Magic Cross

http://www.geocities.com/CapeCanaveral/Lab/3469/magiccross.pdf
04/25/97 Original paper written by Fabrizio Pivari version 1.0

Definition

A Magic Cross $+^{\mathrm{j}}$ is a cross made by integers of the sequence $1,2, \ldots, \mathrm{ji}^{2}$ and formed by j Magic Square of order i.
In addiction the sum of the rows and the columns of the cross is the same.

A simple method to make a Magic Cross

Degenerated Magic Cross $+^{j}{ }_{1}$ is very important because it suggests the simplest way to make a Magic Cross. For example, starting by $+{ }_{1}$ I'll show how to make $+{ }_{3}$.

is a Magic Cross $+{ }_{1}$ because 1,2,3,4,5 are degenerated Magic Square and the sum of the column $1+3+5$ is equal to the sum of the row $2+3+4$.

Now I'll made $+{ }_{3}{ }_{3}$ using $+{ }_{1}$. From the sequence $1,2, \ldots, \mathrm{ji}^{2}=45$ I take the first 9 numbers and make this magic square

8	1	6
3	5	7
4	9	2

I replace 1 from $+{ }_{1}$ with the magic square made.
Then I take the next 9 numbers $(10, \ldots, 18)$ and I make this magic square

17	10	15
12	14	16
13	18	11

I replace 2 from $+{ }^{5}$ with the new magic square. And so on.
The result is this Magic Cross

Open Problems

Is this the only method to make a Magic Cross? Is there a formula to know the sum of the columns and the rows of the Magic Cross?

