
A Simulation Study of Two-Level Caches’

Robert T. Short
DECwest Engineering
14475 NE 24th Street
Bellevue, WA 98007

Abstract
IVe report on a trace-driven simulation study to ex-

amine the effect of a two-level cache hierarchy in unipre-
cessors. A simulation model of a multiple-cycle-pcr-
instruction processor was constructed to estimate the
total cycles required to execute a synthetic benchmark.
Results show that a second-level cache can be used to
increase system performance when main memory access
times are large relative to CPU cycle time. For exam-
ple, the addition of a 4-cycle, 64K second-level cache
following a l-cycle, 81< first-level cache increases per-
formance by 15 percent when used in a system with a
15-cycle primary memory. Second level caches are shown
to be particularly effective when used behind small on-
chip caches; adding an 81< second-level to a II< first-level
increases performance by 26 percent, assuming similar
parameters. We also evaluate the performance impact
of different write strategies and separate I and D caches.

1 Introduction

Since its 19G8 introduction in the IBM 360/85 1171, the cache
memory has become commonplace in computer architectures.
The power of the cache derives from its high performance im-
pact and low relative cost; the addition of a cache can easily
double the performance of a system by greatly reducing effec-
tive memory access time. Cache behavior has been extcusively
studied through trace-driven simulation [23, 19, 13, 201, mod-
elling [5, 251, and direct measurement (7, 91.

Caches provide an additional level in the system memory
hierarchy. In this paper we examine the performance impact
of adding a third level to this hierarchy through the use of
a two-level cache. Two level caches have been described in
the literature [22, 12, 4, 241 but have rarely been used. The
one notable exception is the FACOM-380/382 [14] which has
a fast G4K local cache and a second-level cache of 12SI<-512IC
bytes. Smith [19] initially discounted the feasibility of multi-
level caches on the grounds that the ratio of memory to cache
speed is too small for a third level; more recently, he suggested
that multilevel caches would become more common 1211.

Several trends in current technology have increased the vi-
ability of a two-level cache, for example:

1. Technology is yielding impressive reductions in processor
speed, but memory speed has not kept pace. Therefore,
the disparity between processor and memory speed is in-

creasing.

2. The appetite for memory is rapidly increasing and pri-
mary memories of 100s to 1000s of megabytes will be
common. Larger memories typically have larger access
times because of packaging and physical constraints,

‘This WA was supported in part by the National Science Foundation
under Grant NO. CCR-8619663 and by DECwest Engineering.

Henry M. Levy
Department of Computer Science

University of Washington
Seattle, WA 98195

As on-chip densities increase, it becomes possible to in-
clude small on-chip instruction and/or data caches [15, 1,
6, 11,3]. These caches will need to be backed up by larger
second-level caches. As one example, the MicroVAX 3500
has a 1II on-chip cache and a G4K second-level cache.

Shared memory multiprocessors require local caches to
reduce bus contention. A second-level global cache can
help to further reduce access time on cache misses [lo, 241.

For these rea.sons, we believe that two-level caches will become
commonplace within the next several years.

This paper describes a simulation study of two-level caches
in uniprocessors. VVhile the goal of most cache simulations is to
determine hit ratios, we have relied on a detailed CPU model
to produce a more detaiIed performance analysis. That is, in
addition to hit ratios, the simulation estimates program per-
formance in CPU cycles based on our CPU model. The need
for using such a model is dictated by the nature of a two-level
cache: large changes in hit ratio at the second level (further
from the CPU) may have only a small impact on program pcr-
formance. Therefore, our simulation determines CPU cycles
as well as hit ratios for the synthetic stream that it executes.
The following section describes the models we examined and
the methodology used for the simulation. \Ve then describe
the structure of the simulator and finally present results.

2 Cache Models and Methodology

For this study we chose to examine several system organiza-
tions, including (a) a baseline system with a single cache, (b) a
system with a two-level cache, and (c) a two-level system with
separate local instruction and data caches. Figure 1 shows the
basic two-level cache organization with a sinile combined in-
struction and data cache, from which most of our results are
reported. We refer to the processor-local cache as the L1 cache
and the second-level cache as the L2 cache. At a high level, the
components of this system operates in the following way;

l The instruction fetch unit contains an instruction register
and a prefetch buffer into which the next instruction is
read while the current instruction is executing. When
the prefetch buffer is empty, the instruction fetch unit
sends an address to the cache and waits for the instruction
to return. This provides a simple model of instruction
prefetch.

s The instruction execution unit fetches operands and stores
results. The instruction execution unit waits until an in-
struction is ready in the instruction register, begins fetch-
ing operands from the cache, executes the instruction,
and then stores results.

81
CH2545-2/88/0000/0081$01.00 0 1988 IEEE

Memory system

Figure 1: Basic Two-Level Simulation Model

. The L1 cache receives addresses from the prefetch and re-
turns instructions either from the cache or from the next
level of the memory hierarchy. The cache also receives
addresses from the execution unit and reads or writes
operands, again from the cache or from the next level of
the hierarchy. The handling of writes varies with differ-
ent write algorithms. If separate Ll instruction and data
caches are present, they respond to the instruction fetch
and instruction execution units, respectively.

. The L2 cache receives addresses from the Ll cache (or
caches) and reads or writes operands from its storage or
from the primary memory system. The handling of writes
varies with different write algorithms.

l The bus is a half-duplex datapath connecting the caches
to the memory system. Devices on the bus must arbitrate
for bus ownership before commands or data can be sent.

l The primary memory consists of a number of interleaved
memories. Simulation parameters include the interleav-
ing factor, access time, and cycle time of main memory.

As previously stated, the goal was to estimate the total cy-
cles required to execute a synthetic instruction stream. To do
this, we defined the sequential operations required for the pro-
cessing of each instruction: instruction fetch, operand fetch,
instruction execution, and results storage. Some overlap OC-

curs - for example, instruction prefetch is overlapped with
current instruction execution - and this is handled by the
model. Times were assigned to each of the possible operations
modelled by the simulation, as defined in Table 1. Some times
are fixed and some are parameters of the model. As shown in
the table, the principal parameters we wished to vary were the
L2 cache and main memory access times. The final operation,
result write, is shown as overlapped because, although it uses
cache bandwidth, it does not impede the progress of the fol-
lowing instruction until that instruction attempts an operand
read.

These timings do not represent any specific computer and
are meant to be realistic for the canonical models used. They
more closely represent a CISC architecture than a RISC ar-
chitecture because of the estra cycles required for execution
and address generation. For example, Figure 2 shows the tim-
ing for some typical instruction executions through our model.

0 Operation

instruction cache access
instruction decode
operand address generation
data cache access
address transfer on bus
L2 cache access
primary memory access
transfer memory to L2 cache
transfer L2 cache to Ll cache
instruction execution
generate result address
result write

Cycles

1
1

1
1
1
1

var
var

1
1
2
1

overlapped

Table 1: Simulation Model Timing Parameters

Figure 2a shows an instruction with a hit at the first level cache.
In this case, an instruction takes 7 cycles through our model.
For comparison, the average execution of an instruction takes
about 10.6 cycles on a VAX-11/780 and 8.4 cycles on a VAX
8800 [S]. In Figures 2b and 2c we see the effect of L2 cache
hits and misses, respectively.

Our simulation program is driven by a stream of instruc-
tion trace data obtained through the ATUM microcode trace
facility on the VAX 8200 [2]. ATUM is capable of recording up
to 400,000 consecutive references at a time. The advantage of
microcode-generated traces over traces collected through soft-
ware emulation is the inclusion of operating system as well as
user instructions in the data. We used a selection of ATUM
traces from scientific and system programs executed on the
VAXjVMS operating system. Tl iese included simulations, cir-
cuit analysis programs, the Pascal compiler, and the VMS as-
sembler.

Instead of measuring the execution time of several individ-
ual benchmarks, we used the ATUM traces to construct a single
composite “multiuser” benchmark., This gives us an estimate
of the overall performance impact of the cache, including the
effect of context switching. Our composite file consists of fifty
thousand references from one source, followed by fifty thousand
references from another source, and so on. The total composite
trace consists of over 4.3 million instructions. These instruc-
tions generate 6.2 million read references (including 4.3 million
for instruction reads) and 631,000 write references.

a. Instruction with data cache hit.

b. Instruction with second-level cache hit and
second-level access time of two cycles.

c. Instruction with second-level cache miss and memory access time
of three cycles, starting after data cache miss.

Figure 2: Example Instruction Timings

82

The addresses included by ATUM in the trace file are VAX
virtual addresses. Because we are assuming a physically ad-
dressed cache, and it is possible that different process virtual
addresses map to the same physical address, we required a
scheme to map virtual addresses to physical addresses. This
translation cannot be done exactly because ATUM does not
record page table entries. However, because these programs
were recorded under VAX/VMS and addressing under that
system is deterministic, it is possible to differentiate in most
cases addresses that are private from those that are shared by
all processes. VAX virtual address space is divided into two
parts: system space and process space [lGj. All of system ad-
dress space and some parts of the process-local address space
are known to be shared.

To perform the virtual to physical address translation, each
of the individual traces was treated as a separate independent
process which may share some of its address space with other
processes. Each process is assigned a unique number and this
number is appended to the high end of its virtual addresses.
Each process’s memory is thus given a unique portion of the
system-wide physical address space. Similarly, shared segments
are given a unique portion of this address space and process vir-
tual addresses to shared memory are mapped to the appropriate
common regions,

3 Simulation Results

This section reports the results of executing our simulation
model on the data stream described above. Our simulation
model is fairly complex and permits many parameters to be
varied. We have chosen to fix a number of the parameters and
to concentrate primarily on those which we consider most rel-
evant, namely the sizes of the L1 and L2 caches. In general,
we have examined systems with primary memory access times
that are large compared to cycle time. We have also made a
number of simplifying assumptions. First, the line sizes of the
Ll and L2 caches are identical (4 bytes). We examined vari-
ations in fill size (i.e., the number of cache lines read on each
miss) but don’t report here results for all combinations of sizes
(more data is available in [18]). Second, we assume only direct
mapped organization. Third, we assume no write allocate on
write misses, and only limited write buffering.

Following subsections show simulation results given our
model, parameters, and trace data. Obviously, changes in
model (e.g., using a lockup-free cache), parameters (e.g., dif-
fcrcnt line size or average cycles per instruction), or workload
would cause a change in the results.

3.1 Hit Ratios

Frgure 3 shows hit ratios for a single-level cache of various sizes.
These hit ratios are consistent with those reported in a study
of VAX cache behavior 171. Of course, the hit ratio for a single-
level cache will be the same as the hit ratio for the L1 cache in
our two-level model. The figure also shows the effect of using
l-, 2-, and 4-line cache fills.

The total variation in cache hit ratio when increasing cache
size from SIC bytes to 512Ii bytes is less than 10 percent. For
a memory access time of 15 cycles, this difference in hit ratio
accounts for almost a 50 percent increase in performance. The
change in fill size can also be significant, particularly with small
cache sizes; increasing fill size from 1 to 2 lines produces a 10
percent performance increase for an SK byte cache.

Figure 4 shows the hit ratio of the L2 cache in our two-level
cache system. As the figure shows, varying the size of the L2
cache has a significant effect on hit ratio, and our simulation
shows L2 hit ratios ranging from 20 to 90 percent. Fill size can
also affect the hit ratio of the L2 cache. For example, using
an 8K Ll cache, increasing the L2 fill size from 2 to 4 lines
increases its hit ratio by 7 to 20 percent, depending on its size.

,M) ._..,.,......_...... i_
1 j

..,._, T’ _._ ._.. ..- ..-..
: i

-4
-1

-I

8K 16K 32K 64K 128K 256K 512K

First Level Cache Sire

Figure 3: Hit Ratio of First Level Cache

15 T

,

32K 64K l28K 2s6K 5 1ZK

Second Level Cache Sizz

Figure 4: L2 Cache Hit Ratios

83

As would be expected, hit ratios of L2 caches are relatively
low because the L2 cache sees a reference stream consisting of

only misses to the Ll cache. This is true even for Iarge L2

caches; with our trace data, an L2 cache of 512K bytes has a
hit ratio of less than 75 percent when placed behind a lFI< Ll
cache, and less than 65 percent when placed behind a 321< Ll
cache. As the Ll cache size increases, its hit ratio increases,
and the hit ratio of the L2 cache decreases. This is shown more
drsmatically in Figure 5. Here we see that a G4K L2 cache
suffers a one third decrease in hit ratio when its Ll cache is
increased from 8K to 16K bytes. A 128K L2 caches suffers a
23 percent decrease for the same Ll size change.

3.2 Performance

Figure Ga shows the performance effect of increasing L2 cache
size for various Ll cache sizes. It is interesting to note that
while increasing the size of the L2 cache has a substantial im-
pact on its hit ratio, the hit ratio change may have little effect
on the real system-level performance. For example, consider
the hit ratio and performance of an 8K Ll cache with $-line
fill and different L2 cache sizes. Increasing the size of the L2
cache from 32K to 512I< increases its hit ratio from G3 to SS
percent - a 25 percent improvement. This improved hit ratio
decreases the runtime from 30 million cycles to 28 million cy-
cles, a performance improvement of only 7 percent. The reason
for the disparity is straightforward; most memory requests are
satisfied at the Ll cache, and only the small percentage that
miss are sent to the second level. For example, if the Ll cache
has a 90 percent hit ratio, only 10 percent of the requests are
passed on to the L2 cache. Even if the L2 cache has a hit ratio
as low as 50 percent, only 5 percent of memory requests will be
passed to primary memory. In this case, improving the ~2 hit
ratio can at best improve on this 5 percent of requests going to
primary memory. Of course, for primary memories with large
access times, the improvement may be worthwhile.

w

I30

70

IiK 3iK

First Level Cache Size

6iK 12BK

Figure 5: Erect of Ll size on L2 hit ratio. Figure F: Performance of Two-Level Caches

It is clear from Figure Ga that a larger L2 cache will always
outperform a smaller L2 cache. On the other hand, an L2
cache is not always beneficial. This can be seen in Figure 6b

which shows the same two-level data plotted as a function of
Ll cache size. Compared to a system with a one-level 8Ii cache
(the top line in Figure Gb), adding a 32K L2 cache improves
performance by almost 12 percent, while adding a 64K L2 cache
shows a 15 percent improvement. However, adding a 128K L2
cache to a system with 641< L1 cache has no impact, and adding
a 25GK L2 cache to a system with 128Ii Ll actually degrades
performance.

32 _....

L,

‘\

.,..

C 27
Y
c

’ 26 c
s

25

24 t
32K

. .._.,, * .,.. .1

I-4

.,,... (
L2 - ‘$sycks

menmy - 15 CyCkS

64K l28K 2s6K 512K

Second Level Cache Size

(4

--
8K 16K 32K 64K 128K 256K JIZK

First Lcvcl Cache Size

(b)

84

The esistence of an L2 cache can degrade overall system

performance because it increases the total memory access time
for accesses that miss. This becomes more of a problem as the
Ll cache size increases a.nd the L2 hit ratio decreases. If the
L2 hit ratio is less than 50 percent, more than half of the ac-
cesses to the L2 cache will take an additional penalty in getting
to primary memory. Starting the L2 lookup and the primary

memory access in parallel will alleviate this problem but at the
cost of wasted bus and memory bandwidth.

Figure 7 illustrates the effect of increasing the L2 cache ac-
cess time for an L2 size of 128K. Ll sizes of SK, lGI<, and 321<
are shown with various primary memory access times. An in-
crease in L2 cache access time causes a linear increase in execu-
tion cycles with a greater slope for smaller Ll sizes. Obviously

the smaller the Ll cache, the lower the Ll hit ratio, and the
greater the effect of a slower L2 cache. Increasing the memory
access time for a particular configuration results in a larger y
intercept.

35

34

y 33

I

1 32
I
0
n 31
s

030
f

C
29

Y
= 28
I
c
I 27

26

25

.

. .,,.,

_.

“’

i-

\ j / :

; / :

: ; i
pLl - BK, LZ - 128K. M - 30 cycles

“’ “““‘! ..;...
L, -UK, L2 - 128X. M - 20 cycles

0 2 4 6 8 10 12 14 16 18

Second Level Cache Access Time

Figure 7: Execution Time vs. L2 Cache Access Time

AS previously stated, high on-chip densities make it possible
to include small on-chip caches on current microprocessors. lt is
interesting to know whether even tiny on-chip caches are worth-
while, particularly when backed up by second-level caches. T\%
modelled small Ll caches with sizes varying from 128 bytes to
4096 bytes, backed up by L2 caches of SK to 128Ii bytes, to
cheek the utility of such configurations. These measurements
assume a l-cycle Ll cache and a &cycle L2 cache. For compar-
ison, we also show the performance of a single l-cycle Ll cache
and a single 4-cycle “L2” cache.

The results are summarized in Figure 8. First, we see the
significant impact of adding a second level; adding an SK L2
cache to the 128 byte Ll cache nearly doubles the performance.
Adding an on-chip cache is also significant; compared with no
Ll cache, a 12%byte Ll cache gives a 3.5 percent performance
over a single 81< L2 cache. Given a two-level structure, the size
of the Ll cache is clearly the most crucial parameter. \Vith the

128 byte Ll cache, changing the size of the L2 cache from SK
to 128K produces less than a 12 percent improvement. This is
because the four cycles needed to process Ll cache misses are
large enough that eliminating misses from the second level is

relatively insignificant. The effect is similar on larger Ll caches
but is magnified by the higher miss ratio in small local caches.

3.3 Write Strategy

Different write strategies were modelled by our simulation. As
might be expected, the use of a write-back strategy can sub-
stantially reduce traffic to the next level in a multi-level hier-

archy.
In the two-level cache, the choice of write strategy can be

made indcpeudently at each level. Figure 0 shows the perfor-
mance of our simulated system with SK Ll cache using various
write strategies. In this case, if write-back is to be used at
only one level, it @ould be used in the Ll cache, since this
will eliminate mosf: of the write traffic between the two caches.

Unfortunately, we could not measure the effect of I/O inter-
ference on an Ll cache with write-back. On disk writes, for

example, the L2 cache would not have up-to-date copies of re-
cently written data, so I/O would have to pass through the Ll
cache or the Ll data would have to be written back before the
I/O begins. Disk reads also present consistency problems.

A write-back L2 cache with write-through Ll cache provides
about 5 percent lower performance than write-through L2 with

write-back Ll. This is the result of the increased inter-cache
write traffic. Because the cycle time of the L2 cache is not as
critical as that of the first level, it may be more practical to
include the write-back strategy in L2 than in Ll. If the Ll

cache is write-through and multi-level inclusion [4] is imposed
(i.e., Ll is a subset of L2), then only the L2 cache directory
needs to be checked on I/O operations; still, invalidations will
need to be passed up to the Ll cache.

As shown in Figure 0, the best performance is achieved
by using a write-back strategy in both caches. Bowevcr, this
also rcrluircs the most complex implementation and the small
illcrease in performance is probably not worthwhile.

128 256 SI2 1024 2048 4096

Figure 8: Performance of Small Ll Caches

No LZ cache

38

M36
I

; 35

I
0 34
n

s 33

0
f 32

c 31
Y
c
I 30
e

s 29

2s

21

_....

1

,.,

i

\

.

.

.

_

.

t

16K 32K 64K IZBK 256K

Sccmd Level Cache Size

Figure 9: Effect of Write Strategy

3.4 Sequerrtial Cache Misses

In a high speed system it may be possible to process more than
one memory request simultaneously, i.e., when a read misses
in the cache and a request for the data is sent to memory the
next sequential read can be started before the first has com-
pleted. With a long memory access time and several indepen-

dent memory banks, the first reference will require the entire
memory access time to complete. But, if a following reference
can be started before the first finishes, there will be a signifi-
cant performance advantage. If one provides this feature in the
cache controller the nest question to be addressed is how many
memory references should be processed at a time?

Our simulation is capable of creating a histogram of the
number of adjacent misses in the local cache. The results show
that smaller caches with low hit ratios would benefit greatly
from the ability to be able to process two reads simultane-
ously (10% - 15% fewer cycles). The incremental improvement
made possible by increasing the number of simultaneous reads
to three is extremely small, on the order of one percent. How-
ever, as the cache size is increased there is a much smaller
performance improvement. With a 32Kbyte local cache and a
30 cycle memory access time the improvement is approximately
five percent. The hardware to control two outstanding refer-
ences does not seem very complicated and would appear to be
justified.

3.5 Separate Instruction and Data Caches

The effect of separating the instruction and data caches and of
varying the size and fill rate for each was modelled. With our
simulation, we found little performance difference between a
separate I and D cache and a shared cache with the same total
cache size and access time. Separating the caches provided a
performance increase in the range of five to ten percent. The
extra complexity of adding a complete set of cache control logic
and an extra cache directory would not seem to be cost effec-
tive.

This result is an effect of the complex instruction set archi-
tecture. In our simulated architecture the average instruction
takes 7 cycles; a cache access takes 1 cycle, so there is plenty of

time during an instruction to retrieve multiple items from the
shared cache. In a RISC-like architecture with a small num-

ber of cycles per instruction, separate I and D caches may be
required because the I fetches will saturate the cache.

On the other hand, separate I and D caches may have an
advantage in our system. As previously stated, larger memories
typically have longer access times due to physical constraints;

the shared cache model, with the same total amount of memory,
might require a slower clock frequency than would separate
caches. In’effect, adding an extra cache may allow us to double
the effective size of the cache without decreasing the system

cycle time. This performance increase would be in the range of
ten to almost twenty percent and may justify the extra expense
and complexity.

4 Conclusions

We have studied several aspects of two-level cache memories

in uniprocessors. In particular, we examined the hit ratio and
performance impact of varying the sizes of first- and second-

level caches. We also simulated the effect of splitting the local
cache into separate data and instruction parts.

An extra level of cache memory can provide a worthwhile
performance gain when used with proper combinations of small
first-level caches and large main memory access times. Adding
a small amount of fast first-level cache (e.g., a few hundred
words on a VLSI chip) to a system with a four- to six-cycle
second-level cache can also achieve substantial gains. How-
ever, in some cases with relatively fast main memories or slow
second-level caches, the addition of the second cache can ac-
tually degrade performance. Starting the L2 lookup and the
primary memory access in parallel will alleviate this problem
but at the cost of wasted bus and memory bandwidth.

For our model and data, separate caches for instructions
and data did not by themselves produce a worthwhile per-
formance increase. However, because smaller memories have
shorter access times providing separate instruction and data
caches allows more memory to be used without a decrease in
the processor cycle time. Separate instruction and data caches
may be more worthwhile in a system with fewer cycles per in-
struction.

Write-through and write-back strategies were studied for
both cache levels. The best performance is provided by write-
back at both levels, however this method is also the most com-
plex to implement. The principal effect of write-back was the

reduction of write bandwidth required at the next higher level
of memory. If only one of the caches were to use write-back,
then write-back should be included in the LI cache because
(1) the Ll cache typically has a faster access time, and writes
could be processed more quickly without buffering, and (2) the
Ll cache is smaller than the L2 cache. Also , a write-back

cache must include error correction logic for reliability; thus,
there may be significant cost saving in using write-back at Ll
and write-through at L2.

However, there are other issues that might affect this de-
cision. First, a write-back cache is more complex and might
lengthen the Ll access time when compared to a write-through
cache. Second, if the Ll cache is write-back then the two caches

86

will be inconsistent; this may cause problems for I/O opera-
tions. Therefore, a write-through Ll and write-back L2 might
make more sense for engineering reasons; it is simpler to imple-
ment and still reduces traffic between the L2 cache and main
memory.

Multilevel caches provide a fruitful area for study, and much
more needs to be done. The number of relevant parameters
that can be varied is large and the amount of data that can be
collected and analyzed is tremendous. For this paper, we have
fixed many of the parameters to show representative examples
of our results. Obviously, changes to these parameters would
cause different results; for example, a larger line size may either
increase or decrease performance, and different Ll and L2 line
sizes will certainly be used in actual implementations.

Certainly an important area for further evaluation is multi-
level caches in multiprocessors. In this study, we concentrated
on uniprocessors, partially because of the difficulty of obtaining
multiprocessor traces.

5 Acknowledgements

We would like to thank Jean-Loup Baer, Jon Bertoni, Wen-
Harm Wang, Sang Min, Raim Mizrahi, and Jorgen Staunstrup
for their reviews of early drafts of this paper.

References

PI

Pl

I31

[41

151

[Gl

PI

Anant Agarwal, Paul Chow, Mark Horowitz, John Acken,
Arturo Saltz, and John Hennessy. On-chip instruction
caches for high performance processors. In Conference on
Advanced Research in VLSI, March 1987.

Anant Agarwal, Richard L. Sites, and Mark Horowitz.
ATUM: a new technique for capturing address traces using
microcode. In Proceedings of the 131h International Sym-
posium on Computer Architecture, pages 119-127, ACM
SIGARCH, June 1986.

David Archer, David Deverell, Thomas Fox, Paul
Gronowski, Anil Jain, Michael Leary, Daniel Miner, An-
drew Olesin, Shawn Persels, Paul Rubinfeld, and Robert
Supnik. A CMOS VAX microprocessor with on-chip cache
and memory management. IEEE JournaE of Solid State
Circuits, SC-22(5):849-852, October 1987.

Jean-Loup Baer and Wen-Hann Wang. Architectural
choices for multi-level cache hierarchies. In Proceedings
of the 1987 International Conference on Parallel Process-
ing, pages 258-261, August 1987. Also (in an expanded
form) Department of Computer Science Report TR-87-Ol-
04, University of Washington, January 1987.

Fayt? Briggs and Michei Dubois. Effectiveness of private
caches in multiprocessor systems with parallel-pipelined
memories. IEEE Transactions on Computers, C-32(1):48-
59, January 1983.

Paul Chow and Mark Horowitz. Architectural tradeoffs in
the design of MIPS-X. In Proceedings of the 14th Interna-
tional Symposium on Computer Architecture, pages 300-
308, June 1987.

Douglas W. Clark. Cache performance in the VAX-11/780.
A Chl Tmnsaclions on Computer Systems, l(1):24-37,
February 1983.

PI

PI

[lOI

[Ill

iI21

1131

114

[I51

1161

1171

1181

1191

WI

1211

P‘4

1231

)ouglas W. Clark. Pipelining and performance in the
7AX 8800 processor. In Proceedings of the Second Interna-
ional Colzjerence on Architectural Support for Program-
ning Languages and Operating Systems, pages 173-177,
October 1987.

)ouglas W. Clark and Joel S. Emer. Performance of the
,fAX-II/780 translation buffer: simulation and measure-
nent. ACAi Tronsac2ions on Computer Systems, 3(1):31-

;2, February 1985.

)aniel J. Colglazicr. A Performance Analysis of hlultipro-
:essors Using Two-Level Caches. Master’s thesis, Univer-
;ity of Illinois, 1984.

David R. Ditzcl, Hubert R. McLellan, and Alan D. Beren-
3aum. The hardware architecture of the CRISP micropro-
:essor. In Proceedings of the 14th International Symposium
Dn Computer Architecture, pages 309-319, June 1987.

R. P. Fletcher, R. A. Ileller, and D. M. Stein. MP-shared
cache with store-through local caches. IBM Technical Dis-
closure Bulletin, 25(10):5133-5135, March 1983.

James R. Goodman. Using cache memory to reduce pro-
cessor memory traffic. In Proceedings of the lUth Interna-
tional Symposium on Computer Architecture, pages 124-
131, June 1983.

Akira Hattori, Minoru Koshino, and Shigemi Kamimoto.
Three-level hierarchical storage system for the FACOM
M-380/382. In Proceedings Information Prcxessing IFIP,
pages F93-697, 1983.

Mark Hill, et al. Design decisions in SPUR. Computer,
8-22, November 1986.

Renry M. Levy and Peter II. Lipman. Virtual memory
management in the VAX/VMS operating system. Com-
puter, 35-41, March 1982.

John S. Liptay. Structural aspects of the System/3GO
hlodei 85, Part II - The cache. IBM Systems Journal,
7(l):&-21, 1968.

Robert T. Short. A Study of Multilevel Cache Memories.
hIaster’s thesis, Department of Computer Science, Univer-
sity of Washington, January 1987.

Alan J. Smith. Cache memories. ACAI Computing Sur-
veys, 14(3):473-530, September 1982.

Alan J. Smith. Line (block) size choices for CPU
cache memories. IEEE Transactions on Computers, C-
3G(9):1063-1075, September 1987.

Alan J. Smith. Problems, directions and issues in mem-
ory hierarchies. In Proceedings of the Eighteenth An-
nual Hawaii Znnternational Conference on System Sciences,
pages 4’38-476, 1985.

F. J. Sparacio. Data processing system with second level
cache. IBM Technical Disclosure Bulletin, 21(6):2468-
24G9, November 1378.

William D. Strecker. Cache memories for PDP-11 family
computers. In Proceedings of the 3rd Annual Symposium
on Computer Architecture, pages 155-158, January 1976.

87

[24] Andrew W. Wilson, Jr. Hierarchical cache/bus architec-
ture for shared memory multiprocessors. In Proceedings of
the 14th International Symposium on Computer Architec-
ture, pages 244-252, June 1987.

[25] Phil C. C. Yeh, Janek II. Patel, and Edward S. Davidson.
Shared cache for multiple-stream computer systems. IEEE
Transactions on Computers, C-32(1):38-47, January 1983.

88

