Test Results of Running NMS in Conjunction with Solid FlowEngine
Second Edition
Liping Wang

July 30, 2002
Summary:

 Solid DBMS can support NMS handle up to 14 calls/second on a SUN Blade1000 machine; existing NMS can handle up to 23 calls/second in the same environment and settings.

Mini table of contents

 - Purpose of the Evaluation

 - Work Done in the Evaluation

 - A Few Observations

 - Other Areas Interest Us
 - My Comments

 - Table of Test Result

 Thanks to Nitin's introduction, we get a chance to know and use this relational database product. Starting from May I have been evaluating Solid DB and testing it with NMS for a long time. I hope this report will show you all the work I have done, and help you in your decision-making.

Purpose of the Evaluation

1. To see if it has good scalability for STM’s future NMS development.

2. To test its performance in normal NMS environment and settings.

3. To investigate its manageability in the viewpoint of customer support and customer operation.

4. To check its reliability and hot-standby feature.
Work Done in the Evaluation

1. I spent time to get familiar with the product and its different options.

2. Investigated scalability of Solid FlowEngine.
 Solid FE has a flexible architecture that supports several deployment configurations. Its master-replica configuration offers scalability similar to what we need. This architecture provides a mechanism to transmit messages between master and replica servers to propagate database transactions (database changes). The advantage of this architecture is that application code has more control over data sync and propagation. But the other side application code has to handle every exception in the data sync. The application code needs to detect its running server is master or replica and take different business logic. The data synchronization in Solid FE works asynchronously in essence. A database operation committed on a replica could be thrown out by master due to update conflict. In my opinion it is not suitable for real-time call-processing that can not afford late transaction roll-back, but may be good enough for configuration management.
 A synchronous data propagation or two-phase commit should be used for real-time call-processing when scalability is required, unless the call-processing code does it at its application level.
3. Investigated manageability of Solid FE in the viewpoint of customer support and customer operation.
 Running Solid FE from outside of NMS demands some customer involvement in jobs like data backup, start and stop of the server. Solid FE can be managed either from a SQL command line console, or from GUI of Solid Flow Control utility program. Using accelerator option application code can programmatically manage these jobs. Customers don't need to get much training on administration of Solid FE. In overall the Solid FE with Accelerator Option offers very good manageability and hides details of database from end users.
4. Tested its performance in normal NMS environment and various Solid FE settings. Detailed result can be found in the table at the end of this report.

 The Solid FE transaction log manager ensures that transaction results are written to permanent storage immediately at commit time. If database file becomes corrupted, a backup can be used to recover it, and transaction log files help Solid FE to restore the database to its latest state. By default settings in solid.ini, Solid FE writes transaction log file in ping-pong mode which is Solid FE’s most secure logging mode. In my test, NMS can only handle a few calls per second when Solid FE uses this log writing mode. Lazy Write Mode is intended for applications that can afford to lose a few transactions during system crashes. Dale told me that Solid FE writes transaction log file in every 100ms in this mode. This mode gives Solid FE the best overall performance.
 When log writing is disabled Solid FE runs at its maximum performance at the expense of possibility of full data recovery after a database crash.

 Changing other parameters in configuration file solid.ini does not make much difference of performance. I have changed number of threads, mergeInterval and CheckpointInterval with different values individually and in different combinations, and did not see noticeable impact on performance. I also changed cacheSize to several values, and no significant difference is seen.

 The database performance is also related to how the application uses the database. I used accelerator option and ODBC API in my test. Using accelerator option NMS starts programmatically a Solid FE engine and run it in the same process as the application but in different threads. ODBC is an industry standard for accessing Relational DBMS. It offers great portability among DBMSs from different vendors. Solid SA API is a proprietary API claimed to offer better performance (up to 100% faster for batch insert) than ODBC, but it conforms to no industry standard and is not SQL alike. To keep good portability in my application code, I chose to use ODBC as my database API.
 Operations to database are passed through ODBC to database engine in form of SQL statement handlers. SQL statement can be prepared every time for each invocation to dbm_store() or dbm_delete(). They can also be prepared once and persist. If the statements are prepared once and persist, NMS shows about 15% better performance. If NMS commits sparsely, commit once for a group of database operations, it performs less than 5% better.
 I have not tested Diskless Option. Diskless Option only applies to replica. The Solid manuals give me an impression that it is complex in configuration and startup process. All database operations at diskless database are propagated to a master database for persistence. If the master database runs at a dedicated machine, the bottleneck at disk access is hopefully better handled by the master database. But if we use a single machine to run Solid FE master, diskless replica and NMS, the overall performance may be worse in my guess.
 From the result table, we can see that stored procedure or multi-connection does not offer better performance in my test. It could be because of my coding, but the odds are low in my opinion. These findings are to my surprise. Stored procedure is theoretically the fastest way of access database. I do not have a good explanation for them. Reference customers and consulting from Solid Tech could shed some light on this. (ODBC does not define a standard grammar for creating procedures. Thus, although applications can call procedures interoperably, they can not create them interoperably.)
 I have tried almost every thing stated in the manuals regarding ODBC programming and configuration in file solid.ini. To get better possible performance more help from Solid Tech is needed.

A Few Observations

 With the Solid FE the NMS takes longer time to start. An implication of it is that redundant NMS will take longer time to switch over, because existing redundant NMS does a full database re-initialization for switch-over. NMS also takes longer time to shutdown.
 Solid FE generates transaction log file when log writing is enable in solid.ini. The log files consume disk space considerably. In my test, Solid FE could generate log files over 20 MB in size in an hour.
 I ran across a news at Solid Tech’s website. The link is

 http://www.softwaremag.com/L.cfm?Doc=newsletter/2002-05-08#Solid. It says, “Solid FlowEngine costs $1,000 per named user in the enterprise. Enterprise sales are expected to average between $100,000 and $200,000.” It also says, Solid FlowEngine product, for supporting high-availability, fault-tolerant systems, such as those used within communications switches. But what role does it play in a switch? Could be only updating route information or subscriber information or what?

Other Areas Interest Us
1. Hot-standby

 Introduction:

 Hot-standby system supposedly improves system availability and data integrity. The switch is controlled from application code. Application can monitor hot-standby status. In details, application must connect to primary server and secondary server, then it can issue Solid Admin command (from C code) to check the role and status of hot-standby servers. The roles can be: PRIMARY, PRIMARY STOPPED, PRIMARY BROKEN, PRIMARY ALONE, SECONDARY, STANDALONE.

 After the above checking, application can issue SQL command to switch node’s hotstandby role, or make full copy of database between the two servers. After a switch, the application needs to commit all database transactions to the new primary server. Hot-standby uses a separate log file to replicate transactions from primary server to secondary server, so the log writing mode for transaction logging does not affect hot-standby log.

 Real test has not been performed.

2. Backup and restore

 Introduction:

 Online backup and offline restore can greatly improve our database availability, although we only experienced few cases of database corruption.

 Application can issue Solid Admin command (from C code) to start or stop online backup. Upon starting a backup a checkpoint (similar to timestamp) is automatically created in the database. Application can suspend an ongoing online backup, resume a suspended backup task. After a backup task is done, all previous transaction log files will be deleted from file system.

 When database is corrupted which I already experienced several times in my test work, we can restore it from the latest backup to bring the database to the state when the backup was made. If transaction log files are present, Solid database system will automatically use these files in its start-up process to perform a roll-forward recovery. If Solid DBMS can not find these file, you will loss all the database changes after the time when the last backup was made.

 The lazy write mode according to the manual of Solid FE 3.1 is intended for applications that are not critical in the sense that it is still affordable to lose a few transactions during system crashes.

 Real test has not been performed.
My Comments

 Being able to handle 14 calls per second is a good result for Solid FE. The size of executable file of existing NMS is about 5.2 MB, but the size of executable file of NMS embedded with Solid FE is about 10.1 MB. The extra code takes time to execute. If NMS code can be further optimized to reduce the number of database operations, say, it only calls AttemptSave once for each action on each object, NMS could render a little higher performance.

 Solid FE offers much richer functionality than the current indexed file used in our NMS. In my opinion, among its rich features the most beneficial ones for us are its SQL language support, online backup and hot-standby.

 SQL provides an easy-to-use and flexible way of data description (creating table) and data manipulation (insertion, deletion), and can support complex query. The existing NMS uses GList to maintain a list of objects of managed element, like NTs; it uses one integer key for search and indexing, and does not support complex query. If we want to use SQL in our future NMS, it can cut the development effort somewhat, and ease some difficult problems with GList. SQL also can help a new application programmatically upgrade a database to a newer schema (, i.e., new table definitions), but it does not completely avoid database conversion in all situations.

 If NMS stores event log and call records to database, the overall performance need to be measured or estimated. Because event records and call records will be constantly added to database at high pace.
 In the regard of references, Solid FE is used by pinnacle system and other companies. It is said being widely used in HP OpenView’s product line. Solid Tech has not provided us more details about these references.

 Consulting service from Solid Tech may help improve the NMS performance since they have authority on their product and technology. They can look into trace file and log files produced by Solid FE to find out how the database engine runs and where the bottle neck is. I t is possible that I have missed or misused some things in their technology. But I suggest that this kind of service will only be paid upon meeting our requirements in a SOW. Or they can improve our related source code in their house.

 I have sent some trace files to Dale at Solid Tech. He only told me there was a 3 second idle period in the database. That is because the database writing thread in NMS wakes up after every 3 seconds of sleep. After I remove this sleep, the performance did not change. Our database writing thread queues database operations and flush them to disk in every 3 seconds. But it does not reduce number of database operations, so it only relief NMS of synchronous DB write, but does not cut disk access burden.

 Other choices of DBMS include FairCom, MySQL.

Table of Test Result
Note:

 The customers’ requirement for NMS is to handle at least 16 calls per second on a single Solaris machine. All tests on Solid FE uses accelerator option, which means Solid DB is embedded in application, unless specially specified.
Platform:
 Solaris 8: SUN Blade 1000, 512 MB RAM.
 Solaris 7: SUN Ultra 30, UltraSparc-II 296MHz CPU, 128 MB RAM.
 Linux: P III 1 GH CPU, 128 MB RAM.

Mandrake 7.0 (Linux kernel 2.4.xx)

 Solid.ini file:

logenabled = no.
Software Version:

 NMS Andreas latest version
 Solid FlowEngine 3.1 SDK on Solaris

 Solid FlowEngine 3.1 SDK on Linux

NMS configuration:

 C1. Configured with 2500 VSATs and 2500 CUs. Received 25 SSR/second and 38 call requests/second.
	
	Solid Log enabled,
Unit: calls/second
	Solid Log enabled, Lazy write,
Unit:

calls/second
	Solid Log disabled,
Unit:

calls/second
	Note

	NMS & no writing to DB files on Solaris 8,

C1
	24
	24
	24
	This is the max number NMS can get.

	NMS + ndbm on Solaris 8,
C1
	23
	23
	23
	This is the current NMS.

	NMS + Solid FE on Solaris 8,

C1
	8.8 (code is not stable)
	10.0
	12.8
	NMS uses stored procedure.

	NMS.sparseCommit + Solid FE,
C1
	4.8 ~ 5
	14
	16.8
	Note1

	NMS + Solid FE on Solaris 8,
C1
	2
	14
	16.8
	Note2

	
	
	
	
	

	Test Driver1 + Solid FE, alone
C1
	
	
	29
	

	Start test driver2, it opens an ODBC connection to the Solid FE in test driver1
	
	
	
	

	Test Driver1 + Solid FE,
C1
	
	
	Drops to 8
	

	Test Driver2 + ODBC connection to Solid FE within Test Driver1,
C1
	
	
	8
	

	Stop test driver2,
	
	
	
	

	Test Driver1 + Solid FE,
C1
	
	
	goes back up to 29
	

	
	
	
	
	

	Test Driver with ODBC + network server,
C1
	
	
	11
	This test driver does not use accelerator option.

	Test driver + ndbm on Solaris 8,
C1
	510
	510
	510
	

	NMS + Solid FE on Solaris 7,
C1
	0.8
	4.2
	5.7
	

	NMS + ndbm on Solaris 7,
C1
	At least 14
	At least 14
	At least 14
	

	Test driver + Solid FE accelerator option on Linux
	
	
	900 phone lines ------ 23 ~ 24 calls/second.
2500 phone lines ------ 18 ~ 20.9 calls/second.
25000 phone lines ------ 5.0 ~ 5.6 calls/second
	

	Test driver + ndbm on Linux
	
	
	900 phone lines ------ 4500 ~ 4920 calls/second.
2500 phone lines ------ 170 ~ 350 calls/second.
25000 phone lines ------ 5.4 ~ 6.5 calls/second
	The hash table in ndbm has a short bucket list suitable for small to medium number of records.
A bigger bucket list can abate over-chaining and offer better performance for large number of records.

	
	
	
	
	

* Note1:

 NMS commits only once for each call-request, clear-request or SSR.
* Note2:

 NMS commits every database operation. It was measured that NMS does 15 DB operations to for one call request, so the NMS will commit 15 times for each call-request.
* Note3:

 It was measured that NMS does 15 DB operations for one call request, so the test driver was designed to only do DB operations of random updating VSAT and CU, insertion and deletion of FreqChannel, and it counts 15 of these operations as one call.
* Note4:

 Solid Tech’s benchmark code can not run on Solaris. And I can not compile and link it successfully on Solaris due to library file problem.
PAGE
3

