
CHAPTER 6 DYNAMICAL SYSTEMS OF FIRST-ORDER
NEURAL NETWORKS

Abstract. After basic concepts about finite-state dynamical systems such as
structural stability and attractors are defined, and prior results are critically
reviewed, primitive dynamical neural networks (PDNNs) are remodelled by
incorporating spontaneous firing and distinguishing non-neutral invariant sets
from spontaneous neutral cycles. These PDNNs are a class of McCulloch and
Pitts networks x(t) = Sgn(Ex(t − 1) − h) on {−1, 1}n such that h is the
zero vector and all the diagonal elements of the efficacy matrices E are neg-
ative. PDNN-definable threshold transformations are characterized in terms
of Boolean functions, and the existence of non-neutral minimal attractors are
proved for the general dimension n by construction using [ ]-representations of
Boolean transformations.

6.1 Finite-state dynamical system (FSDS)

Since a dynamical neural network (DNN), which is the subject of this and sub-
sequent chapters, is a finite-state dynamical system (FSDS), we first describe its
basic concepts in the following by modifying the definitions of well-known concepts
about semidynamical systems on a general topological space (Mathematical Society
of Japan, 1987, pp. 487-503).

Let X be a finite metric space with an integer-valued distance d. If S is a non-
empty subset of X then the ε-neighborhood of S, UεS for a positive integer ε is
defined by

UεS = {x | d(x, S) ≤ ε}.
Let ϕ be a mapping from X × Z+ to X. For each t ∈ Z+ a transformation
ϕt : X → X is defined by ϕtx = ϕ(x, t) for every x ∈ X. If ϕt satisfies

(1) ϕs ◦ ϕt = ϕs+t for all s, t ∈ Z+,
(2) ϕ0 = IX (the identity transformation of X),

then ϕ is called a finite-state dynamical system (FSDS) on the state space X, whose
points are called states. If F is a transformation of X, then F defines a mapping
ϕ : X × Z+ → X by

ϕ(x, t) = F tx, x ∈ X, t ∈ Z+.

Then ϕ is an FSDS on X such that ϕt = F t and called the FSDS generated by F .
Let Fv be a transformation of X defined for each point v of an open set U of Rm.
If F = Fv for some v ∈ U , then the FSDS generated by F is called a parametrized
FSDS with its parameter space U . If F = Fv and F = Fw for every point w of an
neighborhood of v for a parametrized FSDS generated by F , then the parametrized
FSDS is called structurally stable.

If Ψ is a set of sequences of X, then ImΨ, the image of Ψ, is
⋃

V ∈Ψ V i.e.the
union of the images of the sequences belonging to . A sequence V = (v0, v1, ...) is
called cyclic, if there exists some k such that ai = aj for every i and j such that
i = j mod k and ai 6= aj for every i and j such that i 6= j mod k.
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The sequence (x, Fx, F 2x, ...) is called the orbit starting at x and denoted by
OrbF x. A cyclic orbit is identified with an element of CY(F ). That is one cyclic
orbit obtained from another by shifting the starting point is regarded as the same.
For a subset S of X, OrbF S is the set of all orbits OrbF x such that x ∈ S. The
set ωF x defined by

ωF x = {y | For any k ∈ Z+, there exists
some t > k such that y = F tx}

is called the limit set of x; ωF S is the union of all limit sets ωF x such that x ∈ S.
Clearly, for any point x, ωF x = C for a cycle C ∈ CY(F ). This C is called a limit
cycle of x. A subset S of X is called invariant if FS = S. Clearly S is an invariant
set if and only if S = ImΨ for some Ψ ⊆ CY(F ).

Definition 6.1.1 A subset Φ of CY(F ) is called attractive or an attractor in the
FSDS generated by F , if there exists some ε-neighborhood Uε(ImΦ) satisfying

(1) F (Uε(ImΦ)) ⊆ Uε(ImΦ);
(2) ωF (Uε(ImΦ)) = ImΦ.

In particular, if Φ consists of one cycle, the cycle is called attractive. CY(F ) is
clearly an attractor. Also, if Ψ and Φ are both attractors, then Ψ ∪ Φ is also an
attractor. Therefore, an attractor is called a minimal attractor, if no proper subset
of it is an attractor. Further, an attractor Φ is called connected, if Φ = Ψ ∪ Υ,
Ψ ∩ Υ = ∅, then minx∈ImΦ,y∈Υd(x, y) = 1; otherwise, called disconnected. The
basin for an attractor Φ is the set of all points x such that F kx ∈ ImΦ for some k.
Two attractors Ψ and Φ are called separated if d(x, y) ≥ 2 for any points x of the
basin for Ψ and any point y of the basin for Φ.

Definition 6.1.2 A subset Φ of CY(F ) is called strong attractor in the FSDS
generated by F , if there exists some ε-neighborhood Uε(ImΦ) satisfying

F (Uε(ImΦ)) = ImΦ.

A strong attractor is clearly an attractor.

6.2 A Critical review of prior results

In a nervous system, each neuron exhibits an impulse of one electric state, called
action potential. Therefore, the state of each neuron can be distinguished by the ex-
istence and nonexistence of an action potential. Assuming the nervous system con-
sists of n neurons, we can identify each neuron with an element of N = {1, 2, ..., n}.
Then the state of the whole nervous system at time t is expressed by a point
x(t) = (x1(t), x2(t), ..., xn(t)) ∈ {−1, 1}n.

Let (i, j) denote a synapse, where i and j are integers of N, neuron i being the
postsynaptic neuron and neuron j being the presynaptic neuron. Let E be a real
n × n matrix and h be a real column n-vector, where each element Eij expresses
the efficacy of the synapse (i, j) and hi expresses the threshold value for the action
potential of neuron i. Then the classical neural network model of McCulloch and
Pitts (1943) asserts that the state x(t + 1) is defined by the state x(t) and E as
follows:

Fx = Sgn(Ex− h),
x(t + 1) = F (x(t)), (6.2.1)



CHAPTER 6 DYNAMICAL SYSTEMS OF FIRST-ORDER NEURAL NETWORKS 3

where

(Sgn(y))i =
{

1 if yi > 0,
−1 if yi ≤ 0,

Further, {−1, 1}n is a finite metric space with the integer-valued Hamming distance
dH(x, y) = |{i | xi 6= yi}|, where |S| denotes the number of elements of the set S.
Therefore, x(0), x(1), ... is the orbit starting at x(0), in the FSDS on the state space
{−1, 1}n generated by the threshold transformation F of {−1, 1}n.

This discrete-time binary system is now called an artificial neural network and
is not regarded as a representation of the activities of biological neurons, the his-
tory of studies is partly responsible for this claim. However, a continuous-time
and continuous state-model is not manageable for the description of dynamics of a
large population of neurons, so that some abstraction to the level of (6.2.1), such
as putting the firing mechanism in a black box and aligning action potentials, is
more or less inevitable.

A first breakthrough was made in the early 60s by Arimoto (1963).

Theorem 6.2.1 (Arimoto 1963) For any k ≤ 2n, there exists a network (6.2.1)
having a k-cycle.

Later, the following Goles-Chacc’s theorem appeared (Goles-Chacc, 1980; see
also Goles & Olivos, 1981; Goles-Chacc et al., 1985, Proposition 2, p. 269).

Theorem 6.2.2 (Goles-Chacc, 1980) If the matrix E in (6.2.1) is symmetric,
then any limit cycle is either a loop or a 2-cycle.

Proof. Let the function β : {−1, 1}n × {−1, 1}n → R be defined by

β(x, y) = −xT Ey + (xT + yT )h,

and let γ : Z+ → R be defined by

γt = β(x(t), x(t− 1)).

Then
γ(t + 1)− γt = −(xT (t + 1)− xT (t− 1))(Ex(t)− h),

since E is symmetric. Since {−1, 1}n is a finite set, we can assume that (Ex−h)i 6= 0
for every x and every i in (6.2.1) by adjusting h. Therefore, xT

i (t+1)(Ex(t)−h)i > 0
for every i. Therefore, if xi(t + 1) 6= xi(t− 1) for some i, then either

xi(t + 1) > 0,−xi(t− 1) > 0, and ((Ex(t)− h))i > 0,

or
xi(t + 1) < 0,−xi(t− 1) < 0, and ((Ex(t)− h))i < 0.

Therefore, either

x(t + 1) = x(t− 1) and γ(t + 1)− γt = 0

or
x(t + 1) 6= x(t− 1) and γ(t + 1)− γt < 0,

which proves that x(t + 1) = x(t − 1) for any point x(t − 1) and x(t + 1) on any
limit cycle. ¤
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However, the condition of the symmetry has no justification in biological nervous
systems. Neither Arimoto’s theorem nor Goles-Chacc’s theorem was universally
recognized, and Hopfield (1982) replaced (6.2.1) with n recursive equations by which
(x(t))i is obtained one by one for i = 1, ..., n; for example,

xi(t + 1) = Fi(x1(t + 1), .., xi−1(t + 1), xi(t), .., xn(t)).

In this serial model, if E is symmetric, h = o, where o is the column vector whose
every coordinate is 0, and Eii = 0 for every i, then any limit cycle is a loop. This
result, which is stronger than Goles-Chacc’s, was obtained by sacrificing the parallel
operation defined by (6.2.1) and therefore a clear departure from the biological root.
Note that if a state remains on a loop, then each neuron either continues to fire
at every unit time or continues not to fire at all. That is too extreme a case in
biological networks. Also, from a technological point, loops represent a very limited
amount of information. Instea, non-loop attractors should be the main targets.

Prior results concerning attractors are limited to attractive fixed points (Amari,
1972; Robert, 1986; Cottrell, 1988; Blum, 1990; etc.). First of all, there has been
some confusion and limitation about the concept of attractors, so that no standard
definition of attractors has been established. For example, in spite of its subtitle,
”the world of attractor neural networks,” Amit (1989) does not give a definition of
”attractor, and takes limit cycles for attractors (P.77). Kamp & Hasler(1990, pp.
6-7) and others define a basin of attraction or radius of attraction for a fixed point
without defining an attractor. Earlier, Amari (1972) called a fixed point q stable if
there exists Uεq, ε ≥ 1, such that F (Uεq) = q. More recently, Cottrell (1988) called
a fixed point q a k-attractor if Fx ∈ Uk−1q for any point x such that dH(q, x) = k.
These definitions are too limited to be established as standards (see Example 6.3.6
in the next section). In fact, these fixed points are here called strong attractors
(Definition 6.1.2). On the other hand, Robert (1986) obtained a necessary and
sufficient condition for U1q to satisfies (i) and (ii) of our Definition 6.1.1 for a fixed
point q (described in Kamp & Hasler, 1990).

According to Definition 6.1.1, the set of all cycles CY(F ) is an attractor (a loop
is a 1-cycle). Therefore, if the transformation F of (6.2.1) is one-to-one, e.g., if
E is the identity matrix I and h = o, then we obtain a minimal attractor Φ such
that ImΦ = {−1, 1}n. If E = I and hi = −2 for every i, F has the unique loop
(11..1), so that there exists an F having an attractive loop for every n. Further,
if Eij = −1 for every i, j and h = o for n ≥ 3, then 11..1 ↔ −1 − 1.. − 1 is an
attractive 2-cycle. Example 6.3.4 (b) in the next section shows such an attractor
for n = 2. Therefore, there exists an F having an attractive 2-cycle for every n ≥ 2.
However, beyond these results and those obtained by direct products, it is not clear
whether there exist other attractors. Nevertheless, the enhanced Arimoto theorem
(Theorem 5.5.2 of Chapter 5) implies the following Arimoto-Ueda theorem. The
proof is clear by letting ε = n in Definition 6.1.1.

Theorem 6.2.3 For any k ≤ 2n there exists a McCulloch and Pitts network
(6.2.1) that has an attractive unique k-cycle.

The network of the enhanced Arimoto theorem has a powerful convergence prop-
erty, since any state converges to a unique cycle regardless of the initial state. How-
ever, in the real world, it seems often rather desirable that the convergence depends
on the initial state.
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In relation to this dependence on the initial state, one feature that has not been
incorporated in prior studies is the elementary but essential fact that in many
neurons the postsynaptic potentials merely modify spontaneous firing that occurs
without any synaptic input (Kalat, 1995, p. 63). As a result, prior studies have
failed to define what the spontaneous or neutral activities of a single neuron or
a population of neurons are. As a result, we have not been able to distinguish
neurons’ significant activities from their insignificant activities. Particularly, we
have not been able to sort out a great number of loops or 2-cycles often appearing
in the network (6.2.1).

6.3 Dynamical neural networks (DNNs)

In the current situations described in the last section, we remodel and charac-
terize dynamical systems of neural networks that are amiable to global analysis
of population dynamics and still retain some of the essential features of biological
networks. The remodelled networks are not new ones but a restricted class of the
McCulloch and Pitts model (6.2.1). I call them primitive dynamical neural networks
(PDNNs). They are dynamic, because they are not only dynamical systems but
also each neuron performs neutral spontaneous firing at rate 1/2 in their prototype.
They are primitive, because they are generated by single threshold transformations
like the McCulloch and Pitts model and also because the threshold vectors are
zeros.

Our main objective is to prove the existence of previously unknown non-loop
attractors. Let us start with the following assumption.

Assumption 6.3.1 The periodic firing of the action potentials with period 2
of any neuron is neutral.

Assumption 6.3.1 claims that the periodic state transition ... → −1 → 1 → −1 →
1 → −1 → ... of any neuron is neutral or indifferent whether it is disconnected or
connected with other neurons. In general, any 2-cycle q ↔ −q in {−1, 1}n represents
a neutral activity. I call it a neutral cycle and any other cycles significant. In this
case, the generating transformation F can be defined by

E = −I, h = o,

in (6.2.1), where I is the n×n identity matrix, and o is the column n-vector whose
every coordinate is 0. Here every neuron fires spontaneously without any input
from other neurons, and any state is on a neutral cycle. Now I make the following
definition.

Definition 6.3.2 A primitive dynamical neural network (PDNN) is a parametrized
FSDS on {−1, 1}n with parameters v = (v12, .., v1n, v21, v23, .., v2n, .., vn1, .., vnn−1) ∈
Rn(n−1) and generated by the threshold transformation F defined by

Fx = Sgn(Ex), (6.3.1)

where E = Ev is an n×n real matrix such that Eii = −1 for every i and Eij = vij

for every other i and j. The n is called the dimension of the DNN.

Thus in PDNNs, the prototype DNN generated by −I is modified by further
synaptic connections. However, the threshold vector h remains o, and the synaptic
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efficacy Eii between each neuron itself remains -1. Here, the assumption h = o is
a strong constraint. However, if h = o, then Eii = −1 for every i is equivalent
to Eii < 0 for every i. As a result, such an extreme case as E = I and h = o is
effectively excluded from PDNNs. In a supposed biological system from which the
current model is abstracted, each neuron is self-oscillatory. Therefore, a network in
which a neuron is not self-oscillatory but performs ”self-sustained” firing (central
pattern generation) by means of post synaptic rebound and inhibitory input from
surrounding neurons is not covered here (see Coombes & Doole, 1996). The time
period between t = i and t = i+1 is assumed here to be the sum of the time for the
action potential and the absolute refractory period. Then the relative refractory
period and spontaneous release of inhibitory chemical transmitters contribute to
the negativity of diagonal elements.

If a neuron is spontaneously firing in this model, then the firing rate per unit time
is 1/2. On the other hand, the maximum firing rate is 1 and the minimum firing rate
0. Therefore, the firing rate of any neuron cannot exceed 2 times the spontaneous
firing rate. Alternatively, we can construct a DNN of spontaneous firing rate 1/3
or less. For example, the periodic state transition, · · · → −1 → −1 → 1 → −1 →
−1 → 1 → · · ·, is neutral in a DNN of spontaneous firing rate 1/3. A state x(t + 1)
depends on x(t) and x(t− 1) in this DNN. Therefore, a DNN of spontaneous firing
rate 1/3 or less can incorporate temporal summation in its postsynaptic potential,
while the postsynaptic potential (Ex(t))i of a PDNN of spontaneous firing rate 1/2
is only spatial summation. Therefore, such an alternative model far better reflects
a real nervous system. Further, any real nervous system is not autonomous. The
dynamics of the system depends on information that changes at every unit time
and that is input from the outside of the system, from neurons of other nervous
systems and/or from external stimulus. Still further, the rigid synchronization
(alignment) of firing for all neurons is unrealistic. However, mathematical analysis
will be extremely difficult in such DNN models that possibly simulate real nervous
systems. Therefore, as a first step, we have to limit our subject to an extremely
simplified model with spontaneous firing rate 1/2 and does not claim any immediate
application to real nervous systems except a preparation for the analysis of such
DNN models.

If transformations F and G of {−1, 1}n are orthogonally similar, then the DNNs
generated by F and G are called orthogonally similar. A transformation that gen-
erates a PDNN is not necessarily self-dual. However, we have the following propo-
sition.

Proposition 6.3.3 The PDNN defined by Definition 6.3.2 is structurally stable,
if and only if F is self-dual.

Proof. Assume that the PDNN defined by Definition 6.3.2 is structurally stable.
Then (F−)x = F (−x) = Sgn(E(−x)) = Sgn(−(Ex)) for every x. Also there is no
i such that (Ex)i = 0 for some x; therefore Sgn(−(Ex)) = −Sgn(Ex) = −Fx, so
that F− = −F , that is F is self-dual. Conversely, assume F is self-dual. Then
there is no i such that (Ex)i = 0 for some x. Therefore there exists a neighborhood
Uεv such that if w ∈ Uεv, then Sgn(Ewx) = Sgn(Ex) for every x. Therefore the
PDNN is structurally stable. ¤
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The set of all significant cycles in GRAPH(F ) is denoted by SCY(F ). We are
concerned with an attractor that is a subset of SCY(F ), since any neural activities
that are significant and less sensitive to disturbance such as failures in synchroniza-
tion are described with such a significant attractor. Further, a desirable attractor
would be minimal and connected. The following examples illustrate a variety in
the present PDNN model.

Example 6.3.4 Complete picture for dimension 2. Orthogonally non-similar
transformations are described below.

E =
[−1 ε

δ −1

]
,

(1) ε, δ < −1:
11 ↔ −1− 1 (Neutral cycle),

1− 1∂,−11∂ (Non-attractive loops).
SCY(F ) = {(1− 1), (−11)} is not attractive.

(2) ε < −1,−1 < δ < 1:

1− 1 → 11 ↔ −1− 1 ← −11 (Attractive neutral cycle).

(3) ε < −1, 1 < δ:

11 → −11 → −1− 1 → 1− 1 → 11 (Attractive 4-cycle).

(4) −1 < ε, δ < 1:

11 ↔ −1− 1, 1− 1 ↔ −11 (Neutral cycles).

(5) ε = −1 or 1, or δ = −1 or 1: Structurally unstable.
Example 6.3.5

E =




−1 2 2 2
2 −1 −2 2
2 −2 −1 2
2 2 2 −1


 ,

1− 111 → 1111∂, −11− 1− 1 → −1− 1− 1− 1∂
↗ ↗

11− 11 −1− 11− 1
(Non-attractive loops),

1− 11− 1 ↔ −1− 111, −11− 11 ↔ 11− 1− 1 (Non-attractive 2-cycles),

111− 1 → 1− 1− 11 ↔ −111− 1 ← −1− 1− 11
↗ ↖

−1111 1− 1− 1− 1
(Neutral 2-cycle).

SCY(F ) = {(1111), (−1− 1− 1− 1), (1− 11− 1,−1− 111), (−11− 11, 11− 1− 1)}
is not attractive.

Example 6.3.6

E =




−1 2 2 2
4 −1 2 2
2 2 −1 2
2 2 2 −1


 ,
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1− 1− 1− 1 → −11− 1− 1
↘

−1− 11− 1 → −1− 1− 1− 1∂
↗

−1− 1− 11

(Attractive loop),

−1111 → 1− 111
↘

11− 11 → 1111∂
↗

111− 1

(Attractive loop),

11−1−1 ↔ −1−111, 1−11−1 ↔ −11−11, 1−1−11 ↔ −111−1 (Neutral cycles).

(−1− 1− 1− 1) and (1111) are neither stable in Amari (1972) nor a k-attractor in
Cottrell (1988).

Example 6.3.7

E =




−1 −2 2 2
2 −1 −2 2
2 2 −1 2
2 −2 2 −1


 ,

−1111 → 1− 11− 1 1− 111
↘ ↘

−1− 11− 1 → 1− 1− 11 → 1111∂
↗

111− 1 → −1− 111
(Non-attractive loop),

1− 1− 1− 1 → −11− 11 −11− 1− 1
↘ ↘

11− 11 → −111− 1 → −1− 1− 1− 1∂
↗

−1− 1− 11 → 11− 1− 1
(Non-attractive loop),

SCY(F ) = {(1111), (−1− 1− 1− 1)} is a disconnected minimal attractor.

6.4 PDNN-definable transformations

In this section we characterize the PDNN-definable transformations for sponta-
neous firing rate 1/2 defined by:

Definition 6.4.1 If a transformation F of {−1, 1}n can be defined by Fx =
Sgn(Ex) for an n × n real matrix E such that Eii = −1, then F is called DNN-
definable.

Theorem 6.4.2 A self-dual threshold transformation F of {−1, 1} is PDNN-
definable if and only if Var(i−F ) ≤ Var(F ) for every i.

Proof. Let F be a self-dual threshold transformation of {−1, 1}n. Then by Propo-
sition 4.3.1 of Chapter 4, there exists an n × n real matrix W such that Fx =
Sgn(Wx), and there is no point x such that (Wx)i = 0 for some i. If Wii = 0 for
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some i, then replacing Wii with some εii such that |εii| is sufficiently small does not
change Sgn(Wx). Therefore, we obtain a matrix W ′ such that W ′ii 6= 0 for every
i and Sgn(W ′x) = Sgn(Wx). Next, divide the ith row of W ′ by |W ′ii| to obtain
W ′′. Suppose W ′′ii = 1 for some i, and Sgn((W ′′x)i) = Sgn((W ′′i−x)i) for every
x, then replacing W ′′ii = 1 with −1 does not change Sgn((W ′′x)i) for every x.

Suppose F is not PDNN-definable. Then we obtain a matrix W such that
Fx = Sgn(Wx), Wii = 1 for some i, and (Wq)i > 0 and (W (i−q))i < 0 for some q.
Therefore, (W (−i−q))i > 0. Thus dH((q,−i−q) = n− 1, and both q and −i−q are
on the same side of the hyper plane of Rn defined by (Wx)i = 0. Further, since
Wii = 1, we have qi = 1 and so (−i−q)i = 1. Therefore, for any r ∈ {−1, 1}n such
that r1 = 1, at least one of r and −(i−r) must be on the same side of the hyper
plane as q. Therefore the set {x | xi = 1, and(Fx)i = 1, x ∈ (−1, 1)n} contains at
least 2n−2 + 1. Therefore, Var(i−F ) > Var(F ).

Suppose F is PDNN-definable. Then, by the above result, there exists a real
matrix E such that Fx = Sgn(Ex) for every x and Eii = −1 for every i. Let Ei be
the ith row-vector of E and E′i be the row-vector obtained by replacing −1 with 1
for the ith coordinate of Ei. Then

|{x | xi = 1, (Ei, x) < 0, x ∈ {−1, 1}n}|
≥ |{x | xi = 1, (E′i, x) < 0, x ∈ {−1, 1}n}|
= |{x | xi = 1, (−Ei, x) < 0, x ∈ {−1, 1}n}|,

where (·, ·) denotes the inner product. Therefore Var(i−F ) ≤ Var(F ) for every
I. ¤

Corollary 6.4.3 Let F be a self-dual threshold transformation of {−1, 1}n.
Then F is orthogonally equivalent to a PDNN-definable threshold transformation
of {−1, 1}n.

Proof. Let F be a self-dual threshold transformation of {−1, 1}n. Let J = {i |
i ∈ N,Var(i−F ) > Var(F )}. If G = J−F , then Var(i−G) ≤ Var(G) for every i.
Therefore, G is PDNN-definable. ¤

Corollary 6.4.4 If F is a self-dual threshold transformation such that (Fx)i =
xi for every x for some i, then F is not PDNN-definable.

Corollary 6.4.5 Let T be an orthogonal transformation of {−1, 1}n. Then T is
PDNN-definable if and only if for every i there exists some x depending on i such
that (Tx)i 6= xi.

Proof. Let D be the matrix representing T , i.e., Tx = Dx for every x. If (Tx)i = xi

for every x for some i, that is, Dii = 1, then Var(i−T ) > Var(T ), so that T is not
PDNN-definable. Let Dii = 0 or −1 for every i. If Dii = 0 for some i, then
replacing Dii with some εii < 0 such that |εii| is sufficiently small does not change
Sgn(Dx). Therefore we obtain a matrix D′ such that D′ii = −1 for every i and
Sgn(D′x) = Dx, so that T is PDNN-definable. ¤

Proposition 6.4.6 If F is PDNN-definable, and G is orthogonally similar to F ,
then G is also PDNN-definable.

Proof. Let F be PDNN-definable and G be a threshold transformation similar to
F . By definition, Fx = Sgn(Ex), Eii = −1 for every i, and there exists an
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orthogonal transformation T of {−1, 1}n such that G = T−1FT . Let D be the
matrix representing T . Then Gx = T−1(FTx) = D−1Sgn(EDx) = Sgn(D−1EDx).
It is clear that (D−1ED)ii = −1 for every i. Therefore, G is PDNN-definable. ¤

If a transformation H of {−1, 1}n is the direct product of transformations F of
{−1, 1}m and G of {−1, 1}n−m, i.e.,

H

[
x
y

]
=

[
Fx
Gy

]

then clearly H is PDNN-definable if and only if both F and G are PDNN-definable.
In this case, we call the PDNN generated by H the direct product of the PDNN
generated by F and the PDNN generated by G.

We now switch from transformations of {−1, 1}n to corresponding transforma-
tions of Qn. First, the following proposition immediately follows from Theorem
6.4.2.

Proposition 6.4.7 A self-dual transformation [f1, ..., fn] of Qn is PDNN-definable,
if and only if |fi| ≥ 2n−2 for every i. 〈f〉 is PDNN-definable iff |f | ≥ 2n−2. 〈〈f〉〉 is
PDNN-definable iff |f | ≥ 2n−2.

Corollary 6.4.8 If F is a minimal threshold transformation, then ¬̄F is PDNN-
definable.

6.5 Attractive loops

The following proposition indicates basic properties of attractive loops of the
present PDNNs. In particular, Proposition 6.5.1 (a) implies that there is no con-
nected attractor consisting of more than two loops.

Proposition 6.5.1 Let F be a PDNN-definable self-dual transformation of Qn.
(a) If (q) and (r) are different loops of F , then dH(q, r) ≥ 2. (b) If Fx = q for every
x such that dH(x, q) = 1, then (q) is an attractive loop.

Proof. (a) Without loss of generality let q = l and r = 1−l, where l = 1 · · · 1,
and (q) and (r) be loops of a PDNN-definable transformation F of Qn. If F =
[f1, f2, ..., fn], then 1−F = [p1 · ¬f1, f2, ..., fn] by Proposition 2.4.1 of Chapter 2.
Therefore q ∈ x1 · ¬f1 and ¬̄r = 1−o ∈ p1 · ¬f1, since (q) and (r) are loops of
F . Therefore, as the proof of Theorem 6.4.2, p1 · ¬f1 contains at least 2n−2 + 1
points. Therefore Var(i−F ) > Var(F ), which contradicts the fact that F is PDNN-
definable. (b). Let F be a PDNN-definable transformation of {−1, 1}n defined by
Fx = Sgn(Ex) for every x ∈ {−1, 1}n. Without loss of generality let q = l, and let
F (i−q) = q for every i. Then E(i−q) > o for i = 1, 2, .., n. Therefore, adding these
n inequalities, we obtain (n− 2)E(q) > o, so that Fq = q. ¤

A PDNN is called symmetric if the matrix E is symmetric in Definition 6.3.2.
From Goles-Chacc’s theorem (Theorem 6.2.1) it follows.

Theorem 6.5.2 SCY(F ) of any symmetric PDNN generated by F is either
empty or consists of loops or/and 2-cycles.
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The above theorem means that in symmetric PDNNs, any neuron ultimately
either performs a spontaneous firing or continues to fire at the maximum rate 1 or
does not fire at all.

Now, in order to find an attractor in symmetric PDNNs, consider the simple
PDNN generated by F = Sgn(Ex), where

E =




−1 ε · · · · ε
ε −1 ε · · · ε
ε ε −1 ε · · ε
· · · · · · ·
· · · · · · ·
ε · · · · ε −1




, (6.5.1)

Let the transformation of Qn corresponding to F be G = [g1, ..., gn]. Let d(x) be
the density of x, i.e. d(x) = |{i | xi = 1}|. Then (Fx)i = Sgn((2d(x)−n− 1)ε− 1),
if xi = 1. Therefore, x ∈ gi if and only if xi = 1 and (2d(x)− n− 1)ε− 1 < 0.

First let ε > 0. Then, x ∈ gi iff (xi = 1, d(x) ≤ n, and ε < 1/(n−1)), or (xi = 1,
d(x) ≤ n − 1, ε < 1/(n − 3)) or (xi = 1, d(x) ≤ n − 2, and ε < 1/(n − 5)), or so
forth. Therefore, if 0 < ε < 1/(n − 1) then G = 〈p1〉 and this PDNN is generated
by ¬̄. If 1/(n− 1) < ε < 1/(n− 3), then

G = 〈p1 · S1{¬p2, ..,¬pn}〉, (6.5.2)

and (l) and (o) are loops. If 1/(n− 3) < ε < 1/(n− 5) then

G = 〈p1 · S2{¬p2, ..,¬pn}〉, (6.5.3)

and (l) and (o) are attractors, GU1l = l and GU1o = o, and U1l and U1o are
respectively the basins for the attractors. If 1/(n− 5) < ε < 1/(n− 7) then

G = 〈p1 · S3{¬p2, ..,¬pn}〉, (6.5.4)

and U2l and U2o are the basins for the attractors, and so forth. This sequence ends,
when 1/(n− (n− 1)) < ε for even n, where

G = 〈p1 · Sn/2{¬p2, ..,¬pn}〉, (6.5.5)

and Un/2−1l and Un/2−1o are the basins for the attractors (l) and (o). The sequence
ends, when 1/(n− (n− 2)) = 1/2 < ε for odd n, where

G = 〈p1 · S(n−1)/2{¬p2, ..,¬pn}〉, (6.5.6)

and U(n−1)/2−1l and U(n−1)/2−1o are the basins for the attractors (l) and (o).
Further, points outside the basins for the attractors are on neutral cycles. In

particular, if d(x) = n/2 or d(x) = (n + 1)/2, then Gx = ¬̄x, so that any point
with density n/2 or (n + 1)/2 is always on a neutral cycle.

Next, let ε < 0. Then Gl = ¬̄l. If Gx 6= ¬̄x, Gx 6= l, and Gx 6= ¬̄l, then
Gx = x, so that (2d(x)− n + 1)ε + 1 < 0 and (2d(x)− n− 1)ε− 1 > 0. From the
former inequality follows 2d(x) ≥ n, and from the latter follows 2d(x) ≤ n, so that
d(x) = n/2. Therefore, if ωGx = V for some V ∈ SCY(G), then d(x) = n/2, so
that SCY(G) is not attractive. From the above arguments, we have obtained:

Theorem 6.5.3 If n ≥ 4 and ε > 1/(n− 3) in the symmetric PDNN generated
by F defined by (6.5.1), then SCY(G) consists of two separate attractive loops (l)
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and (o). If ε < 1/(n− 3), then SCY(G) is either empty or not attractive.

Note that all PDNNs and their attractors have their isometrically similar coun-
terparts. The following corollaries are obtained by construction with direct prod-
ucts.

Corollary 6.5.4 There exists a symmetric PDNN generated by F of dimension
n = rm for every r ≥ 4 and every positive integer m such that SCY(F ) consists of
2m loops, each being attractive.

Corollary 6.5.5 If n ≥ 5, then there exists a symmetric PDNN of dimension n
that has a significant attractive 2-cycle.

As illustrated in Example 6.3.5, even if a symmetric PDNN generated by F is
irreducible, i.e., not a direct product, SCY(F ) may contain a significant 2-cycle.
While each neuron fires at either maximum or minimum rate when state on a loop
is attained, some neurons fires at maximum or minimum rate and the other neurons
perform neutral firing when a non-neutral 2-cycle is attained. Therefore, as long
as non-neutral neurons are concerned, there is no difference between a non-neutral
2-cycle and a loop in smaller dimension.

6.6 Attractive cycles

PDNNs which are circular and symmetric at the same time were completely de-
scribed by Theorem 6.5.3 in the last section. In this section we show the existence
of non-loop attractors in circular PDNNs. First, the following proposition is a basis
for constructing a PDNN with having an attractor.

Proposition 6.6.1 Let F be a self-dual transformation of Qn, Φ be an attractor
in the FSDS generated by F , and Φ be self-dual, i.e. ¬̄ImΦ = ImΦ. Then Ψ =
CY(¬̄F |ImΦ), where |ImΦ denotes the restriction to ImΦ, is an attractor in the
FSDS on Qn generated by ¬̄F .

Proof. Since Φ is attractive, there exists a neighborhood Uε(ImΦ) such that F (Uε(ImΦ)) ⊆
Uε(ImΦ), and F k(Uε(ImΦ)) = ImΦ for some positive integer k. Therefore, (¬̄F )(Uε(ImΦ)) ⊆
¬̄(Uε(ImΦ)) = Uε(ImΦ). Since F is self-dual, (¬̄F )k = ¬̄kF k, Therefore, (¬̄F )k(Uε(ImΦ)) =
¬̄kF k(Uε(ImΦ)) = ¬̄kImΦ = ImΦ. Hence, Ψ is an attractor in the FSDS on Qn

generated by ¬̄F , since ImΨ = ImΦ. ¤

According to Proposition 6.5.1, if F is a minimal threshold transformation, then
¬̄F is PDNN-definable. Therefore, if we have a minimal threshold transforma-
tion having an attractor, then we can obtain a PDNN having an attractor by
Proposition 6.6.1.The 4-cycle attractors and in the following Theorem 6.6.2 and
two-3-cycle attractors in Theorem 6.6.4 are respectively constructed by modifying
Examples 4.4.2 and 4.4.3 of Chapter 4, which are one-to-one transformations. In
the following, Orb〈¬̄,ρ〉D for a subset D of Qn is denoted by [D].

Theorem 6.6.2 There exists a circular PDNN generated by F of dimension 4m
for any m ≥ 1 such that SCY(F ) is a connected minimal attractor consisting of
one 4-cycle.



CHAPTER 6 DYNAMICAL SYSTEMS OF FIRST-ORDER NEURAL NETWORKS 13

Proof. Let F = 〈f〉 be the circular self-dual transformation of Q4m defined by

f = p1 · p2 · ¬p4 · p6 · ¬p8 · · · p4m−2 · ¬p4m.

Clearly f is a threshold function, so that F is a threshold transformation. Let
a = 11001100 · · · 1100 and A = Orbρa. Then A = (a, ρa, ρ2a, ρ3a) ∈ CY(F ), since
Fa = ρa.

First, we show that F (CarF ) ⊆ A. Let x ∈ f . Clearly, x4k+2 = 1 and x4k+4 = 0
for every k. If x4k+1 = 1, then ρ−4kx ∈ f ; if x4k+1 = 0, then ρ−4kx /∈ ¬̄f , since
x4k = 0. Therefore, (Fx)4k+1 = 0. We have x4k+2 = 1, so that (ρ−(4k+1)x)1 = 1,
but x1 = 1, so that (ρ−(4k+1)x)4(m−k−1)+4 = 1. Therefore, ρ−(4k+1)x /∈ f , so that
(Fx)4k+2 = 1. If x4k+3 = 1, then ρ−(4k+2)x /∈ f , since (ρ−(4k+2)x)4m = 1; if
x4k+3 = 0, then ρ−(4k+2)x ∈ ¬̄f . Therefore, (Fx)4k+3 = 1. We have x4k+4 = 0, so
that (ρ−(4k+3)x)1 = 0, but x1 = 1, so that (ρ−(4k+3)x)4(m−k−1)+2 = 1. Therefore,
ρ−(4k+3)x /∈ ¬̄f , so that (Fx)4k+2 = 0. Therefore, Fx = ρa. Therefore, Ff ⊆ A,
so that F (CarF ) ⊆ A, since CarF = [f ] and [A] = A.

Next, U1A ⊆ CarF . In fact, if x = 1−a, then x ∈ ρ4f . If x = 2−a, then
x ∈ ¬̄ρf . If x = 3−a, then x ∈ f . If x = 4−a, then x ∈ ρ3f . Therefore, because of
the circularity and self-duality of F , U1A ⊆ CarF .

The above arguments have shown that A is an attractor and the only non-loop
cycle in the FSDS generated by F . By Proposition 6.5.1, ¬̄F is PDNN-definable. By
Proposition 6.6.1, CY(¬̄F |A) is also an attractor in the PDNN. Clearly it consists
of one 4-cycle. It is also SCY(¬̄F ) and a connected minimal attractor. ¤

It is clear from the above proof, a flow graph of F in Theorem 6.6.2 is

[f ] → [¬1 · 2 · 3¬4 · ¬5 · 6 · 7¬8 · · · ¬(4m− 3) · (4m− 2) · (4m− 1) · ¬4m]∂.

Example 6.6.3 GRAPH(¬̄F ) in Theorem 6.6.2 for m = 1.

0000 ↔ 1111, 0101 ↔ 1010,

0010 1110
↘ ↙

0111 → 1100 → 1001 ← 0100
↑ ↓

0001 → 0110 ← 0011 ← 1101
↗ ↖

1011 1000
Theorem 6.6.4 There exists a circular PDNN generated by F of dimension 3m

for any m ≥ 2 such that SCY(F ) is a connected minimal attractor consisting of
two 3-cycles.

Proof. Let F = 〈f〉 be the circular self-dual transformation of Qn defined by

f = p1 ·p2 ·p5 ·p8 ·p11 · · ·p3m−1Sm−1{¬p3,¬p4,¬p6,¬p7, ..,¬p3m−3,¬p3m−2,¬p3m}.
Clearly f is a threshold function, so that F is a threshold transformation. Let
a = 110110 · · ·110 and A = Orbρ−1¬̄a. Then A = (a, ρ−1¬̄a, .., (ρ−1¬̄)5a) ∈ CY(F ),
since Fa = ρ−1¬̄a. We will show F (U1A) ⊆ A. In fact, F (1−a) = ρ−1¬̄a,
F (2−a) = a, and F (3−a) = ρ−1¬̄a. Therefore, because of the circularity and
self-duality of F , F (U1A) ⊆ A.

It is shown in the following that Fx ∈ A or F 2x ∈ A for every x ∈ f .
(Case 1) x3 · x6 · · · x3(m−1) · x3m = 1: Since at least m− 1 coordinates of x are 0,
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x3k−2 = 0 for every 2 ≤ k ≤ m, so that x = 1−ρa. Therefore, Fx = ¬̄a ∈ A.
(Case 2) x3 · x6 · · · x3(m−1) · x3m = 0: Then Fx = 01x301x601 · · · x3(m−1)01x3m.
Clearly (F 2x)3k−2 = 0 for every k. Since x3k = 0 for at least one k, (F 2x)3k−1 = 1
for every 1 ≤ k ≤ m. If (Fx)3k = x3k = 1 for some 1 ≤ k ≤ m then Fx /∈ ρ3k−1f , so
that (F 2x)3k = 1. If (Fx)3k = x3k = 0 for some 1 ≤ k ≤ m, then ¬̄(Fx) ∈ ρ3k−1f ,
so that (F 2x)3k = 1. Therefore, F 2x = ρa ∈ A.

The above arguments have shown that A is an attractor and a unique non-loop
cycle in the FSDS generated by F . By Proposition 6.5.1 ¬̄F is PDNN-definable. By
Proposition 6.6.1, CY(¬̄F |A) is also an attractor in the PDNN. Clearly it consists
of two 3-cycle. It is also SCY(¬̄F ) and a connected minimal attractor. ¤


