Linux® emulation in FreeBSD
Table of Contents
	1. Introduction
	2. A look inside…	2.1. What is UNIX®
	2.2. Technical details	2.2.1. Communication between kernel and user space
	  process
	2.2.2. Communication between processes
	2.2.3. Process management
	2.2.4. Thread management


	2.3. What is FreeBSD?	2.3.1. Technical details	2.3.1.1. System entries
	2.3.1.2. Syscalls
	2.3.1.3. Traps
	2.3.1.4. Exits
	2.3.1.5. UNIX® primitives




	2.4. What is Linux®	2.4.1. Technical details	2.4.1.1. Syscalls
	2.4.1.2. Traps
	2.4.1.3. Exits
	2.4.1.4. UNIX® primitives




	2.5. What is emulation


	3. Emulation	3.1. How emulation works in FreeBSD
	3.2. Common primitives in the FreeBSD kernel	3.2.1. Locking primitives	3.2.1.1. Atomic operations and memory barriers
	3.2.1.2. Refcounts
	3.2.1.3. Locks
	3.2.1.4. Spinning locks
	3.2.1.5. Blocking
	3.2.1.6. Sleeping
	3.2.1.7. Scheduling barriers
	3.2.1.8. Critical sections
	3.2.1.9. sched_pin/sched_unpin
	3.2.1.10. sched_bind/sched_unbind


	3.2.2. Proc structure
	3.2.3. VFS	3.2.3.1. namei
	3.2.3.2. vn_fullpath
	3.2.3.3. Vnode operations
	3.2.3.4. File handler operations






	4. Linux® emulation layer -MD part	4.1. Syscall handling	4.1.1. Linux® prepsyscall
	4.1.2. Syscall writing
	4.1.3. Dummy syscalls


	4.2. Signal handling	4.2.1. Linux® sendsig
	4.2.2. linux_rt_sendsig
	4.2.3. linux_sigreturn


	4.3. Ptrace
	4.4. Traps
	4.5. Stack fixup
	4.6. A.OUT support


	5. Linux® emulation layer -MI part	5.1. Description of NPTL
	5.2. Linux® 2.6 emulation infrastructure	5.2.1. Runtime determining of 2.6 emulation
	5.2.2. Linux® processes and thread identifiers
	5.2.3. PID mangling
	5.2.4. Clone syscall
	5.2.5. Locking


	5.3. TLS	5.3.1. Introduction to threading
	5.3.2. Segments on i386
	5.3.3. Implementation on Linux® i386
	5.3.4. Emulation of Linux® TLS	5.3.4.1. i386
	5.3.4.2. amd64




	5.4. Futexes	5.4.1. Introduction to synchronization
	5.4.2. Futexes introduction
	5.4.3. Futex API	5.4.3.1. FUTEX_WAIT
	5.4.3.2. FUTEX_WAKE
	5.4.3.3. FUTEX_FD
	5.4.3.4. FUTEX_REQUEUE
	5.4.3.5. FUTEX_CMP_REQUEUE
	5.4.3.6. FUTEX_WAKE_OP


	5.4.4. Futex emulation in FreeBSD	5.4.4.1. futex_get / futex_put
	5.4.4.2. futex_sleep
	5.4.4.3. futex_wake
	5.4.4.4. futex_wake_op
	5.4.4.5. futex atomic operation
	5.4.4.6. Futex locking




	5.5. Various syscalls implementation	5.5.1. *at family of syscalls	5.5.1.1. Implementation


	5.5.2. Ioctl
	5.5.3. Debugging




	6. Conclusion	6.1. Results
	6.2. Future work
	6.3. Team


	7. Literatures


Linux® emulation in FreeBSD
Roman Divacky


	  <rdivacky@FreeBSD.org>

	



Revision: e194334c79Legal NoticeLast modified on 2021-01-08 14:04:42 +0100 by Daniel Ebdrup Jensen.Abstract
This masters thesis deals with updating the Linux®
	emulation layer (the so called
	Linuxulator).  The task was to update
	the layer to match the functionality of Linux® 2.6. As a
	reference implementation, the Linux® 2.6.16 kernel was
	chosen.  The concept is loosely based on the NetBSD
	implementation.  Most of the work was done in the summer of
	2006 as a part of the Google Summer of Code students program.
	The focus was on bringing the NPTL (new
	POSIX® thread library) support into the emulation layer,
	including TLS (thread local storage),
	futexes (fast user space mutexes),
	PID mangling, and some other minor
	things.  Many small problems were identified and fixed in the
	process.  My work was integrated into the main FreeBSD source
	repository and will be shipped in the upcoming 7.0R release.
	We, the emulation development team, are working on making the
	Linux® 2.6 emulation the default emulation layer in
	FreeBSD.
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    1. Introduction
In the last few years the open source UNIX® based operating
      systems started to be widely deployed on server and client
      machines.  Among these operating systems I would like to point
      out two: FreeBSD, for its BSD heritage, time proven code base and
      many interesting features and Linux® for its wide user base,
      enthusiastic open developer community and support from large
      companies.  FreeBSD tends to be used on server class machines
      serving heavy duty networking tasks with less usage on desktop
      class machines for ordinary users.  While Linux® has the same
      usage on servers, but it is used much more by home based users.
      This leads to a situation where there are many binary only
      programs available for Linux® that lack support for
      FreeBSD.
Naturally, a need for the ability to run Linux® binaries on
      a FreeBSD system arises and this is what this thesis deals with:
      the emulation of the Linux® kernel in the FreeBSD operating
      system.
During the Summer of 2006 Google Inc. sponsored a project
      which focused on extending the Linux® emulation layer (the so
      called Linuxulator) in FreeBSD to include Linux® 2.6 facilities.
      This thesis is written as a part of this project.
2. A look inside…
In this section we are going to describe every operating
      system in question.  How they deal with syscalls, trapframes
      etc., all the low-level stuff.  We also describe the way they
      understand common UNIX® primitives like what a PID is, what a
      thread is, etc.  In the third subsection we talk about how
      UNIX® on UNIX® emulation could be done in general.
2.1. What is UNIX®
UNIX® is an operating system with a long history that has
	influenced almost every other operating system currently in
	use.  Starting in the 1960s, its development continues to this
	day (although in different projects).  UNIX® development soon
	forked into two main ways: the BSDs and System III/V families.
	They mutually influenced themselves by growing a common UNIX®
	standard.  Among the contributions originated in BSD we can
	name virtual memory, TCP/IP networking, FFS, and many others.
	The System V branch contributed to SysV interprocess
	communication primitives, copy-on-write, etc. UNIX® itself
	does not exist any more but its ideas have been used by many
	other operating systems world wide thus forming the so called
	UNIX®-like operating systems.  These days the most
	influential ones are Linux®, Solaris, and possibly (to some
	extent) FreeBSD.  There are in-company UNIX® derivatives (AIX,
	HP-UX etc.), but these have been more and more migrated to the
	aforementioned systems.  Let us summarize typical UNIX®
	characteristics.
2.2. Technical details
Every running program constitutes a process that
	represents a state of the computation.  Running process is
	divided between kernel-space and user-space.  Some operations
	can be done only from kernel space (dealing with hardware
	etc.), but the process should spend most of its lifetime in
	the user space.  The kernel is where the management of the
	processes, hardware, and low-level details take place.  The
	kernel provides a standard unified UNIX® API to the user
	space.  The most important ones are covered below.
2.2.1. Communication between kernel and user space
	  process
Common UNIX® API defines a syscall as a way to issue
	  commands from a user space process to the kernel.  The most
	  common implementation is either by using an interrupt or
	  specialized instruction (think of
	  SYSENTER/SYSCALL
	  instructions for ia32).  Syscalls are defined by a number.
	  For example in FreeBSD, the syscall number 85 is the
	  swapon(2) syscall and the syscall number 132 is
	  mkfifo(2).  Some syscalls need parameters, which are
	  passed from the user-space to the kernel-space in various
	  ways (implementation dependant).  Syscalls are
	  synchronous.
Another possible way to communicate is by using a
	  trap.  Traps occur asynchronously
	  after some event occurs (division by zero, page fault etc.).
	  A trap can be transparent for a process (page fault) or can
	  result in a reaction like sending a
	  signal (division by zero).
2.2.2. Communication between processes
There are other APIs (System V IPC, shared memory etc.)
	  but the single most important API is signal.  Signals are
	  sent by processes or by the kernel and received by
	  processes.  Some signals can be ignored or handled by a user
	  supplied routine, some result in a predefined action that
	  cannot be altered or ignored.
2.2.3. Process management
Kernel instances are processed first in the system (so
	  called init).  Every running process can create its
	  identical copy using the fork(2) syscall.  Some
	  slightly modified versions of this syscall were introduced
	  but the basic semantic is the same.  Every running process
	  can morph into some other process using the exec(3)
	  syscall.  Some modifications of this syscall were introduced
	  but all serve the same basic purpose.  Processes end their
	  lives by calling the exit(2) syscall.  Every process is
	  identified by a unique number called PID.  Every process has
	  a defined parent (identified by its PID).
2.2.4. Thread management
Traditional UNIX® does not define any API nor
	  implementation for threading, while  POSIX® defines its
	  threading API but the implementation is undefined.
	  Traditionally there were two ways of implementing threads.
	  Handling them as separate processes (1:1 threading) or
	  envelope the whole thread group in one process and managing
	  the threading in userspace (1:N threading).  Comparing main
	  features of each approach:
1:1 threading
	- heavyweight threads

	- the scheduling cannot be altered by the user
	      (slightly mitigated by the POSIX® API)

	+ no syscall wrapping necessary

	+ can utilize multiple CPUs



1:N threading
	+ lightweight threads

	+ scheduling can be easily altered by the
	      user

	- syscalls must be wrapped

	- cannot utilize more than one CPU



2.3. What is FreeBSD?
The FreeBSD project is one of the oldest open source
	operating systems currently available for daily use.  It is a
	direct descendant of the genuine UNIX® so it could be claimed
	that it is a true UNIX® although licensing issues do not
	permit that.  The start of the project dates back to the early
	1990's when a crew of fellow BSD users patched the 386BSD
	operating system.  Based on this patchkit a new operating
	system arose named FreeBSD for its liberal license.  Another
	group created the NetBSD operating system with different goals
	in mind.  We will focus on FreeBSD.
FreeBSD is a modern UNIX®-based operating system with all
	the features of UNIX®.  Preemptive multitasking, multiuser
	facilities, TCP/IP networking, memory protection, symmetric
	multiprocessing support, virtual memory with merged VM and
	buffer cache, they are all there.  One of the interesting and
	extremely useful features is the ability to emulate other
	UNIX®-like operating systems.  As of December 2006 and
	7-CURRENT development, the following emulation functionalities
	are supported:
	FreeBSD/i386 emulation on FreeBSD/amd64

	FreeBSD/i386 emulation on FreeBSD/ia64

	Linux®-emulation of Linux® operating system on
	    FreeBSD

	NDIS-emulation of Windows networking drivers
	    interface

	NetBSD-emulation of NetBSD operating system

	PECoff-support for PECoff FreeBSD executables

	SVR4-emulation of System V revision 4 UNIX®



Actively developed emulations are the Linux® layer and
	various FreeBSD-on-FreeBSD layers.  Others are not supposed to work
	properly nor be usable these days.
2.3.1. Technical details
FreeBSD is traditional flavor of UNIX® in the sense of
	  dividing the run of processes into two halves: kernel space
	  and user space run.  There are two types of process entry to
	  the kernel: a syscall and a trap.  There is only one way to
	  return.  In the subsequent sections we will describe the
	  three gates to/from the kernel.  The whole description
	  applies to the i386 architecture as the Linuxulator only
	  exists there but the concept is similar on other
	  architectures.  The information was taken from [1] and the
	  source code.
2.3.1.1. System entries
FreeBSD has an abstraction called an execution class
	    loader, which is a wedge into the execve(2) syscall.
	    This employs a structure sysentvec,
	    which describes an executable ABI.  It contains things
	    like errno translation table, signal translation table,
	    various functions to serve syscall needs (stack fixup,
	    coredumping, etc.).  Every ABI the FreeBSD kernel wants to
	    support must define this structure, as it is used later in
	    the syscall processing code and at some other places.
	    System entries are handled by trap handlers, where we can
	    access both the kernel-space and the user-space at
	    once.
2.3.1.2. Syscalls
Syscalls on FreeBSD are issued by executing interrupt
	    0x80 with register
	    %eax set to a desired syscall number
	    with arguments passed on the stack.
When a process issues an interrupt
	    0x80, the int0x80
	    syscall trap handler is issued (defined in
	    sys/i386/i386/exception.s), which
	    prepares arguments (i.e. copies them on to the stack) for
	    a call to a C function syscall(2) (defined in
	    sys/i386/i386/trap.c), which
	    processes the passed in trapframe.  The processing
	    consists of preparing the syscall (depending on the
	    sysvec entry), determining if the
	    syscall is 32-bit or 64-bit one (changes size of the
	    parameters), then the parameters are copied, including the
	    syscall.  Next, the actual syscall function is executed
	    with processing of the return code (special cases for
	    ERESTART and
	    EJUSTRETURN errors).  Finally an
	    userret() is scheduled, switching the
	    process back to the users-pace.  The parameters to the
	    actual syscall handler are passed in the form of
	    struct thread *td, struct
	      syscall args * arguments where the second
	    parameter is a pointer to the copied in structure of
	    parameters.
2.3.1.3. Traps
Handling of traps in FreeBSD is similar to the handling
	    of syscalls.  Whenever a trap occurs, an assembler handler
	    is called.  It is chosen between alltraps, alltraps with
	    regs pushed or calltrap depending on the type of the trap.
	    This handler prepares arguments for a call to a C function
	    trap() (defined in
	    sys/i386/i386/trap.c), which then
	    processes the occurred trap.  After the processing it
	    might send a signal to the process and/or exit to userland
	    using userret().
2.3.1.4. Exits
Exits from kernel to userspace happen using the
	    assembler routine doreti regardless of
	    whether the kernel was entered via a trap or via a
	    syscall.  This restores the program status from the stack
	    and returns to the userspace.
2.3.1.5. UNIX® primitives
FreeBSD operating system adheres to the traditional
	    UNIX® scheme, where every process has a unique
	    identification number, the so called
	    PID (Process ID).  PID numbers are
	    allocated either linearly or randomly ranging from
	    0 to PID_MAX.  The
	    allocation of PID numbers is done using linear searching
	    of PID space.  Every thread in a process receives the same
	    PID number as result of the getpid(2) call.
There are currently two ways to implement threading in
	    FreeBSD.  The first way is M:N threading followed by the 1:1
	    threading model.  The default library used is M:N
	    threading (libpthread) and you can
	    switch at runtime to 1:1 threading
	    (libthr).  The plan is to switch to 1:1
	    library by default soon.  Although those two libraries use
	    the same kernel primitives, they are accessed through
	    different API(es).  The M:N library uses the
	    kse_* family of syscalls while the 1:1
	    library uses the thr_* family of
	    syscalls.  Due to this, there is no general concept of
	    thread ID shared between kernel and userspace.  Of course,
	    both threading libraries implement the pthread thread ID
	    API.  Every kernel thread (as described by struct
	      thread) has td tid identifier but this is not
	    directly accessible from userland and solely serves the
	    kernel's needs.  It is also used for 1:1 threading library
	    as pthread's thread ID but handling of this is internal to
	    the library and cannot be relied on.
As stated previously there are two implementations of
	    threading in FreeBSD.  The M:N library divides the work
	    between kernel space and userspace.  Thread is an entity
	    that gets scheduled in the kernel but it can represent
	    various number of userspace threads.  M userspace threads
	    get mapped to N kernel threads thus saving resources while
	    keeping the ability to exploit multiprocessor parallelism.
	    Further information about the implementation can be
	    obtained from the man page or [1].  The 1:1 library
	    directly maps a userland thread to a kernel thread thus
	    greatly simplifying the scheme.  None of these designs
	    implement a fairness mechanism (such a mechanism was
	    implemented but it was removed recently because it caused
	    serious slowdown and made the code more difficult to deal
	    with).
2.4. What is Linux®
Linux® is a UNIX®-like kernel originally developed by
	Linus Torvalds, and now being contributed to by a massive
	crowd of programmers all around the world.  From its mere
	beginnings to today, with wide support from companies such as
	IBM or Google, Linux® is being associated with its fast
	development pace, full hardware support and benevolent
	dictator model of organization.
Linux® development started in 1991 as a hobbyist project
	at University of Helsinki in Finland.  Since then it has
	obtained all the features of a modern UNIX®-like OS:
	multiprocessing, multiuser support, virtual memory,
	networking, basically everything is there.  There are also
	highly advanced features like virtualization etc.
As of 2006 Linux® seems to be the most widely used open
	source operating system with support from independent software
	vendors like Oracle, RealNetworks, Adobe, etc.  Most of the
	commercial software distributed for Linux® can only be
	obtained in a binary form so recompilation for other operating
	systems is impossible.
Most of the Linux® development happens in a
	Git version control system.
	Git is a distributed system so
	there is no central source of the Linux® code, but some
	branches are considered prominent and official.  The version
	number scheme implemented by Linux® consists of four numbers
	A.B.C.D.  Currently development happens in 2.6.C.D, where C
	represents major version, where new features are added or
	changed while D is a minor version for bugfixes only.
More information can be obtained from [3].
2.4.1. Technical details
Linux® follows the traditional UNIX® scheme of
	  dividing the run of a process in two halves: the kernel and
	  user space.  The kernel can be entered in two ways: via a
	  trap or via a syscall.  The return is handled only in one
	  way.  The further description applies to Linux® 2.6 on
	  the i386™ architecture.  This information was taken from
	  [2].
2.4.1.1. Syscalls
Syscalls in Linux® are performed (in userspace) using
	    syscallX macros where X substitutes a
	    number representing the number of parameters of the given
	    syscall.  This macro translates to a code that loads
	    %eax register with a number of the
	    syscall and executes interrupt 0x80.
	    After this syscall return is called, which translates
	    negative return values to positive
	    errno values and sets
	    res to -1 in case of
	    an error.  Whenever the interrupt 0x80
	    is called the process enters the kernel in system call
	    trap handler.  This routine saves all registers on the
	    stack and calls the selected syscall entry.  Note that the
	    Linux® calling convention expects parameters to the
	    syscall to be passed via registers as shown here:
	parameter -> %ebx

	parameter -> %ecx

	parameter -> %edx

	parameter -> %esi

	parameter -> %edi

	parameter -> %ebp



There are some exceptions to this, where Linux® uses
	    different calling convention (most notably the
	    clone syscall).
2.4.1.2. Traps
The trap handlers are introduced in
	    arch/i386/kernel/traps.c and most of
	    these handlers live in
	    arch/i386/kernel/entry.S, where
	    handling of the traps happens.
2.4.1.3. Exits
Return from the syscall is managed by syscall
	    exit(3), which checks for the process having
	    unfinished work, then checks whether we used user-supplied
	    selectors.  If this happens stack fixing is applied and
	    finally the registers are restored from the stack and the
	    process returns to the userspace.
2.4.1.4. UNIX® primitives
In the 2.6 version, the Linux® operating system
	    redefined some of the traditional UNIX® primitives,
	    notably PID, TID and thread.  PID is defined not to be
	    unique for every process, so for some processes (threads)
	    getppid(2) returns the same value.  Unique
	    identification of process is provided by TID.  This is
	    because NPTL (New POSIX® Thread
	    Library) defines threads to be normal processes (so called
	    1:1 threading).  Spawning a new process in
	    Linux® 2.6 happens using the
	    clone syscall (fork variants are
	    reimplemented using it).  This clone syscall defines a set
	    of flags that affect behavior of the cloning process
	    regarding thread implementation.  The semantic is a bit
	    fuzzy as there is no single flag telling the syscall to
	    create a thread.
Implemented clone flags are:
	CLONE_VM - processes share
		their memory space

	CLONE_FS - share umask, cwd and
		namespace

	CLONE_FILES - share open
		files

	CLONE_SIGHAND - share signal
		handlers and blocked signals

	CLONE_PARENT - share
		parent

	CLONE_THREAD - be thread
		(further explanation below)

	CLONE_NEWNS - new
		namespace

	CLONE_SYSVSEM - share SysV undo
		structures

	CLONE_SETTLS - setup TLS at
		supplied address

	CLONE_PARENT_SETTID - set TID
		in the parent

	CLONE_CHILD_CLEARTID - clear
		TID in the child

	CLONE_CHILD_SETTID - set TID in
		the child



CLONE_PARENT sets the real parent
	    to the parent of the caller.  This is useful for threads
	    because if thread A creates thread B we want thread B to
	    be parented to the parent of the whole thread group.
	    CLONE_THREAD does exactly the same
	    thing as CLONE_PARENT,
	    CLONE_VM and
	    CLONE_SIGHAND, rewrites PID to be the
	    same as PID of the caller, sets exit signal to be none and
	    enters the thread group.  CLONE_SETTLS
	    sets up GDT entries for TLS handling.  The
	    CLONE_*_*TID set of flags sets/clears
	    user supplied address to TID or 0.
As you can see the CLONE_THREAD
	    does most of the work and does not seem to fit the scheme
	    very well.  The original intention is unclear (even for
	    authors, according to comments in the code) but I think
	    originally there was one threading flag, which was then
	    parcelled among many other flags but this separation was
	    never fully finished.  It is also unclear what this
	    partition is good for as glibc does not use that so only
	    hand-written use of the clone permits a programmer to
	    access this features.
For non-threaded programs the PID and TID are the
	    same.  For threaded programs the first thread PID and TID
	    are the same and every created thread shares the same PID
	    and gets assigned a unique TID (because
	    CLONE_THREAD is passed in) also parent
	    is shared for all processes forming this threaded
	    program.
The code that implements pthread_create(3) in
	    NPTL defines the clone flags like this:
int clone_flags = (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGNAL

 | CLONE_SETTLS | CLONE_PARENT_SETTID

| CLONE_CHILD_CLEARTID | CLONE_SYSVSEM
#if __ASSUME_NO_CLONE_DETACHED == 0

| CLONE_DETACHED
#endif

| 0);
The CLONE_SIGNAL is defined
	    like
#define CLONE_SIGNAL (CLONE_SIGHAND | CLONE_THREAD)
the last 0 means no signal is sent when any of the
	    threads exits.
2.5. What is emulation
According to a dictionary definition, emulation is the
	ability of a program or device to imitate another program or
	device.  This is achieved by providing the same reaction to a
	given stimulus as the emulated object.  In practice, the
	software world mostly sees three types of emulation - a
	program used to emulate a machine (QEMU, various game console
	emulators etc.), software emulation of a hardware facility
	(OpenGL emulators, floating point units emulation etc.) and
	operating system emulation (either in kernel of the operating
	system or as a userspace program).
Emulation is usually used in a place, where using the
	original component is not feasible nor possible at all.  For
	example someone might want to use a program developed for a
	different operating system than they use.  Then emulation
	comes in handy.  Sometimes there is no other way but to use
	emulation - e.g. when the hardware device you try to use does
	not exist (yet/anymore) then there is no other way but
	emulation.  This happens often when porting an operating
	system to a new (non-existent) platform.  Sometimes it is just
	cheaper to emulate.
Looking from an implementation point of view, there are
	two main approaches to the implementation of emulation.  You
	can either emulate the whole thing - accepting possible inputs
	of the original object, maintaining inner state and emitting
	correct output based on the state and/or input.  This kind of
	emulation does not require any special conditions and
	basically can be implemented anywhere for any device/program.
	The drawback is that implementing such emulation is quite
	difficult, time-consuming and error-prone.  In some cases we
	can use a simpler approach.  Imagine you want to emulate a
	printer that prints from left to right on a printer that
	prints from right to left.  It is obvious that there is no
	need for a complex emulation layer but simply reversing of the
	printed text is sufficient.  Sometimes the
	emulating environment is very similar to the emulated one so
	just a thin layer of some translation is necessary to provide
	fully working emulation!  As you can see this is much less
	demanding to implement, so less time-consuming and error-prone
	than the previous approach.  But the necessary condition is
	that the two environments must be similar enough.  The third
	approach combines the two previous.  Most of the time the
	objects do not provide the same capabilities so in a case of
	emulating the more powerful one on the less powerful we have
	to emulate the missing features with full emulation described
	above.
This master thesis deals with emulation of UNIX® on
	UNIX®, which is exactly the case, where only a thin layer of
	translation is sufficient to provide full emulation.  The
	UNIX® API consists of a set of syscalls, which are usually
	self contained and do not affect some global kernel
	state.
There are a few syscalls that affect inner state but this
	can be dealt with by providing some structures that maintain
	the extra state.
No emulation is perfect and emulations tend to lack some
	parts but this usually does not cause any serious drawbacks.
	Imagine a game console emulator that emulates everything but
	music output.  No doubt that the games are playable and one
	can use the emulator.  It might not be that comfortable as the
	original game console but its an acceptable compromise between
	price and comfort.
The same goes with the UNIX® API.  Most programs can live
	with a very limited set of syscalls working.  Those syscalls
	tend to be the oldest ones (read(2)/write(2),
	fork(2) family, signal(3) handling, exit(3),
	socket(2) API) hence it is easy to emulate because their
	semantics is shared among all UNIX®es, which exist
	todays.
3. Emulation
3.1. How emulation works in FreeBSD
As stated earlier, FreeBSD supports running binaries from
	several other UNIX®es.  This works because FreeBSD has an
	abstraction called the execution class loader.  This wedges
	into the execve(2) syscall, so when execve(2) is
	about to execute a binary it examines its type.
There are basically two types of binaries in FreeBSD.
	Shell-like text scripts which are identified by
	#! as their first two characters and normal
	(typically ELF) binaries, which are a
	representation of a compiled executable object.  The vast
	majority (one could say all of them) of binaries in FreeBSD are
	from type ELF.  ELF files contain a header, which specifies
	the OS ABI for this ELF file.  By reading this information,
	the operating system can accurately determine what type of
	binary the given file is.
Every OS ABI must be registered in the FreeBSD kernel.  This
	applies to the FreeBSD native OS ABI, as well.  So when
	execve(2) executes a binary it iterates through the list
	of registered APIs and when it finds the right one it starts
	to use the information contained in the OS ABI description
	(its syscall table, errno translation
	table, etc.).  So every time the process calls a syscall, it
	uses its own set of syscalls instead of some global one.  This
	effectively provides a very elegant and easy way of supporting
	execution of various binary formats.
The nature of emulation of different OSes (and also some
	other subsystems) led developers to invite a handler event
	mechanism.  There are various places in the kernel, where a
	list of event handlers are called.  Every subsystem can
	register an event handler and they are called accordingly.
	For example, when a process exits there is a handler called
	that possibly cleans up whatever the subsystem needs to be
	cleaned.
Those simple facilities provide basically everything that
	is needed for the emulation infrastructure and in fact these
	are basically the only things necessary to implement the
	Linux® emulation layer.
3.2. Common primitives in the FreeBSD kernel
Emulation layers need some support from the operating
	system.  I am going to describe some of the supported
	primitives in the FreeBSD operating system.
3.2.1. Locking primitives
Contributed by: Attilio Rao <attilio@FreeBSD.org>
The FreeBSD synchronization primitive set is based on the
	  idea to supply a rather huge number of different primitives
	  in a way that the better one can be used for every
	  particular, appropriate situation.
To a high level point of view you can consider three
	  kinds of synchronization primitives in the FreeBSD
	  kernel:
	atomic operations and memory barriers

	locks

	scheduling barriers



Below there are descriptions for the 3 families.  For
	  every lock, you should really check the linked manpage
	  (where possible) for more detailed explanations.
3.2.1.1. Atomic operations and memory barriers
Atomic operations are implemented through a set of
	    functions performing simple arithmetics on memory operands
	    in an atomic way with respect to external events
	    (interrupts, preemption, etc.).  Atomic operations can
	    guarantee atomicity just on small data types (in the
	    magnitude order of the .long.
	    architecture C data type), so should be rarely used
	    directly in the end-level code, if not only for very
	    simple operations (like flag setting in a bitmap, for
	    example).  In fact, it is rather simple and common to
	    write down a wrong semantic based on just atomic
	    operations (usually referred as lock-less).  The FreeBSD
	    kernel offers a way to perform atomic operations in
	    conjunction with a memory barrier.  The memory barriers
	    will guarantee that an atomic operation will happen
	    following some specified ordering with respect to other
	    memory accesses.  For example, if we need that an atomic
	    operation happen just after all other pending writes (in
	    terms of instructions reordering buffers activities) are
	    completed, we need to explicitly use a memory barrier in
	    conjunction to this atomic operation.  So it is simple to
	    understand why memory barriers play a key role for
	    higher-level locks building (just as refcounts, mutexes,
	    etc.).  For a detailed explanatory on atomic operations,
	    please refer to atomic(9).  It is far, however,
	    noting that atomic operations (and memory barriers as
	    well) should ideally only be used for building
	    front-ending locks (as mutexes).
3.2.1.2. Refcounts
Refcounts are interfaces for handling reference
	    counters.  They are implemented through atomic operations
	    and are intended to be used just for cases, where the
	    reference counter is the only one thing to be protected,
	    so even something like a spin-mutex is deprecated.  Using
	    the refcount interface for structures, where a mutex is
	    already used is often wrong since we should probably close
	    the reference counter in some already protected paths.  A
	    manpage discussing refcount does not exist currently, just
	    check sys/refcount.h for an overview
	    of the existing API.
3.2.1.3. Locks
FreeBSD kernel has huge classes of locks.  Every lock is
	    defined by some peculiar properties, but probably the most
	    important is the event linked to contesting holders (or in
	    other terms, the behavior of threads unable to acquire the
	    lock).  FreeBSD's locking scheme presents three different
	    behaviors for contenders:
	spinning

	blocking

	sleeping



Note: 
numbers are not casual

3.2.1.4. Spinning locks
Spin locks let waiters to spin until they cannot
	    acquire the lock.  An important matter do deal with is
	    when a thread contests on a spin lock if it is not
	    descheduled.  Since the FreeBSD kernel is preemptive, this
	    exposes spin lock at the risk of deadlocks that can be
	    solved just disabling interrupts while they are acquired.
	    For this and other reasons (like lack of priority
	    propagation support, poorness in load balancing schemes
	    between CPUs, etc.), spin locks are intended to protect
	    very small paths of code, or ideally not to be used at all
	    if not explicitly requested (explained later).
3.2.1.5. Blocking
Block locks let waiters to be descheduled and blocked
	    until the lock owner does not drop it and wakes up one or
	    more contenders.  In order to avoid starvation issues,
	    blocking locks do priority propagation from the waiters to
	    the owner.  Block locks must be implemented through the
	    turnstile interface and are intended to be the most used
	    kind of locks in the kernel, if no particular conditions
	    are met.
3.2.1.6. Sleeping
Sleep locks let waiters to be descheduled and fall
	    asleep until the lock holder does not drop it and wakes up
	    one or more waiters.  Since sleep locks are intended to
	    protect large paths of code and to cater asynchronous
	    events, they do not do any form of priority propagation.
	    They must be implemented through the sleepqueue(9)
	    interface.
The order used to acquire locks is very important, not
	    only for the possibility to deadlock due at lock order
	    reversals, but even because lock acquisition should follow
	    specific rules linked to locks natures.  If you give a
	    look at the table above, the practical rule is that if a
	    thread holds a lock of level n (where the level is the
	    number listed close to the kind of lock) it is not allowed
	    to acquire a lock of superior levels, since this would
	    break the specified semantic for a path.  For example, if
	    a thread holds a block lock (level 2), it is allowed to
	    acquire a spin lock (level 1) but not a sleep lock (level
	    3), since block locks are intended to protect smaller
	    paths than sleep lock (these rules are not about atomic
	    operations or scheduling barriers, however).
This is a list of lock with their respective
	    behaviors:
	spin mutex - spinning - mutex(9)

	sleep mutex - blocking - mutex(9)

	pool mutex - blocking - mtx_pool(9)

	sleep family - sleeping - sleep(9) pause
		tsleep msleep msleep spin msleep rw msleep sx

	condvar - sleeping - condvar(9)

	rwlock - blocking - rwlock(9)

	sxlock - sleeping - sx(9)

	lockmgr - sleeping - lockmgr(9)

	semaphores - sleeping - sema(9)



Among these locks only mutexes, sxlocks, rwlocks and
	    lockmgrs are intended to handle recursion, but currently
	    recursion is only supported by mutexes and
	    lockmgrs.
3.2.1.7. Scheduling barriers
Scheduling barriers are intended to be used in order
	    to drive scheduling of threading.  They consist mainly of
	    three different stubs:
	critical sections (and preemption)

	sched_bind

	sched_pin



Generally, these should be used only in a particular
	    context and even if they can often replace locks, they
	    should be avoided because they do not let the diagnose of
	    simple eventual problems with locking debugging tools (as
	    witness(4)).
3.2.1.8. Critical sections
The FreeBSD kernel has been made preemptive basically to
	    deal with interrupt threads.  In fact, in order to avoid
	    high interrupt latency, time-sharing priority threads can
	    be preempted by interrupt threads (in this way, they do
	    not need to wait to be scheduled as the normal path
	    previews).  Preemption, however, introduces new racing
	    points that need to be handled, as well.  Often, in order
	    to deal with preemption, the simplest thing to do is to
	    completely disable it.  A critical section defines a piece
	    of code (borderlined by the pair of functions
	    critical_enter(9) and critical_exit(9), where
	    preemption is guaranteed to not happen (until the
	    protected code is fully executed).  This can often replace
	    a lock effectively but should be used carefully in order
	    to not lose the whole advantage that preemption
	    brings.
3.2.1.9. sched_pin/sched_unpin
Another way to deal with preemption is the
	    sched_pin() interface.  If a piece of
	    code is closed in the sched_pin()
	    and sched_unpin() pair of functions
	    it is guaranteed that the respective thread, even if it
	    can be preempted, it will always be executed on the same
	    CPU.  Pinning is very effective in the particular case
	    when we have to access at per-cpu datas and we assume
	    other threads will not change those data.  The latter
	    condition will determine a critical section as a too
	    strong condition for our code.
3.2.1.10. sched_bind/sched_unbind
sched_bind is an API used in
	    order to bind a thread to a particular CPU for all the
	    time it executes the code, until a
	    sched_unbind function call does not
	    unbind it.  This feature has a key role in situations
	    where you cannot trust the current state of CPUs (for
	    example, at very early stages of boot), as you want to
	    avoid your thread to migrate on inactive CPUs.  Since
	    sched_bind and
	    sched_unbind manipulate internal
	    scheduler structures, they need to be enclosed in
	    sched_lock acquisition/releasing when
	    used.
3.2.2. Proc structure
Various emulation layers sometimes require some
	  additional per-process data.  It can manage separate
	  structures (a list, a tree etc.) containing these data for
	  every process but this tends to be slow and memory
	  consuming.  To solve this problem the FreeBSD
	  proc structure contains
	  p_emuldata, which is a void pointer to
	  some emulation layer specific data.  This
	  proc entry is protected by the proc
	  mutex.
The FreeBSD proc structure contains a
	  p_sysent entry that identifies, which ABI
	  this process is running.  In fact, it is a pointer to the
	  sysentvec described above.  So by
	  comparing this pointer to the address where the
	  sysentvec structure for the given ABI is
	  stored we can effectively determine whether the process
	  belongs to our emulation layer.  The code typically looks
	  like:
if (__predict_true(p->p_sysent != &elf_Linux®_sysvec))
	  return;
As you can see, we effectively use the
	  __predict_true modifier to collapse the
	  most common case (FreeBSD process) to a simple return operation
	  thus preserving high performance.  This code should be
	  turned into a macro because currently it is not very
	  flexible, i.e. we do not support Linux®64 emulation nor
	  A.OUT Linux® processes on i386.
3.2.3. VFS
The FreeBSD VFS subsystem is very complex but the Linux®
	  emulation layer uses just a small subset via a well defined
	  API.  It can either operate on vnodes or file handlers.
	  Vnode represents a virtual vnode, i.e. representation of a
	  node in VFS.  Another representation is a file handler,
	  which represents an opened file from the perspective of a
	  process.  A file handler can represent a socket or an
	  ordinary file.  A file handler contains a pointer to its
	  vnode.  More then one file handler can point to the same
	  vnode.
3.2.3.1. namei
The namei(9) routine is a central entry point to
	    pathname lookup and translation.  It traverses the path
	    point by point from the starting point to the end point
	    using lookup function, which is internal to VFS.  The
	    namei(9) syscall can cope with symlinks, absolute and
	    relative paths.  When a path is looked up using
	    namei(9) it is inputed to the name cache.  This
	    behavior can be suppressed.  This routine is used all over
	    the kernel and its performance is very critical.
3.2.3.2. vn_fullpath
The vn_fullpath(9) function takes the best effort
	    to traverse VFS name cache and returns a path for a given
	    (locked) vnode.  This process is unreliable but works just
	    fine for the most common cases.  The unreliability is
	    because it relies on VFS cache (it does not traverse the
	    on medium structures), it does not work with hardlinks,
	    etc.  This routine is used in several places in the
	    Linuxulator.
3.2.3.3. Vnode operations
	fgetvp - given a thread and a
		file descriptor number it returns the associated
		vnode

	vn_lock(9) - locks a vnode

	vn_unlock - unlocks a
		vnode

	VOP_READDIR(9) - reads a directory referenced
		by a vnode

	VOP_GETATTR(9) - gets attributes of a file or
		a directory referenced by a vnode

	VOP_LOOKUP(9) - looks up a path to a given
		directory

	VOP_OPEN(9) - opens a file referenced by a
		vnode

	VOP_CLOSE(9) - closes a file referenced by a
		vnode

	vput(9) - decrements the use count for a
		vnode and unlocks it

	vrele(9) - decrements the use count for a
		vnode

	vref(9) - increments the use count for a
		vnode



3.2.3.4. File handler operations
	fget - given a thread and a
		file descriptor number it returns associated file
		handler and references it

	fdrop - drops a reference to
		a file handler

	fhold - references a file
		handler



4. Linux® emulation layer -MD part
This section deals with implementation of Linux® emulation
      layer in FreeBSD operating system.  It first describes the machine
      dependent part talking about how and where interaction between
      userland and kernel is implemented.  It talks about syscalls,
      signals, ptrace, traps, stack fixup.  This part discusses i386
      but it is written generally so other architectures should not
      differ very much.  The next part is the machine independent part
      of the Linuxulator.  This section only covers i386 and ELF
      handling.  A.OUT is obsolete and untested.
4.1. Syscall handling
Syscall handling is mostly written in
	linux_sysvec.c, which covers most of the
	routines pointed out in the sysentvec
	structure.  When a Linux® process running on FreeBSD issues a
	syscall, the general syscall routine calls linux prepsyscall
	routine for the Linux® ABI.
4.1.1. Linux® prepsyscall
Linux® passes arguments to syscalls via registers (that
	  is why it is limited to 6 parameters on i386) while FreeBSD
	  uses the stack.  The Linux® prepsyscall routine must copy
	  parameters from registers to the stack.  The order of the
	  registers is: %ebx,
	  %ecx, %edx,
	  %esi, %edi,
	  %ebp.  The catch is that this is true for
	  only most of the syscalls.  Some (most
	  notably clone) uses a different order
	  but it is luckily easy to fix by inserting a dummy parameter
	  in the linux_clone prototype.
4.1.2. Syscall writing
Every syscall implemented in the Linuxulator must have
	  its prototype with various flags in
	  syscalls.master.  The form of the file
	  is:
...
	AUE_FORK STD		{ int linux_fork(void); }
...
	AUE_CLOSE NOPROTO	{ int close(int fd); }
...
The first column represents the syscall number.  The
	  second column is for auditing support.  The third column
	  represents the syscall type.  It is either
	  STD, OBSOL,
	  NOPROTO and UNIMPL.
	  STD is a standard syscall with full
	  prototype and implementation.  OBSOL is
	  obsolete and defines just the prototype.
	  NOPROTO means that the syscall is
	  implemented elsewhere so do not prepend ABI prefix, etc.
	  UNIMPL means that the syscall will be
	  substituted with the nosys syscall (a
	  syscall just printing out a message about the syscall not
	  being implemented and returning
	  ENOSYS).
From syscalls.master a script
	  generates three files: linux_syscall.h,
	  linux_proto.h and
	  linux_sysent.c.  The
	  linux_syscall.h contains definitions of
	  syscall names and their numerical value, e.g.:
...
#define LINUX_SYS_linux_fork 2
...
#define LINUX_SYS_close 6
...
The linux_proto.h contains
	  structure definitions of arguments to every syscall,
	  e.g.:
struct linux_fork_args {
  register_t dummy;
};
And finally, linux_sysent.c
	  contains structure describing the system entry table, used
	  to actually dispatch a syscall, e.g.:
{ 0, (sy_call_t *)linux_fork, AUE_FORK, NULL, 0, 0 }, /* 2 = linux_fork */
{ AS(close_args), (sy_call_t *)close, AUE_CLOSE, NULL, 0, 0 }, /* 6 = close */
As you can see linux_fork is
	  implemented in Linuxulator itself so the definition is of
	  STD type and has no argument, which is
	  exhibited by the dummy argument structure.  On the other
	  hand close is just an alias for real
	  FreeBSD close(2) so it has no linux arguments structure
	  associated and in the system entry table it is not prefixed
	  with linux as it calls the real close(2) in the
	  kernel.
4.1.3. Dummy syscalls
The Linux® emulation layer is not complete, as some
	  syscalls are not implemented properly and some are not
	  implemented at all.  The emulation layer employs a facility
	  to mark unimplemented syscalls with the
	  DUMMY macro.  These dummy definitions
	  reside in linux_dummy.c in a form of
	  DUMMY(syscall);, which is then translated
	  to various syscall auxiliary files and the implementation
	  consists of printing a message saying that this syscall is
	  not implemented.  The UNIMPL prototype is
	  not used because we want to be able to identify the name of
	  the syscall that was called in order to know what syscalls
	  are more important to implement.
4.2. Signal handling
Signal handling is done generally in the FreeBSD kernel for
	all binary compatibilities with a call to a compat-dependent
	layer.  Linux® compatibility layer defines
	linux_sendsig routine for this
	purpose.
4.2.1. Linux® sendsig
This routine first checks whether the signal has been
	  installed with a SA_SIGINFO in which case
	  it calls linux_rt_sendsig routine
	  instead.  Furthermore, it allocates (or reuses an already
	  existing) signal handle context, then it builds a list of
	  arguments for the signal handler.  It translates the signal
	  number based on the signal translation table, assigns a
	  handler, translates sigset.  Then it saves context for the
	  sigreturn routine (various registers,
	  translated trap number and signal mask).  Finally, it copies
	  out the signal context to the userspace and prepares context
	  for the actual signal handler to run.
4.2.2. linux_rt_sendsig
This routine is similar to
	  linux_sendsig just the signal context
	  preparation is different.  It adds
	  siginfo, ucontext, and
	  some POSIX® parts.  It might be worth considering whether
	  those two functions could not be merged with a benefit of
	  less code duplication and possibly even faster
	  execution.
4.2.3. linux_sigreturn
This syscall is used for return from the signal handler.
	  It does some security checks and restores the original
	  process context.  It also unmasks the signal in process
	  signal mask.
4.3. Ptrace
Many UNIX® derivates implement the ptrace(2) syscall
	in order to allow various tracking and debugging features.
	This facility enables the tracing process to obtain various
	information about the traced process, like register dumps, any
	memory from the process address space, etc. and also to trace
	the process like in stepping an instruction or between system
	entries (syscalls and traps).  ptrace(2) also lets you
	set various information in the traced process (registers
	etc.).  ptrace(2) is a UNIX®-wide standard implemented
	in most UNIX®es around the world.
Linux® emulation in FreeBSD implements the ptrace(2)
	facility in linux_ptrace.c.  The routines
	for converting registers between Linux® and FreeBSD and the
	actual ptrace(2) syscall emulation syscall.  The syscall
	is a long switch block that implements its counterpart in FreeBSD
	for every ptrace(2) command.  The ptrace(2) commands
	are mostly equal between Linux® and FreeBSD so usually just a
	small modification is needed.  For example,
	PT_GETREGS in Linux® operates on direct
	data while FreeBSD uses a pointer to the data so after performing
	a (native) ptrace(2) syscall, a copyout must be done to
	preserve Linux® semantics.
The ptrace(2) implementation in Linuxulator has some
	known weaknesses.  There have been panics seen when using
	strace (which is a ptrace(2) consumer)
	in the Linuxulator environment.  Also
	PT_SYSCALL is not implemented.
4.4. Traps
Whenever a Linux® process running in the emulation layer
	traps the trap itself is handled transparently with the only
	exception of the trap translation.  Linux® and FreeBSD differs
	in opinion on what a trap is so this is dealt with here.  The
	code is actually very short:
static int
translate_traps(int signal, int trap_code)
{

  if (signal != SIGBUS)
    return signal;

  switch (trap_code) {

    case T_PROTFLT:
    case T_TSSFLT:
    case T_DOUBLEFLT:
    case T_PAGEFLT:
      return SIGSEGV;

    default:
      return signal;
  }
}
4.5. Stack fixup
The RTLD run-time link-editor expects so called AUX tags
	on stack during an execve so a fixup must
	be done to ensure this.  Of course, every RTLD system is
	different so the emulation layer must provide its own stack
	fixup routine to do this.  So does Linuxulator.  The
	elf_linux_fixup simply copies out AUX
	tags to the stack and adjusts the stack of the user space
	process to point right after those tags.  So RTLD works in a
	smart way.
4.6. A.OUT support
The Linux® emulation layer on i386 also supports Linux®
	A.OUT binaries.  Pretty much everything described in the
	previous sections must be implemented for A.OUT support
	(beside traps translation and signals sending).  The support
	for A.OUT binaries is no longer maintained, especially the 2.6
	emulation does not work with it but this does not cause any
	problem, as the linux-base in ports probably do not support
	A.OUT binaries at all.  This support will probably be removed
	in future.  Most of the stuff necessary for loading Linux®
	A.OUT binaries is in imgact_linux.c
	file.
5. Linux® emulation layer -MI part
This section talks about machine independent part of the
      Linuxulator.  It covers the emulation infrastructure needed for
      Linux® 2.6 emulation, the thread local storage (TLS)
      implementation (on i386) and futexes.  Then we talk briefly
      about some syscalls.
5.1. Description of NPTL
One of the major areas of progress in development of
	Linux® 2.6 was threading.  Prior to 2.6, the Linux®
	threading support was implemented in the
	linuxthreads library.  The library
	was a partial implementation of POSIX® threading.  The
	threading was implemented using separate processes for each
	thread using the clone syscall to let
	them share the address space (and other things).  The main
	weaknesses of this approach was that every thread had a
	different PID, signal handling was broken (from the pthreads
	perspective), etc.  Also the performance was not very good
	(use of SIGUSR signals for threads
	synchronization, kernel resource consumption, etc.) so to
	overcome these problems a new threading system was developed
	and named NPTL.
The NPTL library focused on two things but a third thing
	came along so it is usually considered a part of NPTL.  Those
	two things were embedding of threads into a process structure
	and futexes.  The additional third thing was TLS, which is not
	directly required by NPTL but the whole NPTL userland library
	depends on it.  Those improvements yielded in much improved
	performance and standards conformance.  NPTL is a standard
	threading library in Linux® systems these days.
The FreeBSD Linuxulator implementation approaches the NPTL in
	three main areas.  The TLS, futexes and PID mangling, which is
	meant to simulate the Linux® threads.  Further sections
	describe each of these areas.
5.2. Linux® 2.6 emulation infrastructure
These sections deal with the way Linux® threads are
	managed and how we simulate that in FreeBSD.
5.2.1. Runtime determining of 2.6 emulation
The Linux® emulation layer in FreeBSD supports runtime
	  setting of the emulated version.  This is done via
	  sysctl(8), namely
	  compat.linux.osrelease.  Setting this
	  sysctl(8) affects runtime behavior of the emulation
	  layer.  When set to 2.6.x it sets the value of
	  linux_use_linux26 while setting to
	  something else keeps it unset.  This variable (plus
	  per-prison variables of the very same kind) determines
	  whether 2.6 infrastructure (mainly PID mangling) is used in
	  the code or not.  The version setting is done system-wide
	  and this affects all Linux® processes.  The sysctl(8)
	  should not be changed when running any Linux® binary as it
	  might harm things.
5.2.2. Linux® processes and thread identifiers
The semantics of Linux® threading are a little
	  confusing and uses entirely different nomenclature to FreeBSD.
	  A process in Linux® consists of a struct
	    task embedding two identifier fields - PID and
	  TGID.  PID is not a process ID but it
	  is a thread ID.  The TGID identifies a thread group in other
	  words a process.  For single-threaded process the PID equals
	  the TGID.
The thread in NPTL is just an ordinary process that
	  happens to have TGID not equal to PID and have a group
	  leader not equal to itself (and shared VM etc. of course).
	  Everything else happens in the same way as to an ordinary
	  process.  There is no separation of a shared status to some
	  external structure like in FreeBSD.  This creates some
	  duplication of information and possible data inconsistency.
	  The Linux® kernel seems to use task -> group information
	  in some places and task information elsewhere and it is
	  really not very consistent and looks error-prone.
Every NPTL thread is created by a call to the
	  clone syscall with a specific set of
	  flags (more in the next subsection).  The NPTL implements
	  strict 1:1 threading.
In FreeBSD we emulate NPTL threads with ordinary FreeBSD
	  processes that share VM space, etc. and the PID gymnastic is
	  just mimicked in the emulation specific structure attached
	  to the process.  The structure attached to the process looks
	  like:
struct linux_emuldata {
  pid_t pid;

  int *child_set_tid; /* in clone(): Child.s TID to set on clone */
  int *child_clear_tid;/* in clone(): Child.s TID to clear on exit */

  struct linux_emuldata_shared *shared;

  int pdeath_signal; /* parent death signal */

  LIST_ENTRY(linux_emuldata) threads; /* list of linux threads */
};
The PID is used to identify the FreeBSD process that
	  attaches this structure.  The
	  child_se_tid and
	  child_clear_tid are used for TID
	  address copyout when a process exits and is created.  The
	  shared pointer points to a structure
	  shared among threads.  The pdeath_signal
	  variable identifies the parent death signal  and the
	  threads pointer is used to link this
	  structure to the list of threads.  The
	  linux_emuldata_shared structure looks
	  like:
struct linux_emuldata_shared {

  int refs;

  pid_t group_pid;

  LIST_HEAD(, linux_emuldata) threads; /* head of list of linux threads */
};
The refs is a reference counter being
	  used to determine when we can free the structure to avoid
	  memory leaks.  The group_pid is to
	  identify PID ( = TGID) of the whole process ( = thread
	  group).  The threads pointer is the head
	  of the list of threads in the process.
The linux_emuldata structure can be
	  obtained from the process using
	  em_find.  The prototype of the function
	  is:
struct linux_emuldata *em_find(struct proc *, int locked);
Here, proc is the process we want the
	  emuldata structure from and the locked parameter determines
	  whether we want to lock or not.  The accepted values are
	  EMUL_DOLOCK and
	  EMUL_DOUNLOCK.  More about locking
	  later.
5.2.3. PID mangling
As there is a difference in view as what to the idea of a
	  process ID and thread ID is between FreeBSD and Linux® we have
	  to translate the view somehow.  We do it by PID mangling.
	  This means that we fake what a PID (=TGID) and TID (=PID) is
	  between kernel and userland.  The rule of thumb is that in
	  kernel (in Linuxulator) PID = PID and TGID = shared ->
	  group pid and to userland we present PID = shared
	    -> group_pid and TID = proc ->
	    p_pid.  The PID member of
	  linux_emuldata structure is a FreeBSD
	  PID.
The above affects mainly getpid, getppid, gettid
	  syscalls.  Where we use PID/TGID respectively.  In copyout
	  of TIDs in child_clear_tid and
	  child_set_tid we copy out FreeBSD
	  PID.
5.2.4. Clone syscall
The clone syscall is the way
	  threads are created in Linux®.  The syscall prototype looks
	  like this:
int linux_clone(l_int flags, void *stack, void *parent_tidptr, int dummy,
void * child_tidptr);
The flags parameter tells the syscall
	  how exactly the processes should be cloned.  As described
	  above, Linux® can create processes sharing various things
	  independently, for example two processes can share file
	  descriptors but not VM, etc.  Last byte of the
	  flags parameter is the exit signal of the
	  newly created process.  The stack
	  parameter if non-NULL tells, where the
	  thread stack is and if it is NULL we are
	  supposed to copy-on-write the calling process stack (i.e. do
	  what normal fork(2) routine does).  The
	  parent_tidptr parameter is used as an
	  address for copying out process PID (i.e.  thread id) once
	  the process is sufficiently instantiated but is not runnable
	  yet.  The dummy parameter is here because
	  of the very strange calling convention of this syscall on
	  i386.  It uses the registers directly and does not let the
	  compiler do it what results in the need of a dummy syscall.
	  The child_tidptr parameter is used as an
	  address for copying out PID once the process has finished
	  forking and when the process exits.
The syscall itself proceeds by setting corresponding
	  flags depending on the flags passed in.  For example,
	  CLONE_VM maps to RFMEM (sharing of VM),
	  etc.  The only nit here is CLONE_FS and
	  CLONE_FILES because FreeBSD does not allow
	  setting this separately so we fake it by not setting RFFDG
	  (copying of fd table and other fs information) if either of
	  these is defined.  This does not cause any problems, because
	  those flags are always set together.  After setting the
	  flags the process is forked using the internal
	  fork1 routine, the process is
	  instrumented not to be put on a run queue, i.e. not to be
	  set runnable.  After the forking is done we possibly
	  reparent the newly created process to emulate
	  CLONE_PARENT semantics.  Next part is
	  creating the emulation data.  Threads in Linux® does not
	  signal their parents so we set exit signal to be 0 to
	  disable this.  After that setting of
	  child_set_tid and
	  child_clear_tid is performed enabling the
	  functionality later in the code.  At this point we copy out
	  the PID to the address specified by
	  parent_tidptr.  The setting of process
	  stack is done by simply rewriting thread frame
	  %esp register (%rsp on
	  amd64).  Next part is setting up TLS for the newly created
	  process.  After this vfork(2) semantics might be
	  emulated and finally the newly created process is put on a
	  run queue and copying out its PID to the parent process via
	  clone return value is done.
The clone syscall is able and in
	  fact is used for emulating classic fork(2) and
	  vfork(2) syscalls.  Newer glibc in a case of 2.6 kernel
	  uses clone to implement fork(2)
	  and vfork(2) syscalls.
5.2.5. Locking
The locking is implemented to be per-subsystem because
	  we do not expect a lot of contention on these.  There are
	  two locks: emul_lock used to protect
	  manipulating of linux_emuldata and
	  emul_shared_lock used to manipulate
	  linux_emuldata_shared.  The
	  emul_lock is a nonsleepable blocking
	  mutex while emul_shared_lock is a
	  sleepable blocking sx_lock.  Due to
	  the per-subsystem locking we can coalesce some locks and
	  that is why the em find offers the non-locking
	  access.
5.3. TLS
This section deals with TLS also known as thread local
	storage.
5.3.1. Introduction to threading
Threads in computer science are entities within a
	  process that can be scheduled independently from each other.
	  The threads in the process share process wide data (file
	  descriptors, etc.) but also have their own stack for their
	  own data.  Sometimes there is a need for process-wide data
	  specific to a given thread.  Imagine a name of the thread in
	  execution or something like that.  The traditional UNIX®
	  threading API, pthreads provides
	  a way to do it via pthread_key_create(3),
	  pthread_setspecific(3) and pthread_getspecific(3)
	  where a thread can create a key to the thread local data and
	  using pthread_getspecific(3) or
	  pthread_getspecific(3) to manipulate those data.  You
	  can easily see that this is not the most comfortable way
	  this could be accomplished.  So various producers of C/C++
	  compilers introduced a better way.  They defined a new
	  modifier keyword thread that specifies that a variable is
	  thread specific.  A new method of accessing such variables
	  was developed as well (at least on i386).  The
	  pthreads method tends to be
	  implemented in userspace as a trivial lookup table.  The
	  performance of such a solution is not very good.  So the new
	  method uses (on i386) segment registers to address a
	  segment, where TLS area is stored so the actual accessing of
	  a thread variable is just appending the segment register to
	  the address thus addressing via it.  The segment registers
	  are usually %gs and
	  %fs acting like segment selectors.  Every
	  thread has its own area where the thread local data are
	  stored and the segment must be loaded on every context
	  switch.  This method is very fast and used almost
	  exclusively in the whole i386 UNIX® world.  Both FreeBSD and
	  Linux® implement this approach and it yields very good
	  results.  The only drawback is the need to reload the
	  segment on every context switch which can slowdown context
	  switches.  FreeBSD tries to avoid this overhead by using only 1
	  segment descriptor for this while Linux® uses 3.
	  Interesting thing is that almost nothing uses more than 1
	  descriptor (only Wine seems to
	  use 2) so Linux® pays this unnecessary price for context
	  switches.
5.3.2. Segments on i386
The i386 architecture implements the so called segments.
	  A segment is a description of an area of memory.  The base
	  address (bottom) of the memory area, the end of it
	  (ceiling), type, protection, etc.  The memory described by a
	  segment can be accessed using segment selector registers
	  (%cs, %ds,
	  %ss, %es,
	  %fs, %gs).  For
	  example let us suppose we have a segment which base address
	  is 0x1234 and length and this code:
mov %edx,%gs:0x10
This will load the content of the
	  %edx register into memory location
	  0x1244.  Some segment registers have a special use, for
	  example %cs is used for code segment and
	  %ss is used for stack segment but
	  %fs and %gs are
	  generally unused.  Segments are either stored in a global
	  GDT table or in a local LDT table.  LDT is accessed via an
	  entry in the GDT.  The LDT can store more types of segments.
	  LDT can be per process.  Both tables define up to 8191
	  entries.
5.3.3. Implementation on Linux® i386
There are two main ways of setting up TLS in Linux®.
	  It can be set when cloning a process using the
	  clone syscall or it can call
	  set_thread_area.  When a process passes
	  CLONE_SETTLS flag to
	  clone, the kernel expects the memory
	  pointed to by the %esi register a Linux®
	  user space representation of a segment, which gets
	  translated to the machine representation of a segment and
	  loaded into a GDT slot.  The GDT slot can be specified with
	  a number or -1 can be used meaning that the system itself
	  should choose the first free slot.  In practice, the vast
	  majority of programs use only one TLS entry and does not
	  care about the number of the entry.  We exploit this in the
	  emulation and in fact depend on it.
5.3.4. Emulation of Linux® TLS
5.3.4.1. i386
Loading of TLS for the current thread happens by
	    calling set_thread_area while loading
	    TLS for a second process in clone is
	    done in the separate block in clone.
	    Those two functions are very similar.  The only difference
	    being the actual loading of the GDT segment, which happens
	    on the next context switch for the newly created process
	    while set_thread_area must load this
	    directly.  The code basically does this.  It copies the
	    Linux® form segment descriptor from the userland.  The
	    code checks for the number of the descriptor but because
	    this differs between FreeBSD and Linux® we fake it a little.
	    We only support indexes of 6, 3 and -1.  The 6 is genuine
	    Linux® number, 3 is genuine FreeBSD one and -1 means
	    autoselection.  Then we set the descriptor number to
	    constant 3 and copy out this to the userspace.  We rely on
	    the userspace process using the number from the descriptor
	    but this works most of the time (have never seen a case
	    where this did not work) as the userspace process
	    typically passes in 1.  Then we convert the descriptor
	    from the Linux® form to a machine dependant form (i.e.
	    operating system independent form) and copy this to the
	    FreeBSD defined segment descriptor.  Finally we can load it.
	    We assign the descriptor to threads PCB (process control
	    block) and load the %gs segment using
	    load_gs.  This loading must be done
	    in a critical section so that nothing can interrupt us.
	    The CLONE_SETTLS case works exactly
	    like this just the loading using
	    load_gs is not performed.  The
	    segment used for this (segment number 3) is shared for
	    this use between FreeBSD processes and Linux® processes so
	    the Linux® emulation layer does not add any overhead over
	    plain FreeBSD.
5.3.4.2. amd64
The amd64 implementation is similar to the i386 one
	    but there was initially no 32bit segment descriptor used
	    for this purpose (hence not even native 32bit TLS users
	    worked) so we had to add such a segment and implement its
	    loading on every context switch (when a flag signaling use
	    of 32bit is set).  Apart from this the TLS loading is
	    exactly the same just the segment numbers are different
	    and the descriptor format and the loading differs
	    slightly.
5.4. Futexes
5.4.1. Introduction to synchronization
Threads need some kind of synchronization and POSIX®
	  provides some of them: mutexes for mutual exclusion,
	  read-write locks for mutual exclusion with biased ratio of
	  reads and writes and condition variables for signaling a
	  status change.  It is interesting to note that POSIX®
	  threading API lacks support for semaphores.  Those
	  synchronization routines implementations are heavily
	  dependant on the type threading support we have.  In pure
	  1:M (userspace) model the implementation can be solely done
	  in userspace and thus be very fast (the condition variables
	  will probably end up being implemented using signals, i.e.
	  not fast) and simple.  In 1:1 model, the situation is also
	  quite clear - the threads must be synchronized using kernel
	  facilities (which is very slow because a syscall must be
	  performed).  The mixed M:N scenario just combines the first
	  and second approach or rely solely on kernel.  Threads
	  synchronization is a vital part of thread-enabled
	  programming and its performance can affect resulting program
	  a lot.  Recent benchmarks on FreeBSD operating system showed
	  that an improved sx_lock implementation yielded 40% speedup
	  in ZFS (a heavy sx user), this is
	  in-kernel stuff but it shows clearly how important the
	  performance of synchronization primitives is.
Threaded programs should be written with as little
	  contention on locks as possible.  Otherwise, instead of
	  doing useful work the thread just waits on a lock.  As a result
	  of this, the most well written threaded programs show little
	  locks contention.
5.4.2. Futexes introduction
Linux® implements 1:1 threading, i.e. it has to use
	  in-kernel synchronization primitives.  As stated earlier,
	  well written threaded programs have little lock contention.
	  So a typical sequence could be performed as two atomic
	  increase/decrease mutex reference counter, which is very
	  fast, as presented by the following example:
pthread_mutex_lock(&mutex);
....
pthread_mutex_unlock(&mutex);
1:1 threading forces us to perform two syscalls for
	  those mutex calls, which is very slow.
The solution Linux® 2.6 implements is called
	  futexes.  Futexes implement the check for contention in
	  userspace and call kernel primitives only in a case of
	  contention.  Thus the typical case takes place without any
	  kernel intervention.  This yields reasonably fast and
	  flexible synchronization primitives implementation.
5.4.3. Futex API
The futex syscall looks like this:
int futex(void *uaddr, int op, int val, struct timespec *timeout, void *uaddr2, int val3);
In this example uaddr is an address
	  of the mutex in userspace, op is an
	  operation we are about to perform and the other parameters
	  have per-operation meaning.
Futexes implement the following operations:
	FUTEX_WAIT

	FUTEX_WAKE

	FUTEX_FD

	FUTEX_REQUEUE

	FUTEX_CMP_REQUEUE

	FUTEX_WAKE_OP



5.4.3.1. FUTEX_WAIT
This operation verifies that on address
	    uaddr the value val
	    is written.  If not, EWOULDBLOCK is
	    returned, otherwise the thread is queued on the futex and
	    gets suspended.  If the argument
	    timeout is non-zero it specifies the
	    maximum time for the sleeping, otherwise the sleeping is
	    infinite.
5.4.3.2. FUTEX_WAKE
This operation takes a futex at
	    uaddr and wakes up
	    val first futexes queued on this
	    futex.
5.4.3.3. FUTEX_FD
This operations associates a file descriptor with a
	    given futex.
5.4.3.4. FUTEX_REQUEUE
This operation takes val threads
	    queued on futex at uaddr, wakes them
	    up, and takes val2 next threads and
	    requeues them on futex at
	    uaddr2.
5.4.3.5. FUTEX_CMP_REQUEUE
This operation does the same as
	    FUTEX_REQUEUE but it checks that
	    val3 equals to val
	    first.
5.4.3.6. FUTEX_WAKE_OP
This operation performs an atomic operation on
	    val3 (which contains coded some other
	    value) and uaddr.  Then it wakes up
	    val threads on futex at
	    uaddr and if the atomic operation
	    returned a positive number it wakes up
	    val2 threads on futex at
	    uaddr2.
The operations implemented in
	    FUTEX_WAKE_OP:
	FUTEX_OP_SET

	FUTEX_OP_ADD

	FUTEX_OP_OR

	FUTEX_OP_AND

	FUTEX_OP_XOR



Note: 
There is no val2 parameter in the
	      futex prototype.  The val2 is taken
	      from the struct timespec *timeout
	      parameter for operations
	      FUTEX_REQUEUE,
	      FUTEX_CMP_REQUEUE and
	      FUTEX_WAKE_OP.

5.4.4. Futex emulation in FreeBSD
The futex emulation in FreeBSD is taken from NetBSD and
	  further extended by us.  It is placed in
	  linux_futex.c and
	  linux_futex.h files.  The
	  futex structure looks like:
struct futex {
  void *f_uaddr;
  int f_refcount;

  LIST_ENTRY(futex) f_list;

  TAILQ_HEAD(lf_waiting_paroc, waiting_proc) f_waiting_proc;
};
And the structure waiting_proc
	  is:
struct waiting_proc {

  struct thread *wp_t;

  struct futex *wp_new_futex;

  TAILQ_ENTRY(waiting_proc) wp_list;
};
5.4.4.1. futex_get / futex_put
A futex is obtained using the
	    futex_get function, which searches a
	    linear list of futexes and returns the found one or
	    creates a new futex.  When releasing a futex from the use
	    we call the futex_put function, which
	    decreases a reference counter of the futex and if the
	    refcount reaches zero it is released.
5.4.4.2. futex_sleep
When a futex queues a thread for sleeping it creates a
	    working_proc structure and puts this
	    structure to the list inside the futex structure then it
	    just performs a tsleep(9) to suspend the thread.  The
	    sleep can be timed out.  After tsleep(9) returns (the
	    thread was woken up or it timed out) the
	    working_proc structure is removed from
	    the list and is destroyed.  All this is done in the
	    futex_sleep function.  If we got
	    woken up from futex_wake we have
	    wp_new_futex set so we sleep on it.
	    This way the actual requeueing is done in this
	    function.
5.4.4.3. futex_wake
Waking up a thread sleeping on a futex is performed in
	    the futex_wake function.  First in
	    this function we mimic the strange Linux® behavior, where
	    it wakes up N threads for all operations, the only
	    exception is that the REQUEUE operations are performed on
	    N+1 threads.  But this usually does not make any
	    difference as we are waking up all threads.  Next in the
	    function in the loop we wake up n threads, after this we
	    check if there is a new futex for requeueing.  If so, we
	    requeue up to n2 threads on the new futex.  This
	    cooperates with futex_sleep.
5.4.4.4. futex_wake_op
The FUTEX_WAKE_OP operation is
	    quite complicated.  First we obtain two futexes at
	    addresses uaddr and
	    uaddr2 then we perform the atomic
	    operation using val3 and
	    uaddr2.  Then val
	    waiters on the first futex is woken up and if the atomic
	    operation condition holds we wake up
	    val2 (i.e.  timeout)
	    waiter on the second futex.
5.4.4.5. futex atomic operation
The atomic operation takes two parameters
	    encoded_op and
	    uaddr.  The encoded operation encodes
	    the operation itself, comparing value, operation argument,
	    and comparing argument.  The pseudocode for the operation
	    is like this one:
oldval = *uaddr2
*uaddr2 = oldval OP oparg
And this is done atomically.  First a copying in of
	    the number at uaddr is performed and
	    the operation is done.  The code handles page faults and
	    if no page fault occurs oldval is
	    compared to cmparg argument with cmp
	    comparator.
5.4.4.6. Futex locking
Futex implementation uses two lock lists protecting
	    sx_lock and global locks (either
	    Giant or another sx_lock).  Every
	    operation is performed locked from the start to the very
	    end.
5.5. Various syscalls implementation
In this section I am going to describe some smaller
	syscalls that are worth mentioning because their
	implementation is not obvious or those syscalls are
	interesting from other point of view.
5.5.1. *at family of syscalls
During development of Linux® 2.6.16 kernel, the *at
	  syscalls were added.  Those syscalls
	  (openat for example) work exactly like
	  their at-less counterparts with the slight exception of the
	  dirfd parameter.  This parameter changes
	  where the given file, on which the syscall is to be
	  performed, is.  When the filename
	  parameter is absolute dirfd is ignored
	  but when the path to the file is relative, it comes to the
	  play.  The dirfd parameter is a directory
	  relative to which the relative pathname is checked.  The
	  dirfd parameter is a file descriptor of
	  some directory or AT_FDCWD.  So for
	  example the openat syscall can be like
	  this:
file descriptor 123 = /tmp/foo/, current working directory = /tmp/

openat(123, /tmp/bah\, flags, mode)	/* opens /tmp/bah */
openat(123, bah\, flags, mode)		/* opens /tmp/foo/bah */
openat(AT_FDWCWD, bah\, flags, mode)	/* opens /tmp/bah */
openat(stdio, bah\, flags, mode)	/* returns error because stdio is not a directory */
This infrastructure is necessary to avoid races when
	  opening files outside the working directory.  Imagine that a
	  process consists of two threads, thread A and
	  thread B.  Thread A issues
	  open(./tmp/foo/bah., flags, mode) and
	  before returning it gets preempted and thread B runs.
	  Thread B does not care about the needs of thread A
	  and renames or removes /tmp/foo/.  We
	  got a race.  To avoid this we can open
	  /tmp/foo and use it as
	  dirfd for openat
	  syscall.  This also enables user to implement per-thread
	  working directories.
Linux® family of *at syscalls contains:
	  linux_openat,
	  linux_mkdirat,
	  linux_mknodat,
	  linux_fchownat,
	  linux_futimesat,
	  linux_fstatat64,
	  linux_unlinkat,
	  linux_renameat,
	  linux_linkat,
	  linux_symlinkat,
	  linux_readlinkat,
	  linux_fchmodat and
	  linux_faccessat.  All these are
	  implemented using the modified namei(9) routine and
	  simple wrapping layer.
5.5.1.1. Implementation
The implementation is done by altering the
	    namei(9) routine (described above) to take additional
	    parameter dirfd in its
	    nameidata structure, which specifies
	    the starting point of the pathname lookup instead of using
	    the current working directory every time.  The resolution
	    of dirfd from file descriptor number to
	    a vnode is done in native *at syscalls.  When
	    dirfd is AT_FDCWD
	    the dvp entry in
	    nameidata structure is
	    NULL but when dirfd
	    is a different number we obtain a file for this file
	    descriptor, check whether this file is valid and if there
	    is vnode attached to it then we get a vnode.  Then we
	    check this vnode for being a directory.  In the actual
	    namei(9) routine we simply substitute the
	    dvp vnode for dp
	    variable in the namei(9) function, which determines
	    the starting point.  The namei(9) is not used
	    directly but via a trace of different functions on various
	    levels.  For example the openat goes
	    like this:
openat() --> kern_openat() --> vn_open() -> namei()
For this reason kern_open and
	    vn_open must be altered to
	    incorporate the additional dirfd
	    parameter.  No compat layer is created for those because
	    there are not many users of this and the users can be
	    easily converted.  This general implementation enables
	    FreeBSD to implement their own *at syscalls.  This is being
	    discussed right now.
5.5.2. Ioctl
The ioctl interface is quite fragile due to its
	  generality.  We have to bear in mind that devices differ
	  between Linux® and FreeBSD so some care must be applied to do
	  ioctl emulation work right.  The ioctl handling is
	  implemented in linux_ioctl.c, where
	  linux_ioctl function is defined.  This
	  function simply iterates over sets of ioctl handlers to find
	  a handler that implements a given command.  The ioctl
	  syscall has three parameters, the file descriptor, command
	  and an argument.  The command is a 16-bit number, which in
	  theory is divided into high 8 bits determining class of
	  the ioctl command and low 8 bits, which are the actual
	  command within the given set.  The emulation takes advantage
	  of this division.  We implement handlers for each set, like
	  sound_handler or
	  disk_handler.  Each handler has a
	  maximum command and a minimum command defined, which is used
	  for determining what handler is used.  There are slight
	  problems with this approach because Linux® does not use the
	  set division consistently so sometimes ioctls for a
	  different set are inside a set they should not belong to
	  (SCSI generic ioctls inside cdrom set, etc.).  FreeBSD
	  currently does not implement many Linux® ioctls (compared
	  to NetBSD, for example) but the plan is to port those from
	  NetBSD.  The trend is to use Linux® ioctls even in the
	  native FreeBSD drivers because of the easy porting of
	  applications.
5.5.3. Debugging
Every syscall should be debuggable.  For this purpose we
	  introduce a small infrastructure.  We have the ldebug
	  facility, which tells whether a given syscall should be
	  debugged (settable via a sysctl).  For printing we have LMSG
	  and ARGS macros.  Those are used for altering a printable
	  string for uniform debugging messages.
6. Conclusion
6.1. Results
As of April 2007 the Linux® emulation layer is capable of
	emulating the Linux® 2.6.16 kernel quite well.  The
	remaining problems concern futexes, unfinished *at family of
	syscalls, problematic signals delivery, missing
	epoll and inotify
	and probably some bugs we have not discovered yet.  Despite
	this we are capable of running basically all the Linux®
	programs included in FreeBSD Ports Collection with
	Fedora Core 4 at 2.6.16 and there are some
	rudimentary reports of success with Fedora Core 6 at
	2.6.16.  The Fedora Core 6 linux_base was recently
	committed enabling some further testing of the emulation layer
	and giving us some more hints where we should put our effort
	in implementing missing stuff.
We are able to run the most used applications like
	www/linux-firefox,
	net-im/skype and some games from the
	Ports Collection.  Some of the programs exhibit bad
	behavior under 2.6 emulation but this is currently under
	investigation and hopefully will be fixed soon.  The only big
	application that is known not to work is the Linux® Java™
	Development Kit and this is because of the requirement of
	epoll facility which is not directly
	related to the Linux® kernel 2.6.
We hope to enable 2.6.16 emulation by default some time
	after FreeBSD 7.0 is released at least to expose the 2.6
	emulation parts for some wider testing.  Once this is done we
	can switch to Fedora Core 6 linux_base, which is the
	ultimate plan.
6.2. Future work
Future work should focus on fixing the remaining issues
	with futexes, implement the rest of the *at family of
	syscalls, fix the signal delivery and possibly implement the
	epoll and inotify
	facilities.
We hope to be able to run the most important programs
	flawlessly soon, so we will be able to switch to the 2.6
	emulation by default and make the Fedora Core 6 the
	default linux_base because our currently used
	Fedora Core 4 is not supported any more.
The other possible goal is to share our code with NetBSD
	and DragonflyBSD.  NetBSD has some support for 2.6 emulation
	but its far from finished and not really tested.  DragonflyBSD
	has expressed some interest in porting the 2.6
	improvements.
Generally, as Linux® develops we would like to keep up
	with their development, implementing newly added syscalls.
	Splice comes to mind first.  Some already implemented syscalls
	are also heavily crippled, for example
	mremap and others.  Some performance
	improvements can also be made, finer grained locking and
	others.
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