
CHAPTER 8 ATTRACTORS IN SECOND-ORDER NEURAL
NETWORKS

Abstract. Autonomous primitive dynamical neural networks (PDNNs) that
incorporate temporal summation and a spontaneous firing rate of 1/3 per unit
time are constructed. The PDNNs are second-order neural networks defined
as x(t + 1) = Sgn(Ax(t) + Bx(t − 1) − l) such that all the diagonal elements
of the efficacy matrices A and B are negative, but with additional imaginary
delay neurons, they are made to be a class of McCulloch and Pitts networks
x(t) = Sgn(Ex(t − 1) − h) on {−1, 1}2n. PDNN- definable threshold trans-
formations are characterized in terms of Boolean functions. The existence
of minimal attractors in circular PDNNs are proved for the general dimen-
sion n by construction using [ ]-representation of Boolean transformations.
These attractors include an attractive loop, an attractive 4-cycle, 3n-cycle,
two (3/2)n-cycles, two 2n-cycles, and six (2/3)n-cycles and provide a variety
of stable periodic firing patterns.

8.1 PDNNs of spontaneous firing rate 1/3

In Chapter 6, we described a primitive dynamic neural network (PDNN) model
of spontaneous firing rate 1/2. Let N be the residue class ring {1, 2, .., n}. The
state space {−1, 1}N denoted by {−1, 1}n of this PDNN is a finite metric space
with the integer-valued Hamming distance dH defined by dH(x, y) = |{i | xi 6= yi}|,
where |S| denotes the number of elements of the set S. The PDNN is a finite-state
dynamical system (FSDS) on the state space {−1, 1}n generated by the threshold
transformation F of {−1, 1}n.

Fx = Sgn(Ex),
x(t + 1) = F (x(t)),

where E is an n × n real matrix such that Eii = −1 for every i. In this model,
every neuron oscillates at a constant spontaneous firing rate 1/2 per unit time in
its prototype, in which all non-diagonal elements of E are zero. In other words,
when there is no synaptic input from other neurons, each neuron performs a neu-
tral activity represented by a cycle of period 2. This definition of neutral activity
enabled us to distinguish significant neural activity from insignificant activity and
sort out a great number of loops or 2-cycles often appearing in the McCulloch and
Pitts network (6.2.1).

However, the firing rate of any neuron can not exceed two times the spontaneous
firing rate in this model, and this problem is due to a greater problem that any
state x(t + 1) depends only on x(t) for the given efficacy matrix E and time t.
Therefore the postsynaptic potential (Ex(t))i is spatial summation. As suggested
by Sherrington’s classical experiment on reflex responses that a small amount of
rapidly repeated taps on the knee tendon produces tendon reflex, the postsynaptic
potential should also include temporal summation. Further, if the instantaneous
firing rate per unit time of a neuron is recognized by a neural network, a simple
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and plausible mechanism is through temporal summation.

According to McCulloch and Pitts (1943, p. 22), ”Temporal summation may
be replaced by spatial summation. This is obvious: one need merely introduce
a suitable sequence of delaying chains.” Therefore, temporal summation can be
expressed in the McCulloch-Pitts network by creating auxiliary imaginary delay
neurons. Let us assume that a single neuron disconnected from any other neuron
performs a spontaneous periodic firing of the action potentials with period 3, that
is, ... → 1 → −1 → −1 → 1 → −1 → −1 → 1 → ... In this sequence, the state of
this neuron at time t+1 clearly depends on the states of this neuron at t and t−1.

If we want a PDNN in which x(t + 1) ∈ {−1, 1}n depends on t and t − 1, and
if we assume that the periodic firing of the action potentials with period 3 of any
neuron, that is, ... → 1 → −1 → −1 → 1 → −1 → −1 → 1 → ... is neutral, then we
should create the set of imaginary delay neurons N′ = {n + 1, n + 2, ..., 2n}. Then
the prototype DNN that is to be modified by further synaptic connections can be
generated by a threshold transformation H of {−1, 1}2n defined by

Hx = Sgn(Dx− e), D =
[−I −I

I O

]
, e =

[
l
o

]
(8.1.1)

where I is the n × n identity matrix, O is the n × n zero matrix, l is the column
n-vector whose every component is 1, and o is the column n-vector whose every
component is 0. Fig. 1 illustrates the state transition of neurons in the prototype
DNN for n = 4 in the case where their initial transition is 1100 → 1010, that is,
10101100 is the initial state for H.

| | · · | · · | · · | · · | · · | · ·
| · · | · · | · · | · · | · · | · · |
· | · · | · · | · · | · · | · · | · ·
· · | · · | · · | · · | · · | · · | ·

Fig. 1 Prototype DNN. | denotes the action potential and · denotes the resting
potential. The first 2 columns represent the initial states at t = 0 and t = 1; The
second column onward displays spontaneous firing.

Then any modified threshold transformation H of {−1, 1}2n obtained by modi-
fying the prototype DNN (8.1.1) is expressed by

Hx = Sgn(Ex− e), E =
[
A B
I O

]
, (8.1.2)

where A and B are n× n real matrix such that Aii = Bii = −1 for every i.
Further, in order to eliminate the threshold vector e, we can add an extra imagi-

nary neuron 2n+1 and define a self-dual threshold transformation F of {−1, 1}2n+1

as follows:

Fx = Sgn(E+x), E+ =




A B −l
I O o
oT oT 1


 , (8.1.3)

where T denotes the transpose. The relation between H and F is[
Hx
1

]
= F

[
x
1

]
.
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A topology of the state space {−1, 1}2n can be defined from the Hamming dis-
tance dH on {−1, 1}n. Thus we can define PDNNs of spontaneous firing rate 1/3
as follows.

Definition 8.1.1 A second-order primitive dynamical neural network (PDNN) of
spontaneous firing rate 1/3 is a parametrized FSDS on {−1, 1}N2n with parameters

(α12, .., α1n, α21, α23, .., α2n, .., αn1, .., αnn−1, β12, .., β1n, β21, β23, .., β2n, .., βn1, .., βnn−1)

∈ R2n(n−1) and generated by the threshold transformation H defined by (8.1.2) or
F defined by (8.1.3), where A and B are n×n real matrices such that Aii = Bii = −1
for every i and Aij = αij , Bij = βij for every other i and j. The n is called the
dimension of the PDNN.

In this definition, any point uv ∈ {−1, 1}2n represents a state transition such
that x(t) = u and x(t− 1) = v of real neurons. The direct recursive equation for x
is obtained from (8.1.1) as

x(t + 1) = Sgn(Ax(t) + Bx(t− 1)− l). (8.1.4)

Note that if Aij · Bij ≥ 0 for every i 6= j, then (8.1.4) is a special deterministic
case of the discrete model constructed by Bressloff and Taylor (1991, (3.6), p. 793),
since the weights ωii(t) in that were held fixed at a negative value for each i, and
since an equivalent transformation can be defined by the same efficacy matrix E
with the change of the state space from {−1, 1}2n into {0, 1}2n. However, ωii(t)
were made negative not because of the spontaneous release of chemical transmit-
ters but because of relative refractory periods. Some of the examples given in later
sections are in the case where Aij · Bij < 0 for some i 6= j, which may require a
different interpretation.

8.2 PDNN-definable transformations

The result of this section, which is Proposition 8.2.5, is not directly used in later
sections, but the readers should familiarize themselves with the concepts, expres-
sions, and operations defined in this section. As in the last chapter, we first give
the following definition about PDNN-definable transformations.

Definition 8.2.1 If a transformation F of {−1, 1}2n+1 can be defined by (8.1.3)
for some n × n real matrices A and B such that Aii = Bii = −1 for every i, then
F is called PDNN-definable.

Let Fi be the component function of F defined by Fi = piF . The following
proposition follows from Theorem 4.2 of Chapter 6 and (8.1.3).

Proposition 8.2.2 A self-dual threshold transformation F of {−1, 1}2n+1 is
PDNN-definable, if and only if

(1) Var(i−F ) ≤ Var(F ) for every i ∈ N,
(2) (i, i + n)Fi = Fi and (i, 2n + 1)Fi = Fi for every i ∈ N,
(3) Fi = pi−n for every i ∈ N′, and
(4) F2n+1 = p2n+1.
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We now describe a PDNN-definable transfpormation of Q2n or of Q2n+1, which
is respectively corresponding to H and F defined by (8.1.2) and (8.1.3). F is self
dual, so that F can be represented by

fi = pi · ¬Fi (8.2.1)

for i ∈ N2n+1. Conversely,
Fi = pi · ¬fi ∨ ¬̄fi. (8.2.2)

Lemma 8.2.3 Let F = [f1, ..., f2n+1] and let fi for some i be expressed as

fi = pi · (pj · ui ∨ vi),

where j 6= i, ui, vi : QN2n+1\{i,j} → Q, and vi ⊆ ui. Then (i, j)Fi = Fi if and only
if ¬̄vi = ¬vi.

Proof. Let gi = pj · ui ∨ vi. Then

¬gi = (¬pj ∨ ¬ui) · ¬vi = ¬pj · ¬vi ∨ ¬ui · ¬vi = pj · ¬vi ∨ ¬ui,

¬̄gi = ¬̄pj · ¬̄ui ∨ ¬̄vi = ¬pj · ¬̄ui ∨ ¬̄vi.

Then, by (8.2.2)

Fi = pi · ¬fi ∨ ¬̄fi = pi · ¬(pi · gi) ∨ ¬̄(pi · gi)
= pi · (¬pi ∨ ¬gi) ∨ ¬̄pi · ¬̄gi

= pi · pj · ¬ui ∨ pi · ¬pj · ¬vi ∨ ¬pi · pj · ¬̄vi ∨ ¬pi · ¬pj · ¬̄ui.

Therefore, since (i, j)ui = ui and (i, j)vi = vi,

(i, j)Fi = pi · pj · ¬ui ∨ pi · ¬pj · ¬̄vi ∨ ¬pi · pj · ¬vi ∨ ¬pi · ¬pj · ¬̄ui.

Therefore, (i, j)Fi = Fi if and only if ¬̄vi = ¬vi. ¤

Lemma 8.2.4 Let v, w : QN2n+1\{k} → Q, and w ⊆ v. Then ¬̄(pk · v ∨ w) =
¬(pk · v ∨ w) if and only if w = ¬(¬̄v).

Proof.

¬̄(pk · v ∨ w) = ¬pk · ¬̄v ∨ ¬̄w = ¬pk · ¬̄v ∨ pk · ¬̄w.

¬(pk · v ∨ w) = (¬pk ∨ ¬v) · ¬w = ¬pk · ¬w ∨ ¬v

= ¬pk · ¬w ∨ pk · ¬v.

Therefore, ¬̄(pk · v ∨w) = ¬(pk · v ∨w) if and only if ¬̄v = ¬w and ¬̄w = ¬v, that
is, w = ¬(¬̄v). ¤

Theorem 8.2.5 A self-dual threshold transformation F = [f1, .., f2n+1] of Q2n+1

is PDNN-definable, if and only if
(1) fi = pi · (pi+n · p2n+1 · ui ∨ (pi+n ∨ p2n+1) · vi ∨¬(¬̄vi)) for i ∈ N, such that

¬(¬̄vi) ⊆ vi ⊆ ui, where ui, vi : QN2n+1\{i,i+n,2n+1} → Q.
(2) fi = pi · ¬pi−n for i ∈ N′, and
(3) f2n+1 = ∅.

Proof. Assume condition 1 of the present theorem. Then clearly, (i, i + n)Fi = Fi

for every i ∈ N. (i, 2n + 1)Fi = Fi for every i ∈ N by Lemmas 8.2.3 and 8.2.4.
Therefore, condition 2 of Proposition 8.2.2 is satisfied. We have |¬¬̄vi| = 22n+1−|vi|
and |vi| ≥ |¬(¬̄vi)|. Therefore, |vi| ≥ × 22n+1, so that |fi| ≥ 1/2 × 3/4 × |vi| +
1/2×1/4× (22n+1−|vi|) = 22n−2 +1/4×|vi| ≥ 22n−2 +1/4×1/2×22n+1 = 22n−1.
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Therefore, Var(i−F ) ≤ Var(F ), so that condition 1 of Proposition 8.2.2 is also
satisfied.

Assume F is PDNN-definable. Any threshold function is unate (see Theorem
4.2.5 of Chapter 4). Also, (i, i + n)Fi = Fi by condition 2 of Proposition 8.2.2.
Therefore,

fi = pi · (pi+n · p2n+1 · ui ∨ (pi+n ∨ p2n+1) · vi ∨ wi),

for every i ∈ N, or

fi = pi · (¬pi+n · ¬p2n+1 · ui ∨ (¬pi+n ∨ ¬p2n+1) · vi ∨ wi),

for every i ∈ N, where ui, vi, wi : QN2n+1\{i,i+n,2n+1} → Q, and wi ⊆ vi ⊆ ui.
Suppose fi takes the second form. Since F is defined by (8.1.3) with the diagonal
elements of A and B being −1, fi = pi · (ui∨vi∨wi), so that fi takes the first form.
Then the condition (i, i + n)Fi = Fi in condition 2 of Proposition 8.2.2 implies
wi = ¬(¬̄vi) by Lemmas 8.2.3 and 8.2.4. Therefore, condition 2 of the present
proposition is satisfied. Conditions 2 and 3 of the present theorem are respectively
equivalent to conditions 3 and 4 of Proposition 8.2.2. ¤

Let τ denote the permutation (1, 2, .., n)(n + 1, .., 2n). A second-order PDNN
of spontaneous firing rate 1/3 generated by a PDNN-definable H of Q2n or F of
Q2n+1 respectively defined by (8.1.2) and (8.1.3) is called circular, if Fτ = τF or
Hτ = τH. The PDNN is circular if and only if Fi = τ i−1F1, or fi = τ i−1f1 for
i = 1, .., n, where fi is defined by (8.2.1). Therefore, a circular PDNN generated by
F is denoted by F = 〈f1〉. Further, a circular PDNN generated by H is denoted
by H = 〈h1, h0〉, where

h1(x1, .., x2n) = f1(x1, .., x2n, 1),
h0(x1, .., x2n) = f1(¬x1, ..,¬x2n, 1). (8.2.3)

If i ≤ n and xi = 1, then (Hx)i = 0 if and only if x ∈ τ i−1h1. If i ≤ n and
xi = 0, then (Hx)i = 1 if and only if x ∈ τ i−1h0.

A point x of Q2n is expressed by uv, where u and v are points on Qn. Let [uv]
denote Orb〈τ〉uv. If D is a subset of Q2n, then let [D] denote Orb〈τ〉D.

As in Chapter 7, we define the extended representation of a Boolean function as
follows. For H = 〈h1, h0〉. let h1|1 and h0|0 be the Boolean functions defined on
QN∪N′\{i} such that

(h1|1)(x2, .., x2n) = h1(1, x2, .., x2n),
(h0|0)(x2, .., x2n) = h0(0, x2, .., x2n).

Definition 8.2.6 Let x be an element of Q2n and H = 〈h1, h0〉. Then the
extended representation H# of H is the function from Qn to Zn defined by

(H#x)i =
{

dSH(PN∪N′\{i}τ−(i−1)x, h1|1) if xi = 1
dSH(PN∪N′\{i}τ−(i−1)x, h0|0) if xi = 0

for i = 1, .., n. It is clear

xi 6= (Hx)i if and only if (H#x)i ≤ 0. (8.2.4)
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8.3 Attractive loops

In this section it is assumed that Q2n is a metric space with the distance dH

on Q2n. In this and later sections we prove the existence of a variety of attrac-
tors in circular second-order PDNNs. The situation is more complex than in our
first-order PDNNs, since a kind of symmetry due to the self-duality of generating
transformations no more exists. In fact, we have to deal with the non-symmetric
pair of Boolean functions h1 and h0 defined by (8.2.3).

Example 8.3.1 Consider the prototype DNN, where Aij = Bij = 0 for every
i 6= j in (8.1.2). Let the corresponding transformation of Q2n+1 be also denoted
by F . Then Fi = S2{¬pi,¬pi+n,¬p2n+1}, that is, F = [f1, .., f2n+1],

fi = pi · (pi+n ∨ p2n+1) for i ∈ N.

H = < h1, h0 >, h1 = p1, h0 = ¬p1 · ¬pi+n.

Example 8.3.2 Let n ≥ 3, Aij = ε, Bij = ε for every i 6= j in (8.1.2), where
ε > 3/2. Let the corresponding transformation of Q2n+1 be F . Then

F1 = Sn{p2, p3, .., pn, pn+2, pn+3, .., p2n}
∨S2{¬p1,¬pn+1,¬p2n+1} · Sn−1{p2, p3, .., pn, pn+2, pn+3, .., p2n}.

Therefore, F = 〈f〉,
f = p1 · (pn+1 ∨ p2n+1) · Sn−1{¬p2,¬p3, ..,¬pn,¬pn+2,¬pn+3, ..,¬p2n}

∨p1 · Sn{¬p2,¬p3, ..,¬pn,¬pn+2,¬pn+3, ..,¬p2n}.
It is confirmed that f satisfies 1 of Theorem 8.2.5. Further, H =< h1, h0 >,

h1 = p1 · Sn−1{¬p2,¬p3, ..,¬pn,¬pn+2,¬pn+3, ..,¬p2n},
h0 = ¬p1 · Sn{p2, p3, .., pn, pn+1, pn+2, pn+3, .., p2n}.

Theorem 8.3.3 In Example 8.3.2, (ll) and (oo) are the only loops of H. Further,
they are attractors in the PDNN generated by H.

Proof. Let x be a fixed point of H, and let x1 = 1. Then

x /∈ p1 · Sn−1{¬p2,¬p3, ..,¬pn,¬pn+2,¬pn+3, ..,¬p2n};
otherwise (Hx)1 = 0 6= x1. On the other hand, (Hx)i+n = xi and (Hx)i+n = xi+n.
Therefore, xi = xi+n for every i ∈ N. Therefore, at least n + 2 of x1, ..., x2n are
1. Suppose xj = xj+n = 0 for some j. Then x ∈ ¬̄fj , contrary to the assumption
that x is a fixed point of H. Therefore xi = 1 for every i ∈ N2n. Similarly if x is
a fixed point of H and x1 = 0, then xi = 0 for every i ∈ N2n. Therefore, if x is a
fixed point of H, then x is ll or oo. In fact, each of them is a fixed point.

Let x ∈ Un−2(ll). Then if xi = 0 for i ≤ n, then (Hx)i = 1. If xi = 1 for i ≤ n,
then (Hx)i = 1. Therefore, Hx ∈ Un−2(ll) and H2x = ll. Let Un−1(oo). Then if
xi = 0 for i ≤ n, then (Hx)i = 0. If xi = 1 for i ≤ n, then (Hx)i = 0. Therefore,
Hx ∈ Un−1(oo) and H2x = oo. Therefore, (ll) and (oo) are attractors of H. ¤

Example 8.3.4 Let Aij = 1, Bij = 1 for every i 6= j in (8.1.2). This PDNN
is structurally stable, since 2n + 1 is odd. Let the corresponding transformation of
Q2n+1 be F . Then

F1 = Sn+1{¬p1, p2, .., pn,¬pn+1, pn+2, .., p2n,¬p2n+1}.
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Therefore, F = 〈f〉,
f = p1 · Sn+1{p1,¬p2, ..,¬pn, pn+1,¬pn+2, ..,¬p2n, p2n+1}

= p1 · ·Sn{¬p2, ..,¬pn, pn+1,¬pn+2, ..,¬p2n, p2n+1}.
Therefore, H =< h1, h0 >,

h1 = p1 · Sn−1{¬p2,¬p3, ..,¬pn, pn+1,¬pn+2, ..,¬p2n},
h0 = ¬p1 · Sn{p2, p3, .., pn,¬pn+1, pn+2, .., p2n}.

This example has the same attractors as Example 8.3.2.

8.4 Attractive 4-cycles

In this section it is assumed that Q2n is a metric space with the distance

d(uv, yz) = max(dH(u, y), dH(v, z)),

where u, v, y, z ∈ Qn. Further, if a ∈ Qn, then let

Uij(ab) = {uv | u, v ∈ Qn, dH(u, a) = i, dH(v, b) = j}.
Clearly, U1(ab) is a mutually disjoint union of U10(ab), U01(ab), U11(ab), and {ab}.

Example 8.4.1 Let n be even and n ≥ 4. By modifying Example 8.3.2, let
H = 〈h1, h0〉,

h1 = p1 · Sn−1{p2,¬p3, p4, ..,¬pn−1, pn,¬pn+2, pn+3,¬pn+4, .., p2n−1,¬p2n},
h0 = ¬p1 · Sn{¬p2, p3,¬p4, .., pn−1,¬pn,¬pn+1, pn+2, ..,¬p2n−1, p2n}.
Proposition 8.4.2 Let c = 1010 · · · 10 ∈ Qn. Then

cc → (¬̄c)c → (¬̄c)(¬̄c) → c(¬̄c) → cc.

is a cycle of H defined in Example 8.4.1.

Proof. We prove the proposition for n = 4. In this case, c = 1010, and

h1 = 1 · S3{2,¬3, 4,¬6, 7,¬8},
h0 = ¬1 · S4{−2, 3,−4,−5, 6,−7, 8}.

Then
H#(cc) = (0, 0, 0, 0),H#((¬̄c)c) = (4, 3, 4, 3).

Therefore,
cc → (¬̄c)c → (¬̄c)(¬̄c).

Since ρc = ¬̄c,
cc → (¬̄c)c → (¬̄c)(¬̄c) → c(¬̄c) → cc.

¤

Theorem 8.4.3 Let c = 1010 · · · 10 ∈ Qn and n ≥ 4. Then

A = (cc, (¬̄c)c, (¬̄c)(¬̄c), c(¬̄c), cc)

is an attractive cycle of H defined in Example 8.4.1.
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Proof. We have [cc] = {cc, (¬̄c)(¬̄c)} and [(¬̄c)c] = {(¬̄c)c, c(¬̄c)} . Also, U10[cc] =
[(1−c)c]∪ [(2−c)c] and U01[cc] = [c(1−c)]∪ [c(2−c)]. We prove the theorem for n = 4
without loss of generality.

(i) Consider a point x of U01((¬̄c)c). As shown in the proof of Proposition
8.4.2, (H#((¬̄c)c))i ≥ 3 for every i. Therefore, (H#x)i ≥ 2 for every i, so that
Hx = (¬̄c)(¬̄c).

(ii) Let x ∈ U01(cc). It suffices to consider x = c(1−c) or c(2−c) . First, if i is
even then (H#x)i = 1. Specifically, H#(c(1−c)) = (0, 1, 1, 1) and H#(c(2−c)) =
(1, 1, 1, 1). Therefore, H(c(1−c)) = (1−c)c and H(c(2−c)) = cc.

(iii) Let x = uv ∈ U10((¬̄c)c). It suffices to consider x = (1−¬̄c)c or (2−¬̄c)c.
H#(1−¬̄c)c) = (−3, 2, 32) and H#(2−¬̄c)c) = (3.−3, 3, 2). Therefore, H((1−¬̄c)c) =
(¬̄c)(1−¬̄c) and H((2−¬̄c)c) = (¬̄c)(2−¬̄c). Therefore, Hx ∈ U01((¬̄c)(¬̄c)).

(iv) Note that |(H#x)i| ≥ 2 for every i. Therefore, if x ∈ U11((¬̄c)c), then
Hx ∈ U01((¬̄c)(¬̄c)) also.

(v) Let x ∈ U10(cc). Then it suffices to consider x = (1−c)c or (2−c)c. H#((1−c)c) =
(1,−1,−1,−1) and H#((2−c)c) = (−1, 0,−1,−1). Therefore, H((1−c)c) = (¬̄c)(1−c) ∈
U01((¬̄c)c) and H((2−c)c) = (2−¬̄c)(2−c) ∈ U11((¬̄c)c).

(vi) Let x ∈ U11(cc). It suffices to consider x = (1−c)(j−c) or (2−c)(j−c) for
some j. H#((1−c)c) = (1,−1,−1,−1) by (iv), so that (H#((1−c)(j−c)))i ≤ 0 for
i = 2, 3, 4, so that (H((1−c)(j−c))i = (H((1−c)c))i for i = 2, 3, 4. H#((2−c)c) =
(−1, 0,−1,−1) by (iv), so that (H#((2−c)(j−c)))i ≤ 0 for i = 1, 3, 4, so that
(H((2−c)(j−c))i = (H((2−c)c))i for i = 1, 3, 4. Therefore Hx ∈ U11((¬̄c)c).

Therefore, the subsets of U1A are mapped as shown in the following flow sub-
graph.

U11[cc] ∪ [(2−c)c]
↓

U10[(¬̄c)c] ∪ U11[(¬̄c)c] → [c(1−c)] ∪ [c(2−c)] [(¬̄c)c)]
↙ ↘ l

[(1−c)c] → U01[(¬̄c)c] → [cc].

Therefore, H(U1A) ⊆ A and ωH(U1A) = A. ¤

Fig. 2 illustrates the state transition of neurons in Example 8.4.1 for n = 4 in
the case where their initial transition is 0010 → 1110, that is, 11100010 ∈ U1A is
the initial state for H.

· | · · · | | · · | | · · | | · · | | · · | |
· | · | · · · | | · · | | · · | | · · | | · ·
| | · · · | | · · | | · · | | · · | | · · | |
· · | | | · · | | · · | | · · | | · · | | · ·

Fig. 2 Attractor of Example 4.4.1. Any consecutive 4 columns from the sixth
column display the attractor.
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8.5 Attractive cycles for n ≡ 2 mod 6

It is assumed hereafter that Q2n is a metric space with the distance d(uv, yz) =
2dH(u, y) + dH(v, z)), where u, v ∈ Qn. Also H# is defined as the same way as the
last section. Further, in this and the next section, n is even, l = 1n/2, and o = 0n/2.
The cyclic permutation (1, 2, .., n) is denoted by ρ.

Example 8.5.1 By modifying Example 8.3.4, let H =< h1, h0 >,

h1 = p1 · Sn−1{p2, .., pn/2,¬pn/2+1, ..,¬pn, pn+1, .., pn+n/2,¬pn+n/2+1, ..,¬p2n},
h0 = ¬p1 · Sn{¬p2, ..,¬pn/2, pn/2+1, .., pn,¬pn+1, ..,¬pn+n/2, pn+n/2+1, .., p2n}.

(8.5.1)
Clearly,

(H#(¬̄x))i =
{

(H#(x))i + 1 if xi = 1,
(H#(x))i − 1 if xi = 0.

,

and
(H#(i−x))i = −(H#(x))i.

Let x ∈ Q2n and i ≤ n. Then, xi · (Hx)i = 0 if and only if (H#x)i ≤ 0.

Let a = loρ−r(lo). Then (H#a)i = 4(i− 1)− (n− 2r) for 1 ≤ i ≤∈. Therefore,
if (H#a)r = 0, then r = (n + 4)/6, so that n ≡ 2 mod 6.

Definition 8.5.2 Let n ≡ 2 mod 6 and r = (n + 4)/6. Let a = loρ−r(lo) and

S = [a, (n/2)−a, (2n− r + 1)−a].

Proposition 8.5.3 If n ≡ 2 mod 6 and r = (n+4)/6, then S is an invariant set
of H.

Proof. We prove for r = 2 and n = 8. H#a = (−4, 0, 3, 4,−3, 1, 4, 5), so that
Ha = τ2(4−a). H#(4−a) = (−3, 1, 5,−4,−2, 2, 6, 6), so that H(4−a) = τ(15−a).
H#(15−a) = (−5,−1, 2, 5,−4, 0, 3, 6), so that H(15−a) = τ2a. Therefore, HS =
S. ¤

Theorem 8.5.4 If n ≡ 2 mod 6 and n ≥ 8, then H(U1S) ⊆ U1S and ωH(U1S) =
S. Therefore, OrbHS is an attractor.

Proof. Let j ∈ N′. Since (H#(a))2 = 0, (H#(j−a))2 = 1 or (H#(j−a))2 = −1.
Let (H#(j−a))2 = 1. Then, (H#(j−a))6 = 2 and (H#(j−a))i = (H#a)i ± 1 for
every other i. Therefore, H(j−a) = 2−(Ha) = τ({11, 15} − a) ∈ τU1(15−a). Let
(H#(j−a))2 = −1. Then, (H#(j−a))6 = 0 and (H#(j−a))i = (H#a)i±1 for every
other i. Therefore, H(j−a) = 6−(Ha) = τ2a ∈ S.

(H#(j−(4−a))i = (H#(4−a))i ± 1 for every i. Let (H#(j−(4−a))2 = 0. Then

H(j−(4−a)) = 2−H(4−a) = 2−τ(15−a) = τ2(4, 10−a ∈ τ2U1(4−a),

and (H#(10−(4−a)))2 6= 0. If (H#(j−(4−a)))2 6= 0, then H(j−(4−a)) = H(4−a) ∈
S.

Let (H#(j−(15−a)))2 = 0. Then (H#(j−(15−a)))6 = 1 and (H#(j−(15−a))i =
(H#(15−a))i ± 1 for every other i. Therefore, H(j−(15−a)) = 6−H(15−a) =
τ2(4−a) ∈ S. If (H#(j−(15−a)))2 6= 0, then H(j−(15−a)) = H(15−a) ∈ S.
Therefore, subsets of U1S are mapped as shown in the following flow subgraph.
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[j−a] → [k−(15−a)]
(H#(j−a))2 = 1 ↘

[j−(4−a)] → [k−(4−a)] → S
(H#(j−(4−a)))2 = 0 (H#(k−(4−a)))2 6= 0

↗
[j−a]

(H#(j−a))2 = −1

Therefore, H(U1S) ⊆ S and ωH(U1S) = S. ¤

Proposition 8.5.5 The attractor OrbHS consists of one 3n-cycle if r is even,
and two (3/2)n-cycles if r is odd.

Proof. H3a = τ3r−1a follows from the proof of Theorem 8.5.4. Further, gcd(n, 3r−
1) = gcd(2(3r−2), 3r−1). Therefore, gcd(n, 3r−1) = 1 if r is even, 2 if r is odd. ¤

Computational results for n = 8 expect that Theorem 8.5.4 generally holds for
Ui(S) for some i ≥ 2, e.g., i = 2, 3 for n = 8. we give here the proof for i = 2.
Details that are the same as in the proof of Proposition 8.5.3 or Theorem 8.5.4 are
skipped. Note that the state space Q2n consists of approximately 268 million 28-bit
words for n = 14, but OrbHS that is expected to be the only attractor consists of
only 42 words (oo is a fixed point but not an attractor). The following proposition
shows that the basin for the attractor OrbHS contains U2S. The proof is tedious,
so that the reader may skip it.

Proposition 8.5.6 If n ≡ 2 mod 6, then H(U2S) ⊆ U2S and ωH(U2S) = S.

Proof. We prove for n = 8 and r = 2.
(i) Let x = {j, k}−a for j, k ∈ N′. If (H#(j−a))2 = 1 and (H#(k−a))2 = 1,

then Hx = r−(Ha) ∈ U1S. If (H#(j−a))2 = −1 and (H#(k−a))2 = −1, then
Hx = 6−(Ha) ∈ S. If (H#(j−a))2 = 1 and (H#(k−a))2 = −1, then Hx = Ha.

Let x = {j, k}−(4−a) for j, k ∈ N′. If (H#(j−(4−a)))2 6= 0 and (H#(k−(4−a)))2 6=
0, then Hx = H(4−a). If (H#(j−(4−a)))2 = 0 and (H#(k−(4−a)))2 6= 0, then
Hx = 2−H(4−a) ∈ U1S. If (H#(j−(4−a)))2 = 0 and (H#(k−(4−a)))2 = 0, then
Hx = {2, 6}−H(4−a) = 10−a ∈ U1S.

Let x = {j, k}−(15−a) for j, k ∈ N′. If (H#(j−(15−a)))2 6= 0 and (H#(k−(15−a)))2 6=
0, then Hx = Ha. If (H#(j−(15−a)))2 = 0 and (H#(k−(15−a)))2 6= 0, then
Hx = 6−H(15−a) ∈ U1S. If (H#(j−(15−a)))2 = 0 and (H#(k−(15−a)))2 = 0,
then Hx = {2, 6}−H(15−a) = τ(11−(15−a)) ∈ U1S.

Consequently, if x = {j, k}−q, for some j, k ∈ N′ and q ∈ S, then Hx ∈ U2S
and ωHx ⊆ S by Theorem 8.5.4.

(ii) Let x = j−a for j ∈ N. Let (H#(j−a))2 = −1. Then

Hx = {6, 8 + j}−(Ha) = {6, 8 + j}−τ2(4−a)
= τ2(8 + (j − 2)%8)a ∈ U1S.

Let (H#(j−a))2 = 1. Then

Hx = {2, 8 + j}−(Ha) = {2, 8 + j}−τ2(4−a)
= τ2{4, 8, 8 + (j − 2)%8}−a = τ2τ−1{11, 8 + (j − 1)%8}−(15−a) ∈ U2S,
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and {11, 8 + (j − 1)%8}−(15−a) is in the case (i). Let j = 2. Then (H#(j−x))2 =
−(H#(x))2 = 0 and (H#(j−x))6 = 2, so that Hx = {2, 10}−(Ha) = {2, 8 +
j}−(Ha) as above.

Let x = j−(4−a) for j ∈ N. Let (H#(j−(4−a)))2 = 0. Then Hx = {2, 8 +
j}−H(4−a) = {2, 8 + j}−τ(15−a) = τ{1, 8 + (j − 1)%8, 15}−a = τ2{10, 8 + (j −
2)%8}−(4−a) ∈ U2S, and {10, 8 + (j − 2)%8}−(4−a) is in the case (i). If j 6= 2
and (H#(j−(4−a)))2 6= 0, then Hx = (8 + j)−H(4−a) ∈ U1S. Let j = 2. Then,
(H#(j−(4−a)))2 = −(H#(4−a))2 = −1, so that Hx = (8 + j)−H(4−a) ∈ U1S.

Let x = j−(15−a) for j ∈ N. Let (H#(15−a))2 = 0. Then Hx = {6, 8 +
j}−H(15−a) = {6, 8+j}−τ2a = τ2{4, 8+(j−2)%8}−a = τ2(8+(j−2)%8)−(4−a) ∈
U1S. If j 6= 2 and (H#(15−a))2 6= 0, then Hx = (8 + j)−H(15−a) ∈ U1S. Let
j = 2. Then, (H#(j−(15−a)))2 = −(H#(15−a))2 = 1 and (H#(j−(15−a)))6 = 1,
so that H(j−(15−a)) = 6−H(15−a) = 6−τ2a = τ2(4−a) = S.

Consequently, ifx = j−q for some j ∈ N and q ∈ S, then Hx ∈ U2S and
ωHx ⊆ S by Theorem 8.5.4. ¤

8.6 Attractive cycles for n ≡ 0 or 4 mod 6

Example 8.6.1 By modifying Example 8.5.1, let H =< h1, h0 >,

h1 = p1 · Sn−1{p2, .., pn/2,¬pn/2+1, ..,¬pn, pn+1, .., pn+n/2−1,¬pn+n/2, ..,¬p2n−1, p2n},
h0 = ¬p1 · Sn{p2, .., pn/2,¬pn/2+1, ..,¬pn, pn+1, .., pn+n/2−1,¬pn+n/2, ..,¬p2n−1, p2n}.

If a = loρ−r(lo), then (H#a)i = 4(i−1)−(n−2(r−1)) for 1 ≤ i ≤ n. Therefore,
if (H#a)r = 0, then r = (n + 6)/6, so that n ≡ 0 mod 6. The following theorem
is similarly obtained as Theorem 8.5.4 and Proposition 8.5.5. Fig.3 illustrates the
periodic firing pattern expressed by the attractor.

Theorem 8.6.2 If n ≡ 0 mod 6 and r = (n + 6)/6, then OrbHS defined by
Definition 8.5.2 is an attractor of H in Example 8.6.1, and OrbHS consists of one
3n-cycle if r is even and two (3/2)n-cycles if r is odd.

· · | | · · | · · | | · · | | · · | · · | | · · | · · | | ·
| · · | · · | | · · | | · · | · · | | · · | · · | | · · | |
| · · | | · · | | · · | · · | | · · | · · | | · · | | · · |
| | · · | | · · | · · | | · · | · · | | · · | | · · | · · |
· | | · · | · · | | · · | · · | | · · | | · · | · · | | · ·
· · | · · | | · · | · · | | · · | | · · | · · | | · · | · ·

Fig. 3 Attractor of Example 8.6.1 for n = 6. Any consecutive 18 columns display
the attractor.

Example 8.6.3 By modifying Example 8.5.1, let H = 〈h1, h0〉,
h1 = p1 · Sn−1{p2, .., pn/2,¬pn/2+1, ..,¬pn, pn+1, ..,

pn+n/2−2,¬pn+n/2−1, ..,¬p2n−2, p2n−1, p2n},
h0 = ¬p1 · Sn{p2, .., pn/2,¬pn/2+1, ..,¬pn, pn+1, ..,

pn+n/2−2,¬pn+n/2−1, ..,¬p2n−2, p2n−1, p2n}.
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If a = loρ−r(lo), then (H#a)i = 4(i − 1) − (n − 2(r − 2)) for 1 ≤ i ≤ n/2.
Therefore, if (H#a)r = 0. then r = (n + 8)/6, so that n ≡ 4 mod 6. The following
theorem is similarly obtained as Theorem 8.5.4 and Proposition 8.5.5.

Theorem 8.6.4 If n ≡ 4 mod 6 and r = (n + 8)/6, then OrbHS defined by
Definition 8.5.2 is an attractor of H in Example 8.6.3, and OrbHS consists of one
3n-cycle if r is even and two (3/2)n-cycles if r is odd.

8.7 Attractive cycles for odd n

In this section, n is odd, l = 1(n−1)/2, and o = 0(n+1)/2.

Example 8.7.1 By letting A1j = B1j = −1 for every j ≤ (n−1)/2, A1(n+1)/2 =
B1(n+1)/2 = 0, and A1j = B1j = 1 for every j ≥ (n + 2)/2 in (8.1.2), and making
F circular, we obtain F = 〈f〉,

f = p1 · pn+1 · p2n+1 · Sn−3{p2, .., p(n−1)/2,¬p(n+3)/2, ..,¬pn,

pn+2, .., pn+(n−3)/2,¬pn+(n+1)/2, ..,¬p2n−1, p2n}
∨p1 · (pn+1 ∨ p2n+1) · Sn−2{p2, .., p(n−1)/2,¬p(n+3)/2, ..,¬pn,

pn+2, .., pn+(n−3)/2,¬pn+(n+1)/2, ..,¬p2n−1, p2n}
∨p1 · Sn−1{p2, .., p(n−1)/2,¬p(n+3)/2, ..,¬pn,

pn+2, .., pn+(n−3)/2,¬pn+(n+1)/2, ..,¬p2n−1, p2n}.
Therefore, H = 〈h1, h0〉,

h1 = p1 · Sn−2{p2, .., p(n−1)/2,¬p(n+3)/2, ..,¬pn, pn+1,
pn+2, .., pn+(n−1)/2,¬pn+(n+3)/2, ..,¬p2n},

h0 = ¬p1 · Sn−1{¬p2, ..,¬p(n−1)/2, p(n+3)/2, .., pn,¬pn+1,
¬pn+2, ..,¬pn+(n−1)/2, pn+(n+3)/2, .., p2n}.

(8.7.1)

If a = loρ−r(lo), then (H#a)i = 4(i − 1) − (n − 2r − 1) for 1 ≤ i ≤ (n − 1)/2.
Therefore, if (H#a)r = 0, then r = (n− 1)/6, so that n ≡ 1 mod 6. The following
theorem is similarly obtained as Theorem 8.5.4 and Proposition 8.5.5.

Definition 8.7.2 Let a = loρ−r(lo) and

S = [{a, {n + 2r, 2n− r}−a, (2n− r)−a, ((n + 1)/2)−a}].
Theorem 8.7.3 If n ≡ 1 mod 6 and r = (n − 1)/6, then OrbHS defined by

Definition 8.7.2 is an attractor of H in Example 8.7.1, and OrbHS consists of two
2n-cycles.

Example 8.7.4 By modifying Example 8.7.1, let H = 〈h1, h0〉 .

h1 = p1 · Sn−2{p2, .., p(n−1)/2,¬p(n+3)/2, ..,¬pn, pn+1,

pn+2, .., pn+(n−3)/2,¬pn+(n+1)/2, ..,¬p2n−1, p2n},
h0 = ¬p1 · Sn−1{¬p2, ..,¬p(n−1)/2, p(n+3)/2, .., pn,¬pn+1,

¬pn+2, ..,¬pn+(n−3)/2, pn+(n+1)/2, .., p2n−1,¬p2n}.
If a = loρ−r(lo), then (H#a)i = 4(i − 1) − (n − 2r + 1) for 1 ≤ i ≤ (n − 1)/2.

Therefore, if (H#a)r = 0, then r = (n + 1)/6, so that n ≡ 5 mod 6. The following
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theorem is similarly obtained as Theorem 8.5.4 and 8.5.5.

Theorem 8.7.5 If n ≡ 5 mod 6 and r = (n + 1)/6, then OrbHS defined by
Definition 8.7.2 is an attractor of H in Example 8.7.4, and OrbHS consists of two
2n-cycles.

Example 8.7.6 By modifying Example 8.7.1, let H = 〈h1, h0〉,
h1 = p1 · Sn−2{p2, .., p(n−1)/2,¬p(n+3)/2, ..,¬pn, pn+1,

pn+2, .., pn+(n−3)/2,¬pn+(n+1)/2, ..,¬p2n−1, p2n},
h0 = ¬p1 · Sn−1{¬p2, ..,¬p(n−1)/2, p(n+3)/2, .., pn,¬pn+1,

¬pn+2, ..,¬pn+(n−3)/2, pn+(n+1)/2, .., p2n−1,¬p2n}.
If a = loρ−r(lo), then (H#a)i = 4(i−1)−(n−(r−1)−(r−2)) for 1 ≤ i ≤ (n−1)/2

and r ≥ 2. Therefore, if (H#a)r = n− 2, then r = (n + 3)/6, so that n ≡ 3 mod 6.
The following theorem is similarly obtained as Theorem 8.5.4 and Proposition 8.5.5.

Theorem 8.7.7 If n ≡ 3 mod 6 and r = (n + 3)/6, then OrbHS defined by
Definition 8.7.2 is an attractor of H in Example 8.7.6, and OrbHS consists of six
(2/3)n-cycles if 2r + 1 is divisible by 3 and two 2n-cycles otherwise.

8.8 A temporary review

The present second-order PDNNs that incorporate a spontaneous firing rate of
1/3 per unit time at least partially incorporate temporal summation in postsynaptic
potentials, and the firing rate of a neuron can reach three times the spontaneous
firing rate. Yet the PDNNs are still represented in the classical McCulloch and Pitts
network. Attractors in the PDNNs provide stable periodic firing patterns that are
expressed in terms of pulses of action potentials and have more variety than those in
the PDNNs of spontaneous firing rate 1/2. Simplifications, such as putting the firing
mechanism in a black box, discrete-time modeling, representation of each neuron’s
activity by binary values, and synchronization of firing for all neurons, are more or
less inevitable for global analysis, in particular, by combinatorial methods, which
reveal the richness and difficulties of the finite-state dynamical system due to non-
linearity of threshold transformations. The present chapter eased the difficulties
by further limiting the global description of exemplary PDNNs to circular ones,
but could not get rid of tedious details. The fundamental limitation of the present
PDNNs is that they are autonomous, that is, the stable periodic firing patterns that
are represented by attractors are completely determined by the efficacy matrices of
synaptic connections and the initial states of the neurons at time t = 0 and t = 1.
In autonomous models, if a minimal attractor consists of more than one cycle, then
there are some fluidity of shifting from one pattern to another caused by noise, even
with a change in firing rate in some cases. This problem may be solved only in a
non-autonomous model with input from outside the network.


