Problem Report Handling Guidelines
Table of Contents
	1. Introduction
	2. Problem Report Life-cycle
	3. Problem Report State
	4. Types of Problem Reports	4.1. Unassigned PRs
	4.2. Assigned PRs
	4.3. Duplicate PRs
	4.4. Stale PRs
	4.5. Non-Bug PRs

	5. Further Reading

List of Tables
	1. Default Assignees — most common
	2. Default Assignees — other
	3. Common Assignees — base system
	4. Common Assignees — Ports Collection
	5. Common Assignees — Other

List of Examples
	1. A small example on when to change PR state

Problem Report Handling Guidelines
Dag-Erling Smørgrav

Hiten Pandya

Revision: 1d6a8965afLegal NoticeLast modified on 2017-12-30 22:56:56 +0000 by Eitan Adler.Abstract
These guidelines describe recommended handling practices
	for FreeBSD Problem Reports (PRs). Whilst developed for the
	FreeBSD PR Database Maintenance Team
	<freebsd-bugbusters@FreeBSD.org>, these
	guidelines should be followed by anyone working with FreeBSD
	PRs.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Introduction
Bugzilla is an issue management system used by
 the FreeBSD Project. As accurate tracking of outstanding
 software defects is important to FreeBSD's quality, the
 correct use of the software is essential to the forward
 progress of the Project.
Access to Bugzilla is available to the entire FreeBSD
 community. In order to maintain consistency within
 the database and provide a consistent user experience, guidelines
 have been established covering common aspects of bug management
 such as presenting followup, handling close requests, and so
 forth.
2. Problem Report Life-cycle
	The Reporter submits a bug report on the website. The
	bug is in the Needs Triage state.

	Jane Random BugBuster confirms that the bug report has
	 sufficient information to be reproducible. If not, she goes
	 back and forth with the reporter to obtain the needed
	 information. At this point the bug is set to the
	 Open state.

	Joe Random Committer takes interest in the PR and
	 assigns it to himself, or Jane Random BugBuster decides that
	 Joe is best suited to handle it and assigns it to
	 him. The bug should be set to the In
	 Discussion state.

	Joe has a brief exchange with the originator (making
	 sure it all goes into the audit trail) and determines the
	 cause of the problem.

	Joe pulls an all-nighter and whips up a patch that he
	 thinks fixes the problem, and submits it in a follow-up,
	 asking the originator to test it. He then sets the PRs
	 state to Patch Ready.

	A couple of iterations later, both Joe and the
	 originator are satisfied with the patch, and Joe commits it
	 to -CURRENT (or directly to
	 -STABLE if the problem does not exist in
	 -CURRENT), making sure to reference the
	 Problem Report in his commit log (and credit the originator
	 if they submitted all or part of the patch) and, if
	 appropriate, start an MFC countdown. The bug is set to the
	 Needs MFC state.

	If the patch does not need MFCing, Joe then closes the
	 PR as Issue Resolved.

Note:
Many PRs are submitted with very little information about
	the problem, and some are either very complex to solve, or
	just scratch the surface of a larger problem; in these cases, it
	is very important to obtain all the necessary information
	needed to solve the problem. If the problem contained within
	cannot be solved, or has occurred again, it is necessary to
	re-open the PR.

3. Problem Report State
It is important to update the state of a PR when certain
 actions are taken. The state should accurately reflect the
 current state of work on the PR.
Example 1. A small example on when to change PR state
When a PR has been worked on and the developer(s)
	responsible feel comfortable about the fix, they will submit a
	followup to the PR and change its state to
	“feedback”. At this point, the originator should
	evaluate the fix in their context and respond indicating
	whether the defect has indeed been remedied.

A Problem Report may be in one of the following
 states:
	open
	Initial state; the problem has been pointed out and it
	 needs reviewing.

	analyzed
	The problem has been reviewed and a
	solution is being sought.

	feedback
	Further work requires additional information from the
	 originator or the community; possibly information
	 regarding the proposed solution.

	patched
	A patch has been committed, but something (MFC, or
	 maybe confirmation from originator) is still pending.

	suspended
	The problem is not being worked on, due to lack of
	 information or resources. This is a prime candidate for
	 somebody who is looking for a project to take on. If the
	 problem cannot be solved at all, it will be closed, rather
	 than suspended. The documentation project uses
	 “suspended” for “wish-list”
	 items that entail a significant amount of work which no one
	 currently has time for.

	closed
	A problem report is closed when any changes have been
	 integrated, documented, and tested, or when fixing the
	 problem is abandoned.

Note:
The “patched” state is directly related to
	feedback, so you may go directly to “closed” state if
	the originator cannot test the patch, and it works in your own testing.

4. Types of Problem Reports
While handling problem reports, either as a developer who has
 direct access to the Problem Reports database or as a contributor who
 browses the database and submits followups with patches, comments,
 suggestions or change requests, you will come across several
 different types of PRs.
	PRs not yet assigned to anyone.

	PRs already assigned to someone.

	Duplicates of existing PRs.

	Stale PRs

	Non-Bug PRs

The following sections describe what each different type of
 PRs is used for, when a PR belongs to one of these types, and what
 treatment each different type receives.
4.1. Unassigned PRs
When PRs arrive, they are initially assigned to a generic
	(placeholder) assignee. These are always prepended with
	freebsd-. The exact value for this default
	depends on the category; in most cases, it corresponds to a
	specific FreeBSD mailing list. Here is the current list, with
	the most common ones listed first:
Table 1. Default Assignees — most common
	Type	Categories	Default Assignee
	base system	bin, conf, gnu, kern, misc	freebsd-bugs
	architecture-specific	alpha, amd64, arm, i386, ia64, powerpc, sparc64	freebsd-arch
	ports collection	ports	freebsd-ports-bugs
	documentation shipped with the system	docs	freebsd-doc
	FreeBSD web pages (not including docs)	Website	freebsd-www

Table 2. Default Assignees — other
	Type	Categories	Default Assignee
	advocacy efforts	advocacy	freebsd-advocacy
	Java Virtual Machine™ problems	java	freebsd-java
	standards compliance	standards	freebsd-standards
	threading libraries	threads	freebsd-threads
	usb(4) subsystem	usb	freebsd-usb

Do not be surprised to find that the submitter of the
	PR has assigned it to the wrong category. If you fix the
	category, do not forget to fix the assignment as well.
	(In particular, our submitters seem to have a hard time
	understanding that just because their problem manifested
	on an i386 system, that it might be generic to all of FreeBSD,
	and thus be more appropriate for kern.
	The converse is also true, of course.)
Certain PRs may be reassigned away from these generic
	assignees by anyone. There are several types of assignees:
	specialized mailing lists; mail aliases (used for certain
	limited-interest items); and individuals.
For assignees which are mailing lists,
	please use the long form when making the assignment (e.g.,
	freebsd-foo instead of foo);
	this will avoid duplicate emails sent to the mailing list.
Note:
Since the list of individuals who have volunteered to
	 be the default assignee for certain types of PRs changes
	 so often, it is much more suitable for the FreeBSD wiki.
	

Here is a sample list of such entities; it is probably
	 not complete.
Table 3. Common Assignees — base system
	Type	Suggested Category	Suggested Assignee	Assignee Type
	problem specific to the ARM® architecture	arm	freebsd-arm	mailing list
	problem specific to the MIPS® architecture	kern	freebsd-mips	mailing list
	problem specific to the PowerPC® architecture	kern	freebsd-ppc	mailing list
	problem with Advanced Configuration and Power
		Management (acpi(4))	kern	freebsd-acpi	mailing list
	problem with Asynchronous Transfer Mode (ATM)
		drivers	kern	freebsd-atm	mailing list
	problem with embedded or small-footprint FreeBSD
		systems (e.g., NanoBSD/PicoBSD/FreeBSD-arm)	kern	freebsd-embedded	mailing list
	problem with FireWire® drivers	kern	freebsd-firewire	mailing list
	problem with the filesystem code	kern	freebsd-fs	mailing list
	problem with the geom(4) subsystem	kern	freebsd-geom	mailing list
	problem with the ipfw(4) subsystem	kern	freebsd-ipfw	mailing list
	problem with Integrated Services Digital Network
		(ISDN) drivers	kern	freebsd-isdn	mailing list
	jail(8) subsystem	kern	freebsd-jail	mailing list
	problem with Linux® or SVR4 emulation	kern	freebsd-emulation	mailing list
	problem with the networking stack	kern	freebsd-net	mailing list
	problem with the pf(4) subsystem	kern	freebsd-pf	mailing list
	problem with the scsi(4) subsystem	kern	freebsd-scsi	mailing list
	problem with the sound(4) subsystem	kern	freebsd-multimedia	mailing list
	problems with the wlan(4) subsystem and
		wireless drivers	kern	freebsd-wireless	mailing list
	problem with sysinstall(8) or
		bsdinstall(8)	bin	freebsd-sysinstall	mailing list
	problem with the system startup scripts
		(rc(8))	kern	freebsd-rc	mailing list
	problem with VIMAGE or VNET functionality and
		related code	kern	freebsd-virtualization	mailing list
	problem with Xen emulation	kern	freebsd-xen	mailing list

Table 4. Common Assignees — Ports Collection
	Type	Suggested Category	Suggested Assignee	Assignee Type
	problem with the ports framework
		(not with an individual port!)	ports	portmgr	alias
	port which is maintained by apache@FreeBSD.org	ports	apache	mailing list
	port which is maintained by autotools@FreeBSD.org	ports	autotools	alias
	port which is maintained by doceng@FreeBSD.org	ports	doceng	alias
	port which is maintained by eclipse@FreeBSD.org	ports	freebsd-eclipse	mailing list
	port which is maintained by gecko@FreeBSD.org	ports	gecko	mailing list
	port which is maintained by gnome@FreeBSD.org	ports	gnome	mailing list
	port which is maintained by hamradio@FreeBSD.org	ports	hamradio	alias
	port which is maintained by haskell@FreeBSD.org	ports	haskell	alias
	port which is maintained by java@FreeBSD.org	ports	freebsd-java	mailing list
	port which is maintained by kde@FreeBSD.org	ports	kde	mailing list
	port which is maintained by mono@FreeBSD.org	ports	mono	mailing list
	port which is maintained by
		office@FreeBSD.org	ports	freebsd-office	mailing list
	port which is maintained by perl@FreeBSD.org	ports	perl	mailing list
	port which is maintained by python@FreeBSD.org	ports	freebsd-python	mailing list
	port which is maintained by ruby@FreeBSD.org	ports	freebsd-ruby	mailing list
	port which is maintained by secteam@FreeBSD.org	ports	secteam	alias
	port which is maintained by vbox@FreeBSD.org	ports	vbox	alias
	port which is maintained by x11@FreeBSD.org	ports	freebsd-x11	mailing list

Ports PRs which have a maintainer who is a ports committer
	may be reassigned by anyone (but note that not every FreeBSD
	committer is necessarily a ports committer, so you cannot
	simply go by the email address alone.)

For other PRs, please do not reassign them to individuals
	(other than yourself) unless you are certain that the assignee
	really wants to track the PR. This will help to avoid the
	case where no one looks at fixing a particular problem
	because everyone assumes that the assignee is already working
	on it.
Table 5. Common Assignees — Other
	Type	Suggested Category	Suggested Assignee	Assignee Type
	problem with PR database	bin	bugmeister	alias
	problem with Bugzilla web form.	doc	bugmeister	alias

4.2. Assigned PRs
If a PR has the responsible field set
	to the username of a FreeBSD developer, it means that the PR
	has been handed over to that particular person for further
	work.
Assigned PRs should not be touched by anyone but the
	assignee or bugmeister. If you have comments, submit a followup. If for
	some reason you think the PR should change state or be
	reassigned, send a message to the assignee. If the assignee
	does not respond within two weeks, unassign the PR and do as
	you please.
4.3. Duplicate PRs
If you find more than one PR that describe the same issue,
	choose the one that contains the largest amount of useful
	information and close the others, stating clearly the number
	of the superseding PR. If several PRs contain non-overlapping
	useful information, submit all the missing information to one
	in a followup, including references to the others; then close
	the other PRs (which are now completely superseded).
4.4. Stale PRs
A PR is considered stale if it has not been modified in more
	than six months. Apply the following procedure to deal with
	stale PRs:
	If the PR contains sufficient detail, try to reproduce
	 the problem in -CURRENT and
	 -STABLE. If you succeed, submit a
	 followup detailing your findings and try to find someone
	 to assign it to. Set the state to “analyzed”
	 if appropriate.

	If the PR describes an issue which you know is the
	 result of a usage error (incorrect configuration or
	 otherwise), submit a followup explaining what the
	 originator did wrong, then close the PR with the reason
	 “User error” or “Configuration
	 error”.

	If the PR describes an error which you know has been
	 corrected in both -CURRENT and
	 -STABLE, close it with a message
	 stating when it was fixed in each branch.

	If the PR describes an error which you know has been
	 corrected in -CURRENT, but not in
	 -STABLE, try to find out when the person
	 who corrected it is planning to MFC it, or try to find
	 someone else (maybe yourself?) to do it. Set the state to
	 “patched” and assign it to whomever will do
	 the MFC.

	In other cases, ask the originator to confirm if
	 the problem still exists in newer versions. If the
	 originator does not reply within a month, close the PR
	 with the notation “Feedback timeout”.

4.5. Non-Bug PRs
Developers that come across PRs that look like they should have
	 been posted to freebsd-bugs or some other list should close the
	 PR, informing the submitter in a comment why this
	 is not really a PR and where the message should be posted.
The email addresses that Bugzilla listens to for incoming PRs
	 have been published as part of the FreeBSD documentation, have
	 been announced and listed on the web-site. This means that
	 spammers found them.
Whenever you close one of these PRs, please do the
	 following:
	Set the component to junk (under
		Supporting Services.

	Set Responsible to nobody@FreeBSD.org.

	Set State to Issue Resolved.

Setting the category to junk makes it
	 obvious that there is no useful content within the PR, and
	 helps to reduce the clutter within the main categories.
5. Further Reading
This is a list of resources relevant to the proper writing
 and processing of problem reports. It is by no means complete.
	How to
	 Write FreeBSD Problem Reports—guidelines
	 for PR originators.

OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

