This page was last updated on 26 Jun 1998

Main Points


Introduction

ò ƒ(x) dx
 - the indefinite integral of ƒ with respect to x,
C
 - the constant of integration,
ƒ
 - the integrand,
ò
 - the integral sign,
F
 - an anti-derivative of ƒ.

ób  ƒ(x) dx
õa
 = [F(x)] b
a
 = F(b) - F(a),

where F is an anti-derivative of ƒ.


Basic Properties of Indefinite Integrals

1.    
d
¾
dx
[ò ƒ(x) dx]
 = ƒ(x)
     
2.
ò(
d
¾
dx
ƒ(x)) dx
 = ƒ(x) + C
     
3.
ò dx = ò 1 dx
 = x + C
     
4.
ò kƒ(x) dx
 = kò ƒ(x) dx    where k is a constant
     
5. ò [ƒ(x) ± g(x)]dx  = ò ƒ(x) dx ± ò g(x) dx


Basic Properties of Definite Integrals

1.    
óa  ƒ(x) dx
õa
 = 0
     
2.
ób  ƒ(x) dx
õa
 = - óa  ƒ(x) dx
õb
     
3.
ób  ƒ(x) dx
õa
 =  óm  ƒ(x) dx ób  ƒ(x) dx
õa õm


Standard Forms

1.       For n ¹ 1,  
(a)
ò xn dx
 
xn + 1
 
 =  ¾¾¾  + C
 
n + 1
 
 
(b)
ò (ax + b)n dx
 
(ax + b)n
 
 =  ¾¾¾¾  + C
 
a(n + 1)
 
(c)
  ò ƒ'(x)[ƒ(x)]n dx
 
[ƒ(x)]n + 1
 
 =  ¾¾¾¾¾  + C
 
n + 1

2. (a)
ó
ô
õ
1
¾
x
 dx
 = ln |x| + C
 
(b)
ó
ô
õ
1
¾¾¾
ax + b
 dx
 = 
1
¾
a
ln |ax + b| + C
 
(c)
ó
ô
õ
ƒ'(x)
¾¾¾
ƒ(x)
 dx
 = ln |ƒ(x)| + C

3. (a) (i)
ò cos x dx
 = sin x + C
(ii)
ò sin x dx
 = - cos x + C
(iii)
ò sec2 x dx
 = tan x + C
(iv)
ò cosec2 x dx
 = - cot x + C
(v)
ò sec x tan x dx
 = sec x + C
(vi)
ò cosec x cot x dx
 = - cot x + C
 
(b)
ò cos (ax + b) dx
 = 
1
¾
a
sin (ax + b) + C
 
similarly for the rest
 
(c)
ò ƒ'(x) cos ƒ(x) dx
 = sin ƒ(x) + C
 
similarly for the rest
 
4. (a)
ò ex dx
 = ex + C
 
(b)
ò eax + b dx
 = 
1
¾
a
eax + b + C
 
(c)
  ò ƒ'(x) eƒ(x) dx
 = eƒ(x) + C

5. (a) (i)
ó
ô
õ
1
¾¾¾¾
Ö(1 - x2)
 dx
 = sin -1 x + C
 
(ii)
ó
ô
õ
1
¾¾¾¾
Ö(a2 - x2)
 dx
 = sin -1 
x
¾
a
 + C
 
(iii)
ó
ô
õ
ƒ'(x)
¾¾¾¾¾¾¾
Ö(a2 - [ƒ(x)]2)
 dx
 = sin -1 
ƒ(x)
¾¾
a
 + C
 
 
(b) (i)
ó
ô
õ
1
¾¾¾
1 + x2
 dx
 = tan-1 x + C
 
(ii)
ó
ô
õ
1
¾¾¾
a2 + x2
 dx
 = 
1
¾
a
tan-1 
x
¾
a
 + C
 
(iii)
ó
ô
õ
ƒ'(x)
¾¾¾¾¾
a2 + [ƒ(x)]2
 dx
 = 
1
¾
a
tan-1
ƒ(x)
¾¾
a
 + C
 
 
(c) (i)
ó
ô
õ
1
¾¾¾
a2 - x2
 dx
 = 
1
¾
2a
ln æ
ç
è
a + x
¾¾¾
a - x
ö
÷
ø
 + C
  for |x| < a
 
(ii)
ó
ô
õ
1
¾¾¾
x2 - a2
 dx
 = 
1
¾
2a
ln  æ
ç
è
x - a
¾¾¾
x + a
ö
÷
ø
 + C
  for |x| > a


Use of Trigonometry Identities

  1.  ò sin mx cos nx dx , ò sin mx sin nx dx or ò cos mx cos nx dx

Use the factor formulae to express the integrand as the sum or difference of 2 sines or cosines and then integrate.

sin P cos Q
 =  ½[sin (P + Q) + sin (P - Q)]
cos P cos Q
 =  ½[cos (P + Q) + cos (P - Q)]
sin P sin Q
 =  -½[cos (P + Q) - cos (P - Q)]

  2.  ò sinn x dx or ò cosn x dx

(a)  When n is even
Use
cos2 x
 = ½(1 + cos 2x)
sin2 x
 = ½(1 - cos 2x)
repeatedly to express the integrand as cosines of multiple angles.

(b)  When n is odd

Keep one of the term and express the rest into the complementary function using
sin2 x + cos2 x = 1.

Eg.  sin3 x  = sin2 x sin x
 = (1 - cos2 x) sin x
 
cos5 x  = cos4 x cos x
 = (1 - sin2 x)2 cos x
 = (1 - 2 sin2 x + sin4 x) cos x

  3.  ò tann x dx
Use the identities 1 + tan2 x = sec2 x to rewrite tann x.


By Substitution

Integrand contains
Use the substitution
(ax + b)n
  u = ax + b
(a2 - x2)n/2
  x = a sin q
(a2 + x2)n/2
  x = a tan q
cos2n + 1 x
  s = sin x
sin2n + 1 x
  c = cos x
1
¾¾¾¾¾¾¾¾
a + b cos x + c sin x
  t = tan (x/2)


By Parts

ó
õ
u
dv
¾
dx
 dx = uv -  ó
õ
v
du
¾
dx
 dx

L
 - Logarithmic Functions
I
 - Inverse Trigonometric Functions
A
 - Algebraic Functions
T
 - Trigonometric Functions
E
 - Exponential Functions