Linux® emulation in FreeBSD
Table of Contents
	1. Introduction
	2. A look inside…	2.1. What is UNIX®
	2.2. Technical details	2.2.1. Communication between kernel and user space
	 process
	2.2.2. Communication between processes
	2.2.3. Process management
	2.2.4. Thread management

	2.3. What is FreeBSD?	2.3.1. Technical details	2.3.1.1. System entries
	2.3.1.2. Syscalls
	2.3.1.3. Traps
	2.3.1.4. Exits
	2.3.1.5. UNIX® primitives

	2.4. What is Linux®	2.4.1. Technical details	2.4.1.1. Syscalls
	2.4.1.2. Traps
	2.4.1.3. Exits
	2.4.1.4. UNIX® primitives

	2.5. What is emulation

	3. Emulation	3.1. How emulation works in FreeBSD
	3.2. Common primitives in the FreeBSD kernel	3.2.1. Locking primitives	3.2.1.1. Atomic operations and memory barriers
	3.2.1.2. Refcounts
	3.2.1.3. Locks
	3.2.1.4. Spinning locks
	3.2.1.5. Blocking
	3.2.1.6. Sleeping
	3.2.1.7. Scheduling barriers
	3.2.1.8. Critical sections
	3.2.1.9. sched_pin/sched_unpin
	3.2.1.10. sched_bind/sched_unbind

	3.2.2. Proc structure
	3.2.3. VFS	3.2.3.1. namei
	3.2.3.2. vn_fullpath
	3.2.3.3. Vnode operations
	3.2.3.4. File handler operations

	4. Linux® emulation layer -MD part	4.1. Syscall handling	4.1.1. Linux® prepsyscall
	4.1.2. Syscall writing
	4.1.3. Dummy syscalls

	4.2. Signal handling	4.2.1. Linux® sendsig
	4.2.2. linux_rt_sendsig
	4.2.3. linux_sigreturn

	4.3. Ptrace
	4.4. Traps
	4.5. Stack fixup
	4.6. A.OUT support

	5. Linux® emulation layer -MI part	5.1. Description of NPTL
	5.2. Linux® 2.6 emulation infrastructure	5.2.1. Runtime determining of 2.6 emulation
	5.2.2. Linux® processes and thread identifiers
	5.2.3. PID mangling
	5.2.4. Clone syscall
	5.2.5. Locking

	5.3. TLS	5.3.1. Introduction to threading
	5.3.2. Segments on i386
	5.3.3. Implementation on Linux® i386
	5.3.4. Emulation of Linux® TLS	5.3.4.1. i386
	5.3.4.2. amd64

	5.4. Futexes	5.4.1. Introduction to synchronization
	5.4.2. Futexes introduction
	5.4.3. Futex API	5.4.3.1. FUTEX_WAIT
	5.4.3.2. FUTEX_WAKE
	5.4.3.3. FUTEX_FD
	5.4.3.4. FUTEX_REQUEUE
	5.4.3.5. FUTEX_CMP_REQUEUE
	5.4.3.6. FUTEX_WAKE_OP

	5.4.4. Futex emulation in FreeBSD	5.4.4.1. futex_get / futex_put
	5.4.4.2. futex_sleep
	5.4.4.3. futex_wake
	5.4.4.4. futex_wake_op
	5.4.4.5. futex atomic operation
	5.4.4.6. Futex locking

	5.5. Various syscalls implementation	5.5.1. *at family of syscalls	5.5.1.1. Implementation

	5.5.2. Ioctl
	5.5.3. Debugging

	6. Conclusion	6.1. Results
	6.2. Future work
	6.3. Team

	7. Literatures

Linux® emulation in FreeBSD
Roman Divacky

	 <rdivacky@FreeBSD.org>

	

Revision: e194334c79Legal NoticeLast modified on 2021-01-08 14:04:42 +0100 by Daniel Ebdrup Jensen.Abstract
This masters thesis deals with updating the Linux®
	emulation layer (the so called
	Linuxulator). The task was to update
	the layer to match the functionality of Linux® 2.6. As a
	reference implementation, the Linux® 2.6.16 kernel was
	chosen. The concept is loosely based on the NetBSD
	implementation. Most of the work was done in the summer of
	2006 as a part of the Google Summer of Code students program.
	The focus was on bringing the NPTL (new
	POSIX® thread library) support into the emulation layer,
	including TLS (thread local storage),
	futexes (fast user space mutexes),
	PID mangling, and some other minor
	things. Many small problems were identified and fixed in the
	process. My work was integrated into the main FreeBSD source
	repository and will be shipped in the upcoming 7.0R release.
	We, the emulation development team, are working on making the
	Linux® 2.6 emulation the default emulation layer in
	FreeBSD.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Introduction
In the last few years the open source UNIX® based operating
 systems started to be widely deployed on server and client
 machines. Among these operating systems I would like to point
 out two: FreeBSD, for its BSD heritage, time proven code base and
 many interesting features and Linux® for its wide user base,
 enthusiastic open developer community and support from large
 companies. FreeBSD tends to be used on server class machines
 serving heavy duty networking tasks with less usage on desktop
 class machines for ordinary users. While Linux® has the same
 usage on servers, but it is used much more by home based users.
 This leads to a situation where there are many binary only
 programs available for Linux® that lack support for
 FreeBSD.
Naturally, a need for the ability to run Linux® binaries on
 a FreeBSD system arises and this is what this thesis deals with:
 the emulation of the Linux® kernel in the FreeBSD operating
 system.
During the Summer of 2006 Google Inc. sponsored a project
 which focused on extending the Linux® emulation layer (the so
 called Linuxulator) in FreeBSD to include Linux® 2.6 facilities.
 This thesis is written as a part of this project.
2. A look inside…
In this section we are going to describe every operating
 system in question. How they deal with syscalls, trapframes
 etc., all the low-level stuff. We also describe the way they
 understand common UNIX® primitives like what a PID is, what a
 thread is, etc. In the third subsection we talk about how
 UNIX® on UNIX® emulation could be done in general.
2.1. What is UNIX®
UNIX® is an operating system with a long history that has
	influenced almost every other operating system currently in
	use. Starting in the 1960s, its development continues to this
	day (although in different projects). UNIX® development soon
	forked into two main ways: the BSDs and System III/V families.
	They mutually influenced themselves by growing a common UNIX®
	standard. Among the contributions originated in BSD we can
	name virtual memory, TCP/IP networking, FFS, and many others.
	The System V branch contributed to SysV interprocess
	communication primitives, copy-on-write, etc. UNIX® itself
	does not exist any more but its ideas have been used by many
	other operating systems world wide thus forming the so called
	UNIX®-like operating systems. These days the most
	influential ones are Linux®, Solaris, and possibly (to some
	extent) FreeBSD. There are in-company UNIX® derivatives (AIX,
	HP-UX etc.), but these have been more and more migrated to the
	aforementioned systems. Let us summarize typical UNIX®
	characteristics.
2.2. Technical details
Every running program constitutes a process that
	represents a state of the computation. Running process is
	divided between kernel-space and user-space. Some operations
	can be done only from kernel space (dealing with hardware
	etc.), but the process should spend most of its lifetime in
	the user space. The kernel is where the management of the
	processes, hardware, and low-level details take place. The
	kernel provides a standard unified UNIX® API to the user
	space. The most important ones are covered below.
2.2.1. Communication between kernel and user space
	 process
Common UNIX® API defines a syscall as a way to issue
	 commands from a user space process to the kernel. The most
	 common implementation is either by using an interrupt or
	 specialized instruction (think of
	 SYSENTER/SYSCALL
	 instructions for ia32). Syscalls are defined by a number.
	 For example in FreeBSD, the syscall number 85 is the
	 swapon(2) syscall and the syscall number 132 is
	 mkfifo(2). Some syscalls need parameters, which are
	 passed from the user-space to the kernel-space in various
	 ways (implementation dependant). Syscalls are
	 synchronous.
Another possible way to communicate is by using a
	 trap. Traps occur asynchronously
	 after some event occurs (division by zero, page fault etc.).
	 A trap can be transparent for a process (page fault) or can
	 result in a reaction like sending a
	 signal (division by zero).
2.2.2. Communication between processes
There are other APIs (System V IPC, shared memory etc.)
	 but the single most important API is signal. Signals are
	 sent by processes or by the kernel and received by
	 processes. Some signals can be ignored or handled by a user
	 supplied routine, some result in a predefined action that
	 cannot be altered or ignored.
2.2.3. Process management
Kernel instances are processed first in the system (so
	 called init). Every running process can create its
	 identical copy using the fork(2) syscall. Some
	 slightly modified versions of this syscall were introduced
	 but the basic semantic is the same. Every running process
	 can morph into some other process using the exec(3)
	 syscall. Some modifications of this syscall were introduced
	 but all serve the same basic purpose. Processes end their
	 lives by calling the exit(2) syscall. Every process is
	 identified by a unique number called PID. Every process has
	 a defined parent (identified by its PID).
2.2.4. Thread management
Traditional UNIX® does not define any API nor
	 implementation for threading, while POSIX® defines its
	 threading API but the implementation is undefined.
	 Traditionally there were two ways of implementing threads.
	 Handling them as separate processes (1:1 threading) or
	 envelope the whole thread group in one process and managing
	 the threading in userspace (1:N threading). Comparing main
	 features of each approach:
1:1 threading
	- heavyweight threads

	- the scheduling cannot be altered by the user
	 (slightly mitigated by the POSIX® API)

	+ no syscall wrapping necessary

	+ can utilize multiple CPUs

1:N threading
	+ lightweight threads

	+ scheduling can be easily altered by the
	 user

	- syscalls must be wrapped

	- cannot utilize more than one CPU

2.3. What is FreeBSD?
The FreeBSD project is one of the oldest open source
	operating systems currently available for daily use. It is a
	direct descendant of the genuine UNIX® so it could be claimed
	that it is a true UNIX® although licensing issues do not
	permit that. The start of the project dates back to the early
	1990's when a crew of fellow BSD users patched the 386BSD
	operating system. Based on this patchkit a new operating
	system arose named FreeBSD for its liberal license. Another
	group created the NetBSD operating system with different goals
	in mind. We will focus on FreeBSD.
FreeBSD is a modern UNIX®-based operating system with all
	the features of UNIX®. Preemptive multitasking, multiuser
	facilities, TCP/IP networking, memory protection, symmetric
	multiprocessing support, virtual memory with merged VM and
	buffer cache, they are all there. One of the interesting and
	extremely useful features is the ability to emulate other
	UNIX®-like operating systems. As of December 2006 and
	7-CURRENT development, the following emulation functionalities
	are supported:
	FreeBSD/i386 emulation on FreeBSD/amd64

	FreeBSD/i386 emulation on FreeBSD/ia64

	Linux®-emulation of Linux® operating system on
	 FreeBSD

	NDIS-emulation of Windows networking drivers
	 interface

	NetBSD-emulation of NetBSD operating system

	PECoff-support for PECoff FreeBSD executables

	SVR4-emulation of System V revision 4 UNIX®

Actively developed emulations are the Linux® layer and
	various FreeBSD-on-FreeBSD layers. Others are not supposed to work
	properly nor be usable these days.
2.3.1. Technical details
FreeBSD is traditional flavor of UNIX® in the sense of
	 dividing the run of processes into two halves: kernel space
	 and user space run. There are two types of process entry to
	 the kernel: a syscall and a trap. There is only one way to
	 return. In the subsequent sections we will describe the
	 three gates to/from the kernel. The whole description
	 applies to the i386 architecture as the Linuxulator only
	 exists there but the concept is similar on other
	 architectures. The information was taken from [1] and the
	 source code.
2.3.1.1. System entries
FreeBSD has an abstraction called an execution class
	 loader, which is a wedge into the execve(2) syscall.
	 This employs a structure sysentvec,
	 which describes an executable ABI. It contains things
	 like errno translation table, signal translation table,
	 various functions to serve syscall needs (stack fixup,
	 coredumping, etc.). Every ABI the FreeBSD kernel wants to
	 support must define this structure, as it is used later in
	 the syscall processing code and at some other places.
	 System entries are handled by trap handlers, where we can
	 access both the kernel-space and the user-space at
	 once.
2.3.1.2. Syscalls
Syscalls on FreeBSD are issued by executing interrupt
	 0x80 with register
	 %eax set to a desired syscall number
	 with arguments passed on the stack.
When a process issues an interrupt
	 0x80, the int0x80
	 syscall trap handler is issued (defined in
	 sys/i386/i386/exception.s), which
	 prepares arguments (i.e. copies them on to the stack) for
	 a call to a C function syscall(2) (defined in
	 sys/i386/i386/trap.c), which
	 processes the passed in trapframe. The processing
	 consists of preparing the syscall (depending on the
	 sysvec entry), determining if the
	 syscall is 32-bit or 64-bit one (changes size of the
	 parameters), then the parameters are copied, including the
	 syscall. Next, the actual syscall function is executed
	 with processing of the return code (special cases for
	 ERESTART and
	 EJUSTRETURN errors). Finally an
	 userret() is scheduled, switching the
	 process back to the users-pace. The parameters to the
	 actual syscall handler are passed in the form of
	 struct thread *td, struct
	 syscall args * arguments where the second
	 parameter is a pointer to the copied in structure of
	 parameters.
2.3.1.3. Traps
Handling of traps in FreeBSD is similar to the handling
	 of syscalls. Whenever a trap occurs, an assembler handler
	 is called. It is chosen between alltraps, alltraps with
	 regs pushed or calltrap depending on the type of the trap.
	 This handler prepares arguments for a call to a C function
	 trap() (defined in
	 sys/i386/i386/trap.c), which then
	 processes the occurred trap. After the processing it
	 might send a signal to the process and/or exit to userland
	 using userret().
2.3.1.4. Exits
Exits from kernel to userspace happen using the
	 assembler routine doreti regardless of
	 whether the kernel was entered via a trap or via a
	 syscall. This restores the program status from the stack
	 and returns to the userspace.
2.3.1.5. UNIX® primitives
FreeBSD operating system adheres to the traditional
	 UNIX® scheme, where every process has a unique
	 identification number, the so called
	 PID (Process ID). PID numbers are
	 allocated either linearly or randomly ranging from
	 0 to PID_MAX. The
	 allocation of PID numbers is done using linear searching
	 of PID space. Every thread in a process receives the same
	 PID number as result of the getpid(2) call.
There are currently two ways to implement threading in
	 FreeBSD. The first way is M:N threading followed by the 1:1
	 threading model. The default library used is M:N
	 threading (libpthread) and you can
	 switch at runtime to 1:1 threading
	 (libthr). The plan is to switch to 1:1
	 library by default soon. Although those two libraries use
	 the same kernel primitives, they are accessed through
	 different API(es). The M:N library uses the
	 kse_* family of syscalls while the 1:1
	 library uses the thr_* family of
	 syscalls. Due to this, there is no general concept of
	 thread ID shared between kernel and userspace. Of course,
	 both threading libraries implement the pthread thread ID
	 API. Every kernel thread (as described by struct
	 thread) has td tid identifier but this is not
	 directly accessible from userland and solely serves the
	 kernel's needs. It is also used for 1:1 threading library
	 as pthread's thread ID but handling of this is internal to
	 the library and cannot be relied on.
As stated previously there are two implementations of
	 threading in FreeBSD. The M:N library divides the work
	 between kernel space and userspace. Thread is an entity
	 that gets scheduled in the kernel but it can represent
	 various number of userspace threads. M userspace threads
	 get mapped to N kernel threads thus saving resources while
	 keeping the ability to exploit multiprocessor parallelism.
	 Further information about the implementation can be
	 obtained from the man page or [1]. The 1:1 library
	 directly maps a userland thread to a kernel thread thus
	 greatly simplifying the scheme. None of these designs
	 implement a fairness mechanism (such a mechanism was
	 implemented but it was removed recently because it caused
	 serious slowdown and made the code more difficult to deal
	 with).
2.4. What is Linux®
Linux® is a UNIX®-like kernel originally developed by
	Linus Torvalds, and now being contributed to by a massive
	crowd of programmers all around the world. From its mere
	beginnings to today, with wide support from companies such as
	IBM or Google, Linux® is being associated with its fast
	development pace, full hardware support and benevolent
	dictator model of organization.
Linux® development started in 1991 as a hobbyist project
	at University of Helsinki in Finland. Since then it has
	obtained all the features of a modern UNIX®-like OS:
	multiprocessing, multiuser support, virtual memory,
	networking, basically everything is there. There are also
	highly advanced features like virtualization etc.
As of 2006 Linux® seems to be the most widely used open
	source operating system with support from independent software
	vendors like Oracle, RealNetworks, Adobe, etc. Most of the
	commercial software distributed for Linux® can only be
	obtained in a binary form so recompilation for other operating
	systems is impossible.
Most of the Linux® development happens in a
	Git version control system.
	Git is a distributed system so
	there is no central source of the Linux® code, but some
	branches are considered prominent and official. The version
	number scheme implemented by Linux® consists of four numbers
	A.B.C.D. Currently development happens in 2.6.C.D, where C
	represents major version, where new features are added or
	changed while D is a minor version for bugfixes only.
More information can be obtained from [3].
2.4.1. Technical details
Linux® follows the traditional UNIX® scheme of
	 dividing the run of a process in two halves: the kernel and
	 user space. The kernel can be entered in two ways: via a
	 trap or via a syscall. The return is handled only in one
	 way. The further description applies to Linux® 2.6 on
	 the i386™ architecture. This information was taken from
	 [2].
2.4.1.1. Syscalls
Syscalls in Linux® are performed (in userspace) using
	 syscallX macros where X substitutes a
	 number representing the number of parameters of the given
	 syscall. This macro translates to a code that loads
	 %eax register with a number of the
	 syscall and executes interrupt 0x80.
	 After this syscall return is called, which translates
	 negative return values to positive
	 errno values and sets
	 res to -1 in case of
	 an error. Whenever the interrupt 0x80
	 is called the process enters the kernel in system call
	 trap handler. This routine saves all registers on the
	 stack and calls the selected syscall entry. Note that the
	 Linux® calling convention expects parameters to the
	 syscall to be passed via registers as shown here:
	parameter -> %ebx

	parameter -> %ecx

	parameter -> %edx

	parameter -> %esi

	parameter -> %edi

	parameter -> %ebp

There are some exceptions to this, where Linux® uses
	 different calling convention (most notably the
	 clone syscall).
2.4.1.2. Traps
The trap handlers are introduced in
	 arch/i386/kernel/traps.c and most of
	 these handlers live in
	 arch/i386/kernel/entry.S, where
	 handling of the traps happens.
2.4.1.3. Exits
Return from the syscall is managed by syscall
	 exit(3), which checks for the process having
	 unfinished work, then checks whether we used user-supplied
	 selectors. If this happens stack fixing is applied and
	 finally the registers are restored from the stack and the
	 process returns to the userspace.
2.4.1.4. UNIX® primitives
In the 2.6 version, the Linux® operating system
	 redefined some of the traditional UNIX® primitives,
	 notably PID, TID and thread. PID is defined not to be
	 unique for every process, so for some processes (threads)
	 getppid(2) returns the same value. Unique
	 identification of process is provided by TID. This is
	 because NPTL (New POSIX® Thread
	 Library) defines threads to be normal processes (so called
	 1:1 threading). Spawning a new process in
	 Linux® 2.6 happens using the
	 clone syscall (fork variants are
	 reimplemented using it). This clone syscall defines a set
	 of flags that affect behavior of the cloning process
	 regarding thread implementation. The semantic is a bit
	 fuzzy as there is no single flag telling the syscall to
	 create a thread.
Implemented clone flags are:
	CLONE_VM - processes share
		their memory space

	CLONE_FS - share umask, cwd and
		namespace

	CLONE_FILES - share open
		files

	CLONE_SIGHAND - share signal
		handlers and blocked signals

	CLONE_PARENT - share
		parent

	CLONE_THREAD - be thread
		(further explanation below)

	CLONE_NEWNS - new
		namespace

	CLONE_SYSVSEM - share SysV undo
		structures

	CLONE_SETTLS - setup TLS at
		supplied address

	CLONE_PARENT_SETTID - set TID
		in the parent

	CLONE_CHILD_CLEARTID - clear
		TID in the child

	CLONE_CHILD_SETTID - set TID in
		the child

CLONE_PARENT sets the real parent
	 to the parent of the caller. This is useful for threads
	 because if thread A creates thread B we want thread B to
	 be parented to the parent of the whole thread group.
	 CLONE_THREAD does exactly the same
	 thing as CLONE_PARENT,
	 CLONE_VM and
	 CLONE_SIGHAND, rewrites PID to be the
	 same as PID of the caller, sets exit signal to be none and
	 enters the thread group. CLONE_SETTLS
	 sets up GDT entries for TLS handling. The
	 CLONE_*_*TID set of flags sets/clears
	 user supplied address to TID or 0.
As you can see the CLONE_THREAD
	 does most of the work and does not seem to fit the scheme
	 very well. The original intention is unclear (even for
	 authors, according to comments in the code) but I think
	 originally there was one threading flag, which was then
	 parcelled among many other flags but this separation was
	 never fully finished. It is also unclear what this
	 partition is good for as glibc does not use that so only
	 hand-written use of the clone permits a programmer to
	 access this features.
For non-threaded programs the PID and TID are the
	 same. For threaded programs the first thread PID and TID
	 are the same and every created thread shares the same PID
	 and gets assigned a unique TID (because
	 CLONE_THREAD is passed in) also parent
	 is shared for all processes forming this threaded
	 program.
The code that implements pthread_create(3) in
	 NPTL defines the clone flags like this:
int clone_flags = (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGNAL

 | CLONE_SETTLS | CLONE_PARENT_SETTID

| CLONE_CHILD_CLEARTID | CLONE_SYSVSEM
#if __ASSUME_NO_CLONE_DETACHED == 0

| CLONE_DETACHED
#endif

| 0);
The CLONE_SIGNAL is defined
	 like
#define CLONE_SIGNAL (CLONE_SIGHAND | CLONE_THREAD)
the last 0 means no signal is sent when any of the
	 threads exits.
2.5. What is emulation
According to a dictionary definition, emulation is the
	ability of a program or device to imitate another program or
	device. This is achieved by providing the same reaction to a
	given stimulus as the emulated object. In practice, the
	software world mostly sees three types of emulation - a
	program used to emulate a machine (QEMU, various game console
	emulators etc.), software emulation of a hardware facility
	(OpenGL emulators, floating point units emulation etc.) and
	operating system emulation (either in kernel of the operating
	system or as a userspace program).
Emulation is usually used in a place, where using the
	original component is not feasible nor possible at all. For
	example someone might want to use a program developed for a
	different operating system than they use. Then emulation
	comes in handy. Sometimes there is no other way but to use
	emulation - e.g. when the hardware device you try to use does
	not exist (yet/anymore) then there is no other way but
	emulation. This happens often when porting an operating
	system to a new (non-existent) platform. Sometimes it is just
	cheaper to emulate.
Looking from an implementation point of view, there are
	two main approaches to the implementation of emulation. You
	can either emulate the whole thing - accepting possible inputs
	of the original object, maintaining inner state and emitting
	correct output based on the state and/or input. This kind of
	emulation does not require any special conditions and
	basically can be implemented anywhere for any device/program.
	The drawback is that implementing such emulation is quite
	difficult, time-consuming and error-prone. In some cases we
	can use a simpler approach. Imagine you want to emulate a
	printer that prints from left to right on a printer that
	prints from right to left. It is obvious that there is no
	need for a complex emulation layer but simply reversing of the
	printed text is sufficient. Sometimes the
	emulating environment is very similar to the emulated one so
	just a thin layer of some translation is necessary to provide
	fully working emulation! As you can see this is much less
	demanding to implement, so less time-consuming and error-prone
	than the previous approach. But the necessary condition is
	that the two environments must be similar enough. The third
	approach combines the two previous. Most of the time the
	objects do not provide the same capabilities so in a case of
	emulating the more powerful one on the less powerful we have
	to emulate the missing features with full emulation described
	above.
This master thesis deals with emulation of UNIX® on
	UNIX®, which is exactly the case, where only a thin layer of
	translation is sufficient to provide full emulation. The
	UNIX® API consists of a set of syscalls, which are usually
	self contained and do not affect some global kernel
	state.
There are a few syscalls that affect inner state but this
	can be dealt with by providing some structures that maintain
	the extra state.
No emulation is perfect and emulations tend to lack some
	parts but this usually does not cause any serious drawbacks.
	Imagine a game console emulator that emulates everything but
	music output. No doubt that the games are playable and one
	can use the emulator. It might not be that comfortable as the
	original game console but its an acceptable compromise between
	price and comfort.
The same goes with the UNIX® API. Most programs can live
	with a very limited set of syscalls working. Those syscalls
	tend to be the oldest ones (read(2)/write(2),
	fork(2) family, signal(3) handling, exit(3),
	socket(2) API) hence it is easy to emulate because their
	semantics is shared among all UNIX®es, which exist
	todays.
3. Emulation
3.1. How emulation works in FreeBSD
As stated earlier, FreeBSD supports running binaries from
	several other UNIX®es. This works because FreeBSD has an
	abstraction called the execution class loader. This wedges
	into the execve(2) syscall, so when execve(2) is
	about to execute a binary it examines its type.
There are basically two types of binaries in FreeBSD.
	Shell-like text scripts which are identified by
	#! as their first two characters and normal
	(typically ELF) binaries, which are a
	representation of a compiled executable object. The vast
	majority (one could say all of them) of binaries in FreeBSD are
	from type ELF. ELF files contain a header, which specifies
	the OS ABI for this ELF file. By reading this information,
	the operating system can accurately determine what type of
	binary the given file is.
Every OS ABI must be registered in the FreeBSD kernel. This
	applies to the FreeBSD native OS ABI, as well. So when
	execve(2) executes a binary it iterates through the list
	of registered APIs and when it finds the right one it starts
	to use the information contained in the OS ABI description
	(its syscall table, errno translation
	table, etc.). So every time the process calls a syscall, it
	uses its own set of syscalls instead of some global one. This
	effectively provides a very elegant and easy way of supporting
	execution of various binary formats.
The nature of emulation of different OSes (and also some
	other subsystems) led developers to invite a handler event
	mechanism. There are various places in the kernel, where a
	list of event handlers are called. Every subsystem can
	register an event handler and they are called accordingly.
	For example, when a process exits there is a handler called
	that possibly cleans up whatever the subsystem needs to be
	cleaned.
Those simple facilities provide basically everything that
	is needed for the emulation infrastructure and in fact these
	are basically the only things necessary to implement the
	Linux® emulation layer.
3.2. Common primitives in the FreeBSD kernel
Emulation layers need some support from the operating
	system. I am going to describe some of the supported
	primitives in the FreeBSD operating system.
3.2.1. Locking primitives
Contributed by: Attilio Rao <attilio@FreeBSD.org>
The FreeBSD synchronization primitive set is based on the
	 idea to supply a rather huge number of different primitives
	 in a way that the better one can be used for every
	 particular, appropriate situation.
To a high level point of view you can consider three
	 kinds of synchronization primitives in the FreeBSD
	 kernel:
	atomic operations and memory barriers

	locks

	scheduling barriers

Below there are descriptions for the 3 families. For
	 every lock, you should really check the linked manpage
	 (where possible) for more detailed explanations.
3.2.1.1. Atomic operations and memory barriers
Atomic operations are implemented through a set of
	 functions performing simple arithmetics on memory operands
	 in an atomic way with respect to external events
	 (interrupts, preemption, etc.). Atomic operations can
	 guarantee atomicity just on small data types (in the
	 magnitude order of the .long.
	 architecture C data type), so should be rarely used
	 directly in the end-level code, if not only for very
	 simple operations (like flag setting in a bitmap, for
	 example). In fact, it is rather simple and common to
	 write down a wrong semantic based on just atomic
	 operations (usually referred as lock-less). The FreeBSD
	 kernel offers a way to perform atomic operations in
	 conjunction with a memory barrier. The memory barriers
	 will guarantee that an atomic operation will happen
	 following some specified ordering with respect to other
	 memory accesses. For example, if we need that an atomic
	 operation happen just after all other pending writes (in
	 terms of instructions reordering buffers activities) are
	 completed, we need to explicitly use a memory barrier in
	 conjunction to this atomic operation. So it is simple to
	 understand why memory barriers play a key role for
	 higher-level locks building (just as refcounts, mutexes,
	 etc.). For a detailed explanatory on atomic operations,
	 please refer to atomic(9). It is far, however,
	 noting that atomic operations (and memory barriers as
	 well) should ideally only be used for building
	 front-ending locks (as mutexes).
3.2.1.2. Refcounts
Refcounts are interfaces for handling reference
	 counters. They are implemented through atomic operations
	 and are intended to be used just for cases, where the
	 reference counter is the only one thing to be protected,
	 so even something like a spin-mutex is deprecated. Using
	 the refcount interface for structures, where a mutex is
	 already used is often wrong since we should probably close
	 the reference counter in some already protected paths. A
	 manpage discussing refcount does not exist currently, just
	 check sys/refcount.h for an overview
	 of the existing API.
3.2.1.3. Locks
FreeBSD kernel has huge classes of locks. Every lock is
	 defined by some peculiar properties, but probably the most
	 important is the event linked to contesting holders (or in
	 other terms, the behavior of threads unable to acquire the
	 lock). FreeBSD's locking scheme presents three different
	 behaviors for contenders:
	spinning

	blocking

	sleeping

Note:
numbers are not casual

3.2.1.4. Spinning locks
Spin locks let waiters to spin until they cannot
	 acquire the lock. An important matter do deal with is
	 when a thread contests on a spin lock if it is not
	 descheduled. Since the FreeBSD kernel is preemptive, this
	 exposes spin lock at the risk of deadlocks that can be
	 solved just disabling interrupts while they are acquired.
	 For this and other reasons (like lack of priority
	 propagation support, poorness in load balancing schemes
	 between CPUs, etc.), spin locks are intended to protect
	 very small paths of code, or ideally not to be used at all
	 if not explicitly requested (explained later).
3.2.1.5. Blocking
Block locks let waiters to be descheduled and blocked
	 until the lock owner does not drop it and wakes up one or
	 more contenders. In order to avoid starvation issues,
	 blocking locks do priority propagation from the waiters to
	 the owner. Block locks must be implemented through the
	 turnstile interface and are intended to be the most used
	 kind of locks in the kernel, if no particular conditions
	 are met.
3.2.1.6. Sleeping
Sleep locks let waiters to be descheduled and fall
	 asleep until the lock holder does not drop it and wakes up
	 one or more waiters. Since sleep locks are intended to
	 protect large paths of code and to cater asynchronous
	 events, they do not do any form of priority propagation.
	 They must be implemented through the sleepqueue(9)
	 interface.
The order used to acquire locks is very important, not
	 only for the possibility to deadlock due at lock order
	 reversals, but even because lock acquisition should follow
	 specific rules linked to locks natures. If you give a
	 look at the table above, the practical rule is that if a
	 thread holds a lock of level n (where the level is the
	 number listed close to the kind of lock) it is not allowed
	 to acquire a lock of superior levels, since this would
	 break the specified semantic for a path. For example, if
	 a thread holds a block lock (level 2), it is allowed to
	 acquire a spin lock (level 1) but not a sleep lock (level
	 3), since block locks are intended to protect smaller
	 paths than sleep lock (these rules are not about atomic
	 operations or scheduling barriers, however).
This is a list of lock with their respective
	 behaviors:
	spin mutex - spinning - mutex(9)

	sleep mutex - blocking - mutex(9)

	pool mutex - blocking - mtx_pool(9)

	sleep family - sleeping - sleep(9) pause
		tsleep msleep msleep spin msleep rw msleep sx

	condvar - sleeping - condvar(9)

	rwlock - blocking - rwlock(9)

	sxlock - sleeping - sx(9)

	lockmgr - sleeping - lockmgr(9)

	semaphores - sleeping - sema(9)

Among these locks only mutexes, sxlocks, rwlocks and
	 lockmgrs are intended to handle recursion, but currently
	 recursion is only supported by mutexes and
	 lockmgrs.
3.2.1.7. Scheduling barriers
Scheduling barriers are intended to be used in order
	 to drive scheduling of threading. They consist mainly of
	 three different stubs:
	critical sections (and preemption)

	sched_bind

	sched_pin

Generally, these should be used only in a particular
	 context and even if they can often replace locks, they
	 should be avoided because they do not let the diagnose of
	 simple eventual problems with locking debugging tools (as
	 witness(4)).
3.2.1.8. Critical sections
The FreeBSD kernel has been made preemptive basically to
	 deal with interrupt threads. In fact, in order to avoid
	 high interrupt latency, time-sharing priority threads can
	 be preempted by interrupt threads (in this way, they do
	 not need to wait to be scheduled as the normal path
	 previews). Preemption, however, introduces new racing
	 points that need to be handled, as well. Often, in order
	 to deal with preemption, the simplest thing to do is to
	 completely disable it. A critical section defines a piece
	 of code (borderlined by the pair of functions
	 critical_enter(9) and critical_exit(9), where
	 preemption is guaranteed to not happen (until the
	 protected code is fully executed). This can often replace
	 a lock effectively but should be used carefully in order
	 to not lose the whole advantage that preemption
	 brings.
3.2.1.9. sched_pin/sched_unpin
Another way to deal with preemption is the
	 sched_pin() interface. If a piece of
	 code is closed in the sched_pin()
	 and sched_unpin() pair of functions
	 it is guaranteed that the respective thread, even if it
	 can be preempted, it will always be executed on the same
	 CPU. Pinning is very effective in the particular case
	 when we have to access at per-cpu datas and we assume
	 other threads will not change those data. The latter
	 condition will determine a critical section as a too
	 strong condition for our code.
3.2.1.10. sched_bind/sched_unbind
sched_bind is an API used in
	 order to bind a thread to a particular CPU for all the
	 time it executes the code, until a
	 sched_unbind function call does not
	 unbind it. This feature has a key role in situations
	 where you cannot trust the current state of CPUs (for
	 example, at very early stages of boot), as you want to
	 avoid your thread to migrate on inactive CPUs. Since
	 sched_bind and
	 sched_unbind manipulate internal
	 scheduler structures, they need to be enclosed in
	 sched_lock acquisition/releasing when
	 used.
3.2.2. Proc structure
Various emulation layers sometimes require some
	 additional per-process data. It can manage separate
	 structures (a list, a tree etc.) containing these data for
	 every process but this tends to be slow and memory
	 consuming. To solve this problem the FreeBSD
	 proc structure contains
	 p_emuldata, which is a void pointer to
	 some emulation layer specific data. This
	 proc entry is protected by the proc
	 mutex.
The FreeBSD proc structure contains a
	 p_sysent entry that identifies, which ABI
	 this process is running. In fact, it is a pointer to the
	 sysentvec described above. So by
	 comparing this pointer to the address where the
	 sysentvec structure for the given ABI is
	 stored we can effectively determine whether the process
	 belongs to our emulation layer. The code typically looks
	 like:
if (__predict_true(p->p_sysent != &elf_Linux®_sysvec))
	 return;
As you can see, we effectively use the
	 __predict_true modifier to collapse the
	 most common case (FreeBSD process) to a simple return operation
	 thus preserving high performance. This code should be
	 turned into a macro because currently it is not very
	 flexible, i.e. we do not support Linux®64 emulation nor
	 A.OUT Linux® processes on i386.
3.2.3. VFS
The FreeBSD VFS subsystem is very complex but the Linux®
	 emulation layer uses just a small subset via a well defined
	 API. It can either operate on vnodes or file handlers.
	 Vnode represents a virtual vnode, i.e. representation of a
	 node in VFS. Another representation is a file handler,
	 which represents an opened file from the perspective of a
	 process. A file handler can represent a socket or an
	 ordinary file. A file handler contains a pointer to its
	 vnode. More then one file handler can point to the same
	 vnode.
3.2.3.1. namei
The namei(9) routine is a central entry point to
	 pathname lookup and translation. It traverses the path
	 point by point from the starting point to the end point
	 using lookup function, which is internal to VFS. The
	 namei(9) syscall can cope with symlinks, absolute and
	 relative paths. When a path is looked up using
	 namei(9) it is inputed to the name cache. This
	 behavior can be suppressed. This routine is used all over
	 the kernel and its performance is very critical.
3.2.3.2. vn_fullpath
The vn_fullpath(9) function takes the best effort
	 to traverse VFS name cache and returns a path for a given
	 (locked) vnode. This process is unreliable but works just
	 fine for the most common cases. The unreliability is
	 because it relies on VFS cache (it does not traverse the
	 on medium structures), it does not work with hardlinks,
	 etc. This routine is used in several places in the
	 Linuxulator.
3.2.3.3. Vnode operations
	fgetvp - given a thread and a
		file descriptor number it returns the associated
		vnode

	vn_lock(9) - locks a vnode

	vn_unlock - unlocks a
		vnode

	VOP_READDIR(9) - reads a directory referenced
		by a vnode

	VOP_GETATTR(9) - gets attributes of a file or
		a directory referenced by a vnode

	VOP_LOOKUP(9) - looks up a path to a given
		directory

	VOP_OPEN(9) - opens a file referenced by a
		vnode

	VOP_CLOSE(9) - closes a file referenced by a
		vnode

	vput(9) - decrements the use count for a
		vnode and unlocks it

	vrele(9) - decrements the use count for a
		vnode

	vref(9) - increments the use count for a
		vnode

3.2.3.4. File handler operations
	fget - given a thread and a
		file descriptor number it returns associated file
		handler and references it

	fdrop - drops a reference to
		a file handler

	fhold - references a file
		handler

4. Linux® emulation layer -MD part
This section deals with implementation of Linux® emulation
 layer in FreeBSD operating system. It first describes the machine
 dependent part talking about how and where interaction between
 userland and kernel is implemented. It talks about syscalls,
 signals, ptrace, traps, stack fixup. This part discusses i386
 but it is written generally so other architectures should not
 differ very much. The next part is the machine independent part
 of the Linuxulator. This section only covers i386 and ELF
 handling. A.OUT is obsolete and untested.
4.1. Syscall handling
Syscall handling is mostly written in
	linux_sysvec.c, which covers most of the
	routines pointed out in the sysentvec
	structure. When a Linux® process running on FreeBSD issues a
	syscall, the general syscall routine calls linux prepsyscall
	routine for the Linux® ABI.
4.1.1. Linux® prepsyscall
Linux® passes arguments to syscalls via registers (that
	 is why it is limited to 6 parameters on i386) while FreeBSD
	 uses the stack. The Linux® prepsyscall routine must copy
	 parameters from registers to the stack. The order of the
	 registers is: %ebx,
	 %ecx, %edx,
	 %esi, %edi,
	 %ebp. The catch is that this is true for
	 only most of the syscalls. Some (most
	 notably clone) uses a different order
	 but it is luckily easy to fix by inserting a dummy parameter
	 in the linux_clone prototype.
4.1.2. Syscall writing
Every syscall implemented in the Linuxulator must have
	 its prototype with various flags in
	 syscalls.master. The form of the file
	 is:
...
	AUE_FORK STD		{ int linux_fork(void); }
...
	AUE_CLOSE NOPROTO	{ int close(int fd); }
...
The first column represents the syscall number. The
	 second column is for auditing support. The third column
	 represents the syscall type. It is either
	 STD, OBSOL,
	 NOPROTO and UNIMPL.
	 STD is a standard syscall with full
	 prototype and implementation. OBSOL is
	 obsolete and defines just the prototype.
	 NOPROTO means that the syscall is
	 implemented elsewhere so do not prepend ABI prefix, etc.
	 UNIMPL means that the syscall will be
	 substituted with the nosys syscall (a
	 syscall just printing out a message about the syscall not
	 being implemented and returning
	 ENOSYS).
From syscalls.master a script
	 generates three files: linux_syscall.h,
	 linux_proto.h and
	 linux_sysent.c. The
	 linux_syscall.h contains definitions of
	 syscall names and their numerical value, e.g.:
...
#define LINUX_SYS_linux_fork 2
...
#define LINUX_SYS_close 6
...
The linux_proto.h contains
	 structure definitions of arguments to every syscall,
	 e.g.:
struct linux_fork_args {
 register_t dummy;
};
And finally, linux_sysent.c
	 contains structure describing the system entry table, used
	 to actually dispatch a syscall, e.g.:
{ 0, (sy_call_t *)linux_fork, AUE_FORK, NULL, 0, 0 }, /* 2 = linux_fork */
{ AS(close_args), (sy_call_t *)close, AUE_CLOSE, NULL, 0, 0 }, /* 6 = close */
As you can see linux_fork is
	 implemented in Linuxulator itself so the definition is of
	 STD type and has no argument, which is
	 exhibited by the dummy argument structure. On the other
	 hand close is just an alias for real
	 FreeBSD close(2) so it has no linux arguments structure
	 associated and in the system entry table it is not prefixed
	 with linux as it calls the real close(2) in the
	 kernel.
4.1.3. Dummy syscalls
The Linux® emulation layer is not complete, as some
	 syscalls are not implemented properly and some are not
	 implemented at all. The emulation layer employs a facility
	 to mark unimplemented syscalls with the
	 DUMMY macro. These dummy definitions
	 reside in linux_dummy.c in a form of
	 DUMMY(syscall);, which is then translated
	 to various syscall auxiliary files and the implementation
	 consists of printing a message saying that this syscall is
	 not implemented. The UNIMPL prototype is
	 not used because we want to be able to identify the name of
	 the syscall that was called in order to know what syscalls
	 are more important to implement.
4.2. Signal handling
Signal handling is done generally in the FreeBSD kernel for
	all binary compatibilities with a call to a compat-dependent
	layer. Linux® compatibility layer defines
	linux_sendsig routine for this
	purpose.
4.2.1. Linux® sendsig
This routine first checks whether the signal has been
	 installed with a SA_SIGINFO in which case
	 it calls linux_rt_sendsig routine
	 instead. Furthermore, it allocates (or reuses an already
	 existing) signal handle context, then it builds a list of
	 arguments for the signal handler. It translates the signal
	 number based on the signal translation table, assigns a
	 handler, translates sigset. Then it saves context for the
	 sigreturn routine (various registers,
	 translated trap number and signal mask). Finally, it copies
	 out the signal context to the userspace and prepares context
	 for the actual signal handler to run.
4.2.2. linux_rt_sendsig
This routine is similar to
	 linux_sendsig just the signal context
	 preparation is different. It adds
	 siginfo, ucontext, and
	 some POSIX® parts. It might be worth considering whether
	 those two functions could not be merged with a benefit of
	 less code duplication and possibly even faster
	 execution.
4.2.3. linux_sigreturn
This syscall is used for return from the signal handler.
	 It does some security checks and restores the original
	 process context. It also unmasks the signal in process
	 signal mask.
4.3. Ptrace
Many UNIX® derivates implement the ptrace(2) syscall
	in order to allow various tracking and debugging features.
	This facility enables the tracing process to obtain various
	information about the traced process, like register dumps, any
	memory from the process address space, etc. and also to trace
	the process like in stepping an instruction or between system
	entries (syscalls and traps). ptrace(2) also lets you
	set various information in the traced process (registers
	etc.). ptrace(2) is a UNIX®-wide standard implemented
	in most UNIX®es around the world.
Linux® emulation in FreeBSD implements the ptrace(2)
	facility in linux_ptrace.c. The routines
	for converting registers between Linux® and FreeBSD and the
	actual ptrace(2) syscall emulation syscall. The syscall
	is a long switch block that implements its counterpart in FreeBSD
	for every ptrace(2) command. The ptrace(2) commands
	are mostly equal between Linux® and FreeBSD so usually just a
	small modification is needed. For example,
	PT_GETREGS in Linux® operates on direct
	data while FreeBSD uses a pointer to the data so after performing
	a (native) ptrace(2) syscall, a copyout must be done to
	preserve Linux® semantics.
The ptrace(2) implementation in Linuxulator has some
	known weaknesses. There have been panics seen when using
	strace (which is a ptrace(2) consumer)
	in the Linuxulator environment. Also
	PT_SYSCALL is not implemented.
4.4. Traps
Whenever a Linux® process running in the emulation layer
	traps the trap itself is handled transparently with the only
	exception of the trap translation. Linux® and FreeBSD differs
	in opinion on what a trap is so this is dealt with here. The
	code is actually very short:
static int
translate_traps(int signal, int trap_code)
{

 if (signal != SIGBUS)
 return signal;

 switch (trap_code) {

 case T_PROTFLT:
 case T_TSSFLT:
 case T_DOUBLEFLT:
 case T_PAGEFLT:
 return SIGSEGV;

 default:
 return signal;
 }
}
4.5. Stack fixup
The RTLD run-time link-editor expects so called AUX tags
	on stack during an execve so a fixup must
	be done to ensure this. Of course, every RTLD system is
	different so the emulation layer must provide its own stack
	fixup routine to do this. So does Linuxulator. The
	elf_linux_fixup simply copies out AUX
	tags to the stack and adjusts the stack of the user space
	process to point right after those tags. So RTLD works in a
	smart way.
4.6. A.OUT support
The Linux® emulation layer on i386 also supports Linux®
	A.OUT binaries. Pretty much everything described in the
	previous sections must be implemented for A.OUT support
	(beside traps translation and signals sending). The support
	for A.OUT binaries is no longer maintained, especially the 2.6
	emulation does not work with it but this does not cause any
	problem, as the linux-base in ports probably do not support
	A.OUT binaries at all. This support will probably be removed
	in future. Most of the stuff necessary for loading Linux®
	A.OUT binaries is in imgact_linux.c
	file.
5. Linux® emulation layer -MI part
This section talks about machine independent part of the
 Linuxulator. It covers the emulation infrastructure needed for
 Linux® 2.6 emulation, the thread local storage (TLS)
 implementation (on i386) and futexes. Then we talk briefly
 about some syscalls.
5.1. Description of NPTL
One of the major areas of progress in development of
	Linux® 2.6 was threading. Prior to 2.6, the Linux®
	threading support was implemented in the
	linuxthreads library. The library
	was a partial implementation of POSIX® threading. The
	threading was implemented using separate processes for each
	thread using the clone syscall to let
	them share the address space (and other things). The main
	weaknesses of this approach was that every thread had a
	different PID, signal handling was broken (from the pthreads
	perspective), etc. Also the performance was not very good
	(use of SIGUSR signals for threads
	synchronization, kernel resource consumption, etc.) so to
	overcome these problems a new threading system was developed
	and named NPTL.
The NPTL library focused on two things but a third thing
	came along so it is usually considered a part of NPTL. Those
	two things were embedding of threads into a process structure
	and futexes. The additional third thing was TLS, which is not
	directly required by NPTL but the whole NPTL userland library
	depends on it. Those improvements yielded in much improved
	performance and standards conformance. NPTL is a standard
	threading library in Linux® systems these days.
The FreeBSD Linuxulator implementation approaches the NPTL in
	three main areas. The TLS, futexes and PID mangling, which is
	meant to simulate the Linux® threads. Further sections
	describe each of these areas.
5.2. Linux® 2.6 emulation infrastructure
These sections deal with the way Linux® threads are
	managed and how we simulate that in FreeBSD.
5.2.1. Runtime determining of 2.6 emulation
The Linux® emulation layer in FreeBSD supports runtime
	 setting of the emulated version. This is done via
	 sysctl(8), namely
	 compat.linux.osrelease. Setting this
	 sysctl(8) affects runtime behavior of the emulation
	 layer. When set to 2.6.x it sets the value of
	 linux_use_linux26 while setting to
	 something else keeps it unset. This variable (plus
	 per-prison variables of the very same kind) determines
	 whether 2.6 infrastructure (mainly PID mangling) is used in
	 the code or not. The version setting is done system-wide
	 and this affects all Linux® processes. The sysctl(8)
	 should not be changed when running any Linux® binary as it
	 might harm things.
5.2.2. Linux® processes and thread identifiers
The semantics of Linux® threading are a little
	 confusing and uses entirely different nomenclature to FreeBSD.
	 A process in Linux® consists of a struct
	 task embedding two identifier fields - PID and
	 TGID. PID is not a process ID but it
	 is a thread ID. The TGID identifies a thread group in other
	 words a process. For single-threaded process the PID equals
	 the TGID.
The thread in NPTL is just an ordinary process that
	 happens to have TGID not equal to PID and have a group
	 leader not equal to itself (and shared VM etc. of course).
	 Everything else happens in the same way as to an ordinary
	 process. There is no separation of a shared status to some
	 external structure like in FreeBSD. This creates some
	 duplication of information and possible data inconsistency.
	 The Linux® kernel seems to use task -> group information
	 in some places and task information elsewhere and it is
	 really not very consistent and looks error-prone.
Every NPTL thread is created by a call to the
	 clone syscall with a specific set of
	 flags (more in the next subsection). The NPTL implements
	 strict 1:1 threading.
In FreeBSD we emulate NPTL threads with ordinary FreeBSD
	 processes that share VM space, etc. and the PID gymnastic is
	 just mimicked in the emulation specific structure attached
	 to the process. The structure attached to the process looks
	 like:
struct linux_emuldata {
 pid_t pid;

 int *child_set_tid; /* in clone(): Child.s TID to set on clone */
 int *child_clear_tid;/* in clone(): Child.s TID to clear on exit */

 struct linux_emuldata_shared *shared;

 int pdeath_signal; /* parent death signal */

 LIST_ENTRY(linux_emuldata) threads; /* list of linux threads */
};
The PID is used to identify the FreeBSD process that
	 attaches this structure. The
	 child_se_tid and
	 child_clear_tid are used for TID
	 address copyout when a process exits and is created. The
	 shared pointer points to a structure
	 shared among threads. The pdeath_signal
	 variable identifies the parent death signal and the
	 threads pointer is used to link this
	 structure to the list of threads. The
	 linux_emuldata_shared structure looks
	 like:
struct linux_emuldata_shared {

 int refs;

 pid_t group_pid;

 LIST_HEAD(, linux_emuldata) threads; /* head of list of linux threads */
};
The refs is a reference counter being
	 used to determine when we can free the structure to avoid
	 memory leaks. The group_pid is to
	 identify PID (= TGID) of the whole process (= thread
	 group). The threads pointer is the head
	 of the list of threads in the process.
The linux_emuldata structure can be
	 obtained from the process using
	 em_find. The prototype of the function
	 is:
struct linux_emuldata *em_find(struct proc *, int locked);
Here, proc is the process we want the
	 emuldata structure from and the locked parameter determines
	 whether we want to lock or not. The accepted values are
	 EMUL_DOLOCK and
	 EMUL_DOUNLOCK. More about locking
	 later.
5.2.3. PID mangling
As there is a difference in view as what to the idea of a
	 process ID and thread ID is between FreeBSD and Linux® we have
	 to translate the view somehow. We do it by PID mangling.
	 This means that we fake what a PID (=TGID) and TID (=PID) is
	 between kernel and userland. The rule of thumb is that in
	 kernel (in Linuxulator) PID = PID and TGID = shared ->
	 group pid and to userland we present PID = shared
	 -> group_pid and TID = proc ->
	 p_pid. The PID member of
	 linux_emuldata structure is a FreeBSD
	 PID.
The above affects mainly getpid, getppid, gettid
	 syscalls. Where we use PID/TGID respectively. In copyout
	 of TIDs in child_clear_tid and
	 child_set_tid we copy out FreeBSD
	 PID.
5.2.4. Clone syscall
The clone syscall is the way
	 threads are created in Linux®. The syscall prototype looks
	 like this:
int linux_clone(l_int flags, void *stack, void *parent_tidptr, int dummy,
void * child_tidptr);
The flags parameter tells the syscall
	 how exactly the processes should be cloned. As described
	 above, Linux® can create processes sharing various things
	 independently, for example two processes can share file
	 descriptors but not VM, etc. Last byte of the
	 flags parameter is the exit signal of the
	 newly created process. The stack
	 parameter if non-NULL tells, where the
	 thread stack is and if it is NULL we are
	 supposed to copy-on-write the calling process stack (i.e. do
	 what normal fork(2) routine does). The
	 parent_tidptr parameter is used as an
	 address for copying out process PID (i.e. thread id) once
	 the process is sufficiently instantiated but is not runnable
	 yet. The dummy parameter is here because
	 of the very strange calling convention of this syscall on
	 i386. It uses the registers directly and does not let the
	 compiler do it what results in the need of a dummy syscall.
	 The child_tidptr parameter is used as an
	 address for copying out PID once the process has finished
	 forking and when the process exits.
The syscall itself proceeds by setting corresponding
	 flags depending on the flags passed in. For example,
	 CLONE_VM maps to RFMEM (sharing of VM),
	 etc. The only nit here is CLONE_FS and
	 CLONE_FILES because FreeBSD does not allow
	 setting this separately so we fake it by not setting RFFDG
	 (copying of fd table and other fs information) if either of
	 these is defined. This does not cause any problems, because
	 those flags are always set together. After setting the
	 flags the process is forked using the internal
	 fork1 routine, the process is
	 instrumented not to be put on a run queue, i.e. not to be
	 set runnable. After the forking is done we possibly
	 reparent the newly created process to emulate
	 CLONE_PARENT semantics. Next part is
	 creating the emulation data. Threads in Linux® does not
	 signal their parents so we set exit signal to be 0 to
	 disable this. After that setting of
	 child_set_tid and
	 child_clear_tid is performed enabling the
	 functionality later in the code. At this point we copy out
	 the PID to the address specified by
	 parent_tidptr. The setting of process
	 stack is done by simply rewriting thread frame
	 %esp register (%rsp on
	 amd64). Next part is setting up TLS for the newly created
	 process. After this vfork(2) semantics might be
	 emulated and finally the newly created process is put on a
	 run queue and copying out its PID to the parent process via
	 clone return value is done.
The clone syscall is able and in
	 fact is used for emulating classic fork(2) and
	 vfork(2) syscalls. Newer glibc in a case of 2.6 kernel
	 uses clone to implement fork(2)
	 and vfork(2) syscalls.
5.2.5. Locking
The locking is implemented to be per-subsystem because
	 we do not expect a lot of contention on these. There are
	 two locks: emul_lock used to protect
	 manipulating of linux_emuldata and
	 emul_shared_lock used to manipulate
	 linux_emuldata_shared. The
	 emul_lock is a nonsleepable blocking
	 mutex while emul_shared_lock is a
	 sleepable blocking sx_lock. Due to
	 the per-subsystem locking we can coalesce some locks and
	 that is why the em find offers the non-locking
	 access.
5.3. TLS
This section deals with TLS also known as thread local
	storage.
5.3.1. Introduction to threading
Threads in computer science are entities within a
	 process that can be scheduled independently from each other.
	 The threads in the process share process wide data (file
	 descriptors, etc.) but also have their own stack for their
	 own data. Sometimes there is a need for process-wide data
	 specific to a given thread. Imagine a name of the thread in
	 execution or something like that. The traditional UNIX®
	 threading API, pthreads provides
	 a way to do it via pthread_key_create(3),
	 pthread_setspecific(3) and pthread_getspecific(3)
	 where a thread can create a key to the thread local data and
	 using pthread_getspecific(3) or
	 pthread_getspecific(3) to manipulate those data. You
	 can easily see that this is not the most comfortable way
	 this could be accomplished. So various producers of C/C++
	 compilers introduced a better way. They defined a new
	 modifier keyword thread that specifies that a variable is
	 thread specific. A new method of accessing such variables
	 was developed as well (at least on i386). The
	 pthreads method tends to be
	 implemented in userspace as a trivial lookup table. The
	 performance of such a solution is not very good. So the new
	 method uses (on i386) segment registers to address a
	 segment, where TLS area is stored so the actual accessing of
	 a thread variable is just appending the segment register to
	 the address thus addressing via it. The segment registers
	 are usually %gs and
	 %fs acting like segment selectors. Every
	 thread has its own area where the thread local data are
	 stored and the segment must be loaded on every context
	 switch. This method is very fast and used almost
	 exclusively in the whole i386 UNIX® world. Both FreeBSD and
	 Linux® implement this approach and it yields very good
	 results. The only drawback is the need to reload the
	 segment on every context switch which can slowdown context
	 switches. FreeBSD tries to avoid this overhead by using only 1
	 segment descriptor for this while Linux® uses 3.
	 Interesting thing is that almost nothing uses more than 1
	 descriptor (only Wine seems to
	 use 2) so Linux® pays this unnecessary price for context
	 switches.
5.3.2. Segments on i386
The i386 architecture implements the so called segments.
	 A segment is a description of an area of memory. The base
	 address (bottom) of the memory area, the end of it
	 (ceiling), type, protection, etc. The memory described by a
	 segment can be accessed using segment selector registers
	 (%cs, %ds,
	 %ss, %es,
	 %fs, %gs). For
	 example let us suppose we have a segment which base address
	 is 0x1234 and length and this code:
mov %edx,%gs:0x10
This will load the content of the
	 %edx register into memory location
	 0x1244. Some segment registers have a special use, for
	 example %cs is used for code segment and
	 %ss is used for stack segment but
	 %fs and %gs are
	 generally unused. Segments are either stored in a global
	 GDT table or in a local LDT table. LDT is accessed via an
	 entry in the GDT. The LDT can store more types of segments.
	 LDT can be per process. Both tables define up to 8191
	 entries.
5.3.3. Implementation on Linux® i386
There are two main ways of setting up TLS in Linux®.
	 It can be set when cloning a process using the
	 clone syscall or it can call
	 set_thread_area. When a process passes
	 CLONE_SETTLS flag to
	 clone, the kernel expects the memory
	 pointed to by the %esi register a Linux®
	 user space representation of a segment, which gets
	 translated to the machine representation of a segment and
	 loaded into a GDT slot. The GDT slot can be specified with
	 a number or -1 can be used meaning that the system itself
	 should choose the first free slot. In practice, the vast
	 majority of programs use only one TLS entry and does not
	 care about the number of the entry. We exploit this in the
	 emulation and in fact depend on it.
5.3.4. Emulation of Linux® TLS
5.3.4.1. i386
Loading of TLS for the current thread happens by
	 calling set_thread_area while loading
	 TLS for a second process in clone is
	 done in the separate block in clone.
	 Those two functions are very similar. The only difference
	 being the actual loading of the GDT segment, which happens
	 on the next context switch for the newly created process
	 while set_thread_area must load this
	 directly. The code basically does this. It copies the
	 Linux® form segment descriptor from the userland. The
	 code checks for the number of the descriptor but because
	 this differs between FreeBSD and Linux® we fake it a little.
	 We only support indexes of 6, 3 and -1. The 6 is genuine
	 Linux® number, 3 is genuine FreeBSD one and -1 means
	 autoselection. Then we set the descriptor number to
	 constant 3 and copy out this to the userspace. We rely on
	 the userspace process using the number from the descriptor
	 but this works most of the time (have never seen a case
	 where this did not work) as the userspace process
	 typically passes in 1. Then we convert the descriptor
	 from the Linux® form to a machine dependant form (i.e.
	 operating system independent form) and copy this to the
	 FreeBSD defined segment descriptor. Finally we can load it.
	 We assign the descriptor to threads PCB (process control
	 block) and load the %gs segment using
	 load_gs. This loading must be done
	 in a critical section so that nothing can interrupt us.
	 The CLONE_SETTLS case works exactly
	 like this just the loading using
	 load_gs is not performed. The
	 segment used for this (segment number 3) is shared for
	 this use between FreeBSD processes and Linux® processes so
	 the Linux® emulation layer does not add any overhead over
	 plain FreeBSD.
5.3.4.2. amd64
The amd64 implementation is similar to the i386 one
	 but there was initially no 32bit segment descriptor used
	 for this purpose (hence not even native 32bit TLS users
	 worked) so we had to add such a segment and implement its
	 loading on every context switch (when a flag signaling use
	 of 32bit is set). Apart from this the TLS loading is
	 exactly the same just the segment numbers are different
	 and the descriptor format and the loading differs
	 slightly.
5.4. Futexes
5.4.1. Introduction to synchronization
Threads need some kind of synchronization and POSIX®
	 provides some of them: mutexes for mutual exclusion,
	 read-write locks for mutual exclusion with biased ratio of
	 reads and writes and condition variables for signaling a
	 status change. It is interesting to note that POSIX®
	 threading API lacks support for semaphores. Those
	 synchronization routines implementations are heavily
	 dependant on the type threading support we have. In pure
	 1:M (userspace) model the implementation can be solely done
	 in userspace and thus be very fast (the condition variables
	 will probably end up being implemented using signals, i.e.
	 not fast) and simple. In 1:1 model, the situation is also
	 quite clear - the threads must be synchronized using kernel
	 facilities (which is very slow because a syscall must be
	 performed). The mixed M:N scenario just combines the first
	 and second approach or rely solely on kernel. Threads
	 synchronization is a vital part of thread-enabled
	 programming and its performance can affect resulting program
	 a lot. Recent benchmarks on FreeBSD operating system showed
	 that an improved sx_lock implementation yielded 40% speedup
	 in ZFS (a heavy sx user), this is
	 in-kernel stuff but it shows clearly how important the
	 performance of synchronization primitives is.
Threaded programs should be written with as little
	 contention on locks as possible. Otherwise, instead of
	 doing useful work the thread just waits on a lock. As a result
	 of this, the most well written threaded programs show little
	 locks contention.
5.4.2. Futexes introduction
Linux® implements 1:1 threading, i.e. it has to use
	 in-kernel synchronization primitives. As stated earlier,
	 well written threaded programs have little lock contention.
	 So a typical sequence could be performed as two atomic
	 increase/decrease mutex reference counter, which is very
	 fast, as presented by the following example:
pthread_mutex_lock(&mutex);
....
pthread_mutex_unlock(&mutex);
1:1 threading forces us to perform two syscalls for
	 those mutex calls, which is very slow.
The solution Linux® 2.6 implements is called
	 futexes. Futexes implement the check for contention in
	 userspace and call kernel primitives only in a case of
	 contention. Thus the typical case takes place without any
	 kernel intervention. This yields reasonably fast and
	 flexible synchronization primitives implementation.
5.4.3. Futex API
The futex syscall looks like this:
int futex(void *uaddr, int op, int val, struct timespec *timeout, void *uaddr2, int val3);
In this example uaddr is an address
	 of the mutex in userspace, op is an
	 operation we are about to perform and the other parameters
	 have per-operation meaning.
Futexes implement the following operations:
	FUTEX_WAIT

	FUTEX_WAKE

	FUTEX_FD

	FUTEX_REQUEUE

	FUTEX_CMP_REQUEUE

	FUTEX_WAKE_OP

5.4.3.1. FUTEX_WAIT
This operation verifies that on address
	 uaddr the value val
	 is written. If not, EWOULDBLOCK is
	 returned, otherwise the thread is queued on the futex and
	 gets suspended. If the argument
	 timeout is non-zero it specifies the
	 maximum time for the sleeping, otherwise the sleeping is
	 infinite.
5.4.3.2. FUTEX_WAKE
This operation takes a futex at
	 uaddr and wakes up
	 val first futexes queued on this
	 futex.
5.4.3.3. FUTEX_FD
This operations associates a file descriptor with a
	 given futex.
5.4.3.4. FUTEX_REQUEUE
This operation takes val threads
	 queued on futex at uaddr, wakes them
	 up, and takes val2 next threads and
	 requeues them on futex at
	 uaddr2.
5.4.3.5. FUTEX_CMP_REQUEUE
This operation does the same as
	 FUTEX_REQUEUE but it checks that
	 val3 equals to val
	 first.
5.4.3.6. FUTEX_WAKE_OP
This operation performs an atomic operation on
	 val3 (which contains coded some other
	 value) and uaddr. Then it wakes up
	 val threads on futex at
	 uaddr and if the atomic operation
	 returned a positive number it wakes up
	 val2 threads on futex at
	 uaddr2.
The operations implemented in
	 FUTEX_WAKE_OP:
	FUTEX_OP_SET

	FUTEX_OP_ADD

	FUTEX_OP_OR

	FUTEX_OP_AND

	FUTEX_OP_XOR

Note:
There is no val2 parameter in the
	 futex prototype. The val2 is taken
	 from the struct timespec *timeout
	 parameter for operations
	 FUTEX_REQUEUE,
	 FUTEX_CMP_REQUEUE and
	 FUTEX_WAKE_OP.

5.4.4. Futex emulation in FreeBSD
The futex emulation in FreeBSD is taken from NetBSD and
	 further extended by us. It is placed in
	 linux_futex.c and
	 linux_futex.h files. The
	 futex structure looks like:
struct futex {
 void *f_uaddr;
 int f_refcount;

 LIST_ENTRY(futex) f_list;

 TAILQ_HEAD(lf_waiting_paroc, waiting_proc) f_waiting_proc;
};
And the structure waiting_proc
	 is:
struct waiting_proc {

 struct thread *wp_t;

 struct futex *wp_new_futex;

 TAILQ_ENTRY(waiting_proc) wp_list;
};
5.4.4.1. futex_get / futex_put
A futex is obtained using the
	 futex_get function, which searches a
	 linear list of futexes and returns the found one or
	 creates a new futex. When releasing a futex from the use
	 we call the futex_put function, which
	 decreases a reference counter of the futex and if the
	 refcount reaches zero it is released.
5.4.4.2. futex_sleep
When a futex queues a thread for sleeping it creates a
	 working_proc structure and puts this
	 structure to the list inside the futex structure then it
	 just performs a tsleep(9) to suspend the thread. The
	 sleep can be timed out. After tsleep(9) returns (the
	 thread was woken up or it timed out) the
	 working_proc structure is removed from
	 the list and is destroyed. All this is done in the
	 futex_sleep function. If we got
	 woken up from futex_wake we have
	 wp_new_futex set so we sleep on it.
	 This way the actual requeueing is done in this
	 function.
5.4.4.3. futex_wake
Waking up a thread sleeping on a futex is performed in
	 the futex_wake function. First in
	 this function we mimic the strange Linux® behavior, where
	 it wakes up N threads for all operations, the only
	 exception is that the REQUEUE operations are performed on
	 N+1 threads. But this usually does not make any
	 difference as we are waking up all threads. Next in the
	 function in the loop we wake up n threads, after this we
	 check if there is a new futex for requeueing. If so, we
	 requeue up to n2 threads on the new futex. This
	 cooperates with futex_sleep.
5.4.4.4. futex_wake_op
The FUTEX_WAKE_OP operation is
	 quite complicated. First we obtain two futexes at
	 addresses uaddr and
	 uaddr2 then we perform the atomic
	 operation using val3 and
	 uaddr2. Then val
	 waiters on the first futex is woken up and if the atomic
	 operation condition holds we wake up
	 val2 (i.e. timeout)
	 waiter on the second futex.
5.4.4.5. futex atomic operation
The atomic operation takes two parameters
	 encoded_op and
	 uaddr. The encoded operation encodes
	 the operation itself, comparing value, operation argument,
	 and comparing argument. The pseudocode for the operation
	 is like this one:
oldval = *uaddr2
*uaddr2 = oldval OP oparg
And this is done atomically. First a copying in of
	 the number at uaddr is performed and
	 the operation is done. The code handles page faults and
	 if no page fault occurs oldval is
	 compared to cmparg argument with cmp
	 comparator.
5.4.4.6. Futex locking
Futex implementation uses two lock lists protecting
	 sx_lock and global locks (either
	 Giant or another sx_lock). Every
	 operation is performed locked from the start to the very
	 end.
5.5. Various syscalls implementation
In this section I am going to describe some smaller
	syscalls that are worth mentioning because their
	implementation is not obvious or those syscalls are
	interesting from other point of view.
5.5.1. *at family of syscalls
During development of Linux® 2.6.16 kernel, the *at
	 syscalls were added. Those syscalls
	 (openat for example) work exactly like
	 their at-less counterparts with the slight exception of the
	 dirfd parameter. This parameter changes
	 where the given file, on which the syscall is to be
	 performed, is. When the filename
	 parameter is absolute dirfd is ignored
	 but when the path to the file is relative, it comes to the
	 play. The dirfd parameter is a directory
	 relative to which the relative pathname is checked. The
	 dirfd parameter is a file descriptor of
	 some directory or AT_FDCWD. So for
	 example the openat syscall can be like
	 this:
file descriptor 123 = /tmp/foo/, current working directory = /tmp/

openat(123, /tmp/bah\, flags, mode)	/* opens /tmp/bah */
openat(123, bah\, flags, mode)		/* opens /tmp/foo/bah */
openat(AT_FDWCWD, bah\, flags, mode)	/* opens /tmp/bah */
openat(stdio, bah\, flags, mode)	/* returns error because stdio is not a directory */
This infrastructure is necessary to avoid races when
	 opening files outside the working directory. Imagine that a
	 process consists of two threads, thread A and
	 thread B. Thread A issues
	 open(./tmp/foo/bah., flags, mode) and
	 before returning it gets preempted and thread B runs.
	 Thread B does not care about the needs of thread A
	 and renames or removes /tmp/foo/. We
	 got a race. To avoid this we can open
	 /tmp/foo and use it as
	 dirfd for openat
	 syscall. This also enables user to implement per-thread
	 working directories.
Linux® family of *at syscalls contains:
	 linux_openat,
	 linux_mkdirat,
	 linux_mknodat,
	 linux_fchownat,
	 linux_futimesat,
	 linux_fstatat64,
	 linux_unlinkat,
	 linux_renameat,
	 linux_linkat,
	 linux_symlinkat,
	 linux_readlinkat,
	 linux_fchmodat and
	 linux_faccessat. All these are
	 implemented using the modified namei(9) routine and
	 simple wrapping layer.
5.5.1.1. Implementation
The implementation is done by altering the
	 namei(9) routine (described above) to take additional
	 parameter dirfd in its
	 nameidata structure, which specifies
	 the starting point of the pathname lookup instead of using
	 the current working directory every time. The resolution
	 of dirfd from file descriptor number to
	 a vnode is done in native *at syscalls. When
	 dirfd is AT_FDCWD
	 the dvp entry in
	 nameidata structure is
	 NULL but when dirfd
	 is a different number we obtain a file for this file
	 descriptor, check whether this file is valid and if there
	 is vnode attached to it then we get a vnode. Then we
	 check this vnode for being a directory. In the actual
	 namei(9) routine we simply substitute the
	 dvp vnode for dp
	 variable in the namei(9) function, which determines
	 the starting point. The namei(9) is not used
	 directly but via a trace of different functions on various
	 levels. For example the openat goes
	 like this:
openat() --> kern_openat() --> vn_open() -> namei()
For this reason kern_open and
	 vn_open must be altered to
	 incorporate the additional dirfd
	 parameter. No compat layer is created for those because
	 there are not many users of this and the users can be
	 easily converted. This general implementation enables
	 FreeBSD to implement their own *at syscalls. This is being
	 discussed right now.
5.5.2. Ioctl
The ioctl interface is quite fragile due to its
	 generality. We have to bear in mind that devices differ
	 between Linux® and FreeBSD so some care must be applied to do
	 ioctl emulation work right. The ioctl handling is
	 implemented in linux_ioctl.c, where
	 linux_ioctl function is defined. This
	 function simply iterates over sets of ioctl handlers to find
	 a handler that implements a given command. The ioctl
	 syscall has three parameters, the file descriptor, command
	 and an argument. The command is a 16-bit number, which in
	 theory is divided into high 8 bits determining class of
	 the ioctl command and low 8 bits, which are the actual
	 command within the given set. The emulation takes advantage
	 of this division. We implement handlers for each set, like
	 sound_handler or
	 disk_handler. Each handler has a
	 maximum command and a minimum command defined, which is used
	 for determining what handler is used. There are slight
	 problems with this approach because Linux® does not use the
	 set division consistently so sometimes ioctls for a
	 different set are inside a set they should not belong to
	 (SCSI generic ioctls inside cdrom set, etc.). FreeBSD
	 currently does not implement many Linux® ioctls (compared
	 to NetBSD, for example) but the plan is to port those from
	 NetBSD. The trend is to use Linux® ioctls even in the
	 native FreeBSD drivers because of the easy porting of
	 applications.
5.5.3. Debugging
Every syscall should be debuggable. For this purpose we
	 introduce a small infrastructure. We have the ldebug
	 facility, which tells whether a given syscall should be
	 debugged (settable via a sysctl). For printing we have LMSG
	 and ARGS macros. Those are used for altering a printable
	 string for uniform debugging messages.
6. Conclusion
6.1. Results
As of April 2007 the Linux® emulation layer is capable of
	emulating the Linux® 2.6.16 kernel quite well. The
	remaining problems concern futexes, unfinished *at family of
	syscalls, problematic signals delivery, missing
	epoll and inotify
	and probably some bugs we have not discovered yet. Despite
	this we are capable of running basically all the Linux®
	programs included in FreeBSD Ports Collection with
	Fedora Core 4 at 2.6.16 and there are some
	rudimentary reports of success with Fedora Core 6 at
	2.6.16. The Fedora Core 6 linux_base was recently
	committed enabling some further testing of the emulation layer
	and giving us some more hints where we should put our effort
	in implementing missing stuff.
We are able to run the most used applications like
	www/linux-firefox,
	net-im/skype and some games from the
	Ports Collection. Some of the programs exhibit bad
	behavior under 2.6 emulation but this is currently under
	investigation and hopefully will be fixed soon. The only big
	application that is known not to work is the Linux® Java™
	Development Kit and this is because of the requirement of
	epoll facility which is not directly
	related to the Linux® kernel 2.6.
We hope to enable 2.6.16 emulation by default some time
	after FreeBSD 7.0 is released at least to expose the 2.6
	emulation parts for some wider testing. Once this is done we
	can switch to Fedora Core 6 linux_base, which is the
	ultimate plan.
6.2. Future work
Future work should focus on fixing the remaining issues
	with futexes, implement the rest of the *at family of
	syscalls, fix the signal delivery and possibly implement the
	epoll and inotify
	facilities.
We hope to be able to run the most important programs
	flawlessly soon, so we will be able to switch to the 2.6
	emulation by default and make the Fedora Core 6 the
	default linux_base because our currently used
	Fedora Core 4 is not supported any more.
The other possible goal is to share our code with NetBSD
	and DragonflyBSD. NetBSD has some support for 2.6 emulation
	but its far from finished and not really tested. DragonflyBSD
	has expressed some interest in porting the 2.6
	improvements.
Generally, as Linux® develops we would like to keep up
	with their development, implementing newly added syscalls.
	Splice comes to mind first. Some already implemented syscalls
	are also heavily crippled, for example
	mremap and others. Some performance
	improvements can also be made, finer grained locking and
	others.
6.3. Team
I cooperated on this project with (in alphabetical
	order):
	John Baldwin <jhb@FreeBSD.org>

	Konstantin Belousov <kib@FreeBSD.org>

	Emmanuel Dreyfus

	Scot Hetzel

	Jung-uk Kim <jkim@FreeBSD.org>

	Alexander Leidinger <netchild@FreeBSD.org>

	Suleiman Souhlal <ssouhlal@FreeBSD.org>

	Li Xiao

	David Xu <davidxu@FreeBSD.org>

I would like to thank all those people for their advice,
	code reviews and general support.
7. Literatures
	Marshall Kirk McKusick - George V. Nevile-Neil. Design
	 and Implementation of the FreeBSD operating system.
	 Addison-Wesley, 2005.

	https://tldp.org

	https://www.kernel.org

OEBPS/trademarks.xhtml
Adobe, Acrobat, Acrobat Reader, Flash and
 PostScript are either registered trademarks or trademarks of Adobe
 Systems Incorporated in the United States and/or other
 countries.

IBM, AIX, OS/2,
 PowerPC, PS/2, S/390, and ThinkPad are
 trademarks of International Business Machines Corporation in the
 United States, other countries, or both.

FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Linux is a registered trademark of
 Linus Torvalds.

NetBSD is a registered trademark of
 the NetBSD Foundation.

RealNetworks, RealPlayer, and
 RealAudio are the registered trademarks of RealNetworks,
 Inc.

Oracle is a registered trademark
 of Oracle Corporation.

Sun, Sun Microsystems, Java, Java
 Virtual Machine, JDK, JRE, JSP, JVM, Netra, OpenJDK,
 Solaris, StarOffice, SunOS
 and VirtualBox are trademarks or registered trademarks of
 Sun Microsystems, Inc. in the United States and other countries.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

