MACKKIE:

M2600

FR Series Power Amplifier

SERVICE MANUAL

CAUTION AVIS

RISK OF ELECTRIC SHOCK DO NOT OPEN
 RISQUE DE CHOC ELECTRIQUE NE PAS OUVRIR

CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK DO NOT REMOVE THE COVER (OR BACK) NO USER SERVICEABLE PARTS INSIDE REFER SERVICING TO QUALIFIED PERSONNEL

WARNING: TO REDUCE THE RISK OF FIRE OR ELECTRIC SHOCK, DO NOT EXPOSE THIS PRODUCT TO RAIN OR MOISTURE

TO PREVENT ELECTRIC SHOCK, DO NOT USE THIS POLARIZED PLUG WITH AN EXTENSION CORD, RECEPTACLE OR OTHER OUTLET UNLESS THE BLADES CAN BE FULLY INSERTED TO PREVENT BLADE EXPOSURE.

> ATTENTION: POUR EVITER LES RISQUES DE CHOC ELECTRIQUE,NE PAS ENLEVER LE COUVERCLE. AUCUN ENTRETIEN DE PIECES INTERIEURES PAR L'USAGER. CONFIER L'ENTRETIEN AU PERSONNEL QUALIFIE.

> AVIS:POUR EVITER LES RISQUES D'INCENDIE OU D'ELECTROCUTION, N'EXPOSEZ PAS CET ARTICLE A LA PLUIE OU A L'HUMIDITE.

> POUR PREVENIR LES CHOCS ELECTRIQUES NE PAS UTILISER CETTE FICHE POLARISEE AVEC UN PROLONGATEUR, UN PRISE DE COURANT OU UNE AUTRE SORTIE DE COURANT, SAUF SI LES LAMES PEUVENT ETRE INSEREES A FOND SANS LAISSER AUCUNE PARTIE A DECOUVERT.

This apparatus does not exceed the Class A/Class B (whichever is applicable) limits for radio noise emissions from digital apparatus as set out in the radio interference regulations of the Canadian Department of Communications.

ATTENTION :Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant las limites applicables aux appareils numériques de class $A / d e$ class B (selon le cas) prescrites dans le réglement sur le brouillage radioélectrique édicté par les ministere des communications du Canada.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio energy and, if not installed properly and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. "dangerous voltage" within the product's enclosure, that may be of sufficient magnitude to constitute a risk of electric shock to persons.

The exclamation point within an equilateral triangle is intended to alert the user of the presence of important operating and maintenance (servicing) instructions in the literature accompanying the appliance.

Le point d'exclamation à l'intérieur d'un triangle équilatéral est employé pour alerter les utilisateurs de la présence d'instructions importantes pour le fonctionnement et l'entretien (service) dans le livret d'instruction accompagnant l'appareil.

Click on any item to open that page

CONIENTS

INTRODUCTION 3
Technical Support 3
Discla imer. 3
BLOCK DIAG RAM 4
SPECIFICATIONS 5
TROUBLESHOOTING TIPS 6-7
RELIABILITY VERIFICATION 8-9
CIRCUIT THEORY 10-13
ASSEMBLY DRAWINGS 14-19
PARTS UST 20-30
FOLD-OUTSECTIONS: schematic s and pcb layouts Channel 1 129-1
Channel 2 130-1
Input board 131-1
Display board 132-1
Power Distribution and in-rush limit 133-1
Voltage Amp and protection 170-1
Power Supply 171-1
Output board 172-1
15 V supply/Fan drive board 186-1
INTRODUCTION

This manual contains basic service information. It is essential that you have a copy of the user's manual as this contains the complete operating instructions.

SERVICE TEC HNICAL ASSISTANCE

Mackie Designs, Service Technic al Assistance, is a va ila ble 8AM - 5PM PST, Monday through Friday for Authorized Mackie Service Centers, at 1-800-258-6883. Feel free to call with any questions and speak with a carefully-calibrated technic ian. If one is not available, leave a detailed message and a qualified Mackoid will retum your call asap.

DISC LAIMER
The information contained in this manual is proprietary to Mackie Designs, Inc. The entire manual is protected under copyright and may not be reproduced by any means without express written permission from Mackie Designs, Inc.

Marcrule M 2600 SERVICE MANUAL
Block diagram

Specific ations

Maximum Power at 1\% THD, midband:	R ise Time:
500 watts per channel into 8Ω	$<5 \mu \mathrm{~s}$ Slew Rate:
850 watts per channel into 4Ω	
1300 watts per channel into 2Ω	Voltage Slew Rate > 60V/ $/ \mathrm{s}$
1700 watts into 8Ω bridged	Current Slew Rate $>30 \mathrm{~A} / \mu \mathrm{s}$ at 2Ω
2600 watts into 4Ω bridged	CMRR:
Continuous Sine Wave Average Output Power, both channels driven:	$>40 \mathrm{~dB}, 2 \mathrm{~Hz}$ to 20 kHz
425 watts per channel into 8Ω from 20 Hz to 20 kHz ,	Load Angle:
with no more than 0.025% THD	
700 watts per channel into 4Ω from 20 Hz to 20 kHz , with no more than 0.05% THD	$4(\pm \mathrm{jx})$ time dependent, $\mathrm{T}>6 \mathrm{~min}$. at 4Ω
1000 watts per channel into 2Ω from 20 Hz to 20 kHz , with no more than 0.1% THD	Transient Recovery:
Bridged mono operation:	< $1 \mu \mathrm{~s}$ for 20 dB overdrive @ 1kHz
1,400 watts into 8Ω from 20 Hz to 20 kHz , with no more	High Frequency Overload and Latching:
than 0.05% THD	No latch up at any frequency or level.
2000 watts into 4Ω from 20 Hz to 20 kHz , with no more than 0.1\%THD	High F requency Stability:
Note: Power ratings are specified at 120VAC line voltages.	Unconditionally stable, driving any reactive or capacitive load.
The M2600 power amplifier draws large amounts of current from the AC line with continuous sine wave test-	Turn On Delay:
ing. Accurate measurement of power requires a steady and stable AC supply. This means the line impedance	3-5 seconds
must be very low to insure that the peak AC line voltage	Variable Low-Cut Filter:
does not sag to less than 97% of its value.	10 Hz (Off) to 170Hz, 2nd-Order Bessel
If driving highly reactiveloads, we recommend that the limiter circuit beengaged.	Internal Crossover:
	Switched: $60 \mathrm{~Hz} / 90 \mathrm{~Hz} / 120 \mathrm{~Hz}$, 4th-Order Linkwitz-Riley
Power Bandwidth:	Lowpass outputs switchable to internal Subwoofer mode.
20 Hz to 70 kHz ($+0,-3 \mathrm{~dB}$) @ 700W into 4Ω	
F requency Response:	Lowpass and Highpass outputs switchable to Thru output jacks.
20 Hz to 40kHz ($+0,-1 \mathrm{~dB}$)	Limiter Section:
10 Hz to $70 \mathrm{kHz}(+0,-3 \mathrm{~dB})$	Complementary Positive and Negative Peak Detecting
Distortion:	Indicators:
SMPTE IMD, TIM $<0.025 \% @ 8 \Omega$ $<0.050 \% @ 4 \Omega$ $<0.150 \% @ 2 \Omega$	6 meter LEDs per channel SIG (Signal Present), -20, -9, -6,-3, OL (Overload)
Signal-to-Noise Ratio:	CH 1\&2 PROTECT LEDs SHORT LEDs
> 107 dB below rated power into 4Ω	
Channel Separation:	TEMP STATUS COLD/HOT LEDs
> 80 dB @ 1kHz	
Damping Factor:	Physical:
> 350 @ 400Hz	(three rack spaces high, standard rack width)
Input Impedance:	Height 5.20 inches (132mm)
$24 \mathrm{k} \Omega$ balanced	Chassis Width 17.24 inches (438 mm)
Input Sensitivity:	Depth 15.65 inches (398 mm)
1.23 volts (+4 dBu) for rated power into 4 ohms	Overall Depth 16.67 inches (423 mm)
Gain:	Weight 55 pounds (25 kg)
32.7 dB (43V/V)	
Maximum Input Level:	
9.75 volts (+22 dBu)	

M2600 SERVICE MANUAL

Troubleshooting Tips-output failures

After a catastrophic failure, it is likely that some of the supply fuses will be blown. Check and replace any fuses on the 129, 130, 133, and 171 boards. Short a cross the Left most lead of R1 to the right most lead of R2 on the 133 board to short out the two 15W inrush resistors (see the diagram on the next page). Very slowly bring up the Variac while monitoring line consumption. It is likely that substantial line curent will be pulled due to shorted output parts. If exc essive c urrent is not pulled, but a channel still stays in "protect" mode, the unit will still need repa ir.

Remove the ma in heatsink sub-assembly from the unit and check for shorted output transistors. Once it has been detemined which channel failed, remove it's respective V-amp/ Protection board (055-170-00) to make access to the channel board easier. If one bad output is found, replace all 16 in the channel. When an output device shorts it can place high current stresses on the other output parts. These output parts can fail overtime. Since long term reliability is paramount, please replace all the outputs.

All 16 of the $3 \mathrm{~W} 0.33 \Omega$ emitter resistors must be verified forpropervalue. Any off-tolerance, or open parts, need to be replaced. An off tolerance (higher resistance) emitter resistor will prevent it's related output transistor from "doing it's share" and will place more stress on it's mates in the output section. Also verify the 16 base drive resistors ($2.2 \Omega, 1 / 4 \mathrm{~W}$, fusible) are all OK. Verify that all eight drivers and that the pre-drivers are not shorted. If one driver is shorted replace it's mates. Do the same with the pre-drivers. Also check all the resistors surrounding the drivers and predrivers. Measure the resistance between the " + -sense" and "-l-sense" lines. The resistance should be $82.5 \Omega+1-5 \%$. If this resistance is higher, check for open 33Ω fusible resistors on these lines. Take your time here looking to find all damaged parts: If one part is missed it still takes the same huge a mount of time to disassemble the main heatsink assembly. After replacing the outputs, drivers, and pre-driver verify that the silicon transistor insulator wasn't damaged (No shorts between collectorlegs and the heatsink).

On the 170 board, check the VI limiters and detectors. It is not uncommon to damage these parts when the a mplifier fails in a spectac ular way! Look for shorts on Q 24, Q25 or open R151 or R146. It is critic al that these sections are working correctly. Shorted transistors can cause some odd asymmetric al clipping problems. Open parts will not allow the current limiting to operate effectively. If problems exist in these sections the amplifier might fail into a short, or might clip prematurely when loaded to 2Ω.

All of the above trouble shooting (not including part replacement) takes perhaps 30 to 45 minutes to do. If you take the time, and do all that is indic ated above, it will allow 99% of the a mplifiers to come up the first time! Trying to hury, and skipping what is suggested, can lead to a frustrating and time consuming repair.

Reassemble the main heatsink sub-assembly and plug the two power supply cablesback into the 171 board (This can be done without installing the assembly back into the unit). Slowly bring up the supply and verify that line consumption isn't excessive and that the output is centered (no DC offset). Thiscan be measured on the "AMP-OUT" testpoint on the 170 board. It might be desirable to defeat the a mplifier muting temporarily (Short "MUTE-VA" to "-15V-AMP" testpoints on the 170 board) so the channel is active even when the supplies are still very low. If the amp stays centered, power down the assembly and discharge the two main $H-100 \mathrm{~V}$ supplies on both channels. Remove any temporary jumpers and reinstall the assembly into the chassis. Power the unit and verify that the repaired channel will pass a nice clean rail to rail sine wave. Next proceed to the "Reliability Verific ation" section on page 8.

WARNING: FUSIBLE RESISTORSMUSTO NLY BE REPLACED BY THE EXACTREPLACEMENTPARTS. ALWAYSC HECK THE PARTSUSTSTO VERIFY WHIC H RESISTORSARE THE FUSIBLETYPE BEFOREREPLACING ANY RESISTORSIN THISAMPUFIER.

Va rious test points

170 board (Bias and check points)

133 board (inrush bypassing)

186 board (fan speed adjustment)

129 channel board

BR= BASE RESISTOR (2.2 OHM, 1/4W FUSIBLE)

Reliability Venification Procedure

After the unit has been repaired, the following should be done to assure long tem reliable operation. If a distortion a nalyzer is present, distortion specific ations should be venified. See the previous page for the 170 and 186 boards with some test points noted.

1. Adjust the bia s control (R163 on 170 Board) in both channels for $12 \mathrm{mV}+-1 \mathrm{mV}$ measured at the bias test points (J 23 along 170 board back edge) after unit has idled for a few minutes. This is with no signal and no load. The Pot and test points are clearly marked on both the top and bottom sides of the 170 board.

With Full AC line voltage applied to unit, it will pull around 130 W from the line (1.6A at 120 V). Measure for DC offset on both output connectors, it should be less than $+1-50 \mathrm{mV}$.
2. Verify and adjust the fan speed if needed. On the 186 board, short pin 1 to pin 2 on J 3. Adjust R1 for 28V ($+0 \mathrm{~V}-1 \mathrm{~V}$) a cross J 1 and J 2. Remove the shorting jumper on J 3. All the test points and pots a re clearly labeled on the back side of the PCB and are easily accessed with the main heatsink sub-a ssembly installed.
3. Apply a 1 KHz sine wave to the inputs and venify that the unloaded outputs have a wa veform that is symmetric al and undistorted. Drive the outputs into clipping and carefully venify symmetric al "flat-topping" on the waveform.
4. Reduce the output levels, install a $0.1 \mu \mathrm{~F}$ capacitor jumper from the output to ground connections, and venify that clipping behavior is proper. Verify that no high frequency oscillation occurs near and at clipping (parasitic oscillation).
5. Remove capacitive loading and minimize sine output. Venify and re-adjust the bias if required. Note that the bias will not drift appreciably in a unit that is functioning properly.
6. Connect the amplifier directly to the $A C$ line and connect an 8Ω dummy load to both channels. Each 8Ω dummy load should have a minimum power rating of 500 W . Bring the sine wave level up on both channels and venify symmetrical clipping. The output will clip somewhere between $150 \mathrm{~V}-180 \mathrm{~V} k / \mathrm{pk}$ depending on how stiff the line is. Clipping should be asdescribed above. Add the $0.1 \mu \mathrm{~F}$ capacitive loading and verify clipping is still well behaved.
7. Individually load Channel 1 and Channel 2 with 2Ω. Each 2Ω dummy load should have minimum power rating of 1500 W . Clipping should be symmetrical, well behaved, and oc cur somewhere a round $120 \mathrm{~V}-140 \mathrm{~V}$ pk/pk. Venify that clipping is well behaved after adding the $0.1 \mu \mathrm{~F}$ capacitive loading. Reduce the output level to zero and remove the loading.
8. Next venify the two different short detectors. Perform these tests first on channel-1 and then repeat for channel-2. On the 170 board, shortJ 18 pins 1 and 2 (this defeats the average power SOA detector and allows the transient SOA detectorto be tested). Adjust the output level to $60 \mathrm{Vk} / \mathrm{pk}$ and short the channel-1 output line. Channel-1's front panel "short" and "protect" LEDs should tum on and the respective channel will mute for about 5 seconds. On the 170 board, remove the short on J 18 and install a short on J 19 pins 1 and 2 (this defeats the transient SOA detectorand allows the average power SOA detector to be tested). Adjust the output level to $60 \mathrm{~V} \mathrm{pk} / \mathrm{pk}$ and short the channel output line. Channel-1's front panel "short" and "protect" LEDs should tum on and the respective channel will mute for about 5 seconds. Remove the shorting jumpers on channel-1 and repeat above testing on channel-2.
9. Place the amplifier in bridge mode and connect 4Ω loading to the bridge outputs (across both " + " output binding posts). The 4Ω dummy load should have a minimum power rating of 2000W. Slip some card stock between the heatsink-outlets and chassis sides to tempora rily restrict the a ifflow. Monitor one of the outputs and adjust for a 60 V $\mathrm{pk} / \mathrm{pk}$ signal. Short across both outputs and venify that all four "Short" and "Protect" LEDs light and the amplifier mutes for 5 seconds.
10. Remove the short, monitor one of the outputs, and adjust for a $90 \mathrm{~V} \mathrm{pk} / \mathrm{pk}$ sine output (1000W of output power bridged). After a few minutes the fan will begin running faster and faster (heatsink between $45^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$) a nd a short time later the a mplifier will mute (heatsink at $80^{\circ} \mathrm{C}$). The "Hot" and "protect" LEDs will come on. Remove the card stock and after a few minutes the amplifier will come out of mute mode and the "cold" LED will retum.
11. Disconnect the loading and remove the input signals. Reconnect the amplifier to a Variac and confirm that the idle consumption is roughly 130W or 1.6A, as before. Connect the amplifier to speakers and verify that it sounds OK with music.
12. Perform the following leakage test before retuming the amplifier to your customer:

1. Connect the amplifier under test to an AC power source using a ground-lift adaptor, leaving the amplifier's safety ground floating. Tum the amplifier on.
2. Make a small loading RC circ uit as shown in the diagram below, and connect the AC volt meter between the AC power source ground and any exposed metal on the unit under test.
3. The meter reading should be less than 750 mV AC (note: this is equivalent to 0.5 mA of leaka ge current).
4. Flip the plug over in the receptical so the hot and neutral are swapped. Verify that the reading is still less then 750 mV AC.

Circ uit Theory

Much of the circ uitry in the $\mathrm{M} \cdot 2600$ we hope is self explanatory from the schematics. This section will expla in the unique circ uits and architecture. Examples in this section will refer to Channel 1 for circuitry that is identic al on both channels.

INPUT CIRCUITRY

The signal path begins with the INPUTBOARD (055-131-00). Following Channel 1's input, signal is fed to a unity gain differential op-a mp, U1A. The signal is next sent to U1B which serves as a $12 \mathrm{~dB} /$ Oct. highpa ss filter. If not in SUBWO OFER mode, a nd if running in STEREO mode, the summing amp (U3B) and 24dB/Oct. Likwitz-Riley Crossover(U3A, U2, U4) are bypassed. The signal is sent via J 11 to the ga in control on the DISPLAY BOARD (055-132-00). After the ga in control, the signal is buffered by U1A, retumed to the INPUTBOARD and routed to the Channel-1 amplifier board via J 6 .

Channel 2's input signal path is electric ally identical to Channel 1's in STEREO mode.
In PARALELMONO mode, Channel-1's and Channel 2 'sinput signal is summed via U3B and is sent to both channel's front panel level controls via SW3A and SW3B.

For BRIDGE MONO operation, these summed inputs are sent to the channel-1 front panel level control which in tum feeds the channel-1 amplifier and also the inverter U10A. The output of U10A is routed to the channel-2 a mplifier via SW3C. Also in BRIDGE mode, SW3D connects both channel-1's and channel-2's protection circuits together. The result being that when one amplifier detects a short circ uit condition it will mute and immediately tell channel-2 to mute. Muting lasts around 5 seconds and the amplifier un-mutes until the next shorted condition is detected.

The limiters (U6, U5, U7 and their assoc iated components) are always in the signal path. When the limiter is switched off (via SW4) the LDR (Light Dependant Resistor) is in parallel with the source resistor (R39) and will not reduce signal a mplitude. When the limiter is switched on, the LDR (U5B) is switched as a shunting element to ground. The Baker clamp in the power amplifier detects clipping and the LDR shunts away driving voltage until clipping almost disa ppears. This type of limiter is know as a feedback style (As opposed to feedforward style) of limiter.

U6 is also used for the amplifier input slew clamps, comprised of local $+/-5 \mathrm{~V}$ supplies (D7, D8 and associated) and clamping diodes(D13 and D14). These diodes clamp the voltage feeding the power amp to around $10 \mathrm{~V} \mathrm{pk} / \mathrm{pk}$ or about 6 dB above the amplifier's clipping point. This ultimately limits the risetime of the signal presented to the power amplifier, controlling commonmode conduction in the power amplifier output stage.

Output from each crossover can be routed to the rearpanel THRU jacks via SW2 and SW6. In the THRU position the THRU jack is ha rd wired to the input jacks. In LOW and HIG H output modes, the lowpass and highpass outputs of the crossover respectively are fed to the THRU jack. In these modes the output is impedance balanced via R28, R29 and R23.

POWER AMPLIFIER CIRCUITRY

The $M \cdot 2600$ use a class AB triple darlington output stage with complementary output devices. The output stage and the biastrackers are on the channel boards (129 and 130 boards) while the voltage amplifier and amplifier protection circuits are housed on two identical v-a mp / protection (055-170-00) boards. Each channel haslocal main H-100V power supplies, and a + / - 115V stacked supply for the front end circuitry. Each amplifier also has floating +-16 V supplies
that float along with the amplifier output line (D3 \& D4 and associated parts on the 129 board). Common $+1-15 \mathrm{~V}$ supplies are shared throughout the product.

Refeming now to the 170 schematic: The amplifier is muted for 3 seconds on power up as C 29 charges via R56. When this voltage hascharged above 11.6V, U3C goes low tuming on Q7, providing current for the differential pairs. The output of U3C, la beled "MUTE-VA", when low tums on the Voltage Amplifier. Two sec onds after MUTE-VA goes low, mute "MUTE-OP" goes low (Q27) closing the OutPut relay passing signal along to the output terminals. (Wait a minute! Differential Pairs? Read on...)

An immediately obvious departure from standard designs is the Differentials and Symmetrical Voltage Amps. The rea soning behind this front end architecture is actually quite simple. Transistor transfer characteristics are not entirely linear, so even the best conventional front end design will introduce some distortion. Most amplifiers use negative feedback to reduce this problem (creating a few more in the process). Mackie FR Series a mplifiers take a different approach. By using two complementary "mirror image" front end circ uits, any distortion caused by non-linear transistor curves is effec tively canceled out in the biasstring, without feedback!

Anotherdesign feature unique to Mackie FR SeriesAmplifiers is the Baker Clamp. The Baker Clamp has two functions; 1) Prevent output transistors saturating, 2) Drive the LMITER LDR. Referming to the again to the 170 schematic: Q20 is a common base amplifier, it will tum on if Q2's collector rises more than three diode drops above the +100 V supply, preventing Q2's collector from rising further. There are three diode drops between Q 2'scollector and the base of pre-driver transistor (Q26 on 129 board). Once the output from the collector of Q2 makes it to the emitter of the output devices, there will be a total of six diode drops in series. Three "drops" up and six down: As a result, the output transistor emitters will never see a voltage greater than three diode drop below the +100 V supply (even if the +100 V supply fluctuates) and will never saturate. This will consequently remove saturation of the output stage, as a source common mode conduction. When the amplifier clips, Q20 and Q15 also send out "clipping pulses" at their collectors that is coincident with bakerclamp conduction. These clipping pulses are crosscoupled to Q21 and Q22 and are stored in C47 and C51. These stored pulses allow for quick attack and slow release required by a peak limiter. Output from Q21 and Q22 is coupled to the LDR LED section via R110 and R152.

PROTECTION CIRCUITS

The $\mathrm{M} \cdot 2600$ has several protection circ uits in addition to main rail fuses on each channel. Circ uits mute the amp if the output devices are loaded beyond theirsafe operating area (SOA). If there is DC on the output line, output relays open, disc onnecting the load. The a mplifier will also mute if the power transformer or main heatsink get too hot, if the input AC line voltage is low, or if either of the +-15 V supplies fails.

Tum-On Inrush C urrent Limiter

For the first second of operation there are two 15W power resistors (located on the 133 board) in series with the power transformer which eliminates what would otherwise be an extremely high tum-on current. After 1 sec ond these resistors are shunted with a relay. This relay is tumed on when the collector of Q26 (170 board) goes high. Note that either or both Q26's on the two 170 boardscan tum on this relay.

M2600 SERVICE MANUAL

SOA protection

There are two SOA detectors in the M-2600: One that monitors steady state output sta ge dissipation and one that monitors transient high current events. Both detectors need to monitor the output stage current.

A voltage, representing output stage curent, is derived by first sampling the voltage drop across the output transistoremitter resistors. These voltages are rectified via U9A R87, R88, R59 and R89. The rectified voltage is converted to a current via U9B, Q23, and associated. This current is referenced to the output line and must first be re-referenced to the +115 V supply via Q14, D47 and associated. The curent available at the connector of Q14 is converted to a voltage that is ground referenced via R138 and R162. This is buffered via U8A and adjusted via R162 such that 1 amp of output stage current is equal to 100 mV of detected output.

This curent is compared to what represents a safe operating current at U4A (part of the transient SOA-Fault detector). If the curent is greater than allowed formore than 10 mS (Timing determined by R77 and C36), U4B sends out a fault indication which mutes the amplifier via U3C and associated, and fires the short led for 5.5 seconds (U3B and associated).

While the output stage is quite tolerant of very high current demands for a very short time, it would destroy itself if it had to provide these currents on a long-tem basis. The second detector actually looks at long-term dissipation in the output stage, and if excessive, will mute the amplifier. We already have a signal that is proportional to output stage current as described above. This signal is fed to one input of a nalog multiplier U7 via R80 and R84.

U6A and U6B and their associated components look at the -100V supply and the amplifier output line. These voltages are converted to currents via R101, R129 and R130 and are rectified and summed such that for every volt between the output line and the supply rail, 100 mV is presented as output. This sec ond signal is presented to the other input of multiplier U7 via R133 and R82. Output from U7 is in the form of a current and is converted to a voltage via R136 and U8B. The ga in of this multiplier is such that for 200 watts of output stage dissipation, 1 volt of output is obta ined. The output of U8B is insta nta neous power and is long-term a veraged via R135 and C40. The cutoff of the filter is quite low in frequency, such that even a 20 Hz signal on the amplifier output results in very little ripple voltage at C40. If the voltage on C40 is greater than 5 V (equivalent to 1000 W of output stage dissipation), U4C will toggle, muting the amplifier and firing the SHORTLED as above. Approximately 200 mS of dissipation above 1000 W is required to cause a fault.

DC Fault Detection

The amplifier output drives the subsonic lowpass filter of the DC fault detector (R154, C65 and C64). If the amplifier were to fail and short to the +100 V rail, C64/C 65 will charge to more that 5 V in a few hundred milliseconds. Local $+/-5.1 \mathrm{~V}$ references on U2C and U2D set the threshold where: when the amplifier output voltage is "stuck" to greater than +-5.1 V , either comparator output will go low. This will open Q27, and in tum open the speaker relay on the respective channel board. When the a mplifier is initialized, "MUTE-VA" is high and this bia ses C 64/C 65 above 5.1V via D14 and R36. This offset results in a delay of about 2 seconds from when the amplifier tums on ("MUTE-VA" low) and when the speaker relay closes.

Low Voltage Detector

D15, D2, and R7 supply a local 5 V reference a nd are supplied curent from the unregulated +30 V supply via R32. 22VAC from the $+1-30 \mathrm{~V}$ windings is half-wa ve rectified via D26 and stored by C 18. R53 limits the absolute peak current to protect D26. The voltage on C18 is divided down
via R33 and R8 and compared against the 5V reference at U3A. If the AC line voltage falls to around 60% of nominal (around 70VAC), the output of U3A goes low, resetting the mute and short monostables via D5 and D12. If the +15V supply fails, D3 and D4 bias the U3A inputs such that the a mplifier is also muted. In the event of the -15 V supply failing, R7 is no longer able to pull the anode of D15 low, and this also causes U3A to go low and mute the amplifier.

THERMAL MANAGEMENT

The T-Design Heatsink/Fan coolsthe output devic es evenly and does not collect dust on the circ uitry. The fan operates at variable speeds, controlled by output stage dissipation and temperature data supplied from both LM35DZs mounted on the heatsink.

Fan Control Circ uit

Refering to the 186 board: The fan voltage comes from a feedback regulator circ uit formed by U3B, Q2, Q1 and associated components. The fan supply is actually referenced to the -30V supply, so U3A and Q3 a ct to shift the ground-referenced control volta ge "FAST-FAN" to a -30V supply reference. The output voltage of this regulator is adjusted via R1. D7 and C9 give the fan an initial full fan voltage "kick" (28V) to insure the fan starts spinning. The "FAST-FAN" control line varies from -1.6 V (Slow) to -15 V (Fast). Short J 3 temporarily and adjust R1 for a voltage ac ross the fan equal to 28 V .

Refeming to the 170 board: The fan is never a llowed to go faster than idle speed (Slow) unless the output stage dissipation is greater than 136 watts and the heatsink temperature is above $45^{\circ} \mathrm{C}$. When the output stage dissipation is greater than 136W, U4D goes low. This eliminates D1 from supplying current to U2A. This decreases the reference voltage on U2A pin7, allowing it to work as a linear a mplifier. With D1 conducting, U2A is effectively biased such that it'soutput is high and the resulting fan speed is low.

With 136W of output stage dissipation, U2A is allowed to linearly a mplify the temperature sensor voltage on U1 via R2 and R5. C5, C15, C16, and C 17 provide high frequency stability to this stage. The a mplifier will linearly decrease the "FAST-FAN" voltage (increasing fan speed) between $45^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$. Above $65^{\circ} \mathrm{C}$, U2A is saturated with the fan speed maximized. D11 isolates the Channel-1 and Channel-2 U2A circ uits from each other. The connection of the U2A controllers is such that whichever channel is being used the hardest will determine the ultimate fan speed.

Themal Shutdown

Heatsink temperature is sensed by U1 mounted to the main heatsink (one for each channel). The output of the sensor $\left(10 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$ is compared to a 800 mV reference at U2B. When the sensor is over $800 \mathrm{mV}\left(80^{\circ} \mathrm{C}\right)$ the output of U2B goes low, muting the a mplifier via D27 and associated, and running the fan fast via D24. Hysteresis is built into the comparator via R3, such that the sensor voltage must reduce to $520 \mathrm{mV}\left(52^{\circ} \mathrm{C}\right)$ before the comparatorgoes back high and the amplifier un-mutes.

A themostat is built into the power transformer. If the powertransformer temperature exceeds $130^{\circ} \mathrm{C}$ the themostat closesand bringsthe "THERM" line to ground via Q 1 and it's associated parts on the 171 board. This shorts out the 800 mV reference, and the U2B output goes low, muting the amplifier. Note that overheating of the power transformer is very unlikely but if it does occur, the amplifier will stay muted for over an hour before the transformer cools a nd the amplifier un-mutes itself.

Final Assembly

Nald Cille M2600 SERVICE MANUAL

Final Assembly
The circled item numbers are shown in the parts list on page 20

M2600 SERVICE MANUAL

Mascile

$\underset{\text { The circled item numbers are shown in the parts list on page } 21}{ }$

M2600 SERVICE MANUAL $\sqrt{2} \sqrt{A} \operatorname{siz}$

Master Pa rts List 090-078-00 M2600 Assembly, 120v

Item \# Part \#	Description	Rev	Qty
790-022-00	POLY-SHEET52CF $\times 26$ 4MIL	A	1
$800-087-00$	BOX-M2600	A	1
$800-107-00$	BOX SLEEVE M2600	A	1
$810-076-00$	INSERT-M2600	A	2
810-082-00	FOAM CORNER M2600	A	4
820-078-00	OWN MANUAL M2600 ENG/DOM	A 1	

080-076-00 Amplifier/Heatsink subassembly

Item	Part\#	Description	Rev	Qty	
	080-076-00	SA AMP M2600	A6	1	NOTE: The Item numbers in
1	040-263-00	DIS 16GA 10C .165X2 19.5	A	2	the first column refer to the
2	055-129-00-01	PCB ASSY CHANNEL 1-2600	A3	1	
3	055-130-00-01	PCB ASSY CHANNEL 2-2600	A2	1	Amplfier/Heatsink Assemby Drawings on pages 17-19
	055-170-00-02	PCB ASSY V-AMP PROTM2600	A3	2	
5	055-186-00-01	PCB ASSY PREDRV/FAN M2600	A2	1	
	080-116-00	FAN ASSY M2600	A1	1	
34	410-013-00	SILPAD CUTM2600 NEW	A	1	
33	410-014-00	SILPAD CUTM2600 NEW	A	1	
7	550-368-00	COWLING HEATSINK M2600	A	1	
8	550-372-00	BRKT FAN SHROUD M2600	A	1	
9	550-373-00	BRKTSUPPORTPCB 28DEG	A	2	
10	550-377-00	BRKTTO-92 M OUNTING	A	2	
11	550-393-00	BRKT WIRE HARNESS M2600	A	1	
12	550-403-00	FAB SEC HEATSINK M2600	A	2	
13	550-420-00	FAB BRKT WIRE SHD M 2600	A	1	
14	550-421-00	FAB BRKTVAMP SHLD M2600	A	1	
15	551-045-00	FAB HEATSINK M2600	B	1	
	700-005-00	SEMS 8-32X1/2 PHP BLKZC	A	4	
16	700-010-04	TF 6-32X3/8 PHP BLKZC	A	14	
17	700-028-00	SEMS 6-32X1/ 4 PHP BLKZC	B	5	
18	700-034-00	SEMS 4-40X1/ 4 PHP BLKZC	A	5	
19	700-087-00	TF 4-40X5/8 TORX 1/4 WASH	A	23	
20	700-088-00	TF 4-40X5/8 TORX 3/8 WASH	A	33	
	700-110-00	MCH 3-48X1/2 SKTCP SS	A	22	
22	705-008-00	NUTLOCK 8-32	A	4	
	710-020-00	WASH NO. 4 COMPRESSION	A	44	
23	710-036-00	WASH FLT STL NO.4 .030THK	A	22	
24	710-044-00	WASH SHLDR TO-220 DELRIN	A	22	
25	730-001-00	THERMALJ OINTCOMPOUND	A	AR	
33	730-025-00	LOCTITE 222	A	AR	
26	740-003-00	TYRAP 8IN BLK	A	3	
27	740-011-00	HEATSHRINK TUBE 2:1 .50ID	B	AR	
29	780-123-00	INSULATOR PCB M2600	A	1	
30	780-133-00	INSULATOR VAMP SHD M2600		1	

M2600 SERVICE MANUAL
055-129-00 Rev A Channel 1 board

Part \#	Description	Value	Reference Designator
040-261-00	RIB 28G A TRAN 10C . 1 3IN		J 1
040-262-00	RIB 28G A TRAN 40C 3IN		J 6
040-265-00	DIS 14GA BLK/ WHT 4.5IN QD		J 4
040-266-00	DIS 14GA BLK/ WHT 6IN QDX2		J 12
040-267-00	DIS 14GA WHT 6IN QDX2		J 8
040-268-00	DIS 14GA BLKWHT 6IN QDX2		J 9
121-077-00	RESISTOR MOF	150 5\%	R58
123-013-00	RESISTOR MOF	0.33 5\%	R40-55
123-045-00	RESISTOR MOF	6.8 5\%	R60-68
123-056-00	RESISTOR MOF	20 5\%	R59
123-125-00	RESMO 3W 5\% 15K OHM	15K 5\%	R70-73
\150-009-00	RES FUS .25W 5\% 2.2 OHM	2.25%	R3 R5-6 R8 R11 R13 R16 R18 R21 R23 R25 R29 R31 R33 R36 R38
\150-037-00	RES FUS .25W 5\% 33 OHM	33 5\%	R1 R4 R7 R9 R12 R14 R17 R19 R22 R24 R26-28 R30 R32 R34 R37 R39 R57 R69
! 150-045-00	RES FUS .25W 5\% 68 OHM	68 5\%	R2 R10 R15 R20 R35 R56
! 150-066-00	RESISTOR, FUSABLE, 1/4W	510 5\%	R75
200-036-02	CAP, METALIZED POLY, T/R	.luF 10\%	C22 C27
200-041-00	CAPACTOR POLY HI-CURRENT	0.01 10\%	C24
205-003-02	MICA 330PF 5\% 500V	330pF 5\%	C30-31
211-003-00	CER .001UF 10\% 50V AX	0.001 10\%	C1
211-009-00	CAPACITOR CERAMIC AXIAL	0.1 10\%	C2C4C6C8C15C17
220-011-02	CAPACITOR LYTIC RADIALT\&R	100UF 10\%	C14C16C18C20
220-025-00	CAPACITOR LYTIC RADIAL	1,000UF 10\%	C21
220-027-02	CAPACITOR LYTIC RADIALT\&R	10UF 10\%	C25-26
220-047-00	LYT 47UF 20\% 160V RAD	47UF 20\%	C19 C23
301-009-00	DIODE POWER	1N4004	D5
301-010-00	DIODE POWER	1N5404	D1-2
302-003-00	DIODE 正NER	1N4745	D3-4
310-033-00	TRANSISTOR PNP	MJ L21193	Q13-14 Q 16-17 Q 19-20 Q23-24
310-034-00	TRANSISTOR NPN	MJ L21194	Q2-5 Q 7-8 Q10-11
310-042-00	TRANSISTOR NPN	MJ E15032	Q1 Q6Q9Q12
310-043-00	TRANSISTOR PNP	MJ E15033	Q15 Q18 Q21 Q25
310-049-00	XSTR PNP 2SA 794A	2SA 794A	Q29
310-050-00	XSTR NPN 2SC 1567A	2SC 1567A	Q22 Q28
310-055-00	XSTR NPN 2SA1480	2SA1480	Q27
310-056-00	XSTR PNP 2SC 3790	2SC 3790	Q26
400-077-00	HEADER STR LCK SHRD 20P . $100 \times$		J 5
400-129-00	FUSE CLIP 0.25 DIA PC MNT		Z-4
400-231-00	HEADER, 2X5, MATE-N-LOCK		J 2
400-242-00	C O NNEC TOR,STR,3P,. 098×1, SHRD		J 3
400-243-00	C O NNEC TOR,STR, 2P, 098×1, SHR		J 7
450-129-00	PCB, M2600 CH-1 AMP		Z
490-021-00	MAGNET, .2THK .5DIA		Z6
501-003-00	RELAY, SPDT	T9AS5D12-24	K1
\ 510-041-00	FUSE 25A FB 3AG	25A	F1-2
601-006-00	INDUCTOR, AIR CORE	1 uH 10\%	L1
601-008-00	INDUCTOR	10uH	L2-3

Components noted with this symbol shall be replaced only by the component specified. This is required to mainta in product safety.

M2600 SERVICE MANUAL
055-130-00 Rev A Channel 2 board

Part \#	Description	Value	Reference Designator
040-262-00	RIB 28G A TRAN 40C 3IN		J 3
040-269-00	DIS 14GA RED 6 IN QDX2		J 5
040-270-00	DIS 14GA BLKRED 6IN QDX2		J 6
121-077-00	RESISTOR MOF	150 5\%	R60
123-013-00	RESISTOR MOF	0.33 5\%	R40-55
123-045-00	RESISTOR MOF	6.8 5\%	R61-69
123-056-00	RESISTOR MOF	20 5\%	R70
123-125-00	RES MO 3W 5\% 15K OHM	15K 5\%	R58-59 R73-74
\ 150-009-00	RESISTOR, FUSABLE, 1/4W	2.25%	R2 R4 R7 R9 R11 R15 R17 R19 R22 R24 R27 R29 R32 R34-35 R37
\} 150-037-00	RES FUS .25W 5\% 33 OHM	33 5\%	R1 R3 R5 R8 R10 R12-14 R16 R18 R20 R23 R25 R28 R30 R33 R36 R38 R56-57
! 150-045-00	RES FUS .25W 5\% 68 OHM	68 5\%	R6 R21 R26 R31 R39 R71
! 150-066-00	RESISTOR, FUSABLE, 1/4W	510 5\%	R75
200-036-02	CAP, METALIED POLY, T/R	.luF 10\%	C 21 C26
200-041-00	CAPACTOR POLY HI-CURRENT	0.01 10\%	C25
205-003-02	MICA 330PF 5\% 500V	330pF 5\%	C29-30
211-003-00	CER .001UF 10\% 50V AX	0.001 10\%	C1
211-009-00	CAPACITOR CERAMIC AXIAL	0.1 10\%	C7C9C11C13C15C17
220-011-02	CAPACITOR LYTIC RADIALT\&R	100UF 10\%	C14C16C18C20
220-027-02	CAPACITOR LYTIC RADIALT\&R	10UF 10\%	C23-24
220-047-00	LYT 47UF 20\% 160V RAD	47UF 20\%	C19 C22
301-009-00	DIODE POWER	1N4004	D4
301-010-00	DIODE POWER	1N5404	D1-2
302-003-00	DIODE	1N4745	D3 D5
310-033-00	TRANSISTOR PNP	MJ L21193	Q15-16 Q18-19 Q21-24
310-034-00	TRANSISTOR NPN	MJ L21194	Q 2-3 Q 6-7 Q 9-10 Q 12-13
310-042-00	TRANSISTOR NPN	MJ E15032	Q1 Q5 Q8Q11
310-043-00	TRANSISTOR PNP	MJ E15033	Q14 Q17 Q20 Q25
310-049-00	XSTR PNP 2SA 794A	2SA 794A	Q29
310-050-00	XSTR NPN 2SC 1567A	2SC 1567A	Q4 Q 28
310-055-00	XSTR NPN 2SA1480	2SA1480	Q27
310-056-00	XSTR PNP 2SC 3790	2SC3790	Q26
400-077-00	HEADER STR LCK SHRD 20P . 100 X	2	J 2
400-129-00	FUSE CLIP 0.25 DIA PC MNT		乙-3
400-173-00	CONN QUICK DISC . 250 W/ STABLE-LOK TABS		J 4
400-231-00	HEADER, 2X5, MATE-N-LOCK		J 1
450-130-00	PCB M2600 CH-2 AMP		Z4
490-021-00	MAGNET. 200 THK X . 50 DIA		Z6
501-003-00	RELAY, SPDT	T9AS5D12-24	K1
\ 510-041-00	FUSE 25A FB 3AG	25A	F1-2
601-006-00	INDUCTOR, AIR CORE	luH 10\%	L1
601-008-00	INDUCTOR	10uH	L2-3
706-033-05	STANDOFF, SWAGE, 4-40 X .312L		H1-4 H6

Components noted with this symbol shall be replaced only by the component specified. This is required to ma intain product safety.

055-131-00-01 Rev A Input board

Part \#	Description	Value		Reference Designator
	DO NOTSTUFF			C22 C24
040-258-00	RIB 28G A TRAN 20C . 1 5IN			J 6
040-259-00	RIB 28G A TRAN 20C . 1 6IN			J 5
040-260-00	RIB 28GA TRAN 20C . 1 20IN			J 11
100-027-00	RESISTOR CF	120	5\%	R23 R28-29 R50-51 R65
130-062-02	RES POT12MM HORIZDUAL	50KC		R11 R66
140-078-00	RESISTOR TF SMT	1K6	5\%	R7 R67
140-082-00	RES TF SM .1W 5\% 2K4 OHM	2K4	5\%	R9 R69
140-089-00	RESISTOR CF	4K7	5\%	R24-27 R52-53
140-090-00	RES TF SM .1W 5\% 5K1 OHM	5K1	5\%	R80-81
140-095-00	RES TF SM .1W 5\%8K2 OHM	8K2	5\%	R8 R68
140-123-00	RES TF SM .1W 5\% 100K OHM	100K	5\%	R77-79
145-318-00	RESISTOR MF SMT	2K00	1\%	R4 R6 R38-41 R72 R74
145-331-00	RESISTOR MF SMT	2K49	1\%	R35 R59
145-346-00	RESISTOR MF SMT	3K57	1\%	R14 R17 R44 R47
145-389-00	RESISTOR MF	10K0	1\%	R3 R5 R21-22 R32 R56 R63-64 R71 R73
145-397-00	RESISTOR MF	12K1	1\%	R1-2 R12-13 R16 R18 R30-31 R36-37 R42-43 R46 R48 R54-55 R60-61 R75-76
145-406-00	RESISTOR MF SMT	15K0	1\%	R20 R62
145-426-00	RESISTOR MF SMT	24K3	1\%	R15 R19 R33-34 R45 R49 R57-58
200-025-02	CAPACITOR MYLART\&R	0.56		C 10-11 C38-39
200-029-02	CAPACITOR MYLART\&R	0.22		C 12-13 C 20-21 C28-29 C 36-37
212-001-00	CAPACITORCERAMIC SMT	0.01	10\%	C 4-5 C 14-19 C 23 C 25 C 30-35 C 41-42
212-004-00	CAPACITOR CERAMIC SMT	220PF	5\%	C3 C 6-7 C40 C43-44
212-009-00	CAPACITOR CERAMIC SMT	47PF	5\%	C 1-2 C 45-46
220-001-02	CAPACITOR LYTIC RADIALT\&R	22UF	10\%	C8-9 C 26-27 C 47-48
300-003-00	DIODE SIGNAL SMD	DL4148		D1-6 D9-16
302-002-03	4.7V	DL5230		D7-8
320-006-00	OPAMP 2068E	NJ M 20		U1 U11
320-012-00	OPAMP NJ M4560M	NJ M45	60M	U2-4 U6 U8-10
329-012-00	OPTO-ISO LATOR,LED/CDS	V7L-5C		U5 U7
400-041-00	CONNECTOR XLR PC MTG VERT	ALF		J 7 J 10
400-214-00	CONNECTORJACK1/4" VERTPC MOUNT W/1MM LW			J 3 J 12
400-223-00	CONNEC TOR XLR PC MTG VERT			J 4 J 13
400-269-00	TERM QDISC RTA . 250 PCMT			J 1
450-131-00	PCB, M-2600 INPUT			Z1
500-023-00	SWITC H	4P3T		SW1-6
706-013-00	STDF NO. $4 \times .978 \mathrm{~L}$ M/F			H1-2

055-132-00-01 Rev A Display board

Part \#	Description	Value	Reference Designator
130-070-00	RESISTOR POT9MM HORIZ	5KB 20\%	R2 R34
140-057-00	RESISTO R CF	220 5\%	R17
140-065-00	RESISTOR CF	470 5\%	R35 R41
140-068-00	RESISTOR TF SMT	620 5\%	R11 R24
140-076-00	RESISTO R CF	1K3 5\%	R25 R43-49 R51
140-081-00	RESISTOR CF	2K2 5\%	R1 R33
140-083-00	RESISTOR TF SMT	2K7 5\%	R12-13 R19-21 R50 R52
140-087-00	RESISTO R CF	3K9 5\%	R16
140-092-00	RESISTO R CF	6K2 5\%	R15
140-094-00	RESISTO R CF	7K5 5\%	R18
140-106-00	RESISTOR TF SMT	24K 5\%	R5 R10 R29 R31
145-389-00	RESISTOR MF SMT	10K0 1\%	R4 R7 R23 R27-28
145-454-00	RESISTOR MF SMT	47K5 1\%	R37 R39-40 R42
145-472-00	RESISTOR MF SMT	73K2 1\%	R8 R26
145-480-00	RES MF SM .1W 1\% 88K7 OHM	88K7 1\%	R3 R22
145-527-00	RESISTOR MF SMT	274K 1\%	R14
145-547-00	RESISTOR MF SMT	442K 1\%	R6 R9 R30 R32 R36 R38
212-001-00	CAPACITORCERAMIC SMT	0.01 10\%	C 1 C 3 C 6 C 10-11 C 14 C 19-20 C 22-23
212-025-00	CAP CER .1UF 25V 10\%X7R	.1UF 10\%	C 7-9 C 12-13 C 15-16
220-002-02	CAPACITOR LYTIC RADIALT\&R	47UF 20\%	C2 C4-5 C17
220-014-00	CAPACITOR LYTIC RADIALKS	2.2UF 10\%	C18C21
300-003-00	DIO DE SIGNAL SMD	DL4148	D13-20 D27
304-070-02	LED RED T1 W/. 550 SPCR T/R	RED	D1 D7 D21-22 D24-26
304-071-02	LED GRN 11 W/. 550 SPCR T/R	GRN	D2-6 D8-12 D23
311-002-00	X-SISTOR PNP SMD	IMBT4403	Q1-2
320-012-00	OPAMP NJ M4560M	NJ M 4560M	U1 U6
323-002-00	I.C. QUAD COMPARATORSMD	LM339	U2-5 U7
400-077-00	HEADER STR LCK SHRD 20P . $100 \times$		J 1
450-132-00	PCB, M2600 DISPLAY		Z8
706-033-08	STANDOFF, SWAGE, 4-40 X .665L		H1-3 H5-7

$\sqrt[3]{A} \sqrt{2}$? M2600 SERVICE MANUAL

055-133-00-01 Rev A Power distribution 120V

Part \#	Description V	Value	Reference Designator	
040-137-00	DIS 18GA G N/YL 96IN QD LUG		J 11	
121-077-00	RESISTOR MOF	150 5\%	R3	
125-020-00	RESISTOR WIRE WOUND 82	82 5\%	R1-2	
200-023-00	CAPACTOR, POLY BOX	.001uF 20\%	C 1-2	
200-024-00	CAPACTOR, POLY BOX	.01uF 20\%	C3-4	
301-009-00	DIODE POWER 1	1N4004	D1	
400-129-00	FUSE CLIP 0.25 DIA PC MNT		乙-2	
400-173-00	CONN QUICK DISC . 250		J 1-10 J 12-15	
400-173-00	CONN QUICK DISC . 250 -00 AND -02 ASSY ONLY CONN QUICK DISC . 250		J 16-17	
400-173-00				J 18
	-01 ASSY ONLY			
400-242-00	C ONNECTOR, STR, 3P,. 098×1, SHRD		J 23	
450-133-00	PCB, M2600 PWR DISTRO \& AC-INRUSH		Z3	
501-003-00	RELAY, SPDT TGA	T9AS5D12-24	RL1	
! 510-017-00	FUSE 20A SLO-BLO -02 ASSY ONLY	Y F1	Z4 (100 VOLT MODELS ONLY)	
! 510-018-00	FUSE 15A SLO-BLO -01 ASSY ONLY	F1	Z6 (240 VOLTMODELS ONLY)	
! 510-033-00	FUSE 25A SLO-BLO -00 ASSY ONLY	F1	Z \quad (120 VOLTMODELS ONLY)	

Components noted with this symbol shall be replaced only by the component specified. This is required to mainta in product safety.

M2600 SERVICE MANUAL
055-170-00 Rev A, Voltage amplifier and protection

Part \#	Description	Value		Reference Designator
	TESTPOINT, PARTOF PCB			J 1-9 J 11-16 J 24-26
100-025-00	RESISTOR CF	100	5\%	R11 R30 R37-38
105-369-00	RES MF .125W 1\%6K19 OHM	6K19	1\%	R141-144
130-021-00	RESISTOR POTTRIM HORIZ	10KB		R162
130-053-00	RESISTOR POTTRIM HORIZ	200		R163
140-053-00	RESISTOR TF SMT	150	5\%	R12-13 R22-23
140-057-00	RESISTOR TF SMT	220	5\%	R6
140-061-00	RES TF SM .1W 5\% 330 OHM	330	5\%	R159
140-073-00	RES TF SM .1W 5\% 1K0 OHM	1K0	5\%	R16 R19
140-076-00	RES TF SM .1W 5\%1K3 OHM	1K3	5\%	R160
140-077-00	RESISTOR TF SMT	1K5	5\%	R105
140-082-00	RESISTOR TF SMT	2K4	5\%	R104 R140 R156
140-084-00	RESISTOR TF SMT	3K0	5\%	R103 R139
140-090-00	RESISTOR TF SMT	5K1	5\%	R48-49 R53 R77 R86 R102
140-092-00	RES TF SM .1W 5\% 6K2 OHM	6K2	5\%	R110 R152
140-093-00	RES TF SM .1W 5\%6K8 OHM	6K8	5\%	R121
140-095-00	RESISTOR CF	8K2	5\%	R7 R47 R51
140-099-00	RESISTOR TF	12K	5\%	R41-42 R67-68 R97-98
140-111-00	RESISTOR TF SMT	36K	5\%	R10 R26 R57 R76
140-113-00	RES TF SM .1W 5\%43K OHM	43K	5\%	R122
140-116-00	RESISTOR TF SMT	56K	5\%	R120 R158
140-117-00	RESISTOR TF SMT	62K	5\%	R59 R88 R155
140-120-00	RES TF SM .1W 5\% 82K OHM	82K	5\%	R147 R150
140-123-00	RESISTOR TF SMT	100K	5\%	R45 R60 R123 R148-149
140-126-00	RESISTOR TF SMT	150K	5\%	R3 R31 R36 R54 R107 R116
140-130-00	RESISTOR TF SMT	200K	5\%	R1 R101 R106 R126 R129-130
140-140-00	RESISTOR TF SMT	510K	5\%	R8 R55-56 R108 R115
140-143-00	RESISTOR TF SMT	680K	5\%	R28
140-147-00	RESISTOR TF SMT	1M	5\%	R9 R33 R92
140-152-00	RESISTOR TF SMT	1M6	5\%	R5
145-000-00	RES TF SM .1W 0 OHM	0	5\%	R15 R20 R40 R43
145-182-00	RESISTOR MF SMT	76.8	1\%	R93-94 R99-100 R145
145-266-00	RESISTOR MF SMT	576	1\%	R112 R114
145-308-00	RES MF SM .1W 1\% 1K58 OHM	1K58	1\%	R46
145-318-00	RESISTOR MF SMT	2K00	1\%	R14 R21 R39 R44 R63 R72 R146 R151 R157
145-331-00	RESISTOR MF SMT	2K49	1\%	R52 R64 R71 R111
145-389-00	RESISTOR MF SMT	10K0	1\%	R50 R58 R61-62 R73-74 R124 R128 R136 R138
145-414-00	RESISTOR MF SMT	18K2	1\%	R83 R132
145-418-00	RESISTOR MF SMT	20K0	1\%	R25 R29 R32 R34-35 R75 R78-80 R82 R84 R127 R133 R137
145-422-00	RES MF SM .1W 1\% 22K1 OHM	22K1	1\%	R119 R125
145-426-00	RESISTOR MF SMT	24K3	1\%	R2 R4 R65-66 R69-70 R90-91 R95-96 R109 R117
145-427-00	RESISTOR MF SMT	24K9	1\%	R113
145-435-00	RES MF SM .1W 1\% 30K1 OHM	30K1	1\%	R118
145-439-00	RESISTOR MF SMT	33K2	1\%	R17-18 R24 R27
145-469-00	RESISTOR MF SMT	68K1	1\%	R87 R89 R135 R161
145-531-00	RESISTOR MF SMT	301K	1\%	R81 R85 R131 R134 R153-154

M2600 SERVICE MANUAL

055-170-00 Rev A, continued

Part \#	Description	Value	Reference Designator
200-011-02	CAPACITOR MYLART\&R	0.0022 5\%	C59
200-036-02	CAP, METALZED POLY, T/R	.luF 10\%	C31-32
205-006-02	MICA 30PF 5\% 500V T/A	30pF 5\%	C60
210-017-02	CAPACTOR, CERAMIC, T/R	470pF 5\%Y5E	C45
212-001-00	CER .01UF 10\% 50V X7R SM	0.01 10\%	C20 C25
212-006-00	CAPACITORCERAMIC SMT	470PF 5\%	C46
212-007-00	CAPACITOR CERAMIC SMT	0.047 5\%	C4 C 6 C 8-10 C 12-13 C 22-23 C27 C 30 C33 C35 C 37-39 C 41-42 C52-58 C61-62
212-008-00	C ER .22UF +80/-20\% 25V SM	0.22 5\%	C1C3C47 C51 C63
212-016-00	CAPACITORCERAMIC SMT	1000PF 5\%	C5C21 C24
212-018-00	CAPACITOR CERAMIC SMT	10PF 5\%	C43-44
212-019-00	CER 150PF 5\% 50V SM	150PF 5\%	C11-14
212-025-00	CAP CER .1UF 25V 10\%X7R	.1UF 10\%	C 15-18 C66
212-029-00	CAPACITORCERAMIC SMT	270PF 5\%	C34
220-001-02	CAPACITOR LYTIC RADIALT\&R	22UF 10\%	C 7 C 48-49 C 64-65
220-004-02	CAPACITOR LYTIC RADIALT\&R	470UF 10\%	C 50
220-014-00	CAPACITOR LYTIC RADIALKS	2.2UF 10\%	C2 C 19 C 26 C $28-29 \mathrm{C} 36 \mathrm{C} 40$
300-003-00	DIODE SIGNAL SMD	DL4148	D1-6 D11-14 D16-25 D27-36 D38-39 D41-42 D44-45 D47-52 D56-57
300-010-00	DIODE SIG NAL SMD	RLS245	D26 D37 D40 D43 D46 D53-55 D58-60
302-009-00	DIODE 正NER SMD	DL5260B	D7 D10
302-010-03	DIODE 正NER SMD	DL5232	D8-9 D15
310-042-00	XSTR NPN MJ E15032	MJ E15032	Q1
310-043-00	XSTR PNP MJ E15033	MJ E15033	Q2
311-001-00	X-SISTOR NPN SMD	IMBT4401	Q13 Q22 Q25
311-002-00	X-SISTOR PNP SMD	IMBT4403	Q $7-8$ Q 21 Q 24 Q 28
311-007-00	TRANSISTOR PNP SMD	2SA1415	Q4 Q9-10 Q20
311-008-00	TRANSISTOR NPN SMD	2SC 3645	Q3 Q11-12 Q 15
311-009-00	TRANSISTOR PNP SMD	2SA1552	Q6Q26
311-010-00	TRANSISTOR NPN SMD	2SC 4027	Q5 Q 27
311-011-00	TRANSISTOR PNP SMD	2SA1740	Q14
311-012-00	TRANSISTOR NPN SMD	2SC 4548	Q23
311-019-00	TRANSISTOR PNP SMD	2SB792	Q16-17
311-020-00	TRANSISTOR NPN SMD	2SD814	Q18-19
320-012-00	OPAMP NJ M4560M	NJ M 4560M	U5-6 U8-9
323-002-00	I.C. QUAD COMPARATORSMD	LM339	U2-4
329-014-00	IC, DEG C TEMP SENSOR	LM35DZ	U1
329-036-03	NJ M4200M ANLG MULTR SM	NJ M 4200	U7
400-143-00	C ONN, HDR, 3-PIN, UN-SHROUD	0.100	J 21-22
400-171-00	CONN, HDR, 2-PIN, UN-SHROUD	, 0.100	J 17-20 J 23
400-186-00	C ONN HDR 40P . 100×2 STR SHRD		J 10
450-170-00	PCB, M 2600 V-AMP \& PROTEC TI		Z1
550-369-00	BRACKET, L		H1-2
601-008-00	INDUCTOR	10uH	L1-2
712-021-01	RIVET		Z4-7

055-171-00-01 Rev A Powersupply board

Part \#	Description	Value	Reference Designator
100-077-00	RES CF .125W 5\% 15K OHM	15K 5\%	R10-12
123-109-00	RESISTOR MOF	3.3K 5\%	R1-8
\ 150-037-00	RESISTOR, FUSABLE, 1/4W	33 5\%	R9
200-036-02	CAP, METAUZED POLY, T/R	.1uF 10\%	C15-22
211-009-00	CAPACITORCERAMIC AXIAL	0.1 10\%	C23-24
220-006-00	CAPACITOR LYTIC RADIAL	2200UF 10\%	C9-12
220-029-00	CAPACITOR LYTIC RADIAL	2200UF 20\%	C13-14
220-041-00	CAPACITOR LYTIC RADIAL	15,000uF20\%	C1-8
300-001-00	DIO SIG 1N4148 100V 500MW	1N4148	D19-20
301-009-00	DIODE POWER	1N4004	D1-5 D10-16
301-010-00	DIODE POWER	1N5404	D6-9
301-015-00	DIODE BRIDGE	25A	D17-18
310-007-00	XSTR NPN 2N4401	2N4401	Q1
400-060-00	FUSE CLP PCMT5MM DIA		Z1-3
400-133-00	HEADER, 2X3, MATE-N-LOCK		J 6
400-173-00	CONN QUICK DISC . 250 W/STABLE-LOK TABS		J 3-5
400-231-00	HEADER, 2X5, MATE-N-LOCK		J 1-2
450-171-00	PCB, M2600, POWER SUPPLY		Z4
\! 510-026-00	FUSE 5X20	T-3.15A	F1-2

055-172-00-01 Rev A Speaker output board

Part \# Description Value Reference Designator

400-138-01	SPEAKONS HORIZ4 CKT	J2-4
400-173-00	CONN QUIC K DISC . 250 W/STABLE-LOK TABS	J $5-8$
$400-237-00$	CONNECTOR, QUAD BANANA	J 1
$450-172-00$	PCB, M2600, OUTPUT	Z1

Components noted with this symbol shall be replaced only by the component specified. This is required to ma intain product safety.

055-186-00 Rev A 15 Volt supply/fan drive board

Part \#	Description	Value	Reference Designator
	TESTPOINT, PARTOF PCB		J 1-2
100-031-00	RESISTOR CF	180 5\%	R8
100-049-00	RESISTOR CF	1K 5\%	R7
100-056-00	RESISTOR CF	2K 5\%	R10
100-061-00	RESISTOR CF	3K3 5\%	R6
100-066-00	RESISTOR CF	5K1 5\%	R2
100-068-00	RES CF.125W 5\% 6K2 OHM	6K2 5\%	R5
100-069-00	RESISTOR CF	6K8 5\%	R4
100-073-00	RESISTOR CF	10K 5\%	R9
100-078-00	RESISTOR CF	16K 5\%	R3
100-080-00	RESISTOR CF	20K 5\%	R13
100-090-00	RES CF.125W 5\% 51K OHM	51K 5\%	R12
100-097-00	RESISTOR CF	100K 5\%	R11
121-081-00	RESISTOR MF	2K2 5\%	R14
130-021-00	RESISTOR POTTRIM HORIZ	10KB	R1
211-009-00	CAPACITORCERAMIC AXIAL	0.1 10\%	C3C5C7-8
220-001-02	CAPACITOR LYTIC RADIALT\&R	22UF 10\%	C2C4C9
220-027-02	CAPACITOR LYTIC RADIALT\&R	10UF 10\%	C1C6
300-001-00	DIODE SIGNAL	1N4148	D5-7
301-009-00	DIODE POWER	1N4004	D1-4
310-002-00	TRANSISTOR PNP	2N4403	Q3
310-024-00	TRANSISTOR PNP	2SB817	Q1
310-050-00	TRANSISTOR NPN	2SC 1567A	Q2
320-011-00	I.C. LINEAR	NJ M 4560	U3
321-001-00	I.C. UNEAR NEG 3TERM VOLTA REGULATOR	LM 7915	U1
321-002-00	I.C. LINEAR POS 3 TERM VOLTA REGULATOR	LM 7815	U2
400-078-00	C ONNEC TOR STR LCK SHRD 10P	100×2	J 4
400-171-00	CONN, HDR, 2-PIN, UN-SHRO UD	, 0.100	J 3
450-186-00	PCB, M2600, + -15V SUPPLY \&	N DRIVE	Z1
550-369-00	BRACKET, L		H1-2
601-013-00	CHOKE, POWER AXIAL	470uH	L1-2
712-021-01	RIVET		Z4-7

THE MACKIE FIXER • MACKIE DESIGNS SERVICE NEWS

M•2600 amplifier modification instructions

Models affected: All M•2600 a mplifiers with serial numbers "AU" or those less than DX10017.
Add this mod as part of your nomal repair procedures.
Symptom: No signal, dead channel or distorted output.

Possible Cause:

1: Transistor Q5 on the V-a mp protection boards may be shorted to an adjacent trace.
2: Transistors Q3 and Q4 on the V-a mp protection boards may oscillate under certain conditions, causing V-amp board failure, and/or failure of R57 on Ch. 1 amp board and R56 on CH. 2 amp board (33Ω fuse).
Solution: Rework both V-a mp circ uit boards (055-170-00) as follows:
1: Replace Q5 with a new transistor and make sure it is postioned further down, away from the trace, or: cut two traces and add a jumper wire (to bypass any possiblity of a short).
2: Replace R14, R15, R20 and R21 with new value resistors (to improve the reliability of the final class A stage, comprising of transistors Q1 to Q6 and associated resistors, diodes and caps).

Safety Waming:

Caution! These instructions are for use by qualified personnel only. To avoid electric shock, do not perform any servicing unless you are qualified to do so. Refer all service to qualified personnel.

Tools Required:

Shap pointed X-acto knife, Phillipsscrewdriver, Torx and Allen drivers, needle nose pliers, safety glasses, soldering iron suitable for surface mount work.

Parts Required:

Insulated jumper wire
311-010-00 2SC4027 Transistor, NPN, SMD Q5
140-057-00 220Ω Resistor, 0.1 W , 5\%, Thick film, SMT 0805 R15 and R20
140-084-00 $3 \mathrm{~K} \Omega$ Resistor, $0.1 \mathrm{~W}, 5 \%$, Thick film, SMT 0805 R14 and R21
Procedure: (The following modifications must be performed on both V -a mp boards)
Remove all cords (including the power cable and speakeroutputs) from the amplifier.
Remove the amplifier suba ssembly from the chassis.
3/ Remove the two V-a mp boards (055-170-00) from the a mplifier suba ssembly.
4/ Replace R15 and R20 (from 0Ω to 220Ω).
5/ Replace R14 and R21 (from $2 k \Omega$ to $3 k \Omega$).
6/ Follow step A, or follow step B, whic hever you find easiest.
A/ If you have a new transistor in stock, replace Q5 and make sure it is positioned further down, so the left leg is fully on its pad and not over the trace. Note: a new transistor is required because unsoldering and repositioning the original transistor will themal-stress and weaken the part.
B/ Carefully cut the trace in two places on each board. See the diagram on the second page. The trace should be cut exactly in the locations shown. It is not easy to get to, and you may have to scrape off some of the white silkscreen lines in order to see the trace. Solder a jumper wire in the position shown, on each board.
7/ Reassemble the V-amp boardsonto the amplifier subassembly.
8/ Reassemble the amplifier subassembly into the chassis.
9/ Perform a complete specification and safety test. Refer to the service manual for details.

THE MACKIE FIXER•MACKIE DESIGNS SERVICE NEWS

