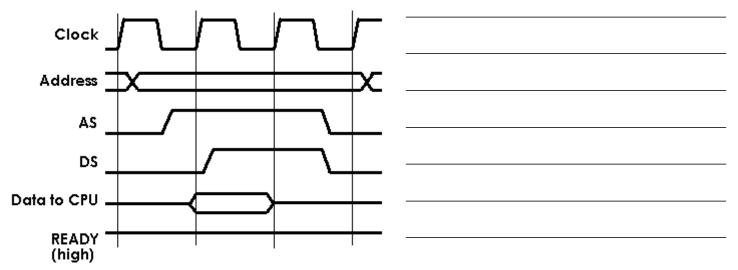
NAME:

Instructions

PART I. Write the letter of the corresponding answer. (1.5 pts each)

Р	1. Set of unique addresses that can be specified over the address bus
GG	2. A sequence of microinstructions
Q	3. Automatically set by certain events during arithmetic and logic operations
Μ	4. Signal that indicates the CPU has placed information over the data bus
K	5. Instructions that perform actual data operations
KK	6. Keeps track of next instruction to be fetched
CC	7. Request that is processed after the complete execution of the current instruction
Α	8. Signal that indicates the CPU has placed a new address over the address bus
В	9. Different ways to specify the address of an operand
J	10. Instructions that involve operations on the CPU status register
С	11. Performs arithmetic and logic operations
R	12. Components like electronic circuits, power supplies, cables, racks, and other physical entities
Т	13. Microprogramming technique where each bit in the microinstruction corresponds to a logic signal
0	14. The instruction provides the operand address in memory
BB	15. Contains a copy of the instruction
Х	16. The address of the operand is implicit in the opcode field of the instruction
S	17. How long after sampling the signal must remain in its valid state
PP	18. A set of contiguous memory where items are added and retrieved in a LIFO basis
RR	19. Stores the program status word

- **RR** 19. Stores the program status word
- V 20. Controls the operation of a peripheral according to commands received from the CPU


A. Address Strobe		P. Direct Address Space	EE. Memory Address Space
B. Addressing Mo	des	Q. Flag Bits	FF. Microcoding
C. Arithmetic/Log	ic Unit	R. Hardware	GG. Microprogram
D. Base Register		S. Hold Time	HH. Output
E. Based Index Mo	ode	T. Horizontal	II. Peripherals
F. Based Mode		U. I/O Address Space	JJ. Program Control Instructio
G. Bus Request		V. I/O Controller	KK. Program Counter
H. Byte		W. Immediate Mode	LL. Register Direct Mode
I. Control Bits		X. Implied Mode	MM. Register Indirect Mode
J. CPU Control Ins	structions	Y. Index Register	NN. Relative Mode
K. Data Manipulat	ion Instructions	Z. Indexed Mode	OO. Set-up Time
L. Data Strobe		AA. Input	PP. Stack
M. Data Strobe		BB. Instruction Register	QQ. Stack Pointer
N. Data Transfer In	nstructions	CC. Interrupt Request	RR. Status/Flag register
O. Direct Address	Mode	DD. Memory	SS. Vertical

PART II. Enumeration (1 pt each)

Instruction Execution Phases	9. Input/Output			
1. Fetch Instruction	Types of Data Manipulation Instructions			
2. Decode Instruction	10. Arithmetic	Shift/Rotate		
3. Determine Operand Addresses	11. Logical	String Processing		
4. Fetch Operands	12. Bit Manipulation			
5. Operate on Operands	Data Transfer Control Lines			
6. Store the Result	13. M/IO* DS			
Components of a Computer	14. R/W* AS			
7. Central Processing	15. WRD/B* Ready	τ		
8. Memory				

PART III. Essay. Write your answer only on the lines provided. Anything written beyond will not be considered.

Explain what is wrong with the following memory read cycle timing diagram. (5 pts)

Why is the data bus used as basis for the categorization of the CPU (into 8-bit µP, 16-bit µP, etc)? (5 pts)

What is the difference between horizontal and vertical microprogramming? (5 pts)

PART IV.

1. The Intel 8080 employs 20 lines to send addresses to memory and I/O. What is the direct address space of the Intel 8080? (2 pts) $2^{20} = 1,048,574$ What is the highest address? (1 pt) FFFFFh = 1,048,575 What is the lowest address? (1 pt) 0

2. The Intel 8080 is a Little Endian microprocessor. If the 16-bit words 3876h, F2EAh and 97A4h are stored in the given order, how would data appear in memory? (6 pts)

7100	76h	7102	EAh	7104	A4h
7101	38h	7103	F2h	7105	97h

3. Consider the Intel 8085 microprocessor. For single-byte instructions, an operand field is four bits long. What is the maximum number of opcodes that can be accommodated by a single-byte one address instruction? (3 pts) 32

If all zeroes in the operand field allow opcode expansion, how many additional instructions are accommodated? (2 pts) 32

4. A jump instruction is three bytes long and employs relative addressing. If the instruction is at E0A4h, calculate the jump address if the signed displacement is 11111010b. (5 pts) E0A1h

PART V. Use the uACE programming model to answer the following questions.

1. Accumulator A initially contains 8Ah. The following code is then executed:

LDX #3h HERE ASRA DEX BNE HERE How many times is the instruction ASRA repeated? (2 pts) executed 3x (or repeated 2x) What is the final hexadecimal value of accumulator A? (3 pts) F1h Give the decimal equivalent of the value in accumulator A. (2 pts) -15 The instruction ASRA is the same as performing what operation? (3 pts) division by 2 If the above code is stored in memory starting at address E050h, what will the program counter contain after the code has been executed? (3 pts) E057h BNE uses relative addressing mode. What signed displacement in hexadecimal should HERE specify? Hint: Try converting to machine code first. (5 pts) FCh If the system is clocked at 4MHz, how long is one clock cycle? (2 pts) 250ns How long would it take to execute the entire code? (5 pts) 8.25µs

If the above code is replaced by the following

LDX #3h HERE ASRA PSHA DEX BNE HERE PULB

and the stack pointer is initially at E7FEh, what will accumulator B contain after PULB is executed? (2 pts) F1h What memory location is the top of stack after the code is executed? (3 pts) E7FCh