9 May 1999


asic Concepts

A function f : X ® Y is a rule which associates each element x Î X with a unique element y Î Y such that y = f(x).

Note:  In defining a function, the rule and domain must be given. 
If the domain is not given, it is taken to be the largest possible domain for which the function is defined. 
If the codomain is not specified, it is taken to be the range of the function.


njective, Surjective, Bijective


nverse Function

For every bijective function f : X ® Y, there exists an inverse function f-1 : Y ® X such that

y = f(xÛ  x = f-1(y).


omposite Function

Let f and g be functions.
Then the composite gof, or simple gf, is defined by

gof(x) = g(f(x)).


xamples

Example 1:  Two functions are defined as follows:

f : x ® x2 - 2x,   x Î R, x ³ 0;
g : x ® e2x,   x Î R.

For each of the functions, state the range and determine whether or not the function is one-one.
Give, in the same form, the definition of the functions gof and g-1.

Solution:

x2 - 2x  =  x(x - 2)
 =  (x - 1)2 - 1.

Rf = [-1, ¥). 

f(0) = 0 = f(2)  but  0 ¹ 2.
\  f is not one-one.

Rg = R+ = (0, ¥). 

g is one-one, 
as every horizontal line y = b, b Î R,
cuts the graph of y = g(x) at most once.

gf(x)  =  g(x2 - 2x)
 
 = 
2x2 - 4x
e

\  gof : x ®
2x2 - 4x
e
, x Î R, x ³ 0.

Let y
 =  e2x
ln y
 = 2x
x
 =  ½ln y
\  g-1 : x ® ½ln x, x Î R+.


Example 2:  The functions f and g are defined by

f : x ® ln x,   x > 0;
g : x ® 1 - x,   x < 1.

Show that fog is a function.  Define fog and state its range.  Explain why the function gof does not exist.

Solution:

Rg = R+, Df = R+,
\  Rg Í Df  Þ  fog is a function.

fog(x)  =  f(1 - x)
 =  ln (1 - x)

\  fog : x ® ln (1 - x), x < 1.

Rfog = R.
 

Rf = R, Dg = (, 1),
\  Rf Ë Dg  Þ  gof is not a function.