
CHAPTER 7 CALCULUS OF ATTRACTION

Abstract. According to the last chapter, if F is a minimal threshold trans-
formation, then ¬̄F is PDNN-definable. Moreover, an attractor of F is easily
converted to that of ¬̄F . In this chapter, various attractors of minimal thresh-
old transformations are constructed from one-to-one transformations that we
have already obtained in chapter 4. Further, given a threshold transforma-
tion having an expected attractor, some computational processes of proving
the attractiveness are developed. For that purpose, extended representations
of self-dual transformations are introduced from their [ ]-representations. In
some cases, attractiveness can be proved by decomposition of the transforma-
tion.

7.1 Extended representations and neighborhood functions

We have already shown that there exist an attractive loop, 3-cycle, and 4-cycle in
our PDNNs. In this chapter we seek the existence of more general attractors. Note
that if F is a minimal threshold transformation, then ¬̄F is PDNN- definable for
spontaneous firing rate 1/2 by Corollary 6.4.8 of Chapter 6. Moreover, an attractor
of F is easily converted to that of ¬̄F by Proposition 6.6.1 of Chapter 6. Therefore,
we limit ourselves to minimal transformations. Note that all these transformations
and their attractors have their isometrically similar counterparts.

Before we go further, we need a tool for systematic analysis of attractiveness
for various transformations. This tool is the extended representation of a Boolean
transformation.

Let dSH(x, S) be the signed Hamming distance between a point x and a non-
empty proper subset S of Qn defined by

dSH(x, S) =
{

dH(x, S) if x /∈ S,
1− dH(x, Sc) if x ∈ S.

Definition 7.1.1 Let x be an element of Qn and F = [f1, ..., fn]. Then the
extended representation F# of F is a function from Qn to Zn defined by

(F#x)i =
{

dSH(PN\ix, PN\ifi) if xi = 1
dSH(PN\ix, PN\i¬̄fi)) if xi = 0.

Clearly |(F#x)i| ≤ n − 1 for every i for every x. In general, x ∈ fi or x ∈ ¬̄fi, if
and only if (F#x)i ≤ 0. That is,

xi 6= (Fx)i iff (F#x)i ≤ 0. (7.1.1)

For example, let
f = p1 · S4{p2, p3, p4,¬p6,¬p7,¬p8},

and F = 〈f〉 be a transformation of Q8. Let c = 11110000. Then F#c =
(−2, 0, 2, 4,−2, 0, 2, 4). Therefore, Fc = 00111100.

By Proposition 2.4.3, we have

Fk− = [k−f1, .., pk · (¬¬̄(fk|1)), .., k−fn]. (7.1.2)
1
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Therefore,
(F#x)i − 1 ≤ ((Fk−)#x)i ≤ (F#x)i + 1, if i 6= k. (7.1.3)

For i = k, if |fk| ≤ 2n−2, then by Proposition 4.3.8, (fk|1) ⊆ ¬¬̄(fk|1), so that by
(7.1.2),

((Fk−)#x)k ≤ (F#x)k, if |fk| ≤ 2n−2. (7.1.4)

The following example is obtained as ¬̄G for (6.5.3) through (6.5.6) of Chapter
6 and is a basis of our various constructions.

Example 7.1.2 Let 2 ≤ k ≤ [n/2],

f = p1 · Sn−k{p2, p3, .., pn}
and F = 〈f〉 be a transformation of Qn. The 2-cycle C = (1...1, 0...0) is the unique
attractor, and Uk−1C is the basin of attraction.

Theorem 7.1.3 Let F = [f1, ..., fn] be a self- dual minimal threshold transfor-
mation, and let γi = dH(fi|1, ¬̄(fi|1)). If (F#x)i ≤ −1 or (F#x)i ≥ max(2, γi) for
every i for any point x on a cycle of F , then that cycle is a strong attractor of F .

Proof. Assume (F#x)i ≤ −1 or (F#x)i ≥ max(2, γi) for every i for any point x on
a cycle of F .

Let (Fx)i = ¬xi for a point x on the cycle, say x ∈ fi. Then dSH(x, fi) =
(F#x)i ≤ −1. ((Fi−)#x)i ≤ (F#x)i ≤ −1 by (7.1.4). Therefore, ((Fi−)x)i =
¬xi = (Fx)i. Also, ((Fk−)#x)i ≤ 0 for every k 6= i by (7.1.3), so that ((Fk−)x)i =
¬xi = (Fx)i.

Let (Fx)i = xi = 1. Then

dSH(PN\ix, PN\ifi) = (F#x)i ≥ dH(PN\ifi, PN\i(¬̄fi)),

so that

dSH(PN\ix, PN\i(pi · ¬̄(fi|1))) = dSH(PN\ix, PN\i(¬̄fi)) ≤ 0.

Therefore,
((Fi−)#x)i = dSH(PN\ix, PN\i(pi · ¬¬̄(fi|1))) ≥ 1.

Therefore, ((Fi−)x))i = xi = (Fx)i by (7.1.2). Also, (F#x)i ≥ 2, so that
((Fk−)#x)i ≥ 1 for every k 6= i by (7.1.3). Therefore, ((Fk−)x)i = xi = (Fx)i.
Therefore, ((Fk−)x)i = (Fx)i for every i for every k. Therefore, the cycle is an
strong attractor. ¤

In Example 7.1.2, F is minimal, and (F#l)i ≤ −1 for every i. (l, o) is obviously
a strong attractor but also confirmed by Theorem 7.1.3.

Analogously to Example 7.1.2, we can construct transformations having attrac-
tors by modifying some of the one- to-one transformations listed in Chapter 4.4.
First we give the following general definition. Let f be a function from Qn to Q.
Then we identify the ε-neighborhood Uεf of the set f with the function under which
the inverse image of 1 is the set Uεf . That is,

(Uεf)−11 = Uεf = Uε(f−11).

The function Uεf is called a neighborhood function of f . Then clearly

Uε(f ∨ g) = (Uεf) ∨ (Uεg).
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For example, if f is a one-term function, f = qk1 · ... · qkm, where (k1, .., km) is a
subsequence of (1, 2, .., n) and qki = pki or ¬pki, then

Uεf = Sm−ε{qk1, .., qkm}.
We consider hereafter only the case ε = 1 for simplicity. Let F = [f1, ..., fn] be

a self-dual transformation of Qn. Then let G = [g1, ..., gn] be the transformation
defined by

gi = pi · U1(fi|1). (7.1.5)
Then

(G#x)i = (F#x)i − 1 for every i for every x, (7.1.6)
The following proposition immediately follows from (7.1.6).

Proposition 7.1.4 A cycle of F = [f1, ..., fn] is also a cycle of G = [g1, ..., gn]
defined by (3.5), if and only if (F#x)i 6= 1 for every i for any point x on the cycle.

Proof. xi 6= (Gx)i iff (G#x)i ≤ 0 by (7.1.1). (G#x)i = (F#x)i − 1 by (7.1.6).
Therefore, Gx = Fx iff (F#x)i 6= 1 for every i. ¤

Recall that a term of degree m is a conjunction f1 ·f2 · · ·fm of Boolean functions
fi : Qn → Q, such that there exists an injection ϕ : Nm → N such that fi = pϕi

or ¬pϕi for each i. For a special case where f consists of one term we obtain the
following theorem.

Theorem 7.1.5 Let F = [f1, ..., fn] be a self-dual minimal threshold transfor-
mation, and let fi|1 consist of one term of degree ri for ri ≥ 3 for every i. Then, if
(F#x)i ≤ 0 or (F#x)i = ri for every i for any point x on a cycle of F , then that
cycle is an strong attractor of G = [g1, ..., gn] defined by (7.1.5).

Proof. Assume that (F#x)i ≤ 0 or (F#x)i = r ≥ 3 for every i for any point x on
a cycle of F . Then that cycle is also a cycle of G by Proposition 7.1.4.

Let x be a point on a cycle of F . Then, (G#x)i = −1 or (G#x)i = ri − 1 ≥ 2
for any point x on the cycle. Further, we have

γi = dH((gi|1), ¬̄(gi|1)) = ri − 2

Therefore, (G#x)i ≤ −1 or (G#x)i ≥ max(2, γi), so that the cycle is a strong
attractor of G by Theorem 7.1.3. ¤

7.2 Multipe attractors

In this section as in other parts, 1m denotes the m- vector whose every coordi-
nate is 1, and 0m denotes the m-vector whose every coordinate is 0.

Example 7.2.1 Let n = 2m for m ≥ 2, f = p1 · pm · ¬p2m, and F = 〈f〉 be a
transformation of mathbfQ2m. Let

D = {x | x ∈ Q2m, ρmx = ¬̄x}
Ψ = OrbρD.

(7.2.1)

Clearly ρD = D, so that ImΨ = D.
Let x ∈ D. Then,

(F#x)i =
{

0 if xi = ¬xi−1,
2 if xi = xi−1,

(7.2.2)
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for every i. Therefore, Fx = ρx for every x ∈ D. Therefore, ImΨ is an invariant
set of F . We now show that Ψ is an attractor.

Let x ∈ D and k ∈ N. It suffices to show F (k−x) ∈ D. First, by (7.1.4),

((Fk−)#x)k ≤ 0 if xk = ¬xk−1.

If xk = xk−1, say xk = xk−1 = 1, then xk−1+m = 0. By (7.1.2),

(Fk−) = [k−f1, .., pk · (¬¬̄(fk|1)), .., k−fn].
pk · (¬¬̄(fk|1)) = pk · ¬¬̄(pk+m−1 · ¬pk−1)

= pk · ¬(¬pk+m−1 · pk−1)
= pk · (pk+m−1 ∨ ¬pk−1).

Therefore,
((Fk−)#x)k = 1 if xk = xk−1.

Therefore, (F (k−x))k = (Fx)k.
Let k 6= i. If xi = xi−1, then by (7.2.2) and (7.1.3),

((Fk−)#x)i ≥ 1.

Assume xi = ¬xi−1. Then, if k /∈ {i− 1, i + m− 1}, then

((Fk−)#x)i = (F#x)i.

Further, if k ∈ {i− 1, i + m− 1}, then

((Fk−)#x)i = 1, while (F#x)i = 0,

but also,
((Fk−)#x)i+m = 1, while (F#x)i+m = 0.

Therefore, F (k−x) ∈ D.
Therefore, Ψ is a strong attractor. We have obtained the following theorem.

Proposition 7.2.2 Ψ defined by (7.2.1) is a strong attractor of F in Example
7.2.1.

However, Ψ is not a minimal attractor. Let c = lm0m. Then c ∈ D. we now
show that

C = Orbρc.

is a (minimal) attractor. Let x ∈ U1C. It suffices to consider x = 1m(k−0m) for
1 ≤ k ≤ m− 1. Then Fx = ρc, so that Fx ∈ C. Therefore, C is a strong attractor.

Example 7.2.3 Let n = 2m for m ≥ 2, f = p1 · pm−1 · ¬p2m−1, and F = 〈f〉 be
a transformation of Q2m.

In Example 7.2.3, computational results expect that there exists an attractor
corresponding to the above Ψ, but the attractor and the orbits starting at its 1-
neighborhood are not simple. Corresponding to the above C, we define

c′ = 1m0m−1, c′′ = 1m−10m, Φ = Orbρ{c′, c′′}. (7.2.3)
Fc′ = ρc′′ ∈ ImΦ and F 2c′ = ρc′ ∈ ImΦ, so that ImΦ is invariant. We will show
that CY (F |Φ) is a (minimal) attractor of F . Let x ∈ U1(ImΦ). It suffices to
consider x = 1m(k−0m−1) for some 1 ≤ k ≤ m − 2. If k = 1 then Fx = ρc′. If
1 < k ≤ m − 2 then Fx = ρc′′. Therefore, Fx ∈ ImΦ, so that CY (F |ImΦ) is an
attractor. We have obtained the following proposition.
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Proposition 7.2.4 CY(F |ImΦ) is a minimal attractor in the FSDS generated
by F in Example 7.2.3, where Φ is defined by (7.2.3).

Example 7.2.5 Let n = 3m for m ≥ 2 and

f = p1 · ¬pm · ¬p2m · ¬p3m.

Then we get the transformation G = 〈g〉 of Q3m defined by

g = p1 · S2{¬pm,¬p2m,¬p3m}.
Let x be a point such that ρmx = x. Then

(F#x)i =
{

0 if xi = ¬xi−1

3 if xi = xi−1.

for every i. Therefore, (Fx)i = ¬xi if and only if xi = ¬xi−1, that is, (Fx)i = xi−1

for every i, so that Fx = ρx. Therefore, Orbρx is a cycle of F . Further, Orbρx is
also a strong attractor of G by Theorem 7.1.5.

Example 7.2.6 Let n = 4m for m ≥ 2, and

f = p1 · pm · ¬p2m · p3m · ¬p4m.

Then we get the transformation G = 〈g〉 of Q4m defined by

g = p1 · S3{pm,¬p2m, p3m,¬p4m}.
Let x be a point such that ρmx = ¬̄x. Then

(F#x)i =
{

0 if xi = ¬xi+m−1

4 if xi = xi+m−1.

for every i. Therefore, (Fx)i = xi−1 for every i, so that Fx = ρx, that is, Orbρx is
a cycle of F . Orbρx is also a strong attractor of G by Theorem 7.1.5.

Example 7.2.7 Let n = 4m for m = 4, and let

f = 1 · 4 · ¬5 · ¬8 · 12 · ¬13 · ¬16.

Then we get the transformation G = 〈g〉 of Qn defined by

g = 1 · S5{4,¬5,¬8, 12,¬13,¬16}.
Let a = (11110000)2 and b = (11010010)2. Then

F#a = (0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2),

F#b = (0, 2, 0.0, 0, 2, 0, 0, 0, 2, 0.0, 0, 2, 0, 0).

Therefore, Orbρa and Orbρb are non-loop cycles of F . Also, Orbρa and Orbρb are
non-loop cycles of G by Proposition 7.2.2. Further calculation proves that Orbρa
and Orbρb are attractors of G.
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7.3 Multi-cycle attractors

In this section and later in this chapter, [a] for an element a in Qn denotes the
orbit of 〈¬̄, ρ〉 containing a if the operating transformation is self-dual and circular;
[A] for a subset A of Qn denotes the union of the orbits of 〈¬̄, ρ〉containing a ∈ A.
Similarly, [a] and [A] respectively denote the orbit of〈ρn−〉 containing a andthe
union of orbits of 〈ρn−〉 for a ∈ A, if the operating transformation is skew-circular.
Note that 〈¬̄, ρn−〉 = 〈ρn−〉, since (ρn−)n = ¬̄. Then, a transformation F∼ of the
orbit set {[x] | x ∈ Qn} is naturally defined by F∼[x] = [Fx].

The condition in Theorem 7.1.3 is very strong. In fact, transformations have
attractors under weaker conditions as shown in the following Theorems. As in
Section 7.2, G = 〈g〉 is defined by (7.1.5) from a transformation F = 〈f〉 of Qn.

First we consider a circular transformation belonging to the class determined
by Theorem 4.4.3. Specifically, for any h − 1 relatively prime with odd n and
0 < h− 1 < n, there exists F = 〈f〉 of Qn,

f = p1 · α2p2 · .. · αnpn,

such that
F = ¬̄ρh−1 on CarF .

Let f = {c}. Then, C = Orb¬̄ρh−1c is a cycle of F .
Then we get the transformation G = 〈g〉 of Qn defined by

g = p1 · Sn−2{α2p2, .., αnpn}.
Referring to (4.4.3), we have

(F#c)i = 0 iff i = 1;

(F#c)i = 1 iff i = h, since 1−c = ¬̄ρh−1c;

(F#c)i = 2 iff i = 2h− 1;

(F#c)i ≥ 3 for every other i.

Therefore, by (7.1.6),

(G#c)1 = −1, (G#c)h = 0, (G#c)2h−1 = 1,
(G#c)i ≥ 2 for every other i.

In particular,
Gc = {1, h}−c = ρ2(h−1)c. (7.3.1)

Let k 6= 1. Then if k 6= h, then

((Gk−)#c)1 ≤ 0 by (7.1.3);

((Gk−)#c)h = 1, since (¬̄ρ)h−1c = 1−c and k 6= 1;

((Gk−)#c)2h−1 = 2, since (¬̄ρ)2h−2c = {1, h}−c and k /∈ {1, h};
((Gk−)#c)i ≥ 1 for every other i such that i 6= k by (7.1.3).

For k = h,

((Gh−)#c)1 ≤ 0;

((Gh−)#c)h ≤ (G#c)h = 0 by (7.1.4);

((Gh−)#c)2h−1 = 0, since (¬̄ρ)2h−2c = {1, h}−c and h ∈ {1, h};
((Gh−)#c)i ≥ 1 for every other i by (7.1.3).
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Therefore,
G(k−c) = ¬̄ρh−1c,

or
G(k−c) = ¬̄ρh−1((ρ−(h−1)k)−c),

or

G(k−c) = ¬̄ρh−1((ρ−(h−1){h, 2h− 1})−c)

= {h, 2h− 1}−(¬̄ρh−1c)
= {1, h, 2h− 1}−c

= ρ3(h−1)c.

Therefore, under G∼,

[k−c] → ... → [i−c] → ... → [c],

or
[k−c] → ... → [i−c] → ... → [1−c].

On the other hand, by (7.3.1),

G(1−c) = G(¬̄ρh−1c)

= ¬̄ρh−1Gc

= ¬̄ρh−1ρ2(h−1)c

= ¬̄ρ3(h−1)c.

Thus we obtained:

Theorem 7.3.1 For any h− 1 relatively prime with odd n and 0 < h− 1 < n,
let F = 〈f〉 of Qn,

f = p1 · α2p2 · .. · αnpn,

be a transformation determined by Theorem 4.4.3. Let G = 〈g〉 be defined by

g = p1 · Sn−2{α2p2, .., αnpn}.
Let f = {c} and

Φ = Orbρ2(h−1){c, ¬̄ρh−1c}.
Then Φ is an attractor of G.

We also get a double-cycle attarctor, if we take F from the class described in
Theorem 4.5.3. Specifically, for any h− 1 relatively prime with 2n and 0 < h− 1 <
2n, there exists F = 〈〈f〉〉 of Qn,

f = p1 · α2p2 · .. · αnpn,

such that
F = (ρn−)h−1 on CarF .

Let f = {c}. Then, C = Orb(ρn−)h−1c is a cycle of F .
Then we get the transformation G = 〈〈g〉〉 of Qn defined by

g = p1 · Sn−2{α2p2, .., αnpn}.
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Referring to (4.5.3), we have

(F#c)i = 0 iff i = 1;

(F#c)i = 1 iff i = h, since (ρn−)h−1c = 1−c;

(F#c)i = 2 iff i = 1 + 2(h− 1) = 2h− 1;

(F#c)i ≥ 3 for every other i.

Therefore, by (7.1.6),

(G#c)1 = −1, (G#c)h = 0, (G#c)2h−1 = 1,
(G#c)i ≥ 2 for every other i.

In particular,
Gc = {1, h}−c = (ρn−)2(h−1)c. (7.3.2)

Let k 6= 1. Then if k 6= h, then

((Gk−)#c)1 ≤ 0 by (7.1.3);

((Gk−)#c)h = 1, since (ρn−)h−1c = 1−c and k 6= 1;

((Gk−)#c)2h−1 = 2, since (ρn−)2h−2c = {1, h}−c and k /∈ {1, h};
((Gk−)#c)i ≥ 1 for every other i such that i 6= k by (7.1.3).

For k = h,

((Gh−)#c)1 ≤ 0 by (7.1.3);

((Gh−)#c)h ≤ (G#c)h = 0 by (7.1.4);

((Gh−)#c)2h−1 = 0, since (ρn−)2h−2c = {1, h}−c and h ∈ {1, h};
((Gh−)#c)i ≥ 1 for every other i by (7.1.3).

Therefore,
G(k−c) = (ρn−)h−1c,

or
G(k−c) = (ρn−)h−1((ρ−(h−1)k)−c),

or

G(k−c) = (ρn−)h−1((ρ−(h−1){h, 2h− 1})−c)

= ρh−1ρ−(h−1){h, 2h− 1})−(ρn−)2(h−1)c

= {1, h, 2h− 1}−c

= (ρn−)3(h−1)c.

Therefore, under G∼,

[k−c] → ... → [i−c] → ... → [c],

or
[k−c] → ... → [i−c] → ... → [1−c].

On the other hand, by (7.3.2)

G(1−c) = G((ρn−)(h−1)c)

= (ρn−)(h−1)Gc

= (ρn−)(h−1)(ρn−)2(h−1)c

= (ρn−)3(h−1)c
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Thus we obtained:

Theorem 7.3.2 For any h− 1 relatively prime with 2n and 0 < h− 1 < 2n, let
F = 〈〈f〉〉 of Qn,

f = p1 · α2p2 · .. · αnpn,

be a transformation determined by Theorem 4.5.3. Let G = 〈g〉 be defined by

g = p1 · Sn−2{α2p2, .., αnpn}.
Let f = {c} and

Φ = Orb(ρn−)2(h−1){c, (ρn−)h−1c}.
Then Φ is an attractor of G.

Example 7.3.3 Let n = 2m for m ≥ 2, and F = 〈f〉 for

f = p1 · Sm−2{p2, p3, .., pm} · ¬p2m.

Proposition 7.3.4 Let a = 1m+10m−1, b = 1m−10m+1, and c = 1m0m. Then,
Φ = Orbρ{a, b, c} is an attractor of F in Example 7.3.3.

Proof. Note that [a] = [b] and ¬̄ImΦ = ImΦ. we have

F#a = (0, 1, 1, 2, 3, .., m− 1, 0, 2, 3, ..,m− 1),

F#b = (0, 2, 3, .., m− 1, 0, 1, 1, 2, 3, ..,m− 1),

F#c = (0, 1, 2, .., m− 1, 0, 1, 2, .., m− 1).

Therefore, Orbρa, Orbρb, and Orbρc are cycles of F .
Let 2 ≤ k ≤ m− 1. Then

((Fk−1)#c)1 = 0,

((Fk−)#c)2 = 2 if k 6= 2,

((Fk−)#c)m+1 = 0,

(Fk−)#c)m+2 = 1,

((Fk−)#c))i ≥ 1 for every other i such that i 6= k by (7.1.3).

Therefore,
k−c → ρ((k − 1)−c) or k−c → ρc.

Also 1−c = ρb. Therefore,

[k−c] → ... → [a] or [k−c] → ... → [c]. (7.3.3)

Since [k−c] = [(k −m)−c], (7.3.3) is also true for m + 2 ≤ k ≤ 2m− 1.
Let 3 ≤ k ≤ m. Then

((Fk−)#a)1 = 0,

((Fk−)#a))2 = 1,

((Fk−)#a)3 = 1,

((Fk−)#a)m+2 = 0.

((Fk−)#a)i ≥ 1 for every other i such that i 6= k by (7.1.3).

Therefore,
k−a → ρ((k − 1)−a) or k−a → ρa.
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((F2−)#a)1 = 0

(F#(2−a))2 = m− 2,

(F#(2−a))3 = 0,

(F#(2−a))m+2 = 0.

(F#(2−a))i ≥ 1 for every other i by (7.1.3).

Therefore,
2−a → ρ3b.

Therefore, for 2 ≤ k ≤ m,
[k−a] → ... → [a],

and (m + 1)−a = c.

(F ((m + 2)−)#a)1 = 0,

(F ((m + 2)−)#a)2 = 1,

(F ((m + 2)−)#a)3 = 1.

(F ((m + 2)−)#a)m+2 ≤ (F#a)m+2 = 0 by (7.1.4).

(F ((m + 2)−)#a)i ≥ 1 for every other i by (7.1.3).

Therefore,
(m + 2)−a → ρa.

Let m + 3 ≤ k ≤ 2m− 1. Then

((Fk−)#a)1 = 0,

((Fk−)#a)2 = 1,

((Fk−)#a)3 = 2,

((Fk−)#a)m+2 = 1.

((Fk−)#a)i ≥ 1 for every other i 6= k.

Therefore,
k−a → ρ((k − 1)−c) or k−a → ρc.

Therefore, by (7.3.3),

k−a → ... → [a] or k−a → ... → [c].

Therefore, if x ∈ U1ImΦ then x ∈ U1ImΦ and ωF x ∈ ImΦ. Therefore, Φ is an
attractor of F . ¤

Example 7.3.5 Let m ≥ 4, and let

f = p1 · p2 · p3 · .. · pm−1 · ¬pm+2 · .. · ¬p2m−1.

Then we get the transformation G = 〈g〉 of Q2m defined by

g = p1 · S2m−5{p2, p3, .., pm−1,¬pm+2, ..,¬p2m−1}.
Let c = 1m0m. Then,

F#c = (0, 0, 2, 4, .., 2m− 4, 0, 0, 2, 4, .., 2m− 4).

Therefore, Fc = ρ2c, so that Orbρ2c is a cycle of F . Further, Orbρ2c is a cycle of
G by Proposition 7.1.4. Let

Φ = Orbρ2{c, ρc}.
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We have

¬¬̄(f |1) = ¬(¬p2 · ¬p3 · .. · ¬pm−1 · pm+2 · .. · p2m−1)
= p2 ∨ p3 ∨ .. ∨ pm−1 ∨ ¬pm+2 ∨ .. ∨ ¬p2m−1.

(F1−)#c = (−, 0, 1, .., 2m− 5, 0, 0, 1, 3, .., 2m− 5),

(F2−)#c = (1,−, 2, 3, .., 2m− 5, 1, 0, 2, 3, .., 2m− 5),

(F3−)#c = (1, 1,−, 5, .., 2m− 5, 1, 1, 2, 4, 5, .., 2m− 5),
...

(F (m− 1)−)#c = (1, 1, 3, .., 2m− 7,−, 2m− 4, 1, 1, 3, .., 2m− 7, 2m− 6, 2m− 4).

Therefore, by (7.1.6)

(G1−)#c = (−,−1, 0, .., 2m− 6,−1,−1, 0, .., 2m− 6),

(G2−)#c = (0,−, 1, 2, .., 2m− 6, 0,−1, 1, 2, .., 2m− 6),

(G3−)#c = (0, 0,−, 4, .., 2m− 6, 0, 0, 1, 3, 4, .., 2m− 6),
...

(G(m− 1)−)#c = (0, 0, 2, .., 2m− 8,−, 2m− 5, 0, 0, 2, .., 2m− 8, 2m− 7, 2m− 5).

Therefore, under G,

1−c → ρ3c,

2−c → ρ2c,

3−c → ρ2(1−c),
....

(m− 1)−c → ρ2((m− 3)−c),
m−c = ρ−1(1−c) = ρ−1(ρ3c) = ρ2c.

Therefore, if x ∈ U1ImΦ then x ∈ U1ImΦ and ωGx = ImΦ. Therefore, Φ is an
attractor of G.

Example 7.3.6 Let m ≥ 2, and consider a special case of G = F 2 for transfor-
mations described in Theorem 4.4.3, where G = 〈g〉,

g = p1 · p2 · · · pm · ¬pm+2 · · · ¬p2m+1.

From G we construct H = 〈h〉,

h = p1 · S2m−2{p2, p3, .., pm,¬pm+2, ..,¬p2m+1},

and H = 〈h〉 be a transformation of Q2m+1.
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Let

h(2) = 1 · ¬2 · 3 · .. · (m + 1) · ¬(m + 2) · .. · ¬(2m + 1)
∨1 · 2 · .. ·m · ¬(m + 1) · (m + 2) · ¬(m + 3) · .. · ¬(2m + 1),

.. ...

h(m) = 1 · 2 · .. · (m− 1) · ¬m · (m + 1) · ¬(m + 2).. · ¬(2m− 1)
∨1 · 2 · .. ·m · ¬(m + 1) · .. · ¬(2m− 1) · 2m · ¬(2m + 1),

h(m+1) = 1 · 2 · .. ·m · ¬(m + 1).. · ¬(2m + 1)
∨1 · 2 · .. · (m + 1) · ¬(m + 2) · .. · ¬(2m + 1)
∨1 · 2 · .. ·m · ¬(m + 1) · .. · ¬2m · (2m + 1),

h(m+2) = 1 · 2 · .. · (m + 2) · ¬(m + 3) · .. · ¬(2m + 1)
∨1 · 2 · .. · (m + 1) · ¬(m + 2) · ..¬(2m) · (2m + 1)
∨1 · 2 · .. · (m− 1) · ¬m · .. · (2m + 1),

h(m+3) = 1 · 2 · .. · (m + 1) · ¬(m + 2) · (m + 3) · ¬(m + 4) · .. · ¬(2m + 1)
∨1 · ¬2 · 3 · .. ·m · ¬(m + 1) · .. · ¬(2m + 1),

.. ...

h(2m) = 1 · 2 · .. · (m + 1) · ¬(m + 2) · .. · ¬(2m− 1) · (2m) · ¬(2m + 1)
∨1 · 2 · .. · (m− 2) · ¬(m− 1) ·m · ¬(m + 1) · .. · ¬(2m− 1).

Then

h = h(2) ∨ ... ∨ h(2m),

and

h(i) · h(k) = 0 for every i 6= k.

Let H(i) = 〈h(i)〉. Let c = 1m+10m. Then

H = H(2) + ... + H(2m),

and a flow graph of H is

[h(2m)] → [h(2m−1)] → .. → [h(m+1)] = [c]∂.
↑

[h(m)] → [h(m−1)] → .. → [h(2)]

Further, Hc = ρ−(m−1)¬̄c, so that H2c = ρ−2(m−1)c. We have
gcd(2m + 1, 2(m− 1)) = gcd(2(m− 1), 3) = gcd(m− 1, 3). If m− 1 is a multiple of
3, then let

Φ = Orbρ−(m−2)¬̄{c, ρc, ρ2c};
otherwise, let

C = Orbρ−(m−2)¬̄c.

Since ImΦ = [c],C = [c], U1(ImΦ) = [h], and U1C = [h], Φ and C are attractors of
H.
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7.4 Single-cycle attractors I

In order to construct a transformation having a single-cycle attractor, we consider
the expansion described in Example 5.2.6 deribed from a circular transformation
belonging to the class determined by Theorem 4.4.3. Specifically, for any h − 1
relatively prime with odd n and 0 < h− 1 < n, there exists E = 〈e〉 of Q2n,

e = p1 · α2p2 · .. · αnpn · pn+1 · α2pn+2 · .. · αnp2n,

such that
E = ¬̄ρh−1 onCarE.

Then we get the transformation G = 〈g〉 defined by

g = p1 · S2n−3{α2p2, .., αnpn, pn+1, α2pn+2, .., αnp2n}.
Let e = {c} Then, C = Orb¬̄ρh−1c is a cycle of E. (E#c)i is even for every i, since
ρnx = x for every x ∈ CarE. This is a nice effect of an expansion. Therefore,
Orbρh−1c is a cycle of G by Proposition 7.1.4.

We have (E#c)i ≤ 0 iff i = 1 or n + 1, since Ec = {1, n + 1}−c. Since ¬̄ρh−1c =
Ec = {1, n+1}−c, c = {1, n+1}−¬̄ρn−1e. Therefore, referring to (4.4.3), (E#c)i =
2 iff i = h or n + h. Then, by (7.1.6),

(G#c)1 ≤ −1, (G#c)n+1 ≤ −1,
(G#c)i ≥ 1 for every other i,
(G#c)i = 1 only if i = h and n + h.

(7.4.1)

Let k /∈ {1, n + 1}. Then, referring to (4.4.3),

((Gk−)#c)h = 2 if k 6= h, by (7.1.2),

((Gk−)#c)n+h = 2 if k 6= n + h by (7.1.2).

Also
((Gk−)#c)1 ≤ 0 and ((Gk−)#c)n+1 ≤ 0, by (7.1.3).
((Gk−)#c)i ≥ 1 for every other i such that i 6= k by (7.1.3).

Therefore,
G(k−c) = ¬̄ρh−1c,

or
G(k−c) = ¬̄ρh−1((ρ−(h−1)k)−c).

Therefore, under G∼,

[k−c] → ... → [i−c] → ... → [c],

or
[k−c] → ... → [i−c] → ... → [1−c].

On the other hand, referring to (7.4.1), we have

((G1−)#c)1 ≤ (G#c)1 ≤ −1 by (7.1.4).

((G1−)#c)n+1 ≤ 0 by (7.1.3).
Further, since 1−(¬̄ρh−1c) and c differ only at the 1st coordinate, (7.1.2) implies

((G1−)#c)h = 0 and ((G1−)#c)n+h = 0.

Also ((G1−)#c)i > 0 for every other i by (7.1.3) and (7.4.1). Therefore,

G(1−c) = ρ2(h−1)c.
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Therefore, if x ∈ U1C then x ∈ U1C and ωGx = C. Therefore, C is an attractor of
G. Thus we obtained

Theorem 7.4.1 Let E = 〈e〉 of Q2n,

e = p1 · α2p2 · .. · αnpn · pn+1 · α2pn+2 · .. · αnp2n.

be the expansion described in Example 5.2.6 and derived from a transformation
determined by Theorem 4.4.3. Let G = 〈g〉,

g = p1 · S2n−2{α2p2, .., αnpn, pn+1, α2pn+2, .., αnp2n}.
Then the 2n-cycle of E is an attractor of G.

Theorem 4.5.3 determined a class of one-to-one skew-circular threshold transfor-
mations. Example 5.2.4 gave their circular expansions. Such a transformation E
of Q2n exists for any h such that 0 < h− 1 < 2n and h− 1 is relatively prime with
2n, that is, E = 〈e〉,

e = p1 · α2p2 · .. · αnpn · ¬pn+1 · ¬α2pn+2 · .. · ¬αnp2n,

E = ρh−1 on CarE.

Then we get the transformation G = 〈g〉 of Q2n defined by

g = p1 · S2n−2{α2p2, .., αnpn,¬pn+1,¬α2pn+2, ..,¬αnp2n}.
Let e = {c} Then,

C = Orbρh−1c

is a cycle of E. (E#c)i is even for every i, since ρnx = ¬̄x for every x ∈ CarE.
Therefore, Orbρh−1c is a cycle of G by Proposition 7.1.4.

We have
(E#c)i ≤ 0 iff i = 1 or n + 1,

since Ec = {1, n + 1}−c. Since ρh−1c = Ec = {1, n + 1}−c,

c = {1, n + 1}−ρh−1c.

Therefore, referring to (4.5.4),

(E#c)i = 2 iff i = h or n + h.

Then, by (7.1.6),

(G#c)1 ≤ −1, (G#c)n+1 ≤ −1,
(G#c)i ≥ 1 for every other i,
(G#c)i = 1 only if i = h and n + h.

(7.4.2)

Let k /∈ {1, n + 1}. Then, referring to (4.5.4),

((Gk−)#c)h = 2 if k 6= h, by (7.1.2)
((Gk−)#c)n+h = 2 if k 6= n + h, by (7.1.2)
((Gk−)#c)1 ≤ 0, by (7.1.3)
((Gk−)#c)n+1 ≤ 0, by (7.1.3)
((Gk−)#c)i ≥ 1 for every other i 6= k. by (7.1.3)

Therefore,
G(k−c) = ρh−1c,

or
G(k−c) = ρh−1((ρ−(h−1)k)−c).
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Therefore, under G∼,

[k−c] → ... → [i−c] → ... → [c],

or
[k−c] → ... → [i−c] → ... → [1−c].

On the other hand, referring to (7.4.2), we have

((G1−)#c)1 ≤ (G#c)1 = −1, by (7.1.4)
((G1−)#c)n+1 ≤ 0. by (7.1.3)

Further, since 1−(ρh−1c) and c differ only at their 1st coordinates, (7.1.2) implies

((G1−)#c)h = 0 and ((G1−)#c)n+h = 0.

Also ((G1−)#c)i ≥ 1 for every other i by (7.1.3) and (7.4.2). Therefore,

G(1−c) = ρ2(h−1)c.

Therefore, if x ∈ U1C then x ∈ U1C and ωGx = C. Therefore, C is an attractor of
G. Thus we obtained

Theorem 7.4.2 Let E = 〈e〉 of Q2n,

e = p1 · α2p2 · .. · αnpn · ¬pn+1 · ¬α2pn+2 · .. · ¬αnp2n.

be the expansion described in Example 5.2.4 and derived from a transformation
determined by Theorem 4.5.3. Let G = 〈g〉,

g = p1 · S2n−2{α2p2, .., αnpn · ¬pn+1 · ¬α2pn+2 · .. · ¬αnp2n}.
Then the 2n-cycle of E is an attractor of G.

Example 7.4.3 Let n = 2m for m ≥ 2, and

f = p1 · p2 · p3 · .. · pm · ¬pm+2 · .. · ¬p2m.

Then we get the transformation G = 〈g〉 of Q2m defined by

g = p1 · S2m−3{p2, p3, .., pm,¬pm+2, ..,¬p2m}.
Proposition 7.4.4 Let c = 1m0m. Then, C = Orbρc is an attractor of G in

Example 7.4.3.

Proof. We have

F#c = (0, 2, 4, .., 2m− 2, 0, 2, 4, .., 2m− 2).

Therefore, Fc = ρc, so that Orbρc is a cycle of F . Further, Orbρc is a cycle of G
by Proposition 7.2.2.

Further, by (7.1.6),

G#c = (−1, 1, 3, .., 2m− 3,−1, 1, 3, .., 2m− 3).

Let 2 ≤ k ≤ m− 1. Then,

((Gk−)#c)1 ≤ 0 by (7.1.3),

((Gk−)#c)m+1 ≤ 0 by (7.1.3),

((Gk−)#c)2 = 2 if k 6= 2, by (7.1.2),

(Gk−)#c)m+2 = 2 by (7.1.2),

((Gk−)#c)i ≥ 2 for every other i such that i 6= k by (7.1.3).
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Therefore,
k−c → ρ((k − 1)−c) or k−c → ρc.

Therefore,
[k−c] → ... → [1−c] or [k−c] → ... → [c].

We have

((G1−)#c)1 ≤ (G#c)1 = −1 by (7.1.4),

((G1−)#c)m+1 ≤ 0 by (7.1.3),

((G1−)#c)2 = 0, by (7.1.2),

((G1−)#c)m+2 = 0, by (7.1.2),

((G1−)#c)i ≥ 1 for every other i by (7.1.3).

Therefore, 1−c → ρ2c. Therefore, if x ∈ U1C then x ∈ U1C and ωGx = C.
Therefore, C is an attractor of G. ¤

7.5 Single-cycle attractors II

Another method of constructing single-cycle attractors is to apply partial neigh-
borhood functions. First we consider a circular transformation belonging to the
class determined by Theorem 4.4.3. Let h− 1 be relatively prime with odd n and
0 < h− 1 < n, and let F = 〈f〉 of Qn,

f = p1 · α2p2 · .. · αnpn,

such that
F = ¬̄ρh−1 on CarF .

Let f = {c}. Let G = 〈g〉,
g = p1 · Sn−2{α2p2, α3p3, ..., αnpn}.

Then Gc = {1, h}−c = ρ2(h−1)c by (7.3.1), and G has two cycles Orbρ2(h−1){c, ¬̄ρh−1c}.
In order to preserve the original one cycle such that Gc = 1−c we remove c from

¬̄ρh−1g, i.e. remove ¬̄ρ−(h−1)c from g. Note

(ρn−)−(h−1)c = (1− (h− 1))−c = (2− h)−c,

referring to (4.4.3). (2 − h)−c is the only element x 6= c in g such that x ∈ [c],
otherwise G# would have more than two non-positive coordinates. Further we
consider the set

{2−c, , , n−c}\(2− h)−c

and find out some elements i−c 6= j−c such that

[i−c] = [j−c].

We have
(¬̄ρh−1)ki−c = (ρk(h−1)i)−(¬̄ρh−1)kc,

by (2.1.3), and

(¬̄ρh−1)kc = (1 + (k − 1)(h− 1))−(1 + (k − 2)(h− 1))−...(1 + (h− 1))−1−c

by (4.5.4). Therefore, (¬̄ρh−1)ki−c = j−c implies

(i + k(h− 1))−(1 + (k − 1)(h− 1))−(1 + (k − 2)(h− 1))−...(1 + (h− 1))−1− = j−,

so that k = 2, and (i + k(h− 1))−h−1− = j−. Therefore,

(i + k(h− 1)) = 1, j = h;
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or
(i + k(h− 1)) = h, j = 1.

Since j > 1, j = h and i = 3 − 2h. We want to remove one of (3 − 2h) − c and
h−c from g, but we must decide which to remove. If we remove (3 − 2h) − c then
Gh−c = G2c. If we remove h−c, then G(3− 2h)− c = (3− 2h)−Gc. The former is
better in view of of continuity. Thus we obtained V = 〈v〉 defined by

v = p1 · Sn−4({α2p2, .., αnpn}\{α2−hp2−h, α3−2hp3−2h}) · α2−hp2−h · α3−2hp3−2h.
(7.5.1)

By the above removal, if x ∈ v, then x /∈ {ρiv, ¬̄ρiv} for every i 6= 0 mod n.
We prove the attractiveness of the cycle by decomposition of the transformations

instead of calculating the extended representations of the transformations. For the
notion of the sum of transformations, refer to Chapter 1.1. Let

v(1) = p1 · α2p2 · .. · αnpn,

v(i) = v · ¬αipi for i ∈ N\{1, 2− h, 3− 2h}.
Then

v = v(1) ∨ ... ∨ v(n),

v(i) · v(j) = 0 for every i 6= j,

as clear from the above process of removing (2− h)−c and (3− 2h)−c from g.
Let V (i) = 〈v(i)〉. Then, if x ∈ v(1), then x = c and

V c = 1−c ∈ [v(1)].

If x ∈ v(i) for i ∈ N\{1, 2− h, 3− 2h}, then x = i−c, and

V (i−c) = V (i)(i−c) = {1, i}−c,

since x /∈ {ρiv, ¬̄ρiv} for every i 6= 0 mod n. Therefore,

V (i−c) = ¬̄ρh−1((ρ−(h−1)i)−c ∈ [v(i−h+1)].

Therefore,
V = V (1) + V (2) + ... + V (n),

and a flow graph of V is

[v(4−3h)] → [v(5−4h)] → ... → [v(1)] → [v(1)] = [c].

Let C = Orb¬̄ρh−1c. Then C is a cycle of V and C = [c]. Further, 1−c ∈ [v(1)],
(2− h)−c ∈ v(1), and (3− 2h)−c ∈ [v(h)]. Therefore, U1C = [v]. Therefore, C is an
attractor of V . Thus we obtained the following theorem.

Theorem 7.5.1 Let V = 〈v〉 of Qn be the transformation defined by (7.5.1) from
a transformation determined by Theorem 4.4.3. Then G has a 2n-cycle attractor.

Next, let 0 < h− 1 < 2n and h− 1 be relatively prime with 2n, let F = 〈〈f〉〉,
f = p1 · α2p2 · .. · αnpn

be a transformation determined by Theorem 4.5.3, and let f = {c}. Let G = 〈〈g〉〉,
g = p1 · Sn−2{α2p2, α3p3, ..., αnpn}.
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Then Gc = {1, h}−c = (ρn−)2(h−1)c by (7.3.2), and G has two cycles Orb(ρn−)2(h−1){c, (ρn−)h−1c}.
In order to preserve the original one cycle such that Gc = 1−c we remove c from
(ρn−)h−1g, i.e. remove (ρn−)−(h−1)c from g. Note

(ρn−)−(h−1)c = (1− (h− 1))−c = (2− h)−c,

referring to (4.5.4). (2 − h)−c is the only element x 6= c in g such that x ∈ [c],
otherwise G# would have more than two non-positive coordinates.

Further we consider the set

{2−c, , , n−c}\(2− h)−c

and find out some elements i−c 6= j−c such that

[i−c] = [j−c].

We have
(ρn−)k(h−1)i−c = (ρk(h−1)i)−(ρn−)k(h−1)c,

by (2.1.3), and

(ρn−)k(h−1)c = (1 + (k − 1)(h− 1))−(1 + (k − 2)(h− 1))−...(1 + (h− 1))−1−c

by (4.5.4). Therefore, (ρn−)k(h−1)i−c = j−c implies

(i + k(h− 1))−(1 + (k − 1)(h− 1))−(1 + (k − 2)(h− 1))−...(1 + (h− 1))−1− = j−,

so that k = 2, and (i + k(h− 1))−h−1− = j−. Therefore,

(i + k(h− 1)) = 1, j = h;

or
(i + k(h− 1)) = h, j = 1.

Since j > 1, j = h and i = 3 − 2h. We want to remove one of (3 − 2h) − c and
h−c from g, but we must decide which to remove. If we remove (3 − 2h) − c then
Gh−c = G2c. If we remove h−c, then G(3− 2h)− c = (3− 2h)−Gc. The former is
better in view of of continuity. Thus we obtained V = 〈〈v〉〉 defined by

v = p1 · Sn−4({α2p2, .., αnpn}\{α2−hp2−h, α3−2hp3−2h}) · α2−hp2−h · α3−2hp3−2h.
(7.5.2)

By the above removal, if x ∈ v, then x /∈ (ρn−)iv for every i 6= 0 mod 2n.
We prove the attractiveness of the cycle by decomposition of the transformations

instead of calculating the extended representations of the transformations. For the
notion of the sum of transformations, refer to Chapter 1.1. Let

v(1) = p1 · α2p2 · .. · αnpn,

v(i) = v · ¬αipi for i ∈ N\{1, 2− h, 3− 2h}.
Then

v = v(1) ∨ ... ∨ v(n),

v(i) · v(j) = 0 for every i 6= j,

as clear from the above process of removing (2− h)−c and (3− 2h)−c from g.
Let V (i) = 〈〈v(i)〉〉. Then, if x ∈ v(1), then x = c and

V c = 1−c ∈ [v(1)].

If x ∈ v(i) for i ∈ N\{1, 2− h, 3− 2h}, then x = i−c, and

V (i−c) = V (i)(i−c) = {1, i}−c,
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since 1−c ∈ (ρn−)jv for only j = 0 mod 2n. Therefore,

V (i−c) = (ρn−)h−1((ρ−(h−1)i)−c ∈ [v(i−h+1)].

Therefore,
V = V (1) + V (2) + ... + V (n),

and a flow graph of V is

[v(4−3h)] → [v(5−4h)] → ... → [v(1)] → [v(1)] = [c].

Let C = Orb(ρn−)h−1c. Then C is a cycle of V and C = [c]. Further, 1−c ∈ [v(1)],
(2− h)−c ∈ v(1), and (3− 2h)−c ∈ [v(h)]. Therefore, U1C = [v]. Therefore, C is an
attractor of V . Thus we obtained the following theorem.

Theorem 7.5.2 Let V = 〈v〉 of Qn be the transformation defined by (7.5.2) from
a transformation determined by Theorem 4.5.3. Then G has a 2n-cycle attractor.

7.6 Attractors derived from polynomials

So far we have shown attractors in transformations obtained by modifying one-
to-one transformations F = 〈f〉 or F = 〈〈f〉〉 such that f consists of one term. In
this section, we generalize the construction to one- to-one transformations F = 〈f〉
such that f consists of more than one term. For this purpose, we start with the
one-to-one transformation of Example 4.4.7 defined by

f = 1 · 2 · ¬3 · (4 ∨ 5) · ¬6.

GRAPH(F ) consists of the three 6-cycles:

110110 → 010010 → 011011
↑ ↓

100100 ← 101101 ← 001001
110100 → 010110 → 010011
↑ ↓

100101 ← 001101 ← 011001
110010 → 011010 → 001011
↑ ↓

100110 ← 101100 ← 101001

We modify f by expanding it to

g = 1 · U1(2 · ¬3 · (4 ∨ 5) · ¬6)
= 1 · (2 · ¬3 · ¬6 ∨ S2{2, 3,¬6} · (4 ∨ 5)).

Here, 2 · ¬3 · ¬6∨ S2{2, 3,¬6} · (4∨ 5) is a threshold function by Proposition 4.1.6,
so that g is a threshold function by Proposition 4.1.2.

For the point 110110 in the first cycle of F ,

F#(110110) = (0, 2, 1, 0, 2, 1).

Therefore, the condition in Proposition 7.1.4 is violated, so that the cycle is not
preserved in G = 〈g〉. In fact, by (7.1.6), we have

G#(110110) = (−1, 1, 0,−1, 1, 0),
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so that 110110 → 011011 under G. We have thus obtained the two 3-cycles

110110 → 011011 001001 → 100100
↖ ↙ ↖ ↙

101101 0100101

Further calculation shows that the set of these two cycles is an attractor of G.
Next, we take the one-to-one transformation of Example 4.4.17 in Chapter 4.

Therefore, we start with f defined recursively as follows,

f (4) = p1 · p2 · ¬p3 · ¬p4,
f (5) = p1 · p2 · ¬p4 · ¬p5,
f (n) = p1 · p2 · ¬pn−1 · ¬pn ∨ f (n−2) · ¬pn

= p1 · p2 · ¬pn · (¬pn−1 ∨ (f (n−2)|11)),

(7.6.1)

where
(f (n−2)|11)(x3, .., xn−2) = f (n−2)(1, 1, x3, .., xn−2)

for every (x3, .., xn−2).
We modify f (n) by expanding it to

g(n) = p1 · U1(p2 · ¬pn · (¬pn−1 · ∨(f (n−2)|11))).

Then

g(n) = U1(p2 · ¬pn · ¬pn−1) ∨ U1(p2 · ¬pn · (f (n−2)|11)))
= p2 · ¬pn ∨ ·(p2 ∨ ¬pn) · ¬pn−1

∨p2 · ¬pn · U1(f (n−2)|11)) ∨ (p2 ∨ ¬pn)(f (n−2)|11)

= p2 · ¬pn ∨ ·(p2 ∨ ¬pn) · ¬pn−1 ∨ (p2 ∨ ¬pn)(f (n−2)|11)

= p2 · ¬pn ∨ ·(p2 ∨ ¬pn) · (¬pn−1 ∨ (f (n−2)|11))

Thus we have obtained

g = g(n) = p1 · (p2 · ¬pn ∨ (p2 ∨ ¬pn) · (¬pn−1 · ∨(f (n−2)|11))). (7.6.2)

and the transformation G = 〈g〉 of Qn for n ≥ 6.

Proposition 7.6.1 g defined by (7.6.1) and (7.6.2) is a threshold function.

Proof. f (n−2) is a threshold function by Proposition 4.4.18. Therefore, f (n−2)|11
is a threshold transformation by Proposition 4.1.7. Therefore, ¬pn−1 · ∨(f (n−2)|11)
is a threshold function by Proposition 4.1.2. Therefore, p2 · ¬pn ∨ (p2 ∨ ¬pn) ·
(¬pn−1 · ∨(f (n−2)|11)) is a threshold function by Proposition 4.1.6. Therefore, g is
a threshold function by Proposition 4.1.2. ¤

Computational results expect that the transformations G have non-trivial attrac-
tors. However, at present I can give only the following weaker result Proposition
7.6.4. First, we generalize the ε-neighborhood of a non-empty proper subset S of
Qn, UεS, for any integer ε as

UεS = {x | dSH(x, S) ≤ ε}.
Here, dSH(x, S) is the signed Hamming distance between the point x and the set
S defined in Section 7.1.

As before, o is the n-vector whose every coordinate is 0, l is the n-vector whose
every coordinate is 1. Further, (10)n/2 = 1010...10 is the concatenation of n/2 10,
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and (10)n/2 = 0101...01 is the concatenation of n/2 01.

Lemma 7.6.2 Let A = {o, l} and B = {(10)n/2, (01)n/2}. Then CarG = AC

for odd n, and CarG = (A ∪B)c for even n.

Proof. If x is an element of A∪B, then clearly x /∈ g and x /∈ ¬̄g, so that x /∈ ρi−1g
and x /∈ ¬̄ρi−1g for every i, so that x /∈ CarG.

Let x ∈ (A ∪ B)c. Then there exists some i such that (xi, xi+1, xi+2) is 011
or 100. Let x1 = x2 = 1, and xn = 0 without loss of generality. Then x ∈ g.
Therefore, x ∈ CarG. ¤

Lemma 7.6.3 Let Gx = y. Then if (xi, xi+1, xi+2) = 110 then (yi+1, yi+2) = 11.
If (xi, xi+1, xi+2, xi+3) = 0111 then (yi+1, yi+2) = 00. If (xk, xk+1, xk+2) = 011
then yk+1 = 0.

Proof. The proof is clear from the definition of g. ¤

Proposition 7.6.4 Let G = 〈g〉 be the transformation of Qn, where g is defined
by (7.6.1) and (7.6.2). Then there exists a subset Φ of CY (G) such that

(1) G(CarG) ⊆ CarG,

(2) ωG(CarG) = ImΦ,

(3) ImΦ ⊆ U−1(CarG).

Proof. Assume x ∈ CarG, and y = Gx. Then there exists some i such that
(xi, xi+1, xi+2) = 110 or (xi, xi+1, xi+2) = 001. Let (x1, x2, x3) = 110 without
loss of generality. Then (y2, y3) = 11. Assume there exists some j such that
(xj , xj+1, xj+2) = 001. Then (yj+1, yj+2) = 00, so that dH(y, (CarG)c) ≥ 2.

Assume no j such that (xj , xj+1, xj+2) = 001 exists. Assume there exists
some j such that (xj , xj+1, xj+2, xj+3) = 0111, then (yj+1, yj+2) = 00, so that
dH(y, (CarG)c) ≥ 2. Assume no such j exists. Then xn = 0, so that y1 = 0. As-
sume there exists no j 6= n such that (xj , xj+1, xj+2) = 011. Then x = 11(01)r0, so
that yn = 0. Therefore, (yn, y1, y2, y3) = 0011, so that dH(y, (CarG)c) ≥ 2. Assume
there exists some j 6= n such that (xj , xj+1, xj+2) = 011, and let (xj , xj+1, xj+2)
be the first such coordinates. Then x = 11(01)r011...0. Therefore, yj+1 = 0, so
that (y1, y2, y3, yj+1) = 0110. Since j + 1 is even, dH(y, (CarG)c) ≥ 2.

Therefore, dSH(y, CarG) ≤ 1 − 2 = −1 in every case, Therefore, G(CarG) ⊆
U−1(CarG). Let Φ be the set of all non-loop cycles. Then the desired properties
(1), (2), and (3) are clear. ¤

7.7 Orbit modification

We have shown that orbit modification provided a powerful tool for constructing
new desired transformations in Chapters 3 and 4. In particular, we constructed
a McCulloch and Pitts network (6.2.1) that has an attractive unique k-cycle for
any k ≤ 2n (Theorems 5.5.2 and 6.6.3). In that network, any state converges to a
unique cycle regardless of the initial state. Here we further explore the possibilities
of the method to construct some transformations that have the same property.

(1) We start with the skew circular transformation for n = 2, F = [f1, f2],

f1 = 11 = 1 · 2,

f2 = 01 = ¬1 · 2.
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GRAPH(F ) is

11 → 01 → 00 → 10 → 11.

(2) For n = 3, we have the 3rd face copies of (1) defined by F = [f1, f2, f3],

f1 = {111, 110} = 1 · 2,

f2 = {011, 010} = ¬1 · 2,

f3 = ∅.
GRAPH(F ) is

111 → 011 → 001 → 101 → 111,
110 → 010 → 000 → 100 → 110.

(3) Modify (2) by first letting f3 = {001} = ¬1 · ¬2 · 3, and delete the complement
of 001, i.e. 110 from f1. We now have F = [f1, f2, f3],

f1 = 1 · 2 · 3,

f2 = ¬1 · 2,

f3 = ¬1 · ¬2 · 3.

GRAPH(F ) is

111 → 011 → 001 101 → 111.
↓ ↑

010 → 000 → 100 → 110

This has a unique 6-cycle, Orbρ3−111.
(4) For n = 4, we have the 4th face copies of (3) F = [f1, f2, f3, f4],

f1 = 1 · 2 · 3,

f2 = ¬1 · 2,

f3 = ¬1 · ¬2 · 3,

f4 = ∅.
GRAPH(F ) is

1111 → 0111 → 0011 1011 → 1111,
↓ ↑

0101 → 0001 → 1001 → 1101,
1110 → 0110 → 0010 1010 → 1110.

↓ ↑
0100 → 0000 → 1000 → 1100

(5) Modify (2) by first letting f4 = {0001} = ¬1 · ¬2 · ¬3 · 4, and delete the
complement of 0001, i.e. 1110 from f1. We now have F = [f1, f2, f3, f4],

f1 = 1 · 2 · 3 · 4,

f2 = ¬1 · 2,

f3 = ¬1 · ¬2 · 3,

f4 = ¬1 · ¬2 · ¬3 · 4.
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GRAPH(F ) is

1111 → 0111 → 0011 1011 → 1111,
↓ ↑

0101 → 0001 → 0000, 1001 → 1101,
1110 → 1111, 0110 → 0010 1010 → 1110.

↓ ↑
0100 → 0000 → 1000 → 1100

This has a unique 8-cycle, Orbρ4−1111.
For the general dimension n, we obtain
Example 7.7.1 Let F = [f1, .., fn],

f1 = p1 · .. · pn,

f2 = ¬p1 · p2,

f3 = ¬p1 · ¬p2 · p3,

......

fn−1 = ¬p1 · .. · ¬pn−2 · pn−1,

fn = ¬p1 · .. · ¬pn−1 · pn,

then, GRAPH(F ) consists of the unique 2n-cycle Orbρn− l.
For the next example, we consider the transformation G = 〈g〉 of Example 7.4.3

for n = 4, where g = 1 · (2 ∨ ¬4). GRAPH(G) is

0001 1000
↘ ↙

1011 → 1100 → 0110 ← 1101
↑ ↓

0111 → 1001 → 0011 ← 1110
↗ ↖

0010 0100,
0000 ↔ 1111, 0101 ↔ 1010.

The 5th face copies are defined by G = [g1, g2, g3, g4, g5],

g1 = 1 · (2 ∨ ¬4),
g2 = 2 · (3 ∨ ¬1),
g3 = 1 · (4 ∨ ¬2),
g4 = 4 · (1 ∨ ¬3),
g5 = ∅.
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GRAPH(G) is

00011 10001
↘ ↙

10111 → 11001 → 01101 ← 11011
↑ ↓

01111 → 10011 → 00111 ← 11101
↗ ↖

00101 01001,
00001 ↔ 11111, 01011 ↔ 10101,
00010 10000

↘ ↙
10110 → 11000 → 01100 ← 11010

↑ ↓
01110 → 10010 → 00110 ← 11100

↗ ↖
00100 01000,
00000 ↔ 11110, 01010 ↔ 10100.

Modify the above by letting f5 = 1 · 2 · ¬3 · ¬4 · 5. Then following changes in the
arcs of GRAPH(G) occur, while the other arcs remain unchanged.

11001 → 01100,
00110 → 10011.

Therefore,

11001 → 01100
↑ ↓

10011 ← 00110

becomes an attractor.
For the general dimension n = 2m + 1, we obtain
Example 7.7.2 Let n = 2m + 1 for m ≥ 2, and

g1 = p1 · S2m−3{p2, p3, .., pm,¬pm+2, ..,¬p2m},
g2 = p2 · S2m−3{p3, p4, .., pm+1,¬pm+3, ..,¬p2m,¬p1},

...

g2m = p2m · S2m−3{p1, p2, .., pm−1,¬pm+1, ..,¬p2m−1},
g2m+1 = p1 · p2 · .. · pm · ¬pm+1 · ¬pm+2 · .. · ¬p2m−1 · p2m.

Then the transformation G = 〈g〉 of Q2m+1 has a unique attractive 2m-cycle,
although there are some non-attractive loops or cycles.

Next, we consider the direct product of the transformation [1·2·3,¬1·2,¬1·¬2·3]
of Example 7.7.1 for n = 3 and the skew-circular transformation [4 ·5,¬4 ·5], which
are respectively transformations of Q{1,2,3} and Q{4,5}. Then

G = [1 · 2 · 3,¬1 · 2,¬1 · ¬2 · 3, 4 · 5,¬4 · 5].



CHAPTER 7 CALCULUS OF ATTRACTION 25

GRAPH(G) is

10110 → 11111 → 01101 → 00100 → 00010 ← 01000
↑ ↓

11010 10011
↑ ↓

10000 11001
↑ ↓

01011 → 00001 ← 00111 ← 01110 ← 11100 ← 10101,
01001 → 00000 → 10010 → 11011 → 11101 ← 10111

↑ ↓
00101 01100
↑ ↓

01111 00110
↑ ↓

10100 → 11110 ← 11000 ← 10001 ← 00011 ← 01010.

We try to unite these two 12-cycles and construct a transformation having a
unique 24- cycle. By try and error, we find that Arimoto’s orbit modification G at
point 11011 is a threshold transformation. In fact,

1 · 2 · 3 ∪ 11011 = 1 · 2 · 3 ∨ 1 · 2 · ¬3 · 4 · 5 = 1 · 2 · (3 ∨ 4 · 5),
¬1 · 2 ∪ 11011 = ¬1 · 2 ∨ 1 · 2 · ¬3 · 4 · 5 = 2 · (¬1 ∨ ¬3 · 4 · 5),

¬1 · ¬2 · 3\00100 = ¬1 · ¬2 · 3 · (4 ∨ ·5),
4 · 5\11011 = 4 · 5 · (¬1 ∨ ¬2 ∨ 3),

¬4 · 5 ∪ 11011 = ¬4 · 5 ∨ 1 · 2 · ¬3 · 4 · 5 = (1 · 2 · ¬3 ∨ ¬4) · 5.

Therefore,

G = [1 · 2 · (3 ∨ 4 · 5), 2 · (¬1 ∨ ¬3 · 4 · 5),¬1 · ¬2 · 3 · (4 ∨ ·5),
4 · 5 · (¬1 ∨ ¬2 ∨ 3), (1 · 2 · ¬3 ∨ ¬4) · 5]

is a threshold transformation. G has a unique 24-cycle. In this case, generalization
to the general dimension is impossible.

Neither G nor ¬̄G is PDNN-definable according to Proposition 6.4.7. A striking
fact is that unlike attractors obtained by the enhanced Arimoto theorem and the
present example, all of the attractors obtained so far in our PDNN model consist
of one or a few cycles found in the graphs of Boolean isometries. Whether this
observation generally holds or not is an open question.

Open Question If a self-dual minimal transformation F has an attractor Ψ
such that ImΨ ⊆ CarF , then is it true that Ψ ⊆ CY(T ) for some Boolean isometry
T?.

7.8 A temporary review

In this chapter we constructed self-dual minimal threshold transformations hav-
ing attractors and developed some systematic methods and tools for proving the
attractiveness. The transformations and their attractors are easily converted to
those for PDNNS defined in Chapter 6. Seeing from what has been described so far
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about non-loop attractors, we can expect mathematically rich as well as difficult
contents as a dynamical system even in the present simplified PDNN model.

However, unlike attractors obtained by the enhanced Arimoto theorem, all non-
trivial attractors obtained so far in the class of minimal self-dual transformations
consist of one or a few cycles found in the graphs of Boolean isometries. Here,
differences from Boolean isometries do not lie in more complex cycles but in the
selection of the few cycles from the cycles generated by Boolean isometries. Whether
this observation generally holds or not is a mathematical open question.

The present model is autonomous, that is, stable periodic firing patterns that
are represented by attractors are completely determined by the efficacy matrices of
synaptic connections and the initial states of the neurons at time t = 0. However,
the dynamics of any biological system depends on information that changes at
every unit time and that is input from the outside of the system, from neurons of
other nervous systems and/or from external stimulus. In autonomous models, if a
minimal attractor consists of more than one cycle, then there are some fluidity of
shifting from one pattern to another caused by noise, even with a change in firing
rate in some cases. For example, the attractor in Example 3.7 of Chapter 6 consists
of two completely different states 1111 and −1 − 1 − 1 − 1, and if the state shifts
from 1111 to 11 − 11, then it converges to −1 − 1 − 1 − 1. This problem may be
solved only in a non-autonomous model with input from outside the network.

Further, the post-synaptic potential in this model incorporates only spatial sum-
mation and no temporal summation (See Kalat, 1995). As a result, the firing rate
of any neuron cannot exceed 2 times the spontaneous firing rate. Still further, the
rigid synchronization (alignment) of firing for all neurons is unrealistic. Some of
these problems can be overcome by modifying the present model and extending
these means, although things become more complex. The trade-off is that we have
a greater variety of stable periodic patterns represented by attractors. In fact, the
present combinatorial approach can be extended to a modified model with incorpo-
ration of temporal summation in Chapter 8, and some results on non-autonomous
networks will be described in Chapter 9.


