameTimers& gt)=0;

// Convenience overrides for handling mouse input.

virtual void OnMouseDown (WPARAM btnState, int x, int y){ }
virtual void OnMouseUp (WPARAM btnState, int x, int y) { }

virtual void OnMouseMove (WPARAM btnState, int x, int y){ }

protected:

bool InitMainWindow () ;

bool InitDirect3D();

void CreateCommandObjects () ;
void CreateSwapChain();

void FlushCommandQueue () ;

ID3D12Resource* CurrentBackBuffer ()const

{

return mSwapChainBuffer[mCurrBackBuffer].Get();

D3D12_CPU_DESCRIPTOR_HANDLE CurrentBackBufferView () const
{
return CD3DX12_CPU_DESCRIPTOR_HANDLE(
mRtvHeap->GetCPUDescriptorHandleForHeapStart (),
mCurrBackBuffer,
mRtvDescriptorSize);
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D3D12 CPU_DESCRIPTOR HANDLE DepthStencilView ()const
{

return mDsvHeap->GetCPUDescriptorHandleForHeapStart () ;

void CalculateFrameStats();

void LogAdapters();

void LogAdapterOutputs (IDXGIAdapter* adapter);

void LogOutputDisplayModes (IDXGIOutput* output, DXGI_FORMAT format);
protected:

static D3DApp* mApp;

HINSTANCE mhAppInst = nullptr; // application instance handle

HWND mhMainWnd = nullptr; // main window handle
bool mAppPaused = false; // is the application paused?

bool mMinimized = false; // is the application minimized?

bool mMaximized = false; // is the application maximized?

bool mResizing = false; // are the resize bars being dragged?
bool mFullscreenState = false;// fullscreen enabled

// Set true to use 4X MSAA (S§4.1.8). The default is false.
bool m4xMsaaState = false; // 4X MSAA enabled
UINT m4xMsaaQuality = 0; // quality level of 4X MSAA

// Used to keep track of the "delta-time" and game time (§4.4).
GameTimer mTimer;

Microsoft::WRL: :ComPtr<IDXGIFactory4> mdxgiFactory;
Microsoft::WRL: :ComPtr<IDXGISwapChain> mSwapChain;
Microsoft::WRL: :ComPtr<ID3D12Device> md3dDevice;

Microsoft::WRL::ComPtr<ID3Dl12Fence> mFence;
UINT64 mCurrentFence = 0;

Microsoft::WRL: :ComPtr<ID3Dl12CommandQueue> mCommandQueue;
Microsoft::WRL: :ComPtr<ID3Dl2CommandAllocator> mDirectCmdListAlloc;
Microsoft::WRL: :ComPtr<ID3D12GraphicsCommandList> mCommandList;

static const int SwapChainBufferCount = 2;

int mCurrBackBuffer = 0;

Microsoft::WRL: :ComPtr<ID3Dl12Resource> mSwapChainBuffer [SwapChainBuf
ferCount];

Microsoft::WRL: :ComPtr<ID3Dl12Resource> mDepthStencilBuffer;

Microsoft::WRL::ComPtr<ID3Dl2DescriptorHeap> mRtvHeap;
Microsoft::WRL::ComPtr<ID3Dl2DescriptorHeap> mDsvHeap;

D3D12 VIEWPORT mScreenViewport;
D3D12 RECT mScissorRect;

UINT mRtvDescriptorSize = 0
UINT mDsvDescriptorSize = 0
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UINT mCbvSrvDescriptorSize = 0;

// Derived class should set these in derived constructor to customize
// starting values.
std::wstring mMainWndCaption = L"d3d App";
D3D_DRIVER_TYPE md3dDriverType = D3D_DRIVER_TYPE_HARDWARE;
DXGI_FORMAT mBackBufferFormat = DXGI_FORMAT R8G8BS8A8 UNORM;
DXGI_FORMAT mDepthStencilFormat = DXGI_FORMZ—\T_D24_UNORM_S8_UINT;
int mClientWidth = 800;
int mClientHeight 600;

}i

We have used comments in the above code to describe some of the data members;
the methods are discussed in the subsequent sections.

4.5.2 Non-Framework Methods

1.

p3papp: The constructor simply initializes the data members to default values.

2. ~p3papp: The destructor releases the COM interfaces the p3papp acquires, and

flushes the command queue. The reason we need to flush the command queue
in the destructor is that we need to wait until the GPU is done processing
the commands in the queue before we destroy any resources the GPU is still
referencing. Otherwise, the GPU might crash when the application exits.

D3DApp: : ~D3DApp ()

{
if (md3dDevice != nullptr)
FlushCommandQueue () ;

appInst: Trivial access function returns a copy of the application instance
handle.

Mainwnd: Trivial access function returns a copy of the main window handle.

AspectRatio: The aspect ratio is defined as the ratio of the back buffer width
to its height. The aspect ratio will be used in the next chapter. It is trivially
implemented as:

float D3DApp::AspectRatio()const

{

return static cast<float>(mClientWidth) / mClientHeight;
}

Get4xMsaaState: Returns true is 4X MSAA is enabled and false otherwise.
Set4xMsaaState: Enables/disables 4X MSAA.

run: This method wraps the application message loop. It uses the Win32
peekMessage function so that it can process our game logic when no messages
are present. The implementation of this function was shown in §4.4.3.
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9. InitMainWindow: Initializes the main application window; we assume the
reader is familiar with basic Win32 window initialization.

10. 1nitpirect3n: Initializes Direct3D by implementing the steps discussed in §4.3.
11. createswapChain: Creates the swap chain (§4.3.5.).

12. createCommandobijects: Creates the command queue, a command list allocator,
and a command list, as described in §4.3.4.

13. FlushCommandQueue: Forces the CPU to wait until the GPU has finished
processing all the commands in the queue (see §4.2.2).

14. currentBackBuffer: Returns an 1p3ni2resource to the current back buffer in
the swap chain.

15. currentBackBufferview: Returns the RTV (render target view) to the current
back buffer.

16. pepthstencilview: Returns the DSV (depth/stencil view) to the main depth/
stencil buffer.

17. calculaterramestats: Calculates the average frames per second and the
average milliseconds per frame. The implementation of this method is
discussed in §4.4.4.

18. Logadapters: Enumerates all the adapters on a system (§4.1.10).

19. Logadapteroutputs: Enumerates all the outputs associated with an adapter
(§4.1.10).

20. LogOutputDisplayModes: Enumerates all the display modes an output supports
for a given format (§4.1.10).

4.5.3 Framework Methods

For each sample application in this book, we consistently override six virtual
functions of p3papp. These six functions are used to implement the code specific
to the particular sample. The benefit of this setup is that the initialization code,
message handling, etc., is implemented in the p3papp class, so that the derived
class needs to only focus on the specific code of the demo application. Here is a
description of the framework methods:

1. tnitialize: Use this method to put initialization code for the application such
as allocating resources, initializing objects, and setting up the 3D scene. The
p3papp implementation of this method calls 1nitMainwindowand 1nitbirect3D;
therefore, you should call the p3papp version of this method in your derived
implementation first like this:

bool TestApp::Init ()
{
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1f (!D3DApp::Init())
return false;

/* Rest of initialization code goes here */

}

so that your initialization code can access the initialized members of p3papp.

2. msgproc: This method implements the window procedure function for the

main application window. Generally, you only need to override this method
if there is a message you need to handle that p3papp: :Msgproc does not handle
(or does not handle to your liking). The p3papp implementation of this
method is explored in §4.5.5. If you override this method, any message that
you do not handle should be forwarded to p3papp: :MsgProc.

3. CreateRtvAndDsvDescriptorHeaps: Virtual function where you create the RTV

and DSV descriptor heaps your application needs. The default implementation
creates an RTV heap with swapchainBuffercount many descriptors (for the
buffer in the swap chain) and a DSV heap with one descriptor (for the depth/
stencil buffer). The default implementation will be sufficient for a lot of our
demos; for more advanced rendering techniques that use multiple render
targets, we will have to override this method.

4, onresize: This method is called by D3DApp: :MsgProc when a WM_SIZE INe€ssage

is received. When the window is resized, some Direct3D properties need
to be changed, as they depend on the client area dimensions. In particular,
the back buffer and depth/stencil buffers need to be recreated to match the
new client area of the window. The back buffer can be resized by calling the
IDXGISwapChain: :ResizeBuffers method. The depth/stencil buffer needs
to be destroyed and then remade based on the new dimension. In addition,
the render target and depth/stencil views need to be recreated. The p3papp
implementation of onresize handles the code necessary to resize the back and
depth/stencil buffers; see the source code for the straightforward details. In
addition to the buffers, other properties depend on the size of the client area
(e.g., the projection matrix), so this method is part of the framework because
the client code may need to execute some of its own code when the window is
resized.

5. update: This abstract method is called every frame and should be used to

update the 3D application over time (e.g., perform animations, move the
camera, do collision detection, check for user input, and etc.).

6. praw: This abstract method is invoked every frame and is where we issue

rendering commands to actually draw our current frame to the back buffer.
When we are done drawing our frame, we call the 1pxGISwapChain: : Present
method to present the back buffer to the screen.
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oy [n addition to the above six framework methods, we provide three other virtual
functions for convenience to handle the events when a mouse button is pressed,
released, and when the mouse moves:

virtual void OnMouseDown (WPARAM btnState, int x, int y){ }
virtual void OnMouseUp (WPARAM btnState, int x, int y) { }
virtual void OnMouseMove (WPARAM btnState, int x, int y){ }

In this way, if you want to handle mouse messages, you can override these
methods instead of overriding the usgeroc method. The first parameter is the
same as the wearam parameter for the various mouse messages, which stores the
mouse button states (i.e., which mouse buttons were pressed when the event was
raised). The second and third parameters are the client area (x, y) coordinates
of the mouse cursor.

4.5.4 Frame Statistics

It is common for games and graphics application to measure the number
of frames being rendered per second (FPS). To do this, we simply count the
number of frames processed (and store it in a variable 1) over some specified
time period t. Then, the average FPS over the time period t is fps,,, = n/t = n.
If we set t = 1, then fps,,, = n/1 = n. In our code, we use t = 1 (second) since it
avoids a division, and moreover, one second gives a pretty good average—it is
not too long and not too short. The code to compute the FPS is provided by the
D3DApp: :CalculateFrameStats method:

void D3DApp::CalculateFrameStats ()

{
// Code computes the average frames per second, and also the
// average time it takes to render one frame. These stats
// are appended to the window caption bar.

static int frameCnt = 0;
static float timeElapsed = 0.0f;

frameCnt++;

// Compute averages over one second period.

if( (mTimer.TotalTime () - timeElapsed) >= 1.0f

{
float fps = (float)frameCnt; // fps = frameCnt / 1
float mspf = 1000.0f / fps;

wstring fpsStr = to wstring(fps);
wstring mspfStr = to wstring (mspf);

wstring windowText = mMainWndCaption +
L" fps: " + fpsStr +
L" mspf: " + mspfStr;
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SetWindowText (mhMainWnd, windowText.c_str());

// Reset for next average.
frameCnt = 0;
timeElapsed += 1.0f;

}

This method would be called every frame in order to count the frame.
In addition to computing the FPS, the above code also computes the number of
milliseconds it takes, on average, to process a frame:

float mspf = 1000.0f / fps;

The seconds per frame is just the reciprocal of the FPS, but we multiply by 1000
ms / 1 s to convert from seconds to milliseconds (recall there are 1000 ms per
second).

The idea behind this line is to compute the time, in milliseconds, it takes
to render a frame; this is a different quantity than FPS (but observe this value
can be derived from the FPS). In actuality, the time it takes to render a frame is
more useful than the FPS, as we may directly see the increase/decrease in time
it takes to render a frame as we modify our scene. On the other hand, the FPS
does not immediately tell us the increase/decrease in time as we modify our scene.
Moreover, as [Dunlop03] points out in his article FPS versus Frame Time, due to
the non-linearity of the FPS curve, using the FPS can give misleading results. For
example, consider situation (1): Suppose our application is running at 1000 FPS,
taking 1 ms (millisecond) to render a frame. If the frame rate drops to 250 FPS,
then it takes 4 ms to render a frame. Now consider situation (2): Suppose that our
application is running at 100 FPS, taking 10 ms to render a frame. If the frame
rate drops to about 76.9 FPS, then it takes about 13 ms to render a frame. In both
situations, the rendering per frame increased by 3 ms, and thus both represent
the same increase in time it takes to render a frame. Reading the FPS is not as
straightforward. The drop from 1000 FPS to 250 FPS seems much more drastic
than the drop from 100 FPS to 76.9 FPS; however, as we have just showed, they
actually represent the same increase in time it takes to render a frame.

4.5.5 The Message Handler

The window procedure we implement for our application framework does
the bare minimum. In general, we won’t be working very much with Win32
messages anyway. In fact, the core of our application code gets executed during
idle processing (i.e., when no window messages are present). Still, there are some
important messages we do need to process. However, because of the length of the
window procedure, we do not embed all the code here; rather, we just explain
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the motivation behind each message we handle. We encourage the reader to
download the source code files and spend some time getting familiar with the
application framework code, as it is the foundation of every sample for this book.
The first message we handle is the ma_acrrvare message. This message is sent
when an application becomes activated or deactivated. We implement it like so:
case WM ACTIVATE:
if ( LOWORD (wParam) == WA INACTIVE )
{
mAppPaused = true;
mTimer.Stop();

}

else

{
mAppPaused = false;
mTimer.Start () ;

}

return 0;

As you can see, when our application becomes deactivated, we set the data
member mappPaused to true, and when our application becomes active, we set the
data member mapppraused to false. In addition, when the application is paused,
we stop the timer, and then resume the timer once the application becomes active
again. If we look back at the implementation to p3papp: :run (§4.4.3), we find
that if our application is paused, then we do not update our application code, but
instead free some CPU cycles back to the OS; in this way, our application does not
hog CPU cycles when it is inactive.

The next message we handle is the wu_s1ze message. Recall that this message
is called when the window is resized. The main reason for handling this message
is that we want the back buffer and depth/stencil dimensions to match the
dimensions of the client area rectangle (so no stretching occurs). Thus, every
time the window is resized, we want to resize the buffer dimensions. The code
to resize the buffers is implemented in p3Dapp::0nresize. As already stated,
the back buffer can be resized by calling the 1pxcrswapchain::ResizeBuffers
method. The depth/stencil buffer needs to be destroyed and then remade based
on the new dimensions. In addition, the render target and depth/stencil views
need to be recreated. If the user is dragging the resize bars, we must be careful
because dragging the resize bars sends continuous wm_s1zz messages, and we do
not want to continuously resize the buffers. Therefore, if we determine that the
user is resizing by dragging, we actually do nothing (except pause the application)
until the user is done dragging the resize bars. We can do this by handling the wv_
Ex1TSs1zEMOVE message. This message is sent when the user releases the resize bars.

// WM _ENTERSIZEMOVE is sent when the user grabs the resize bars.
case WM _ENTERSIZEMOVE:
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mAppPaused = true;
mResizing = true;
mTimer.Stop () ;
return 0;

// WM _EXITSIZEMOVE is sent when the user releases the resize bars.
// Here we reset everything based on the new window dimensions.
case WM_EXITSIZEMOVE:

mAppPaused = false;

mResizing = false;

mTimer.Start () ;

OnResize() ;

return 0;

The next three messages we handle are trivially implemented and so we just show
the code:

// WM _DESTROY is sent when the window is being destroyed.
case WM _DESTROY:

PostQuitMessage (0) ;

return 0;

// The WM_MENUCHAR message is sent when a menu is active and the user
// presses a key that does not correspond to any mnemonic or
// accelerator key.
case WM _MENUCHAR:
// Don’t beep when we alt-enter.
return MAKELRESULT (0, MNC_CLOSE) ;

// Catch this message to prevent the window from becoming too small.
case WM _GETMINMAXINFO:

( (MINMAXINFO*) lParam) ->ptMinTrackSize.x = 200;

( (MINMAXINFO*) l1Param) ->ptMinTrackSize.y = 200;

return 0;

Finally, to support our mouse input virtual functions, we handle the following
messages as follows:

case WM LBUTTONDOWN :

case WM MBUTTONDOWN :

case WM RBUTTONDOWN :
OnMouseDown (wParam, GET X LPARAM(lParam), GET Y LPARAM(lParam)) ;
return 0;

case WM LBUTTONUP:

case WM MBUTTONUP:

case WM RBUTTONUP:
OnMouseUp (wParam, GET X LPARAM(lParam), GET Y LPARAM(lParam)) ;
return 0;

case WM MOUSEMOVE:
OnMouseMove (wParam, GET X LPARAM(lParam), GET Y LPARAM(lParam)) ;
return 0;

We must #include <Windowsx.h> forthe Ger x rparavand GET v LPARAM MAcCros.
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4.5.6 The “Init Direct3D” Demo

Now that we have discussed the application framework, let us make a small
application using it. The program requires almost no real work on our part since
the parent class p3papp does most of the work required for this demo. The main
thing to note is how we derive a class from p3papp and implement the framework
functions, where we will write our sample specific code. All of the programs in
this book will follow the same template.

#include "../../Common/d3dApp.h"
#include <DirectXColors.h>

using namespace DirectX;

class InitDirect3DApp : public D3DApp

{

public:
InitDirect3DApp (HINSTANCE hlInstance);
~InitDirect3DApp () ;

virtual bool Initialize()override;

private:
virtual void OnResize ()override;
virtual void Update (const GameTimer& gt)override;
virtual void Draw(const GameTimer& gt)override;

bi

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE prevInstance,
PSTR cmdLine, int showCmd)
{
// Enable run-time memory check for debug builds.
#if defined(DEBUG) | defined( DEBUG)
_CrtSetDbgFlag( CRTDBG ALLOC MEM DF | CRTDBG LEAK CHECK DF );
#endif

try
{
InitDirect3DApp theApp (hInstance);
if (!theApp.Initialize())
return 0;

return theApp.Run();
}

catch (DxExceptioné& e)

{
MessageBox (nullptr, e.ToString().c_str(), L"HR Failed", MB_OK);
return 0;
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InitDirect3DApp::InitDirect3DApp (HINSTANCE hInstance)
: D3DApp (hInstance)
{
}

InitDirect3DApp::~InitDirect3DApp ()
{
}

bool InitDirect3DApp::Initialize()
{
1if (!D3DApp::Initialize())
return false;

return true;

void InitDirect3DApp::0OnResize ()

{
D3DApp: :OnResize () ;

void InitDirect3DApp::Update (const GameTimer& gt)
{

void InitDirect3DApp::Draw(const GameTimers& gt)
{
// Reuse the memory associated with command recording.
// We can only reset when the associated command lists have finished
// execution on the GPU.
ThrowIfFailed (mDirectCmdListAlloc—>Reset ());

// A command list can be reset after it has been added to the

// command queue via ExecuteCommandList. Reusing the command list
reuses memory.

ThrowIfFailed (mCommandList->Reset (
mDirectCmdListAlloc.Get (), nullptr));

// Indicate a state transition on the resource usage.
mCommandList->ResourceBarrier (

1, &CD3DX12_RESOURCE_BARRIER::Transition(
CurrentBackBuffer (),
D3D12_RESOURCE_STATE_PRESENT,
D3Dl2_RESOURCE_STATE_RENDER_TARGET));

// Set the viewport and scissor rect. This needs to be reset
// whenever the command list is reset.
mCommandList->RSSetViewports (1, &mScreenViewport);
mCommandList->RSSetScissorRects (1, &mScissorRect);
// Clear the back buffer and depth buffer.
mCommandList->ClearRenderTargetView (
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CurrentBackBufferView(),
Colors::LightSteelBlue, 0, nullptr);
mCommandList->ClearDepthStencilView (
DepthStencilView(), D3D12 CLEAR FLAG DEPTH |
D3D12 CLEAR FLAG STENCIL, 1.0f, 0, 0, nullptr);

// Specify the buffers we are going to render to.
mCommandList->0MSetRenderTargets (1, &CurrentBackBufferView (),
true, &DepthStencilView());

// Indicate a state transition on the resource usage.
mCommandList->ResourceBarrier (
1, &CD3DX12_RESOURCE_BARRIER::Transition(
CurrentBackBuffer (),
D3D12_RESOURCE_STATE_RENDER_TARGET,
D3D12_RESOURCE_STATE_PRESENT));

// Done recording commands.
ThrowIfFailed (mCommandList->Close());

// Add the command list to the queue for execution.
ID3D12CommandList* cmdsLists[] = { mCommandList.Get () };
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mCommandQueue->ExecuteCommandLists (_countof (cmdsLists), cmdsLists);

// swap the back and front buffers
ThrowIfFailed (mSwapChain->Present (0, 0));
mCurrBackBuffer = (mCurrBackBuffer + 1) % SwapChainBufferCount;

// Wait until frame commands are complete. This waiting is

// inefficient and is done for simplicity. Later we will show how to
// organize our rendering code so we do not have to wait per frame.

FlushCommandQueue () ;

There are some methods we have not yet discussed. The ciearrendertargetview
method clears the specified render target to a given color, and the
ClearDepthStencilview method clears the specified depth/stencil buffer. We
always clear the back buffer render target and depth/stencil buffer every frame
before drawing to start the image fresh. These methods are declared as follows:

void ID3Dl12GraphicsCommandList::ClearRenderTargetView (

D3D12 CPU DESCRIPTOR HANDLE RenderTargetView,
const FLOAT ColorRGBA[ 4 ],

UINT NumRects,

const D3D12 RECT *pRects);

1. RenderTargetview: RTV to the resource we want to clear.

2. colorreaa: Defines the color to clear the render target to.

3. nunrects: The number of elements in the prects array. This can be 0.
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4.

prects: An array of p3p12_recrts that identify rectangle regions on the render
target to clear. This can be a nuliptr to indicate to clear the entire render
target.
void ID3D12GraphicsCommandList::ClearDepthStencilView (
D3Dl2_CPU_DESCRIPTOR_HANDLE DepthStencilView,
D3D12 CLEAR FLAGS ClearFlags,
FLOAT Depth,
UINT8 Stencil,

UINT NumRects,
const D3D12 RECT *pRects);

Depthstencilview: DSV to the depth/stencil buffer to clear.

ClearFlags: Flags indicating which part of the depth/stencil buffer to clear.
This can be either p3p12 CLEAR FLAG DEPTH, D3D12 CLEAR FLAG STENCIL, OF

both bitwised ORed together.

pepth: Defines the value to clear the depth values to.

stencil: Defines the value to clear the stencil values to.

Nunmkects: The number of elements in the prects array. This can be 0.

pRects: An array of p3p12_rects that identify rectangle regions on the render
target to clear. This can be a nuliptr to indicate to clear the entire render
target.

Another new method is the 1Dp3p12GraphicsCommandList::OMSetRenderTargets
method. This method sets the render target and depth/stencil buffer we want to use
to the pipeline. For now, we want to use the current back buffer as a render target
and our main depth/stencil buffer. Later in this book, we will look at techniques
that use multiple render targets. This method has the following prototype:

1.

void ID3Dl12GraphicsCommandList::0OMSetRenderTargets (
UINT NumRenderTargetDescriptors,
const D3D12 CPU DESCRIPTOR HANDLE *pRenderTargetDescriptors,
BOOL RTsSingleHandleToDescriptorRange,
const D3D12 CPU DESCRIPTOR HANDLE *pDepthStencilDescriptor);

NumRenderTargetDescriptors: Specifies the number of RTVs we are going to
bind. Using multiple render targets simultaneously is used for some advanced
techniques. For now, we always use one RTV.

pRenderTargetDescriptors: Pointer to an array of RTVs that specify the render
targets we want to bind to the pipeline.

RTsSingleHandleToDescriptorRange: Specﬁy true if all the RTVs in the
previous array are contiguous in the descriptor heap. Otherwise, specify false.

pDepthStencilDescriptor: Pointer to a DSV that specifies the depth/stencil
buffer we want to bind to the pipeline.



Direct3D INnmiauization 153

Finally, the 1pxGIswapChain::pPresent method swaps the back and front buffers.
When we present the swap chain to swap the front and back buffers, we have to
update the index to the current back buffer as well so that we render to the new
back buffer on the subsequent frame:

ThrowIfFailed (mSwapChain->Present (0, 0));
mCurrBackBuffer = (mCurrBackBuffer + 1) % SwapChainBufferCount;

] 434 App Tps: 3TE000000 mspt: 2655575 - ol

Figure 4.12. A screenshot of the sample program for Chapter 4.

4.6 DEBUGGING DIRECT3D APPLICATIONS

Many Direct3D functions return #resurt error codes. For our sample programs,
we use a simple error handling system where we check a returned sresurt, and if it
failed, we throw an exception that stores the error code, function name, filename,
and line number of the offending call. This is done with the following code in
d3dUtil.h:

class DxException
{
public:
DxException () = default;
DxException (HRESULT hr, const std::wstringé& functionName,
const std::wstringé& filename, int lineNumber);

std::wstring ToString()const;

HRESULT ErrorCode = S _OK;
std::wstring FunctionName;
std::wstring Filename;

int LineNumber = -1;

bi

#ifndef ThrowIfFailed
#define ThrowIfFailed(x) \

{\
HRESULT hr = (x); \
std::wstring wfn = AnsiToWString( FILE ); \
if (FAILED (hr_)) { throw DxException(hr , L#x, wfn, LINE ); } \

}
#endif



154 Direct3D FOUNDATIONS

Observe that Throwifrailed must be a macro and not a function; otherwise
rrie_and  11ne_ would refer to the file and line of the function implementation
instead of the file and line where ThrowTfFailed was written.

The v#x turns the ThrowIfrailed macro’s argument token into a Unicode string.
In this way, we can output the function call that caused the error to the message
box.

For a Direct3D function that returns an sresuLT, we use the macro like so:

ThrowIfFailed (md3dDevice->CreateCommittedResource (
&CD3D1 2_HEAP_PROPERTIES (D3D1 2_HEAP_TYPE_DEFAULT) ,
D3D12 HEAP MISC_ NONE,

&depthStencilDesc,
D3D1 2_RESOURCE_USAGE_INITIAL ,
IID PPV_ARGS (&mDepthStencilBuffer)));

Our entire application exists in a try/catch block:

try
{
InitDirect3DApp theApp (hInstance);
if (!theApp.Initialize())
return 0;

return theApp.Run();
}

catch (DxExceptioné& e)

{
MessageBox (nullptr, e.ToString().c_str(), L"HR Failed", MB_OK);
return 0;

}

If an sresuLt fails, an exception is thrown, we output information about it via
the MessageBox function, and then exit the application. For example, if we pass
an invalid argument to createCommittedresource, we get the following message
box:

D = CreateCs ittedR

&CD3ID12_HEAP_PROPERTIES{D3D12_HEAP_TYPE_DEFAULT),
D3012_HEAP_MISC_NONE, &idepthStencilDesc,
D3012_RESOURCE_USAGE_INITIAL,
IID_PPV_ARGS{mDepthStencilBuffer GetAddressOf()) failed in
JA-A\Commeonid3dApp.cpp; line 220; error: The parameter is incomect.

Figure 4.13. Example of the error message box shown when an HRESULT fails.
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4.7 SUMMARY

1. Direct3D can be thought of as a mediator between the programmer and the
graphics hardware. For example, the programmer calls Direct3D functions
to bind resource views to the hardware rendering pipeline, to configure the
output of the rendering pipeline, and to draw 3D geometry.

2. Component Object Model (COM) is the technology that allows DirectX
to be language independent and have backwards compatibility. Direct3D
programmers don’t need to know the details of COM and how it works; they
need only to know how to acquire COM interfaces and how to release them.

3. A 1D texture is like a 1D array of data elements, a 2D texture is like a 2D
array of data elements, and a 3D texture is like a 3D array of data elements.
The elements of a texture must have a format described by a member of the
pxGI_rorMAT enumerated type. Textures typically contain image data, but they
can contain other data, too, such as depth information (e.g., the depth buffer).
The GPU can do special operations on textures, such as filter and multisample
them.

4. To avoid flickering in animation, it is best to draw an entire frame of animation
into an off-screen texture called the back buffer. Once the entire scene has
been drawn to the back buffer for the given frame of animation, it is presented
to the screen as one complete frame; in this way, the viewer does not watch as
the frame gets drawn. After the frame has been drawn to the back buffer, the
roles of the back buffer and front buffer are reversed: the back buffer becomes
the front buffer and the front buffer becomes the back buffer for the next
frame of animation. Swapping the roles of the back and front buffers is called
presenting. The front and back buffer form a swap chain, represented by the
IDXGISwapChain interface. Using two buffers (front and back) is called double
buffering.

5. Assuming opaque scene objects, the points nearest to the camera occlude
any points behind them. Depth buffering is a technique for determining the
points in the scene nearest to the camera. In this way, we do not have to worry
about the order in which we draw our scene objects.

6. In Direct3D, resources are not bound to the pipeline directly. Instead, we
bind resources to the rendering pipeline by specifying the descriptors that
will be referenced in the draw call. A descriptor object can be thought of as
lightweight structure that identifies and describes a resource to the GPU.
Different descriptors of a single resource may be created. In this way, a single
resource may be viewed in different ways; for example, bound to different
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10.

11.

12.

stages of the rendering pipeline or have its bits interpreted as a different pxcr
rorMAT. Applications create descriptor heaps which form the memory backing
of descriptors.

. The 1p3p12Device is the chief Direct3D interface that can be thought of as

our software controller of the physical graphics device hardware; through it,
we can create GPU resources, and create other specialized interfaces used to
control the graphics hardware and instruct it to do things.

. The GPU has a command queue. The CPU submits commands to the queue

through the Direct3D API using command lists. A command instructs the
GPU to do something. Submitted commands are not executed by the GPU
until they reach the front of the queue. If the command queue gets empty,
the GPU will idle because it does not have any work to do; on the other hand,
if the command queue gets too full, the CPU will at some point have to idle
while the GPU catches up. Both of these scenarios underutilize the system’s
hardware resources.

. The GPU is a second processor in the system that runs in parallel with

the CPU. Sometimes the CPU and GPU will need to be synchronized. For
example, if the GPU has a command in its queue that references a resource,
the CPU must not modify or destroy that resource until the GPU is done with
it. Any synchronization methods that cause one of the processors to wait and
idle should be minimized, as it means we are not taking full advantage of the
two processors.

The performance counter is a high-resolution timer that provides accurate
timing measurements needed for measuring small time differentials, such
as the time elapsed between frames. The performance timer works in time
units called counts. The gueryperformancerrequency outputs the counts per
second of the performance timer, which can then be used to convert from
units of counts to seconds. The current time value of the performance timer
(measured in counts) is obtained with the gueryperformanceCounter function.

To compute the average frames per second (FPS), we count the number of
frames processed over some time interval At. Let # be the number of frames
counted over time At, then the average frames per second over that time

. . n . . . .
interval is fps,,, = v The frame rate can give misleading conclusions about
t

avg
performance; the time it takes to process a frame is more informative. The
amount of time, in seconds, spent processing a frame is the reciprocal of the
frame rate, i.e., 1/ fpsaq.

The sample framework is used to provide a consistent interface that all demo
applications in this book follow. The code provided in the d3dUtil.h, d3dUtil.
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cpp, d3dApp.h and d3dApp.cpp files, wrap standard initialization code that
every application must implement. By wrapping this code up, we hide it,
which allows the samples to be more focused on demonstrating the current
topic.

For debug mode builds, we enable the debug layer (debugcontroller-
>EnableDebugLayer () ). When the debug layer is enabled, Direct3D will send
debug messages to the VC++ output window.






THE
RENDERING
PIPELINE

Chapter

The primary theme of this chapter is the rendering pipeline. Given a geometric
description of a 3D scene with a positioned and oriented virtual camera, the
rendering pipeline refers to the entire sequence of steps necessary to generate a 2D
image based on what the virtual camera sees (Figure 5.1). This chapter is mostly
theoretical—the next chapter puts the theory into practice as we learn to draw
with Direct3D. Before we begin coverage of the rendering pipeline, we have two
short stops: First, we discuss some elements of the 3D illusion (i.e., the illusion that
we are looking into a 3D world through a flat 2D monitor screen); and second, we
explain how colors will be represented and worked with mathematically and in
Direct3D code.

Objectives:
1. To discover several key signals used to convey a realistic sense of volume and
spatial depth in a 2D image.
2. To find out how we represent 3D objects in Direct3D.
3. To learn how we model the virtual camera.

4. To understand the rendering pipeline—the process of taking a geometric
description of a 3D scene and generating a 2D image from it.

159
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' -
Figure 5.1. The left image shows a side view of some objects setup in the 3D world with a camera
positioned and aimed; the middle image shows the same scene, but from a top-down view. The “pyramid”

volume specifies the volume of space that the viewer can see; objects (and parts of objects) outside this
volume are not seen. The image on the right shows the 2D image created based on what the camera “sees.”

5.1 THE 3D ILLUSION

Before we embark on our journey of 3D computer graphics, a simple question
remains outstanding: How do we display a 3D world with depth and volume on a
flat 2D monitor screen? Fortunately for us, this problem has been well studied, as
artists have been painting 3D scenes on 2D canvases for centuries. In this section,
we outline several key techniques that make an image look 3D, even though it is
actually drawn on a 2D plane.

Suppose that you have encountered a railroad track that doesn’t curve, but goes
along a straight line for a long distance. Now the railroad rails remain parallel to
each other for all time, but if you stand on the railroad and look down its path,
you will observe that the two railroad rails get closer and closer together as their
distance from you increases, and eventually they converge at an infinite distance.
This is one observation that characterizes our human viewing system: parallel
lines of vision converge to a vanishing point; see Figure 5.2.

Vanishing Point

Figure 5.2. Parallel lines of vision converge to a vanishing point. Artists sometimes call this linear perspective.
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Figure 5.3. Here, all the columns are of the same size, Figure 5.4. A group of objects that partially
but a viewer observes a diminishing in size with respect  obscure each other because one is in front
to depth phenomenon. of the other, etc. (they overlap).

Another simple observation of how humans see things is that the size of an
object appears to diminish with depth; that is, objects near us look bigger than
objects far away. For example, a house far away on a hill will look very small, while
a tree near us will look very large in comparison. Figure 5.3 shows a simple scene
where parallel rows of columns are placed behind each other, one after another.
The columns are actually all the same size, but as their depths increase from the
viewer, they get smaller and smaller. Also notice how the columns are converging
to the vanishing point at the horizon.

We all experience object overlap (Figure 5.4), which refers to the fact that
opaque objects obscure parts (or all) of the objects behind them. This is an
important perception, as it conveys the depth ordering relationship of the objects
in the scene. We already discussed (Chapter 4) how Direct3D uses a depth buffer
to figure out which pixels are being obscured and thus should not be drawn.

Consider Figure 5.5. On the left we have an unlit sphere, and on the right, we
have a lit sphere. As you can see, the sphere on the left looks rather flat—maybe it

@) ®)

Figure 5.6. A spaceship and its shadow. The shadow implies

Figure 5.5. (a) An unlit sphere that looks 2D. the location of the light source in the scene and also gives an
(b) Alit sphere that looks 3D. idea of how high off the ground the spaceship is.
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is not even a sphere at all, but just a textured 2D circle! Thus, lighting and shading
play a very important role in depicting the solid form and volume of 3D objects.

Finally, Figure 5.6 shows a spaceship and its shadow. The shadow serves two key
purposes. First, it tells us the origin of the light source in the scene. And secondly,
it provides us with a rough idea of how high off the ground the spaceship is.

The observations just discussed, no doubt, are intuitively obvious from our day-
to-day experiences. Nonetheless, it is helpful to explicitly state what we know and to
keep these observations in mind as we study and work on 3D computer graphics.

5.2 MODEL REPRESENTATION

A solid 3D object is represented by a triangle mesh approximation, and
consequently, triangles form the basic building blocks of the objects we model.
As Figure 5.7 implies, we can approximate any real-world 3D object by a triangle
mesh. In general, the more triangles you use to approximate an object, the better
the approximation, as you can model finer details. Of course, the more triangles
we use, the more processing power is required, and so a balance must be made
based on the hardware power of the application’s target audience. In addition to
triangles, it is sometimes useful to draw lines or points. For example, a curve could
be graphically drawn by a sequence of short line segments a pixel thick.

The large number of triangles used in Figure 5.7 makes one thing clear: It
would be extremely cumbersome to manually list the triangles of a 3D model.
For all but the simplest models, special 3D applications called 3D modelers are
used to generate and manipulate 3D objects. These modelers allow the user to
build complex and realistic meshes in a visual and interactive environment with a
rich tool set, thereby making the entire modeling process much easier. Examples
of popular modelers used for game development are 3D Studio Max (http://usa.
autodesk.com/3ds-max/), LightWave 3D (https://www.lightwave3d.com/), Maya

Figure 5.7. (Left) A car approximated by a triangle mesh. (Right) A skull approximated by a triangle mesh.
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(http://usa.autodesk.com/maya/), Softimage|XSI (www.softimage.com), and
Blender (www.blender.org/). (Blender has the advantage for hobbyists of being
open source and free.) Nevertheless, for the first part of this book, we will generate
our 3D models manually by hand, or via a mathematical formula (the triangle list
for cylinders and spheres, for example, can easily be generated with parametric
formulas). In the third part of this book, we show how to load and display 3D
models exported from 3D modeling programs.

5.3 BASIC COMPUTER COLOR

Computer monitors emit a mixture of red, green, and blue light through each
pixel. When the light mixture enters the eye and strikes an area of the retina, cone
receptor cells are stimulated and neural impulses are sent down the optic nerve
toward the brain. The brain interprets the signal and generates a color. As the
light mixture varies, the cells are stimulated differently, which in turn generates a
different color in the mind. Figure 5.8 shows some examples of mixing red, green,
and blue to get different colors; it also shows different intensities of red. By using
different intensities for each color component and mixing them together, we can
describe all the colors we need to display realistic images.

The best way to get comfortable with describing colors by RGB (red, green,
blue) values is to use a paint program like Adobe Photoshop, or even the
Win32 choosecolor dialog box (Figure 5.9), and experiment with different RGB
combinations to see the colors they produce.

Magenta

Red

Yellow : Basic colors:
Cyan [ Iiioniml [ 1 |
Green HT AN
e b 1))
...
| L 1 i i)
AEEEET.
Gustom colars
EEEEEEEN e 3
Dark Red Bright Red EEEEEEEE - »::t :m ;m{z_
Figure 5.8. (Top) The mixing of pure red, green, | ColedSaid yumf  Ewefd
and blue colors to get new colors. (Bottom) ok | Cancal Add 1o Custom Calors |
Different shades of red found by controlling the

intensity of red light. Figure 5.9. The ChooseColor dialog box.
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A monitor has a maximum intensity of red, green, and blue light it can emit. To
describe the intensities of light, it is useful to use a normalized range from 0 to 1.
0 denotes no intensity and 1 denotes the full intensity. Intermediate values denote
intermediate intensities. For example, the values (0.25, 0.67, 1.0) mean the light
mixture consists of 25% intensity of red light, 67% intensity of green light, and
100% intensity of blue light. As the example just stated implies, we can represent a
color by a 3D color vector (1, g, b), where 0 < r, g, b < 1, and each color component
describes the intensity of red, green, and blue light in the mixture.

5.3.1 Color Operations

Some vector operations also apply to color vectors. For example, we can add color
vectors to get new colors:

(0.0, 0.5, 0) + (0, 0.0, 0.25) = (0.0, 0.5, 0.25)
By combining a medium intensity green color with a low intensity blue color, we

get a dark-green color.
Colors can also be subtracted to get new colors:

(1,1,1)-(1,1,0)=(0,0, 1)

That is, we start with white and subtract out the red and green parts, and we end
up with blue.

Scalar multiplication also makes sense. Consider the following:

0.5(1,1, 1) = (0.5, 0.5, 0.5)

That is, we start with white and multiply by 0.5, and we end up with a medium
shade of gray. On the other hand, the operation 2(0.25, 0, 0) = (0.5, 0, 0) doubles
the intensity of the red component.

Obviously expressions like the dot product and cross product do not make
sense for color vectors. However, color vectors do get their own special color
operation called modulation or componentwise multiplication. It is defined as:

(c,56456,) @ (K, kg5, ) = (c,k, ¢ k5 c,k)

This operation is mainly used in lighting equations. For example, suppose we have
an incoming ray of light with color (r, g b) and it strikes a surface which reflects
50% red light, 75% green light, and 25% blue light, and absorbs the rest. Then the
color of the reflected light ray is given by:

(r,£,b)®(0.5,0.75,0.25) = (0.57,0.75¢,0.25b)

So we can see that the light ray lost some intensity when it struck the surface, since
the surface absorbed some of the light.
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When doing color operation, it is possible that your color components go
outside the [0, 1] interval; consider the equation, (1, 0.1, 0.6) + (0, 0.3, 0.5) =
(1, 0.4, 1.1), for example. Since 1.0 represents the maximum intensity of a color
component, you cannot become more intense than it. Thus 1.1 is just as intense as
1.0. So what we do is clamp 1.1 — 1.0. Likewise, a monitor cannot emit negative
light, so any negative color component (which could result from a subtraction
operation) should be clamped to 0.0.

5.3.2 128-Bit Color

It is common to incorporate an additional color component, called the alpha
component. The alpha component is often used to denote the opacity of a color,
which is useful in blending (Chapter 10). (Since we are not using blending yet, just
set the alpha component to 1 for now.) Including the alpha component, means
we can represent a color by a 4D color vector (r, g, b, a) where 0<r,¢,b,a< 1. To
represent a color with 128-bits, we use a floating-point value for each component.
Because mathematically a color is just a 4D vector, we can use the xmvecTor type to
represent a color in code, and we gain the benefit of SIMD operations whenever
we use the DirectXMath vector functions to do color operations (e.g., color
addition, subtraction, scalar multiplication). For componentwise multiplication,
the DirectX Math library provides the following function:

XMVECTOR XM_CALLCONV XMColorModulate ( // Returnsc; ®c,

FXMVECTOR C1,
FXMVECTOR C2) ;

5.3.3 32-Bit Color

To represent a color with 32-bits, a byte is given to each component. Since each
color is given an 8-bit byte, we can represent 256 different shades for each color
component—0 being no intensity, 255 being full intensity, and intermediate
values being intermediate intensities. A byte per color component may seem
small, but when we look at all the combinations (256 x 256 x 256 = 16, 777, 216),
we see millions of distinct colors can be represented. The DirectX Math library
(#include <DirectXPackedVector.h>) provides the following structure, in the
DirectX::PackedVector Namespace, for storing a 32-bit color:

namespace DirectX

{

namespace PackedVector

// ARGB Color; 8-8-8-8 bit unsigned normalized integer components packed
// into a 32 bit integer. The normalized color is packed into 32 bits
// using 8 bit unsigned, normalized integers for the alpha, red, green,
// and blue components.
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// The alpha component is stored in the most significant bits and the
// blue component in the least significant bits (A8R8G8BS8) :
// [32] aaaaaaaa rrrrrrrr gggggggg bbbbbbbb [0]
struct XMCOLOR
{
union
{
struct
{
uint8 t b; // Blue: 0/255 to 255/255
uint8 t g; // Green: 0/255 to 255/255
uint8 t r; // Red: 0/255 to 255/255
uint8 t a; // Alpha: 0/255 to 255/255
bi

uint32 t c;
bi
XMCOLOR () {}
XMCOLOR (uint32 t Color) : c(Color) {}

XMCOLOR (float _r, float g, float _b, float _a);
explicit XMCOLOR(_ In reads_(4) const float *pArray);

operator uint32 t () const { return c; }

XMCOLOR& operator= (const XMCOLOR& Color) { c = Color.c; return
*this; }

XMCOLOR& operator= (const uint32 t Color) { c = Color; return *this;

}
i
} // end PackedVector namespace
} // end DirectX namespace

A 32-bit color can be converted to a 128-bit color by mapping the integer range
[0, 255] onto the real-valued interval [0, 1]. This is done by dividing by 255. That

is,if 0 <n <255 is an integer, then 0 < LI gives the intensity in the normalized
255

range from 0 to 1. For example, the 32-bit color (80, 140, 200, 255) becomes:

80 140 200 255
(80,140,200,255) = | ——,——,——,—— |~(0.31,0.55,0.78,1.0)
255 255 255 255

On the other hand, a 128-bit color can be converted to a 32-bit color by multiplying
each component by 255 and rounding to the nearest integer. For example:

(0.3,0.6,0.9,1.0) > (0.3-255,0.6-255,0.9-255,1.0-255) = (77,153, 230, 255)

Additional bit operations must usually be done when converting a 32-bit color
to a 128-bit color and conversely because the 8-bit color components are usually
packed into a 32-bit integer value (e.g., an unsigned int), as it is in xucoror. The
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-t 32-bits -

Alpha Red Green Blue

Figure 5.10. A 32-bit color, where a byte is allocated for each color component alpha, red, green, and blue.

DirectXMath library defines the following function which takes a xucoror and
returns an xuvecTor from it:

XMVECTOR XM CALLCONV PackedVector: :XMLoadColor (
const XMCOLOR* pSource) ;

Figure 5.10 shows how the 8-bit color components are packed into a vrnt. Note
that this is just one way to pack the color components. Another format might
be ABGR or RGBA, instead of ARGB; however, the xucoror class uses the ARGB
layout. The DirectX Math library also provides a function to convert an xuvecTor
color to a xMcoLoR:

void XM CALLCONV PackedVector::XMStoreColor (

XMCOLOR* pDestination,
FXMVECTOR V) ;

Typically, 128-bit colors values are used where high precision color operations
are needed (e.g., in a pixel shader); in this way, we have many bits of accuracy
for the calculations so arithmetic error does not accumulate too much. The final
pixel color, however, is usually stored in a 32-bit color value in the back buffer;
current physical display devices cannot take advantage of the higher resolution
color [Verth04].

5.4 OVERVIEW OF THE RENDERING PIPELINE

Given a geometric description of a 3D scene with a positioned and oriented virtual
camera, the rendering pipeline refers to the entire sequence of steps necessary to
generate a 2D image based on what the virtual camera sees. Figure 5.11 shows
a diagram of the stages that make up the rendering pipeline, as well as GPU
memory resources off to the side. An arrow going from the resource memory pool
to a stage means the stage can access the resources as input; for example, the pixel
shader stage may need to read data from a texture resource stored in memory in
order to do its work. An arrow going from a stage to memory means the stage
writes to GPU resources; for example, the output merger stage writes data to
textures such as the back buffer and depth/stencil buffer. Observe that the arrow
for the output merger stage is bidirectional (it reads and writes to GPU resources).
As we can see, most stages do not write to GPU resources. Instead, their output is
just fed in as input to the next stage of the pipeline; for example, the Vertex Shader
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Figure 5.11. The stages of the rendering pipeline.

stage inputs data from the Input Assembler stage, does its own work, and then
outputs its results to the Geometry Shader stage. The subsequent sections give an
overview of each stage of the rendering pipeline.

5.5 THE INPUT ASSEMBLER STAGE

The input assembler (IA) stage reads geometric data (vertices and indices) from
memory and uses it to assemble geometric primitives (e.g., triangles, lines).
(Indices are covered in a later subsection, but briefly, they define how the vertices
should be put together to form the primitives.)

5.5.1 Vertices

Mathematically, the vertices of a triangle are where two edges meet; the vertices of
a line are the endpoints; for a single point, the point itself is the vertex. Figure 5.12
illustrates vertices pictorially.
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Po
Vo

Figure 5.12. A triangle defined by the three vertices vo v; v5; a line defined by the two vertices po, p1; a point
defined by the vertex Q.

From Figure 5.12, it seems that a vertex is just a special point in a geometric
primitive. However, in Direct3D, vertices are much more general than that.
Essentially, a vertex in Direct3D can consist of additional data besides spatial
location, which allows us to perform more sophisticated rendering effects. For
example, in Chapter 8, we will add normal vectors to our vertices to implement
lighting, and in Chapter 9, we will add texture coordinates to our vertices to
implement texturing. Direct3D gives us the flexibility to define our own vertex
formats (i.e., it allows us to define the components of a vertex), and we will see
the code used to do this in the next chapter. In this book, we will define several
different vertex formats based on the rendering effect we are doing.

5.5.2 Primitive Topology

Vertices are bound to the rendering pipeline in a special Direct3D data structure
called a vertex buffer. A vertex buffer just stores a list of vertices in contiguous
memory. However, it does not say how these vertices should be put together to
form geometric primitives. For example, should every two vertices in the vertex
buffer be interpreted as a line or should every three vertices in the vertex buffer be
interpreted as a triangle? We tell Direct3D how to form geometric primitives from
the vertex data by specifying the primitive topology:

void ID3D12GraphicsCommandList::IASetPrimitiveTopology (
D3D_PRIMITIVE TOPOLOGY Topology) ;

typedef enum D3D PRIMITIVE TOPOLOGY

{
D3D PRIMITIVE TOPOLOGY UNDEFINED = O,
D3D PRIMITIVE TOPOLOGY POINTLIST 1,
D3D PRIMITIVE TOPOLOGY LINELIST = 2,
D3D PRIMITIVE TOPOLOGY LINESTRIP = 3,
D3D PRIMITIVE TOPOLOGY TRIANGLELIST = 4,
D3D PRIMITIVE TOPOLOGY TRIANGLESTRIP = 5
D3D PRIMITIVE TOPOLOGY LINELIST ADJ = 10
D3D PRIMITIVE TOPOLOGY LINESTRIP ADJ = 1
D3D PRIMITIVE TOPOLOGY TRIANGLELIST ADJ
D3D PRIMITIVE TOPOLOGY TRIANGLESTRIP ADJ = 13,
D3D PRIMITIVE TOPOLOGY 1 CONTROL POINT PATCHLIST = 33,
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D3D_PRIMITIVE TOPOLOGY 2 CONTROL POINT PATCHLIST = 34,

D3D_PRIMITIVE TOPOLOGY 32 CONTROL POINT PATCHLIST = 64,
} D3D_PRIMITIVE TOPOLOGY;

All subsequent drawing calls will use the currently set primitive topology until the
topology is changed via the command list. The following code illustrates:
mCommandList->IASetPrimitiveTopology (

D3D_PRIMITIVE_TOPOLOGY_LINELIST);
/* ...draw objects using line list... */

mCommandList->IASetPrimitiveTopology (
D3D PRIMITIVE TOPOLOGY TRIANGLELIST) ;
/* ...draw objects using triangle list... */

mCommandList->IASetPrimitiveTopology (
D3D PRIMITIVE TOPOLOGY TRIANGLESTRIP);
/* ...draw objects using triangle strip... */

The following subsections elaborate on the different primitive topologies. In this
book, we mainly use triangle lists exclusively with few exceptions.

5.5.2.1 Point List

A pointlist is specified by p3p_priMrTIvE TOPOLOGY POINTLIST. Witha pointlist, every
vertex in the draw call is drawn as an individual point, as shown in Figure 5.13a.

5.5.2.2 Line Strip

A line strip is specified by p3p_priviTiveE TOPOLOGY LInesTrRIP. With a line strip,
the vertices in the draw call are connected to form lines (see Figure 5.13b); so
n+ 1 vertices induce 7 lines.

5.5.2.3 Line List

A line list is specified by p3p_priMITIVE TOPOLOGY LINELIST. With a line list, every
two vertices in the draw call forms an individual line (see Figure 5.13¢); so 2n
vertices induce # lines. The difference between a line list and strip is that the lines
in the line list may be disconnected, whereas a line strip automatically assumes
they are connected; by assuming connectivity, fewer vertices can be used since
each interior vertex is shared by two lines.

5.5.2.4 Triangle Strip

A triangle strip is specified by p3p primiTIVE TOPOLOGY TRIANGLESTRIP. With a
triangle strip, it is assumed the triangles are connected as shown in Figure 5.13d
to form a strip. By assuming connectivity, we see that vertices are shared between
adjacent triangles, and n vertices induce n — 2 triangles.
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@
Figure 5.13. (a) A point list; (b) a line strip; (c) a line list; (d) a triangle strip.

Observe that the winding order for even triangles in a triangle strip differs from
the odd triangles, thereby causing culling issues (see §5.10.2). To fix this problem,
the GPU internally swaps the order of the first two vertices of even triangles, so
that they are consistently ordered like the odd triangles.

5.5.2.5 Triangle List

A triangle list is specified by p3p priMITIVE TOPOLOGY TRIANGLELIST. With a
triangle list, every three vertices in the draw call forms an individual triangle (see
Figure 5.14a); so 3n vertices induce n triangles. The difference between a triangle
list and strip is that the triangles in the triangle list may be disconnected, whereas
a triangle strip assumes they are connected.

5.5.2.6 Primitives with Adjacency

A triangle list with adjacency is where, for each triangle, you also include its three
neighboring triangles called adjacent triangles; see Figure 5.14b to observe how
these triangles are defined. This is used for the geometry shader, where certain
geometry shading algorithms need access to the adjacent triangles. In order for
the geometry shader to get those adjacent triangles, the adjacent triangles need
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Figure 5.14. (a) Atriangle list; (b) A triangle list with adjacency—observe that each triangle requires 6
vertices to describe it and its adjacent triangles. Thus 6n vertices induce n triangles with adjacency info.
to be submitted to the pipeline in the vertex/index buffers along with the triangle
itself, and the p3p PrIMITIVE TOPOLOGY TRIANGLELIST ADJ topology must be
specified so that the pipeline knows how construct the triangle and its adjacent
triangles from the vertex buffer. Note that the vertices of adjacent primitives are
only used as input into the geometry shader—they are not drawn. If there is no
geometry shader, the adjacent primitives are still not drawn.

It is also possible to have a line list with adjacency, line strip with adjacency, and
triangle with strip adjacency primitives; see the SDK documentation for details.

5.5.2.7 Control Point Patch List

The p3p prIMITIVE ToPOLOGY N CONTROL POINT PATCHLIST  topology  type
indicates that the vertex data should be interpreted as a patch lists with N control
points. These are used in the (optional) tessellation stage of the rendering pipeline,
and therefore, we will postpone a discussion of them until Chapter 14.

5.5.3 Indices

As already mentioned, triangles are the basic building blocks for solid 3D objects.
The following code shows the vertex arrays used to construct a quad and octagon
using triangle lists (i.e., every three vertices form a triangle).
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(a) (b)

Figure 5.15. (a) A quad built from two triangles. (b) An octagon built from eight triangles.

Vertex quad[6] = {
v0, vl, v2, // Triangle O
v0, v2, v3, // Triangle 1
}i

Vertex octagon[24] = {
v0, vl, v2, // Triangle
v0, v2, v3, // Triangle
v0, v3, v4, // Triangle
v0, v4, v5, // Triangle
v0, v5, v6, // Triangle
v0, v6, v7, // Triangle
v0, v7, v8, // Triangle
v0, v8, vl // Triangle 7

o Ul W NP O

bi

The order in which you specify the vertices of a triangle is important and is called
the winding order; see §5.10.2 for details.

As Figure 5.15 illustrates, the triangles that form a 3D object share many of the
same vertices. More specifically, each triangle of the quad in Figure 5.15a shares
the vertices vy and v,. While duplicating two vertices is not too bad, the duplication
is worse in the octagon example (Figure 5.15b), as every triangle duplicates the
center vertex vy, and each vertex on the perimeter of the octagon is shared by two
triangles. In general, the number of duplicate vertices increases as the detail and
complexity of the model increases.

There are two reasons why we do not want to duplicate vertices:

1. Increased memory requirements. (Why store the same vertex data more than
once?)

2. Increased processing by the graphics hardware. (Why process the same vertex
data more than once?)

Triangle strips can help the duplicate vertex problem in some situations, provided
the geometry can be organized in a strip like fashion. However, triangle lists are
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more flexible (the triangles need not be connected), and so it is worth devising a
method to remove duplicate vertices for triangle lists. The solution is to use indices.
It works like this: We create a vertex list and an index list. The vertex list consists of
all the unique vertices and the index list contains values that index into the vertex
list to define how the vertices are to be put together to form triangles. Returning
to the shapes in Figure 5.15, the vertex list of the quad would be constructed as
follows:

Vertex v[4] = {v0, vl, v2, v3};

Then the index list needs to define how the vertices in the vertex list are to be put
together to form the two triangles.

UINT indexList[6] = {0, 1, 2, // Triangle O
0, 2, 3}; // Triangle 1

In the index list, every three elements define a triangle. So the above index list says,
“form triangle 0 by using the vertices v(01, vi1],and v(2], and form triangle 1 by
using the vertices v(0],v(2],and v(3].”

Similarly, the vertex list for the circle would be constructed as follows:

Vertex v [9] = {v0, v1, v2, v3, v4, v5, v6, v7, v8};
and the index list would be:

UINT indexList[24] = {
0, 1, 2, // Triangle
, // Triangle

’ ’

, 3, 4, // Triangle

, // Triangle

// Triangle
, // Triangle

, // Triangle

O O O O O O O
0 oy U W N
= o J o U b W
~N o 0 W N P O

// Triangle
bi

After the unique vertices in the vertex list are processed, the graphics card can use
the index list to put the vertices together to form the triangles. Observe that we
have moved the “duplication” over to the index list, but this is not bad since:

1. Indices are simply integers and do not take up as much memory as a full vertex
structure (and vertex structures can get big as we add more components to
them).

2. With good vertex cache ordering, the graphics hardware won’t have to process
duplicate vertices (too often).
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5.6 THE VERTEX SHADER STAGE

After the primitives have been assembled, the vertices are fed into the vertex shader
stage. The vertex shader can be thought of as a function that inputs a vertex and
outputs a vertex. Every vertex drawn will be pumped through the vertex shader; in
fact, we can conceptually think of the following happening on the hardware:

for (UINT i = 0; i < numVertices; ++1i)
outputVertex[i] = VertexShader ( inputVertex[i] );

The vertex shader function is something we implement, but it is executed by the
GPU for each vertex, so it is very fast.

Many special effects can be done in the vertex shader such as transformations,
lighting, and displacement mapping. Remember that not only do we have access
to the input vertex data, but we also can access textures and other data stored in
GPU memory such as transformation matrices, and scene lights.

We will see many examples of different vertex shaders throughout this book;
so by the end, you should have a good idea of what can be done with them. For
our first code example, however, we will just use the vertex shader to transform
vertices. The following subsections explain the kind of transformations that
generally need to be done.

5.6.1 Local Space and World Space

Suppose for a moment that you are working on a film and your team has to
construct a miniature version of a train scene for some special effect shots. In
particular, suppose that you are tasked with making a small bridge. Now, you
would not construct the bridge in the middle of the scene, where you would
likely have to work from a difficult angle and be careful not to mess up the other
miniatures that compose the scene. Instead, you would work on the bridge at your
workbench away from the scene. Then when it is all done, you would place the
bridge at its correct position and angle in the scene.

3D artists do something similar when constructing 3D objects. Instead
of building an object’s geometry with coordinates relative to a global scene
coordinate system (world space), they specify them relative to a local coordinate
system (local space); the local coordinate system will usually be some convenient
coordinate system located near the object and axis-aligned with the object. Once
the vertices of the 3D model have been defined in local space, it is placed in the
global scene. In order to do this, we must define how the local space and world
space are related; this is done by specifying where we want the origin and axes of
the local space coordinate system relative to the global scene coordinate system,
and executing a change of coordinate transformation (see Figure 5.16 and recall
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Figure 5.16. (a) The vertices of each object are defined with coordinates relative to their own local
coordinate system. In addition, we define the position and orientation of each local coordinate system
relative to the world space coordinate system based on where we want the object in the scene. Then we
execute a change of coordinate transformation to make all coordinates relative to the world space system.
(b) After the world transform, the objects’ vertices have coordinates all relative to the same world system.

§3.4). The process of changing coordinates relative to a local coordinate system
into the global scene coordinate system is called the world transform, and the
corresponding matrix is called the world matrix. Each object in the scene has its
own world matrix. After each object has been transformed from its local space to
the world space, then all the coordinates of all the objects are relative to the same
coordinate system (the world space). If you want to define an object directly in the
world space, then you can supply an identity world matrix.

Defining each model relative to its own local coordinate system has several

advantages:

1.

It is easier. For instance, usually in local space the object will be centered at
the origin and symmetrical with respect to one of the major axes. As another
example, the vertices of a cube are much easier to specity if we choose a local
coordinate system with origin centered at the cube and with axes orthogonal
to the cube faces; see Figure 5.17.

. The object may be reused across multiple scenes, in which case it makes

no sense to hardcode the object’s coordinates relative to a particular scene.
Instead, it is better to store its coordinates relative to a local coordinate system
and then define, via a change of coordinate matrix, how the local coordinate
system and world coordinate system are related for each scene.

Finally, sometimes we draw the same object more than once in a scene, but in
different positions, orientations, and scales (e.g., a tree object may be reused
several times to build a forest). It would be wasteful to duplicate the object’s
vertex and index data for each instance. Instead, we store a single copy of the
geometry (i.e., vertex and index lists) relative to its local space. Then we draw
the object several times, but each time with a different world matrix to specify
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(2,27

1,1,1) @02

(-1,-1,-1)
Figure 5.17. The vertices of a cube are easily specified when the cube is centered at the origin and axis-
aligned with the coordinate system. It is not so easy to specify the coordinates when the cube is at an
arbitrary position and orientation with respect to the coordinate system. Therefore, when we construct
the geometry of an object, we usually always choose a convenient coordinate system near the object and
aligned with the object, from which to build the object around.

the position, orientation, and scale of the instance in the world space. This is

called instancing.

As §3.4.3 shows, the world matrix for an object is given by describing its local space
with coordinates relative to the world space, and placing these coordinates in the
rows of a matrix. If Q,, = (Qy Q), Q,, 1), w, = (14y, 4y, 1, 0), v, = (vy, v, v, 0), and w,, =
(Wx Wy, W, 0) describe, respectively, the origin, x-, y-, and z-axes of a local space with
homogeneous coordinates relative to world space, then we know from §3.4.3 that
the change of coordinate matrix from local space to world space is:

=
=
=

®
=
N

x y z
W=
w v 2

y Q&

We see that to construct a world matrix, we must directly figure out the
coordinates of the local space origin and axes relative to the world space. This is
sometimes not that easy or intuitive. A more common approach is to define W
as a sequence of transformations, say W = SRT, the product of a scaling matrix
S to scale the object into the world, followed by a rotation matrix R to define the
orientation of the local space relative to the world space, followed by a translation
matrix T to define the origin of the local space relative to the world space. From
§3.5, we know that this sequence of transformations may be interpreted as a
change of coordinate transformation, and that the row vectors of W = SRT store
the homogeneous coordinates of the x-axis, y-axis, z-axis and origin of the local
space relative to the world space.

<=

=

<=
- o o O

L
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I=° Example

Suppose we have a unit square defined relative to some local space with minimum
and maximum points (-0.5, 0, —0.5) and (0.5, 0, 0.5), respectively. Find the world
matrix such that the square has a length of 2 in world space, the square is rotated
45° clockwise in the xz-plane of the world space, and the square is positioned at
(10, 0, 10) in world space. We construct S, R, T, and W as follows:

200 0 V272 0 272 0 0 0
a0 ool Lo 1 0 of joo 0
0020 V2712 0 272 0 0 0 0
0 0 01 0O o0 0 1 10 0 10 1
V20 =2 0
wesgr=| © 1 2 0
V20 V2o
10 0 10 1

Now from §3.5, the rows in W describe the local coordinate system relative to the
world space; that is, uy, = ([ 0, \F 0) vy = (0, 1,0, 0), wy, = (\/E,O,\/E,O),

and Q= (10, 0, 10, 1). When we change coordinates from the local space to the
world space with W, the square end up in the desired place in world space (see
Figure 5.18).

[-05, 0, -0.5, 1]w=[10-v2, 0, 0, 1]
. 1042, 1]
]

[-05, 0, +0.5, 1]w=0,
[+05, 0, +0.5, 1]W= [10+f 0, 0, 1

[+0.5, 0, 05, 1]W=[0, 0, 10-v2, 1]

The point of this example is that instead of figuring out Qy, uy, vy, and wy,
directly to form the world matrix, we were able to construct the world matrix
by compositing a sequence of simple transforms. This is often much easier than
figuring out Qy, uy, vy, and wyy directly, as we need only ask: what size do we
want the object in world space, at what orientation do we want the object in world
space, and at what position do we want the object in world space.
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(10, (l), 10) (\/z 0, \/E)

Local
Space

V2,0,V2)

X

World Space

Y
Figure 5.18. The row vectors of the world matrix describe the local coordinate system with coordinates
relative to the world coordinate system.

Another way to consider the world transform is to just take the local space
coordinates and treat them as world space coordinates (this is equivalent to
using an identity matrix as the world transform). Thus if the object is modeled
at the center of its local space, the object is just at the center of the world space.
In general, the center of the world is probably not where we want to position all
of our objects. So now, for each object, just apply a sequence of transformations
to scale, rotation, and position the object where you want in the world space.
Mathematically, this will give the same world transform as building the change of
coordinate matrix from local space to world space.

5.6.2 View Space

In order to form a 2D image of the scene, we must place a virtual camera in the
scene. The camera specifies what volume of the world the viewer can see and thus
what volume of the world we need to generate a 2D image of. Let us attach a local
coordinate system (called view space, eye space, or camera space) to the camera
as shown in Figure 5.19; that is, the camera sits at the origin looking down the

View System

Figure 5.19. Convert the coordinates of vertices relative to the world space to make them relative to the
camera space.
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positive z-axis, the x-axis aims to the right of the camera, and the y-axis aims above
the camera. Instead of describing our scene vertices relative to the world space, it
is convenient for later stages of the rendering pipeline to describe them relative
to the camera coordinate system. The change of coordinate transformation from
world space to view space is called the view transform, and the corresponding
matrix is called the view matrix.

If Qw=(Qy Qy) Qs 1), uy = (uy Uy, Uy, 0), viy = (v Vys Voo 0), and wyy = (w,,
w,, W, 0) describe, respectively, the origin, x-, y-, and z-axes of view space with
homogeneous coordinates relative to world space, then we know from §3.4.3 that
the change of coordinate matrix from view space to world space is:

=
®

=
~<

=
N

=
=
N

N

y
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=

<=
— o o O
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However, this is not the transformation we want. We want the reverse
transformation from world space to view space. But recall from §3.4.5 that reverse
transformation is just given by the inverse. Thus W' transforms from world space
to view space.

The world coordinate system and view coordinate system generally differ by
position and orientation only, so it makes intuitive sense that W = RT (i.e., the
world matrix can be decomposed into a rotation followed by a translation). This
form makes the inverse easier to compute:

V=W"'=(RT) =T'R"'=T"'R’

1 0 Olfu, v, w, O u, v, w, 0
_ 0 1 Offu, v, w, 0 | v, w, 0
0 0 Oflu, v, w, 0 u, v, w, 0
-Q, -Q -Q, 1{{o 0 0 1 —-Qu Qv Qw 1

So the view matrix has the form:

u, v, w, 0

Ve u, v, w, 0
u, v, w, 0

-Qu Qv -Qw 1
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il T e Ground Plane

Figure 5.20. Constructing the camera coordinate system given the camera position, a target point, and a
world “up” vector.

We now show an intuitive way to construct the vectors needed to build the view
matrix. Let Q be the position of the camera and let T be the target point the camera
is aimed at. Furthermore, let j be the unit vector that describes the “up” direction
of the world space. (In this book, we use the world xz-plane as our world “ground
plane” and the world y-axis describes the “up” direction; therefore, j = (0, 1, 0) is
just a unit vector parallel to the world y-axis. However, this is just a convention,
and some applications might choose the xy-plane as the ground plane, and the
z-axis as the “up” direction.) Referring to Figure 5.20, the direction the camera is
looking is given by:

T-Q
w=— 2
IT-Qll

This vector describes the local z-axis of the camera. A unit vector that aims to the
“right” of w is given by:

jxw

1> wll

This vector describes the local x-axis of the camera. Finally, a vector that describes
the local y-axis of the camera is given by:

v=wxu
Since w and u are orthogonal unit vectors, w X u is necessarily a unit vector, and
s0 it does not need to be normalized.

Thus, given the position of the camera, the target point, and the world “up”
direction, we were able to derive the local coordinate system of the camera, which
can be used to form the view matrix.

The DirectXMath library provides the following function for computing the
view matrix based on the just described process:

XMMATRIX XM CALLCONV XMMatrixLookAtLH ( /I Outputs view matrix V
FXMVECTOR EyePosition, // Input camera position Q
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FXMVECTOR FocusPosition, // Input target point T
FXMVECTOR UpDirection); // Input world up direction j

Usually the world’s y-axis corresponds to the “up” direction, so the “up” vector is
usually always j = (0, 1, 0). As an example, suppose we want to position the camera
at the point (5, 3, —10) relative to the world space, and have the camera look at the
origin of the world (0, 0, 0). We can build the view matrix by writing:

XMVECTOR pos = XMVectorSet (5, 3, -10, 1.0f);
XMVECTOR target = XMVectorZero();
XMVECTOR up = XMVectorSet (0.0f, 1.0f, 0.0f, 0.0f);

XMMATRIX V = XMMatrixLookAtLH (pos, target, up);

5.6.3 Projection and Homogeneous Clip Space

So far we have described the position and orientation of the camera in the world,
but there is another component to a camera, which is the volume of space the
camera sees. This volume is described by a frustum (Figure 5.21).

Our next task is to project the 3D geometry inside the frustum onto a 2D
projection window. The projection must be done in such a way that parallel
lines converge to a vanishing point, and as the 3D depth of an object increases,
the size of its projection diminishes; a perspective projection does this, and is
illustrated in Figure 5.22. We call the line from a vertex to the eye point the vertex’s
line of projection. Then we define the perspective projection transformation as the
transformation that transforms a 3D vertex v to the point v’ where its line of
projection intersects the 2D projection plane; we say that v’ is the projection of v.
The projection of a 3D object refers to the projection of all the vertices that make
up the object.

Far Plane

B Near Plane

Eye / Center of Projection
Figure 5.21. A frustum defines the volume of space that the camera “sees.”
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Eye Point

Projection
Window

Figure 5.22. Both cylinders in 3D space are the same size but are placed at different depths. The projection
of the cylinder closer to the eye is bigger than the projection of the farther cylinder. Geometry inside the
frustum is projected onto a projection window; geometry outside the frustum, gets projected onto the
projection plane, but will lie outside the projection window.

5.6.3.1 Defining a Frustum

We can define a frustum in view space, with center of projection at the origin and
looking down the positive z-axis, by the following four quantities: a near plane
n, far plane f, vertical field of view angle o, and aspect ratio r. Note that in view
space, the near plane and far plane are parallel to the xy-plane; thus we simply
specify their distance from the origin along the z-axis. The aspect ratio is defined
by r=w/h where w is the width of the projection window and # is the height of the
projection window (units in view space). The projection window is essentially the
2D image of the scene in view space. The image here will eventually be mapped to
the back bulffer; therefore, we like the ratio of the projection window dimensions
to be the same as the ratio of the back buffer dimensions. So the ratio of the back
buffer dimensions is usually specified as the aspect ratio (it is a ratio so it has no
units). For example, if the back buffer dimensions are 800 x 600, then we specify
r= % ~1.333 . If the aspect ratio of the projection window and the back buffer
were not the same, then a non-uniform scaling would be necessary to map the
projection window to the back buffer, which would cause distortion (e.g., a circle
on the projection window might get stretched into an ellipse when mapped to the
back buffer).

We label the horizontal field of view angle 3, and it is determined by the vertical
field of view angle a and aspect ratio r. To see how r helps us find B, consider
Figure 5.23. Note that the actual dimensions of the projection window are not
important, just the aspect ratio needs to be maintained. Therefore, we will choose
the convenient height of 2, and thus the width must be:

W w

r=—=—=w=2r
h 2
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Figure 5.23. Deriving the horizontal field of view angle B given the vertical field of view angle o and the
aspect ratio r.

In order to have the specified vertical field of view a, the projection window must
be placed a distance d from the origin:

a 1 o
tan| — |=—=d =cot| —
(ZJ d (2)

We have now fixed the distance d of the projection window along the z-axis to
have a vertical field of view o when the height of the projection window is 2. Now
we can solve for 8. Looking at the xz-plane in Figure 5.23, we now see that:

By_r_

r r
tan| = |=—=——7+—
(2) d (aj
cot| —
2
)
=r-tan| —
2

So given the vertical field of view angle o and the aspect ratio r, we can always get
the horizontal field of view angle 3:

- o
f=2tan (r -tan (ED

Refer to Figure 5.24. Given a point (x, y, z), we wish to find its projection (x', y', d),
on the projection plane z = d. By considering the x- and y-coordinates separately
and using similar triangles, we find:

5.6.3.2 Projecting Vertices
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Figure 5.24. Similar triangles.

X x , xd xcot(a/2) x
—_— e =—= =
z z z ztan(0/2)
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d z z z ztan(o/2)

Observe that a point (x, ¥, z) is inside the frustum if and only if

—r<x'<r
-1<y'<1
n<z<f

5.6.3.3 Normalized Device Coordinates (NDC)

185

The coordinates of the projected points in the preceding section are computed
in view space. In view space, the projection window has a height of 2 and a width
of 2r, where r is the aspect ratio. The problem with this is that the dimensions
depend on the aspect ratio. This means we would need to tell the hardware the
aspect ratio, since the hardware will later need to do some operations that involve
the dimensions of the projection window (such as map it to the back buffer). It
would be more convenient if we could remove this dependency on the aspect
ratio. The solution is to scale the projected x-coordinate from the interval [-r, 1]

to [—1, 1] like so:

—r<x'<r
—1<x'/r<i
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After this mapping, the x- and y-coordinates are said to be normalized device
coordinates (NDC) (the z-coordinate has not yet been normalized), and a point
(x, 9, z) is inside the frustum if and only if

—-1<x'"/r<i
-1<y'<1

n<z<f

The transformation from view space to NDC space can be viewed as a unit
conversion. We have the relationship that one NDC unit equals r units in view
space (i.e., Indc = r vs) on the x-axis. So given x view space units, we can use this
relationship to convert units:

Indc x
=-—ndc
rvs r

X VS-

We can modify our projection formulas to give us the projected x- and
y-coordinates directly in NDC coordinates:

x' L
rz tan(OL/Z)
/ Y

y= ztan(oc/z)

(eq.5.1)

Note that in NDC coordinates, the projection window has a height of 2 and a
width of 2. So now the dimensions are fixed, and the hardware need not know the
aspect ratio, but it is our responsibility to always supply the projected coordinates
in NDC space (the graphics hardware assumes we will).

5.6.3.4 Writing the Projection Equations with a Matrix

For uniformity, we would like to express the projection transformation by
a matrix. However, Equation 5.1 is nonlinear, so it does not have a matrix
representation. The “trick” is to separate it into two parts: a linear part and a
nonlinear part. The nonlinear part is the divide by z. As will be discussed in the
next section, we are going to normalize the z-coordinate; this means we will not
have the original z-coordinate around for the divide. Therefore, we must save
the input z-coordinate before it is transformed; to do this, we take advantage
of homogeneous coordinates and copy the input z-coordinate to the output
w-coordinate. In terms of matrix multiplication, this is done by setting entry [2]
[3] =1and entry [3][3] =0 (zero-based indices). Our projection matrix looks like
this:
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1
rtan(a/2) 00
P= 0 ; 0 0
tan (0/2)
0 A
] 0 B 0]

Note that we have placed constants (to be determined in the next section) A and B
into the matrix; these constants will be used to transform the input z-coordinate
into the normalized range. Multiplying an arbitrary point (x, y, z, 1) by this matrix

gives:

_ . _

_ 0 0 0

rtan(a/2)
1

0 ——F 0 0
o B

0 A1 (eq.5.2)

I 0 B 0]

X Y
- > )A B7
Ltan(a/z) tan(a2) Z}

After multiplying by the projection matrix (the linear part), we complete the
transformation by dividing each coordinate by w = z (the nonlinear part):

divide by w
at > ) )AZ+B)Z _>y al > u )A+§)1 (eq. 5.3)
rtan(0/2) tan(o/2) rztan(a/2) ztan(o/2) z

Incidentally, you may wonder about a possible divide by zero; however, the near
plane should be greater than zero, so such a point would be clipped (§5.9). The
divide by w is sometimes called the perspective divide or homogeneous divide. We
see that the projected x- and y-coordinates agree with Equation 5.1.

5.6.3.5 Normalized Depth Value

It may seem like after projection, we can discard the original 3D z-coordinate, as
all the projected points now lay on the 2D projection window, which forms the
2D image seen by the eye. However, we still need 3D depth information around
for the depth buffering algorithm. Just like Direct3D wants the projected x- and
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y-coordinates in a normalized range, Direct3D wants the depth coordinates in
the normalized range [0, 1]. Therefore, we must construct an order preserving
function g(z) that maps the interval [n, f] onto [0, 1]. Because the function is
order preserving, if z;, z, € [n, f] and z; < z,, then g(z;) < g(2,); so even though
the depth values have been transformed, the relative depth relationships remain
intact, so we can still correctly compare depths in the normalized interval, which
is all we need for the depth buffering algorithm.

Mapping [#, f] onto [0, 1] can be done with a scaling and translation. However,
this approach will not integrate into our current projection strategy. We see from
Equation 5.3, that the z-coordinate undergoes the transformation:

g(z)=A+E
z

We now need to choose A and B subject to the constraints:

Condition 1: g(n) = A + B/n =0 (the near plane gets mapped to zero)
Condition 2: g(f) = A + B/f=1 (the far plane gets mapped to one)

Solving condition 1 for B yields: B = —An. Substituting this into condition 2 and
solving for A gives:

A An g
Af-An_,
f
Af —An=f
WS
f-n
Therefore,

g(Z) f nf

fen (fon)z

A graph of g (Figure 5.25) shows it is strictly increasing (order preserving) and
nonlinear. It also shows that most of the range is “used up” by depth values close
to the near plane. Consequently, the majority of the depth values get mapped to
a small subset of the range. This can lead to depth buffer precision problems (the
computer can no longer distinguish between slightly different transformed depth
values due to finite numerical representation). The general advice is to make the
near and far planes as close as possible to minimize depth precision problems.
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Figure 5.25. Graph of g(z) for different near planes.

0.0

Now that we have solved for A and B, we can state the full perspective projection

matrix:
1 0o 0
rtan(oc/Z)

_

tan (o2

. (o)
0 0 f 1

f—-n

0 0 -
i f-n ]

After multiplying by the projection matrix, but before the perspective divide,
geometry is said to be in homogeneous clip space or projection space. After the
perspective divide, the geometry is said to be in normalized device coordinates
(NDC).

5.6.3.6 XMMatrixPerspectiveFovLH

A perspective projection matrix can be built with the following DirectX Math
function:

// Returns the projection matrix
XMMATRIX XM CALLCONV XMMatrixPerspectiveFovLH (

float FovAngleY, // vertical field of view angle in radians
float Aspect, // aspect ratio = width / height
float Nearz, // distance to near plane

float FarZ); // distance to far plane
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The following code snippet illustrates how to use xMMatrixpPerspectiveFovLE.
Here, we specify a 45° vertical field of view, a near plane at z=1 and a far plane at
z=1000 (these lengths are in view space).

XMMATRIX P = XMMatrixPerspectiveFovLH(0.25f*XM PI,
AspectRatio(), 1.0f, 1000.0f);

The aspect ratio is taken to match our window aspect ratio:

float D3DApp::AspectRatio()const

{
return static cast<float>(mClientWidth) / mClientHeight;

}

5.7 THE TESSELLATION STAGES

Tessellation refers to subdividing the triangles of a mesh to add new triangles.
These new triangles can then be offset into new positions to create finer mesh
detail (see Figure 5.26).

There are a number of benefits to tessellations:

1. We can implement a level-of-detail (LOD) mechanism, where triangles near
the camera are tessellated to add more detail, and triangles far away from the
camera are not tessellated. In this way, we only use more triangles where the
extra detail will be noticed.

2. We keep a simpler low-poly mesh (low-poly means low triangle count) in
memory, and add the extra triangles on the fly, thus saving memory.

3. We do operations like animation and physics on a simpler low-poly mesh,
and only use the tessellated high-poly mesh for rendering.

The tessellation stages are new to Direct3D 11, and they provide a way to tessellate
geometry on the GPU. Before Direct3D 11, if you wanted to implement a form
of tessellation, it would have to be done on the CPU, and then the new tessellated

Figure 5.26. The left image shows the original mesh. The right image shows the mesh after tessellation.
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geometry would have to be uploaded back to the GPU for rendering. However,
uploading new geometry from CPU memory to GPU memory is slow, and it also
burdens the CPU with computing the tessellation. For this reason, tessellation
methods have not been very popular for real-time graphics prior to Direct3D
11. Direct3D 11 provides an API to do tessellation completely in hardware with
a Direct3D 11 capable video card. This makes tessellation a much more attractive
technique. The tessellation stages are optional (you only need to use it if you want
tessellation). We defer our coverage of tessellation until Chapter 14.

5.8 THE GEOMETRY SHADER STAGE

The geometry shader stage is optional, and we do not use it until Chapter 12, so
we will be brief here. The geometry shader inputs entire primitives. For example,
if we were drawing triangle lists, then the input to the geometry shader would
be the three vertices defining the triangle. (Note that the three vertices will have
already passed through the vertex shader.) The main advantage of the geometry
shader is that it can create or destroy geometry. For example, the input primitive
can be expanded into one or more other primitives, or the geometry shader can
choose not to output a primitive based on some condition. This is in contrast to a
vertex shader, which cannot create vertices: it inputs one vertex and outputs one
vertex. A common example of the geometry shader is to expand a point into a
quad or to expand a line into a quad.

We also notice the “stream-out” arrow from Figure 5.11. That is, the geometry
shader can stream-out vertex data into a buffer in memory, which can later be
drawn. This is an advanced technique, and will be discussed in a later chapter.

o~y Vertex positions leaving the geometry shader must be transformed to
homogeneous clip space.

5.9 CLIPPING

Geometry completely outside the viewing frustum needs to be discarded, and
geometry that intersects the boundary of the frustum must be clipped, so that
only the interior part remains; see Figure 5.27 for the idea illustrated in 2D.

We can think of the frustum as being the region bounded by six planes: the top,
bottom, left, right, near, and far planes. To clip a polygon against the frustum, we
clip it against each frustum plane one-by-one. When clipping a polygon against a
plane (Figure 5.28), the part in the positive half-space of the plane is kept, and the
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Figure 5.27. (a) Before clipping. (b) After clipping.

S @ O
Figure 5.28. (a) Clipping a triangle against a plane. (b) The clipped triangle. Note that the clipped triangle
is not a triangle, but a quad. Thus the hardware will need to triangulate the resulting quad, which is
straightforward to do for convex polygons.

part in the negative half space is discarded. Clipping a convex polygon against a
plane will always result in a convex polygon. Because the hardware does clipping
for us, we will not cover the details here; instead, we refer the reader to the popular
Sutherland-Hodgeman clipping algorithm [Sutherland74]. It basically amounts
to finding the intersection points between the plane and polygon edges, and then
ordering the vertices to form the new clipped polygon.

[Blinn78] describes how clipping can be done in 4D homogeneous space. After
the perspective divide, points [%%%1] inside the view frustum are in normalized

device coordinates and bounded as follows:
-1<x/w<1

~1<ylw<1

0<ziw<l
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Figure 5.29. The frustum boundaries in the xw-plane in homogeneous clip space.

So in homogeneous clip space, before the divide, 4D points (x, y, z, w) inside the
frustum are bounded as follows:

—-w<x<w
WS y<w
0<z<w
That is, the points are bounded by the simple 4D planes:
Left: w=—x
Right: w=x
Bottom: w=—y
Top:w=y
Near:z=0
Far:z=w

Once we know the frustum plane equations in homogeneous space, we can apply
a clipping algorithm (such as Sutherland-Hodgeman). Note that the mathematics
of the segment/plane intersection test generalizes to R*, so we can do the test with
4D points and the 4D planes in homogeneous clip space.

5.10 THE RASTERIZATION STAGE

The main job of the rasterization stage is to compute pixel colors from the
projected 3D triangles.

5.10.1 Viewport Transform

After clipping, the hardware can do the perspective divide to transform from
homogeneous clip space to normalized device coordinates (NDC). Once vertices
are in NDC space, the 2D x- and y- coordinates forming the 2D image are
transformed to a rectangle on the back buffer called the viewport (recall §4.3.9).
After this transform, the x- and y-coordinates are in units of pixels. Usually the
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viewport transformation does not modify the z-coordinate, as it is used for depth
buffering, but it can by modifying the minpepth and Maxpepth values of the p3p12
vIEWPORT structure. The Minpepth and MaxDepth values must be between 0 and 1.

5.10.2 Backface Culling

A triangle has two sides. To distinguish between the two sides we use the following
convention. If the triangle vertices are ordered v, v, v, then we compute the
triangle normal n like so:

€=V =V
€ =V, =V,
e, xe
n=Soxé
e, xe,

The side the normal vector emanates from is the front side and the other side is the
back side. Figure 5.30 illustrates this.

We say that a triangle is front-facing if the viewer sees the front side of a
triangle, and we say a triangle is back-facing if the viewer sees the back side of a
triangle. From our perspective of Figure 5.30, the left triangle is front-facing while
the right triangle is back-facing. Moreover, from our perspective, the left triangle
is ordered clockwise while the right triangle is ordered counterclockwise. This is
no coincidence: with the convention we have chosen (i.e., the way we compute
the triangle normal), a triangle ordered clockwise (with respect to that viewer)
is front-facing, and a triangle ordered counterclockwise (with respect to that
viewer) is back-facing.

Now, most objects in 3D worlds are enclosed solid objects. Suppose we agree to
construct the triangles for each object in such a way that the normals are always
aimed outward. Then, the camera does not see the back-facing triangles of a
solid object because the front-facing triangles occlude the back-facing triangles;
Figure 5.31 illustrates this in 2D and 5.32 in 3D. Because the front-facing triangles
occlude the back-facing triangles, it makes no sense to draw them. Backface culling

v, P2
P1

Vo
v
Po

Figure 5.30. The left triangle is front-facing from our viewpoint, and the right triangle is back-facing from our
viewpoint.
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- Back Facing
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Front Facing

Eye Eye
[©) (b)

Figure 5.31. (a) A solid object with front-facing and back-facing triangles. (b) The scene after culling
the back-facing triangles. Note that backface culling does not affect the final image since the back-facing
triangles are occluded by the front-facing ones.

Figure 5.32. (Left) We draw the cubes with transparency so that you can see all six sides. (Right) We draw
the cubes as solid blocks. Note that we do not see the three back-facing sides since the three front-facing
sides occlude them—thus the back-facing triangles can actually be discarded from further processing and no
one will notice.
refers to the process of discarding back-facing triangles from the pipeline. This
can potentially reduce the amount of triangles that need to be processed by half.
By default, Direct3D treats triangles with a clockwise winding order (with
respect to the viewer) as front-facing, and triangles with a counterclockwise
winding order (with respect to the viewer) as back-facing. However, this
convention can be reversed with a Direct3D render state setting.

5.10.3 Vertex Attribute Interpolation

Recall that we define a triangle by specifying its vertices. In addition to position,
we can attach attributes to vertices such as colors, normal vectors, and texture
coordinates. After the viewport transform, these attributes need to be interpolated
for each pixel covering the triangle. In addition to vertex attributes, vertex depth
values need to get interpolated so that each pixel has a depth value for the depth
buffering algorithm. The vertex attributes are interpolated in screen space in
such a way that the attributes are interpolated linearly across the triangle in 3D
space (Figure 5.33); this requires the so-called perspective correct interpolation.
Essentially, interpolation allows us to use the vertex values to compute values for
the interior pixels.
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p(s.t) = vp +5(vy — Vo) + t(v2 — vp)

fors=0,t=0s+t=<1

Figure 5.33. An attribute value p(s, t) on a triangle can be obtained by linearly interpolating between the attribute
values at the vertices of the triangle.

Figure 5.34. A 3D line is being projected onto the projection window (the projection is a 2D line in screen space).
We see that taking uniform step sizes along the 3D line corresponds to taking non-uniform step sizes in 2D screen
space. Therefore to do linear interpolation in 3D space, we need to do nonlinear interpolation in screen space.

The mathematical details of perspective correct attribute interpolation are
not something we need to worry about since the hardware does it; the interested
reader may find the mathematical derivation in [Eberly01]. However, Figure 5.34
gives the basic idea of what is going on.

5.11 THE PIXEL SHADER STAGE

Pixel shaders are programs we write that are executed on the GPU. A pixel shader
is executed for each pixel fragment and uses the interpolated vertex attributes as
input to compute a color. A pixel shader can be as simple as returning a constant
color, to doing more complicated things like per-pixel lighting, reflections and
shadowing effects.
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5.12 THE OUTPUT MERGER STAGE

After pixel fragments have been generated by the pixel shader, they move onto
the output merger (OM) stage of the rendering pipeline. In this stage, some pixel
fragments may be rejected (e.g., from the depth or stencil buffer tests). Pixel
fragments that are not rejected are written to the back buffer. Blending is also done
in this stage, where a pixel may be blended with the pixel currently on the back
buffer instead of overriding it completely. Some special effects like transparency
are implemented with blending; Chapter 10 is devoted to blending.

5.13 SUMMARY

1. We can simulate 3D scenes on 2D images by employing several techniques
based on the way we see things in real life. We observe parallel lines converge
to vanishing points, the size of objects diminishes with depth, objects obscure
the objects behind them, lighting and shading depict the solid form and
volume of 3D objects, and shadows imply the location of light sources and
indicate the position of objects relative to other objects in the scene.

2. We approximate objects with triangle meshes. We can define each triangle
by specifying its three vertices. In many meshes, vertices are shared among
triangles; indexed lists can be used to avoid vertex duplication.

3. Colors are described by specifying an intensity of red, green, and blue. The
additive mixing of these three colors at different intensities allows us to
describe millions of colors. To describe the intensities of red, green, and blue,
it is useful to use a normalized range from 0 to 1. 0 denotes no intensity, 1
denotes the full intensity, and intermediate values denote intermediate
intensities. It is common to incorporate an additional color component,
called the alpha component. The alpha component is often used to denote the
opacity of a color, which is useful in blending. Including the alpha component,
means we can represent a color by a 4D color vector (1, g b, a) where 0 <, g,
b, a < 1. Because the data needed to represent a color is a 4D vector, we can
use the xmvEcTOR type to represent a color in code, and we gain the benefit
of SIMD operations whenever use the DirectX Math vector functions to do
color operations. To represent a color with 32-bits, a byte is given to each
component; the DirectXMath library provides the XMCOLOR structure for
storing a 32-bit color. Color vectors are added, subtracted, and scaled just like
regular vectors, except that we must clamp their components to the [0, 1]
interval (or [0, 255] for 32-bit colors). The other vector operations such
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as the dot product and cross product do not make sense for color vectors.
The symbol ® denotes component-wise multiplication and it is defined as:
(1565565564 ) ®(kysky ks ky ) = (k505K 05K556,4k, ) -

4. Given a geometric description of a 3D scene and a positioned and aimed
virtual camera in that scene, the rendering pipeline refers to the entire sequence
of steps necessary to generate a 2D image that can be displayed on a monitor
screen based on what the virtual camera sees.

5. The rendering pipeline can be broken down into the following major stages.
The input assembly (IA) stage; the vertex shader (VS) stage; the tessellation
stages; the geometry shader (GS) stage; the clipping stage; the rasterization
stage (RS); the pixel shader (PS) stage; and the output merger (OM) stage.

5.14 EXERCISES

1. Construct the vertex and index list of a pyramid, as shown in Figure 5.35.

Figure 5.35. The triangles of a pyramid.

2. Consider the two shapes shown in Figure 5.36. Merge the objects into one
vertex and index list. (The idea here is that when you append the second
index list to the first, you will need to update the appended indices since they
reference vertices in the original vertex list, not the merged vertex list.)

V2

(a)
Figure 5.36. Shapes for Exercise 2.

3. Relative to the world coordinate system, suppose that the camera is positioned
at (20, 35, -50) and looking at the point (10, 0, 30). Compute the view matrix
assuming (0, 1, 0) describes the “up” direction in the world.
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4. Given that the view frustum has a vertical field of view angle 6 = 45°, the
aspect ratio is a = 4/3, the near plane is n = 1, and the far plane is f = 100, find
the corresponding perspective projection matrix.

5. Suppose that the view window has height 4. Find the distance d from the
origin the view window must be to create a vertical field of view angle 6 = 60°.

6. Consider the following perspective projection matrix:

1.86603 0 0 0
0 3.73205 0 0
0 0 1.02564 1
0 0 -5.12821 0

Find the vertical field of view angle a the aspect ratio r, and the near and far
plane values that were used to build this matrix.

7. Suppose that you are given the following perspective projection matrix with
fixed A, B, C, D:

4 0 0 0
0 B 0 O
0 0 C 1
0 0 DO

Find the vertical field of view angle o the aspect ratio r, and the near and far
plane values that were used to build this matrix in terms of A, B, C, D. That is,
solve the following equations:

1
A=—
(@) rtan(a/2)
1
b) B=——+—
(b) tan((x/2)
f
c=—1_
(c) 7on
@ p=""

f—n
Solving these equations will give you formulas for extracting the vertical field
of view angle o the aspect ratio r, and the near and far plane values from any
perspective projection matrix of the kind described in this book.
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8. For projective texturing algorithms, we multiply an affine transformation
matrix T after the projection matrix. Prove that it does not matter if we do
the perspective divide before or after multiplying by T. Let, v be a 4D vector, P
be a projection matrix, T be a 4 X 4 affine transformation matrix, and let a w
subscript denote the w-coordinate of a 4D vector, prove:

vP B (VPT)
[(VP)W ]T B (VPT)W

9. Prove that the inverse of the projection matrix is given by:

rtan (%) 0 0 0
0 tan (gj 0 0
P'= 2
0 o o 7"
nf
0 o 1 L
L n i

10. Let [x, y, z, 1] be the coordinates of a point in view space, and let [X,4c Vndo
Zu40 1] be the coordinates of the same point in NDC space. Prove that you can
transform from NDC space to view space in the following way:

Xy 1 :| divide by w

[xndc’yndc’zndc’l]PIZ‘:Z 2 11; - [X,)/,Z,l]

Explain why you need the division by w. Would you need the division by w if
you were transforming from homogeneous clip space to view space?

11. Another way to describe the view frustum is by specifying the width and
height of the view volume at the near plane. Given the width w and height / of
the view volume at the near plane, and given the near plane n and far plane f
show that the perspective projection matrix is given by:

[2

oo 0 o0
w

o 2 o0 o

P h
0 foy
—n

o o M
i f-n ]
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12. Given a view frustum with vertical field of view angle 6, aspect ratio is a, near
plane n, and far plane f, find the 8 vertex corners of the frustum.
13. Consider the 3D shear transform given by S,,(x, y, z) = (x + zt,, y + zt,, 2).

This transformation is illustrated in Figure 5.37. Prove that this is a linear
transformation and has the following matrix representation:

0
1

1
S,=]0

Figure 5.37. The x- and y-coordinates sheared by the z-coordinate. The top face of the box lies in the z= 1
plane. Observe that the shear transform translates points in this plane.

14. Consider 3D points in the plane z = 1; that is, points of the form (x, y, 1).
Observe that transforming a point (x, y, 1) by the shear transformation §,,
given in the previous exercise amounts to a 2D translation in the z =1 plane:

10 0
[x. ». 1[0 1 0|=[x+t, y+t, 1]
ot 1

If we are working on a 2D application, we could use 3D coordinates, but
where our 2D universe always lies on the plane z= 1; then we could use S, to
do translations in our 2D space.

Conclude the following generalizations:

a. Just as a plane in 3D space is a 2D space, a plane in 4D space is a 3D space.
When we write homogeneous points (x, y, z, 1) we are working in the 3D
space that lives in the 4D plane w=1.

b. The translation matrix is the matrix representation of the 4D shear
transformation Sy (x, y, z, W) = (x + wty, y + wt,, z+ wt,, w). The 4D shear
transformation has the effect of translating points in the plane w=1.






DRAWING IN
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In the previous chapter, we mostly focused on the conceptual and mathematical
aspects of the rendering pipeline. This chapter, in turn, focuses on the Direct3D
API interfaces and methods needed to configure the rendering pipeline, define
vertex and pixel shaders, and submit geometry to the rendering pipeline for
drawing. By the end of this chapter, you will be able to draw a 3D box with solid
coloring or in wireframe mode.

Objectives:
1. To discover the Direct3D interfaces methods for defining, storing, and
drawing geometric data.
2. To learn how to write basic vertex and pixel shaders.
3. To find out how to configure the rendering pipeline with pipeline state objects.

4. To understand how to create and bind constant buffer data to the pipeline,
and to become familiar with the root signature.

6.1 VERTICES AND INPUT LAYOUTS

Recall from §5.5.1 that a vertex in Direct3D can consist of additional data besides
spatial location. To create a custom vertex format, we first create a structure

203
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that holds the vertex data we choose. For instance, the following illustrates two
different kinds of vertex formats; one consists of position and color, and the
second consists of position, normal vector, and two sets of 2D texture coordinates.

struct Vertexl
{
XMFLOAT3 Pos;
XMFLOAT4 Color;
bi

struct Vertex2

{
XMFLOAT3 Pos;
XMFLOAT3 Normal;
XMFLOAT2 TexO0;
XMFLOAT2 Texl;

bi

Once we have defined a vertex structure, we need to provide Direct3D with
a description of our vertex structure so that it knows what to do with each
component. This description is provided to Direct3D in the form of an input
layout description which is represented by the p3p12_1nPUT LAYOUT DESC structure:

typedef struct D3D12 INPUT_LAYOUT DESC

{
const D3D12 INPUT_ELEMENT DESC *pInputElementDescs;
UINT NumElements;

} D3D12 INPUT_LAYOUT_ DESC;

An input layout description is simply an array of p3pi2 INPUT ELEMENT DESC
elements, and the number of elements in the array.

Each elementin the p3p12 1neur Erement pEsc array describes and corresponds
to one component in the vertex structure. So if the vertex structure has two
components, then the corresponding p3p12_1npuT_rLEMENT DESC array will have
two elements. The p3p12_ 1npUT ELEMENT DESC structure is defined as:

typedef struct D3D12_ INPUT_ ELEMENT DESC
{
LPCSTR SemanticName;
UINT SemanticIndex;
DXGI_FORMAT Format;
UINT InputSlot;
UINT AlignedByteOffset;
D3D12 INPUT_CLASSIFICATION InputSlotClass;
UINT InstanceDataStepRate;
} D3D12_INPUT ELEMENT DESC;

1. semanticName: A string to associate with the element. This can be any valid
variable name. Semantics are used to map elements in the vertex structure to
elements in the vertex shader input signature; see Figure 6.1.
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struct Vertex

{
XMFLOAT3 Pos;
XMFLOAT3 Normal;
XMFLOAT2 TexO0;
XMFLOAT2 Texl;

}i

D3D11 INPUT ELEMENT DESC vertexDesc[] =
{
{"POSITION", 0, DXGI FORMAT R32G32B32 FLOAT, 0, O,
D3D11 INPUT PER VERTEX DATA, 0},
{"NORMAL", 0, DXGI FORMAT R32G32B32 FLOAT, 0, 12,
D3D11 INPUT PER VERTEX DATA, 0},
{"TEXCOORD", 0, DXGI_FORMAT R32G32 FLOAT, 0, 24,
D3D11 INPUT PER VERTEX DATA, 0},
{"TEXCOORD", 1, DXGI FORMAT R32G32 FLOAT, 0, 32,
D3D11 INPUT PER VERTEX DATA, 0}
}i

VertexOut VS (float3 iPos : POSITION, -
float3 iNormal : NORMAL, -
float2 i1iTex0 : TEXCOORDO, -
float2 iTexl : TEXCOORD1) -

Figure 6.1. Each element in the vertex structure is described by a corresponding element in the D3D12
INPUT ELEMENT DESC array. The semantic name and index provides way for mapping vertex elements to
the corresponding parameters of the vertex shader.

2. semanticIndex: An index to attach to a semantic. The motivation for this is
illustrated in Figure 6.1, where, for example, a vertex structure may have more
than one set of texture coordinates; so rather than introducing a new semantic
name, we can just attach an index to the end to distinguish the two texture
coordinate sets. A semantic with no index specified in the shader code defaults
to index zero; for instance, pos1TTON is equivalent to rostTTONO in Figure 6.1.

3. rormat: A member of the pxc1_rorvar enumerated type specifying the format
(i.e., the data type) of this vertex element to Direct3D; here are some common
examples of formats used:

DXGI_FORMAT R32 FLOAT // 1D 32-bit float scalar
DXGI_FORMAT R32G32 FLOAT // 2D 32-bit float vector
DXGI_FORMAT R32G32B32 FLOAT // 3D 32-bit float vector
DXGI_FORMAT R32G32B32A32 FLOAT // 4D 32-bit float vector

DXGI_FORMAT_ R8 UINT // 1D 8-bit unsigned integer scalar
DXGI_FORMAT R16G16_SINT // 2D 1l6-bit signed integer vector
DXGI_FORMAT R32G32B32 UINT // 3D 32-bit unsigned integer vector
DXGI_FORMAT R8G8B8A8 SINT // 4D 8-bit signed integer vector
DXGI_FORMAT R8G8B8A8 UINT // 4D 8-bit unsigned integer vector
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4.

Inputslot: Specifies the input slot index this element will come from.
Direct3D supports sixteen input slots (indexed from 0-15) through which you
can feed vertex data. For now, we will only be using input slot 0 (i.e., all vertex
elements come from the same input slot); Exercise 2 asks you to experiment
with multiple input slots.

AlignedByteoffset: The offset, in bytes, from the start of the C++ vertex
structure of the specified input slot to the start of the vertex component. For
example, in the following vertex structure, the element ros has a 0-byte offset
since its start coincides with the start of the vertex structure; the element
Normal has a 12-byte offset because we have to skip over the bytes of ros to get
to the start of Norma1; the element Tex0 has a 24-byte offset because we need
to skip over the bytes of pos and normal to get to the start of Texo; the element
Tex1 has a 32-byte offset because we need to skip over the bytes of ros, Norma1,
and Tex0 to get to the start of Tex1.

struct Vertex2
{
XMFLOAT3 Pos; // O-byte offset
XMFLOAT3 Normal; // 12-byte offset
XMFLOAT2 Tex0O; // 24-byte offset
XMFLOAT2 Texl; // 32-byte offset
bi
InputSlotClass: Specify p3pi2 1npur pER VERTEX DATA for now; the other
option is used for the advanced technique of instancing.

InstanceDataStepRate! Specify 0 for now; other values are only used for the
advanced technique of instancing.

For the previous two example vertex structures, vertexl and vertex2, the
corresponding input layout descriptions would be:

D3D12 INPUT ELEMENT DESC descl[] =
{
{"POSITION", 0, DXGI FORMAT R32G32B32 FLOAT, 0, O,
D3D12 INPUT PER VERTEX DATA, 0},
{"COLOR", 0, DXGI FORMAT R32G32B32A32 FLOAT, 0, 12,
D3D12 INPUT PER VERTEX DATA, 0}
}i

D3D12 INPUT ELEMENT DESC desc2[] =
{
{"POSITION", 0, DXGI FORMAT R32G32B32 FLOAT, 0, O,
D3D12 INPUT PER VERTEX DATA, 0},
{"NORMAL", 0, DXGI FORMAT R32G32B32 FLOAT, 0, 12,
D3D12 INPUT PER VERTEX DATA, 0},
{"TEXCOORD", 0, DXGI FORMAT R32G32 FLOAT, 0, 24,
D3D12 INPUT PER VERTEX DATA, 0}
{"TEXCOORD", 1, DXGI FORMAT R32G32 FLOAT, 0, 32,
D3D12 INPUT PER VERTEX DATA, 0}
}i
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6.2 VERTEX BUFFERS

In order for the GPU to access an array of vertices, they need to be placed in a
GPU resource (1p3pi2resource) called a buffer. We call a buffer that stores
vertices a vertex buffer. Buffers are simpler resources than textures; they are not
multidimensional, and do not have mipmaps, filters, or multisampling support.
We will use buffers whenever we need to provide the GPU with an array of data
elements such as vertices.

As we did in §4.3.8, we create an 1D3D12Resource object by filling out a p3p12_
RESOURCE_DESC structure describing the buffer resource, and then calling the 1p3
D12Device: :CreateCommittedResource method. See §4.3.8 for a description of all
the members of the p3p12 rEsource pesc structure. Direct3D 12 provides a C++
wrapper class cp3px12 RESOURCE_DEsc, which derives from p3p12 RESOURCE DESC
and provides convenience constructors and methods. In particular, it provides
the following method that simplifies the construction of a p3p12 RESOURCE DESC
describing a buffer:

static inline CD3DX12 RESOURCE DESC Buffer (

UINT64 width,

D3D12 RESOURCE_FLAGS flags = D3D12 RESOURCE_FLAG NONE,
UINT64 alignment = 0 )

return CD3DX12 RESOURCE DESC( D3D12 RESOURCE DIMENSION BUFFER,
alignment, width, 1, 1, 1,
DXGI_FORMAT UNKNOWN, 1, O,
D3D12 TEXTURE LAYOUT ROW MAJOR, flags );
}

For a buffer, the width refers to the number of bytes in the buffer. For example, if
the buffer stored 64 £10ats, then the width would be 64*sizeof (float).

oo~y The cp3pxi2_resource_pesc class also provides convenience methods for
constructing a D3D12 RESOURCE DESC that describes texture resources and
querying information about the resource:

1.CcD3DX12 RESOURCE DESC: :Tex1D
2.CD3DX12 RESOURCE DESC::Tex2D
3.CD3DX12 RESOURCE DESC::Tex3D

o~y Recall from Chapter 4 that the depth/stencil buffer, which was a 2D texture
was also represented by an 103p12resource object. All resources in Direct3D 12
are represented by the 103p12Resource interface. This is in contrast to Direct3D
11 which had different interfaces for various resources like 1p3p11Buffer and
1D3p11Texture2D. The type of resource is specified by the p3Dp12 RESOURCE
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DESC: :D3D12_RESOURCE DIMENSION field. For example, buffers have dimension
D3D12 RESOURCE DIMENSION BUFFER and 2D textures have dimension p3pi2_
RESOURCE_DIMENSION TEXTURE2D

For static geometry (i.e., geometry that does not change on a per-frame basis),
we put vertex buffers in the default heap (p3p12_wEar Tver pEFAULT) fOr optimal
performance. Generally, most geometry in a game will be like this (e.g., trees,
buildings, terrain, characters). After the vertex buffer has been initialized, only
the GPU needs to read from the vertex buffer to draw the geometry, so the default
heap makes sense. However, if the CPU cannot write to the vertex buffer in the
default heap, how do we initialize the vertex buffer?

In addition to creating the actual vertex buffer resource, we need to create an
intermediate upload buffer resource with heap type p3pi2 HEap TYPE UPLOAD.
Recall from §4.3.8 that we commit a resource to the upload heap when we need to
copy data from CPU to GPU memory. After we create the upload buffer, we copy
our vertex data from system memory to the upload buffer, and then we copy the
vertex data from the upload buffer to the actual vertex buffer.

Because an intermediate upload buffer is required to initialize the data of a
default buffer (buffer with heap type p3pi2 near tvee pEFaULT), We build the
following utility function in d3dUtil.h/.cpp to avoid repeating this work every
time we need a default buffer:

Microsoft::WRL::ComPtr<ID3Dl2Resource> d3dUtil::CreateDefaultBuffer (

ID3D12Device* device,
ID3D12GraphicsCommandList* cmdList,
const void* initData,

UINT64 byteSize,
Microsoft::WRL::ComPtr<ID3Dl12Resource>& uploadBuffer)

ComPtr<ID3Dl2Resource> defaultBuffer;

// Create the actual default buffer resource.
ThrowIfFailed(device->CreateCommittedResource (
&CD3DX127HEAP7PROPERTIES(D3D127HEAP7TYPE7DEFAULT),
D3D12 HEAP FLAG NONE,
&CD3DX12 RESOURCE_DESC::Buffer (byteSize),
D3D127RESOURCE75TATE7COMMON,
nullptr,
IID_PPV_ARGS (defaultBuffer.GetAddressOf())));

// In order to copy CPU memory data into our default buffer, we need
// to create an intermediate upload heap.
ThrowIfFailed(device->CreateCommittedResource (
&CD3DX127HEAP7PROPERTIES(D3D127HEAP7TYPE7UPLOAD),
D3D12 HEAP FLAG NONE,
&CD3DX12 RESOURCE_DESC::Buffer (byteSize),
D3D127RESOURCEisTATEiGENERICiREAD,
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nullptr,
IID PPV _ARGS (uploadBuffer.GetAddressOf())));

// Describe the data we want to copy into the default buffer.
D3D12 SUBRESOURCE DATA subResourceData = {};
subResourceData.pbData = initData;

subResourceData.RowPitch = byteSize;
subResourceData.SlicePitch = subResourceData.RowPitch;

// Schedule to copy the data to the default buffer resource.
// At a high level, the helper function UpdateSubresources
// will copy the CPU memory into the intermediate upload heap.
// Then, using ID3Dl12CommandList::CopySubresourceRegion,
// the intermediate upload heap data will be copied to mBuffer.
cmdList->ResourceBarrier (1,
&CD3DX12 RESOURCE BARRIER::Transition(defaultBuffer.Get(),
D3D12_RESOURCE_STATE_COMMON,
D3D12 RESOURCE_STATE COPY DEST));
UpdateSubresources<l> (cmdList,
defaultBuffer.Get (), uploadBuffer.Get(),
0, 0, 1, &subResourceData);
cmdList->ResourceBarrier (1,
&CD3DX12 RESOURCE BARRIER::Transition(defaultBuffer.Get(),
D3D12_RESOURCE_STATE_COPY_DEST,
D3D12_RESOURCE_STATE_GENERIC_READ));

// Note: uploadBuffer has to be kept alive after the above function
// calls because the command list has not been executed yet that

// performs the actual copy.

// The caller can Release the uploadBuffer after it knows the copy
// has been executed.

return defaultBuffer;

}

The p3p12_suBresource DaTa structure is defined as follows:

typedef struct D3D12 SUBRESOURCE_ DATA
{

const void *pData;

LONG_PTR RowPitch;

LONG_PTR SlicePitch;
} D3D12_ SUBRESOURCE DATA;

1. ppata: A pointer to a system memory array which contains the data to initialize
the buffer with. If the buffer