
CHAPTER 2 REPRESENTATIONS OF BASIC BOOLEAN
TRANSFORMATIONS

Abstract. Orthogonal transformations of {−1, 1}n are restrictions to {−1, 1}n

of orthogonal transformations of the real n-dimensional space Rn that map
{−1, 1}n onto itself. Corresponding equivalent transformations of {0, 1}n, that
is, Boolean transformations, are called Boolean isometries. A minimal Boolean
transformation is a one which has the minimum number of coordinates changed
under it among isometrically equivalent transformations. A self-dual Boolean
transformation is a one that commutes with the complementation of all coor-
dinates. The possible graphs of one-to-one self-dual transformations are com-
pletely determined. Any self-dual Boolean transformation can be expressed
by Boolean functions which are concerned with only those points whose co-
ordinates are changed by the transformation. A circular transformation is a
one which commutes with rotations of coordinates, and if it is self-dual, then
only one Boolean function can represent it. A skew-circular transformation is
similarly defined and represented.

2.1 Boolean isometries

Boolean transformations of Qn are simplest transformations and play a funda-
mental role in computer systems. They are ubiquitous in computer science and
discrete mathematics. However, a general theory that supports various results
in different branches has not been established. In this chapter, we describe rep-
resentations of Boolean transformations belonging to some basic classes. These
representations are used in the following chapters as basic devices for the present
study of threshold transformations and neural networks.

A simple Boolean transformation is a permutation of coordinates. If τ is a
permutation of N, i.e. an element of SYM(N), then τ defines the permutation Hτ
of the coordinates of Qn by the Pólya action H, as described in Chapter 1.3, by

(Hτ)(x1, x2, .., xn) = (xτ−11, xτ−12, .., xτ−1n)

We omit the Pólya action H hereafter and write τx in place of (Hτ)x for an element
x of Qn. Another simple transformation of Qn is a complementation of coordinates.
Let J− for J = {s, t, .., w} ⊆ N denote the complementation of the sth, tth,..,wth
coordinates defined by

J−x = (x1, ..,¬xs, ..,¬xt, ..,¬xw, .., xn).

If J is a one element-set {s}, then J− is denoted by s−. Also N− is denoted by ¬̄.
For the composition of a permutation of coordinates τ and a complementation

J−, we have

J−τ(x1, x2, .., xn) = J−(xτ−11, xτ−12, .., xτ−1n)
= (xτ−11, ..,¬xτ−1s, ..,¬xτ−1t, ..,¬xτ−1w, .., xτ−1n)
= τ({τ−1s, τ−1t, .., τ−1w}−(x1, x2, .., xn)).
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Therefore,
J−τ = τ(τ−1J)−, i.e. τK− = (τK)−τ , (2.1.1)

The inverse of τJ− is, therefore,

(τJ−)−1 = (J−)−1τ−1 = J−τ−1

= τ−1(τJ)−.
(2.1.2)

For the composition of σJ− and τK−, we have

σJ− ◦ τK− = στ(τ−1J)−K−

= στ(τ−1J+̇K)−.
(2.1.3)

We have also obtained:

Proposition 2.1.1 The set O(Qn) of all products of a finite number of permu-
tations and complementations of coordinates of Qn consists of n!2n elements, each
uniquely expressed as a product τJ−, where τ is a permutation of N, and J− is a
complementation. Further, O(Qn) is a transformation group for Qn.

The identity transformation of Qn will be denoted by I. Clearly (¬̄)−1 = ¬̄. If
x = (x1, x2, .., xn) ∈ Qn, then ¬̄x is called the complement of x. Then we have

¬̄T = T ¬̄ for every T of O(Qn).

Let B the set of all Boolean functions from Qn to Q. The group O(Qn) further
defines the Pólya action on B by

(Tf)x = f(T−1x),

for each T ∈ O(Qn) and f ∈ B. It is clear from the definition that x ∈ f if and
only if Tx ∈ Tf . In other words, (Tf)−11 = T (f−11), so that the application of T
to a function f is equivalent to the application of T to the set f through the Pólya
action on Qn. For example, the set ¬̄f is the set of complements of all points of
f−11, while the set ¬f = f−10.

Sometimes it is more convenient to use the set {−1, 1}n in place of Qn = {0, 1}n

and to consider a corresponding transformation of {−1, 1}n for a transformation of
Qn. This is made possible by the bijection between {−1, 1}n and Qn obtained by
the function Sgn from the real n-dimensional space Rn onto {−1, 1}n defined by

(Sgn(y))i =
{

1 if yi > 0,
−1 if yi ≤ 0,

or the function Bool from Rn onto Qn defined by

(Bool(x))i =
{

1 if xi > 0,
0 if xi ≤ 0,

The Hamming distance dH is defined on both Qn and {−1, 1}n as

dH(x, y) = |{i | xi 6= yi}|.
When both Qn and {−1, 1}n are imbedded in Rn, they represent geometric n-
dimensional cubes or n-cubes with each element being their vertex and each pair
(x, y) of elements such that dH(x, y) = 1 being their edge.

If Sgn is restricted to Qn and Bool is restricted to {−1, 1}n, then

Bool = Sgn−1.
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A transformation F of Qn and a transformation G of {−1, 1}n is equivalent if

G = Sgn ◦ F ◦ Sgn−1,

that is, the following diagram is commutative.

Qn F−→ Qn

Sgn ↓ ↓ Sgn
{−1, 1}n

−→
G {−1, 1}n.

The transformation of {−1, 1}n corresponding to the transformation J− = {s, t, .., w}−
of Qn is the inversion of corresponding coordinates. We will use the same symbols
for these operations in {−1, 1}n. Threfore,

J−y = {s, t, .., w}−(y1, y2, .., yn)
= (y1, ..,−ys, ..,−yt, ..,−yw, .., yn).

However, N− is the scalar multiplication by −1 in Rn, so that it is denoted by
− when no confusion occurs. Applying a permutation τ to a point y ∈ {−1, 1}n

by the Pólya action is made by multiplying y by a particular n × n orthogonal
matrix P over R such that each row has only one non-zero element, which is 1, and
each column has only one non-zero element, which is 1. Also applying an inversion
J− to y is made by multiplying y by a diagonal matrix D such that Dii = −1 if
i ∈ J , and Dii = 1 if i /∈ J . Therefore, PD is a matrix representing an orthogo-
nal transformation of Rn with respect to the basis {10 · ·0, 010 · ·0, ..., 0 · ·01} that
maps {−1, 1}n onto itself. Conversely, let T be an orthogonal transformation of
Rn that maps {−1, 1}n onto itself. If a point c ∈ Rn is the center of a face of
the n-cube {−1, 1}n, then ci = 1 or −1 for some i and ci = 0 for every other i,
and c must be sent into the center of a face by T . Also since the set of n centers
{10 · ·0, 010 · ·0, .., 0 · ·01} constitutes an orthogonal basis of Rn, the matrix rep-
resenting T with respect to this basis is PD for some P and D described above.
Thus we have obtained:

Proposition 2.1.2 The set O({−1, 1}n) of transformations of {−1, 1}n that are
equivalent to elements of O(Qn) is the set of all orthogonal transformations of Rn

that map {−1, 1}n onto itself, each transformation being expressed by a multipli-
cation by an orthogonal matrix such that each row has only one non-zero element,
which is 1 or −1, and each column has only one non-zero element, which is 1 or
−1.

By the above proposition, an element of O(Qn) is called a (Boolean) isometry
of Qn hereafter; an element of O({−1, 1}n) is called an orthogonal transformation.
Note that O({−1, 1}n) is the same as O(Qn) as a group and well known as a fi-
nite reflection subgroup of O(Rn), the group of orthogonal transformations of Rn

(see e.g. Grove & Benson, 1985). Further, the following Proposition 2.1.4 shows
O({−1, 1}n) is the set of all one-to-one linear transformations that map {−1, 1}n

onto itself.

Lemma 2.1.3 v ∈ {−1, 1}n and v = (v(1) + ... + v(n))/(n − 2) for linearly
independent vectors v(i) ∈ {−1, 1}n, then dH(v, v(i)) = 1 for every i = 1, ..., n.
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Proof. Let v ∈ {−1, 1}n and v = (v(1) + ... + v(n))/(n− 2) for linearly independent
vectors v(i) ∈ {−1, 1}n. Let v = 11 · · ·1 without loss of generality. Then (v(i)

1 + ...+
v
(i)
n ) · (n−2) = 1 for every i = 1, .., n. Let the number of −1s in {v(1)

j , ..., v
(n)
j } be k.

Then (n−k)−k = n−2, so that k = 1 for every j. Suppose the number of −1s in v(i)

is more than 1 for some i. Then there exists some l such that v(l) = 11 · · ·1 = v. Let
l = 1 without loss of generality. Then (1−1/(n−2))v(1) = (v(2) + ...+v(n))/(n−2)
contrary to the linear independence of v(1), ..., v(n). Therefore, dH(v, v(i)) = 1 for
every i = 1, ..., n. ¤

Proposition 2.1.4 If T is a one-to-one linear transformation of Rn that maps
{−1, 1}n onto itself, then T is an orthogonal transformation.

Proof. This proposition is clear for n ≤ 2. Let T be a one-to-one linear transfor-
mation of Rn that maps {−1, 1}n onto itself for n ≥ 3. Let v = 1 · · · 1, v(1) =
−11 · ·1, v(2) = 1− 11 · ·1, ..., v(n) = 1 · ·1− 1. Since v = (v(1) + ... + v(n))/(n− 2),
and T is linear, Tv = (Tv(1) + ... + Tv(n))/(n − 2). Tv and Tv(i) are elements of
{−1, 1}n for every i. Since T is one-to-one, and v(i) are linearly independent, Tv(i)

are also linearly independent. Therefore, by Lemma 2.1.3, dH(Tv, Tv(i)) = 1 for
every i = 1, ..., n and Tv(i) 6= Tv(j) for every i 6= j. Therefore, (Tv(i), T v(i)) =
n = (v(i), v(i)) for every i and (Tv(i), T v(j)) = n − 4 = (v(i), v(j)) for every i 6= j.
On the other hand, {v(1), ..., v(n)} is a basis of Rn. Therefore, T is an orthogonal
transformation. ¤

Proposition 2.1.5 Any isometry T ∈ O(Qn) can be decomposed as a disjoint
composition

T = σ1J
−
1 ¯ ...¯ σkJ−k ¯ ιJ−k+1,

where σi is a cyclic permutation, Ji ⊆ Carσi for each i = 1, ..., k, and Jk+1 ⊆
N\⋃

i Carσi, and ι is the identity on N\⋂
i Carσi.

Proof. Let T be an isometry of Qn. Then T is expressed as T = τJ− by Proposition
2.1.1, where τ ∈ SYM(N) and J ⊆ N. If τ is not the identity permutation, then,
by Proposition 1.2.2 of Chapter 1, τ = σ1¯ ...¯σk, where σi is a cyclic permutation
of length at least 2, and Carσi and Carσj are disjoint if i 6= j. Let Ji = J ∩ Carσi

for each i = 1, .., k, and Jk+1 = J ∩ (N\⋃
i Carσi). Then T can be expressed by

the disjoint composition shown above. ¤

As a group, O(Qn) is also the wreath product of SYM(N) by the SYM({−1, 1})
(see Krishnamurthy, 1986 or Williamson, 1985 for the definition of the wreath prod-
uct). In this case, O(Qn) can be regarded as a transformation group on the 2n-point
set {1,−1, 2,−2, .., n,−n}. The transformation is defined by τJ−x = (Sgnx)τ |x| if
|x| /∈ J , and τJ−x = −(Sgnx)τ |x| if |x| ∈ J . However, we are always concerned
with transformations on Qn or {−1, 1}n, so that reducing the domain of transfor-
mations in this way will not help us.

2.2 Minimal and maximal transformations

In the present study, we are mainly concerned with threshold transformations
that are not isometries of Qn. However, in order to characterize non- isometrical
transformations, we investigate their relations to isometries.



CHAPTER 2 REPRESENTATIONS OF BASIC BOOLEAN TRANSFORMATIONS 5

Transformations F and G of Qn are called isometrically equivalent if there exist
isometries S and T of Qn such that G = SFT . Clearly, a transformation is an
isometry if and only if it is isometrically equivalent to the identity. If G = T−1FT
for an isometry T , then G is called isometrically similar to F . In this case, the
graphs of F and G are not only isomorphic under the isomorphism induced by T , but
also T preserves the Euclidean distance and hence the Hamming distance between
every pair of points. If G = SFT for isometries S and T , then G = T−1(TSF )T .
Therefore, the graph of any transformation isometrically equivalent to F is obtained
from F by applying an isometry after F , if we regard two isomorphic graphs induced
by an isometry T as the same. If F and G are transformations of {−1, 1}n, and if
G = SFT for some orthogonal transformations S and T of {−1, 1}n, then G is called
orthogonally equivalent to F . If G = T−1FT for some orthogonal transformation
T of {−1, 1}n, then G is called orthogonally similar to F .

As shown by Proposition 2.1.4, orthogonal transformations of {−1, 1}n are the
only one-to-one linear transformations of Rn that map {−1, 1}n onto itself. There-
fore, by reducing non-isometrical transformations to the isometrically equivalent
simplest forms, we may be able to extract some nonlinear aspects, such as reflected
in their graphs, that are unique to the non-isometrical transformations.

First we introduce the variation of F denoted by Var(F ) for a transformation F
of Qn as the total number of coordinates that change under F . That is,

Var(F ) =
∑

x∈Qn

dH(x, Fx).

Example 2.2.1 V ar(I) = 0, V ar(¬̄) = n · 2n.

Proposition 2.2.2 If F and G are isometrically similar, then Var(F ) = Var(G).

Proof. If T is an isometry, then

Var(T−1FT ) =
∑

x∈Qn

dH(x, (T−1FT )x)

=
∑

x∈Qn

dH(Tx, T (T−1FT )x)

=
∑

x∈Qn

dH(Tx, F (Tx))

=
∑

y∈Qn

dH(y, Fy) = Var(F )

¤

We call a Boolean transformation F minimal, if Var(F ) ≤ Var(TF ) for every
isometry T . We call a minimal transformation F uniquely minimal, if TF is not
minimal for any non-identity isometry T . Similarly, we call a Boolean transforma-
tion F maximal, if Var(F ) ≥ Var(TF ) for every isometry T . We call a maximal
transformation F uniquely maximal, if TF is not maximal for any non-identity
isometry T .

Let F and G be isometrically equivalent and uniquely minimal; then G = SFT
for some isometries S and T . Therefore, G = T−1TSFT . Since G is minimal, TSF
is minimal. Since F is uniquely minimal, TS = I. Therefore G = T−1FT . The
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discussion above is summarized in the following theorem.

Theorem 2.2.3 If F is a Boolean transformation, then there exists an isometry
S such that SF is minimal. If F and G are uniquely minimal and isometrically
equivalent, then F and G are isometrically similar.

Example 2.2.4 If T is an isometry, then T is isometrically equivalent to the
identity transformation I, which is uniquely minimal, and T is isometrically equiv-
alent to the uniquely maximal transformation ¬̄.

Proposition 2.2.5 F is minimal if and only if ¬̄F is maximal. F is uniquely
minimal if and only if ¬̄F is uniquely maximal.

Proof. We have dH(x, ¬̄y) = n−dH(x, y) for every x, y ∈ Qn. Therefore, the proof
is clear from Var(¬̄F ) = n · 2n −Var(F ). ¤

2.3 Self-dual transformations

A Boolean function f defined on Qn is called self-dual, if ¬̄f = ¬f . Similarly,
a transformation F of Qn is called self-dual, if F ¬̄ = ¬̄F . The transformation G
of {−1, 1}n equivalent to a self-dual transformation of Qn satisfies −G = G− and
is also called self-dual. Let F be expressed as F = (F1, ..., Fn), where Fi = piF .
Then, F is self-dual if and only if Fi is self-dual for every i.

Example 2.3.1 If τ is a permutation of N, then τ and ¬̄τ(= τ ¬̄) are self-dual.
Conversely, if T is a self-dual isometry of Qn, then T = τ or ¬̄τ for a permutation
τ of N.

If F and G are self-dual, then FG is clearly self-dual. Further, by the following
proposition, the set of all self-dual one-to-one transformations of Qn is a transfor-
mation group.

Proposition 2.3.2 If F is a one-to-one self-dual transformation, then (¬̄F )−1 =
¬̄F−1, and F−1 is also self-dual.

Proof. Let F be one-to-one and self-dual. Then ¬̄F ¬̄F−1 = FF−1 = I. Therefore,
(¬̄F )−1 = ¬̄F−1. On the other hand, (¬̄F )−1 = F−1¬̄−1 = F−1¬̄, so that ¬̄F−1 =
F−1¬̄. ¤

Now, we shall describe graphs of one-to-one self-dual transformations, though
they are rather obvious and partly described in Ishii (1970). We call a self-dual
transformation H elementary, when if H = F ¯G, and both F and G are self-dual,
then F or G is the identity I. From these definitions the following proposition is
clear.

Proposition 2.3.3 Any self-dual transformation is a disjoint composition of one
or several elementary self-dual transformations.

The graph of any one-to-one transformation of a finite set consists of a set of
disjoint cycles. In general, let A = {(s1, t1), ..., (sk, tk)}, where si ≥ 1 and ti ≥ 1 are
integers for every i, ti 6= tj for i 6= j, and s1 · t1 + ...+sk · tk = 2n. We call A a cycle
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structure for Qn. We say that the cycle structure A is realized by a transformation
F of Qn, or that the cycle structure CS(F ) of F is A, and write CS(F ) = A, if
the set of all cycles of GRAPH(F ) consists of s1 t1-cycles, ... , and sk tk-cycles. A
subset C of Qn such that ¬̄C = C is called a complete set.

Proposition 2.3.4 If F is an elementary one-to-one self-dual transformation
which is not the identity, then CS(F ) = {(1, t), (2n − t, 1)} for some even t ≥ 2,or
CS(F ) = {(2, t), (2n − 2t, 1)} for some t ≥ 2. Conversely, the cycle structure
{(1, t), (2n − t, 1)} for some even s ≥ 2, and the cycle structure {(2, t), (2n − 2t, 1)}
for some t ≥ 2 are realized by some elementary self-dual transformations of Qn.

Proof. Let q be a point on a t-cycle such that t ≥ 2 of an elementary one-to-one
self-dual transformation F . If ¬̄q is in the same cycle, then ¬̄(Fq) = F (¬̄q) and
Fq are in the same cycle. Inductively, if x is any point on this cycle, then ¬̄x is
also on the same cycle. Therefore, in this case, t is even, and this cycle and loops
form GRAPH(F ). If ¬̄q is on another cycle, then Fmq is on the first cycle and
¬̄(Fmq) = Fm(¬̄q) is on the second cycle for every m. The two cycles and loops
form GRAPH(F ). Conversely, if t is a positive integer, consider a complete set
C ⊆ Qn such that |C| = 2t, and let C = A ∪ B such that A ∩ B = ∅ and if x ∈ A
then ¬̄x ∈ B and if x ∈ B then ¬̄x ∈ A. Construct a transformation F composed
of fixed points and one t-cycle ranging over A. G = F ¯ ¬̄F ¬̄ is elementary and
self-dual, and CS(G) = {(2, t), (2n − 2t, 1)}. If t is even, consider G defined above
for a complete set C such that |C| = t. For a point q in C, define H as Hq = G(¬̄q),
and H(¬̄q) = Gq and Hx = Gx for every other x. H is elementary and self-dual
and CS(H) = {(1, t), (2n − t, 1)}. ¤

Theorem 2.3.5 The necessary and sufficient condition for a cycle structure
{(s1, t1), ..., (sk, tk)} such that s1 · t1 + ... + sk · tk = 2n to be realized by a self-dual
transformation of Qn is that tisi is even for every i.

Proof. By decomposing one-to-one self-dual transformations into elementary self-
dual transformations we obtain the necessary part. For the sufficiency, express Qn

as a mutually disjoint union of si complete sets with tI elements for even ti and si/2
complete sets with 2ti elements for odd ti and the rest of Qn. Following the proof
of Proposition 2.3.4, construct self-dual elementary transformations composed of
fixed points and one ti-cycle for even ti and two ti-cycles for odd ti ranging over
each complete set. The disjoint composition of these elementary transformations
realizes the given cycle structure. ¤

2.4 [ ]-representations

Assume that the transformation F = (F1, ..., Fn) of Qn, where Fi = piF , is
self-dual. A necessary and sufficient condition for x ∈ Qn to be a point such that
xi = 1 and (Fx)i = 0 is that x ∈ pi · ¬Fi. Let fi be defined as

fi = pi · ¬Fi (2.4.1)

for every i. Then ¬fi = ¬(pi · ¬Fi) = ¬pi ∨ Fi, so that pi · ¬fi = pi · Fi. Also
¬̄fi = (pi · ¬Fi)¬̄ = (pi¬̄) · (¬Fi¬̄) = ¬pi ·Fi. Since Fi = pi ·Fi ∨¬pi ·Fi, we obtain

Fi = pi · ¬fi ∨ ¬̄fi. (2.4.2)
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Conversely, for any Boolean function fi such that fi = pi · fi for every i, let Fi

be defined by (2.4.2). Then

¬¬̄Fi = ¬((pi¬̄) · (¬fi¬̄) ∨ fi)
= (¬((pi¬̄) · (¬fi¬̄))) · ¬fi

= (pi ∨ fi¬̄) · ¬fi = pi · ¬fi ∨ (fi¬̄) · ¬fi.

However, (fi¬̄) · fi = ((pi · fi)¬̄) · pi · fi = ¬pi · (fi¬̄) · pi · fi = ∅. Therefore,

¬¬̄Fi = Fi,

so that F = (F1, ..., Fn) is a self-dual transformation. Further,

pi · ¬Fi = pi · ¬(pi · ¬fi ∨ fi¬̄) = pi · ¬(pi · ¬fi) · (¬fi¬̄)
= pi · (¬pi ∨ fi) · (¬(pi · fi)¬̄) = pi · fi · (pi ∨ (¬fi¬̄)
= fi ∨ fi · ¬fi¬̄ = fi.

Therefore, (2.4.1) is satisfied.
Consequently, any self-dual transformation F such that F = (F1, ..., Fn) will be

represented by a [ ]-representation as

F = [f1, ..., fn], (2.4.3)

where if x = (x1, ..., xn) ∈ fi then xi = 1, and the relations between Fi and fi are
given above by (2.4.1) and (2.4.2).

Example 2.4.1 Let F = [p1 · p2 · p3,¬p1 · p2,¬p1 · ¬p2 · p3] be a transformation
of Q3. We express F in the following tables.

f1 ¬̄f1

f2 ¬̄f2

f3 ¬̄f3

=
1 · 2 · 3 ¬1 · ¬2 · ¬3
¬1 · 2 1 · ¬2
¬1 · ¬2 · 3 1 · 2 · ¬3

=

111 000
011 100
010 101
001 110

Then we obtain GRAPH(F):

101 → 111 → 011 → 001
↑ ↓

110 ← 100 ← 000 ← 010

The advantage of the form (2.4.3) is not only its absorption of Fi’s self-duality.
We have clearly

CarF =
n⋃

I=1

(fi ∪ ¬̄fi).

In fact, the points of fi, whose ith coordinate is 1, are transformed into points
whose ith coordinate is 0, while the points of ¬̄fi , whose ith coordinate is 0, are
transformed into points whose ith coordinate is 1. And these are all the changes
on Qn when F is applied. Therefore, if F is self-dual and represented as [f1, ..., fn],
then clearly

Var(F ) = 2
n∑

i=1

|fi|. (2.4.4)
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Further, if F = [f1, ..., fn], G = [g1, ..., gn], and CarF and CarG are disjoint, then
F + G = [f1 ∨ g1, ..., fn ∨ gn]. Now, let Fi be a Boolean function expressed as

Fi = pi · gi ∨ (¬pi) · hi, (2.4.5)

for some gi, hi : QN\i → Q. Then

fi = pi · ¬Fi

= pi · ¬gi.
(2.4.6)

Further,

¬¬̄Fi = ¬(¬pi · (gi¬̄) ∨ pi · (hi¬̄))
= (pi ∨ ¬gi¬̄) · (¬pi ∨ ¬hi¬̄)
= pi · (¬hi¬̄) ∨ ¬pi · (¬gi¬̄) ∨ (¬hi¬̄) · (¬gi¬̄)
= pi · (¬hi¬̄) ∨ ¬pi · (¬gi¬̄) ∨ pi · (¬hi¬̄) · (¬gi¬̄) ∨ ¬pi · (¬hi¬̄) · (¬gi¬̄)
= pi · (¬hi¬̄) ∨ ¬pi · (¬gi¬̄).

Therefore, ¬¬̄Fi = Fi, if and only if hi = ¬gi¬̄, that is,

Fi = pi · gi ∨ ¬pi · (¬¬̄gi). (2.4.7)

Proposition 2.4.2 If F = [f1, ..., fn] then

k−F = [f1, .., fk−1, pk · ¬fk, fk+1, .., fn].

Proof. Let k−F = [g1, .., gk, .., gn]. Then gk = pk · ¬(¬Fk) = pk · Fk by (2.4.1), so
that gk = pk · (pk · ¬fk ∨ ¬̄fk) = pk · ¬fk ∨ pk · (¬̄fk) by (2.4.2). Since (¬̄fk)x = 1
implies (¬̄x)k = 1, i.e. xk = 0, we have pk · (¬̄fk) = 0. Therefore, gk = pk · ¬fk.
Clearly gi = fi for any other i. ¤

Notation If F = [f1, ..., fn], then fi|1 is the function from QN\i to Q defined
by

(fi|1)x = fi(x, 1),

where (x, 1) is the point of QN obtained by adding the ith coordinate 1 to x, i.e.

PM (x, 1) = x and pi(x, 1) = 1.

Proposition 2.4.3 If F = [f1, ..., fn] then

Fk− = [k−f1, .., pk · (¬¬̄(fk|1)), .., k−fn].

Proof. Let Fk− = [g1, .., gk, .., gn]. If i 6= k, then

gi = pi · ¬(Fk−)i

= pi · ¬pi(Fk−)
= (pi · ¬(piF ))k−

= fik
− by (2.4.1)

= k−fi. Polya action
gk = pk · ¬(Fk−)k

= pk · (¬pk(Fk−))
= pk · (¬(pk · ¬fk ∨ ¬̄fk)k−) by (2.4.2)
= pk · ((¬(pk · ¬fk) · ¬¬̄fk)k−)
= pk · (((¬pk ∨ fk) · ¬¬̄fk)k−)
= pk · ((¬pk · ¬¬̄fk ∨ fk · ¬¬̄fk)k−).
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Since

pk · (fkk−) = pk · ((pk · fk)k−) = pk · (pkk−) · (fkk−) = pk · (¬pk) · (fkk−) = 0,

gk = pk · ((¬pk · ¬¬̄fk)k−)
= pk · pk · ((¬¬̄fk)k−)
= pk · (¬fk¬̄)k−) Polya action
= pk · (¬fk(N\k)−)
= pk · (¬(pk · (fk|1))(N\k)−)
= pk · ((¬pk ∨ ·(¬(fk|1)))(N\k)−)
= pk · (¬pk ∨ ¬(fk|1)¬̄)
= pk · (¬(fk|1)¬̄)
= pk · (¬¬̄(fk|1)). Polya action

¤

If F = [f1, ..., fn] then

Fk− = [k−f1, .., pk · (¬¬̄(fk|1), .., k−fn].

Proof. Let Fk− = [g1, .., gk, .., gn]. If i 6= k, then

gi = pi · ¬(Fk−)i

= pi · ¬piFk−

= (pi · ¬piF )k−

= fik
−

= k−fi.

gk = pk · ¬(Fk−)k

= pk · (¬pkFk−)
= pk · (¬(pK · ¬fk ∨ ¬̄fk)k−)
= pk · ((¬(pK · ¬fk) · ¬¬̄fk)k−)
= pk · (((¬pK ∨ fk) · ¬¬̄fk)k−)
= pk · ((¬pK · ¬¬̄fk ∨ fk · ¬¬̄fk)k−).

If gkx = 1 then xk = 1. But if xk = 1 then fkk−x = 0, since fky = 1 implies
yk = 1. Therefore,

gk = pk · ((¬pK · ¬¬̄fk)k−) = pk · pK · ((¬¬̄fk)k−)
= pk · (¬fk¬̄)k−) = pk · (¬fk(N\k)−)
= pk · (¬(pk · (fk|1))(N\k)−)
= pk · ((¬pk ∨ ·(¬(fk|1)))(N\k)−)
= pk · (¬pk ∨ ¬(fk|1)¬̄) = pk · (¬(fk|1)¬̄)
= pk · (¬¬̄(fk|1)).

¤

Let F = [f1, .., fm] and G = [gn+1, .., gm+n] be respectively self-dual transforma-
tions of QM and QN , where M = {1, ...,m} and N = {m + 1, ..,m + n}. Then the
direct product F ×G, which is the transformation of QM∪N , is also self-dual and
represented by

F ×G = [f1 ◦ PM , .., fm ◦ PM , gm+1 ◦ PN , .., gm+n ◦ PN ]. (2.4.8)
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Example 2.4.4 Let F = [p1 · p2 · p3,¬p1 · p2,¬p1 · ¬p2 · p3] and and G =
[p4 · p5,¬p4 · p5] be respectively transformations of Q{1,2,3} and Q{4,5}.

GRAPH(F ) is illustrated in Example 2.4.1. GRAPH(G) is

11 → 01
↑ ↓
10 ← 00

Then
F ×G = [p1 · p2 · p3,¬p1 · p2,¬p1 · ¬p2 · p3, p4 · p5,¬p4 · p5.

GRAPH(F ×G) is

10110 → 11111 → 01101 → 00100 → 00010 ← 01000
↑ ↓

11010 10011
↑ ↓

10000 11001
↑ ↓

01011 → 00001 ← 00111 ← 01110 ← 11100 ← 10101,
01001 → 00000 → 10010 → 11011 → 11101 ← 10111

↑ ↓
00101 01100
↑ ↓

01111 00110
↑ ↓

10100 → 11110 ← 11000 ← 10001 ← 00011 ← 01010.

2.5 Circular and skew-circular transformations

Let ρ be the cyclic permutation (1, 2, .., n) of N. The transformation ρ defined
by the Pólya action on Qn is the right rotation of coordinates of Qn, that is,
ρ(x1, x2, .., xn) = (xn, x1, .., xn−1) for every x = (x1, x2, .., xn) ∈ Qn. A transfor-
mation F of Qn is called circular, if Fρ = ρF . A transformation G is isometrically
similar to a circular transformation, if and only if G satisfies Gσ = σG for some
n-cyclic permutation σ = (s1, s2, .., sn).

If F and G are circular, then clearly FG is also circular. If F is circular and
one-to-one, then Fρ = ρF i.e. ρ−1F−1 = F−1ρ−1. By applying ρ to the left and
right of each side of the last equation, we obtain F−1ρ = ρF−1, so that F−1 is also
circular.

Let F = (F1, ..., Fn) be a transformation of Qn, where Fi = piF . Then ρF =
(Fn, F1, ..., Fn−1), while Fρ = (F1ρ, F2ρ, ..., Fnρ) = (ρ−1F1, ρ

−1F2, ..., ρ
−1Fn) There-

fore, F is circular if and only if Fi = ρFi−1 for every i, that is,

Fi = ρi−1F1 (2.5.1)

for every i. Further,

Proposition 2.5.1 A self-dual transformation F = [f1, ..., fn], where fi = pi ·
¬Fi, is circular if and only if

fi = ρi−1f1. (2.5.2)
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Proof. From (2.5.1) it follows that F is circular and self-dual, if and only if

F = [p1 · ¬F1, p2 · ¬(ρF1), .., pi · ¬(ρi−1F1, .., pn · ¬(ρn−1F1)]

= [p1 · ¬F1, ρ(p1 · ¬F1), .., ρi−1(p1 · ¬F1), .., ρn−1(p1 · ¬F1)]

Therefore, F is circular and self-dual if and only if (2.5.2) holds. ¤

We briefly write
F = 〈f〉

for F = [f, .., ρi−1f, ..., ρn−1f ], where p1 · f = f . From (2.4.4),

Var(F ) = 2n|f |. (2.5.3)

Theorem 2.5.2 Let F = 〈f〉 be a circular self-dual transformation. Then (i)
F is isometrically equivalent to a circular minimal self-dual transformation. (ii) If
|f | ≤ 2n−3 then F is minimal. (iii) If |f | < 2n−3, then F is uniquely minimal.

Proof. Let F = (F1, ..., Fn), where Fi = piF . (i) Suppose |p1 · ¬Fj | < |p1 · ¬F1|. If
σ = ρ−j+1, then σF is circular, and (σF )1 = Fj , so that |p1 ·¬(σF )1| = |p1 ·¬Fj | <
|p1 ·¬F1|. Therefore, by (2.5.3) we have Var(σF ) < Var(F ). Let a new F be the σF .
Similarly, if |p1 ·Fj | < |p1 ·¬F1|, then (σ¬̄)F is circular, and Var((σ¬̄)F ) < Var(F ).
Then let a new F be the (σ¬̄)F . Repeat the above procedure until there is no such
j as above. Then we obtain a transformation that is isometrically equivalent to F ,
circular, and minimal.
(ii) Let j 6= 1. We have

|p1 · ¬Fj | = |p1 · pj · ¬Fj |+ |p1 · ¬pj · ¬Fj |
= |¬̄(p1 · pj · ¬Fj)|+ |p1 · ¬pj · ¬Fj |
= |¬p1 · ¬pj · Fj |+ (|p1 · ¬pj | − |p1 · ¬pj · Fj |),

because Fj is self-dual. Therefore,

|p1 · ¬Fj | ≥ 2n−2 − |f |,
since |p1 ·¬pj | = 2n−2 and |¬p1 ·¬pj ·Fj |+ |p1 ·¬pj ·Fj | = |¬pj ·Fj | = |f |. Similarly
|p1 · Fj | ≥ 2n−2 − |f | and |p1 · F1| = 2n−1 − |f |. By (i), there exists an isometry
T such that TF is minimal, circular, and self-dual. Therefore, if |f | ≤ 2n−3, then
Var(TF ) ≥ 2n · (2n−2 − |f |) ≥ 2n · (2n−2 − 2n−3) = 2n · 2n−3 ≥ 2n|f | = Var(F ), so
that F is minimal.
(iii) is clear from the proof of (ii). ¤

Example 2.5.3 n is even (n = 2m). F = 〈f〉,
f = p1 · · · pm · ¬pm+1 · · · ¬p2m.

GRAPH(F ) consists of loops and one n-cycle, which is

1 · · · 10 · · · 0 → 01 · · · 10 · · · 0 → ... → 1 · · · 10 · · · 01 → 1 · · · 10 · · · 0.

F is uniquely minimal for n ≥ 4.

In later chapters we will encounter some self-dual transformations F of Qn which
are not circular but commutative with ρn−, that is, Fρn− = ρn−F . We call such
a transformation skew-circular. Skew-circular transformations are self-dual, since
(ρn−)n = ¬̄.
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Proposition 2.5.4 A self-dual transformation F = [f1, ..., fn], where fi = pi ·
¬Fi, is skew-circular if and only if

fi = (ρn−)i−1f1 for every i.

Proof. Let F = (F1, ..., Fn) be a self-dual transforma-tion, where Fi = piF . Then
ρn−F = (¬Fn, F1, ..., Fn−1), while Fρn− = (F1ρn−, F2ρn−, ..., Fnρn−). Therefore,
F is commutative with ρn− if and only if

F1 = ¬Fn(ρn−)−1 = ¬ρn−Fn,

F2 = F1(ρn−)−1 = ρn−F1,

F3 = F2(ρn−)−1 = (ρn−)2F1,

.....

Fn = Fn−1(ρn−)−1 = (ρn−)n−1F1,

From the last equation, it follows that ρn−Fn = (ρn−)nF1 = ¬̄F1 = ¬F1, which
is the first equation. Therefore, F is commutative with ρn− if and only if Fi =
(ρn−)i−1F1 for every i. If F is represented as F = [f1, ..., fn], then this is equivalent
to

fi = pi · ¬Fi = pi · ¬(ρn−)i−1F1

= (ρn−)i−1p1 · (ρn−)i−1(¬F1)

= (ρn−)i−1(p1 · ¬F1)

= (ρn−)i−1f1.

¤

F = [f, .., (ρn−)i−1f, ..., (ρn−)n−1f ] , where p1·f = f , is hereafter briefly denoted
by

F = 〈〈f〉〉.
Then (2.5.3) also holds.

Example 2.5.5 F = 〈〈f〉〉,
f = p1 · · · pi · · · pn.

GRAPH(F ) consists of loops and one 2n-cycle, for example, for n = 4,

1111 → 0111 → 0011 → 0001
↑ ↓

1110 → 1100 → 1000 → 0000
1101∂, 1011∂, 1001∂, 1010∂,
0101∂, 0110∂, 0010∂, 0100∂.

A transformation isometrically similar to this transformation was first given by
Masters and Mattson (1966).

Let T be an isometry of Qn. As described in Section 2.1, T is uniquely expressed
as a product T = τJ− of a permutation τ and a complementation J−. Let T be
circular, then, by definition, τJ−ρ = ρτJ−. Therefore, by (2.1.1), τρ(ρ−1J)− =
ρτJ−, so that τρ = ρτ and ρ−1J = J . The first equation implies τ is a linear
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permutation of slope 1, i.e. τ = ρk for some k ∈ Zn. From the second equation
follows J = N or ∅. Therefore

T = ρk or T = ρk¬̄ for some k. (2.5.4)

Conversely, it is clear that any T that satisfies (2.5.4) is a circular transformation.
Next, we determine skew-circular isometries. First, if τ is a permutation of N, and
if L and M are subsets of N, then it is clear that

τ(L+̇M) = τ(L)+̇τ(M). (2.5.5)

Lemma 2.5.6 Let ρ = (1, 2, .., m) and i 6= j are elements of Nm. Then

X+̇ρ−1X = {i, j}, (2.5.6)

if and only if X = {i + 1, ..., j} or X = {j + 1, ..., i}.
Proof. The if part is clear. To prove the only if part, suppose that both X and Y are
solutions of (2.5.6). Then X+̇ρ−1X = Y +̇ρ−1Y , so that (X+̇ρ−1X)+̇(Y +̇ρ−1Y ) =
∅, i.e. (X+̇Y )+̇ρ−1(X+̇Y ) = ∅ by (2.5.5). Therefore, X+̇Y = ∅ or X+̇Y = Nm,
i.e. Y = X or Y = Xc. ¤

Let T = τJ− be a skew-circular isometry of Qn. Then, by definition, τJ−ρn− =
ρn−τJ−. Therefore, by (2.1.1), τρρ−1J+̇n

− = ρτJ+̇τ−1n
−, so that τρ = ρτ and

ρ−1J+̇n = J+̇τ−1n. From the first equation follows τ = ρk for some k ∈ Zn.
Then, from the second equation follows J+̇ρ−1J = {n − k}+̇{n}. Therefore, by
Lemma 2.5.6, J = {n− k + 1, ..., n} or J = {1, ..., n− k}, so that

T = ρk{n− k + 1, ..., n}− or T = ρk{1, ..., n− k}− for some k. (2.5.7)

Conversely, it is clear that any T satisfies (2.5.7) is a skew-circular transformation.
Thus we have obtained the following proposition.

Proposition 2.5.7 Let T be an isometry of Qn. Then (i) T is circular if and
only if T = ρk or T = ρk¬̄ for some k. (ii) T is skew-circular if and only if
T = ρk{n− k + 1, ..., n}− or T = ρk{1, ..., n− k}− for some k.

2.6. Flow graphs

Let a transformation F of Qn be commutative with any element τ of a group G
acting on Qn. For a subset S of Qn, let [S] denote OrbGS. Then, a transformation
F∼ of the orbit set {[x] | x ∈ Qn} is naturally defined by F∼[x] = [Fx]. We call
F∼ the flow of F . For example, if F is self-dual and circular, then G is 〈ρ, ¬̄〉, that
is, the group generated by the rotation ρ and complementation ¬̄.

An outline of the flow F∼ can be described by a flow graph with an arc set
A such that (i) If (X, Y ) ∈ A, then X and Y are orbits, that is, X = [C] and
Y = [D] for some C and D, and X ⊆ CarF and FX ∩ Y 6= ∅; (ii) If x ∈ CarF ,
then there exists an arc (X, Y ) ∈ A such that x ∈ X and Fx ∈ Y ; (iii) Any cycle
X → ... → Z → X (including a loop) of GRAPH(F∼) is a subgraph of the flow
graph. (iv) Any cycle X → ... → Z → X (including a loop) of the flow graph is a
cycle of GRAPH(F∼).

Note that all cycles and loops as well as some asymptotic properties of F∼ are
described by this flow graph. In particular, if F is one-to-one, then F∼ is com-
pletely represented. In the following example, a Boolean function is expressed with
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skipped p; for example, 1 ·2 · (¬3∨4) denotes p1 ·p2 · (¬p3∨p4). A Boolean function
f also denotes the set f−1(1), and ∼ denotes ∼〈ρ,¬̄〉.

Example 2.6.1 Let F = 〈f〉, f = 1 · 2 · 3¬6, be a transforma-tion of Q6. Since
F is circular self-dual, CarF = [f ]. We have

f = 1 · 2 · 3¬6 = 1 · 2 · 3 · (4 ∨ 5) · ¬6 ∪ 1 · 2 · 3 · ¬4 · ¬5 · ¬6,

1 · 2 · 3 · (4 ∨ 5) · ¬6) →F ¬1 · 2 · 3 · (4 ∨ 5) · ¬6,

1 · 2 · 3 · ¬4 · ¬5 · ¬6) →F ¬1 · 2 · 3 · 4 · ¬5 · ¬6 ∼ 1 · 2 · 3 · ¬4 · ¬5 · ¬6,

¬1 · 2 · 3 · (4 ∨ 5) · ¬6 = ¬1 · 2 · 3 · 4 · ¬5 · ¬6 ∪ ¬1 · 2 · 3 · 4 · 5 · ¬6 ∪ ¬1 · 2 · 3 · ¬4 · 5 · ¬6,

¬1 · 2 · 3 · 4 · 5 · ¬6 →F ¬1 · ¬2 · 3 · 4 · 5 · ¬6 ∼ 1 · 2 · 3 · ¬4 · ¬5 · ¬6,

¬1 · 2 · 3 · ¬4 · 5 · ¬6 /∈ CarF.

Therefore, a flow graph of F is

[1 · 2 · 3 · (4 ∨ 5)¬6]

[1 · 2 · 3 · ¬4 · ¬5 · ¬6]∂
↗ ↑
→ [¬1 · 2 · 3 · 4 · 5 · ¬6]
↘

[¬1 · 2 · 3 · ¬4 · 5 · ¬6],

that is,

[1 · 2 · 3 · (4 ∨ 5)¬6]

[1 · 2 · 3 · ¬4 · ¬5 · ¬6]∂
↗ ↑
→ [1 · 2 · 3 · 4 · ¬5 · ¬6]
↘

[1 · 2 · ¬3 · 4 · ¬5 · ¬6].


