Heapsort

PROBLEM
Given an array A. of N elements the result of sorting the array in place is to arrange elements of A. so that

A.1<=A.2<=...<=A.N


ALGORITHM
Heapsort by J. W. J. Williams is a sorting algorithm in place whose worst-case running time is O(N*lgN) on an input array of N items.

PRACTICE
A good implementation of QUICKSORT usually beats HEAPSORT in practice. On average the number of comparisons done in HEAPSORT is about twice as much as in QUICKSORT, but HEAPSORT avoids the slight possibility of a catastrophic degradation of performance. The following table compares four sorting algorithms. The A. array includes integers in the range 1 to Max=100,1000,40000,99999.

 

Running time in seconds for N=10000
Algorithm Max = 100 Max = 1000 Max = 40000 Max = 99999
QUICKSORT 4.66  4.53  4.89  4.59 
HEAPSORT 10.26  10.67  11.58  11.18 
SHELLSORT  7.45   8.89  10.58  10.13 
COUNTING_SORT  1.88   1.95   7.93  31.85 

 

IMPLEMENTATION
Unit: nonrecursive internal subroutine
 
Global variables: array A. of arbitrary elements
 
Parameter: a positive integer N - number of elements in A.
 
Result: Reordering of input array such that

A.1<=A.2<=...<=A.N
 


HEAPSORT: procedure expose A.
parse arg N
do I = N % 2 to 1 by -1
  call SIFT I, N
end
do I = N to 2 by -1
  W = A.1; A.1 = A.I; A.I = W
  call SIFT 1, I - 1
end
return
 
SIFT: procedure expose A.
parse arg L, R
I = L; W = A.I; J = 2 * I
Jp1 = J + 1
if J < R then
  if A.J < A.Jp1 then J = Jp1
do while J <= R
  if W >= A.J then leave
  A.I = A.J; I = J; J = 2 * I
  Jp1 = J + 1
  if J < R then
    if A.J < A.Jp1 then J = Jp1
end
A.I = W
return

 

CONNECTIONS
Sorting Problem
     Counting sort
     Shellsort
     Quicksort
Merging

Literature
Wirth N. Algorithms and data structure
New Jersey, Prentice Hall, Inc., Engelwood Cliffs, 1986

Acknowledgement
I changed the test from Max=10 ... 40000 to Max=100 ... 99999. Thanks for idea go to Walter Pachl.

Note
This test ran in the Windows 2000 Professional environment on the computer with 132MB RAM and processor x86Family 6 Mode 6 Stepping 5.


HEAPSORT_RADIX3: procedure expose A.
parse arg N
do R = (N+1)%3 to 1 by -1
  call SiftDown A.R, N, R
end
do R = N to 2 by -1
  V = A.R; A.R = A.1
  call SiftDown V, (R - 1), 1
end
return
 
SIFTDOWN: procedure expose A.
V = ARG(1); Count = ARG(2); I = ARG(3)
J = I
do forever
  K = J * 3 - 1
  if K < Count - 1
    then do
      Kp1 = K + 1; Kp2 = K + 2
      if A.K < A.Kp1 then
        if A.Kp1 < A.Kp2 then K = Kp2
          else K = Kp1
        else if A.K < A.Kp2 then K = Kp2
    end
    else do
      if K < Count
        then do
          Kp1 = K + 1
          if A.K < A.Kp1 then K = Kp1
        end
        else if Count < K then leave
    end
  A.J = A.K
  J = K
end
K = J
do while K > I
  J = (K + 1) % 3
  if A.J > V then leave
  A.K = A.J
  K = J
end
A.K = V
return

 

Acknowledgement
Thanks for interesting (more theoretically) code go to James Berbetti.

 


Cover Contents Index Main page Rexx page   Mail

last modified 1st December 2003
Copyright © 2000-2003 Vladimir Zabrodsky
Czech Republic