Copyright © 2000, 2001 by The FreeBSD Documentation Project
This section documents the process of installing a new distribution of FreeBSD. These instructions pay particular emphasis to the process of obtaining the FreeBSD 4.4-RELEASE distribution and to beginning the installation procedure. The ``Installing FreeBSD'' chapter of the FreeBSD Handbook provides more in-depth information about the installation program itself, including a guided walkthrough with screenshots.
If you are upgrading from a previous release of FreeBSD, please see Section 3 for instructions on upgrading.
Probably the most important pre-installation step that can be taken is that of reading the various instruction documents provided with FreeBSD. A roadmap of documents pertaining to this release of FreeBSD can be found in README.TXT, which can usually be found in the same location as this file; most of these documents, such as the release notes and the hardware compatability list, are also accessible in the Documentation menu of the installer.
Note that on-line versions of the FreeBSD FAQ and Handbook are also available from the FreeBSD Project Web site, if you have an Internet connection.
This collection of documents may seem daunting, but the time spent reading them will likely be saved many times over. Being familiar with what resources are available can also be helpful in the event of problems during installation.
The best laid plans sometimes go awry, so if you run into trouble take a look at Section 4, which contains valuable troubleshooting information. You should also read an updated copy of ERRATA.TXT before installing, since this will alert you to any problems which have reported in the interim for your particular release.
Important: While FreeBSD does its best to safeguard against accidental loss of data, it's still more than possible to wipe out your entire disk with this installation if you make a mistake. Please do not proceed to the final FreeBSD installation menu unless you've adequately backed up any important data first.
FreeBSD for the alpha supports the alpha platforms described in HARDWARE.TXT.
You will need a dedicated disk for FreeBSD/alpha. It is not possible to share a disk with another operating system at this time. This disk will need to be attached to a SCSI controller which is supported by the SRM firmware or an IDE disk assuming the SRM in your machine supports booting from IDE disks.
Your root filesystem MUST be the first partition (partition a) on the disk to be bootable.
You will need the SRM console firmware for your platform. In some cases, it is possible to switch between AlphaBIOS (or ARC) firmware and SRM. In others it will be necessary to download new firmware from the vendor's Web site.
If you are not familiar with configuring hardware for FreeBSD, you should be sure to read the HARDWARE.TXT file; it contains important information on what hardware is supported by FreeBSD.
Depending on how you choose to install FreeBSD, you may need to create a set of floppy disks (usually two) to begin the installation process. This section briefly describes how to create these disks, either from a CDROM installation or from the Internet. Note that in the common case of installing FreeBSD from CDROM, on a machine that supports bootable CDROMs, the steps outlined in this section will not be needed and can be skipped.
For a normal CDROM or network installation, all you need to copy onto actual floppies from the floppies/ directory are the kern.flp and mfsroot.flp images (for 1.44MB floppies).
Getting these images over the network is easy. Simply fetch the release/floppies/kern.flp and release/floppies/mfsroot.flp files from ftp://ftp.FreeBSD.org/pub/FreeBSD/ or one of the many mirrors listed at FTP Sites section of the Handbook, or on the http://www.freebsdmirrors.org/ Web pages.
Get two blank, freshly formatted floppies and image copy kern.flp onto one and mfsroot.flp onto the other. These images are not DOS files. You cannot simply copy them to a DOS or UFS floppy as regular files, you need to ``image'' copy them to the floppy with fdimage.exe under DOS (see the tools directory on your CDROM or FreeBSD FTP mirror) or the dd(1) command in UNIX.
For example, to create the kernel floppy image from DOS, you'd do something like this:
C> fdimage kern.flp a:
Assuming that you'd copied fdimage.exe and kern.flp into a directory somewhere. You would do the same for mfsroot.flp, of course.
If you're creating the boot floppy from a UNIX machine, you may find that:
# dd if=floppies/kern.flp of=/dev/rfd0
or
# dd if=floppies/kern.flp of=/dev/floppy
work well, depending on your hardware and operating system environment (different versions of UNIX have different names for the floppy drive).
If you're on an alpha machine that can network-boot its floppy images or you have a 2.88MB or LS-120 floppy capable of taking a 2.88MB image on an x86 machine, you may wish to use the single (but twice as large) boot.flp image. It contains the contents of kern.flp and mfsroot.flp on a single floppy. This file should also be used as the boot file for those mastering ``El Torito'' bootable CD images. See the mkisofs(8) command for more information.
The easiest type of installation is from CDROM. If you have a supported CDROM drive and a FreeBSD installation CDROM, you can boot FreeBSD directly from the CDROM. Insert the CDROM into the drive and type the following command to start the installation (substituting the name of the appropriate CDROM drive if necessary):
>>>boot dka0
Alternatively you can boot the installation from floppy disk. You should start the installation by building a set of FreeBSD boot floppy from the files floppies/kern.flp and floppies/mfsroot.flp using the instructions found in Section 1.3. From the SRM console prompt (>>>), just insert the kern.flp floppy and type the following command to start the installation:
>>>boot dva0
Insert the mfsroot.flp floppy when prompted and you will end up at the first screen of the install program.
Once you've gotten yourself to the initial installation screen somehow, you should be able to follow the various menu prompts and go from there. If you've never used the FreeBSD installation before, you are also encouraged to read some of the documentation in the Documentation submenu as well as the general ``Usage'' instructions on the first menu.
Note: If you get stuck at a screen, press the F1 key for online documentation relevant to that specific section.
If you've never installed FreeBSD before, or even if you have, the ``Standard'' installation mode is the most recommended since it makes sure that you'll visit all the various important checklist items along the way. If you're much more comfortable with the FreeBSD installation process and know exactly what you want to do, use the ``Express'' or ``Custom'' installation options. If you're upgrading an existing system, use the ``Upgrade'' option.
The FreeBSD installer supports the direct use of floppy, DOS, tape, CDROM, FTP, NFS and UFS partitions as installation media; further tips on installing from each type of media are listed below.
Once the install procedure has finished, you will be able to start FreeBSD/alpha by typing something like this to the SRM prompt:
>>>boot dkc0
This instructs the firmware to boot the specified disk. To find the SRM names of disks in your machine, use the show device command:
>>>show device dka0.0.0.4.0 DKA0 TOSHIBA CD-ROM XM-57 3476 dkc0.0.0.1009.0 DKC0 RZ1BB-BS 0658 dkc100.1.0.1009.0 DKC100 SEAGATE ST34501W 0015 dva0.0.0.0.1 DVA0 ewa0.0.0.3.0 EWA0 00-00-F8-75-6D-01 pkc0.7.0.1009.0 PKC0 SCSI Bus ID 7 5.27 pqa0.0.0.4.0 PQA0 PCI EIDE pqb0.0.1.4.0 PQB0 PCI EIDE
This example is from a Digital Personal Workstation 433au and shows three disks attached to the machine. The first is a CDROM called dka0 and the other two are disks and are called dkc0 and dkc100 repectively.
You can specify which kernel file to load and what boot options to use with the -file and -flags options, for example:
>>> boot -file kernel.old -flags s
To make FreeBSD/alpha boot automatically, use these commands:
>>> set boot_osflags a >>> set bootdef_dev dkc0 >>> set auto_action BOOT
If you simply wish to install from a local CDROM drive then see Section 1.4. If you don't have a CDROM drive on your system and wish to use a FreeBSD distribution CD in the CDROM drive of another system to which you have network connectivity, there are also several ways of going about it:
If you would be able to FTP install FreeBSD directly from the CDROM drive in some FreeBSD machine, it's quite easy: You simply add the following line to the password file (using the vipw(8) command):
ftp:*:99:99::0:0:FTP:/cdrom:/sbin/nologin
On the machine on which you are running the install, go to the Options menu and set Release Name to any. You may then choose a Media type of FTP and type in ftp://machine after picking ``URL'' in the ftp sites menu.
Warning: This may allow anyone on the local network (or Internet) to make ``anonymous FTP'' connections to this machine, which may not be desirable.
If you would rather use NFS to export the CDROM directly to the machine(s) you'll be installing from, you need to first add an entry to the /etc/exports file (on the machine with the CDROM drive). The example below allows the machine ziggy.foo.com to mount the CDROM directly via NFS during installation:
/cdrom -ro ziggy.foo.com
The machine with the CDROM must also be configured as an NFS server, of course, and if you're not sure how to do that then an NFS installation is probably not the best choice for you unless you're willing to read up on rc.conf(5) and configure things appropriately. Assuming that this part goes smoothly, you should be able to enter: cdrom-host:/cdrom as the path for an NFS installation when the target machine is installed, e.g. wiggy:/cdrom.
If you must install from floppy disks, either due to unsupported hardware or just because you enjoy doing things the hard way, you must first prepare some floppies for the install.
First, make your boot floppies as described in Section 1.3.
Second, peruse Section 2 and pay special attention to the ``Distribution Format'' section since it describes which files you're going to need to put onto floppy and which you can safely skip.
Next you will need, at minimum, as many 1.44MB floppies as it takes to hold all files in the bin (binary distribution) directory. If you're preparing these floppies under DOS, then these floppies must be formatted using the MS-DOS FORMAT command. If you're using Windows, use the Windows File Manager format command.
Important: Frequently, floppy disks come ``factory preformatted''. While convenient, many problems reported by users in the past have resulted from the use of improperly formatted media. Re-format them yourself, just to make sure.
If you're creating the floppies from another FreeBSD machine, a format is still not a bad idea though you don't need to put a DOS filesystem on each floppy. You can use the disklabel(8) and newfs(8) commands to put a UFS filesystem on a floppy, as the following sequence of commands illustrates:
# fdformat -f 1440 fd0.1440 # disklabel -w -r fd0.1440 floppy3 # newfs -t 2 -u 18 -l 1 -i 65536 /dev/fd0
After you've formatted the floppies for DOS or UFS, you'll need to copy the files onto them. The distribution files are split into chunks conveniently sized so that 5 of them will fit on a conventional 1.44MB floppy. Go through all your floppies, packing as many files as will fit on each one, until you've got all the distributions you want packed up in this fashion. Each distribution should go into its own subdirectory on the floppy, e.g.: a:\bin\bin.inf, a:\bin\bin.aa, a:\bin\bin.ab, ...
Important: The bin.inf file also needs to go on the first floppy of the bin set since it is read by the installation program in order to figure out how many additional pieces to look for when fetching and concatenating the distribution. When putting distributions onto floppies, the distname.inf file must occupy the first floppy of each distribution set. This is also covered in README.TXT.
Once you come to the Media screen of the install, select ``Floppy'' and you'll be prompted for the rest.
When installing from tape, the installation program expects the files to be simply tar'ed onto it, so after fetching all of the files for the distributions you're interested in, simply use tar(1) to get them onto the tape with a command something like this:
# cd /where/you/have/your/dists # tar cvf /dev/rsa0 dist1 .. dist2
When you go to do the installation, you should also make sure that you leave enough room in some temporary directory (which you'll be allowed to choose) to accommodate the full contents of the tape you've created. Due to the non-random access nature of tapes, this method of installation requires quite a bit of temporary storage. You should expect to require as much temporary storage as you have stuff written on tape.
Note: When going to do the installation, the tape must be in the drive before booting from the boot floppies. The installation ``probe'' may otherwise fail to find it.
Now create a boot floppy as described in Section 1.3 and proceed with the installation.
After making the boot floppies as described in the first section, you can load the rest of the installation over a network using one of 3 types of connections: serial port, parallel port, or Ethernet.
SLIP support is rather primitive, and is limited primarily to hard-wired links, such as a serial cable running between two computers. The link must be hard-wired because the SLIP installation doesn't currently offer a dialing capability. If you need to dial out with a modem or otherwise dialog with the link before connecting to it, then I recommend that the PPP utility be used instead.
If you're using PPP, make sure that you have your Internet Service Provider's IP address and DNS information handy as you'll need to know it fairly early in the installation process. You may also need to know your own IP address, though PPP supports dynamic address negotiation and may be able to pick up this information directly from your ISP if they support it.
You will also need to know how to use the various ``AT commands'' for dialing out with your particular brand of modem as the PPP dialer provides only a very simple terminal emulator.
If a hard-wired connection to another FreeBSD or Linux machine is available, you might also consider installing over a ``laplink'' style parallel port cable. The data rate over the parallel port is much higher than what is typically possible over a serial line (up to 50k/sec), thus resulting in a quicker installation. It's not typically necessary to use ``real'' IP addresses when using a point-to-point parallel cable in this way and you can generally just use RFC 1918 style addresses for the ends of the link (e.g. 10.0.0.1, 10.0.0.2, etc).
Important: If you use a Linux machine rather than a FreeBSD machine as your PLIP peer, you will also have to specify link0 in the TCP/IP setup screen's ``extra options for ifconfig'' field in order to be compatible with Linux's slightly different PLIP protocol.
FreeBSD supports many common Ethernet cards; a table of supported cards is provided as part of the FreeBSD Hardware Notes (see HARDWARE.TXT in the Documentation menu on the boot floppy or the top level directory of the CDROM). If you are using one of the supported PCMCIA Ethernet cards, also be sure that it's plugged in before the laptop is powered on. FreeBSD does not, unfortunately, currently support ``hot insertion'' of PCMCIA cards during installation.
You will also need to know your IP address on the network, the netmask value for your subnet and the name of your machine. Your system administrator can tell you which values are appropriate to your particular network setup. If you will be referring to other hosts by name rather than IP address, you'll also need a name server and possibly the address of a gateway (if you're using PPP, it's your provider's IP address) to use in talking to it. If you want to install by FTP via an HTTP proxy (see below), you will also need the proxy's address.
If you do not know the answers to these questions then you should really probably talk to your system administrator first before trying this type of installation. Using a randomly chosen IP address or netmask on a live network is almost guaranteed not to work, and will probably result in a lecture from said system administrator.
Once you have a network connection of some sort working, the installation can continue over NFS or FTP.
NFS installation is fairly straight-forward: Simply copy the FreeBSD distribution files you want onto a server somewhere and then point the NFS media selection at it.
If this server supports only ``privileged port'' access (this is generally the default for Sun and Linux workstations), you will need to set this option in the Options menu before installation can proceed.
If you have a poor quality Ethernet card which suffers from very slow transfer rates, you may also wish to toggle the appropriate Options flag.
In order for NFS installation to work, the server must also support ``subdir mounts'', e.g. if your FreeBSD distribution directory lives on wiggy:/usr/archive/stuff/FreeBSD, then wiggy will have to allow the direct mounting of /usr/archive/stuff/FreeBSD, not just /usr or /usr/archive/stuff.
In FreeBSD's /etc/exports file this is controlled by the -alldirs option. Other NFS servers may have different conventions. If you are getting Permission Denied messages from the server then it's likely that you don't have this properly enabled.
FTP installation may be done from any mirror site containing a reasonably up-to-date version of FreeBSD. A full menu of reasonable choices for almost any location in the world is provided in the FTP site menu during installation.
If you are installing from some other FTP site not listed in this menu, or you are having troubles getting your name server configured properly, you can also specify your own URL by selecting the ``URL'' choice in that menu. A URL can contain a hostname or an IP address, so something like the following would work in the absence of a name server:
ftp://216.66.64.162/pub/FreeBSD/releases/alpha/4.2-RELEASE
There are three FTP installation modes you can use:
FTP: This method uses the standard ``Active'' mode for transfers, in which the server initiates a connection to the client. This will not work through most firewalls but will often work best with older FTP servers that do not support passive mode. If your connection hangs with passive mode, try this one.
FTP Passive: This sets the FTP "Passive" mode which prevents the server from opening connections to the client. This option is best for users to pass through firewalls that do not allow incoming connections on random port addresses.
FTP via an HTTP proxy: This option instructs FreeBSD to use HTTP to connect to a proxy for all FTP operations. The proxy will translate the requests and send them to the FTP server. This allows the user to pass through firewalls that do not allow FTP at all, but offer an HTTP proxy. You must specify the hostname of the proxy in addition to the FTP server.
In the rare case that you have an FTP proxy that does not go through HTTP, you can specify the URL as something like:
ftp://foo.bar.com:port/pub/FreeBSD
In the URL above, port is the port number of the proxy FTP server.
If you'd like to install FreeBSD on a machine using just a serial port (e.g. you don't have or wish to use a VGA card), please follow these steps:
Connect some sort of ANSI (vt100) compatible terminal or terminal emulation program to the COM1 port of the PC you are installing FreeBSD onto.
Unplug the keyboard (yes, that's correct!) and then try to boot from floppy or the installation CDROM, depending on the type of installation media you have, with the keyboard unplugged.
If you don't get any output on your serial console, plug the keyboard in again and wait for some beeps. If you are booting from the CDROM, proceed to step 5 as soon as you hear the beep.
For a floppy boot, the first beep means to remove the kern.flp floppy and insert the mfsroot.flp floppy, after which you should press Enter and wait for another beep.
Hit the space bar, then enter
boot -h
and you should now definitely be seeing everything on the serial port. If that still doesn't work, check your serial cabling as well as the settings on your terminal emulation program or actual terminal device. It should be set for 9600 baud, 8 bits, no parity.
No. FreeBSD, like Compaq Tru64 and VMS, will only boot from the SRM console.
FreeBSD can run Tru64 applications very well using the emulators/osf1_base port/package.
FreeBSD can run AlphaLinux binaries with the assistance of the emulators/linux_base port/package.
A typical FreeBSD distribution directory looks something like this:
ERRATA.HTM README.TXT compat1x dict manpages ERRATA.TXT RELNOTES.HTM compat20 doc packages HARDWARE.HTM RELNOTES.TXT compat21 docbook.css ports HARDWARE.TXT XF86336 compat22 floppies proflibs INSTALL.HTM bin compat3x games src INSTALL.TXT catpages compat4x info tools README.HTM cdrom.inf crypto kernel
If you want to do a CDROM, FTP or NFS installation from this distribution directory, all you need to do is make the 1.44MB boot floppies from the floppies directory (see Section 1.3 for instructions on how to do this), boot them and follow the instructions. The rest of the data needed during the installation will be obtained automatically based on your selections. If you've never installed FreeBSD before, you also want to read the entirety of this document (the installation instructions) file.
If you're trying to do some other type of installation or are merely curious about how a distribution is organized, what follows is a more thorough description of each item in more detail:
The *.TXT and *.HTM files contain documentation (for example, this document is contained in both INSTALL.TXT and INSTALL.HTM) and should be read before starting an installation. The *.TXT files are plain text, while the *.HTM files are HTML files that can be read by almost any Web browser. Some distributions may contain documentation in other formats as well, such as PDF or PostScript.
docbook.css is a Cascading Style Sheet (CSS) file used by some Web browsers for formatting the HTML documentation.
The XF86336 directory contains the XFree86 project's 3.3.6 release and consists of a series of gzip'd tar files which contain each component of the XFree86 distribution.
The bin, catpages, crypto, dict, doc, games, info, manpages, proflibs, and src directories contain the primary distribution components of FreeBSD itself and are split into smaller files for easy packing onto floppies (should that be necessary).
The compat1x, compat20, compat21, compat22, compat3x, and compat4x directories contain distributions for compatibility with older releases and are distributed as single gzip'd tar files - they can be installed during release time or later by running their install.sh scripts.
The floppies/ subdirectory contains the floppy installation images; further information on using them can be found in Section 1.3.
The packages and ports directories contain the FreeBSD Packages and Ports Collections. Packages may be installed from the packages directory by running the command:
#/stand/sysinstall configPackages
Packages can also be installed by feeding individual filenames in packages/ to the pkg_add(1) command.
The Ports Collection may be installed like any other distribution and requires about 100MB unpacked. More information on the ports collection may be obtained from http://www.FreeBSD.org/ports/ or locally from /usr/share/doc/handbook if you've installed the doc distribution.
Last of all, the tools directory contains various DOS tools for discovering disk geometries, installing boot managers and the like. It is purely optional and provided only for user convenience.
A typical distribution directory (for example, the info distribution) looks like this internally:
CHECKSUM.MD5 info.ab info.ad info.inf install.sh info.aa info.ac info.ae info.mtree
The CHECKSUM.MD5 file contains MD5 signatures for each file, should data corruption be suspected, and is purely for reference. It is not used by the actual installation and does not need to be copied with the rest of the distribution files. The info.a* files are split, gzip'd tar files, the contents of which can be viewed by doing:
# cat info.a* | tar tvzf -
During installation, they are automatically concatenated and extracted by the installation procedure.
The info.inf file is also necessary since it is read by the installation program in order to figure out how many pieces to look for when fetching and concatenating the distribution. When putting distributions onto floppies, the .inf file must occupy the first floppy of each distribution set!
The info.mtree file is another non-essential file which is provided for user reference. It contains the MD5 signatures of the unpacked distribution files and can be later used with the mtree(8) program to verify the installation permissions and checksums against any possible modifications to the file. When used with the bin distribution, this can be an excellent way of detecting trojan horse attacks on your system.
Finally, the install.sh file is for use by those who want to install the distribution after installation time. To install the info distribution from CDROM after a system was installed, for example, you'd do:
# cd /cdrom/info # sh install.sh
These instructions describe a procedure for doing a binary upgrade from an older version of FreeBSD.
Warning: While the FreeBSD upgrade procedure does its best to safeguard against accidental loss of data, it is still more than possible to wipe out your entire disk with this installation! Please do not accept the final confirmation request unless you have adequately backed up any important data files.
Important: These notes assume that you are using the version of sysinstall(8) supplied with the version of FreeBSD to which you intend to upgrade. Using a mismatched version of sysinstall(8) is almost guaranteed to cause problems and has been known to leave systems in an unusable state. The most commonly made mistake in this regard is the use of an old copy of sysinstall(8) from an existing installation to upgrade to a newer version of FreeBSD. This is not recommended.
The upgrade procedure replaces distributions selected by the user with those corresponding to the new FreeBSD release. It preserves standard system configuration data, as well as user data, installed packages and other software.
Administrators contemplating an upgrade are encouraged to study this section in its entirety before commencing an upgrade. Failure to do so may result in a failed upgrade or loss of data.
Upgrading of a distribution is performed by extracting the new version of the component over the top of the previous version. Files belonging to the old distribution are not deleted.
System configuration is preserved by retaining and restoring the previous version of the following files:
Xaccel.ini, XF86Config, adduser.conf, aliases, aliases.db, amd.map, crontab, csh.cshrc, csh.login, csh.logout, cvsupfile, dhclient.conf, disktab, dm.conf, dumpdates, exports, fbtab, fstab, ftpusers, gettytab, gnats, group, hosts, host.conf, hosts.allow, hosts.equiv, hosts.lpd, inetd.conf, kerberosIV, localtime, login.access, login.conf, mail, mail.rc, make.conf, manpath.config, master.passwd, modems, motd, namedb, networks, newsyslog.conf, pam.conf, passwd, periodic, ppp, printcap, profile, pwd.db, rc.conf, rc.conf.local, rc.firewall, rc.local, remote, resolv.conf, rmt, sendmail.cf, sendmail.cw, services, shells, skeykeys, spwd.db, ssh, syslog.conf, ttys, uucp
The versions of these files which correspond to the new version are moved to /etc/upgrade/. The system administrator may peruse these new versions and merge components as desired. Note that many of these files are interdependent, and the best merge procedure is to copy all site-specific data from the current files into the new.
During the upgrade procedure, the administrator is prompted for a location into which all files from /etc/ are saved. In the event that local modifications have been made to other files, they may be subsequently retrieved from this location.
This section details the upgrade procedure. Particular attention is given to items which substantially differ from a normal installation.
User data and system configuration should be backed up before upgrading. While the upgrade procedure does its best to prevent accidental mistakes, it is possible to partially or completely destroy data and configuration information.
The disklabel editor is entered with the nominated disk's filesystem devices listed. Prior to commencing the upgrade, the administrator should make a note of the device names and corresponding mountpoints. These mountpoints should be entered here. Do notset the ``newfs flag'' for any filesystems, as this will cause data loss.
When selecting distributions, there are no constraints on which must be selected. As a general rule, the bin distribution should be selected for an update, and the man distribution if manpages are already installed. Other distributions may be selected beyond those originally installed if the administrator wishes to add additional functionality.
Once the installation procedure has completed, the administrator is prompted to examine the new configuration files. At this point, checks should be made to ensure that the system configuration is valid. In particular, the /etc/rc.conf and /etc/fstab files should be checked.
Those interested in an upgrade method that allows more flexibility and sophistication should take a look at the ``Upgrading FreeBSD from source'' tutorial found at http://www.FreeBSD.org/docs.html. This method requires reliable network connectivity, extra disk space and spare time, but has advantages for networks and other more complex installations.
FreeBSD features a ``Fixit'' option in the top menu of the boot floppy. To use it, you will also need either a fixit.flp image floppy, generated in the same fashion as the boot floppy, or the ``live filesystem'' CDROM; typically the second CDROM in a multi-disc FreeBSD distribution.
To invoke fixit, simply boot the kern.flp floppy, choose the ``Fixit'' item and insert the fixit floppy or CDROM when asked. You will then be placed into a shell with a wide variety of commands available (in the /stand and /mnt2/stand directories) for checking, repairing and examining file systems and their contents. Some UNIX administration experience is required to use the fixit option.
4.2.1. I go to boot from the hard disk for the first time after installing FreeBSD, the kernel loads and probes my hardware, but stops with messages like:
changing root device to wd1s1a panic: cannot mount root
What is wrong? What can I do?
What is this bios_drive:interface(unit,partition)kernel_name thing that is displayed with the boot help?
There is a longstanding problem in the case where the boot disk is not the first disk in the system. The BIOS uses a different numbering scheme to FreeBSD, and working out which numbers correspond to which is difficult to get right.
In the case where the boot disk is not the first disk in the system, FreeBSD can need some help finding it. There are two common situations here, and in both of these cases, you need to tell FreeBSD where the root filesystem is. You do this by specifying the BIOS disk number, the disk type and the FreeBSD disk number for that type.
The first situation is where you have two IDE disks, each configured as the master on their respective IDE busses, and wish to boot FreeBSD from the second disk. The BIOS sees these as disk 0 and disk 1, while FreeBSD sees them as wd0 and wd2.
FreeBSD is on BIOS disk 1, of type wd and the FreeBSD disk number is 2, so you would say:
1:wd(2,a)kernel
Note that if you have a slave on the primary bus, the above is not necessary (and is effectively wrong).
The second situation involves booting from a SCSI disk when you have one or more IDE disks in the system. In this case, the FreeBSD disk number is lower than the BIOS disk number. If you have two IDE disks as well as the SCSI disk, the SCSI disk is BIOS disk 2, type da and FreeBSD disk number 0, so you would say:
2:da(0,a)kernel
To tell FreeBSD that you want to boot from BIOS disk 2, which is the first SCSI disk in the system. If you only had one IDE disk, you would use '1:' instead.
Once you have determined the correct values to use, you can put the command exactly as you would have typed it in the /boot.config file using a standard text editor. Unless instructed otherwise, FreeBSD will use the contents of this file as the default response to the boot: prompt.
4.2.2. I go to boot from the hard disk for the first time after installing FreeBSD, but the Boot Manager prompt just prints F? at the boot menu each time but the boot won't go any further.
The hard disk geometry was set incorrectly in the Partition editor when you installed FreeBSD. Go back into the partition editor and specify the actual geometry of your hard disk. You must reinstall FreeBSD again from the beginning with the correct geometry.
If you are failing entirely in figuring out the correct geometry for your machine, here's a tip: Install a small DOS partition at the beginning of the disk and install FreeBSD after that. The install program will see the DOS partition and try to infer the correct geometry from it, which usually works.
The following tip is no longer recommended, but is left here for reference:
If you are setting up a truly dedicated FreeBSD server or workstation where you don't care for (future) compatibility with DOS, Linux or another operating system, you've also got the option to use the entire disk (`A' in the partition editor), selecting the non-standard option where FreeBSD occupies the entire disk from the very first to the very last sector. This will leave all geometry considerations aside, but is somewhat limiting unless you're never going to run anything other than FreeBSD on a disk.
Note: Please send hardware tips for this section to Jordan K. Hubbard <jkh@FreeBSD.org>.
4.3.1. The mcd(4) driver keeps thinking that it has found a device and this stops my Intel EtherExpress card from working.
Use the UserConfig utility (see HARDWARE.TXT) and disable the probing of the mcd0 and mcd1 devices. Generally speaking, you should only leave the devices that you will be using enabled in your kernel.
4.3.2. FreeBSD claims to support the 3Com PCMCIA card, but my card isn't recognized when it's plugged into my laptop.
There are a couple of possible problems. First of all, FreeBSD does not support multi-function cards, so if you have a combo Ethernet/modem card (such as the 3C562), it won't work. The default driver for the 3C589 card was written just like all of the other drivers in FreeBSD, and depend on the card's own configuration data stored in NVRAM to work. You must correctly configure FreeBSD's driver to match the IRQ, port, and IOMEM stored in NVRAM.
Unfortunately, the only program capable of reading them is the 3COM supplied DOS program. This program must be run on a absolutely clean system (no other drivers must be running), and the program will whine about CARD-Services not being found, but it will continue. This is necessary to read the NVRAM values. You want to know the IRQ, port, and IOMEM values (the latter is called the CIS tuple by 3COM). The first two can be set in the program, the third is un-settable, and can only be read. Once you have these values, set them in UserConfig and your card will be recognized.
4.3.3. FreeBSD finds my PCMCIA network card, but no packets appear to be sent even though it claims to be working.
Many PCMCIA cards have the ability to use either the 10-Base2 (BNC) or 10-BaseT connectors for connecting to the network. The driver is unable to ``auto-select'' the correct connector, so you must tell it which connector to use. In order to switch between the two connectors, the link flags must be set. Depending on the model of the card, -link0 link1 or -link0 -link1 will choose the correct network connector. You can set these in sysinstall(8) by using the Extra options to ifconfig: field in the network setup screen.
Your card is probably on a different IRQ from what is specified in the kernel configuration. The ed driver does not use the `soft' configuration by default (values entered using EZSETUP in DOS), but it will use the software configuration if you specify ? in the IRQ field of your kernel config file.
Either move the jumper on the card to a hard configuration setting (altering the kernel settings if necessary), or specify the IRQ as -1 in UserConfig or ? in your kernel config file. This will tell the kernel to use the soft configuration.
Another possibility is that your card is at IRQ 9, which is shared by IRQ 2 and frequently a cause of problems (especially when you have a VGA card using IRQ 2!). You should not use IRQ 2 or 9 if at all possible.
Make certain that the I/O port that the matcd(4) driver is set to is correct for the host interface card you have. (Some SoundBlaster DOS drivers report a hardware I/O port address for the CD-ROM interface that is 0x10 lower than it really is.)
If you are unable to determine the settings for the card by examining the board or documentation, you can use UserConfig to change the 'port' address (I/O port) to -1 and start the system. This setting causes the driver to look at a number of I/O ports that various manufacturers use for their Matsushita/Panasonic/Creative CD-ROM interfaces. Once the driver locates the address, you should run UserConfig again and specify the correct address. Leaving the 'port' parameter set to -1 increases the amount of time that it takes the system to boot, and this could interfere with other devices.
The double-speed Matsushita CR-562 and CR-563 are the only drives that are supported.
4.3.6. I booted the install floppy on my IBM ThinkPad (tm) laptop, and the keyboard is all messed up.
Older IBM laptops use a non-standard keyboard controller, so you must tell the keyboard driver (atkbd0) to go into a special mode which works on the ThinkPads. Change the atkbd0 'Flags' to 0x4 in UserConfig and it should work fine. (Look in the Input Menu for 'Keyboard'.)
4.3.7. When I try to boot the install floppy, I see the following message and nothing seems to be happening. I cannot enter anything from the keyboard either.
Keyboard: no
Due to lack of space, full support for old XT/AT (84-key) keyboards is no longer available in the bootblocks. Some notebook computers may also have this type of keyboard. If you are still using this kind of hardware, you will see the above message appears when you boot from the CD-ROM or an install floppy.
As soon as you see this message, hit the space bar, and you will see the prompt:
>> FreeBSD/i386 BOOT Default: x:xx(x,x)/boot/loader boot:
Then enter -Dh, and things should proceed normally.
4.3.8. I have a Matsushita/Panasonic CR-522, a Matsushita/Panasonic CR-523 or a TEAC CD55a drive, but it is not recognized even when the correct I/O port is set.
These CD-ROM drives are currently not supported by FreeBSD. The command sets for these drives are not compatible with the double-speed CR-562 and CR-563 drives.
The single-speed CR-522 and CR-523 drives can be identified by their use of a CD-caddy.
4.3.9. I'm trying to install from a tape drive but all I get is something like this on the screen:
sa0(aha0:1:0) NOT READY csi 40,0,0,0
There's a limitation in the current sysinstall(8) that the tape must be in the drive while sysinstall(8) is started or it won't be detected. Try again with the tape in the drive the whole time.
4.3.10. I've installed FreeBSD onto my system, but it hangs when booting from the hard drive with the message:
Changing root to /dev/da0a
his problem may occur in a system with a 3com 3c509 Ethernet adapter. The ep(4) device driver appears to be sensitive to probes for other devices that also use address 0x300. Boot your FreeBSD system by power cycling the machine (turn off and on). At the Boot: prompt specify the -c. This will invoke UserConfig (see Section 4.1 above). Use the disable command to disable the device probes for all devices at address 0x300 except the ep0 driver. On exit, your machine should successfully boot FreeBSD.
You must set your Intel EtherExpress 16 card to be memory mapped at address 0xD0000, and set the amount of mapped memory to 32K using the Intel supplied softset.exe program.
4.3.12. When installing on an EISA HP Netserver, my on-board AIC-7xxx SCSI controller isn't detected.
This is a known problem, and will hopefully be fixed in the future. In order to get your system installed at all, boot with the -c option into UserConfig, but don't use the pretty visual mode but the plain old CLI mode. Type:
eisa 12 quit
at the prompt. (Instead of `quit', you might also type `visual', and continue the rest of the configuration session in visual mode.) While it's recommended to compile a custom kernel, dset now also understands to save this value.
Refer to the FAQ topic 3.16 for an explanation of the problem, and for how to continue. Remember that you can find the FAQ on your local system in /usr/share/doc/FAQ, provided you have installed the `doc' distribution.
4.3.13. I have a Panasonic AL-N1 or Rios Chandler Pentium machine and I find that the system hangs before ever getting into the installation now.
Your machine doesn't like the new i586_copyout and i586_copyin code for some reason. To disable this, boot the installation boot floppy and when it comes to the very first menu (the choice to drop into kernel UserConfig mode or not) choose the command-line interface (``expert mode'') version and type the following at it:
flags npx0 1
Then proceed normally to boot. This will be saved into your kernel, so you only need to do it once.
Yes, it is. FreeBSD does not support this controller except through the legacy wdc driver.
4.3.15. On a Compaq Aero notebook, I get the message ``No floppy devices found! Please check ...'' when trying to install from floppy.
With Compaq being always a little different from other systems, they do not announce their floppy drive in the CMOS RAM of an Aero notebook. Therefore, the floppy disk driver assumes there is no drive configured. Go to the UserConfig screen, and set the Flags value of the fdc0 device to 0x1. This pretends the existence of the first floppy drive (as a 1.44 MB drive) to the driver without asking the CMOS at all.
4.3.16. When I go to boot my Intel AL440LX (``Atlanta'') -based system from the hard disk the first time, it stops with a Read Error message.
There appears to be a bug in the BIOS on at least some of these boards, this bug results in the FreeBSD bootloader thinking that it is booting from a floppy disk. This is only a problem if you are not using the BootEasy boot manager. Slice the disk in ``compatible''mode and install BootEasy during the FreeBSD installation to avoid the bug, or upgrade the BIOS (see Intel's website for details).
4.3.17. When installing on an Dell Poweredge XE, Dell proprietary RAID controller DSA (Dell SCSI Array) isn't recognized.
Configure the DSA to use AHA-1540 emulation using EISA configuration utility. After that FreeBSD detects the DSA as an Adaptec AHA-1540 SCSI controller, with irq 11 and port 340. Under emulation mode system will use DSA RAID disks, but you cannot use DSA-specific features such as watching RAID health.
4.3.18. My Ethernet adapter is detected as an AMD PCnet-FAST (or similar) but it doesn't work. (Eg. onboard Ethernet on IBM Netfinity 5xxx or 7xxx)
The lnc(4) driver is currently faulty, and will often not work correctly with the PCnet-FAST and PCnet-FAST+. You need to install a different Ethernet adapter.
4.3.19. I have an IBM EtherJet PCI card, it is detected by the fxp(4) driver correctly, but the lights on the card don't come on and it doesn't connect to the network.
We don't understand why this happens. Neither do IBM (we asked them). The card is a standard Intel EtherExpress Pro/100 with an IBM label on it, and these cards normally work just fine. You may see these symptoms only in some IBM Netfinity servers. The only solution is to install a different Ethernet adapter.
4.3.20. When I configure the network during installation on an IBM Netfinity 3500, the system freezes.
There is a problem with the onboard Ethernet in the Netfinity 3500 which we have not been able to identify at this time. It may be related to the SMP features of the system being misconfigured. You will have to install another Ethernet adapter and avoid attempting to configure the onboard adapter at any time.
This file, and other release-related documents, can be downloaded from ftp://ftp.FreeBSD.org/pub/FreeBSD/.
For questions about FreeBSD, read the documentation before contacting <questions@FreeBSD.org>.
All users of FreeBSD 4-STABLE should subscribe to the <stable@FreeBSD.org> mailing list.
For questions about this documentation, e-mail <doc@FreeBSD.org>.