
CHAPTER 1 INTRODUCTION

Abstract. This introductory chapter provides basic concepts, devices, and
notations that facilitate the developments of the present study on threshold
transformations and dynamical systems of neural networks.

1.1 Basic notations

In this chapter we describe basic concepts, devices, and notations that facilitate
the developments of the present study. Most of the basic concepts in this chapter
are found in introductory chapters of traditional textbooks on ”abstract” algebra or
in good introductory textbooks on discrete mathematics or combinatorics such as
Williamson (1985), Krishnamurthy (1986), and Biggs (1989). We usually deal with
finite sets in this book. The number of elements of a finite set X will be denoted by
|X|. For set operations, the prefix c denotes the complement of a subset, \ denotes
the difference of sets:

A\B = A ∩Bc = {x | x ∈ X,x /∈ Y },
and +̇ denotes the symmetric difference of sets:

A+̇B = (A\B) ∪ (B\A).

Then
(A+̇B)+̇C = A+̇(B+̇C).

If q ∈ X, then A\{q} and A ∪ {q} are respectively written as A\q and A ∪ q. A
partition of a set S is a family of disjoint subsets A1,..,An such that

S =
n⋃

i=1

Ai.

If F is a function from X to Y , denoted by F : X → Y , and if A ⊆ X, then the
image of A under F is

FA = {y | y = Fx for some x ∈ A},
and the inverse image of A is

F−1A = {x | Fx ∈ A, x ∈ X}
The inverse image of a ∈ Y is

F−1a = {x | Fx = y, x ∈ X}.
If B = FA, then the expression A →F B is also used.

A function F : X → Y is called an onto function or a surjection if FX = Y . F
is called a one-to-one function or an injection if Fx = Fx′ for x, x′ ∈ X implies
x = x′. F is called a bijection if F is both a surjection and an injection. If D and
X are any sets, then XD denotes the set of all functions from D to X. If F is a
function from a set X to a set Y , and if G is a function from the set Y to a set Z,
then the composition G ◦F , often simply written as GF , is the function from X to
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Z defined as (GF )x = G(Fx) for every x ∈ X. GF is also called the product of G
and F . If C ⊆ X, the restriction of a function F : X → Y to C is denoted by F |C.

The set of all integers will be denoted by Z, the set of non-negative integers
will be denoted by Z+, and the set of positive integers will be denoted by Z+. A
sequence V = (v0, v1, ...) in X is a function V : Z+ → X. The image of V , that is,
the set {x | x = vi for some i}, is denoted by V.

A graph G consists of a finite set V , whose members are called vertices, and a
set E of 2-element subsets of V , whose members are called edges. V is called a
vertex set, E is called an edge set, and G is expressed as G = (V, E). A directed
graph, or digraph consists of a finite set, whose members are called vertices, and a
set A of ordered pairs of elements of V , whose members are called arcs. V is called
a vertex set, A is called an arc set, and G is expressed as G = (V,A). An arc (x, y)
will be expressed by x → y. An arc (x, x) is called a loop, and will be expressed by
x∂. Let G = (V,A) and H = (W,B) be digraphs. Let F be a bijection from V to
W . Assume that (x, y) ∈ A if and only if (Fx, Fy) ∈ B. Then a function F ′ from
A to B can be defined as F ′(x, y) = (Fx, Fy) for each (x, y) ∈ A. In this case, G
and H are called isomorphic under the isomorphism (F, F ′) induced by F .

A walk in a graph G is a fnite sequence of vertices V = (v1, v2, .., vk) such that
{vi, vi+1} is an edge of G for every 1 ≤ i ≤ k − 1. Similarly, a walk in a digraph
G is a sequence of vertices V = (v1, v2, .., vk) such that (vi, vi+1) is an arc of G for
every 1 ≤ i ≤ k− 1. In this case, the walk V is expressed as v1 → v2 → ... → vk+1.
If all its vertices are distinct, a walk is called a path. A walk v1 → v2 → ... → vk+1

whose vertices are all distinct except that v1 = vk+1 is called a k- cycle or a cycle
of length k. A cycle of a graph G is called Hamiltonian, if it contains all vertices
of G.

By a transformation of F of a set X we mean a function from the set to itself.
In particular, if F is a bijection, it is called a one-to-one transformation. If F is a
transformation of a set X, then F defines its digraph,

GRAPH(F ) = (X,A),

consisting of the vertex set X and the arc set A defined by

A = {(x, y) | x ∈ X, Fx = y}.
If v1 → v2 → ... → vk → v1 is a cycle of a digraph, then vi → vi+1 → ... →
vk → v1 → ... → vi is also a cycle. Therefore, in GRAPH(F ), these two cycles
are regarded as the same. With this identification in mind, the set of all cycles in
GRAPH(F ) is denoted by CY(F ) (a loop is a 1-cycle).

If F and G are transformations of X and GF = FG, then F is called commutative
with G. A particular case where F and G are commutative is described in the
following. If Fx = x, that is, (x) is a loop of GRAPH(F ), then x is called a fixed
point of F ; if Fx 6= x, then x is called a non-fixed point of F . If FA ⊆ A for a
subset A of X, then the restriction F |A is the transformation of A. We call the set
of all non-fixed points of F the carrier of F and write CarF . If CarF and CarG
are disjoint, then a transformation H can be defined by Hx = Fx if x ∈ CarF ,
Hx = Gx if x ∈ CarG, and Hx = x if x ∈ (CarF ∪CarG)c. H is called the sum of
F and G and denoted by F + G. If H = F + G, and if the images F (CarF ) and
G(CarG) are disjoint, then F is commutative with G, and H = GF = FG. In this
case, H is called the direct sum or more conventionally disjoint composition of F
and G and denoted by H = F ¯G.
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If X and Y are sets, then the Cartesian product X×Y is the set of ordered pairs
(x, y), x ∈ X and y ∈ Y . If F is a transformation of X and G is a transformation
of Y , then the direct product F × G is the transformation of X × Y defined by
(F × G)(x, y) = (Fx, Gy) for every (x, y) ∈ X × Y . The Cartesian products of n
sets and the direct product of n transformations are similarly defined.

Let X be a set and d be a function from X ×X to the set of non-negative real
numbers satisfy the following conditions:

d(a, b) = 0 if and only if a = b,

d(a, b) = d(b, a) for every a, b,

d(a, b) ≤ d(a, c) + d(c, b) for every a, b, c.

Then, d is called a distance and X is called a metric space. If X is a finite set, then
X is called a finite metric space. The distance between a point x and a non-empty
subset A of X is defined by

d(x,A) = min{d(x, y) | y ∈ A},
where min denotes the minimum element. The distance between non- empty subsets
A and B is defined by

d(A,B) = min{d(x,B) | x ∈ A}.
1.2 Permutations

Let m be a positive integer. Integers a and b are called congruent modulo m,
and written as a ≡ b mod m, if a− b is divisible by m. Further, if 0 ≤ b < m here,
b is the remainder obtained by dividing a by m and denoted by a%m. The relation
≡ mod m is an equivalence relation on Z. The set of all equivalence classes with
respect to this equivalence relation is called the residue class ring with m elements.
We use the two expressions Zm = {0, 1, 2, ..,m− 1} and Nm = {1, 2, ..,m} for the
residue class ring, where each equivalence class containing a representative integer
a is expressed by the same integer a. Since we mostly use the second expression
Nm, its algebraic structure is described in the following. If a and b are elements
of Nm, then a + b is the element c of Nm such that c ≡ a + b mod m, and a · b is
the element c of Nm such that c ≡ a · b mod m. Then Nm is a ring with m as the
zero element. For example, −a = n − a for any a = 1, 2, .., m − 1, and −m = m.
Further, we assume the order relation 1 < 2 < ... < m− 1 < m in Nm. Hereafter,
we denote Nn simply by N.

Lemma 1.2.1 The equation
s · x = 1 (1.2.1)

in N has a unique solution x, if and only if s and n are relatively prime.

Proof. For example, see Theorem 10.2 of Ore (1988, p. 238). ¤
The unique solution x of (1.2.1) is called the inverse of s and denoted by s−1 or

1/s. Let Un denote the set of all elements x of N such that x and n are relatively
prime. As shown by Lemma 1.2.1, Un is the set of all invertible elements of N,
that is, elements having multiplicative inverses, and forms a multiplicative abelian
group.

If G is a group, then |G| is called the order of G. For the order ϕ(n) of Un, ϕ
is known as Euler’s function. If H is a subgroup of G generated by elements τ ,...,ω
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of G, then H is denoted by 〈τ, .., ω〉. If σ and τ are elements of a group G and if
there exists an element γ of G such that τ = γ−1σγ, then τ is called a conjugate
of σ, and σ and τ are said to be conjugate.

If h is a function from a group G to a group H such that h(στ) = (hσ)(hτ) for
all elements σ and τ of G, then h is called a homomorphism from G to H. The
direct product of n groups G1,..,Gn is the Cartesian product G1× ...×Gn with the
multiplication defined by (g1, ..., gn)(g′1, ..., g′n) = (g1g′1, ..., gng′n). If X is a finite
set, then the set of all one-to-one transformations, which are called permutations of
X, is a group with the composition of transformations as its binary operation. This
group is called the symmetric group on X and denoted by SYM(X). The order
of SYM(X) is |X|!. The identity element of SYM(X) is the identity permutation
ι of X. A one-to-one transformation τ of length m of a finite set X is called a
cyclic permutation, if GRAPH(τ) consists of one m-cycle and loops. In particular,
a cyclic permutation σ of length m of X can be expressed by

σ = (s1, s2, .., sm),

if σsi = si+1 for every 1 ≤ i ≤ m − 1, σsm = s1, and σj = j for every j ∈ X not
belonging to {s1, s2, .., sm}. In particular, the cyclic permutation

ρ = (1, 2, .., n)

is defined by ρi = i + 1 for every i ∈ N. Then we have the following elementary
theorem on permutations.

Proposition 1.2.2 If τ is not the identity permutation, then τ is a disjoint
composition of cyclic permutations, each of length at least 2.

Consider a linear function τ :

τi = a · i + b (1.2.2)

on N. For τ to be a permutation, it is necessary and sufficient that a is invert-
ible. We call (a, b) the coefficients, a the slope, and b the segment of the linear
permutation τ . In this case, it is verified that

τρ = ρaτ, (1.2.3)

ρτ = τρa−1
(1.2.4)

for the cyclic permutation ρ = (1, 2, .., n).
The cyclic permutation ρ itself is a linear permutation of coefficients (1, 1). If

τ is a linear permutation of coefficients (a, b) then τ−1 is a linear permutation of
coefficients (a−1,−a−1b). For example, let τ ∈ SYM(N) be a linear permutation of
slope −1 = n−1. If the coefficients of τ are (−1, t), then τ−1 is a linear permutation
of coefficients (1/− 1,−t/− 1) = (−1, t). Therefore, τ−1 = τ . In particular, if the
coefficients of τ are (−1, 1), then τ is

λ = (1, n)(2, n− 1) · · · ([n/2], n− [n/2] + 1),

where [x] denotes the greatest integer equal to or less than x. If σ and τ are linear
permutations of respective coefficients (a, b) and (c, d), then στ is a linear permuta-
tion of coefficients (ac, ad + b). If τ is a linear permutation of slope a, then τρ and
ρτ are also linear permutations of slope a. Since the coefficients of ρ are (1, 1), the
coefficients of τρ and ρτ are respectively (a, a + b) and (a, b + 1), if the coefficients
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of τ are (a, b). In summary, we have

Proposition 1.2.3 Let LIN(N) denote the set of all linear permutations of N.
Then LIN(N) is a subgroup of the symmetric group SYM(N), and the function h
from LIN(N) to Un that associates each τ of LIN(N) with its slope is a homomor-
phism.

1.3 Pólya actions

Let G be a group and X be a set. Then it is said that G acts on X, or G is
a transformation group for X, if there is a homomorphism H from G to SYM(X).
In this case, H is called an action of G on X or a representation of G on X. The
action H is omitted from expressions in the following, when it is clear, so that
(Hτ)x is simply written as τx for an element τ of G and an element x of X. If G
acts on X and x is an element of X, then the subgroup Gx defined by

Gx = {g ∈ G | gx = x}
is called the stabilizer of x.

Example 1.3.1 If F is a one-to-one transformation of a set X, then the set
G = {F i | i ∈ Z} is a subgroup of SYM(X) generated by F . G is a transformation
group for X since H : G → SYM(X) defined by H(F i) = F i is clearly a homomor-
phism. The order of G is called the order of F .

If a group G acts on a set D, and X is a set, then the Pólya action H of G on
XD is defined by

((Hτ)f)d = f(τ−1d)

for every element τ of G, every element f of XD, and every element d of D. If σ
and τ are elements of G, then

((H(στ))f)d = f((στ)−1d) = f((τ−1σ−1)d)
= f(τ−1(σ−1d)) = ((Hτ)f)(σ−1d) = ((Hσ)((Hτ)f))d
= (((Hσ)(Hτ))f)d.

That is,

H(στ) = (Hσ)(Hτ).

Therefore, the Pólya action is an homomorphism and hence in fact an action.
Let Q = {0, 1}. Then QN is the set of all binary strings of length n. Let

x = (x1, x2, .., xn) ∈ QmathbfN . The period of x is the minimum element k of
N such that xi+k = xi for every i ∈ N. The density of x denoted by d(x) is the
number of 1s in x, i.e.

d(x) = |{i | xi = 1}|.
The Pólya action H of SYM(N) on QN associates a permutation τ of N with a
permutation of coordinates of QN by

(Hτ)(x1, x2, .., xn) = (xτ−11, xτ−12, .., xτ−1n).
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QN is simply denoted by Qn hereafter. For example, let ρ be the cyclic permutation
(1, 2, .., n). The transformation ρ defined by the Pólya action on Qn is the right
rotation of coordinates of Qn, that is,

ρ(x1, x2, .., xn) = (xn, x1, .., xn−1)

for every x = (x1, x2, .., xn) ∈ Qn.
If a group G acts on a set X, then an equivalence relation ∼G on X can be

defined by x ∼G y if there is an element τ ∈ G such that τx = y. Each equivalence
class with respect to the equivalence relation ∼G is called an orbit of G acting
on X. The orbit containing an element x of X is denoted by OrbGx. The union⋃

x∈S OrbGx of the orbits for a subset S ⊆ X is denoted by OrbGS. Then, the
equivalence relation ∼G is extended to the set of all non-empty subsets of X, that
is, A ∼G B if OrbGA = OrbGB.

1.4 Boolean functions

From now on, Q = {0, 1} is not simply a two-point set, but regarded as the mini-
mal Boolean algebra with the unary operation ¬ called complementation or negation
and the binary operations ∨ called disjunction or OR and · called conjunction or
AND such that

¬0 = 1, ¬1 = 0,

0 ∨ 0 = 0, 0 ∨ 1 = 1 ∨ 0 = 1, 1 ∨ 1 = 1,

0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

Further, the binary relation (=) can be introduced by defining

x(=)y = x · y ∨ ¬x · ¬y.

Let L,M ⊆ N. If x ∈ QM , then the value of x at i ∈ M is denoted by xi. A
function from QM to QL is called a Boolean function. A function from QM to itself
is called a Boolean transformation. If A ⊆ QM , then 1A denotes the characteristic
function for A, i.e. 1Ax = 1 if and only if x ∈ A. Let L ⊆ M ⊆ N. Then the
projection function PL : QM → QL is defined by

(PLx)i = xi for every i ∈ L for every x ∈ QM .

If j ∈ M , then the projection function pj : QM → Q is defined by

pjx = xj for every x ∈ QM .

Let L and M be disjoint subsets of N. Then QL∪M can be identified with
the Cartesian product QL × QM by identifying x ∈ QL∪M with (PLx, PMx) ∈
QL ×QM , where PL : QL∪M → QL and PM : QL∪M → QM are the projection
functions defined above.

Hereafter, QN is simply denoted by Qn. Let f and g be Boolean functions from
Qn to Q. Then the conjunction of f and g denoted by f ·g is the function: Qn → Q
defined by

(f · g)x = (fx) · (gx)
for every x ∈ Qn. The disjunction of f and g denoted by f ∨ g is the function:
Qn → Q defined by

(f ∨ g)x = (fx) ∨ (gx)
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for every x ∈ Qn. Also a unary operation ¬ called complementation is defined by

(¬f)x = ¬(fx)

for every x ∈ Qn. Further, f(=)g is defined by

f(=)g = f · g ∨ ¬f · ¬g.

In this book, we refer to the set f for a Boolean function f : Qn → Q meaning
the set f−11, i.e. the inverse image of 1. Therefore, x ∈ f means fx = 1. Also, the
set ¬f is the set f−10. The formula f ⊆ g for Boolean functions f and g is clear
by this identification of a Boolean function with a set. Also, |f | is the number of
elements of f−11. Further,

f · g = f ∩ g,

f ∨ g = f ∪ g,

¬f = fc.

Therefore, the corresponding laws such as the associative and commutative laws
for set operations ∩, ∪, and c hold for · ,∨, and ¬ respectively. In particular, we
will frequently use the distributive laws:

f · (g ∨ h) = f · g ∨ f · h,

f ∨ (g · h) = (f ∨ g) · (f ∨ h),

and De Morgan’s law:

¬(f ∨ g) = (¬f) · (¬g),
¬(f · g) = ¬f ∨ ¬g.

A conjunction g = f1 · f2 · · · fm of Boolean functions fi : Qn → Q is called a
term of degree m, if there exists an injection ϕ : Nm → N such that fi = pϕi or
¬pϕi for each i. A term g is called an implicant of a Boolean function f if g ⊆ f .
An implicant g of f is called a prime implicant if h = g for any implicant h of f
such that g ⊆ h. The disjunction of terms are called a disjunctive form. A Boolean
function f can be represented by the disjunctive form that is the disjunction of all
its prime implicants. An irredundant disjunctive form of a Boolean function f is
a disjunctive form that represents f such that the removal of any one of its terms
does not represents f . In this book, Boolean functions are usually expressed by an
irredundant disjunctive form.

Let L and M be disjoint subsets of N, and f and g be respectively Boolean
functions from QL to Q and QM to Q. Then the product f · g is the function from
QL∪M to Q defined by

f · g = (f ◦ PL) · (g ◦ PM ).
Let a an element of QM , where M is a proper subset of N, and f : QN → Q.

Then f |a is the function from QN\M to Q defined by

(f |a)x = f(x, a),

where (a, x) is an element of QN defined by

PM (a, x) = a and PN\M (a, x) = x.

Clearly ¬f |a = ¬(f |a). f can be expressed as

f = pi · (f |1) ∨ ¬pi · (f |0),
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where 1, 0 ∈ Q{i}. Conversely, if f = pi · g ∨ ¬pi · h for g, h : QN\i → Q, then
g = f |1 and h = f |0.


