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Abstract—Prefetching into CPU caches has long been known to be effective in reducing the cache miss ratio, but known
implementations of prefetching have been unsuccessful in improving CPU performance. The reasons for this are that prefetches
interfere with normal cache operations by making cache address and data ports busy, the memory bus busy, the memory banks
busy, and by not necessarily being complete by the time that the prefetched data is actually referenced. In this paper, we present
extensive quantitative results of a detailed cycle-by-cycle trace-driven simulation of a uniprocessor memory system in which we vary
most of the relevant parameters in order to determine when and if hardware prefetching is useful. We find that, in order for
prefetching to actually improve performance, the address array needs to be double ported and the data array needs to either be
double ported or fully buffered. It is also very helpful for the bus to be very wide (e.g., 16 bytes) for bus transactions to be split and
for main memory to be interleaved. Under the best circumstances, i.e., with a significant investment in extra hardware, prefetching
can significantly improve performance. For implementations without adequate hardware, prefetching often decreases performance.

Index Terms—Cache memory, prefetching, timing model, cache prefetching, CPU architecture, memory system design, CPU cache
memory.

——————————�F�——————————

1 INTRODUCTION

T is well known that delays in accessing CPU memory
are one of the major factors in limiting CPU performance

[28]. Cache memories are the principal technique used to
improve CPU memory system performance, but cache
misses continue to degrade performance. Cache studies
have considered various factors, such as line (block) size,
associativity, cache size, prefetching algorithms, etc. In this
paper, we study the effectiveness of hardware prefetching
when it interacts with other cache design parameters.

Prefetching has long been known to significantly de-
crease cache miss ratios. This was shown in [25], with addi-
tional results for various algorithms and workloads pre-
sented in [28], [29]. Most of these studies, however, have
neglected timing effects, i.e., even though the miss ratio has
decreased, does the machine get faster? (Reference [25] did
look at the issue of whether the needed block would arrive
in time.) Some more recent studies which have considered
timing include [2], [3], [13], and [19]. In this paper, we pres-
ent the results of a detailed cycle-by-cycle trace-driven
simulation of a memory system in which we vary all rele-
vant parameters in order to determine when and if pre-
fetching is useful. Our study differs from other related re-
search in that we are concentrating on uniprocessor design,
in the detail level of our study, and in the range of archi-
tectural parameters studied.

1.1.Previous Research and Prefetch Algorithms
CPU cache prefetching involves fetching a block from main
memory into the CPU cache when the block has not been ref-
erenced in the expectation that it will be referenced soon.
Hardware cache prefetching is specifically concerned with
prefetching algorithms implemented solely by dedicated
hardware and without software support; we consider only
hardware prefetching in this paper. Prefetching algorithms
have been concerned with two issues: which block to prefetch
and when to prefetch. The simplest candidate to prefetch is the
next sequential block after the one most recently referenced.
Conceptually, this makes sense because instructions are
fetched sequentially (except for branches) and data is often
referenced sequentially (when in arrays) or, at least, locally
(when the compiler allocates related variables in contiguous
locations, as when they are stored together in a stack).

One simple prefetch algorithm is called always prefetch
[28]. With this algorithm, every time there is a reference to
block i, the cache is examined for block i + 1 (i.e., the next
sequential block, in terms of ascending memory addresses).
If block i + 1 is absent from the cache, it is prefetched. A
variation which requires fewer prefetches and prefetch
lookups (i.e., look into the cache to see if the block is there)
is called prefetch on misses, which prefetches the next se-
quential cache block if and only if the access to the current
cache block is a miss. A more complicated scheme, known
as tagged prefetch [12], [28], keeps the number of prefetch
lookups low while issuing more prefetches than prefetch on
misses. In this case, each cache block has a single bit, called
the tag, which is set to zero whenever the block does not re-
side in the cache. When a block is referenced by the proces-
sor, its tag will be set to one. A block brought into the cache
by a prefetch, however, retains its tag of zero. Whenever a
tag changes from zero to one, a prefetch is initiated for the
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next sequential cache block. This is similar to always pre-
fetching, but it avoids repeated cache lookups and does not
again prefetch a line which was prefetched and later re-
placed without having been referenced.

More sophisticated schemes like threaded prefetching [18]
and bidirectional prefetching [35] have also been proposed. In
threaded prefetching, cache block i has associated with it a
list of pointers known as threads. Each thread points to a
cache block which is most likely to be referenced after block
i has just been accessed. Suppose that the processor is ac-
cessing cache block i in cycle T. If block j is referenced in
cycle T + 1, a new thread which contains the address of
block j will be attached to block i in cycle T + 1. The new
thread can be stored together with block i in the instruction
or data cache, or it can be stored in a separate cache. As
soon as block i is reaccessed by the processor, all threads
associated with block i will trigger the prefetching of block j
and other cache blocks the threads point to. Bidirectional
prefetching attempts to capture the forward and backward
accessing behavior found in data caches. If the current and
the previous sequential cache blocks are found in the cache,
the next sequential cache block will be prefetched; other-
wise, if the current and the next sequential cache blocks are
found, the previous sequential cache block will be pre-
fetched.

When a prefetching strategy detects a potential miss,
most will issue a prefetch for a fixed number of cache
blocks. Since the prefetching efficiency varies during the
execution of a program, it may be advantageous to prefetch
a variable number of cache blocks. Such an adaptive se-
quential prefetching scheme for shared memory multiproc-
essors is proposed in [9], [6]. Each cache block has a counter
which records the number of times prefetches on this block
are serviced by the main memory. By inspecting these
counters, one will be able to measure the effectiveness of
prefetching dynamically and prefetch an appropriate num-
ber of cache blocks accordingly.

Cache prefetching strategies can also be used in special
cache organizations, like vector caches. Data prefetching
strategies for vector cache memories are examined in [9]. A
stride-prefetch strategy is proposed which takes advantage
of the vector stride information specified in a vector in-
struction that causes a cache miss. If element i in the vector
data causes the miss, prefetches for blocks i, i + stride, i + 2
* stride, ... , i + p * stride will be issued, where p is the num-
ber of sequential blocks to be prefetched. Results show that
stride-prefetch strategy performs better for this workload
than the always prefetching strategy and no prefetching.

Two level cache memory systems have been shown to be
an effective mean to enhance system performance [1], [24].
Methods to evaluate the performance of cache prefetching
in second level caches are studied in [31]. Results show that
miss ratios alone are insufficient to evaluate the perform-
ance of cache prefetching in higher level caches. By using a
detailed timing-based trace-driven simulation model, re-
searchers show that hit-rate-only analysis may be extremely
optimistic in predicting the benefits of cache prefetching.
Our paper uses a similar approach, but explores a larger
design space and in greater detail.

One of the disadvantages of cache prefetching is the un-

avoidable increase in memory traffic because of prefetches
which are never referenced. The limitations of cache pre-
fetching on a bus-based multiprocessor system are investi-
gated in [34]. Results show that, when bus bandwidth is the
bottleneck, prefetching will not improve performance, even
when it reduces the demand miss ratio.

Other recent work on prefetching can also be found in
[4], [14], [21], and [7]. In [14], a prefetching scheme which
combines hardware and software features is presented and
analyzed. Reference [21] concentrates on prefetching in
shared memory multiprocessors running scientific (vector)
workloads. Reference [4] likewise considers prefetching in a
vector environment with constant stride. Reference [7]
looks at prefetching a variable number of blocks (sequen-
tially ahead of the current one) as a function of previous
behavior.

Another disadvantage of cache prefetching is that use-
less prefetches may pollute cache contents (“memory pol-
lution”) by displacing useful cache blocks from the cache
and, thus, cause new cache misses which would not have
happened had there been no prefetching. This effect is
analyzed for disk caches in [27]. Memory pollution is most
hazardous to performance when cache sizes are small and
block (line) sizes are large.

1.2.Research Issues
Cache prefetching has been implemented in at least two ma-
chines, the Amdahl 470V/6 [25] and the Fairchild/Intergraph
Clipper [5], [16]. In both cases, performance failed to im-
prove, although, for the latter machine, it was at least in
part due to a clear implementation flaw. More generally,
however, it is not clear that a decrease in the miss ratio at-
tributable to prefetching will actually lead to an improve-
ment in CPU performance. Even when the miss ratio de-
creases, prefetching can degrade performance by:

1)�making the cache address tag arrays busy due to pre-
fetch lookups;

2)�making the cache data arrays busy due to prefetch
loads and replacements;

3)�making the memory bus busy due to prefetch address
transfers and data fetches; and

4)�making the memory system busy due to prefetch
fetches and replacements.

The issue we consider in this paper is the effect of pre-
fetching on performance, which we evaluate using a de-
tailed cycle by cycle simulator of the CPU memory system.
We consider the effect of

1)�various prefetch algorithms,
2)�while varying various cache parameters, such as

cache size, block size, and cache associativity, and
3)�also while adding hardware resources, such as double

ported cache tags, cache data arrays, a wider memory
bus, an interleaved memory system, and buffering for
loads into the cache.

The rest of this paper is organized as follows: Section 2
gives a detailed description of our architectural model,
while Section 3 describes the methodology we used; Section 4
gives a performance overview of cache prefetching with
our baseline system; Section 5 investigates the impacts of
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several essential system resources on the performance of
cache prefetching strategies; Section 6 compares their per-
formance on the best system for prefetching with that on
the baseline system; finally, Section 7 concludes the paper.
Table 1.1 collects and defines for convenient reference and
lookup various terms used throughout this paper.

2 ARCHITECTURAL MODEL

This section gives a detailed description of the architectural
model which our cycle-by-cycle simulator is based on.
Fig. 2.1 shows an overview of the model. In each case, we
indicate the default (baseline, standard) design and the
various options.

2.1 Processor
Our CPU model is a RISC type processor similar to the
MIPS R3000. There are five stages in the pipeline: instruc-
tion fetch, instruction decode, read or write to memory,
ALU computation, and register file update. The processor
fetches an instruction from the instruction cache every clock

cycle. Whenever there is a cache miss, the processor halts
and waits for the required cache block to be filled. Execu-
tion resumes as soon as the required word, rather than the
entire cache block, has arrived. The assumption is that all
instructions take one cycle; no special cases (e.g., floating
point operations, branches) are considered.

2.2 Caches
We use a split instruction and data cache. Both the instruc-
tion and data caches can have either single or double
ported tag arrays and data arrays. When an array is double
ported, one port is used by the processor and the other by
the prefetcher, so that prefetches and processor accesses (to
tags, instructions, or data) can proceed in parallel without
interference. In one case, we also simulate a buffered data
array and compare that with a double ported data array.

In the default (baseline) system, all caches are eight-way
set associative and virtually addressed with a total size of
64KB and a block size of 64 bytes, unless otherwise speci-
fied. This is to avoid conflict misses and translation issues.
The data cache uses a write back and write allocate policy.

TABLE 1.1
TERMINOLOGY USED IN THIS PAPER

Fig. 2.1. Overview of the architectural model.
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A read hit takes one clock cycle, while a write hit takes two
(lookup and then modify). The set associativity, cache size
and block size are varied in some of our studies.

2.3 Write Buffer
The data cache sends dirty cache blocks back to the main
memory via the write buffer. The write buffer is a four entry
first-in-first-out (FIFO) queue. It waits until the memory
bus is idle before it puts the oldest entry onto the bus. If the
write buffer is full, it cannot accept new entries and an at-
tempt to replace a dirty block causes the processor to stall
until the write buffer has a free slot. Whenever there is a
data cache miss, the write buffer is searched for the missing
cache block. If the block is found, it is copied from the write
buffer back to the data cache within the same clock cycle.

2.4 Prefetching Units
The two prefetch units, one for each cache, are responsible
for issuing new prefetch requests to the main memory.
During each clock cycle, each prefetch unit receives infor-
mation like cache misses, cache hits, instruction types, and
branch target addresses from the processor and the caches.
Based on this information, it decides whether to issue a new
prefetch request or not. If it does, the prefetch address is
looked up in the corresponding cache. The request is issued
in the next clock cycle if the data is not found in the cache.

Issued requests from both prefetch units are not sent di-
rectly to the memory bus, though, but to a prefetch address
buffer, each of which is organized as a FIFO queue with 16
entries. The oldest entry is sent to the memory bus only
when the bus is free. If the buffer is full when a newly is-
sued request arrives, the oldest entry is discarded from the
buffer to make room for the new one. Whenever there is a
cache miss, the address of the missing cache block is com-
pared against every entry of the buffer. Any entry which
matches the address represents a failed prefetch (because it
is issued too late) and is discarded without being issued. (It
might be interesting, in future research, to see if LIFO
queuing makes any difference.)

2.5 Memory Bus
The memory bus selectively supports both split and
nonsplit bus transactions [20]. A bus transaction includes
two parts: Sending the address and receiving or sending the
data. In a split bus transaction, the memory bus is idle be-
tween sending the address and receiving the data and other
transactions are free to use it. In a nonsplit bus transaction,
however, a transaction holds the memory bus until it re-
ceives its data. In the default system, the memory bus oper-
ates with nonsplit transactions and is four bytes wide, un-
less specified otherwise.

Since multiple bus users may compete for the memory bus
at the same time, a bus arbitrator is needed to resolve these
conflicts. In our model, a fixed priority scheme is used to arbi-
trate the bus. The priority in descending order is as follows:

1)�write back by the write buffer when it is full;
2)�a cache miss;
3)� returning data from the main memory;
4)�write back by the write buffer when it is not full;
5)�a new prefetch request.

2.6 Main Memory
The main memory may contain up to 16 banks, each of
which is four bytes wide and is interleaved on the low or-
der address bits. Each bank has an input queue to buffer
requests while the bank is busy and an output queue to
buffer returning data when the bus is busy. Because re-
quests to distinct memory banks can be served out of order,
a collating buffer holds the returning data until they can be
returned to the caches in order. The default (baseline)
memory delay is set to be 16 processor clock cycles, while
the default number of memory banks is four. In order to
simplify the memory hierarchy, we assume that the main
memory always contains all referenced pages, so that there
can be no page faults.

Unless otherwise indicated, all tables and figures show
results that are the average over all workloads. Breakdowns
by individual workloads can be found in most cases in [33].

3 METHODOLOGY

3.1 Trace-Driven Simulation
Trace-driven simulation was used for the studies here for
the usual well-known reasons; see [32] (among many other
papers) for a discussion of the advantages of the technique.
We collected address traces on a DECstation 5000, running
version 4.2A of the DEC Ultrix operating system. The
benchmark programs were compiled using version 2.3.3 of
the gcc compiler for C programs and version 2.1 of the f77
compiler for FORTRAN programs, both with the highest
level of optimization. The MIPS pixie tool [8] then inserted
extra monitoring codes into the compiled binaries so that,
when we ran the pixified executables, address traces would
be collected in specified files.

We ran our simulations on a DEC 3000, running version
1.2A of the OSF/1 operating system. We developed a trace-
driven simulator which read instruction and data addresses
from the address trace, simulated the target memory hierar-
chical model described earlier on a cycle by cycle basis, and
collected and reported the simulation results.

3.2 The Workload
In order to have a substantial and, hopefully, representative
workload sample, we selected 25 commonly used real pro-
grams from five different workload categories: computer-
aided design tools (CAD), compiler-related tools (COMP),
floating point intensive applications (FP), text processing
programs (TEXT), and UNIX utilities (UNIX). We also chose
existing inputs of reasonable size and complexity, whenever
possible, to run these programs on. Table 3.1 describes these
programs and shows the breakdowns of memory references
in the final traces.

Each group trace consisted of five different program
traces in the same category and they were interleaved ac-
cording to a round robin based preemptive scheduler. Each
address was tagged with a process ID; the cache was not
flushed when the address space changed. Whenever a pro-
cess executed a system call, it was blocked and put into a
sleep queue for a random number of cycles which followed
a uniform distribution in the range of 25,000 to 50,000 cy-
cles. Control was then switched to the next process in the
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ready queue. When the sleeping process woke up, it was
put on the tail of the ready queue. In addition, no process
was allowed to run more than 400,000 cycles continuously.

In order to minimize start-up effects, the first 70 million
memory references of each group trace were not included in
the final trace used; instead, they were used to warm-start the
instruction and data caches. In order to save space and simu-
lation time, we adopted the scheme described in [22]; we kept
track of references to unique addresses and the last time they
were referenced. The one million most recently used unique
addresses were added to the front of the final traces, starting
with the least recently used address and ending with the most
recently used one. We also distinguished reads from writes to
the same addresses so that the correct cache blocks would be
dirty at the warm-start boundary.

Each final group trace contained roughly 40 million
memory references other than those used to warm-start the
caches. These traces were originally stored in an ASCII ad-
dress trace format known as the dinero [15] format. We used
a trace compacting scheme similar to mache [23], which ba-
sically converts each ASCII address into a one to four byte
binary integer. We extended mache by keeping a counter
with each instruction address. The counter informed the
simulator of the number of sequential instructions to be
executed before the next data read, data write or instruction
branch. By keeping track of the program counter, we could
now delete trace entries for those sequential instructions.
The size of the final traces compacted by our scheme was
about two to five times smaller than that processed by
mache, and our simulator ran as much as 20 percent faster.

TABLE 3.1
CONTENTS OF THE CAD, COMP, FP, TEXT, AND UNIX ADDRESS TRACE WORKLOADS
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In our opinion, for the purposes of this study, the trace
lengths were more than sufficient. The purpose of this
study was not to obtain absolute miss ratios for large
caches, but to explore the behavior of prefetching algo-
rithms. Such behavior should not be sensitive to the length
of the trace, but should react primarily to the reference
patterns over short lengths of the trace.

4 THE BASELINE SYSTEM

4.1 Evaluation Metric
Table 4.1.1 describes the default system settings in the base-
line system. These values were chosen according to current
technology and common design practice, and/or to yield
clear results. (Eight-way associativity is used to minimize
conflict misses.) Unless other values are explicitly stated,
they will be used throughout the rest of the paper.

The main metric we used in our evaluation is known as
“(Variable) Cycles Per Instruction contributed by Memory
accesses”, or MCPI for short [3]. Since we assume that in-
struction pipelining is perfect and that the processor is ca-
pable of executing one instruction per cycle, memory access
penalty becomes the sole variable contributor to CPI. MCPI
is given by the following equation:

MCPI

total memory access penalty processor stalls due to cache write hits
total number of instructions executed

=
-

.

Our definition of MCPI differs from [Chen93] in that we
exclude processor stalls due to cache write hits from our
calculation, since write hit stalls are unavoidable and insen-
sitive to cache prefetching. This is a constant additive
amount and does not affect our results except to more
clearly isolate the parameter of interest.

We prefer MCPI to other evaluation metrics, like cache miss
ratios and effective memory access time, for two reasons:

1)�MCPI covers every aspect of performance which can
be improved or degraded by a cache prefetching
strategy. Not only does it reflect the reduction in
cache miss ratios, but it also includes the effects of
heavier data bus traffic.

2)�MCPI excludes aspects of performance which cannot
be affected by a cache prefetching strategy, for exam-
ple, the efficiency of the instruction pipelining.

To explain it another way, we note that <cycles per in-
struction> is the sum of <execution cycles, including pipe-
line interlocks, etc.> + <constant memory system delays> +
<variable memory system delays>. Constant memory sys-
tem delays are due to writes—every write takes two cycles,

whereas all other instructions take only one. “Variable
memory system delays” is the same as MCPI—it includes
all memory system delays except the extra cycle for a write.
In a perfect memory system (infinite size, one cycle access),
“variable memory system delays” would be zero.

Because MCPI is a function not only of the cache man-
agement algorithms, including prefetching, but also of the
cache and system design parameters, its absolute value
cannot be used as an evaluation metric. Specifically, we are
interested in whether performance gets better or worse due
to prefetching, not in the level of performance in the base
system. Accordingly, we use the relative MCPI, which com-
pares the performance of a cache prefetching strategy with
that when no prefetching is used in the same system. A
cache prefetching strategy improves performance only
when its relative MCPI is smaller than one. If it is greater
than one, the strategy actually degrades performance.
Relative MCPI is given as follows:

Relative MCPI

MCPI when a cache prefetching strategy is used
MCPI when no prefetching strategy is used in the same system

=

.

4.2 Performance of Cache Prefetching in the
Baseline System

In this section, we evaluate the performance of cache pre-
fetching strategies in the baseline system. Table 4.2.1 shows
the relative and absolute MCPIs when different prefetching
strategies are used. The results look discouraging: Most
strategies perform worse than if there were no prefetching
at all. The average relative MCPI for all strategies is 1.1836.
In other words, prefetching worsens MCPI by more than 18
percent, on average, in the baseline system.

But, all prefetching strategies do improve performance
for the address trace fp. fp consists of programs like lin-
pack, matrix300, and tomcatv, which work on data struc-
tures representing matrices and meshes. Since these data
structures are large in size and highly sequential in nature,
a prefetching strategy is able to predict future address ref-
erences accurately. This explains why aggressive, yet sim-
ple, strategies, like always and tag, can reduce MCPI by as
much as 12 percent.

The address trace unix, on the other hand, gives the
worst results when cache prefetching strategies are used.
On average, MCPI increases by more than 46 percent. The
unix trace consists of small programs that work on many
different data sets. The memory accessing pattern is often
nonsequential and even backward, especially in the data
cache. Most forward predicting strategies, therefore, cannot

TABLE 4.1.1
DEFAULT SYSTEM CONFIGURATION FOR THE BASELINE SYSTEM
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predict future references correctly. Bi-dir, which is designed
to predict both forward and backward accessing patterns
therefore performs significantly better than other strategies.

From the drastic difference in performance between fp
and unix, one can deduce that a cache prefetching strategy
is very sensitive to the type of programs the processor is
running. In general, it favors a program which references
memory sequentially, but works poorly for one which ac-
cesses data nonsequentially.

Table 4.2.2 shows the composition of processor stalls: Al-
together, there are five reasons why the processor has to stall:

(1)  Cache Misses
The processor is stalled because the memory address it is

referencing is not found in the cache and it must wait until
the required memory blocks are sent from the main mem-
ory. Note that this category does not include stalls due to
conflicts with active prefetches. It only includes the raw
memory latency of demand misses.

Although all prefetching strategies are able to reduce stalls
due to cache misses, they introduce three new categories of
stalls, described below, which reduce their effectiveness:
(2)  Prefetch (Cache) Stalls

The processor is stalled because it cannot access the data
port of a cache which is being used by an active prefetch to
load a block into the cache. In our architectural model, a
regular memory reference by the processor has higher prior-
ity to access the data port of a cache than a prefetch. How-
ever, if a prefetch has already acquired the data port, the
processor has to wait until the prefetch finishes its access.

In the baseline system, this category represents a signifi-
cant fraction of total processor stalls. Conflicts over cache
data ports between prefetches and regular processor refer-
ences seriously affect the performance of cache prefetching.
We will study this issue in greater detail in Section 5.2.

(3)  Prefetch (Bus) Stalls
A demand miss is delayed because it cannot access the

data bus. As in the case of cache data ports, a demand miss
has higher priority to access the data bus than a prefetch.
But if a prefetch is already using the bus, a demand miss
has to wait until the bus is free again.

Conflicts over the data bus represent the second biggest
drawback of cache prefetching. Because the data bus only
supports nonsplit transactions in the baseline system, a pre-
fetch will lock the bus until the prefetched block returns
from the main memory. A split transaction data bus would
have reduced this contention. We will study this issue more
carefully in Section 5.6.

(4)  Prefetch (Mem) Stalls
A demand miss is delayed because the memory bank it

needs to access is being used by an active prefetch. Here,
both demand misses and prefetches have the same priority
in accessing the memory banks because the main memory
does not distinguish between them.

Since a demand miss or a prefetch will not release the
data bus until it finishes accessing the memory bank (in the
baseline system), there can only be one access to the main
memory at any time. This explains why this category is
always zero in Table 4.2.2. When the effect of split transac-
tion bus is considered in Section 5.6, multiple accesses to
the main memory become possible and this category of
stalls will become significant.

(5)  Write Buffer Stalls
The processor is stalled because the write buffer is full.

In Table 4.2.2, this represents less than 1 percent of total
stalls. This frequency of this kind of stall is insignificant
because a four entry deep write buffer is highly effective in
buffering dirty cache blocks back to the main memory [26].

TABLE 4.2.1
RELATIVE AND ABSOLUTE MCPI FOR THE BASELINE SYSTEM

TABLE 4.2.2
STALL BREAKDOWNS IN PERCENTAGE FOR THE BASELINE SYSTEM
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Table 4.2.3 gives the miss ratios found in the instruction
and data caches. We note that the miss ratios there, for the
nonprefetching case, are comparable to the design target
miss ratios (DTMRs) proposed in [29], [30], and to the other
miss ratios reported from measured real systems and stan-
dard workloads, e.g., [10].

We distinguish three kinds of cache miss ratios when a
cache prefetching strategy is used; note that these terms are
also defined in Table 1.2.

The True Miss Ratio is the ratio of the total number of true
cache misses to the total number of processor references to
the cache. A true cache miss is defined as an event in which
the address referenced by the processor is not found in the
cache and the address, if issued by the prefetching unit, has
not been sent to the main memory yet.

The Partial Miss Ratio is the ratio of the total number of
partial cache misses to the total number of processor refer-
ences to the cache. A partial cache miss is defined as an event
in which the address referenced by the processor is not found
in the cache but the address has already been issued by the
prefetching unit and sent to the main memory.

The Total Miss Ratio is the sum of the true miss ratio and
the partial miss ratio.

The true miss ratio is a better indicator of the accuracy of a
cache prefetching strategy than total miss ratio. It is not fair
to count a partial cache miss as a genuine demand miss be-
cause the prefetching strategy is already halfway to bringing
the required block to the cache. If the memory latency were
smaller, the prefetch might have already finished and the
partial cache miss might not have been a miss at all.

As shown in Table 4.2.3, cache prefetching strategies do
not reduce total cache miss ratios or true cache miss ratios
as much as one would have expected, or as much as has
been reported earlier in [28], [29]. The reason for this is that
the line size used in the base system (64-bytes) is much
larger than that used in the earlier studies (16-bytes) and
prefetching declines rapidly in effectiveness with larger line
sizes [25]. This change in line size reflects changes in typical
implementations since the time of the earlier work. (The

issue of line (block) size is discussed further in Section 5.4.)
Table 4.2.4 shows the success ratios and global success

ratios for the instruction and data caches. The success ratio is
the ratio of the total number of useful prefetches issued to
the total number of prefetches issued. A useful prefetch is one
which fetches a line that is referenced before it is replaced.
Success ratio alone is not sufficient to evaluate the accuracy
of a prefetching strategy, because a prefetching strategy
may issue only a few prefetches and attain a high success
ratio, yet fail to catch most demand misses.

A better metric to evaluate the accuracy of a cache pre-
fetching strategy is the global success ratio (GSR), which is
the fraction of cache misses which are avoided or partially
avoided (i.e., partial cache misses). A GSR of zero implies
that a prefetching strategy does not save any cache misses
while a GSR of one means that it catches all of them. GSR is
defined by the equation:

GSR

total number of correct prefetches
total number of correct prefetches total number of true cache misses

=

+ .

The fallacy of success ratio as a metric is illustrated by
thread. Note that thread achieves a very high success ratio, yet
its GSR tells us that it does not perform much better than
other prefetching strategies. Thread is a very conservative
strategy; it will not issue a prefetch unless the current cache
block has been accessed at least twice. It attains a high suc-
cess ratio but it fails to capture many demand misses.

Table 4.2.4 helps to explain the small decrease in miss
ratios found in Table 4.2.3. Because the global success ratios
are low (26 percent for the instruction cache and 36 percent
for the data cache), cache prefetching strategies are not very
successful in reducing cache miss ratios in the baseline
system. Note again that these results are quite different
than those in [28], [29] because the baseline system has the
longer line size of 64-bytes.

Fig. 4.2.1 gives the compositions of prefetches for the in-
struction and data caches. We classify prefetches into three
different categories.

TABLE 4.2.3
INSTRUCTION AND DATA CACHE MISS RATIOS

TABLE 4.2.4
SUCCESS RATIOS AND GLOBAL SUCCESS RATIOS
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(1)  Useful Prefetches
They are prefetches whose addresses are referenced by

the processor when they are still residing in the caches or
being prefetched from the main memory.

(2)  Useless Prefetches
They are prefetches whose addresses are not referenced

by the processor before they are replaced in the caches.
These constitute “memory pollution.”

(3)  Aborted Prefetches
They are prefetches which are discarded in the prefetch

address buffer because:

1)� the prefetch address buffer overflows; or
2)� the prefetch address has already been referenced by

the processor after the prefetch was issued but the
prefetch address has not been sent to the main
memory yet.

Fig. 4.2.1 explains why the global success ratio is low for
the instruction cache. More than 40 percent of all prefetches
for the instruction cache are aborted. Most of these aborted
prefetches are actually correct prefetches, but the prefetch-
ing unit fails to send them to the main memory in time be-
cause the data bus is busy and they are not issued early
enough. Notice that incorrect prefetches are seldom dis-
carded in the prefetch address buffer because:

1)�From the simulation results, the prefetch address
buffer seldom overflows; and

2)� Incorrect prefetches will not be referenced when they
are still in the prefetch address buffer.

As a result, incorrect prefetches are always sent to the main
memory successfully, while many correct prefetches are
aborted.

Although very few prefetches are aborted in the data
cache, many prefetches are useless, as shown in Fig. 4.2.1.
They degrade the performance of cache prefetching by in-
creasing the data bus traffic and replacing useful blocks
from the data cache.

4.3 An Idealized System
In this section, we will study some of the architectural con-
straints that limit the performance of a cache prefetching
strategy. The major limitations which reduce the effective-
ness of cache prefetching are conflicts and delays in ac-
cessing the caches, the data bus, and the main memory. By

running simulations on a hypothetical system in which
these limitations are removed, we will be able to evaluate
the extents to which these constraints affect a cache pre-
fetching strategy. We refer to the system in which the con-
straints are removed as “idealized” or “ideal.” Note that the
ideal system that we describe below is just that—idealized—
some aspects of it are not feasible or even possible for a rea-
sonable implementation. Our ideal system is made so by:

1)�The cache is ideal if there is a special access port to the
tag array for prefetch lookups, and there is a special
access port to the data array for prefetch loads. This
port is as wide as the data bus so that there is no need
to buffer prefetched blocks coming off the data bus.

2)�The data bus is ideal if there is a private bus connect-
ing the prefetching unit and the main memory and
the width of this bus is as large as the prefetch block
size so that an entire prefetched block takes only one
cycle to transfer from the main memory to the desti-
nation cache.

3)�The main memory is ideal if memory banks are dual
ported for regular and prefetch accesses and pre-
fetches take zero time to access these memory banks.

Table 4.3.1 shows the performance of the eight systems
in which each component can be either ideal or realistic,
where “realistic” corresponds to the baseline system. We
identify each system by a three letter word: The first letter
can be C or c, meaning that the caches are ideal or realistic,
respectively; the second letter can be B or b, meaning that
the data bus is ideal or realistic, respectively; and the third
letter can be M or m, meaning that the main memory is
ideal or realistic, respectively.

In the most ideal system (CBM), cache prefetching re-
duces MCPI by 46 percent on average. Since there is no pen-
alty in using the cache ports, the data bus, and the main
memory, system CBM favors aggressive strategies that issue
lots of prefetches. Hence, always prefetch and tag prefetch per-
form the best. These results also confirm previous work (e.g.,
[25], [28], [29]) which suggested that prefetching could yield
significant benefits; that work, however, ignored most of the
timing and implementation issues considered here.

Cache prefetching, however, increases MCPI by 18 per-
cent on average in the real system (cbm). Because resources
are limited, aggressive strategies like always and tag are
heavily penalized and yield the lowest performance.

Fig. 4.2.1. Average distribution of prefetches.
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We analyzed the effects of the three factors, cache, bus,
and main memory, by using the technique of a sign table
[17]. Table 4.3.2 shows the results of this analysis. The ef-
fects due to caches alone account for more than 82 percent
of the variations in average relative MCPI. Fortunately,
making the caches ideal, or close to ideal, is feasible, but
making the data bus and main memory ideal are not.

5 EFFECTS OF SYSTEM RESOURCES ON CACHE
PREFETCHING

In this section, we consider each design parameter
separately and analyze its impact on the effectiveness
of prefetching. Extensive and more detailed quantitative
results can be found in the appendix of [33]. In particular, in
[33] we show the results for many of our experiments for
each individual workload.

5.1 Single vs. Double Ported Cache Tag Arrays
Table 5.1.1 shows the impact of cache tag ports on relative
MCPI. We see that the impact of a second cache tag port on
performance is enormous when cache prefetching strategies
are used. The average relative MCPI when the cache tag arrays
are single ported is more than 12 times bigger than that when
the arrays are double ported. Conflicts over the cache ports
account for an average of 59 percent of total stalls when the tag
arrays are single ported. This is consistent with the failure of
both the Amdahl 470V/6 [25] and the Fairchild/Intergraph
Clipper [5] to gain from prefetching; neither permitted pre-
fetch tag accesses in parallel with the CPU accesses.

When the cache tag arrays change from double to single
ported, relative MCPI increases 15-fold for always and

thread, since both strategies look up the cache tag arrays
immediately after each memory access made by the proces-
sor. The situation for bi-dir is even worse: Its relative MCPI
is almost twice that of always and thread, because it looks up
the tag arrays twice for every memory access: once for the
next cache block and once for the block immediately before.
Strategies miss and tag, on the other hand, are only slightly
affected by the type of cache tag ports. Because both strate-
gies look up the tag arrays very rarely, their relative MCPIs
increase by only about 0.05 when the tag arrays change
from double to single ported.

In general, if a prefetch strategy looks up the cache tag
arrays frequently, extra access ports to the tag arrays are
vital. If these ports are not available, contention for them
will be so damaging to performance that the strategy be-
comes useless.

5.2 Single vs. Double Ported Cache Data Arrays and
Buffering

Table 5.2.1 gives the relative MCPI when the cache data
arrays are single and double ported; note that the tag arrays
are double ported in this case. The issue of single or double
ported cache data arrays is far less important than that of
the cache tag arrays, because prefetch strategies access the
data arrays far less frequently than they do to the tag ar-
rays. When the data arrays are single ported, however, all
prefetching strategies give a relative MCPI greater than one.
But, when the data arrays are double ported, all strategies
are able to reduce MCPI and give a relative MCPI smaller
than one. On average, relative MCPI decreases by about
0.32, a significant amount. Conflicts over cache ports total
about 13 percent of all stalls on average when the data

TABLE 4.3.1
RELATIVE MCPI

     All data are normalized by the MCPI when no prefetching strategies are used.

TABLE 4.3.2
RESULTS FROM THE SIGN TABLE ANALYSIS ON AVERAGE RELATIVE MCPI
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arrays are single ported. When they are double ported,
these conflicts completely vanish and result in no processor
stalls.

Double ported data arrays are no doubt a highly desir-
able feature for cache prefetching strategies. However,
adding an extra access port to a cache data array is very
costly. A more practical solution would be to provide some
buffering for the data arrays. In this scheme, a prefetched
block is first stored in a buffer after it has arrived from the
main memory. When the data array becomes free, the con-
tents of the buffer are then loaded into the data array. If the
processor needs to access the data array during the load, the
prefetch load will be halted to allow access by the processor.
After the processor finishes its access, the load will resume.
In this way, the processor does not need to wait to access
the data arrays and the data bus will be freed once a pre-
fetched block gets off the bus. Note that there is an addi-
tional optimization we have not considered in this paper,
which is a double ported prefetch buffer. Such a buffer
would permit the processor to access any valid data bytes
in the prefetch buffer as they arrive and before they are
loaded into the data array; we believe that such a double
ported prefetch buffer might have a measurable perform-
ance impact and we hope to consider it in future research.

Table 5.2.1 shows that such a buffering scheme indeed
improves the performance of cache prefetching effectively
and at a lower hardware cost. Relative MCPI decreases by
0.26 on average and this is almost as good as when the
cache data arrays are double ported.

5.3 Cache Size
Fig. 5.3.1 depicts the relative MCPI for various cache sizes.
Performance of a prefetch strategy generally improves as
the cache size increases, although, even for a 1MB cache,
prefetching still does not improve performance in the base-
line system.

When a cache is larger, a prefetched block is more likely
to reside in the cache for a longer period of time before it is
replaced. Consequently, it has a higher chance of being ref-
erenced by the processor while it is still in the cache.
Moreover, a useless prefetch is less likely to replace a useful
block, i.e., to pollute the cache, if the cache is larger.

TABLE 5.1.1
RELATIVE MCPI

All data are normalized by the MCPI when no prefetching strategies are used
with the same type of cache tag arrays.

TABLE 5.2.1
RELATIVE MCPI

All data are normalized by the MCPI when no prefetching strategies are used with the same
type of cache data arrays.

Fig. 5.3.1. Relative MCPI. All data are normalized by the MCPI when
no prefetching strategies are used with the same cache size.
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Another reason for the improvement with cache size is
that there is less interference caused by prefetches in large
caches. The bigger the caches, the fewer the cache misses;
hence, prefetches are less likely to interfere with normal
cache operations.

In general, cache prefetching strategies should be used
only when there is sufficient space in the caches; otherwise,
the effects of interference and cache pollution due to useless
prefetches will overshadow any benefits brought about by
cache prefetching. The effect of cache pollution was clearly
shown in [28], [29], where it can be seen that prefetching only
cuts the miss ratio for sufficiently large cache memories.

5.4 Cache Block Size
Fig. 5.4.1 illustrates the effect of cache block size on pre-
fetching. Note that we assume that, in all cases, the block
size is the same in the instruction cache, the data cache, and
is also the transfer size for both demand and prefetch trans-
fers. Fig. 5.4.1 shows that, when cache blocks are 16 or 32
bytes long, most prefetch strategies perform better than
when there is no prefetching. But, as the cache block size
increases, relative MCPI rises above one and prefetching
hurts performance. This confirms some results in [25],
which showed that the miss ratio improvement for pre-
fetching increases with decreasing block size.

The increase in relative MCPI with increasing block size
is mainly a result of more cache port conflicts. On average,
cache port conflicts account for only 2 percent of total stalls
when cache blocks are 16 bytes long. But, when cache blocks
are 16 times larger, the percentage rises to 20 percent. Be-
cause the port width of the data arrays remains the same but
the block size increases, a cache needs more cycles to load a
prefetched block into its data array. Consequently, a single
prefetch load holds up the data array for more consecutive
cycles and creates more chances for port conflicts.

Note also that, as the block size increases, prefetching is
less likely to improve the miss ratio. The reason is that the
prefetched block is less likely to be useful (it is further away
from the current point of reference) and the corresponding
replaced block is more likely to be useful (since it is bigger).
A similar effect is visible in [30], where we see that increases
in block size produce diminishing returns; since fetching a

double block is very similar to fetching a block and pre-
fetching the next one, this is essentially the same effect.

5.5 Cache Associativity
Fig. 5.5.1 illustrates the impact of cache associativity on pre-
fetching. When the caches change from direct mapped to
two-way mapped, relative MCPI decreases by 0.07 on aver-
age, but remains almost constant as cache associativity in-
creases further.

There are more prefetches issued, both useless and use-
ful ones, in a direct mapped cache than in a set associative
cache. This is because in a direct mapped cache, a cache
block can be placed in only one slot. A prefetched block,
therefore, has a higher chance of replacing a useful block
from the cache. The prefetch unit detects more potential
misses and issues more prefetches. Bus traffic increases and
more conflicts arise. In a multiply mapped (set associative)
cache, a prefetched block can be placed in more than one
slot and, hence, the problem of cache pollution is less seri-
ous than in a direct mapped one.

From these results, we conclude that a cache prefetch
strategy performs more effectively in set associative caches
than in direct mapped caches.

5.6 Split vs. Nonsplit Bus Transaction
Table 5.6.1 shows the relative MCPI for the two types of bus
transactions. Relative MCPI decreases by 14 percent on av-
erage when bus transactions change from nonsplit to split.
For both caches, most aborted prefetches become useful
prefetches when the data bus supports split transactions.
Recall that an aborted prefetch is one which is canceled in
the prefetch address buffer before it can be sent to the main
memory. Although most aborted prefetches correctly pre-
dict future memory references, they fail to be sent to the
main memory because the data bus is too busy. When split
transactions are available, a transaction does not have to
hold up the bus during its entire access to the main mem-
ory. It is, therefore, easier for the prefetching unit to acquire
the bus and send prefetch requests to the main memory.
Many would-be aborted prefetches now become useful.
True miss ratios decrease and the prefetch strategy is more
able to improve MCPI.

Fig. 5.4.1. Relative MCPI. All data are normalized by the MCPI when
no prefetching strategies are used with the same cache block size.

Fig. 5.5.1. Relative MCPI. All data are normalized by the MCPI when
no prefetching strategies are used with the same cache associativity.
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The type of bus transaction also affects the impact of
other system resources on cache prefetching. For example,
the number of memory banks has very little effect on rela-
tive MCPI unless the data bus supports split transactions.
We will consider this issue later in Section 5.9.

5.7 Bus Width
Fig. 5.7.1 shows the relative MCPI as the bus width varies. In
order to take full advantage of a wider bus, we assume that the
cache data ports are as wide as the data bus so that, when a
prefetched block arrives, a cache can load the block into its
data array in a single cycle and hence no buffering is needed.
Since a line can be much bigger than the bus width, of course,
this does not mean that we have a one cycle block load.

Fig. 5.7.1 shows that, as the bus width increases, relative
MCPI begins to fall below one for the base system. The major
reason is because there are fewer cache port conflicts. On aver-
age, the percentage of total stalls contributed by cache port
conflicts drops by 10 percent when the bus width increases
from 4 bytes to 16 bytes. Since a cache block is 64 bytes long by
default, a cache takes 16 cycles to finish a prefetch loading
when the bus is 4 bytes wide. But, when the bus is 16 bytes
wide, it only takes four cycles to do so. A wider bus, therefore,
relieves the contention for cache data ports.

However, the above argument holds only when the cache
data ports are as wide as the data bus. If the ports are smaller
in size, a prefetch load will take multiple cycles to finish. In
this case, we need some buffering schemes for the data arrays
or we need to lock the bus until the prefetch load finishes.

5.8 Memory Latency
Fig. 5.8.1 illustrates the performance of prefetch strategies as
the memory latency increases. Although relative MCPI de-
creases as the memory latency increases from eight to 64 proc-
essor cycles, it starts to rise as the memory latency increases
further. Two reasons account for these U-shaped curves:

1)�Fewer cache port conflicts: When the memory latency
increases, prefetch loadings happen less frequently in
the same period of time. Conflicts over cache ports
occur more rarely and the processor is stalled less for
that reason. This explains why relative MCPI falls. On
average, the percentage of total stalls contributed by
these conflicts drops by 13 percent when the memory
latency increases from eight to 128 processor cycles.

2)�More data bus conflicts: As the memory latency in-
creases, a prefetch has to hold the bus longer and is
more likely to conflict with a regular demand miss.
Hence, the processor is stalled more. This explains
why relative MCPI starts to rise when the memory
latency is larger than 64 cycles. The percentage of total
stalls contributed by bus conflicts rises by 11 percent
on average when the memory latency increases from
eight to 128 processor cycles.

If the performance gap between memory and processor
speed continues to increase, cache prefetching will become
increasingly useful until the memory latency passes a cer-

TABLE 5.6.1
RELATIVE MCPI

All data are normalized by the MCPI when no prefetching strategies are used.

Fig. 5.7.1. Relative MCPI. All data are normalized by the MCPI when
no prefetching strategies are used with the same bus width.

Fig. 5.8.1. Relative MCPI. All data are normalized by the MCPI when
no prefetching strategies are used with the same memory latency.

Fig. 5.9.1. Relative MCPI. All data are normalized by the MCPI when no
prefetching strategies are used with the same number of memory banks.
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tain latency for that architecture. For our base system, the
latency at which prefetching is most useful is around 64
processor cycles.

5.9 Number of Memory Banks
If bus transactions are nonsplit, having more memory banks
cannot improve the performance of cache prefetching be-
cause a nonsplit bus transaction does not allow multiple pre-
fetches to access the main memory concurrently. Therefore,
in this section, we assume that bus transactions are split.

Fig. 5.9.1 depicts the impact of the number of memory
banks on cache prefetching. Relative MCPI decreases by
0.18 on average when the number of memory banks in-
creases from one to four. When there are more memory
banks, relative MCPI levels off.

One reason for this improvement is because there are
fewer conflicts over the memory banks. These conflicts
account for 16 percent of total stalls when there is only one
memory bank. But, when there are 16 of them, the percent-
age drops to 2 percent.

Another advantage to multiple banks is that multiple
prefetches can occur in parallel when there are more mem-
ory banks. As long as the cache doesn’t experience a de-
mand miss, any memory reference can initiate a prefetch.
However, if there is only one memory bank for a prefetch to
access, then the prefetches must be processed sequentially
by the memory.

5.10  Bus Traffic
Bus traffic is another aspect of a cache prefetching strategy.
Previous measurements [29] show that prefetching increases
bus traffic from 20 percent to 40 percent. This additional traf-
fic may seriously affect the performance of the system. In
order to study the effect of bus traffic, we added an extra
synthetic load on the bus by simulating a direct memory ac-
cess (DMA) of variable speed made by some imaginary IO
devices. The priority of these DMA accesses to acquire the
data bus is higher than that of ordinary prefetches but lower
than those of demand misses and write backs.

Fig. 5.10.1 illustrates the effect of bus traffic on prefetching.
As the amount of bus traffic increases, relative MCPI starts to
converge to one. This is because there is less and less bus
bandwidth to send prefetch requests to the main memory.
When the amount of bus traffic increases, more and more pre-
fetches become aborted until all issued prefetches are aborted.
Since it becomes increasingly difficult to access the data bus,
very few prefetch requests can be sent to the main memory
successfully. When the bus utilization used by DMA reaches
80 percent, almost no prefetches can acquire the data bus and
the processor runs as if there is no prefetching.

Fig. 5.10.1 seems to suggest that heavier bus traffic actu-
ally improves the relative performance of cache prefetching
since relative MCPI decreases. This is true in the baseline
system because prefetching does not improve performance.
Heavier bus traffic helps to reduce the amount of these un-
desirable prefetches and, hence, relative MCPI decreases.
But, for a system in which prefetching is beneficial, heavier
bus traffic will reduce the amount of desirable prefetches
and relative MCPI will rise. In any case, relative MCPI con-
verges to one as the data bus becomes more congested.

We also note that shared memory multiprocessor systems,
particularly those with a shared bus, are typically limited in
their throughput by the bus bandwidth [11]. In such a case,
prefetching will almost certainly lower overall throughput.

5.11  Prefetch Lookahead Distance
Ideally, we would like to issue a useful prefetch well in ad-
vance so that, by the time the prefetch target is referenced by
the processor, the block will already be in the cache. This can
be accomplished by prefetching block p + LA instead of block
p, where p is the original block address requested by the pre-
fetching strategy and LA is the lookahead distance, in blocks.

Fig. 5.11.1 shows the relative MCPI for different prefetch
lookahead distances. For all strategies except thread, relative
MCPI rises with increasing lookahead distance. This is be-
cause the chance that block p + LA will be referenced by the
processor decreases as LA increases, since the effect of spatial
locality is diminishing. As a result, more prefetches are not
referenced by the processor before they are replaced from the
caches. The number of useless prefetches increases with
higher LA. More bus and cache port conflicts occur and per-
formance degrades, even though an issued prefetch is more
likely to actually complete before the block is referenced.

Kim et al. suggested a better way to increase the looka-
head distance for thread algorithm [18]. Recall that thread
records all blocks brought into the cache by the block cur-
rently accessed by the processor. When the current block is

Fig. 5.10.1. Relative MCPI. All data are normalized by the MCPI when
no prefetching strategies are used with that DMA bus utilization.

Fig. 5.11.1. Relative MCPI. All data are normalized by the MCPI when
no prefetching strategies are used with the same prefetch lookahead
distance.
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later reaccessed, the recorded blocks will be prefetched if
they are not already in the cache. To increase the lookahead
distance, we can keep track of all the blocks brought into
the cache by the next block, rather than the current block.
We implemented this scheme and found out that relative
MCPI decreases with increasing lookahead distance. Our
results are consistent with those presented in [18]. Because
this scheme is able to maintain a high prefetch accuracy,
increasing lookahead distance does not generate more use-
less prefetches. Since we are prefetching earlier, it is more
likely that a prefetched block is already in the cache when
the processor references it. Hence, relative MCPI improves.

From our results, increasing lookahead distance simply
by prefetching block p + LA instead of block p is generally
not a good idea.

6 SYSTEM DESIGNS

6.1 When Prefetching Is Most Effective
Table 6.1.1 gives a summary of the impacts of various system
resources on the performance of cache prefetching. We see
that, when a system parameter changes from its worst value
(the least favorable setting for prefetching) to its best (the
most favorable one), the improvement in the performance of
cache prefetching ranges from 7 percent to as high as 90 percent.

Please note that the use of the word “best” is in relation to
when prefetching is most useful, and does not refer to the
overall system design or level of performance. In this section,
we will focus our attention on a system in which each one of
these parameters is chosen favorably (but feasibly) for pre-
fetching. We call it the OptiPrefetch system; the configuration
for the OptiPrefetch system is given by the best values
shown in Table 6.1.1 except for the cache size. Since the cache
size is one of the most important factors in system perform-
ance, we chose the instruction and data cache size in the Op-
tiPrefetch system to be the same as that in the baseline sys-
tem (64K bytes) in order to facilitate comparisons.

Tables 6.1.2 and 6.1.3 show the relative and absolute
MCPI and CPI for different address traces in the OptiPre-
fetch system. The results are much better than those found
in the baseline system. All prefetching strategies perform
better than when there is no prefetching. The relative MCPI
for all strategies averages 0.65, meaning that prefetching
reduces MCPI by 35 percent on average relative to the cor-
responding baseline system.

Prefetching performs the best on the address trace fp, for
which MCPI decreases by more than 52 percent on average.
Always and tag even reduce MCPI by as much as 69 percent.
Prefetching continues to perform the worst on the address trace
unix, for which the reduction in MCPI averages 11 percent.

TABLE 6.1.1
THE WORST AND THE BEST VALUES FOR EACH SYSTEM PARAMETER IN TERMS

OF THE EFFECTIVENESS OF PREFETCHING

The average data shown here are the same as those reported in Section 5, where only one particular parameter is changed
in the baseline system. The last column gives the improvement in average relative MCPI when a particular parameter changes
from its worst value to its best.

TABLE 6.1.2
RELATIVE AND ABSOLUTE MCPI FOR THE OPTIPREFETCH SYSTEM
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The OptiPrefetch system favors aggressive strategies like
always and tag, which issue lots of prefetches. The baseline
system, on the other hand, favors conservative strategies
like thread and bi-dir, which only issue prefetches with
high chances of being referenced. This difference arises
from the fact that there are more resources and bandwidth
available in the OptiPrefetch system for prefetching than in
the baseline system. Strategies which make better use of
these resources by aggressively issuing prefetches win in
the OptiPrefetch system. But, when resources are limited,
these strategies run into too many conflicts. The type of
prefetching strategy a system should use is, therefore,
highly dependent on the availability of system resources.

Table 6.1.4 shows the stall compositions. There are no
conflicts over the cache data ports because the data arrays
are dual ported. Contention over the data bus is minimal
and it accounts for less than 2.5 percent of total stalls on
average. Since there are 16 memory banks available, con-
flicts over memory banks occur very rarely. Because con-
flicts are rare, the OptiPrefetch system does not heavily pe-
nalize useless prefetches. An aggressive strategy takes ad-
vantage of this fact by issuing more prefetches and is there-
fore better able to improve MCPI.

Table 6.1.5 lists the miss ratios found in the instruction and
data caches. Prefetching strategies lower both the total miss
ratios and true miss ratios significantly in the OptiPrefetch

TABLE 6.1.3
RELATIVE AND ABSOLUTE CPI FOR THE OPTIPREFETCH SYSTEM

TABLE 6.1.4
STALL BREAKDOWNS IN PERCENTAGE FOR THE OPTIPREFETCH SYSTEM

TABLE 6.1.5
INSTRUCTION AND DATA CACHE MISS RATIOS IN THE OPTIPREFETCH SYSTEM

TABLE 6.1.6
SUCCESS RATIOS AND GLOBAL SUCCESS RATIOS IN THE OPTIPREFETCH SYSTEM
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system. This is because prefetch accuracy is greatly im-
proved. As shown in Table 6.1.6, both the success ratios and
global success ratios are high. The global success ratios in
the instruction and data caches average 68 percent and 45
percent, respectively. For comparison, the global success
ratios in the baseline system averaged about 26 percent and
36 percent for the instruction and data caches, respectively.

Fig. 6.1.1 shows what happens to the prefetches. Because
there is abundant bus bandwidth, most prefetch requests
can be sent to the main memory successfully and almost no
prefetches are aborted. On average, over 80 percent and 69
percent of all prefetches are useful in the instruction and
data caches, respectively.

6.2 Possible System Designs
Table 6.2.1 shows some hypothetical system configurations
and the performance of cache prefetching in these systems.
Prefetching improves performance in all systems except
systems D and G. Prefetching strategies perform poorly in
systems D and G because the data bus bandwidth is too
small (no split transaction, only one memory bank, and the
data bus is only four bytes wide).

7 CONCLUSION

In memory systems with appropriately designed hardware,
prefetching can often reduce average memory latency. For a
cache to prefetch effectively, it is necessary that the cache
tag arrays be double ported, and that the data arrays either

be double ported or buffered. The cache should also be at
least two way set associative. Prefetching is most effective
when the cache is large, the block size small, and the mem-
ory bus wide. Using a split transaction bus and interleaving
main memory help considerably. Such well-designed sys-
tems achieve their highest performance with aggressive
prefetch strategies which prefetch blocks frequently.

Conversely, in less well-endowed memory systems, pre-
fetching often degrades the memory system performance.
In this case, additional conflicts and bus traffic may over-
shadow any benefit brought about by prefetching. Such
systems function best with conservative strategies which
only issue prefetches with high chances of being referenced
by the processor. It is important to note, therefore, that for
prefetching to be useful, considerable extra hardware needs
to be dedicated to making it effective; less complex or ex-
pensive designs, such as are commonly found, do not per-
mit prefetching to be helpful.

In this paper, we have only considered single level
caches, i.e., caches with a processor referencing them on one
side and main memory on the other side. We hope in future
work to explore two additional issues. One is the use of
prefetching in multiple level caches, e.g., on-chip and on-
board caches, and the other is the use of prefetching in a
multiprocessor system with shared memory. Such systems
are often limited by bus bandwidth, in which case pre-
fetching is unlikely to help aggregate system performance.

Fig. 6.1.1. Average distribution of prefetches in the OptiPrefetch system.

TABLE 6.2.1
PERFORMANCE OF CACHE PREFETCHING IN SOME POSSIBLE SYSTEMS
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