
On Designing Genetic Algorithms

for Hypercube Machines

R. Baragliay, M. Bucci, D. Circelli, R. Perego

Istituto CNUCE, Consiglio Nazionale delle Ricerche (CNR),

via S. Maria 36, Pisa, 56126 Italy

y Corresponding and presenting author,

phone: +39 50 593210, fax: +39 50 904052, e-mail r.baraglia@cnuce.cnr.it

Abstract

In this paper we investigate the design of highly parallel Genetic Algorithms. The Traveling
Salesman Problem is used as a case study to evaluate and compare di�erent implementations. To
�x the various parameters of Genetic Algorithms to the case study considered, the Holland se-
quential Genetic Algorithm, which adopts di�erent population replacement methods and crossover
operators, has been implemented and tested. Both fine � grained and coarse � grained par-
allel GAs which adopt the selected genetic operators have been designed and implemented on a
128-node nCUBE 2 multicomputer. The fine� grained algorithm uses an innovative mapping

strategy that makes the number of solutions managed independent of the number of processing
nodes used. Complete performance results showing the behavior of Parallel Genetic Algorithms
for di�erent population sizes, number of processors used, migration strategies are reported.

1 Introduction

Genetic Algorithms (GAs) [11, 12] are stochastic optimization heuristics in which searches in solution
space are carried out by imitating the population genetics stated in Darwin's theory of evolution.
Selection, crossover and mutation operators, directly derived by from natural evolution mechanisms
are applied to a population of solutions, thus favoring the birth and survival of the best solutions.
GAs have been successfully applied to many NP hard combinatorial optimization problems [6], in
several application �elds such as business, engineering, and science.

In order to apply GAs to a problem, a genetic representation of each individual (chromosome)
that constitutes a solution of the problem has to be found. Then, we need to create an initial
population, to de�ne a cost function to measure the fitness of each solution, and to design the
genetic operators that will allow us to produce a new population of solutions from a previous one. By
iteratively applying the genetic operators to the current population, the �tness of the best individuals
in the population converges to local optima.

Figure 1 reports the pseudo{code of the Holland genetic algorithm. After randomly generating
the initial population �(0), the algorithm at each iteration of the outer repeat--until loop generates
a new population �(t+1) from �(t) by selecting the best individuals of �(t) (function SELECT()) and
probabilistically applying the crossover and mutation genetic operators. The selection mechanism
must ensure that the greater the �tness of an individual Ak is, the higher the probability of Ak being
selected for reproduction. Once Ak has been selected, PC is its probability of generating a son by
applying the crossover operator to Ak and another individualAi, while PM and PI are the probabilities
of applying respectively, mutation and inversion operators to the generated individual respectively.

The crossover operator randomly selects parts of the parents' chromosomes and combines them
to breed a new individual. The mutation operator randomly changes the value of a gene (a single
bit if the binary representation scheme is used) within the chromosome of the individual to which it
is applied. It is used to change the current solutions with in order to avoid the convergence of the
solutions to \bad" local optima.

The new individual is then inserted into population �(t + 1). Two main replacement methods
can be used for this purpose. By adopting the discrete population model, the whole population �(t)

1

Program Holland Genetic Algorithm;
begin
t=0;
� (t) = INITIAL POPULATION() ;
repeat

for i = 1 to number of individuals do

F (Ai) = COMPUTE FITNESS(Ai);

Average fitness = COMPUTE AVERAGE FITNESS(F);
for k = 1 to number of individuals do
begin

Ak = SELECT(� (t));
if (PC > random(0;1)) then
begin

Ai = SELECT(� (t));
Achild = CROSSOVER(Ai,Ak);
if (PM > random (0;1)) then MUTATION (Achild);
� (t+ 1)=UPDATE POPULATION (Achild);

end

end;
t=t+1;
until (end condition);
end

Figure 1: Pseudo{code of the Holland Genetic Algorithm.

is replaced by new generated individuals at the end of the outer loop iteration. A variation on this
model was proposed in [13] by using a parameter that controls the percentage of the population
replaced at each generation. The continuous population model states, on the other hand, that the
new individuals are soon inserted into the current population to replace older individuals with worse
�tness. This replacement method allows potentially good individuals to be exploited as soon as they
become available.

Irrispective of the replacement policy adopted, population �(t+1) is expected to contain a greater
number of individuals with good �tness than population �(t).

The GA end condition can be to reach a maximumnumber of generated populations, after which
the algorithm is forced to stop or the algorithm converges to stable average �tness values.

The following are some important properties of GAs:

� they do not deal directly with problem solutions but with their genetic representation thus
making GA implementation independent from the problem in question;

� they do not treat individuals but rather populations, thus increasing the probability of �nding
good solutions;

� they use probabilistic methods to generate new populations of solutions, thus avoiding being
trapped in \bad" local optima.

On the other hand, GAs do not guarantee that global optimawill be reached and their e�ectiveness
very much depends on many parameters whose �xing may depend on the problem considered. The size
of the population is particularly important. The larger the population is, the greater the possibility
of reaching the optimal solution. Increasing the population clearly results in a large increase in GA
computational cost which, as we will see later, can be mitigated by exploiting parallelism.

The rest of the paper is organized as follows: Section 2 briey describes the computational models
proposed to design parallel GAs; Section 3 introduces the Traveling Salesman Problem used as our case
study, discusses the implementation issues and presents the results achieved on a 128{node hypercube
multicomputer; �nally Section 4 outlines the conclusions.

2

2 Parallel Genetic Algorithms

The availability of ever faster parallel computers means that parallel GAs can be exploited to reduce
execution times and improve the quality of the solutions reached by increasing the sizes of populations
managed.

In [5, 3] the parallelizationmodels adopted to implement GAs are classi�ed. The models described
are:

� centralized model. A single unstructured panmitic population is processed in parallel. A
master processor manages the population and the selection strategy and requests a set of slave
processors to compute the �tness function and other genetic operators on the chosen individuals.
The model scales poorly and explores the solution space like a sequential algorithm which uses
the same genetic operators. Several implementations of centralized parallel GAs are described
in [1].

� �ne-grained model. This model operates on a single structured population by exploiting
the concepts of spatiality and neighborhood. The �rst concept de�nes that a very small sub-
population, ideally just an individual, is stored in one element (node) of the logical connection
topology used, while the second speci�es that the selection and crossover operators are applied
only between individuals located on nearest{neighbor nodes. The neighbors of an individual
determine all its possible partners, but since the neighbor sets of partner nodes overlap, this
provides a way to spread good solutions across the entire population. Because of its scalable
communication pattern, this model is particularly suited for massively parallel implementations.
Implementations of �ne{grained parallel GAs applied to di�erent application problems can be
found in [8, 9, 14, 15, 19].

� coarse-grained model. The whole population is partitioned into sub-populations, called is-

lands, which evolve in parallel. Each island is assigned to a di�erent processor and the evolution
process takes place only among individuals belonging to the same island. This feature means
that a greater genetic diversity can be maintained with respect to the exploitation of a panmitic
population, thus improving the solution space exploration. Moreover, in order to improve the
sub-population genotypes, a migration operator that periodically exchanges the best solutions
among di�erent islands is provided. depending on the migration operator chosen we can dis-
tinguish between island and stepping stone implementations. In island implementations the
migration occurs among every island, while in stepping stone implementations the migration
occurs only between neighboring islands. Studies have shown that there are two critical factors
[10].: the number of solutions migrated each time and the interval time between two consecutive
migrations. A large number of migrants leads to the behavior of the island model similar to the
behavior of a panmitic model. A few migrants prevent the GA from mixing the genotypes, and
thus reduce the possibility to bypass the local optimumvalue inside the islands. Implementations
of coarse grained parallel GAs can be found in [10, 20, 21, 4, 18, 16].

3 Designing parallel GAs

We implemented both fine�grained and coarse�grained parallel GAs applied to the classic Traveling
Salesman Problem on a 128{node nCUBE 2 hypercube. Their performance was measured by varying
the type and value of some genetic operators. In the following subsection the TSP case study is
described and the parallel GA implementations are discussed and evaluated.

3.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) may be formally de�ned as follow: let C = fc1; c2; :::::; cng
be a set of n cities and 8i, 8j d(ci; cj) the distance between city ci and cj with d(ci; cj) = d(cj; ci).
Solving the TSP entails �nding a permutation �0 of the cities (c�0(1); c�0(2); :::::::; c�0(n)), such that

nX

i=1

d(c�0(i); c�0(i+1)) �
nX

i=1

d(c�k(i); c�k(i+1)) 8�k 6= �0; (n+ 1) � 1 (1)

3

According to the TSP path representation described in [9], tours are represented by ordered
sequences of integer numbers of length n, where sequence (�(1); �(2); :::::::; �(n)) represents a tour
joining, in the order, cities c�(1); c�(2); :::::::; c�(n). The search space for the TSP is therefore the set
of all permutations of n cities. The optimal solution is a permutation which yields the minimum cost
of the tour.

The TSP instances used in the tests are: GR48, a 48-city problem that has an optimal solution
equal to 5046, and LIN105, a 105-city problem that has a 14379 optimal solution1.

3.2 Fixing the genetic operators

In order to study the sensitivity of the GAs for the TSP to the settings of the genetic operators, we
used Holland's sequential GA by adopting the discrete generation model, one and two point crossover
operators, and three population replacement criteria.

� The discrete generation model separates sons' population from parents' population. Once all
the sons' population has been generated, it is merged with the parents' population according to
the replacement criteria adopted.

� One point crossover breaks the parent's tours into two parts and recombines them in the son in
a way that ensures tour legality [2]. Two points crossover [7] works like the one point version but
breaks the parent's tour into three di�erent parts. A mutation operator which simply exchanges
the order of two cities of the tour has been also implemented and used [9].

� The replacement criterion speci�es a rule for merging current and new populations. We tested
three di�erent replacement criteria, called R1, R2 and R3. R1 replaces solutions with lower
�tnesses of the current population with all the son solutions unaware of their �tness. R2 orders
the sons by �tness, and replaces an individual i of the current population with son j only if the
�tness of i is lower than the �tness of j. R2 has a higher control on the population than R1,
and allows only the best sons to enter the new population. R3 selects the parents with a lower
than average �tness, and replaces them with the sons with above average �tnesses.

The tests for setting the genetic operators were carried out by using a 640 solution population,
a 0.2 mutation parameter (to apply a mutation to 20% of the total population), 2000 generations for
the 48 city TSP, and 3000 generations for the 105 city TSP. Every test was run 32 times, starting
from di�erent random populations, to obtain an average behavior. From the results of the 32 tests
we computed:

� the average solution: AV G =

P
32

i=1
FEi

32 , where FEi is the best fitness obtained with run Ei;

� the best solution: BST = minfFEi ; i = 1::::32g;

� the worst solution: WST = maxfFEi ; i = 1::::32g.

These preliminary tests allow us to choose some of the most suitable genetic operators and
parameters for the TSP. Figure 2 plots the average �tness obtained by varying the crossover type on
the 48{city TSP problem. The crossover was applied to 40% of the population and the R2 replacement
criterion was used. As can be seen, the two point crossover converges to better average solutions than
the one point operator. The one point crossover initially exhibits a better behavior, but after 2000
generations, converges to solutions that have considerably higher costs. We obtained a similar behavior
for the other replacement criteria and for the 105-city TSP.

Table 1 reports AV G, BST and WST results for the 48-city TSP obtained by varying both the
population replacement criterion and the percentage of the population to which the two point crossover
has been applied. On average, the crossover parameter values in the range 0:4 � 0:6 lead to better
solutions, almost irrispective of the replacement criterion adopted. Figure 3 shows the behavior of the
various replacement criteria for a 0:4 crossover value. The R2 and R3 replacement criteria resulted in
a faster convergence than R1, and they converged to very near �tnesses.

1Both the TSP instances are available at: ftp://elib.zib-berlin.de/pub/mp-testdata/tsp/tsplib.html

4

6000

8000

10000

12000

14000

16000

0 500 1000 1500 2000

Fi
tn

es
s

Generations

Two points crossover
One point crossover

Optimal solution for GR48

Figure 2: Fitness values obtained with the execution of the sequential GA on the 48{city TSP by
varying the crossover operator, and by using the R2 replacement criteria.

Crossover parameter

0.2 0.4 0.6 0.8

AVG 6255 5632 5585 5870

R1 BST 5510 5315 5135 5305

WST 7828 6079 6231 6693

AVG 5902 5696 5735 5743

R2 BST 5405 5243 5323 5410

WST 7122 6180 6225 6243

AVG 6251 5669 5722 5773

R3 BST 5441 5178 5281 5200

WST 7354 6140 6370 6594

Table 1: Fitness values obtained with the execution of the sequential GA on the 48{city TSP by
varying the value of the crossover parameter and the population replacement criterion.

3.3 The coarse grained implementation

The coarse grained parallel GA was designed according to the discrete generation and stepping
stone models. Therefore, the new solutions are merged with the current population at the end of each
generation phase, and the migration of the best individuals among sub-population is performed among
ring-connected islands. Each of the P processors manages N=P individuals, with N population size
(640 individuals in our case). The number of migrants is a �xed percentage of the sub-population. As
in [4], migration occurs periodically in a regular time rhythm, after a �xed number of generations.

In order to include all the migrants in the current sub-populations, and to merge the sub-
population with the locally generated solutions, R1 and R2 replacement criteria were used, respec-
tively. Moreover, the two point crossover operator was adopted.

Table 2 reports some results obtained by running the coarse grained parallel GA on the 48{city
TSP. M denotes the migration parameter. The same data for a migration parameter equal to 0:1 are
plotted in Figure 4. It can be seen that AVG, BST and WST solutions get worse values by increasing
the number of the nodes used. This depends on of the constant population size used: with 4 nodes
sub-populations of 16 solutions are exploited, while with 64 nodes the sub-populations only consists
of 10 individuals. Decreasing the number of solutions that forms a sub-population worsens the search
in the solution space; small sub-populations result in an insu�cient exploration of the solution space.
The inuence of the number of migrants on the convergence is clear from Table 2. When the sub-
populations are small, a higher value of the migration parameter may improve the quality of solutions
through a better mix of the genetic material.

5

6000

8000

10000

12000

14000

16000

0 500 1000 1500 2000

Fi
tn

es
s

Generations

R2
R3
R1

Optimal solution for GR48

Figure 3: Fitness values obtained by executing the sequential GA on the 48{city TSP with a 0.4
crossover parameter, and by varying the replacement criterion.

Number of processing nodes
4 8 16 32 64 128

AVG 5780 5786 5933 6080 6383 6995

M=0.1 BST 5438 5315 5521 5633 5880 6625

WST 6250 6387 6516 6648 8177 8175

AVG 5807 5877 5969 6039 6383 6623

M=0.3 BST 5194 5258 5467 5470 5727 6198

WST 6288 6644 7030 6540 8250 7915

AVG 5900 5866 5870 6067 6329 6617

M=0.5 BST 5419 5475 5483 5372 6017 6108

WST 6335 6550 7029 6540 8250 7615

Table 2: Fitness values obtained with the execution of the coarse grained GA on the 48-city TSP by
varying the migration parameter.

3.4 The �ne grained implementation

The �ne grained parallel GA was designed according to the continuous generation model, which
is much more suited for �ne grained parallel GAs than the discrete one. The two point crossover
operator was applied.

According to the �ne grained model the population is structured in a logic topology which �xes
the rules of interaction between the solution and other solutions: each solution s is placed at a vertex
v(s) of logic topology T . The crossover operation can only be applied among nearest neighbor solutions
placed on the vertices directly connected in T . Our implementation exploits the physical topology of
the target multicomputer, therefore the population of 2N individuals is structured as a N -dimensional
hypercube.

By exploiting the recursivity of the hypercube topology de�nition, we made the number of so-
lutions treated independent of the number of nodes used to execute the algorithm. As can be seen
in Figure 5, a 23 = 8 solution population can be placed on a 22 = 4 node hypercube, using a simple
mapping function which masks the �rst (or the last) bit of the Grey code used to numerate the logical
hypercube vertices [17]. Physical node X00 will hold solutions 000 and 100 of the logic topology, not
violating the neighborhood relationships �xed by the population structure. In fact, the solutions on
the neighborhood of each solution s will still be in the physical topology on directly connected nodes
or on the node holding s itself.

We can generalize this mapping scheme: to determine the allocation of a 2N solution population
on a 2M node physical hypercube, with M < N , we simply mask the �rst (the last) N �M bits of

6

5000

5500

6000

6500

7000

7500

8000

8500

Fi
tn

es
s

Number of nodes

4 8 16 32 64 128

Best solution (MIG)
Average solution (MED)

Worst solution (PEG)

Figure 4: AVG, BST and WST values obtained by executing the coarse grained GA on the 48{city
TSP as a function of the number of nodes used, and 0.1 as migration parameter.

the binary coding of each solution.

010000

001 011

X00 X10

X11

Physical topology

X01
101 111

110100

mapping

Logical topology

Figure 5: Example of an application of the mapping scheme.

Table 3 reports the �tness values obtained with the execution of the �ne grained GA by varying the
population dimension from 128 solutions (a 7 dimension hypercube) to 1024 solutions (a 10 dimension
hypercube). As expected, the ability to exploit population sizes larger than the number of processors
used in our mapping scheme, leads to better quality solutions especially when few processing nodes are
used. The improvement in the �tness values by increasing the number of nodes while maintaining the
population size �xed, is due to a particular feature of the implementation, which aims to minimize the
communication times to the detriment of the diversity of the same node solutions. Selection rules tend
to choose partner solutions in the same node. The consequence is a greater uniformity in solutions
obtained on few nodes, which worsens the exploration of the solution space. The coarse grained
implementation su�ered of the opposite problem which resulted in worse solutions obtained as the
number of nodes was increased. This behavior can be observed by comparing Figure 4, concerning
the coarse grained GA, and Figure 6, concerning the �ne grained algorithm with a 128 solution
population applied to the 48{city TSP.
Table 4 shows that an increase in the number of solutions processed results in a corresponding increase
in the speedup values. This is because a larger number of individuals assigned to the same processor
leads to lower communication overheads for managing the interaction of each individual with neighbor
partners.

3.5 Comparisons

We compared the �ne and coarse grained algorithms on the basis of the execution time required and
the �tness values obtained by each one after the evaluation of 512000 solutions. This comparison
criterion was chosen because it allows to overcome computational models diversity that make non

7

Population Number of processing nodes
size 1 4 8 16 32 64 128

AVG 39894 24361 23271 23570 23963 22519 22567

128 BST 34207 20774 19830 20532 21230 20269 20593

WST 42127 30312 26677 27610 27634 28256 25931

AVG 33375 25313 22146 21616 21695 22247 21187

256 BST 29002 24059 20710 19833 20144 19660 19759

WST 40989 26998 23980 24007 23973 24337 22256

AVG 28422 23193 22032 21553 20677 20111 20364

512 BST 28987 22126 19336 20333 19093 18985 18917

WST 41020 25684 23450 22807 22213 21696 21647

AVG 25932 23659 22256 20366 19370 18948 19152

1024 BST 27010 21581 21480 18830 18256 18252 17446

WST 40901 25307 22757 21714 20766 19525 20661

Table 3: Fitness values obtained with the execution of the �ne grained GA applied to the 105-city
TSP after 3000 generations, by varying the number of solutions per node.

5000

5500

6000

6500

7000

7500

8000

8500

Fi
tn

es
s

Number of nodes

4 8 16 32 64 128

Best solution (MIG)
Average solution (MED)

Worst solution (PEG)

Figure 6: AVG, BST and WST values obtained by executing the �ne grained GA applied to the 48-city
TSP as a function of the number of nodes used. The population size was �xed to 128 individuals.

comparable the �ne and coarse grained algorithms. The evaluation of 512000 new solutions allows
both the algorithms to converge and requires comparable execution times. Table 5 shows the results
of this comparison. It can be seen that when the number of the nodes used increases the �ne grained
algorithm gets sensibly better results than the coarse grained one. On the other hand, the coarse
grained algorithm shows a super{linear speedup due to the quick sort algorithm used by each node
for ordering by �tness the solutions managed. As the number of nodes is increased, the number of
individuals assigned to each node decreases, thus requiring considerably less time to sort the sub-
population.

4 Conclusions

We have discussed the results of the application of parallel GA algorithms to the TSP. In order to
analyze the behavior of di�erent replacement criteria and crossover operators and values Holland's
sequential GA was implemented. The tests showed that the two point crossover �nds better solutions,
as does a replacement criteria which replaces an individual i of the current population with son j only
if the �tness of i is worse than the �tness of j. To implement the fine�grained and coarse�grained
parallel GAs on a hypercube parallel computer the most suitable operators were adopted. For the

8

Number Speedup
of nodes 128 individuals 256 individuals 512 individuals 1024 individuals

1 1 1 1 1
4 3.79 3.84 3.89 3.92
8 7.25 7.47 7.61 7.74
16 13.7 14.31 14.78 15.12
32 25.25 27.02 28.03 29.38
64 44.84 49.57 53.29 56.13
128 78.47 88.5 98.06 105.32

Table 4: Speedup of the of the �ne grained GA applied on the 105-city TSP for di�erent population
sizes.

Number of processing nodes
4 8 16 32 64 128

Fine grained AG

AVG 26373 26349 25922 25992 24613 23227

BST 23979 23906 23173 21992 22145 20669

WST 30140 27851 29237 29193 30176 2680

Execution times 1160 606 321 174 98 51

Coarse grained AG

AVG 23860 24526 27063 29422 32542 35342

BST 20219 21120 23510 25783 30927 33015

WST 25299 29348 36795 39330 39131 41508

Execution times 1670 804 392 196 97 47

Table 5: Fitness values and execution times (in seconds) obtained by executing the �ne and coarse
grained GA applied to the 105-city TSP with a population of 128 and 640 individuals, respectively.

coarse grained GA we observed that the quality of solutions gets worse if he number of nodes used is
increased. Moreover, due to the sorting algorithm used to order each sub-population by �tness, the
speedup of the coarse grained GA were super{linear. Our �ne-grained algorithm adopts a mapping
strategy that allows the number of solutions to be independent of the number of nodes used. The ability
to exploit population sizes larger than the number of processors used gives better qualitysolutions
especially when only a few processing nodes are used. Moreover, the quality of solutions does not get
worse if the number of the nodes used is increased. The �ne grained algorithm showed good scalability.
A comparison between the �ne and coarse grained algorithms highlighted that �ne grained algorithms
represent the better compromise between quality of the solution reached and the execution time spent
on �nding it.
The AGs implemented reached only \good" solutions. In order to improve the quality of solutions
obtained, we are working to include a local search procedure within the AG.

References

[1] R. Bianchini and C.M. Brown. Parallel genetic algorithm on distribuited-memory architectures.
Technical Report TR 436, Computer Sciences Department University of Rochester, 1993.

[2] H. Braun. On solving travelling salesman problems by genetic algorithms. In Parallel Problem

Solving from Nature - Proceedings of 1st Workshop PPSN , volume 496 of Lecture Notes in

Computer Science, pages 129{133. Springer-Verlag, 1991.

9

[3] E. Cantu-Paz. A summary of research on parallel genetic algoritms. Technical Re-
port 95007, University of Illinois at Urbana-Champaign, Genetic Algoritms Lab. (IlliGAL),
http://gal4.ge.uiuc.edu/illigal.home.html, July 1995.

[4] S. Cohoon, J. Hedge, S. Martin, and D. Richards. Punctuated equilibria: a parallel genetic
algorithm. IEEE Transaction on CAD, 10(4):483{491, April 1991.

[5] M. Dorigo and V. Maniezzo. Parallel genetic algorithms: Introduction and overview of current
research. In Parallel Genetic Algorithms, pages 5{42. IOS Press, 1993.

[6] M. R. Garey and D.S. Jonshon. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, 1979.

[7] D. Goldberg and R. Lingle. Alleles, loci, and the tsp. In Proc. of the First International Conference
on Genetic Algorithms, pages 154{159, 1985.

[8] M. Gorges-Schleuter. Explicit parallelism of genetic algorithms through population structures.
In Parallel Problem Solving from Nature - Proceedings of 1st Workshop PPSN, volume 496, pages
398{406. Lecture Notes in Computer Science, 1990.

[9] M. Gorges-Schleuter. Genetic Algoritms and Population Structure. PhD thesis, University of
Dortmund, 1991.

[10] P. Grosso. Computer Simulations of Genetic Adaptation: Parallel Subcomponent Interaction in

a Multilocus Model. PhD thesis, University of Michigan, 1985.

[11] J. Holland. Adaptation in Natural and Arti�cial Systems. Univ. of Mitchigan Press, 1975.

[12] J.H. Holland. Algoritmi genetici. Le Scienze, 289:50{57, 1992.

[13] K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD thesis,
University of Michigan, 1975.

[14] B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In Proceedings of

the Third International Conference on Genetic Algorithms, pages 428{433. Morgan Kaufmann
Publishers, 1989.

[15] H. Muhlenbein. Parallel genetic algorithms, population genetic and combinatorial optimization.
In Parallel Problem Solving from Nature - Proceedings of 1st Workshop PPSN, volume 496, pages
407{417. Lecture Notes in Computer Science, 1991.

[16] H. Muhlenbein, M. Schomisch, and J. Born. The parallel genetic algorithm as function optimizer.
Parallel Computing, 17:619{632, 1991.

[17] nCUBE Corporation. ncube2 processor manual. 1990.

[18] C. Pettey, M. Lenze, and J. Grefenstette. A parallel genetic algorithm. In Proceedings of the

Second International Conference on Genetic Algorithms, pages 155{161. L. Erlbaum Associates,
1987.

[19] M. Schwehm. Implementation of genetic algorithms on various interconnections networks. Parallel
Computing and Transputer applications, pages 195{203, 1992.

[20] R. Tanese. Parallel genetic algorithms for a hypercube. In Proceedings of the Second International

Conference on Genetic Algorithms, pages 177{183. L. Erlbaum Associates, 1987.

[21] R. Tanese. Distribuited genetic algorithms. In Proceedings of the Third International Conference

on Genetic Algorithms, pages 434{440. M. Kaufmann, 1989.

10

