REFERENCES, INDEX, \& SYMBOLS AND NOTATIONS

References

Amari, S. (1972) Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Trans. Comput. 21, 1197-1206.

Amit, D. J. (1989) Modeling Brain Function - The world of attractor neural networks (Cambridge University,Cambridge).

Arimoto, S. (1963) Periodic sequences of states of an autonomous circuit consisting of threshold elements. Trans. Inst. Electron. Comm. Eng., Studies on Information \& Control 2 (in Japanese), 17-22.

Biggs, N. L. (1989) Discrete Mathematics (Oxford University, New York).
Blum, E. K. (1990) Mathematical aspects of outer-product asynchronous contentaddressable memories. Biol. Cybern. 62, 337-348.

Bressloff, P. C. and Taylor, J. G. (1991) Discrete time leaky integrator network with synaptic noise. Neural Networks 4, 789-801.

Chow, C. K. (1961) Boolean functions realizable with single threshold devices, Proc. IRE. 49, 370-371.

Coombes, S., Doole, S. H. (1996) Neural population dynamics with post inhibitory rebound: A reduction to piecewise linear discontinuous circle maps. Dynamics and Stability of Systems 11, 193-217.

Cottrell, M. (1988) Stability and attractivity in associative memory networks, Biol. Cybern. 58, 129-139.

Elgot, C. C. (1961) Truth functions realizable by single threshold organs. SCLTD, 225-245. Goles-Chacc, E. (1980) Comportment oscillatoire d'une famille d'automates cellulaires, non uniformes. Thèse IMAG, Grenoble.

Goles, E. and Olivos, J. (1981) Comportment periodique des fonctions a seuil binaires et applications. Discrete Appl. Math. 3 93-105.

Goles, E., Fogelman-Soulie, F. and Pellegrin, D. (1985) Decreasing energy functions as a tool for studying threshold networks. Discrete Appl. Math. 12, 261-277. Gray, F. (1953) Pulse code communication. U.S. Patent 2632 058, March 17.

Grove, L. C. and Benson, C. T. (1985) Finite Reflection Groups (2nd ed.) (Springer, New York). Hall, M. (1967) Combinatorial Theory (Blaisdell, Waltham, MA).

Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA 79, 2554-2558.

Hu, S. T. (1965) Threshold Logic (University of California, Berkeley).
Ishii, N. (1970) On transformation between state transition diagrams realizable by the network of threshold elements. J. Electron. Comm. Eng. 53-C- 10, 715-723 (in Japanese).

Ishii, N. and Miyazaki, K. (1972) Generation of a set of periodic sequences realizable by the network of threshold elements. J. Electron. Comm. Eng. 55-D-8, 491-498 (in Japanese).

Kalat, J. W. (1995) Biological Psychology (5th ed.) (Brooks/Cole, CA).
Kamp, Y. and Hasler, M. (1990) Recursive Neural Networks for Associative Memory (John Wiley, New York).

Krishnamurthy, V. (1986) Combinatorics-Theory and Applications (Ellis Horwood, Chichester).

McCulloch, W. S. and Pitts, W. H. (1943) A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophysics 5, 115-133. Reprinted in J. A. Anderson and E. Rosenfield, ed, (1989) Neurocomputing: foundations of research (MIT, Cambridge) 18-31.

Masters G. M. and Mattson, R. L. (1966) The application of threshold logic to the design of sequential machines. IEEE Symposium on Switching and Automata Theory, 184-194.

Mathematical Society of Japan (1987) Encyclopedic Dictionary of Mathematics (2nd English ed.) (MIT, Cambridge, MA).

Muroga, S. (1971) Threshold Logic and Its Applications (Wiley-Interscience, New York)

Muroga, S., Toda, I. and Takasu, S. (1961) Theory of majority decision elements. J. Franklin Inst. 271, 376-418. Originally in J. Inst. Electron. Comm. Eng. Japan 43 (1960).

Ore, O. (1988) Number Theory and its History (Dover, New York).
Robert, F. (1986) Discrete Iterations (Springer, Berlin).
Seung, H.S., Lee, D.D., Reis B.Y., and Tank. D. W. (2000) Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259-271.

Ueda, T. (1977) The fixing groups for the 2-asummable Boolean functions. Discrete Math. 20, 77-82.

Ueda, T. (1979) On the Fixing group for a totally pre- ordered Boolean function. Discrete Math. 26, 293-295.

Ueda, T. (1992) Circular non-singular threshold transformations. Discrete Math. 105, 249-258.

Ueda, T. (1994) Graphs of non-singular threshold transformations. Discrete Math. 128, 349-359.

Ueda, T. (2000) Reflectiveness and compression of threshold transformations. Discrete Appl. Math. 107, 215-224.

Ueda, T. (2001) An enhanced Arimoto theorem on threshold transformations. Graphs and Combinatorics 17, 343-351.

Williamson, S. G. (1985) Combinatorics for Computer Science. Rockville, MD: Computer Science Press.

Winder, R. O. (1962) Threshold logic. Ph.D. Thesis, Mathematics Department, Princeton University.

Yajima, S. and Ibaraki, T. (1968) A theory of completely monotonic functions and its applications to threshold logic, IEEE Trans. Comput. 17, 214-229.

INDEX

```
abelian group 1.2
action 1.3
action potential 6.2
AND 1.4
Arimoto
    ~'s theorem 5.5
    enhanced ~ theorem 5.5
    -Ueda theorem 6.2
asummable 4.2
    m-asummable 4.2
attractive 6.1,9.2
attractor 6.1,9.2
    connected ~ 6.1
    Cottrell's k-~ 6.2
    minimal ~ 6.1
    separated ~ 6.1
    strong ~ 6.1
basin for an attractor 6.1, 9.2
bi-dependent 9.3
bijection 1.1
Boolean
    function 1.4
    isometry 2.1
    minimal ~ algebra 1.4
    transformation 1.4
burst neuron 10.1
carrier 1.1
Cartesian product 1.1
circular
    transformation 2.4
    skew-~ transformation 2.4
complement 1.1, 2.1
complementation 1.4
complete set 2.3
completely monotonic 4.2
composition 1.1
    disjoint ~ 1.1
compressible 5.4
compression 5.2
conjugate 1.2
conjunction 1.4
congruent 1.2
copies 3.5
cube
    n-dimensional ~ 2.1
    n-cube 2.1
cycle
```

Hamiltonian ~ 1.1
k-cycle 1.1, 9.2
limit ~ 6.2
of a digraph 1.1
of a graph 1.1
of $\operatorname{GRAPH}(F) 1.1$
neutral ~ 6.3
cycle structure $\quad 2.3$
cyclic
\sim orbit $\quad 6.1,9.2$
\sim permutation 1.2
~ sequence 6.1
De Morgan's law 1.4
density 1.3
digraph 1.1
dimension of DNN 6.3
direct product of groups 1.2
of sets 1.1
of transformations 1.1
direct sum 1.1
disjoint composition 1.1
disjunction 1.4
disjunctive form 1.4
irredundant ~ 1.4
distance 1.1
Euclidean ~ 2.2
Hamming ~ 2.1
DNN (dynamical neural network) 6.3
dynamical neural network (DNN) 6.3
dynamical system
finite-state \sim 6.1, 9.2
efficacy of a synapse 6.2
elementary self-dual transformation 2.3
Elgot's theorem 4.2
equivalent
Boolean transformations 2.1
isometrically ~ 2.2
orthogonally ~ 2.2
Euclidean distance 2.2
Euler's function 1.2
expansible
threshold transformations 5.2
expansion 5.2
extended representation 7.1, 8.4
face copies 3.5
finite-state dynamical system (FSDS) 6.1
parametrized ~ 6.1
firing rate 6.3
maximum ~ 6.3
minimum ~ 6.3
spontaneous ~ 6.3
fixed point of a transformation 1.1
flow
of a transformation 2.5
flow graph 2.5
FSDS (finite-state dynamical system) 6.1
parametrized ~ 6.1
Goles-Chacc's theorem 6.2
Gray code
binary-reflected ~ 3.1
graph 1.1
directed ~ 1.1
of a transformation 1.1
Hamming distance 2.1
homomorphism
for groups 1.2
Hopfield model 6.2
image
of a function 1.1
of a sequence 1.1
of a set of sequences 6.1
imaginary
delay neuron 8.1
synapse 6.3
implicant 1.4
prime ~ 1.4
injection 1.1
incompressible 5.2
inexpansible 5.2
invertible 1.2
incompressible
transformations 5.2
inexpansible
threshold transformations 5.2
invariant
set 6.1
irredundant
disjunctive form 1.4
isometrically equivalent 2.2
isometrically similar 2.2
isometry 2.1
isomorphic graphs 1.1
isomorphism of graphs 1.1

```
length
    of a path 1.1
    of a cycle 1.1
limit cycle 6.1
limit orbit 9.2
limit set 6.1
linear permutation 1.2
linear separability 4.2
loop 1.1
McCulloch-Pitts model 6.2
Maximal
    transformation 2.2
    uniquely ~ transformation 2.2
metric space 1.1
minimal
    attractor 6.1
    Boolean algebra 1.4
    transformation 2.2
    uniquely ~ transformation 2.2
modulo
    congruent ~ 1.2
monotonic
    completely ~ 4.2
    k-monotonic 4.2
n-cube 2.1
negation 1.4
neural network
    attractor ~ iii
    feed forward ~ iii
    dynamical ~ (DNN) 6.3
    recursive ~ iii
neutral cycle 6.3
OR 1.4
orbit
    of an action group 1.3,
    in a FSDS 6.1, 9.2
    limit ~ 9.2
    periodic ~ 9.2
orbit modification 3.5
    Arimoto's ~ 5.5
order of a group 1.2
orthogonal transformation 2.1
orthogonally equivalent
    transformation 2.2
orthogonally similar
    transformation 2.2
parallel 6.2
partition 1.1
```

path 1.1
Hamiltonian ~ 1.1
PDNN 6.3, 8.1
period 1.3, 9.2
periodic
\sim orbit 9.2
\sim sequence 9.2
permutation 1.2
cyclic ~ 1.2
linear ~ 1.2
of coordinates 1.3
Pólya action 1.3
postsynaptic
neuron 6.2
potential
action ~ 6.2
postsynaptic ~ 6.2
preorder 4.2
presynaptic neuron 6.2
prime
implicant 1.4
primitive DNN 6.3, 8.1
prototype DNN 6.3, 8.1
realizable
simultaneously ~ 4.1
realize
a cycle structure 2.3
real neuron 8.1
reflection subgroup 2.1
reflective transformation 3.1
representation
~ of a group 1.3
[]-~ 2.3
extended $\sim 7.1,8.4$
residue class ring 1.2
rotation
right ~ 1.3
runs-based distance 7.7
runs pair 7.7
segment
of a linear permutation 1.2
self-dual
function 2.3
transformation 2.3
separated
by a hyperplane 4.1
attractors 6.1
sequence

```
    cyclic 9.2
    k-sequence 9.2
    periodic 9.2
serial 6.2
similar
    isometrically ~ 2.2
    orthogonally ~ 2.2
simultaneously realizable 4.1
skew-circular
    transformation 2.4
slope
    of a linear permutation 1.2
spatial summation 8.1
spontaneous
    firing 6.3, 8.1
    firing rate 6.3, 8.1
stabilizer 1.3
stable
    in Amari's sense 6.2
    structurally ~ 6.1
states 6.1
state space 6.1
structurally stable 6.1
sum
    of transformations 1.1
summable 4.2
    m-summable 4.2
surjection 1.1
symmetric
    difference 1.1
    group 1.2
synapse 6.2
synchronization 6.3
temporal summation 6.3
term 1.4
threshold
    function 4.1
    transformation 4.1
    value 4.1
    vector 4.3
tonic 10.2
total preorder 4.2
transformation 1.1
    group 1.3
    one-to-one ~ 1.1
2-asummable 4.2
unate 4.2
variation 2.2
```

walk 1.1
weight
vector 4.1
matrix 4.3
wreath product 2.1
Yajima-Ibaraki theorem 4.2

Symbols and notations

$F \mid A$	Transformation F restricted to $A 1.1$	
	Difference of sets: $A \backslash B=\{x \mid x \in$ Aandx $\notin B\} 1.1$	
$+$	Sum of transformations 1.1	
$\dot{+}$	Symmetric difference of sets: $A \dot{+} B=(A \backslash B) \cup(B \backslash A)$	1.1
\times	Cartesian product of sets 1.1	
	Direct product of transformations 1.1	
	Direct product of groups 1.2	
\emptyset	Empty set 1.1	
\bigcirc	Composition of functions or transformations 1.1	
\odot	Disjoint composition (direct sum) of transformations	1
\checkmark	Disjunction, OR 1.4	
	Conjunction, AND, Product 1.4	
\neg	Complementation, Negation 1.4	
($=$)	Equality operation on \mathbf{Q}^{n} or B 1.4,	
\neg	Complementation, Negation 2.1	
\sim_{G}	Equivalence relation with respect to an acting group G	1.3
\sim_{f}	Equivalence relation 4.2	
\sim_{F}	Equivalence relation 5.2	
\succeq_{f}	Preorder 4.2	
$\equiv \bmod$	$a \equiv b \bmod n$ means $a-b$ is divisible by $n 1.2$	
\%	$a \% b$ is the remainder obtained by dividing a by $b 1.2$	

