FreeBSD and Solid State Devices
Table of Contents
	1. Solid State Disk Devices
	2. Kernel Options
	3. The rc Subsystem and Read-Only
 Filesystems
	4. Building a File System from Scratch
	5. System Strategies for Small and Read Only
 Environments	5.1. Cron
	5.2. Syslog
	5.3. Ports Installation
	5.4. Apache Web Server

FreeBSD and Solid State Devices
John Kozubik

	 <john@kozubik.com>

	

Revision: e194334c79Copyright © 2001, 2009 The FreeBSD Documentation Project
Legal NoticeCopyrightLast modified on 2021-01-08 14:04:42 +0100 by Daniel Ebdrup Jensen.Abstract
This article covers the use of solid state disk devices in
	FreeBSD to create embedded systems.
Embedded systems have the advantage of increased stability
	due to the lack of integral moving parts (hard drives).
	Account must be taken, however, for the generally low disk
	space available in the system and the durability of the
	storage medium.
Specific topics to be covered include the types and
	attributes of solid state media suitable for disk use in FreeBSD,
	kernel options that are of interest in such an environment,
	the rc.initdiskless mechanisms that
	automate the initialization of such systems and the need for
	read-only filesystems, and building filesystems from scratch.
	The article will conclude with some general strategies for
	small and read-only FreeBSD environments.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Solid State Disk Devices
The scope of this article will be limited to solid state
 disk devices made from flash memory. Flash memory is a solid
 state memory (no moving parts) that is non-volatile (the memory
 maintains data even after all power sources have been
 disconnected). Flash memory can withstand tremendous physical
 shock and is reasonably fast (the flash memory solutions covered
 in this article are slightly slower than a EIDE hard disk for
 write operations, and much faster for read operations). One
 very important aspect of flash memory, the ramifications of
 which will be discussed later in this article, is that each
 sector has a limited rewrite capacity. You can only write,
 erase, and write again to a sector of flash memory a certain
 number of times before the sector becomes permanently unusable.
 Although many flash memory products automatically map bad
 blocks, and although some even distribute write operations
 evenly throughout the unit, the fact remains that there exists a
 limit to the amount of writing that can be done to the device.
 Competitive units have between 1,000,000 and 10,000,000 writes
 per sector in their specification. This figure varies due to
 the temperature of the environment.
Specifically, we will be discussing ATA compatible
 compact-flash units, which are quite popular as storage media
 for digital cameras. Of particular interest is the fact that
 they pin out directly to the IDE bus and are compatible with the
 ATA command set. Therefore, with a very simple and low-cost
 adaptor, these devices can be attached directly to an IDE bus in
 a computer. Once implemented in this manner, operating systems
 such as FreeBSD see the device as a normal hard disk (albeit
 small).
Other solid state disk solutions do exist, but their
 expense, obscurity, and relative unease of use places them
 beyond the scope of this article.
2. Kernel Options
A few kernel options are of specific interest to those
 creating an embedded FreeBSD system.
All embedded FreeBSD systems that use flash memory as system
 disk will be interested in memory disks and memory filesystems.
 As a result of the limited number of writes that can be done to
 flash memory, the disk and the filesystems on the disk will most
 likely be mounted read-only. In this environment, filesystems
 such as /tmp and /var
 are mounted as memory filesystems to allow the system to create
 logs and update counters and temporary files. Memory
 filesystems are a critical component to a successful solid state
 FreeBSD implementation.
You should make sure the following lines exist in your
 kernel configuration file:
options MFS # Memory Filesystem
options MD_ROOT # md device usable as a potential root device
pseudo-device md # memory disk
3. The rc Subsystem and Read-Only
 Filesystems
The post-boot initialization of an embedded FreeBSD system is
 controlled by /etc/rc.initdiskless.
/etc/rc.d/var mounts
 /var as a memory filesystem, makes a
 configurable list of directories in /var
 with the mkdir(1) command, and changes modes on some of
 those directories. In the execution of
 /etc/rc.d/var, one other
 rc.conf variable comes into play –
 varsize. A /var
 partition is created by /etc/rc.d/var based
 on the value of this variable in
 rc.conf:
varsize=8192
Remember that this value is in sectors by default.
The fact that /var is a read-write
 filesystem is an important distinction, as the
 / partition (and any other partitions you
 may have on your flash media) should be mounted read-only.
 Remember that in Section 1, “Solid State Disk Devices” we detailed the
 limitations of flash memory - specifically the limited write
 capability. The importance of not mounting filesystems on flash
 media read-write, and the importance of not using a swap file,
 cannot be overstated. A swap file on a busy system can burn
 through a piece of flash media in less than one year. Heavy
 logging or temporary file creation and destruction can do the
 same. Therefore, in addition to removing the
 swap entry from your
 /etc/fstab, you should also change the
 Options field for each filesystem to ro as
 follows:
Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1a / ufs ro 1 1
A few applications in the average system will immediately
 begin to fail as a result of this change. For instance, cron
 will not run properly as a result of missing cron tabs in the
 /var created by
 /etc/rc.d/var, and syslog and dhcp will
 encounter problems as well as a result of the read-only
 filesystem and missing items in the /var
 that /etc/rc.d/var has created. These are
 only temporary problems though, and are addressed, along with
 solutions to the execution of other common software packages in
 Section 5, “System Strategies for Small and Read Only
 Environments”.
An important thing to remember is that a filesystem that was
 mounted read-only with /etc/fstab can be
 made read-write at any time by issuing the command:
/sbin/mount -uw partition
and can be toggled back to read-only with the
 command:
/sbin/mount -ur partition
4. Building a File System from Scratch
Since ATA compatible compact-flash cards are seen by FreeBSD
 as normal IDE hard drives, you could theoretically install FreeBSD
 from the network using the kern and mfsroot floppies or from a
 CD.
However, even a small installation of FreeBSD using normal
 installation procedures can produce a system in size of greater
 than 200 megabytes. Most people will be using smaller
 flash memory devices (128 megabytes is considered fairly large -
 32 or even 16 megabytes is common), so an installation using normal
 mechanisms is not possible—there is simply not enough disk
 space for even the smallest of conventional
 installations.
The easiest way to overcome this space limitation is to
 install FreeBSD using conventional means to a normal hard disk.
 After the installation is complete, pare down the operating
 system to a size that will fit onto your flash media, then tar
 the entire filesystem. The following steps will guide you
 through the process of preparing a piece of flash memory for
 your tarred filesystem. Remember, because a normal installation
 is not being performed, operations such as partitioning,
 labeling, file-system creation, etc. need to be performed by
 hand. In addition to the kern and mfsroot floppy disks, you
 will also need to use the fixit floppy.
	Partitioning Your Flash Media Device
After booting with the kern and mfsroot floppies, choose
	 custom from the installation menu. In
	 the custom installation menu, choose
	 partition. In the partition menu, you
	 should delete all existing partitions using
	 d. After deleting all existing
	 partitions, create a partition using c
	 and accept the default value for the size of the
	 partition. When asked for the type of the partition, make
	 sure the value is set to 165. Now write
	 this partition table to the disk by pressing
	 w (this is a hidden option on this
	 screen). If you are using an ATA compatible compact flash
	 card, you should choose the FreeBSD Boot Manager. Now press
	 q to quit the partition menu. You
	 will be shown the boot manager menu once more - repeat the
	 choice you made earlier.

	Creating Filesystems on Your Flash Memory
	 Device
Exit the custom installation menu, and from the main
	 installation menu choose the fixit
	 option. After entering the fixit environment, enter the
	 following command:
disklabel -e /dev/ad0c
At this point you will have entered the vi editor under
	 the auspices of the disklabel command. Next, you need to
	 add an a: line at the end of the file.
	 This a: line should look like:
a: 123456 0 4.2BSD 0 0
Where 123456 is a number that
	 is exactly the same as the number in the existing
	 c: entry for size. Basically you are
	 duplicating the existing c: line as an
	 a: line, making sure that fstype is
	 4.2BSD. Save the file and exit.
disklabel -B -r /dev/ad0c
newfs /dev/ad0a

	Placing Your Filesystem on the Flash Media
Mount the newly prepared flash media:
mount /dev/ad0a /flash
Bring this machine up on the network so we may transfer
	 our tar file and explode it onto our flash media filesystem.
	 One example of how to do this is:
ifconfig xl0 192.168.0.10 netmask 255.255.255.0
route add default 192.168.0.1
Now that the machine is on the network, transfer your
	 tar file. You may be faced with a bit of a dilemma at this
	 point - if your flash memory part is 128 megabytes, for
	 instance, and your tar file is larger than 64 megabytes, you
	 cannot have your tar file on the flash media at the same
	 time as you explode it - you will run out of
	 space. One solution to this problem, if you are using FTP,
	 is to untar the file while it is transferred over FTP. If
	 you perform your transfer in this manner, you will never
	 have the tar file and the tar contents on your disk at the
	 same time:
ftp> get tarfile.tar "| tar xvf -"
If your tarfile is gzipped, you can accomplish this as
	 well:
ftp> get tarfile.tar "| zcat | tar xvf -"
After the contents of your tarred filesystem are on your
	 flash memory filesystem, you can unmount the flash memory
	 and reboot:
cd /
umount /flash
exit
Assuming that you configured your filesystem correctly
	 when it was built on the normal hard disk (with your
	 filesystems mounted read-only, and with the necessary
	 options compiled into the kernel) you should now be
	 successfully booting your FreeBSD embedded system.

5. System Strategies for Small and Read Only
 Environments
In Section 3, “The rc Subsystem and Read-Only
 Filesystems”, it was pointed out that the
 /var filesystem constructed by
 /etc/rc.d/var and the presence of a
 read-only root filesystem causes problems with many common
 software packages used with FreeBSD. In this article, suggestions
 for successfully running cron, syslog, ports installations, and
 the Apache web server will be provided.
5.1. Cron
Upon boot, /var gets populated by
	/etc/rc.d/var using the list from
	/etc/mtree/BSD.var.dist, so the
	cron, cron/tabs,
	at, and a few other standard directories
	get created.
However, this does not solve the problem of maintaining
	cron tabs across reboots. When the system reboots, the
	/var filesystem that is in memory will
	disappear and any cron tabs you may have had in it will also
	disappear. Therefore, one solution would be to create cron
	tabs for the users that need them, mount your
	/ filesystem as read-write and copy those
	cron tabs to somewhere safe, like
	/etc/tabs, then add a line to the end of
	/etc/rc.initdiskless that copies those
	crontabs into /var/cron/tabs after that
	directory has been created during system initialization. You
	may also need to add a line that changes modes and permissions
	on the directories you create and the files you copy with
	/etc/rc.initdiskless.
5.2. Syslog
syslog.conf specifies the locations
	of certain log files that exist in
	/var/log. These files are not created by
	/etc/rc.d/var upon system initialization.
	Therefore, somewhere in /etc/rc.d/var,
	after the section that creates the directories in
	/var, you will need to add something like
	this:
touch /var/log/security /var/log/maillog /var/log/cron /var/log/messages
chmod 0644 /var/log/*
5.3. Ports Installation
Before discussing the changes necessary to successfully
	use the ports tree, a reminder is necessary regarding the
	read-only nature of your filesystems on the flash media.
	Since they are read-only, you will need to temporarily mount
	them read-write using the mount syntax shown in Section 3, “The rc Subsystem and Read-Only
 Filesystems”. You should always remount those
	filesystems read-only when you are done with any maintenance -
	unnecessary writes to the flash media could considerably
	shorten its lifespan.
To make it possible to enter a ports directory and
	successfully run make
	install, we must create a packages
	directory on a non-memory filesystem that will keep track of
	our packages across reboots. As it is necessary to mount
	your filesystems as read-write for the installation of a
	package anyway, it is sensible to assume that an area on the
	flash media can also be used for package information to be
	written to.
First, create a package database directory. This is
	normally in /var/db/pkg, but we cannot
	place it there as it will disappear every time the system is
	booted.
mkdir /etc/pkg
Now, add a line to /etc/rc.d/var that
	links the /etc/pkg directory to
	/var/db/pkg. An example:
ln -s /etc/pkg /var/db/pkg
Now, any time that you mount your filesystems as
	read-write and install a package, the make
	install will work, and package
	information will be written successfully to
	/etc/pkg (because the filesystem will, at
	that time, be mounted read-write) which will always be
	available to the operating system as
	/var/db/pkg.
5.4. Apache Web Server
Note:
The steps in this section are only necessary if Apache
	 is set up to write its pid or log information outside of
	 /var. By default, Apache keeps its pid
	 file in /var/run/httpd.pid and its log
	 files in /var/log.

It is now assumed that Apache keeps its log files in a
	directory
	apache_log_dir
	outside of /var. When this directory
	lives on a read-only filesystem, Apache will not be able to
	save any log files, and may have problems working. If so, it
	is necessary to add a new directory to the list of directories
	in /etc/rc.d/var to create in
	/var, and to link
	apache_log_dir
	to /var/log/apache. It is also necessary
	to set permissions and ownership on this new directory.
First, add the directory log/apache to
	the list of directories to be created in
	/etc/rc.d/var.
Second, add these commands to
	/etc/rc.d/var after the directory
	creation section:
chmod 0774 /var/log/apache
chown nobody:nobody /var/log/apache
Finally, remove the existing
	apache_log_dir
	directory, and replace it with a link:
rm -rf apache_log_dir
ln -s /var/log/apache apache_log_dir
OEBPS/legalnotice.xhtml
Copyright

Redistribution and use in source (XML DocBook) and 'compiled'
 forms (XML, HTML, PDF, PostScript, RTF and so forth) with or without
 modification, are permitted provided that the following conditions are
 met:

		Redistributions of source code (XML DocBook) must retain the
 above copyright notice, this list of conditions and the following
 disclaimer as the first lines of this file unmodified.

		Redistributions in compiled form (transformed to other DTDs,
 converted to PDF, PostScript, RTF and other formats) must
 reproduce the above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or other
 materials provided with the distribution.

Important:

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION
 PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
 BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 DAMAGE.

OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

