Errata

Title & Document Type: 1809A Four Channel Vertical Amplifier Operating and Service Manual

Manual Part Number: 01809-90903

Revision Date: January 1977

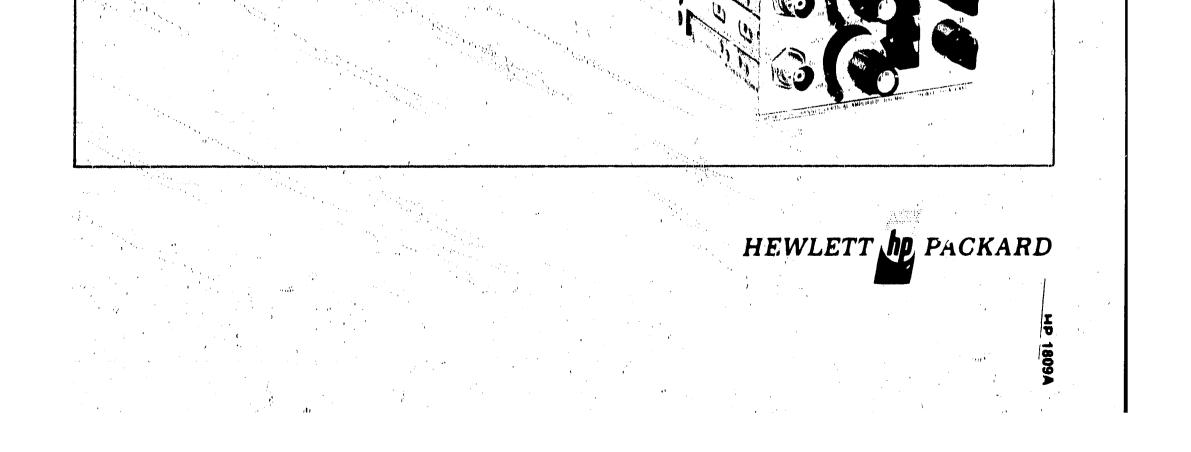
About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, life sciences, and chemical analysis businesses are now part of Agilent Technologies. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A. We have made no changes to this manual copy.

Support for Your Product


Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

CERTIFICATION

Hewlett-Packard Company certifies that this instrument met its published specifications at the time of shipment from the factory. Hewlett Packard Company further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY AND ASSISTANCE

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from the date of shipment. Hewlett-Packard will, at its option, repair or replace products which prove to be defective during the warranty period provided they are returned to Hewlett-Packard, and provided the preventive maintenance procedures in this manual are followed. Repairs necessitated by misuse of the product are not covered by this warranty. NO OTHER WARRANTIES ARE EX-PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD IS NOT LIABLE FOR CONSEQUENTIAL DAMAGES.

Service contracts or customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and

C W&A 9/76

Service Office. Addresses are provided at the back of this manual.

• 9

OPERATING AND SERVICE MANUAL

MODEL 1809A FOUR CHANNEL VERTICAL AMPLIFIER

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1424A.

For additional information about serial numbers, see INSTRUMENT AND MANUAL IDENTIFICATION in Section I.

HEWLETT-PACKARD COMPANY/COLORADO SPRINGS DIVISION 1900 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO, U.S.A.

Manual Part Number 01809-90903 Microfiche Part Number 01809-90803

PRINTED: JANUARY 1977

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GROUND THE INSTRUMENT.

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS FROCEDURE WARNINGS.

a the second s

manual Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

SS-1-1/76

G

TABLE OF CONT ENTS

Sect	ion	$\sum_{\mathbf{x} \in \mathcal{X}} \mathbf{x}_{\mathbf{x}} = \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{x}_{\mathbf{x}} ^{2} + \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{x}_{\mathbf{x}} ^{2$	Page	ر، ' ر
I	GENE	ERAL INFORMATION	1-1	
	1-1.	Introduction	1.1	
.'	1-4.	Instrument Description	1-1	۰.
	1-4. 1-6.	Input Impedance	1-1	
	1-0. 1-7.	Bandwidth	1-1	
			1-1-	
	1-10.	Rise Time	1-1	
1	1-11.	Deflection Sensitivity	1	
Ì	1-12/	Modes of Operation	1-1	
N.	1-16.	Triggering	1-2	
Ì	1-18.	Maximum Signal Input	1-2	1
Ì	1-19.	Warranty	1-2	
ĺ	1-21.	Accessories Available	1-2	
Ì	1-23.	Instrument and Manual	,	'
• /		Identification	1 - 2	
Į.	1-26.	Inquiries	1-2	
II ·	INSTA	ALLATION	2-1	
14) .		<u>}</u>	
	2.1.		2-1	
	2-3.	Initial Inspection		
	2-6.	Installation		
	2-8 .	and the second second particular of the second s	\ 2- 4	
、 ·	2-10.	Claims	2-1	
	2-12.	Repacking for Shipment	2-1	, ,
III	OPER	ATION	3-1	
	3-1.	Introduction	3-1	
	3-3.	Controls and Connectors	3-1	
•	3-5.	Input Coupling	3-1	8 - 1
	3-7.	Volts/Div.	· ·	
	3-9.	Display Mode		
	3-11.	Trigger Selection	3-1	` .
	3-11. 3-13.	A+B or C+D Operation		'. ,
		Operating Procedures	3-2	Ч.
	3-14.			
	3-16.	Operator's Performance Check		
	3-18.	Applications	0-4	
	PRIN	CIPLES OF OPERATION	4-1	
	4-1.	Introduction	4-1	
	4-3.	Block Diagram Discussion	4-1	N.
	4-5.	Attenuator	4-1	
	4-6.'	Vertical Preamplifier	4-1	
	4-0. 4-8.	Buffer Amplifier Assembly	4-1	* *
	4-0. 4-10.	Delay Line	4-1	
	4-10. 4-11.	Main Amplifier	4-1	
	4-11. 4-12.	-	4-1	· .
		Output Amplifier	4-1	
	4-13.	Channel Control	4-1	•
· · ·	4-14.	Circuit Details	"æ" .I.	۰.
-	4-16.	Attenuator Assemblies A1,	A 1	
	ا ساد را	A2, A3, and A4	4-1	
	4-17.		4-1	
	4-19.	Input		
	4-21.	Attenuator Circuits	4-2	
1 •	4-25.	Preamplifiers and Output		
		Circuitry	4-2	*

$\sim \mathbf{S}$	ection		Page
· ;	4-33.	Buffer Amplifier	4-2
	4-39.	Sync Amplifier	4-3
	4-42.	Delay Line	4-3
	4-43.	Main Amplifier	4-3
3	4-44.	Output Amplifier	4-3
	4-45.	Channel Control	4-3
v	PERÉ	ORMANCE CHECK AND	
•		JUSTMENTS	5-1
	5-i.	Introduction	5-1 N
	5-3.	Equipment Required	5-1
	5-5.	Performance Checks	5-1
	5-7.	Performance Check Record	5-1
	5-8.	Initial Control Settings	5-1
	5-9.	Initial Checks	5-1
· .	5-10.	Deflection Factor	5-1
	5-11.	Rise Time	5-3
	5-12.	Bandwidth	5-3
	5-13.	Input Resistance	5-4
	5-14.	Common Mode Rejection	5-4
	5 15.	VSWR Check	-5-5
	5-16.	Triggering	5-5
	5-17.	Adjustment Procedures	5-7
	5-20.	DC Bal Adjustment	5-7
	5-21.	Output Bal Adjustment	5-7
•	5-22.	Gain Adjustments	5-7
	5-23.	Attenuator Adjustments	5-8
	5-24.	Sync Balance Adjustment	5-8
	5-25.	Pulse Response Adjustment	5-9
V	I REPL	ACEABLE PARTS	6-1
1	6-1.	Introduction	6-1
	6 -3.	Ordering Information	6-1
V	1	UAL CHANGES AND FIONS	/7-2
	7-1	Introduction 7-1	/7-2
	7-1 ₅ 7-3.5		/7-2
	7-5. ∖		/7-2
	7-5. \ 7-9. \	· · ·	/7-2
	1-27.	, « кванцага Сурнон	نک - ا
17			

VIII SULLEWATION	SAND LRUU	15 LaPa*	
SHOOTING			8-1

	8-1.	Introduction	8-1
	8-3.	Schematics	8-1
•	8-7.	Reference Designations	8-1
	8-11.	Component Locations	8-1
Ŷ	8-14.	Preventive Maintenance	8-1
	8-16.	Mechanical Inspection	8-1
	8-20.	Switch Maintenance	8-2
	8-21.	Repair and Replacement	8-2
	8-23.	Attenuator Repair	8-2
• ,	8-25.	Attenuator Disassembly	8-2
'n í	8-26.	Substrate Installation	8-2

iii

Table of Contents List of Illustrations

• . .

ъ.,

iv

Model 1809A

TABLE OF CONTENTS (Cont'd)

- (, 1, j.)	Sectio	n'		Page	Sect	ion	nte en	Page	`
· · ·	 ↓	8-27.	Attenuator Removal			8-37.	Soldering Tool, So	lder, and	
: *		8-28.	Circuit Boards			at a tra	Aids		
		8-30.	Board Connections			8-38.	Heat Sink Remova	\emptyset 8-5	
		8-31.	Servicing Etched Circuit			8-39	Troubleshooting		
			Boards			8-42.	b DC Voltages		
		8-32.				8.43	Circuit Checking .		
			Replacement			8-44.	Initial Troublesho	oting	ι.
	· ·	8-33.	Integrated Circuit Replace-				Procedure		
			ment	8-4		8-45.	Trouble Diagnosis	8-6	
						1			

LIST OF ILLUSTRATIONS

Table		Title		Page	Figure	Title	Page
1-1.	Model 1809	A Four-channe	el Vertica		8 8.	Channel A Preamplifier,	
· .	Amplifier				1. 1. j. 1. j.	Scherhatic 4, (i, i, \dots, i) , (i, j) , (i, j)	8-13
,					, 8-9.	Component Identification, [1] Apple [7]	1
1-2.	Instrument	Serial Numbe	r		1.1.1	Assembly A6	8-1-4
				* .	§ 8-10. ≠	Channel B Preamplifier.	
2-1.	Plug-in Ma	ting		2-2		Schematic 5 , t : $[0, 20, 27, 27, 27, 27]$	8-15
					8-11.	Component Identification;	
3-1.	ALT Displa	iy <i>.</i>			, (i.	Assembly A7	8-16
$3-2_{m}$	CHOP Dist	olay		3-2	8-12.	Channel C Preamplifier;	
3-3.	Controls ar	nd Connectors .		3-3 🖉 🖓		Schematic 6.	8-17
3-4.	Initial Turr	n-on Procedure		3-4	8-13. ···	Component Identification, States	
3-5.	Amplifiér (Calibration		1 3-5		Assembly A8	8-18
3-6.	CHOP Mod	le Operation		3-6 (* 19	8-14.	Channel D Preamplifier,	1. 建筑和
3-7.	ALT Mode	Operation		3-7		Schematic 7	8-19
3-8.		nnel Operation			8-15.	Component Identification,	
3-9.	±A±B and ±	C±D Operation	ns	3-9/3-10	• .	Assembly A9	
а 1		-		, j	8-16.	Buffer Amplifier, Schematic 8	8-21
5-1.	Deflection	Factor Test Set	up	5-3	8-17.	Component Identification,	**
5-2.		Pest Setup			94 1	Assembly A16	8-22
5-3.		Test Setup			8-18.	Component Identification,	
. 1		•		e de la companya de la		Assembly A9	8-22
5-4.	Input Resis	tance Test Set	up	5-4	8-19.	Sync Amplifier, Schematic 9	8-23
5-5.		Setup			8-20.	Component Identification,	
5-6.		Setup		1		Assembly A10A1	8-24
5-7.		Test Setup		Aug. 1.4	8-21.	Component Identification,	• · · ·
5-8.	Adjustment	Locations			4	Assembly A10A2	8-24
					8-22.	• Output Amplifier, Schematic 10	8-25
6-1.	Illustrated	Parts Breakdo	wn	6-0	8-23.	Component Identification,	
						Assembly A12	8-26

8-1.	Attenuator Assembly	8-3
8-2.	Semiconductor Terminal Identi-	
	fication	8-4
8-3.	Troubleshooting Block Diagram	8-7
8-4.	Attenuator Component Identi-	
•	fication	8-8
8-5.	Channel A - Channel B Attenuator,	
	Schematic 2	8-9
8-6.	Channel C - Channel D Attenuator,	
3	Schematic 3	8-11
8-7.	Component Identification,	
1	Assembly A5	8-12

14

	Assembly A12	8-26	
8-24.	Component Identification,	1 ⁴ .	
	Assembly A15	8-26	
8-25.	Channel Control, Schematic 11	8-27	
8-26.	Component Identification, Assembly A11	8-28	
8-27.	Mother Board Assembly, Schematic 12	8-29	
8-28.	Component Identification, Assembly A13	8-30	
8-29.	Chassis Interconnect Board, Schematic 13	8-31	

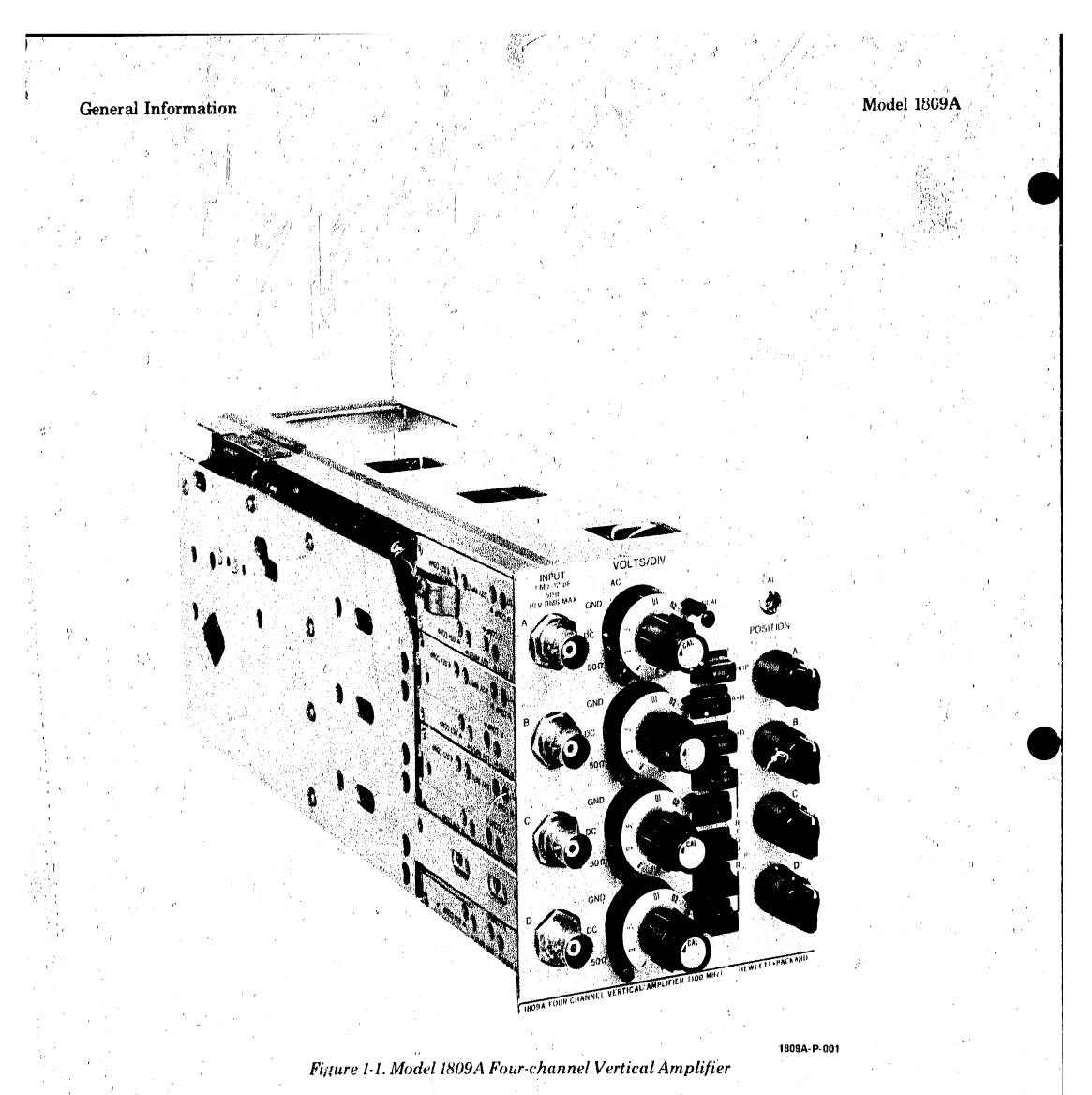
List of Tables

LIST OF TABLES

Table	Title	Page
1-1.	Specifications	142
1-2.	Reference Designations and Abbreviations	1-4
5-1.	Recommended Test Equipment	5-2
5-2.	Deflection Factor Accuracy	5-3
5-3.	Triggering	
	Performance Check Record	
6-1.	Abbreviations for Replaceable Parts	6-1
6-2.	Replaceable Parts	
6-3.	List of Manufacturers' Codes	
7-1.	Manual Changes	7-1/7-2
8-Í.	Schematic Notes	
	Etched Circuit Soldering Equipment.	

Model 1809

 \mathbb{R}_{i}


Table	Title	Page
8-3.	Schematic 2 Measurement	
6	Conditions	8-9
8-4.	Schematic 3 Measurement Conditions	8-11
8-5.	Schematic 4 Measurement Conditions	8-13
8-6.	Schematic 5 Measurement Conditions	" 8-15 .»
8-7.	Schematic 6 Measurement Conditions	8-17
8-8	Schematic 7 Measurement Conditions	8-19
8-9.	Schematic 8 Measurement Conditions	8-21
8-10.	Schematic 9 Measurement Conditions	8-22
8-11.	Schematic 10 Measurement Conditions	8-25

.`

9

. v ...

......Ś.

General Information

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This manual provides operating and servicing information for the Hewlett-Packard Model 1809A Four-channel Vertical Amplifier (figure 1-1). The manual is divided into eight sections, each covering a specific topic or aspect of the instrument. All schematics are located at the rear of the manual and can be unfolded and used for reference while reading any part of the manual.

1-3. This section contains a description of the Model 1809A. The instrument specifications are listed in table 1-1. Table 1-2 lists and describes the abbreviations used throughout this manual except in Section VI. The parts listed in Section VI are a computer readout and use computer-supplied abbreviations (table 6-1).

1-4. INSTRUMENT DESCRIPTION.

1-5. The Hewlett-Packard Model 1809A. Four-channel Vertical Amplifier is a versatile, wideband, plugin unit for the HP 180-series oscilloscope system. As a vertical amplifier plug-in, the Model 1809A mates with all 180 time base plug-ins (refer to Section II for instrument compatibility). The following paragraphs provide a brief description of the Model 1809A.

1-6. INPUT IMPEDANCE. The four-channel input impedance characteristics of Model 1809A permit a wide variety of useful applications. The high impedance input, 1 megohm $(\pm 1\%)$ shunted by approximately 12 pF capacitance, provides excellent general purpose measurement capabilities to 100 MHz. High impedance input is available for either ac or dc input coupling. A selectable 50-ohm input impedance provides a 50-ohm input termination $(\pm 2\%)$ with a VSWR of less than 1.3:1 at 100 MHz on all ranges. A high quality 50-ohm termination is maintained by compensation for the normal input capacitance that is not possible with external terminations. This internal termination also allows the high 10-volt maximum input capability. high impedance input is from approximately 10 Hz to 100 MHz.

1-9. 50-Chm Input. Bandwidth for the 50-ohm input impedance is from dc to 100 MHz. Bandwidth is measured with a 6-division reference signal from a terminated 50-ohm source (internal 50-ohm impedance provides an ideal termination for a 50-ohm source).

1-10. RISE TIME. Rise time for the Model 1809A (measured between 10% and 90% amplitude levels) is less than 3.5 nanoseconds when measured on a 6-division input step from a terminated 50-ohm source.

1-11. DEFLECTION SENSITIVITY. Deflection factors range from 10 mV/div to 5V/div in 9 calibrated positions. Attenuator accuracy is $\pm 2\%$. A vernier for each channel provides continuous adjustment between all deflection factor ranges and extends maximum deflection factor to at least 12.5V/div.

1-12. MODES OF OPERATION. In addition to single channel display, several combinations of displays are available. Other display combinations are CHOP, ALT, and algebraic addition of channels A+B^{*} and C+D.

1-13. Chop. During CHOP display each channel is displayed during the same sweep. In this mode the CRT beam is switched between four channels at a 500 kHz rate (approximately). To eliminate undesirable channel switching transients from a display, the CRT beam is blanked during switching. When using the algebraic functions $\pm A\pm B$ and $\pm C\pm D$, the switching rate between the two displayed channels is appproximately 1 MHz.

1-14. Alt. During ALT display, each channel is displayed on alternate sweeps of the CRT beam. ALT display is particularly useful for making fourchannel comparison measurements with relatively fast sweep speeds.

1-7. BANDWIDTH.

1-8. High Impedance Input. Bandwidth limits for the high impedance input are measured 3 dB down when compared to a 6-division reference signal from a terminated 50-ohrn source.' Bandwidth for the Model 1809A, set for a dc-coupled, high-impedance input, is dc to 100 MHz. Bandwidth for an ac-coupled, 1-15. A+B and C+D Modes. The A+B and C+D modes of operation present an algebraic display of channels A+B and C+D. By using the front-panel control switches (OFF-ON-INVT), either channel A or B (C or D) can be inverted to obtain differential $\pm A\pm B$ ($\pm C\pm D$) display. The common-mode rejection ratic (CMRR) for differential amplifier operation is at least 20 dB from dc to 80 MHz on 10 mV/div to 5 V/div ranges.

General Information

1-16. TRIGGERING. The sync amplifier in the Model 1809A provides the internal trigger signal to the time base plug-in. The CRT display can be synchronized by any channel or the composite signal of the display.

1-17. Triggering occurs on signals from dc to 50 MHz that cause 0.5 division or more of vertical deflection, increasing to 1 division or more of vertical deflection at 100 MHz in all display modes with Model 1824A, 1825A, or 1820C time bases.

1-18. MAXIMUM SIGNAL INPUT. The maximum safe input signal is ± 300 volts (dc + peak ac) at 1 kHz or less on all ranges except the 10 mV/div range. On the 10 mV/div range, the maximum safe input signal is ± 150 volts (dc + peak ac) at 1 kHz or less.

1-19. WARRANTY.

1-20. The warranty statement applicable to this instrument is printed inside the front cover of this manual.

CAUTION

The warranty may be void for instruments having a mutilated serial number tag.

-21. ACCESSORIES AVAILABLE.

1-22. Hewlett-Packard maintains a complete line of accessories for use with the Model 1809A. Some of

Model 1809A

the more popular accessories include the HP Model 10014A voltage divider probe (10:1), the HP Model 10407A plug-in extender, and extender board assembly (HP Part No. 01834-63901). For additional information concerning accessories available for the Model 1809A, contact your nearest HP Sales/ Service Office. A convenient world-wide listing of HP Sales/Service Offices is located at the rear of this manual.

1-23. INSTRUMENT AND MANUAL IDEN-TIFICATION.

1-24. This manual applies directly to Model 1809A instruments with a serial prefix number as listed on the manual title page. The serial prefix number is the first group of digits in the instrumet serial number (figure 1-2). The instrument serial number is printed on a tag located on the rear panel of the plug-in.

1-25. Check the serial prefix number of the instrument. If the serial prefix number is different from that listed on the title page of this manual, refer to Section VII, or the MANUAL CHANGES sheet (if any) for instructions to adapt this manual for proper instrument coverage. Errors in the manual are listed under errata on the MANUAL CHANGES sheet.

1-26. INQUIRIES.

1-27. Refer any questions regarding the manual, the MANUAL CHANGES sheet, or the instrument to the nearest HP Sales/Service Office. Always identify the instrument by model number in all correspondence.

Table 1-1. Specifications

VERTICAL AMPLIFIER

숺

ĊŊ.

物的

MODES OF OPERATION

Channel A B, C, or D or any combination displayed alternately on successive sweeps (ALT); channels A B, C, or D or combination displayed by switching between 4 channels at approximately 500 kHz rate (CHOP) with blanking during switching; channels $\pm A$, $\pm B$, or $\pm C \pm I$) or channels $\pm A \pm B$, $\pm C$, $\pm D$ or any combination displayed in ALP or CHOP; chop rate is approximately 750 kHz for three traces; channels $\pm A \pm B$ displayed in ALT or CHOP with $\pm C \pm D$; chop rate is approximately 1 MHz. EACH CHANNEL (4) AC coupled: approximately 10 Hz to 100 MHz; lower limit approximately 1 Hz with HP Model 10014A probe when ac coupled. *Rise Time:* ≤3.5 nanoseconds (measured with or without HP Model 10014A probe; 10% to 90% of 6-division input step from a terminated 50-ohm source).

Deflection Factor: 0.01 V/div to 5 V/div (9 calibrated positions) in 1, 2, 5 sequence.

Bandwidth 3 dB down from 6 division reference signal measured with or without probe HP Model [10014A], from terminated 50-ohm source.

DC coupled: dc to 100 MHz.

Attenuator Accuracy: ±2%.

Vernier: continuous adjustment between deflection factor ranges; extends maximum deflection factor to at least 12.5 V/div. UNCAL indicator lights when vernier is not in CAL detent position. Signal delay: signals are delayed to view

leading edge of pulse without advanced external trigger.

Input coupling: selectable AC, DC, GND or 50-ohm. GND position disconnects signal and grounds amplifier input.

Model 1809A

¢

Table 1-1. Specifications (Cont'd)

Input RC:

AC-DC: 1 megohm ±1% shunted by ap-

proximately 12 pF. 50-ohm: 50 ohms ±2% VSWR, 1.3:1 100 MHz on all ranges.

Maximum input:

AC-DC: ±300V (dc ± peak ac) at 1 kHz or less; ±150V (dc + peak ac) on 0.01 V/div range at 1 kHz or less. 50-ohm: 10V rms (dc-coupled input).

Polarity, any channel may be inverted for #A, #B, ±C, or ±D operation.

Algebraic Addition (A+B and C+D):

Amplifier: bandwidth and deflection factors 'unchanged; any channel may be inverted for ±A±B or ±C±D operation.

Differential Input (A-B or C-D) common mode: CMRR is at least 20 dB from dc to 80 MHz on 0.01 V/div to 5V/div ranges.

Triggering:

Source: selectable from channel A, B, C, D, or composite (on displayed signal) in all display modes.

Time Base	Trigger Frequency	Required Vertica
plug-in	(except chop)	Deflection
1820C	de to 50 MHz	0.5 div
1824A-1825A	de to 100 MHz	1 div
1840A, 1841A	de to 50 MHz	0.5 div
1820B, 1822B	de to 100 MHz	2 div
1820A, 1821A	de to 50 MHz	1 div

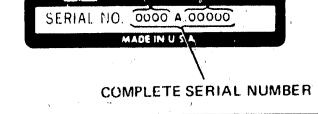
General Information

GENERAL

WEIGHT: Net 7 lb (3.2 kg); shipping, 10 lb (4.5 kg).

ENVIRONMENT

(Plug-in operates within specifications over following ranges.)


Temperature: 0°C to 55°C.

- Humidity: 95% relative humidity to 40°C.
- ²⁸ Altitude: to 13,000 ft (4.5 km).
- Vibration: vibrated in three planes for 15 minutes each with 0.010 inch excursion, 10 to 55 Hz.

AT ATTENUATOR RESISTIVE TERMINATION B F FUSE PS POWEP SUPPLY (UNREPAIRABLE) B MOTOR, FAN H HARDWARE R RESISTOR V Vacuum TUBE, NEON BT BATTERY J JACK R RESISTOR VR VOLTAGE REGULATE (DIODE) C CAPACITOR K RELAY RT THERMISTOR VR VOLTAGE REGULATE (DIODE) CP COUPLING L INDUCTOR S SWITCH W CABLE DL DELAY LINE M METER TB TERMINAL BOARD Y CRYSTAL DS DEVICE.SIGNALING (LAMP) MP MECHANICAL PART TP TEST POINT Z NETWORK A AMPERE TURNIS) FET FIELD EFFECT nc NORMALLY OPEN mREVERS WORKING amplid AMPLIFIER(S) F FARADISISTOR(S) no. NORMALLY OPEN REVERSE WORKING amplid AMPLIFIER(S) F FREADISISTOR(S) no. NORMALLY OPEN REVERSE WORKING amplid AMPLIFIER(S) F <								
AT ATTENUATOR RESISTIVE TERMINATIONFFUSE FUSEPS FUSEPOWEP SUPPLY OF SUPPLY(UNREPAIRABLE) VACUUM TUBE, NEONBMOTOR, FANHHARDWARE HARDWARERRESISTOR RESISTORVRVOLTAGE REGULATE (DIDE)BTBATTERYJJACKRTTHERMISTORVULTAGE REGULATE (DIDE)CCAPACITORKGELAYRTTHERMISTORVRCCAPACITORKGELAYRTTRANSFORMERXCCAPACITORLINDUCTORSSWITCHWCABLECDEVICE.SIGNALING (LAMP)MMETERTBTERMINAL BOARDYCRYSTALDSDEVICE.SIGNALING (LAMP)MPMECHANICAL PARTTPTEST POINTZNETWORKAAMPERE TURN(S)FETFIED EFFECTncNORMALLY OPEN NORMALLY OPENNRREVERSE WORKINGAAMPERE TURN(S)FETFIED EFFECTncNORMALLY OPEN NORMALLY OPENNRREVERSE WORKING 	: '		•	REFERENCE DESI	GNAT	IONS	,	V).
AT ATTENUATOR RESISTIVE TERMINATION RESISTIVE TERMINATION RESISTIVE TERMINATION MEDIA F FUSE FUSE PS POWER SUPPLY (UNREPAIRABLE) VACUUM TUBE, NEON BULB, PHOTOCELL, E B MOTOR, FAN H HARDWARE R RESISTOR V VACUUM TUBE, NEON BULB, PHOTOCELL, E BT BATTERY J JACK RT THERMISTOR VR VOLTAGE REGULATC (DIODE) C CAAACITOR K RELAY S SWITCH W CABLE CR DIODE LS SPEAKER T TRANSFORMER X SOCKET DL DELAY, LINE M METER TB TERMINAL BOARD Y CRYSTAL DS DEVICE,SIGNALING (LAMP) MP MECHANICAL PART TP TEST POINT Z NETWORK A AMPERE TURN(S) F FARAD(S) n NANO (10 ⁹) rfi RADIO FREQUENCY A AMPERE TURN(S) FET FIED EFFECT nc NORMALLY OPEN NREVERSE WORKING ampltd AMPLIFIER(S) F FARAD(S) no. NORMALLY OPEN NEGATIVE ampltd AMPLIFIER(S) F GGA (10 ⁹) np NEGATIVE NECATIVE bb BOARD(S) H </th <th>A</th> <th>ASSEMBLY</th> <th>Ε</th> <th>MISC ELECTRICAL PART</th> <th>Ρ'</th> <th>PLUG</th> <th>U (</th> <th>*INTEGRATED CIRCUIT</th>	A	ASSEMBLY	Ε	MISC ELECTRICAL PART	Ρ'	PLUG	U (*INTEGRATED CIRCUIT
B MOTOR, FAN H HARDWARE R RESISTOR BULB, PHOTOCELL, E BT BATTERY J JACK RT THERMISTOR VOLTAGE REGULATC (DIODE) C CAPACITOR K RELAY S SWITCH W CABLE C CAPACITOR K RELAY S SWITCH W CABLE C CAPACITOR L INDUCTOR S SWITCH W CABLE CR DIODE LS SPEAKER T TRANSFORMER X SOCKET DL DELAY LINE M METER TB TERMINAL BOARD Y CRYSTAL DS DEVICE SIGNALING (LAMP) MP MECHANICAL PART TP TEST POINT Z NETWORK A AMPERE TURNIS) FET FIELD EFFECT nc NORMALLY CLOSED rm ROT MEAN SQUARE Assy ASSEMBLY C GIGA (10 ⁹) npn NCRATIVE-POSITIVE RECATIVE-POSITIVE		ATTENUATOR	F	FUSE	PS	POWERSUPFLY		
B MOTOR, FAN ¹ H HARDWARE R RESISTOR VR BULB, PHOTOCELL, E BT BATTERY J JACK RT THERMISTOR VR VOLTAGE REGULATC (DIODE) CP COUPLING L INDUCTOR S SWITCH W CABLE CR DIODE LS SPEAKER T TRANSFORMER X SOCKET DL DELAY LINE M METER TB TERMINAL BOARD Y CRSTAL DS DEVICE SIGNALING (LAMP) MP MECHANICAL PART TP TEST POINT Z NETWORK A AMPERE(S) F FARADIS n NANO (10 ⁹) rfi RADIO FREQUENCY A AMPERE(S) F FARADIS no NORMALLY CLOSED rms ROOT MEAN SOUARE ampl AMPLIFIER(S) F FARADIS no NORMALLY CLOSED rms ROOT MEAN SOUARE ampl AMPLIFIER(S) F FARADIS no NANOSCOND SCR SULD OFREQUENCY A AMPERE URNISS F FARADIS no NANOSCOND rms ROOT MEAN SOUARE ampl AMPLIFIER(S) F FARADIS P	.	RESISTIVE TERMINATION	FL	FILTER	Ω	TRANSISTOR	Ϋ́,	
BT BATTERY J JACK RT THERMISTOR VN VOLTAGE REGULATE (DIODE) C CARACITOR K RELAY RT THERMISTOR (DIODE) CP COUPLING L INDUCTOR S SWITCH W CABLE CR DIODE LS SPEAKER T TRANSFORMER X SOCKET DL DELAY LINE M METER TB TERMINAL BOARD Y CRYSTAL DS DEVICE.SIGNALING (LAMP) MP MECHANICAL PART TP TEST POINT Z NETWORK A AMPERE TURNIS) FE FARAD(S) n NANO (10.9) rfi RADIO FREQUENCY A AMPERE TURNIS) FE FRADISTOR(S) no. NORMALLY CLOSED INTERFERENCE ampl AMPLIFIER(S) F FARAD(S) no. NORMALLY CLOSED rms ROOT MEAN SOUARE assy ASSEMBLY C GIGA (10.9) npn NEGATIVE-POSITIVE rww REVERSE WORKING bd BOARD(S) B BANDPASS <t< td=""><td>B</td><td>MOTOR, FAN</td><td>H</td><td>HARDWARE</td><td>R</td><td></td><td></td><td></td></t<>	B	MOTOR, FAN	H	HARDWARE	R			
C CAPACITOR K HELAY Constraint CP COUPLING L INDUCTOR S SWITCH W CABLE CR DIODE LS SPEAKER T TRANSFORMER X SOCKET DL DELAY LINE M METER TB TERMINAL BOARD Y CRYSTAL DS DEVICE-SIGNALING (LAMP) MP MECHANICAL PART TP TEST POINT Z NETWORK A AMPERE TURN(s) F FARAD(s) n NANO (10 ⁻⁹) rfi RADIO FREQUENCY A AMPERE TURN(s) FET FIELD EFFECT nc NORMALLY CLOSED rms ROOT MEAN SQUARE ampl AMPLIFIER(s) TRANSISTOR(s) no. NORMALLY OPEN rms ROOT MEAN SQUARE ampl AMPLIFIER(s) gnd GR OUND(ED) npn NEGATIVE POSITIVE rms ROOT MEAN SQUARE bd BOARD(S) F H HENRY(IES) P PICO (10 ⁻¹²) sec SEC SECOND(s) std BANDPASS H HENRY(IES) P PINTED (ETCHED) std STANDARD c CARBON Hz HERTZ PK PAK PINTED (ETCHED) </td <td>BT</td> <td>BATTERY</td> <td>J</td> <td>JACK</td> <td></td> <td></td> <td>VR</td> <td></td>	BT	BATTERY	J	JACK			VR	
CP CODPLING L INDUCTOR T TRANSFORMER X SOCKET CR DIODE LS SPEAKER T TRANSFORMER X SOCKET DL DELAY LINE M METER TB TERMINAL BOARD Y CRYSTAL DS DEVICE.SIGNALING (LAMP) MP MECHANICAL PART TP TEST POINT Z NETWORK A AMPERE TURN(S) FET FLED EFFECT nc NORMALLY CLOSED rms RADIO FREQUENCY A AMPERE TURN(S) FET FLED EFFECT nc NORMALLY CLOSED rms ROOT MEAN SQUARE assy ASSEMBLY C G GIA (10 ⁹) npn NEGATIVE rms ROOT MEAN SQUARE amplit AMPLIFUE grid GROUND(ED) ns NANOSECOND SCR SLICON CONTROLLE bd BOARD(S) H HENRY(IES) p PICO (10 ¹²) sec SECOND(S) sec c CARBON Hz HERTZ ph POSITIVE u MICRO (10 ⁶) c CARBON Hz			к				10/	
Ch DIODE L3 DEARLING MATTER TB TERMINAL BOARD Y CRYSTAL DS DEVICE.SIGNALING (LAMP) MP MECHANICAL PART TP TEST POINT Z NETWORK ABBREVIATIONS A AMPERE TURN(S) F FARAD(S) n NANO (10 ⁻⁹) rfi RADIO FREQUENCY A AMPERE TURN(S) FET FIELD EFFECT nc NORMALLY CLOSED rms ROOT MEAN SQUARE amplit AMPLIFIER(S) FET FIELD EFFECT nc NORMALLY OPEN rms ROOT MEAN SQUARE assy ASSEMBLY C GIGA (10 ⁹) npn NEGATIVE POSITIVE rw REVERSE WORKING bd BOARD(S) F H HENRY(IES) p PICO (10 ⁻¹²) sec SECOND(S) bp BANDPASS H HENRY(IES) p PICO (10 ⁻¹²) std STANDARD c CENTI (10 ⁻²) HP HEWLETT PACKARD pc PRINTED (ETCHED) sec SECOND(S) ccw COUNTERCLOCKWISE INTERMEDIATE FREQ. poSITIVE NEGATIVE u MICRO (10 ⁻⁶) coat COAXIAL INTERMEDIATE FREQ. p/o PART OF usec		1	L		С Т.			
DE DECAY DILLAY DINL MMP MECHANICAL PART TP TEST POINT Z NETWORK A AMPERE IGNALING (LAMP) MP MECHANICAL PART TP TEST POINT Z NETWORK A AMPERE TURN(S) F FARAD(S) n NANO (10 ⁹) rfi RADIO FREQUENCY A AMPERE TURN(S) FET FIELD EFFECT nc NORMALLY CLOSED rms ROOT MEAN SQUARE amplid AMPLITUDE grid GROUND(ED) npn NEGATIVE POSITIVE rms ROOT MEAN SQUARE bd BOARD(S) H HENRY(IES) p PICO (10 ¹²) SEC SEC SECOND(S) bd BOARDSS H HENRY(IES) p PICO (10 ¹²) Sec SEC SECOND(S) c CENTI (10 ²) HP HERTZ pk PEAK trmr TRIMMER ccw CONTERCLOCKWISE INTERMEDIATE FREQ. p/o PART OF u MICROSECOND coat COEFFICIENT intl INTERMEDIATE FREQ. p/o PART OF u MICRO (10 ⁶) ccw COUNTERCLOCKWISE K KILO (10 ³) prem PART OF usec MICROSECOND coat COEFFI					1	· .	X	
A AMPERE(S) F FARAD(S) n NANO (10 ⁻⁹) rfi RADIO FREQUENCY ampl AMPERE TURN(S) FET FIELO EFFECT nc NORMALLY CLOSED INTERFERENCE ampl AMPLIFIER(S) TRANSISTOR(S) no. NORMALLY CLOSED rms ROOT MEAN SQUARE assy ASSEMBLY C GIGA (10 ⁹) npn NEGATIVE rww REVERSE WORKING ampltd AMPLITUDE grid GROUND(ED) ns NANOSECOND SCR SILICON CONTROLLE bd BOARD(S) H HENRY(IES) p PICO (10 ⁻¹²) sec SECOND(S) bd BOARD(S) H HENRY(IES) pc PRINTED (ETCHED) std STANDARD c CENTI (10 ⁻²) HP HEWLETT PACKARD pc PRINTED (ETCHED) std STANDARD c CARBON Hz HERTZ pk PEAK pro POSITIVE NEGATIVE std STANDARD coax. COAXIAL if. INTERRMEDIATE FREQ. p/o PART OF usec MICROSECOND							Y	
A AMPERE(S) F FARAD(S) n NANO (10 ⁻⁹) rfi RADIO FREQUENCY A AMPERE TURN(S) FET FIELD EFFECT nc NORMALLY CLOSED INTERFERENCE ampl AMPLIFIER(S) C GIGA (10 ⁻⁹) no NORMALLY OPEN rms ROOT MEAN SQUARE ampl AMPLITUDE gnd GROUND(ED) no NEGATIVE POSITIVE rms ROOT MEAN SQUARE bd BOARDIS) F H HENRY(IES) p PICO (10 ⁻¹²) sec SECOND(S) bd BOARDSS H HENRY(IES) pc PRINTED (ETCHED) std STANDARD c CENTI (10 ⁻²) HP HEWLETT PACKARD CIRCUIT(S) sec SECOND(S) c CENTI (10 ⁻²) HP HERTZ pk PEAK trmr TRIMMER ccw COUNTERCLOCKWISE INTERMEDIATE FREQ po POSITIVE NEGATIVE u MICRO (10 ⁻⁶) com COMMON Intl INTERMEDIATE FREQ p/o PART OF usec MICROSECOND ccw COMM	DS	DEVICE SIGNALING (LAMP)	MP	MECHANICAL PART	I I P	TEST POINT	Z	NETWORK
AAMPERE(S)FFARAD(S)nNANO (10 ⁹)rfiRADIO FREQUENCYAAMPERE TURN(S)FETFIELD EFFECTncNORMALLY CLOSEDINTERFERENCEamplAMPLIFIER(S)TRANSISTOR(S)noNORMALLY OLOSEDrmsROOT MEAN SQUAREassyASSEMBLYCGIGA (10 ⁹)noNEGATIVE POSITIVErmvREVERSE WORKINGampltdAMPLITUDEgndGROUND(ED)noNANOSECONDSCRSILICON CONTROLLEbdBOARDIS)HHENRY(IES)pPICO (10 ¹²)secSECOND(S)brHOUR(S)PCPRINTED (ETCHED)stdSTANDARDcCENTI (10 ²)HPHEWLETT PACKARDCIRCUIT(S)trmrTRIMMERCCARBONHzHERTZpkPEAKtrmrTRIMMERcowCOUNTERCLOCKWISEintilINTERMEDIATE FREQpoSITIVEuMICRO (10 ⁶)comCOMMONKKILO (10 ³)prgm. PROGRAMVVOLTSCRTCATHODE RAY TUBEkKILO (10 ³)prgm. PROGRAMVVOLTScwCLOCKWISEIbPOUND(S)prvPEAK INVERSEvarVARIABLElpfLOW PASS FILTER(S)PIOT OFVARIABLEVARIABLEVARIABLE	·		,			1.		
AAMPERETURN(S)FETFIELD EFFECTncNORMALLY CLOSEDINTERFERENCEamplAMPLIFIER(S)TRANSISTOR(S)no.NORMALLY OPENrmsROOT MEAN SQUAREassyASSEMBLYCGIGA (10 ⁹)npnNEGATIVE POSITIVErwvREVERSE WORKINGampldAMPLITUDEgridGROUND(ED)npnNEGATIVENEGATIVENOUTAGEbdBOARD(S)HHENRY(IES)pPICO (10 ¹²)secSECND(S)bdBOARDASSHHENRY(IES)pPICO (10 ¹²)secSECOND(S)cCENTI (10 ²)HPHEWLETT PACKARDCIRCUIT(S)stdSTANDARDCCARBONHzHERTZpkPEAKtrmrTRIMMERccwCOUNTERCLOCKWISEif.INTERMEDIATE FREQ.p/oPART OFusecMICRO (10 ⁻⁶)coax.COAXIAL'if.INTERNALp/oPART OFusecMICROSECONDcomCOMMONCKKILO (10 ³)prvPEAK INVERSEVVOLTScwCLOCKWISEIbPOUND(S)prvPEAK INVERSEVarVARIABLElpfLOW PASS FILTER(S)VOLTAGE(S)VVARIABLE				ABBREVIAT	IONS	•		
AAMPERETURN(S)FETFIELD EFFECTncNORMALLY CLOSEDINTERFERENCEamplAMPLIFIER(S)TRANSISTOR(S)no.NORMALLY OPENrmsROOT MEAN SQUAREassyASSEMBLYCGIGA (10 ⁹)npnNEGATIVE POSITIVErwvREVERSE WORKINGampldAMPLITUDEgridGROUND(ED)npnNEGATIVENEGATIVENOUTAGEbdBOARD(S)HHENRY(IES)pPICO (10 ¹²)secSECND(S)bdBOARDASSHHENRY(IES)pPICO (10 ¹²)secSECOND(S)cCENTI (10 ²)HPHEWLETT PACKARDCIRCUIT(S)stdSTANDARDCCARBONHzHERTZpkPEAKtrmrTRIMMERccwCOUNTERCLOCKWISEif.INTERMEDIATE FREQ.p/oPART OFusecMICRO (10 ⁻⁶)coax.COAXIAL'if.INTERNALp/oPART OFusecMICROSECONDcomCOMMONCKKILO (10 ³)prvPEAK INVERSEVVOLTScwCLOCKWISEIbPOUND(S)prvPEAK INVERSEVarVARIABLElpfLOW PASS FILTER(S)VOLTAGE(S)VVARIABLE	•		c		n	NANO (10.9)	rfi	RADIO EREQUENCY
American ConstructionAmerican ConstructionAmerican ConstructionReferenceRevenceRe	A							
AMPLIFICATIONCGIGA (10 ⁹)npnNEGATIVE POSITIVE NEGATIVE POSITIVE NEGATIVE POSITIVE NEGATIVErwvREVERSE WORKING VOLTAGEampitdAMPLITUDEgridGROUND(ED)npnNEGATIVE POSITIVE NEGATIVErwvREVERSE WORKING VOLTAGEbdBOARD(S)msNANOSECONDSCRSILICON CONTROLLE RECT FIERbdBOARDSSHHENRY(IES)pPICO (10 12) C CARBONsecSECOND(S) stdcCENTI (10 ⁻²)HPHEWLETT PACKARDCIRCUIT(S)stdSTANDARDCCARBONHzHERTZpkPEAKtrmrTRIMMERccwCOUNTERCLOCKWISEifINTERMEDIATE FREQ.poPART OFusecMICRO (10 ⁻⁶)comCOMMONCRTCATHODE RAY TUBEkKILO (10 ⁻³)prgm.PROGRAMVVOLTScwCLOCKWISEibPOUND(S)prvPEAK INVERSEvarVARIABLElpfLOW PASS FILTER(S)VOLTAGE(S)VOLTAGE(S)VOLTAGE(S)VOLTAGE(S)	A		re i				rms	
ansyld ASSEMBLT grid GROUND(ED) NEGATIVE VOLTAGE ampltd AMPLITUDE grid GROUND(ED) NEGATIVE VOLTAGE bd BOARD(S) p PICO (10, 12) sec SECND(S) bp BANDPASS H HENRY(IES) p PICO (10, 12) sec SECOND(S) c CENTI (10, 2) HP HEWLETT PACKARD CIRCUIT(S) std STANDARD C CARBON Hz HERTZ pk PEAK trmr TRIMMER coax. COAXIAL if. INTERMEDIATE FREQ. POSITIVE NEGATIVE u MICRO (10, 6) com COMMON intl INTERNAL p/o PART OF usec MICROSECOND crw CLOCKWISE k KILO (10, 3) prgm., PROGRAM V VOLTAGE crw CLOCKWISE Ib POUND(S) prv PEAK INVERSE var VARIABLE	-		C					
ampliticAMPENTODEgitticGrowningtanInternationbdBOARD(S)HHENRY(IES)pPICO (10 12)RECT FIERbpBANDPASSHHENRY(IES)pPICO (10 12)secSECOND(S)cCENTI (10 2)HPHEWLETT PACKARDpcPRINTED (ETCHED)stdStdCCARBONHzHERTZpkPEAKtrmrTRIMMERccwCOUNTERCLOCKWISEifINTERMEDIATE FREQ.pOSITIVE NEGATIVEuMICRO (10 6)coax.COAXIALifINTERMEDIATE FREQ.p/oPART OFusecMICROSECONDcomCOMMONKKILO (10 3)prom. PROGRAMVVOLTScwCLOCKWISEIbPOUND(S)prvPEAK INVERSEvarVARIABLElpfLOW PASS FILTER(S)VOLTAGE(S)VOLTAGE(S)VITABLEVITABLE			-		npii			
bdBOARD(S)HHENRY(IES)pPICO (10 12)RECT FIERbpBANDPASShrHOUR(S)pcPRINTED (ETCHED)secSECOND(S)cCENTI (10 2)HPHEWLETT PACKARDCIRCUIT(S)stdSTANDARDCCARBONHzHERTZpkPEAKtrmrTRIMMERccwCOUNTERCLOCKWISEif.INTERMEDIATE FREQ.pkPOSITIVE NEGATIVEuMICRO (10 6)coax.COAXIALif.INTERMEDIATE FREQ.p/oPART OFusecMICROSECONDcomCOMMONintlINTERNALp/oPART OFusecMICROSECONDCRTCATHODE RAY TUBEkKILO (10 3)prw.PEAK TO PEAKVVOLTScwCLOCKWISElbPOUND(S)prv.PEAK INVERSEvarVARIABLE	ampiru	AMPLITODE	giru j	GROCIND(LD)	nr		SCR	
bpBANDPASSHHENRY(IES)pPICO (10 12)secSECOND(S)cCENTI (10 2)HPHEULETT PACKARDpcPRINTED (ETCHED)stdSTANDARDCCARBONHZHERTZpkPEAKtrmrTRIMMERccwCOUNTERCLOCKWISEif.INTERMEDIATE FREQ.positive NEGATIVEuMICRO (10 6)coax.COAXIALif.INTERMEDIATE FREQ.positive NEGATIVEuMICRO (10 6)coafCOEFFICIENTintlINTERNALp/oPART OFusecMICROSECONDcomCOMMONKKILO (10 3)prgm. PROGRAMVVOLTScwCLOCKWISEibPOUND(S)prvPEAK INVERSEvarVARIABLElpfLOW PASS FILTER(S)VOLTAGE(S)VOLTAGE(S)VINTERVINTER	bd	ROARD(S)		>	115	WANUSECOND	3011	
hrHOUR(S)pcPRINTED (ETCHED)stdSTANDARDcCENTI (10-2)HPHEWLETT PACKARDCIRCUIT(S)stdSTANDARDCCARBONHZHERTZpkPEAKtrmrTRIMMERccwCOUNTERCLOCKWISEifINTERMEDIATE FREQpositive NEGATIVEuMICRO (10-6)coax.COAXIALifINTERMEDIATE FREQpositiveuMICRO (10-6)coefCOEFFICIENTintiINTERNALp/oPART OFusecMICROSECONDcomCOMMONKKILO (10-3)prgm., PROGRAMVVOLTScwCLOCKWISEIbPOUND(S)prvPEAK INVERSEvarVARIABLElpfLOW PASS FILTER(S)VOLTAGE(S)VOLTAGE(S)VOLTAGE(S)VOLTAGE(S)			Н	HENRY(IES)	р	PICO (10 ⁻¹²)	sec	
CCENTI (10-2)HPHEWLETT PACKARDCIRCUIT(S)CCARBONHZHERTZpkPEAKtrmrTRIMMERccwCOUNTERCLOCKWISEif.INTERMEDIATE FREQ.pnpPOSITIVE NEGATIVEuMICRO (10-6)coax.COAXIALif.INTERMEDIATE FREQ.p/oPART OFusecMICROSECONDcoefCOEFFICIENTintlINTERNALp/oPART OFusecMICROSECONDcomCOMMONKKILO (10-3)prgm., PROGRAMVVOLTSCRTCATHODE RAY TUBEkKILO (10-3)prvPEAK INVERSEvarVARIABLEcwCLOCKWISEIbPOUND(S)prvPEAK INVERSEvarVARIABLE	op	SPACE PAGE			pc	PRINTED (ETCHED)		
C CARBON Hz HERTZ pk PEAK trmr TRIMMER ccw COUNTERCLOCKWISE if. INTERMEDIATE FREQ. pnp POSITIVE NEGATIVE u MICRO (10 ⁻⁶) coax. COAXIAL if. INTERMEDIATE FREQ. p/o PART OF usec MICROSECOND coef COEFFICIENT intl INTERNAL p/o PART OF usec MICROSECOND com COMMON intl INTERNAL prp PEAK TO PEAK V VOLTS CRT CATHODE RAY TUBE k KILO (10 ⁻³) prgm., PROGRAM V VOLTS cw CLOCKWISE Ib POUND(S) prv PEAK INVERSE var VARIABLE lpf LOW PASS FILTER(S) VOLTAGE(S) NUTAGE(S) NUTAGE(S) NUTAGE(S)	c	CENTI (10 ⁻²)		HEWLETT PACKARD				
ccw COUNTERCLOCKWISE coax. COAXIAL if. INTERMEDIATE FREQ. coef COEFFICIENT com COMMON CRT CATHODE RAY TUBE k KILO (10 ³) prov PEAK TO PEAK prv PEAK INVERSE v VOLTS cw CLOCKWISE lpf LOW PASS FILTER(S)			Hz	HERTZ	•		trmr	TRIMMER
coax. COAXIAL if. INTERMEDIATE FREQ. POSITIVE u MICRO (10°) coef COEFFICIENT intl INTERNAL p/o PART OF usec MICROSECOND com COMMON p-p PEAK TO PEAK V VOLTS CRT CATHODE RAY TUBE k KILO (10³) prgm. PROGRAM V VOLTS cw CLOCKWISE Ib POUND(S) prv PEAK INVERSE var VARIABLE			·,	agen avez 1993 - The Annual Annual 1995 - Annual	pnp	in the second	4 . ·	C.
coef COEFFICIENT inti INTERNAL p/o PART OF usec MICROSECOND com COMMON p-p PEAK TO PEAK V VOLTS CRT CATHODE RAY TUBE k KILO (10 ³) prgm., PROGRAM V VOLTS cw CLOCKWISE Ib POUND(S) prv PEAK INVERSE var VARIABLE lpf LOW PASS FILTER(S) VOLTAGE(S) PLACE COND PLACE COND PLACE COND		,	if.	INTERMEDIATE FREQ.		1		
com COMMON p-p PEAK-TO-PEAK CRT CATHODE RAY TUBE k KILO (10 ³) prgm. PROGRAM V VOLTS cw CLOCKWISE Ib POUND(S) prv PEAK INVERSE var VARIABLE lpf LOW PASS FILTER(S) VOLTAGE(S) VOLTAGE(S)	-		intl	INTERNAL	p/o		usec	MICROSECOND
CW CLOCKWISE Ib POUND(S) Prv PEAK INVERSE var VARIABLE Ipf LOW PASS FILTER(S) VOLTAGE(S)		COMMON						
CW CLOCKWISE ID FOONDAS/ Provide Automatical P	CRT	CATHODE RAY TUBE		3	- 1 -		•	
	cw	CLOCKWISE		•	prv		var	VARIABLE
		_	lpf _	LOW PASS FILTER(S)				
	d	DECI (10 ⁻¹)		2	ps	PICOSECOND	w/	WITH
dBDECIBELmMILLI (10 ⁻³)pwvPEAK WORKINGw/oWITHOUTMMEGA (10 ⁶)VOLTAGEwivWORKING INVERSE	dB	DECIBEL		-	pwv			

SERIAL SUFFIX NUMBER SERIAL PREFIX NUMBER HEW ETT PACKARD

Figure 1-2. Instrument Serial Number ,

1-4

்

 $\xi = \{\gamma_i\}$

INSTALLATION

SECTION II

2-1. INTRODUCTION.

Model 1809A

2-2. This section contains instructions for performing an initial inspection and installation of the Model 1809A. Installation procedure and precautions are presented in step-by-step order. The procedure for making a claim for warranty repairs and for repacking the instrument for shipment are also described in this section.

2-3. INITIAL INSPECTION.

2-4. The instrument was inspected mechanically and electrically before shipment. Upon receipt, inspect it for damage that may have occurred in transit. Check for broken knobs, bent or broken connectors, and dents or scratches. If damage is found, refer to the claims paragraph in this section. Retain the packing material for possible future use.

2.5. Check the electrical performance of the instrument immediately after receipt. Refer to Section V for the performance check procedure. The performance check will determine whether or not the instrument is operating within the specifications listed in table 1-1. Initial performance and accuracy of the instrument are certified as stated on the inside front cover of this manual. If the instrument does not operate as specified, refer to the claims paragraph in this section.

2-6. INSTALLATION.

2-7. Model 1809A is designed to mate with a 180series horizontal plug-in and fit into the plug-in compartment of the 180-series oscilloscope mainframe. Figure 2-1 shows the interconnection and coupling mechanism of each plug-in. Power for the Model 1809A is supplied by the oscilloscope mainframe through the horizontal plug-in. To install the Model 1809A, proceed as follows: e. Insert plug-ins into 1,80-series mainframe.

f. When plug-ins are inserted completely into compartment, rotate latch upward and push forward to lock. Assemblies are now locked into mainframe and ready for use.

2-8. INSTRUMENT COMPATIBILITY.

2-9. Model 1809A is primarily designed for use with Model 1824A and Model 1825A time base plugins and 180-series oscilloscope mainframe.

2-10. CLAIMS.

2-11. The warranty statement applicable to this instrument is printed on the inside front cover of this manual. If physical damage is found or if operation is not as specified when the instrument is received, notify the carrier and the nearest HP Sales/Service Office immediately (refer to the list in back of this manual for addresses). The HP Sales/Service Office will arrange for repair or replacement without waiting for settlement of the claim with the carrier.

2-12. REPACKING FOR SHIPMENT.

2-13. If the instrument is to be shipped to an HP Sales/Service Office for service or repair, attach a tag showing owner (with address), complete instrument serial number, and a description of the service required.

2-14. Use the original shipping carton and packing material. If the original packing material is not available, the HP Sales/Service Office will provide information and recommendations on materials to be used. Materials for shipping an instrument normally include the following:

a. Pull horizontal plug-in locking bar toward rear of plug-in.

b. Match vertical and horizontal connectors and engage by pressing together (ensure locking bar guide lugs are properly positioned).

c. When plug-ins are joined, press locking bar forward to lock them together.

d. Lift up on latch release and rotate latch downward.

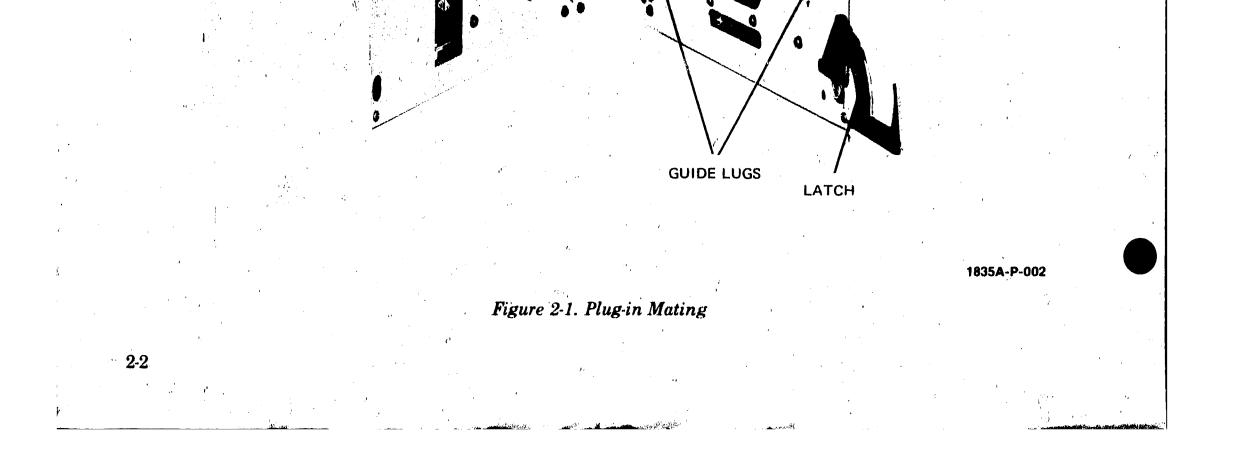
a. A double walled carton with test strength of 275 pounds.

b. Heavy paper or sheets of cardboard to protect all instrument surfaces; use nonabrasive material such as polyurethane or a sealed-air packaging material such as AIRCAP around all projecting parts.

c. At least 4 inches of tightly packed, industryapproved, shock-absorbing material such as extrafirm polurethane foam.

d. Heavy-duty shipping tape for securing outside of carton.

Installation


(),), , . . () PLUG LOCKING BAR JACK L

Model 1809A

HORIZONTAL PLUG-IN

LATCH RELEASE

 (\mathbf{c})

D D E BATION

Operation

SECTION III

OPERATION

3-1. INTRODUCTION.

3-2. This section provides general operating instructions and application information for Model 1809A. Front-panel controls and connectors are identified and briefly described in figure 3-3. General operating instructions are provided in figures 3-5 through 3-9. Initial turn-on procedures are detailed in figure 3-4.

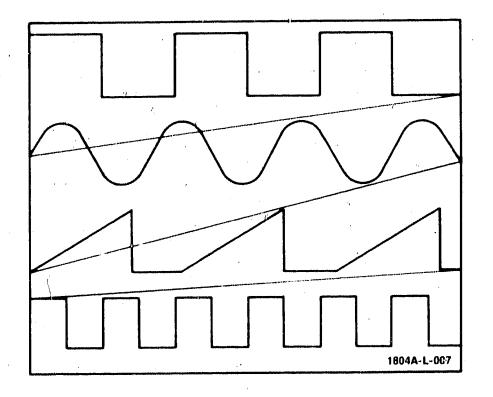
3-3. CONTROLS AND CONNECTORS.

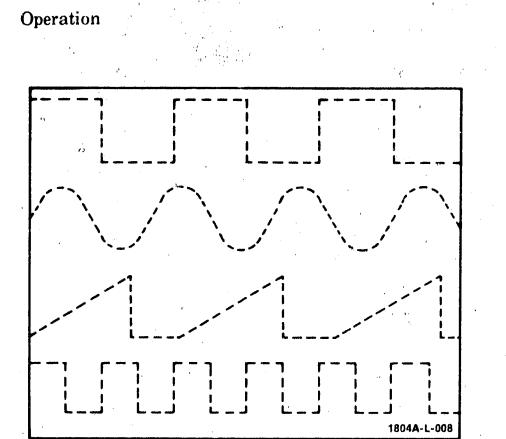
3-4. Figure 3-3 shows the front panel of the instrument and provides functional descriptions of the operating controls and connectors. Since all four channels are identical, only the controls for channel A and those common to all channels are described in the figure. A more detailed description of some of the controls is given in the following paragraphs.

3-5. INPUT COUPLING. This lever switch selects either capacitive (AC) or direct (DC) coupling of the input to the vertical preamplifier. In AC or DC coupling, the input signal is terminated in 1 megohm.

3-6. Another position of the lever switch provides for DC coupling and termination of the input signal into 50 ohms. A GND position is also provided. The GND position of the coupling switch can be used to set a zero reference before measuring dc voltages without disconnecting the incoming signal. The switch should be positioned to DC when viewing long duration pulses, dc levels of waveforms, or measuring dc voltages. AC coupling should be selected when viewing ac waveforms having large dc reference levels. To prevent input distortion use the 50 Ω position for equipment requiring 50-ohm termination.

3-7. VOLTS/DIV. There are nine calibrated sensitivity ranges from .01 volts/division to 5 volts/ division for each of the four channels. All nine ranges are calibrated to the VOLTS/DIV switches when the vernier controls are fully clockwise in detent position. **3-9. DISPLAY MODE.** There are two modes of channel switching controlled by the MODE pushbutton switch: ALT or CHOP. In the ALT mode of operation, channel switching alternates between channels (see figure 3-1) to display a different channel during each CRT sweep. ALT mode of operation is recommended for use with fast, time base sweep speeds. Slow sweep speeds will cause the display to flicker.




Figure 3-1. ALT Display

3-10. During CHOP mode of operation, channel switching is chopped between the four channels at an approximate 500-kHz rate. CHOP mode of operation is recommended for use with slow, timebase sweep speeds. Fast sweep speeds will result in a dotted trace as shown in figure 3-2. The chop frequency may be increased to 3 MHz, giving a 1.5 MHz, two-channel display rate and a 750 kHz, fourchannel display rate. This will result, however, in less trace brightness and less CRT blanking (chop transients will be more apparent). To make the

3-8. If any vernier control is durned from its full clockwise position, the UNCAL indicator lights to signify the volts/division ranges for that channel are no longer calibrated to the VOLTS/DIV switch. In the fully counterclockwise position, the vernier control decreases the sensitivity of each volts/division range for its associated channel up to at least two and a half times. For example, when the VOLTS/ DIV switch is set to the 5-volt position and the vernier is turned fully counterclockwise, the range is extended to at least 12.5 volts/division. modification, change A15C6 from 270 pF to 200 pF (HP Part No. 0140-0198).

3-11. TRIGGER SELECTION. System synchronization from a vertical input signal is possible when internal triggering is selected by the time-base trigger source control. When time related signals are being viewed, best results can be obtained by using a single-channel sync (trigger A, B, C, or D).

3-12. When signals are not time related, it is necessary to use a composite sync with each channel's

input signal triggering its own sweep. If COMP triggering is selected and the time base mode switch is in NORM, the Model 1809A will trigger a sweep for each channel that satisfies triggering conditions. If any channel does not meet triggering conditions, the Model 1809A will stop triggering at that channel.

3-13. A+B OR C+D OPERATION. The A+B or C+D mode of operation displays the algebraic sum of the signals applied to the INPUT connectors of channels A and B or channels C and D. To operate in this mode press ADD pushbutton switch to its A+B (C+D) position. Any combination of operation $(\pm A \pm B \text{ or } \pm C \pm D)$ is obtained by setting the OFF-ON-INVT switch for channels A and B or channels C and D to the ON or INVT psoition.

3-14. OPERATING PROCEDURES.

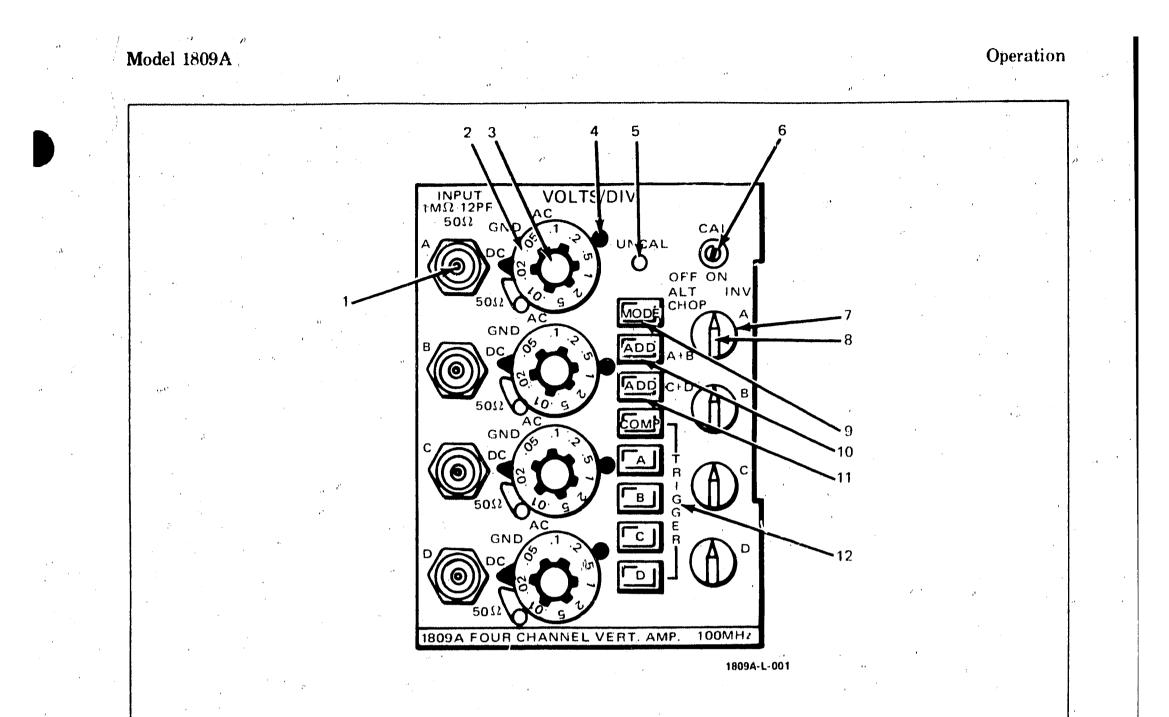
3-15. Figure 3-4 through 3-9 are operating plates containing step-by-step operating procedures in-

dexed to photographs. The figures describe the operations to be accomplished in achieving the different modes of operation.

3-16. OPERATOR'S PERFORMANCE CHECK.

3-17. Operation of the Model 1809A may be checked without the use of additional test equipment by using the CALIBRATOR output of the oscilloscope main frame as a signal source. Each channel control should be checked for proper operation. To check specifications listed in table 1-1, refer to Section V for the performance checks.

NOTE


High frequency calibration of the Model 1809A is performed at the factory using the internal 50 Ω coupling termination that is compensated to neutralize the attenuator input capacitance. When using the Model 1809A in a 50-ohm system, the internal 50 Ω termination should be used. The use of an external 50-ohm feedthrough type termination will not give the optimum response unless the vertical amplifier is recalibrated.

3-18. APPLICATIONS.

3-19. Dual-input impedance characteristics combined with four-channel, 100-MHz bandwidth provide accurate measurement and troubleshooting applications in both digital and analog circuits. The Model 1809A is ideal for logic measurements and comparisons for TTL, ECL, and MOS circuits.

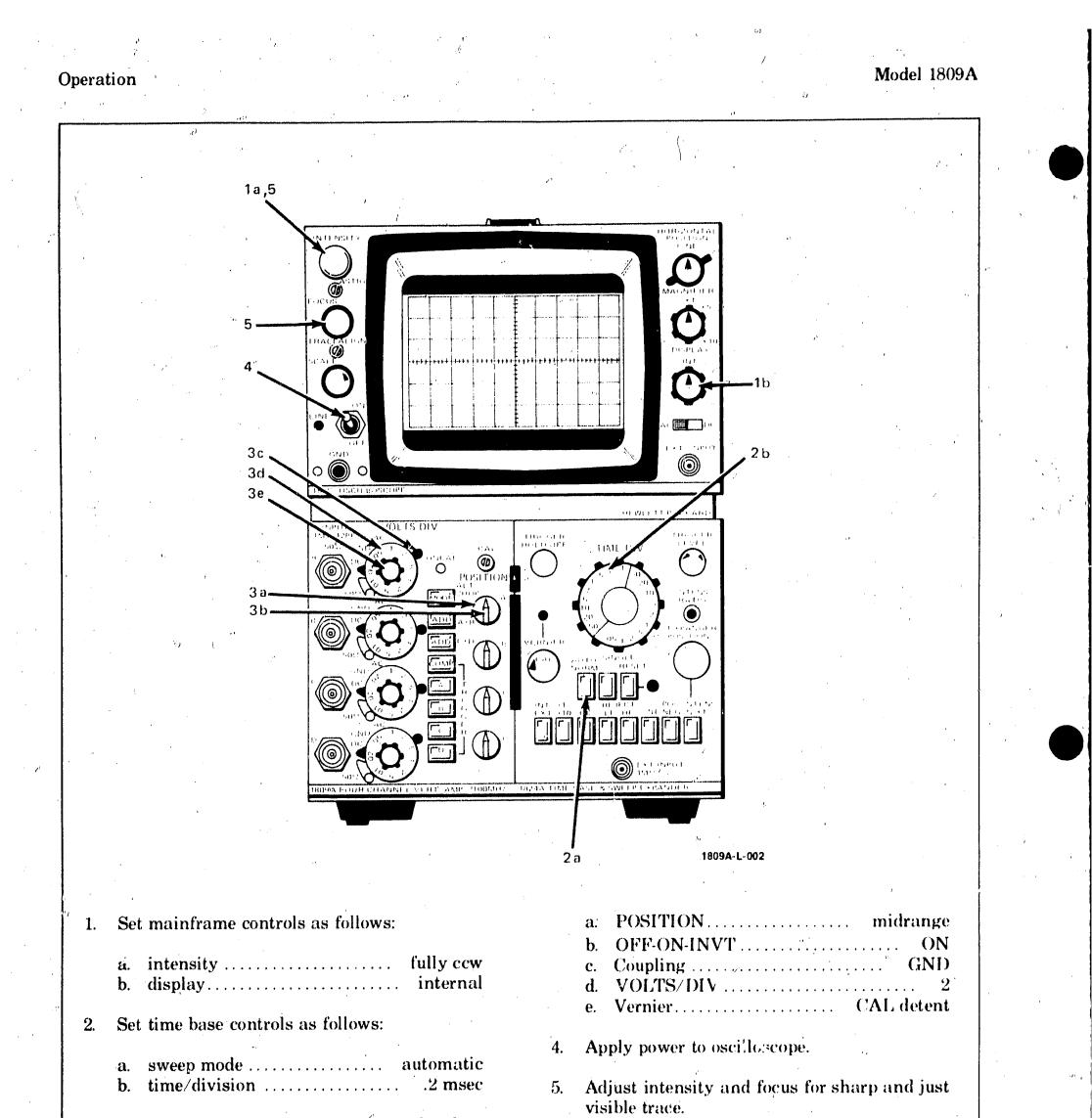
3-20. Time-related measurements can be displayed by selecting a trigger source from either channel A, B, C, or D. This permits triggering on any channel while viewing the time relationship with the orher channels. In composite triggering, each channel is individually triggered by the signal applied to it.

λ

- 1. INPUT. BNC connector for channel A input signal.
- 2. VOLTS/DIV: Selects vertical deflection factor.
- 3. Vernier. "Provides continuous adjustment of volts/div between calibrated positions of VOLTS/DIV switch.
- 4. Coupling. Lever switch that selects capacitive (AC), direct (DC), or 50-ohm coupling of input signal. GND position disconnects input signal and grounds input to vertical preamplifier.
- 7. Position A. Varies vertical position of channel A display. (Position controls for other channels function identically.)
- 8. OFF-ON-INVT. Channel A selector switch. OFF position prevents channel from processing input signals. ON position processes signals applied to INPUT connector. INVT position reverses polarity of input signal. (OFF-ON-INVT controls for other channels function identically.)
- 9. MODE: Pushbutton switch that selects CHOP or ALT mode of display.

NOTE

0 ADD Dughhutton gwitch that galagte algebraic


Items 1 through 4 identify channel A controls and connector. Similar controls and connectors for the other channels function identifically.

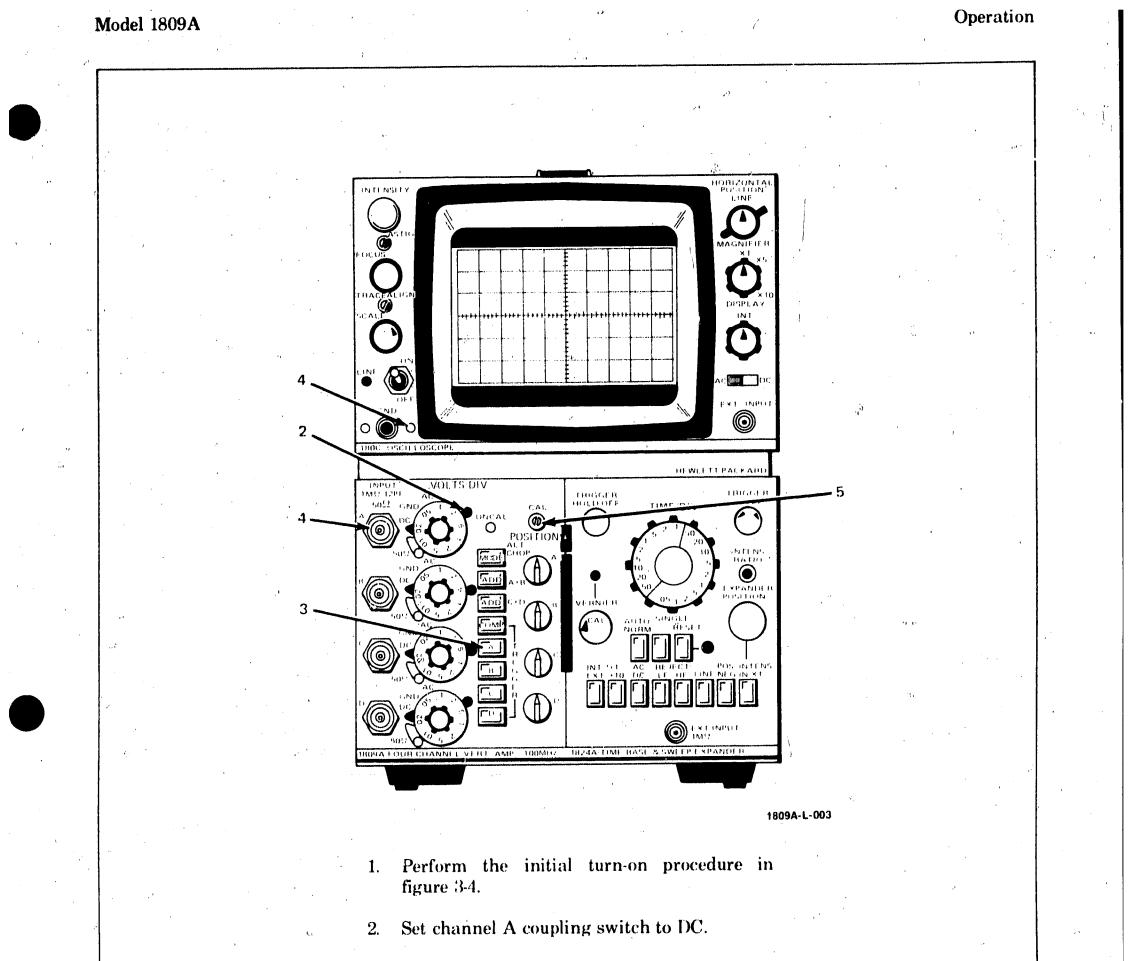
- 5. UNCAL lamp. Lights when any channel vernier is out of CAL detent position.
- 6. CAL. Adjustment to calibrate output amplifier.

- addition of channels A and B.
- 11. ADD. Pushbutton switch that selects algebraic addition of channels C and D
- 12. Trigger source. Pushbutton switches that select triggering signal from channel A, channel B, channel C, channel D, or on displayed signal (COMP).

3-3

Figure 3-3. Controls and Connectors

Set Model 1809A controls (all channels when 3. applicable) as follows:


 $\mathbf{c}_{\mathbf{i}}$

3-4

6. Adjust time base for stable sweep.

1

Figure 3-4. Initial Turn-on Procedure

- 3. Set trigger source to A.
- 4. Connect compensated 10:1 divider probe between the 10-volt oscilloscope calibrator jack and the channel A INPUT connector.

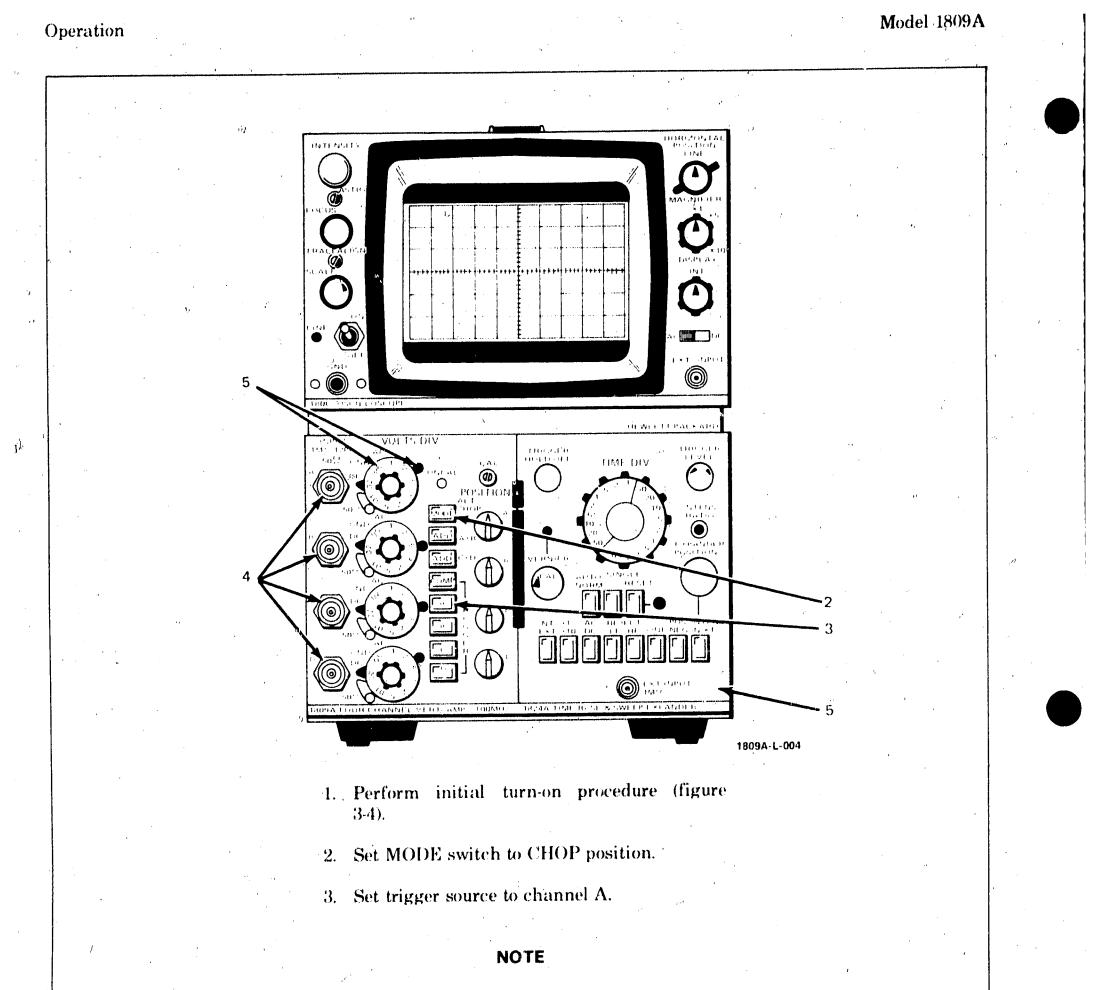

5. Since the 10-volt calibrator signal is attenuated to 1 volt, observe 5 divisions of vertical deflection. If necessary, adjust CAL for 5 divisions.

Figure 3-5. Amplifier Calibration

...

3-5

a constant of the second se

During CHOP operation, four signals can be viewed simultaneously on a time sharing basis. CHOP mode of operation is recommended for use with slow sweep speeds (0.2 msec/division or slower).

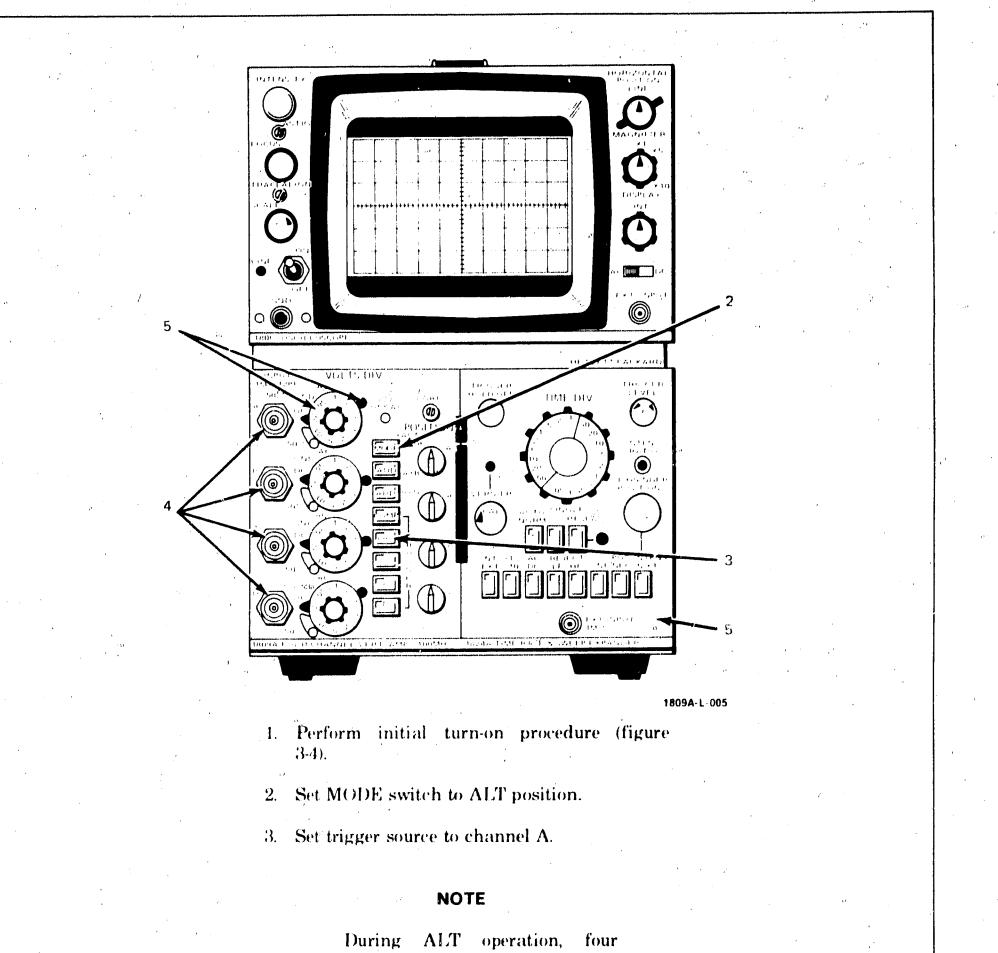

- 4. Apply signals to channel A, B, C, and D INPUT connectors.
- 5. Set coupling, VOLTS/DIV, and time base plug-in controls as required.

Figure 3-6. CHOP Mode Operation

Model-1809A

Operation

3-7

signals can be viewed simultaneously. Sweep alternates to display individual channels on each sweep. ALT operation is recommended for use with fast sweep speeds. Slow sweep speeds will result in objectionable flicker.

4. Apply signals to channel A, B, C, and D in INPUT connectors.

5. Set coupling, VOLTS/DIV, and time base controls as required.

Figure 3-7. ALT Mode Operation

...

幕才.

Operation

3-8

THURSDAY

TIME DIV

A REAL PROPERTY AND A REAL PROPERTY A REAL PRO

100.014

- 1. Perform initial turn-on procedure (figure 3-4).
- 2. Connect signal to channel A INPUT connector.
- 3. Set channel A OFF-ON-INVT switch to ON.
- 4. Set channels B, C, and D OFF-ON-INVT switches to OFF.
- 5. Set trigger source to channel A.
- 6. Set channel A coupling as required.

7. Set channel A VQLTS/DIV switch as required.

8. Set time base plug-in controls as required.

9. For channel B, C, or D operation, apply steps 2 through 7 to selected channel.

Figure 3-8. Single Channel Operation

Operation '

÷,

3-9/(3-10 blank)

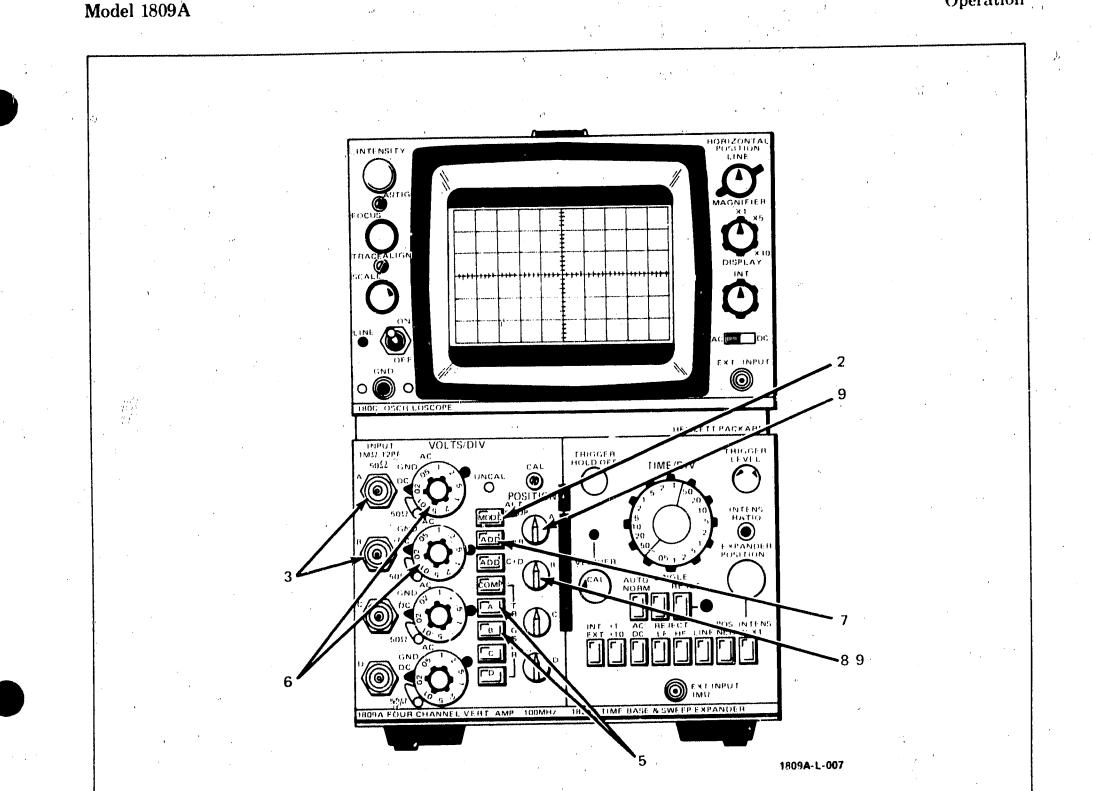


Figure 3-9. $\pm A \pm B$ and $\pm C \pm D$ Operations

±A±B OPERATION

- 1 Perform initial turn-on procedure (figure 3-4).
- 2. Set MODE switch to ALT position.
- Connect signals to channels A and B INPUT 3. connectors.

7. Set ADD switch to A+B position.

8 For A-B operation, set channel B OFF-ON-INVT switch to INVT position.

9. For -A+B operation, set channel A OFF-ON-INVT switch to INVT position and channel B OFF-ON-INVT switch to ON position.

- Set trigger source to channel A or channel B as desired. 4.
- 5. Set channels A and B coupling as required.
- 6. Set channels A and B VOLTS/DIV switches as required.

±C±D OPERATION

A. Accomplish steps 1 through 9 for ±A±B Operation except substitute channel C for channel A and channel D for channel B.

ų, · ť $\mathcal{C}_{\mathcal{B}}$ <u>с</u>к., Section constille

SECTION IV

PRINCIPLES OF OPERATION

INTRODUCTION. 4-1.

This section contains the theory of operation **4**-2. for the Model 1809A. Functional descriptions keyed to an everall, simplified block diagram (schematic 1) are provided first. The functional descriptions are followed by a detailed theory of operation. The detailed circuit descriptions are keyed to the schematics located in Section VIII.

4-3. BLOCK DIAGRAM DISCUSSION.

4-4. Since the operation of channels A, B, C, and D are identical, the following text is applicable to any vertical channel.

4-5. ATTENUATOR. The channel attenuator receives the input signal applied to the front-panel INPUT connector. The attenuator has three main functions: it selects the desired type of input coupling (50λ) , DC, GND, AC), it sets the vertical deflection factor (.01 V/div to 5 V/div) as selected by the front-panel VOLTS/DIV switch, and its output stage forms an impedance converter. The output of the impedance converter is applied to the vertical preamplifier assembly associated with the attenuator.

4-6. VERTICAL PREAMPLIFIER. The vertical preamplifier assembly consists of one integrated circuit and associated control and biasing networks. The integrated circuit amplifies the applied signal and furnishes the sync control signal for the sync amplifier.

4-7. Front-panel controls associated with the vertical preamplifier are the channel position control, the VOLTS/DIV vernier, the trigger source switch, and the OFF-ON-INVT switch.

SEMBLY. The outputs

signal is applied to a differential-to-single-ended converter stage. The single-ended signal is amplified and applied through an emitter-follower stage to the time base plug-in unit of the oscilloscope.

4-10. DELAY LINE. The delay line assembly provides approximately 160-nanoseconds delay to the vertical signal. This allows the horizontal circuits of the time base plug-in unit sufficient time to react to the sync signal so that the display on the oscilloscope CRT is in the proper time relationship.

4-11. MAIN AMPLIFIER. The main amplifier, A10A1, consists primarily of an integrated circuit, A10A1U1. The remainder of the circuit provides high frequency adjustment and output balance adjustment. Output balance is adjusted by variable resistor A10A1R3. In addition, the main amplifier provides the necessary current gain for output amplifiers Q1/Q2 and Q3/Q4.

4-12. OUTPUT **AMPLIFIER.** Integrated circuit A10A1U1 provides two outputs. One side drives output amplifier Q1/Q2 and the other drives output amplifier Q3/Q4. Each output amplifier has a feedback signal to its input for compensation, which is adjustable with A10A2C1. The vertical deflection signal from the output amplifiers, Q1/Q2 and Q3/Q4, is applied to the CRT deflection plates.

4-13. CHANNEL CONTROL. The channel control assembly consists of logic circuits that select the type of display to be presented on the oscilloscope CRT: channel A, channel B, channel C, channel D; channels $\pm A\pm B$, channels $\pm C\pm D$; and CHOP or ALT mode of operation. In addition, the chop blanking signal, which blanks the oscilloscope CRT screen during channel switching (CHOP), is developed on this assembly.

CIRCUIT DETAI

of channel A and channel B preamplifiers are connected together and fed through a 300-ohm imped ance cable to a buffer stage on the sync amplifier assembly. The channel C and D preamplifier outputs are connected in the same manner to another buffer stage on the sync amplifier assembly. The differential outputs of the two buffer stages are connected together and applied to a differential, delay-line driver stage. The delay line driver stage applies the signal through the delay line to the output amplifier assembly.

4-9. The composite sync signal is picked off at the output of the delay line driver stage. The differential

4-15. The following paragraphs provide a detailed explanation of the individual circuits in the Model 1809A. Circuits that are identical for all four channels are only explained for channel A.

4-16. ATTENUATOR ASSEMBLIES A1, A2, A3, AND A4.

4-17. GENERAL INFORMATION. (See Schematics 2 and 3.) Attenuator assembly A1 is a two-section cam-actuated attenuator consisting of 13 in-line cams. The first three cams, mounted on the outer shaft, from coupling switch A1S1. The remaining 10 cams,

Theory

mounted on an inner shaft, form VOLTS/DIV switch A1S2. The cams actuate push rods to close springswitch contacts.

4-18. Most components on the attenuators are deposited on a ceramic substrate by thick-film process. Those components that are deposited on the substrate have no reference designators assigned. Their values, as shown on the schematics, are nominal values and should be used for reference only. If a malfunction occurs in an attenuator assembly, it is recommended that the substrate be replaced with a like unit.

4-19. INPUT. The cams controlled by coupling switch A1S1 actuate spring switches A1A1S1 through A1A1S3. A table located on the schematics explains the switch closure sequence for each front-panel coupling switch position.

4-20. The remaining 10 cams, controlled by VOLTS/ DIV switch A1S2, actuate spring contact switches A1A1S4 through A1A1S13. A table located on the schematics explains the switch closure sequence for each front-panel VOLTS/DIV switch setting.

4-21. ATTENUATOR CIRCUITS. The VOLTS/DIV switch controls a two-section cascaded attenuator. Each section is made up of three separate attenuation networks. The first section contains the X1, X10, and X100 networks. The second section contains the X1, X2, and X5 networks. Each switch position cascades a network in the first section with a network in the second section. By cascading different network combinations the attenuator provides .01 V/div vertical deflection.

4-22. There is no adjustment for the straightthrough range (.01 V/div). Each of the other attenuator networks has an input capacitance adjustment as well as a compensation adjustment. The input capacitance for each network is matched to the input capacitance of the straight-through range to achieve a uniform input capacitance over the entire range of inputs. The second adjustment for each range provides high frequency compensation.

4-23. The output of the attenuator is applied to the gate of field-effect transistor (FET) Q1A. The FET maintains a high impedance that reduces input loading. The input resistance is established by a

and associated controls. The integrated circuit, U1, amplifies the differential signal from the attenuator and applies it to a buffer stage on assembly A9.

4-27. Any channel can be selected as the sync source. For example, when channel A triggering is desired, trigger switch A11S1E is pressed (see schematic 4). With trigger switch A11S1E engaged, enabling bias is applied to the sync pickoff circuit in U1. The sync signal that is developed at pin 22 is applied to part of the sync amplifier on assembly A9. The trigger switches (A11S1E through A11S1H) are mechanically constructed so that only one switch can be engaged at one time. When COMP trigger switch A11S1D is pressed, all trigger switches are released.

4-28. The gain of each preamplifier is separately adjustable by CAL potentiometer R11. With the front-panel VOLTS/DIV vernier in CAL detent, R11 on each preamplifier assembly is adjusted so that each assembly has the same output level for a given input.

4-29. Integrated circuit U1 is also controlled by the individual channel OFF-ON-INVT switch. In the ON position, U1 amplifies the input signal and applies it to assembly A9. In the INVT position, reverse bias is applied to a straight-through amplifying stage in U1. With the amplifying stage cut off, an inverting stage is biased on. This results in the input signal being inverted before it is applied to assembly A9.

4-30. Each channel has a POSITION control located on the front panel. Vertical positioning of the viewed display is accomplished by varying the applied de offset voltage to integrated circuit U1. This results in shifting the vertical dc level of the output signal and therefore causes the CRT display to move up or down. The dc offset voltage developed by the POSI-TION control (A12R1, A12R3, or A12R4) is applied to its associated channel IC (pin 3).

4-31. The output circuit of each channel preamplifier is controlled by an OR gate on control assembly A15. Assembly A15 furnishes the enabling bias to the output stage of the preamplifier. Except in A+B or C+D mode of operation, only one channel output stage is enabled at any given time. Refer to paragraph 4-45 for operation of channel control

1-megohm resistor deposited on the substrate.

4-24. Source followers Q1A and Q1B form a highto-low impedance converter stage. The stage (Q1A/Q1B) is balanced in the gate circuit of Q1B. The attenuator balance adjustment is potentiometer A5R2 on the channel A preamplifier assembly.

4-25. PREAMPLIFIERS AND OUTPUT CIR-CUITRY.

4-26. Each of the four channels has its own preamplifier assembly consisting of an integrated circuit

4-2

assembly A15.

4-32. High-frequency response is also adjusted on the individual preamplifier assemblies. Potentiometer R4 and variable capacitor C2 are adjusted for optimum high-frequency response.

4-33. BUFFER AMPLIFIER. (See Schematics 8 and 9). The differential outputs of channel A and channel B preamplifiers are connected together. These outputs are applied through a 300-ohm impedance cable to a buffer stage on amplifier assembly A9 (schematic

Model 1809A

8). The outputs of channel C and channel D are connected identically to another buffer stage.

4-34. The differential outputs of the two buffer stages are applied to a delay line driver stage consisting of A9Q5/A9Q6. Transistors A9Q5 and A9Q6 develop the current level necessary to drive the delay line.

4-35. When the add function (A+B) is selected by the front-panel ADD (A+B) switch A11S1B, a voltage source (+15V) is applied to the junction of resistors A9R12/A9R13. This voltage source supplies the additional current required for simultaneous dual channel operation. The add function for channels C and D is identical to that of channels A and B except that ADD (C+D) switch A11S1C supplies the voltage to the junction of A9R1/A9R2.

4-36. The FIND BEAM switch on the front panel of the oscilloscope supplies-12.6 volts to the emitter circuits of delay line driver transistors A9Q5/A9Q6. When the FIND BEAM switch is pressed, the voltage for the emitter circuits is supplied through dropping resistor A9R34. The reduced current ensures that the vertical deflection factor is such that the trace is returned to the viewing area of the CRT.

4-37. High-frequency response is also adjusted in delay line driver stage. Potentiometer A9R30 and variable capacitor A9C8 are adjusted for optimum high-frequency response. A9R55 is adjusted for optimum low-frequency response.

4-38. The differential output of the delay line driver is also applied to the sync amplifier that develops the composite sync signal (schematic 9). The differential signal is applied to the base circuits of A9Q7 and A9Q8 where differential to single-ended conversion takes place. SYNC BAL adjustment A9R42 compensates for any imbalance that may exist throughout the signal path.

4-39. SYNC AMPLIFIER (See schematic 9). The single ended sync signal is applied through a common base amplifier to the main sync board A16. The sync amplifier consists of a series-shunt differential pair followed by a common emitter, series feedback differential stage. The signal is then taken from one side of the differential stage and connected to a complimentary emitter follower A16Q7/A16Q8. The complimentary emitter follower provides

22 of A10A1U1) is applied to amplifier assembly A9. The sync signal is connected through a diode (A9CR3, A9CR4, A9CR5, or A9CR6) to the emitter circuit of A9Q10 (schematic 9). In addition, when any trigger switch (A11S1E, A11S1F, A11S1G, or A11S1H) is engaged +15 volts is also applied to the base circuit of A9Q9. This voltage inhibits the sync signal generated in the delay line driver circuit.

4-41. The sync signal, generated by the preamplifier assembly, is buffered by A9Q10 and applied to the main sync amplifier.

4-42. DELAY LINE. The signals from delay line drivers A9Q5 and A9Q6 (see schematic 8) are applied to delay line assembly A14. The delay line has an impedance of approximately 150 ohms and provides a time delay of approximately 160 nanoseconds. This delay is sufficient to allow the internal sync signal to trigger the time base plug-in unit to start the horizontal sweep prior to the beginning of the vertical portion of the display. Without the insertion of this time delay in the signal path, the sweep would start after the signal reached the vertical deflection plates of the CRT and the leading edge of fast rise time signals would not be displayed.

4-43. MAIN AMPLIFIER. (See Schematic 10). The main amplifier A10A1 contains an integrated circuit that provides the current gain for the entire system. The gain of A10A1U1 is adjusted by front panel CAL control R5. This adjustment is used to calibrate the Model 1809A to different oscilloscope main-frames. Signal response is also adjusted in amplifier A10A1U1. Variable capacitors A10A1C3 and A10A1C7, and variable resistors A10A1R12 and A10A1R13 are adjusted for optimum high-frequency response.

4-44. OUTPUT AMPLIFIER. (See Schematic 10.) Signals from the main amplifier drive two shunt output amplifiers that provide the voltage gain necessary to drive the CRT. One side drives shunt output amplifier Q1/Q2 and the other side drives shunt output amplifier Q3/Q4. Each amplifier feeds a portion of its output signal back to its input through a compensation network. Amplifier Q3/Q4 has a high frequency corner adjustment HF9. The vertical deflection signal from the output amplifier is applied to the CRT deflection plates in the oscilloscope mainframe.

4-45. CHANNEL CONTROL. (See Schematic 11.)

a low impedance signal to synchronize the time base.

4-40. In COMP mode triggering, the sync signal is developed from the signal furnished by the delay line driver. When single channe' triggering is selected, the channel trigger switch (A11S1E, A11S1F, A11S1G, or A11S1H) enables the sync pickoff circuit in its associated preamplifier assembly by applying enabling bias (+7.15V) to pin 20 on A10A1U1. The output of the sync pickoff circuit (pin **4-46.** Chop Operation. When CHOP mode of operation is selected by MODE switch A11S1A, a ground is applied to pin 2 on OR/NOR gate A15U6A. With a ground applied to pin 2, A15U6A operates as an astable multivibrator. The repetition rate of A15U6A, controlled by feedback capacitor A15C6, is approximately 1.6 MHz. The NOR gate output of A15U6A is applied to an input on NOR gate A15U6B. The output of A15U6B furnishes the clock signal for J-K flip-flop A15U1A/A15U1B. The Q and \overline{Q}

Theory

outputs of the J-K flip-flops are applied through gating circuits to furnish the enabling voltage for the output stage of the preamplifier assemblies.

4-47. Output configuration of the dual flip-flop, A15U1, is such that at any given count only one section of OR gate A15U5 produces an enabling voltage for its associated preamplifier assembly. However, this sequence is modified for A+B and C+D operation. When ADD switch A11S1B is engaged for A+B operation (see schematic 8), a logic +V potential is applied to an input on AND gate A15U4D (pin 13). When the J-K flip-flop state is such that channel A preamplifier is enabled by A15U5A, the output of A15U4D is high. The output of A15U4D is applied to OR gate A15U5B that enables the channel B preamplifier. With both channel A and channel B enabled, their output signals are summed at the 300-ohm impedance cable and applied to the buffer stage on assembly A9.

4-48. The logic +V potential from ADD switch A1131B is also applied to AND gate A15U4B (pin 4). With a high applied to both inputs, the output of A15U4B (pin 5) is high. Since the output c_{\pm} A15U4B and channel B OFF-ON-INVT switch A12S2 are connected in a wired-OR configuration, AND gate A15U3A functions as if A12S2 was in the OFF position. The output of A15U3A functions as follows: with A12S2 in its OFF position and flip-flop A15U1 in channel A enabling configuration, A15U3A applies a high to the set input on flip-flop A15U1B. Upon receipt of a clock pulse from A15U6B, flip-flop A15U1 switches from the channe' A enabling configuration to the channel C enabling configuration, thus, bypassing channel B. All channel OFF-ON-INVT switches function the same. The AND gates associated with the switches are A15U3A, A15U3B, A15U3C, and A15U3D.

4-49. When ADD switch A11S1C is engaged for C+D operation, the same sequence of operation for

channel C and channel D occurs as explained for channel A and channel B in paragraph 4-48. The ADD gates associated with ADD C+D operation are A15U4A and A15U4C.

4-50. Alt Operation. When ALT mode of operation is selected by MODE switch A11S1A, logic. +V potential is applied to an input or OR/NOR gate A15U6A. The outputs of A15U6A are held low for the NOR section and high for the OR section.

4-51. In ALT mode of operation, clock generator A15U6B is controlled by the alternate trigger signal that is furnished by the time base plug-in unit. The alternate trigger signal is directly related to the unblanking gate signal that is used to turn on the CRT intensity. The positive going alternate trigger signal is applied to the base circuit of transistor A15Q3 that is normally cut off. With a positive voltage applied to its base, A15Q3 turns on. This action applies a low to clock generator A15U6B (pin. 13). This causes the output of A15U6B to go high. When the alternate trigger signal ends, A15Q3 turns off and a high is now applied to A15U6B (pin 13). The negative transition at the output of A15U6B clocks J-K flip/flop A15U1A and A15U1B. Operation of the flip-flops and their associated gating circuits was described in paragraphs 4-46 through 4-49.

4-52. Chop Blanking. The chop oscillator also drives the chop blanking circuit. The output of the oscillator is connected through an RC network to a current switch. This generates a fixed delay to compensate for the delay line in the main amplifier. The signal is then connected through an emitter follower to A15U7 that functions as a one-shot. This one-shot generates a pulse of the desired blanking width. The signal then goes to A15Q6, which functions as a level translator.

4-4

And a state of the state of the Addition of the Addition of the state of the state

Performance Check

SECTION V

PERFORMANCE CHECK AND ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section contains step-by-step procedures for checking the instrument specifications as given in table 1-1 of this manual. The performance checks are arranged in numerical order. For best results this order should be followed. Included in this section are test setups, procedures, and test equipment required. Most test points and adjustment locations are shown in figure 5-8 located at the end of this section. The procedures for making all internal adjustments are covered in paragraphs 5-17 through 5-25.

5-3. EQUIPMENT REQUIRED.

5-4. A complete list of recommended test equipment and accessories is given in table 5-1. Test equipment equivalent to that recommended may be substituted, provided it meets the required characteristics lists: in the table. For best results, use recently calibrated test equipment.

5-5. PERFORMANCE CHECKS.

5-6. The performance checks given in this section are suitable for incoming inspection, preventative maintenance, and troubleshooting. The checks are designed to verify the published instrument specifications. Perform the checks in the order given, and record the measurement information on the performance check record at the end of the performance checks.

5-7. PERFORMANCE CHECK RECORD. Each measurement point in the performance checks is repeated in the performance check record. The pages may be removed for filing. The first time the performance check is made, enter the results on the performance check and file it for future reference.

VOLTS/DIV	0.1
Vernier	. CAL detent
Coupling	AC
OFF-ON-INVT	ON
POSITION	midrange
Trigger	COMP

d. Set oscilloscope mainframe controls as follows:

Display	internal
Magnifier	X1
Intensity	normal

e. Set time base plug-in controls as follows:

TIME/DIV	1 ms
AUTO/NORM	AUTO
Trigger i	nternal

f. Set oscilloscope and time base plug-in controls to obtain stable traces on CRT screen.

5-9. INITIAL CHECKS.

a. Set front-panel controls as indicated in paragraph 5-8. Four traces should appear on CRT screen.

b. Set trigger source to A. Four traces should appear on CRT screen.

c. Accomplish step b for triggers B, C, and D.

d. Rotate channel A position control over its entire range. Channel A trace should move full vertical graticule range.

e. Accomplish step d for channels B, C, and

5-8. INITIAL CONTROL SETTINGS.

a. Install Model 1809A with time base plug-in into oscilloscope mainframe.

b. Apply external power to oscilloscope mainframe and allow 15 minutes warm-up for stabilization.

c. Set Model 1809A front-panel controls (all channels) as follows:

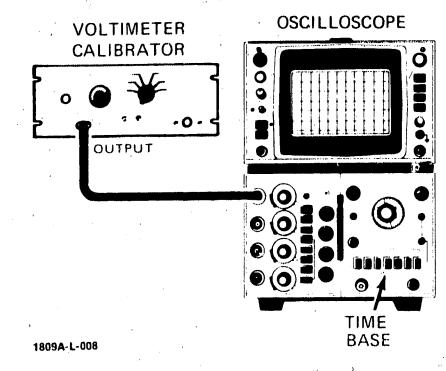
D position controls.

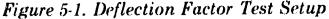
f. Set ADD pushbutton switch to A+B. Either channel position control should move trace vertically.

g. Set ADD pushbutton switch to C+D. Either channel position control should move trace vertically.

h. If instrument fails to meet check, refer to Section VIII of this manual for troubleshooting information.

5-10. DEFLECTION FACTOR.


a. Connect equipment as shown in figure 5-1.


Performance Check

Model 1809A

TypeMcdelCharacteristicsOscilloscopeHP 180-seriesOscilloscope MainframeTime BaseHP 1820C or 1825AVoltmeter CalibratorHP H01-738 BR50 mV to 30 V p-p, accuracy 0.2%Audio Oscillator Multifunction Digital Volt- meterHP 204CFrequency: 2 kHzVoltage Range: 1000V Accuracy: ±0.1% Resistance Range: 1 megohm Accuracy: ±0.1%Voltage Range: 1000V Accuracy: ±0.1% Resistance Range: 1 megohm Accuracy: ±0.1%VHF Oscillator RF VoltmeterHP 3200B HP 3200B HP 3406AFrequency: 10-100 MHz Attenuation: 20 dB nominalDual Directional CouplerHP 778DFrequency: 100 MHz Attenuation: 20 dB nominalLCR MeterHP 4332ARange: 15 pFSquare Wave GeneratorHP 211BFrequency: 10 kHz Rise time: <5 nsConstant AmplitudeTektronix Type 19150 kHz to 100 MHz rep rate, 120 mV to 5V amplitude, constant amplitudePulse GeneratorTektronix Type 106Sig time <1 ns, amplitude >10 us perturbation <1%10:1 ProbeHP 10014A10:1 Division Ratio, 10 pF10 dB AttenuatorGR 874 G1010 dB Attenuation	For P, A T
Time BaseHP 1820C or 1825AVoltmeter CalibratorHP H01-738 BR50 mV to 30 V p-p, accuracy 0.2%Audio 	Р, А Т
Voltmeter Calibrator1825A HP H01-738 BR50 mV to 30 V p-p, accuracy 0.2%Audio Oscillator Multifunction Digital Volt- meterHP 204CFrequency: 2 kHzVHF Oscillator meterHP 3465AVoltage Range: 1000V Accuracy: 20.1% Resistance Range: 1 megohm Accuracy: 20.1%VHF Oscillator RF VoltmeterHP 3200BFrequency: 10.100 MHz Attenuation: 20 dB nominalDual Directional CouplerHP 778DFrequency: 100 MHz Attenuation: 20 dB nominalLCR MeterHP 4332ARange: 15 pFSquare Wave GeneratorTektronix Type 19150 kHz to 100 MHz rep rate, 120 mV to 5V amplitude Signal GeneratorPulse GeneratorTektronix Type 106Rise time <1 ns, amplitude >5V, overshoot and ringing <2%, pulsewidth >1 us, perturbation <1%	
Voltmeter CalibratorHP H01-738 BR50 mV to 30 V p-p, accuracy 0.2%Audio Oscillator Multifunction Digital Volt- meterHP 204CFrequency: 2 kHzVoltage Range: 1 megohm Accuracy: 40.1% Resistance Range: 1 megohm Accuracy: 40.1%HP 3465AVoltage Range: 1000V Accuracy: 40.1% Resistance Range: 1 megohm Accuracy: 20.1%VHF Oscillator RF VoltmeterHP 3200B HP 3406AFrequency: 10.100 MHz Resistance Range: 1 megohm Accuracy: 10.100 MHz Attenuation: 20 dB nominalDual Directional CouplerHP 778DFrequency: 100 MHz Attenuation: 20 dB nominalLCR MeterHP 4332ARange: 15 pFSquare Wave GeneratorHP 211BFrequency: 10 kHz Rise time: <5 ns	
Oscillator Multifunction Digital Volt- meterHP 3465AVoltage Range: 1000V Accuracy: ±0.1% Resistance Range: 1 megohm Accuracy: ±0.1%VHF Oscillator RF VoltmeterHP 3200B HP 3406AFrequency: 10-100 MHz dB Range: >17.5 dBDual Directional CouplerHP 778DFrequency: 100 MHz Attenuation: 20 dB nominalLCR MeterHP 4332ARange: 15 pFSquare Wave GeneratorHP 211BFrequency: 10 kHz Rise time: <5 ns	Р, А, Т
Multifunction Digital Volt- meterHP 3465AVoltage Range: 1000V Accuracy: ±0.1% Resistance Range: 1 megohm Accuracy: ±0.1% Resistance Range: 1 megohm Accuracy: ±0.100 MHz dB Range: >17.5 dBVHF Oscillator RF VoltmeterHP 3200B HP 3406AFrequency: 10-100 MHz dB Range: >17.5 dBDual Directional CouplerHP 778DFrequency: 100 MHz Attenuation: 20 dB nominalLCR MeterHP 4332ARange: 15 pFSquare Wave GeneratorHP 211BFrequency: 10 kHz Rise time: <5 ns	Α, Τ
VHF Oscillator RF VoltmeterHP 3200B HP 3406AFrequency: 10-100 MHz dB Range: >17.5 dBDual Directional CouplerHP 778DFrequency: 100 MHz Attenuation: 20 dB nominalLCR MeterHP 4332ARange: 15 pFSquare Wave GeneratorHP 211BFrequency: 10 kHz Rise time: <5 ns	Р, Т
Directional CouplerAttenuation: 20 dB nominalLCR MeterHP 4332ARange: 15 pFSquare Wave GeneratorHP 211BFrequency: 10 kHz Rise time: <5 ns	Р, Т Р, Т
Square Wave GeneratorHP 211BFrequency: 10 kHz Rise time: <5 nsConstant Amplitude 	P , T
GeneratorRise time: <5 nsConstant AmplitudeTektronix Type 19150 kHz to 100 MHz rep rate, 120 mV to 5V amplitude, constant amplitudePulse GeneratorTektronix Type 106Rise time <1 ns, amplitude >.5V, overshoot and ringing <2%, pulsewidth >1 us, perturbation <1%	А, Т
Amplitude Signal GeneratorType 191rate, 120 mV to 5V amplitude, constant amplitudePulse GeneratorTektronix Type 106Rise time <1 ns, amplitude >.5V, overshoot and ringing <2%, pulsewidth >1 us, perturbation <1%	А, Т
106>.5V, overshoot and ringing <2%, pulsewidth >1 us, perturbation <1%	Р, Т
10 dB AttenuatorGR 874 G1010 megohm shunted by 10 pF	Р, А, Т
Attenuator	Р, Т
	P , T
44-in. BNCHP 10501ABNC 44-in.Cable	Р, А, Т
9-in. BNC Cable (2) HP 10502A BNC 9-in.	Р, А, Т
AdapterHP Part No. 1251-2277Twin Banana Plug to BNC Female Adapter	P, A, T
BNC TEE (2) HP Part No. BNC Connection 1250-0781	Р, Т
50Ω TEE (2)HP 11063ASampling Probe Tee	P, 7

Model 1809A

b. Set Model 1809A front-panel controls as indicated in paragraph 5-8.

c. Set voltmeter calibrator controls for 50-mV p-p output signal

d. Adjust CAL potentiometer for 5-division display.

e. Observe vertical deflection factors specified in table 5-2.

VOLTS/DIV Settings	Vertical display (div)
.01	5 ±.10 div
.02	5 ±.10 div
.05	6 ±.12 div
.1	5 ± 10 div
.2	5 ±.10 div
` .5	6 ±.12 div
1	5 ±.10 div
2	5 ±.10 div
5	6 ±.12 div
	Settings .01 .02 .05 .1 .2 .5 1 2

Table 5-2. Deflection Factor Accuracy

f. Set channel A VOLTS/DIV switch to 5.

j. Repeat steps a through i for channels B, C, and D.

k. Disconnect test equipment.

1. If instrument fails to meet check, refer to Section VIII for troubleshooting information.

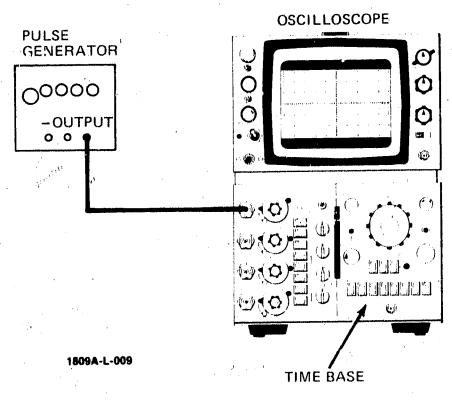


Figure 5-2. Rise Time Test Setup

5-11. RISE TIME.

a. Connect equipment as shown in figure 5-2.
b. Set Model 1809A front-panel controls as shown in paragraph 5-8, except for following:

Trigger	 Α
Coupling A	 0Ω

c. Adjust pulse generator for 50-kHz 60-mV output. Rise time shall be <3.5 ns.

d. Repeat steps a through c for channels B, C, and D.

e. Disconnect test equipment.

g. Set voltmeter' calibrator output for 30V p-p.

h. Rotate channel A vernier control fully counterclockwise. Vernier UNCAL indicator should light and vertical display reduction should be <2.4 divisions.

i. Rotate channel A vernier control fully clockwise to detent position.

5-12. BANDWIDTH.

a. Connect equipment as shown in figure 5-3, with constant amplitude signal generator and 10-dB attenuator to channel A INPUT.

b. Set Model 1809A front-panel controls as shown in paragraph 5-8, except for following:

Trigger

Coupling....

VOLTS/DIV.....

Α

 50Ω

.01

Performance Check

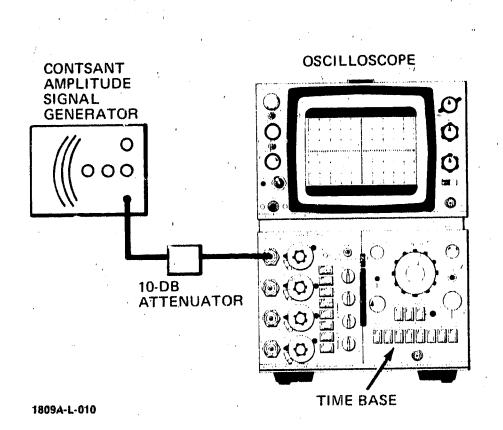
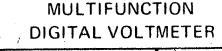
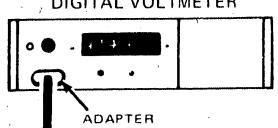


Figure 5-3. Bandwidth Test Setup

c. Set constant amplitude signal generator for 1-MHz output.


d. Adjust constant amplitude signal generator for 6-division display.


e. Increase constant amplitude signal generator frequency to 100 MHz. Deflection shall be >4.2 divisions (3 dB down).

f. Repeat steps a through e for channels B thru D.

g. Disconnect test equipment.

h. If instrument fails to meet check, refer to Section VIII for troubleshooting information.

,

Model 1809A

5-13. INPUT RESISTANCE.

a. Connect instruments as shown in figure 5-4.

b. Set Model 1809A channel A coupling to DC.

c. Set multifunction digital voltmeter controls to measure 1 megohm. Indication on multifunction digital voltmeter should be 1 megohm $\pm 1\%$.

d. Check all channel A VOLTS/DIV ranges for step c indication.

e. Set channel A coupling to 50Ω .

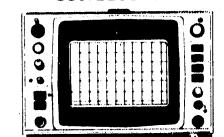
f. Set multifunction digital voltmeter controls to measure 50 ohms. Indication on multifunction digital voltmeter should be 50 ohms $\pm 2\%$.

g. Check all channel A VOLTS/DIV ranges for step f indication.

h. Accomplish steps a through g for channels B, C, and D.

i. Disconnect test equipment.

j. If instrument fails to meet check, refer to attenuator section in Section VIII for troubleshooting information.

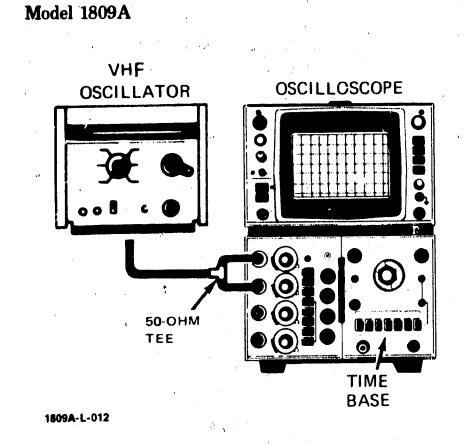

5-14. COMMON MODE REJECTION.

a. Connect equipment as shown in figure 5-5.

b. Set Model 1809A front-panel controls as follows:

OFF-ON-INVT (channels A and B) :	ON
OFF-ON-INV" (channels C and D)	OFF
Coupling (all hannels)	AC
VOLTS/DIV all channels)	
ADD	A+B

OSCILLOSCOPE



(809A-L-011

5-4

Figure 5-4. Input Resistance Test Setup

and the second second

Figure 5-5. CMR Test Setup

c. Set vhf oscillator controls for 80-MHz 6-division output display.

d. Set channel B OFF-ON-INVT switch to INVT position. Deflection shall be equal to or less than 0.6 division.

NOTE

Cable lengths from Tee connections to channel INPUT connectors should be as short as possible and of the same electrical length. In addition, if the specified deflection cannot be met, the verniers may be used to bring the deflection down.

e. Accomplish steps a through d for channels C and D.

f. Disconnect test equipment.

g. If instrument fails to meet check, refer to Section VIII for troubleshooting information.

5-15. VSWR CHECK.

a. Connect equipment as shown in figure 5-6.

b. Set Model 1809A channel A coupling to 50Ω .

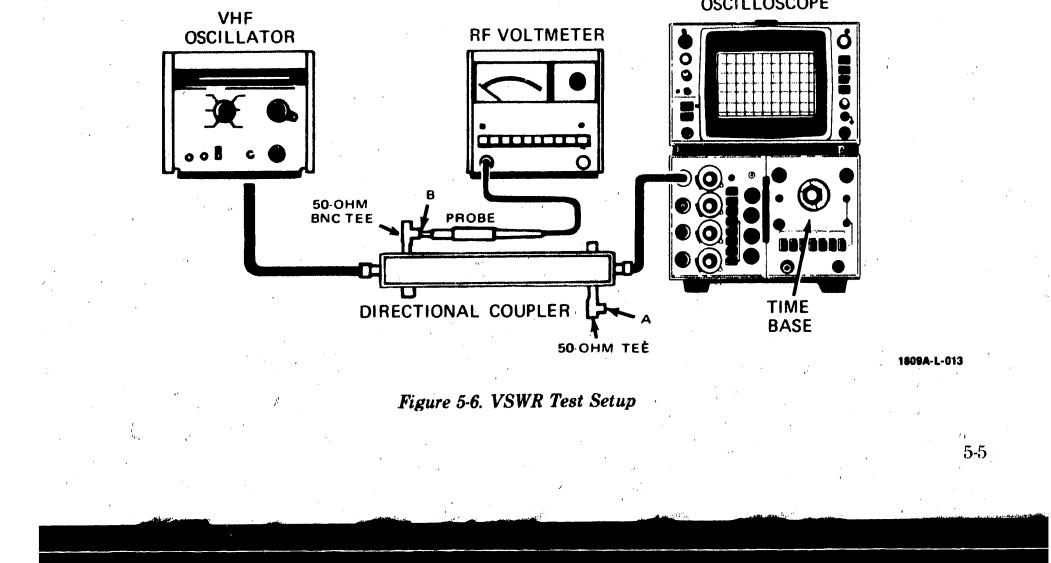
c. With rf voltmeter probe connected to point B (see figure 5-6), adjust vhf oscillator for 100-MHz output and 0 dB reading on rf voltmeter.

d. Connect rf voltmeter to point A.

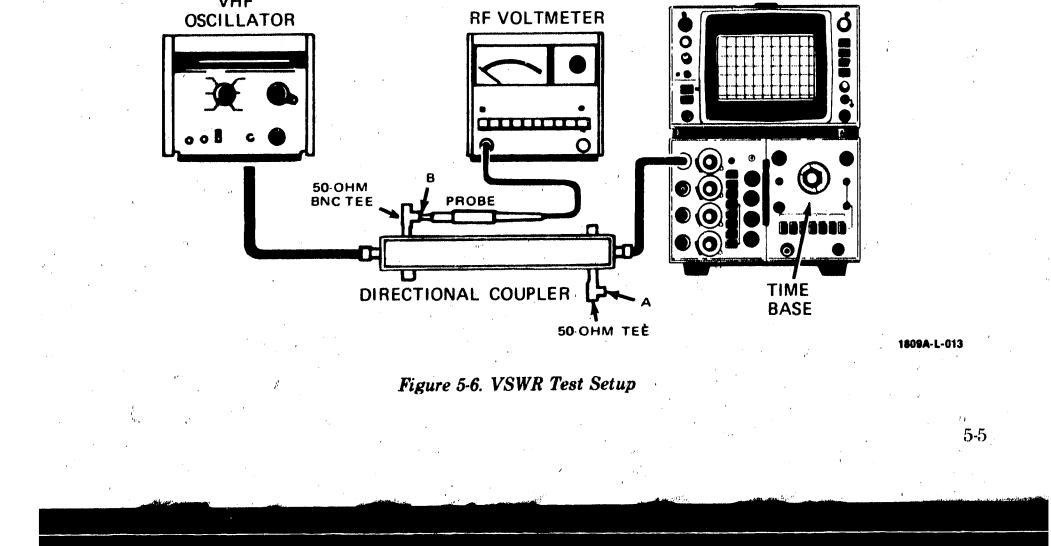
e. Check all VOLTS/DIV ranges. Reflection coefficient on all ranges shall be >17.5 dB (1.3:1) as indicated on rf voltmeter.

f. Accomplish steps a through e for channels B, C, and D.

Disconnect test equipment. g.


h. If instrument fails to meet check, refer to Section VIII for troubleshooting information.

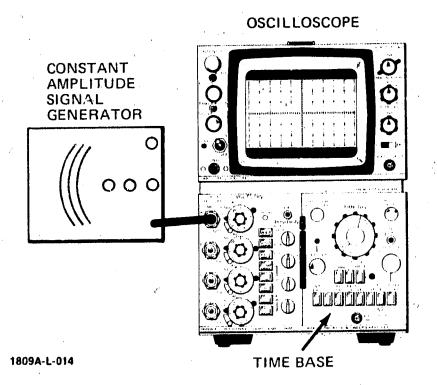
5-16. TRIGGERING


a. Connect equipment as shown in figure 5-7.

b. Connect constant amplitude signal generator to channel A INPUT.

c. Set Model 1809A front-panel concrols as shown in paragraph 5-8, except for following:

OSCILLOSCOPE


Trigger	•		•••	 		••						Α
VOLTS/DIV A												
Coupling	•••	••	• •	 •	•	••	••		•	 •	٠	DC

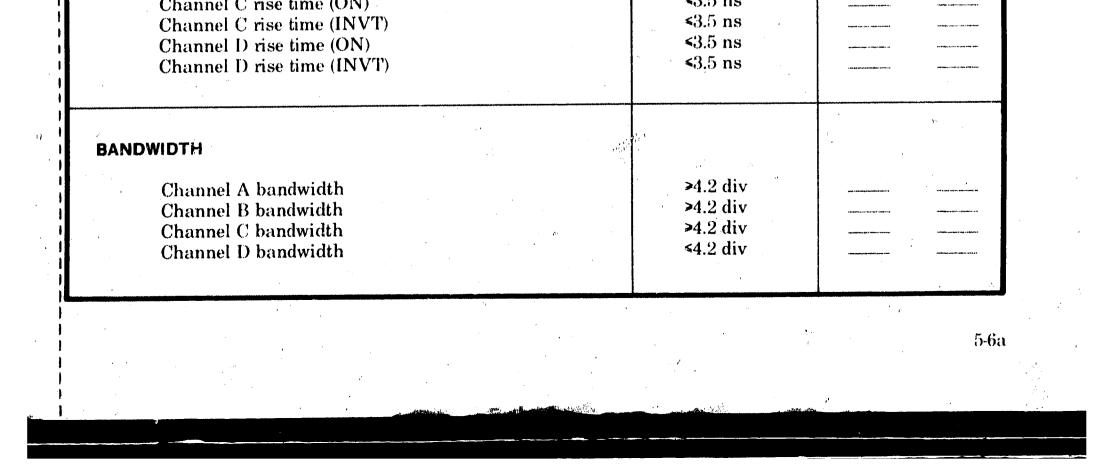
A d. Observe displays as specified in table 5-3.

Time Base Plug-in	Constant Amplitude Signal Generator	Vertical Deflection Required to Trigger			
1820C, 1824A 1825A, 1840A	50 MHz	>0.5 division			
1841A	100 MHz	>1 division			
1820B, 1822A	50 MHz 100 MHz	>0.5 division >2 divisions			
1820A, 1821A	50 MHz /	>1 division			

Table 5-3. Triggering

f. If instrument fails to meet check, refer to Section VIII for troubleshooting information.

Figure 5-7. Triggering Test Setup


e. Disconnect test equipment.

Model 1809A

PERFORMANCE CHECK RECORD

MODEL 1809A

Instrument Serial Number	Date				
Check	Specification	Measured			
DEFLECTION FACTOR (channels A and B)		Ch A Ch I			
.01 VOLTS/DIV	5 ±.10 div	· · · · · · · · · · · · · · · · · · ·			
	5 ±.10 div				
.02 VOLTS/DIV	6 ±.12 div				
.05 VOLTS/DIV	$5 \pm .10 div$				
.1 VOLTS/DIV .2 VOLTS/DIV	5 ±.10 div				
	$6 \pm .12 \text{ div}$				
	5 ±.10 div				
1 VOLTS/DIV 2 VOLTS/DIV	5 ±.10 div				
5 VOLTS/DIV	6 ±.12 div	,			
vernier	<2.4 div				
		1/2			
DEFLECTION FACTOR (channels C and D)		Ch C Ch			
.01 VOLTS/DJV	5 ±.10 div	l Anarona a una algorismiter. Anarona de la des			
.02 VOLTS, DIV	5 ±.10 div	a analysis again and interprise 11.1 and an area and an			
	6 ±.10 div	naak dii yee sada si hida ee a di si b			
.1 VOLTS/DIV	5 ±.10 div	a anna a tha anna anna ann ann ann ann ann ann ann			
.2 VOLTS/DIV	5 ±.10 div	2			
.5 VOLTS/DIV	6 ±.12 div	san manakayan kati kanan mar			
1 VOLTS/DIV	5 ±.10 div				
2 VOLTS/DIV	5 ±.10 div	a denomina e a version en el se version			
5 VOLTS/DIV	6 ±.12 div	a ang dar a milite na fai ga agta ma			
vernier	<2.4 div				
		·			
RISE TIME					
Channel A rise time (ON)	<3.5 ns				
Channel A rise time (ON) Channel A rise time (INVT)	<3.5 ns				
Channel B rise time (ON)	<3.5 ns	Angeleiche agint i bann agint se			
Channel B rise time (INVT)	<3.5 ns				
Channel C rise time (ON)	<3.5 ns	japangana kang kang kang kang kang kang kan			

.02 VOLTS/DIV

.05 VOLTS/DIV

.1

.2

.5

1

 $\mathbf{2}$

5

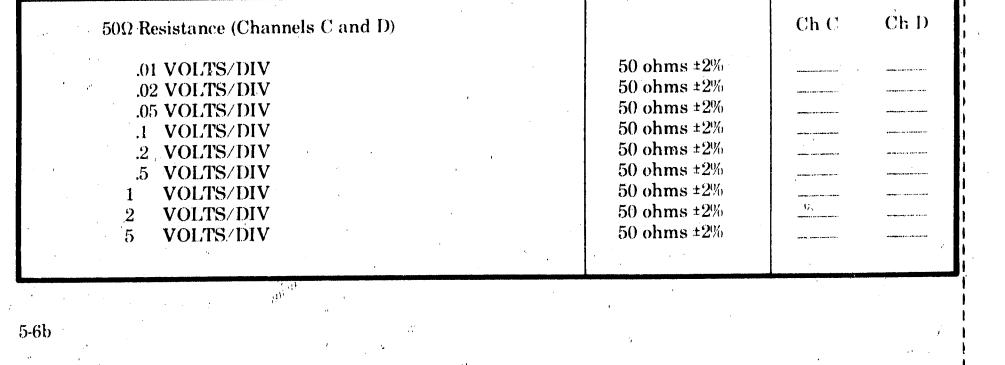
VOLTS/DIV

VOLTS/DIV

VOLTS/DIV

VOLTS/DIV

VOLTS/DIV

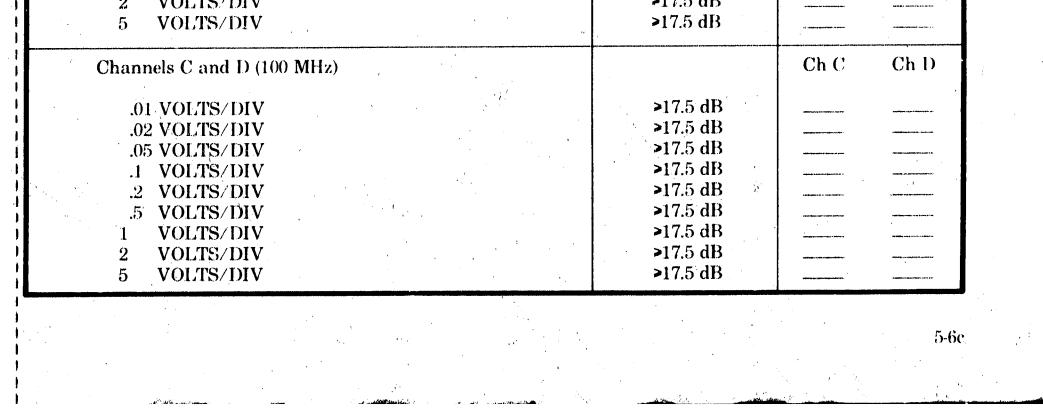

VOLTS/DIV

Model 1809A

PERFORMANCE CHECK RECORD

MODEL 1809A

Date Instrument Serial Number. Measured **Specification** Check - C INPUT RESISTANCE Ch A Ch B DC Resistance (Channels A and B) 1 megohm $\pm 1\%$.01 VOLTS/DIV $1 \text{ megohm } \pm 1\%$.02 VOLTS/DIV 1 megohm $\pm 1\%$.05 VOLTS/DIV $1 \text{ megohm } \pm 1\%$ VOLTS/DIV .1 1 megohm $\pm 1\%$.2 VOLTS/DIV $1 \text{ megohm } \pm 1\%$.5 VOLTS/DIV $1 \text{ megohm } \pm 1\%$ VOLTS/DIV 1 1 megohm ±1% 2 VOLTS/DIV 1 megohm $\pm 1\%$ $\mathbf{5}$ **VOLTS/DIV** Ch B Ch A 50Ω Resistance (Channels A and B) 50 ohms ±2% .01 VOLTS/DIV 50 ohms ±2% .02 VOLTS/DIV ------50 ohms ±2% .05 VOLTS/DIV **50 ohms ±2%** VOLTS/DIV -----.1 50 ohms ±2% 2 VOLTS/DIV -----**50 ohms ±2**% **VOLTS/DIV** .5 **50 ohms ±2%** VOLTS/DIV 1 50 ohms ±2% $\mathbf{2}$ **VOLTS/DIV** -----• 50 ohms ±2% VOLTS/DIV 5 Ch CCh D DC Resistance (Channels C and D) .01 VOLTS/DIV

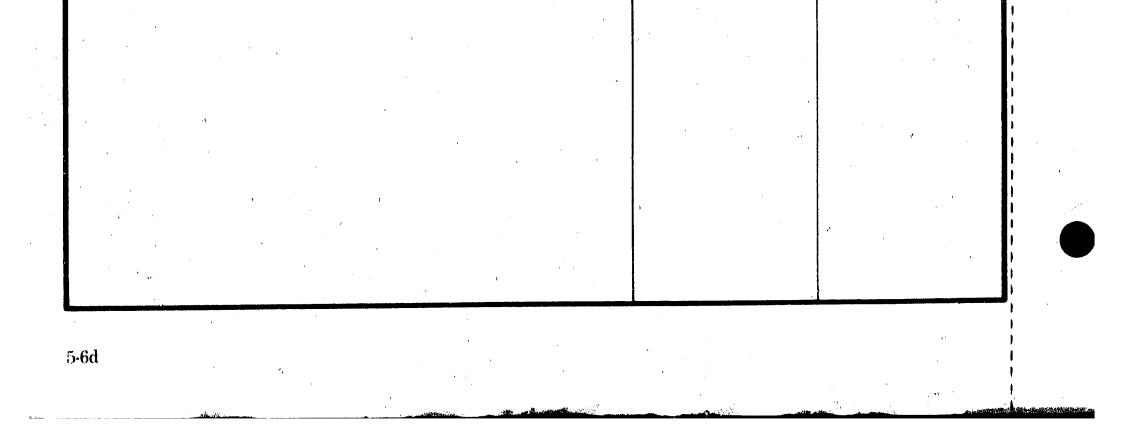


Performance Check

PERFORMANCE CHECK RECORD

MODEL 1809A

Instrument Serial Number	Date				
Check	Specification Measured				
COMMON MODE REJECTION					
Channels A and B (80 MHz)					
.01 VOLTS/DIV .02 VOLTS/DIV .05 VOLTS/DIV .1 VOLTS/DIV .2 VOLTS/DIV .5 VOLTS/DIV 1 VOLTS/DIV 2 VOLTS/DIV 5 VOLTS/DIV	<0.6 div				
Channels C and D (80 MHz) .01 VOLTS/DIV .02 VOLTS/DIV .05 VOLTS/DIV .1 VOLTS/DIV .2 VOLTS/DIV .5 VOLTS/DIV 1 VOLTS/DIV 2 VOLTS/DIV 5 VOLTS/DIV	<0.6 div <0.6 div				
VSWR Channels A and B (100 MHz)	Ch A Ch F				
.01 VOLTS/DIV .02 VOLTS/DIV .05 VOLTS/DIV .1 VOLTS/DIV .2 VOLTS/DIV .5 VOLTS/DIV 1 VOLTS/DIV	>17.5 dB				



j.

PERFORMANCE CHECK RECORD

MODEL 1809A

• • • • • • • • • • • • • • • • • • •	MODEL 1809A			Da	ate			
۰. ۲	Check			Specification	Measured			
TRIGGERING	, <u>, , , , , , , , , , , , , , , , , , </u>	,						
Time Base Plug-in 1820C 1824A 1825A 1840A 1841A 1820B 1822A 1820B 1822A 1820A 1820A 1821A				>0.5 division >0.5 division >0.5 division >0.5 division >1.0 division >0.5 division >0.5 division >2.0 divisions >2.0 divisions >1.0 division				
	· · · · · · · ·	·						
			•					
	· · · · ·		۱ ب					
		,						

5-17. ADJUSTMENT PROCEDURES.

5-18. The following paragraphs outline the procedure for accomplishing the adjustments required for the Model 1809A. Use the equipment recommended in table 5-1 or similar equipment having at least equivalent capability. Use a nonmetallic adjustment tool when making adjustments.

5-19. The adjustment procedures should be performed in the sequence listed, since some adjustments are dependent on control settings and results of previous steps. The adjustments may be accomplished individually, if desired, by referring to the preliminary control settings and the steps before the desired procedure.

5-20. DC BAL ADJUSTMENT.

a. Remove oscilloscope's left, lower side panel.

b. Set front-panel controls as indicated in paragraph 5-8 except as follows:

Coupling	GND
OFF-ON-INVT (channel A)	, ON
OFF-ON-INVT (channels B, C,	
and D)	OFF

c. Switching channel A OFF-ON-INVT switch between ON and INVT position, adjust A5R2 for no shift in channel A trace.

d. Accomplish steps b and c for chann. B, C, and D using adjustments A6R2, A7R2, and A8R2.

5-21. OUTPUT BAL ADJUSTMENT.

a. Accomplish paragraph 5-20.

b. Set front-panel controls as indicated in paragraph 5-8 except as follows:

OFF-ON-INVT (channel A)	ON
OFF-ON-INVT (channels B, C,	
and D)	OFF
Coupling (channel A)	GND

NOTE

The output balance adjustment can be accomplished using any channel (A, B, C, or D). In this procedure channel A was used.

5-22. GAIN ADJUSTMENTS.

a. Set front-panel controls as indicated in paragraph 5-8 except as follows:

Model 1809A

OFF-ON-INVT (channel A)	ON
OFF-ON-INVT (channels B, C, and D)	OFF
Counting (all channels)	AC

fime Base

TIME/DIV	1 mSEC
Trigger slope	positive

b. Connect voltmeter calibrator to channel A input.

c. Set voltmeter calibrator for 50-mVp-p output.

d. Adjust Model 1809A front-panel CAL potentiometer R5 for approximately 5 divisions of display.

e. Adjust channel A CAL potentiometer A5R11 for maximum amplitude display; then reduce amplitude 10%.

f. Set front-panel CAL potentiometer R5 for exactly 5 divisions of display.

g. Connect voltmeter calibrator signal to channel B INPUT connector.

h. Adjust channel B CAL potentiometer A6R11 for exactly 5-division display.

i. Repeat steps g and h for channels C and D, using adjustments A7R11 and A8R11.

j. Disconnect voltmeter calibrator from Model

c. Fress FIND BEAM switch on front-panel.

d. While holding FIND BEAM switch depressed, rotate channel A position control over its entire range.

e. Check that trace moves symetrically (vertically) about center screen.

f. Adjust output balance potentiometer A10A1R3 on assembly A10A1 to accomplish step e.

NOTE

1809A.

Gain in the 50 Ω position may differ from gain in the AC and DC positions. This difference will be proportional to the amount of resistance in the input lead (1 ohm will cause a 2% variation). If a greater degree of accuracy in the 50 Ω position is required, perform the following steps:

Adjustments

k. Set 1809A input coupling (both channels) to 50Ω.

1. Connect accurate 30-mVdc signal to channel A INPUT connector.

NOTE

Ensure minimum resistance in the input lead.

m. Adjust front-, anel VOLTS/DIV CAL potentiometer for exactly 6-division trace displacement.

n. Disconnect test equipment.

o. Set 1809A front-panel controls to initial settings.

ATTENUATOR ADJUSTMENTS. 5-23.

a. Set front-panel controls as indicated in paragraph 5-8 except as follows:

OFF-ON-INVT (channel B)	ON
OFF-ON-INVT (channels A, C,	
and D)	OFF
 Coupling (all channels)	DC
VOLTS/DIV (all channels)	.02

b. Connect output of square wave generator to channel B INPUT connector.

c. Set square wave generator controls for 10kHz output signal.

d. On channel B attenuator assembly A2A1, adjust .02V COMP capacitor A2A1C8 for flat square wave response.

e. Set channel B VOLTS/DIV switch to .05 position.

f. Adjust .05V COMP capacitor A2A1C6 for flat square wave response.

g. Set channel B VOLTS/DIV switch to .1 position.

h. Adjust .1V COMP capacitor A2A1C4 for flat square wave response.

Set channel B VOLTS/DIV switch to .5 m. position.

n. Adjust .02V INPUT capacitor A2A1C5 for best square wave response.

o. Disconnect[®] square wave generator from Model 1809A.

p. Set channel B VOLTS/DIV Switch to .01.

q. Connect LCR meter with short BNC cable to channel B input. Note indication on LCR meter of approximately 12 pF.

r. Set channel B VOLTS/DIV switch to .1 position.

s. Adjust .1V INPUT capacitor A2A1C3 for 0.5 pF less than capacitance indication noted in step q.

t. Set channel B VOLTS/DIV switch to 1 position.

u. Adjust 1V INPUT capacitor A2A1C1 for same capacitance indication noted in step q.

v. Accomplish steps a through u for channel A, C, and D using adjustments on assemblies A1A1, A3A1, and A4A1.

NOTE

With the Model 1809A and the time base plug-in unit installed ir. the oscilloscope, part of channel A attenuator adjustments are covered by the oscilloscope frame. To make these adjustments on channel A, the plug-in units must be partically removed from the mainframe, an adjustment made, the plug-in units reinserted into the mainframe, and a check made on the latest adjustment. This procedure must be repeated until the channel A attenuator is properly adjusted.

w. Disconnect test equipment.

5-8

i. Set channel B VOLTS/DIV switch to 1 position.

j. Adjust 1V COMP capacitor A2A1C2 for flat square wave response.

k. Set channel B VOLTS/DIV switch to 2 position.

1. Adjust .02 input capacitor A2A1C7 for best square wave response.

5-24. SYNC BALANCE ADJUSTMENT.

a. Set front-panel controls as indicated in paragraph 5-8 except as follows:

> OFF-ON-INVT (channel A) ON **OFF-ON-INVT** (channels B, C, OFF and D)..... VOLTS/DIV (channel A) 1V Coupling (all channels) GND Trigger Α Trigger coupling (time base) AC

b. Using audio oscillator, apply 2 kHz sine wave to channel A INPUT connector.

c. Adjust audio oscillator output for 4-division display.

d. Set time base trigger to DC.

e. Adjust sync bal A5R17 to trigger at center graticule.

f. Repeat steps b through e and adjust A6R17 (channel B), A7R17 (channel C), and A8R17(channel D) in step e.

g. Connect audio oscillator to any channel INPUT connector. Turn unused channel ON/OFF/ INV switches to OFF position.

h. Set audio oscillator output for 2-kHz sine wave.

i. Repeat steps b through e, except set trigger to COMP. Use A5R42 to adjust triggering at center of graticule.

j. Disconnect test equipment.

5-25. PULSE RESPONSE ADJUSTMENTS.

a. Set front-panel controls as indicated in paragraph 5-8 except as follows:

VOLTS/DIV (channel A)	.01
OFF-ON-INVT (channel A)	
OFF-ON-INVT (channels B, C,	
and D)	OFF
Coupling (all channels)	50Ω

b. Connect fast rise time pulse generator to channel A input connector.

c. Set time base controls for .1 us output.

d. Adjust time base plug-in unit controls for stable display.

e. Adjust pulse generator for 6 div pulse.

f. On channel A preamplifier assembly A5, alternately adjust A5C2 and A5R4 for optimum pulse response.

NOTE

Optimum pulse response is defined as minimum overshoot, minimum hook, and optimum leading edge on pulse.

g. On intermediate assembly A9, alternately adjust A9C8, A9R30, and A9R55 for optimum pulse response.

h. On main amplifier assembly A10A1 and on output assembly A10A2, Adjust A10A1C3, A10A1C7, A10A1R12, A10A1R13, and A10A2C1 for optimum pulse response.

i. Repeat steps f through h until optimum pulse response is reached.

j. Accomplish steps a through f for channels B, C, and D using A6C2/A6R4, A7C2/A7R4, and A8C2/A8R4 for pulse response adjustments.

NOTE

Do not reset adjustments on assemblies A9, A10A1, and A10A2 after initial adjustments with channel A.

k. Disconnect test equipment.

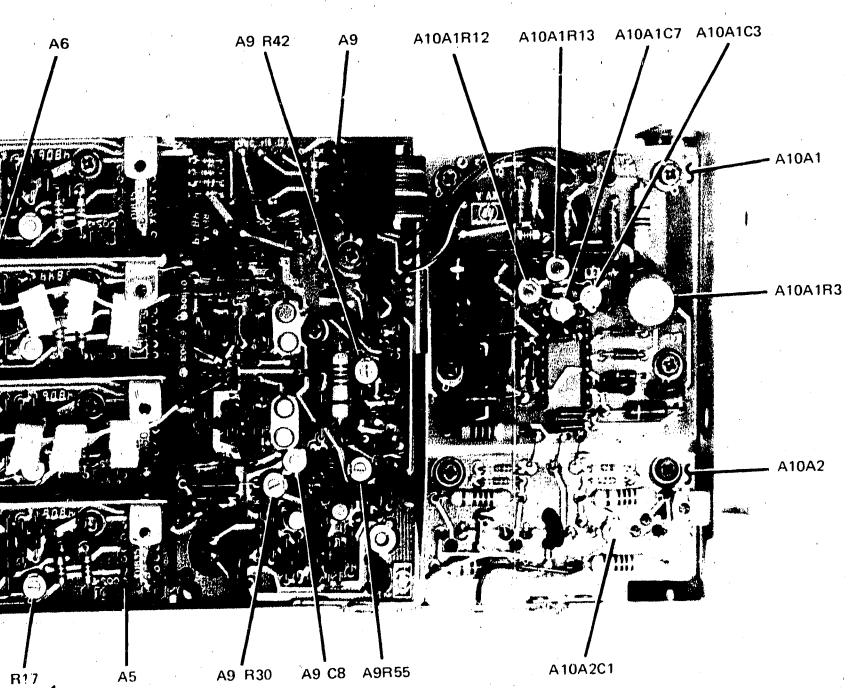
This completes the adjustment procedures for the Model 1809A.

Adjustments

 $\mu_{\rm eff} = 1$

5-9/(5-10 blank)

and the second state and the second the second to the second second second second second second second second s

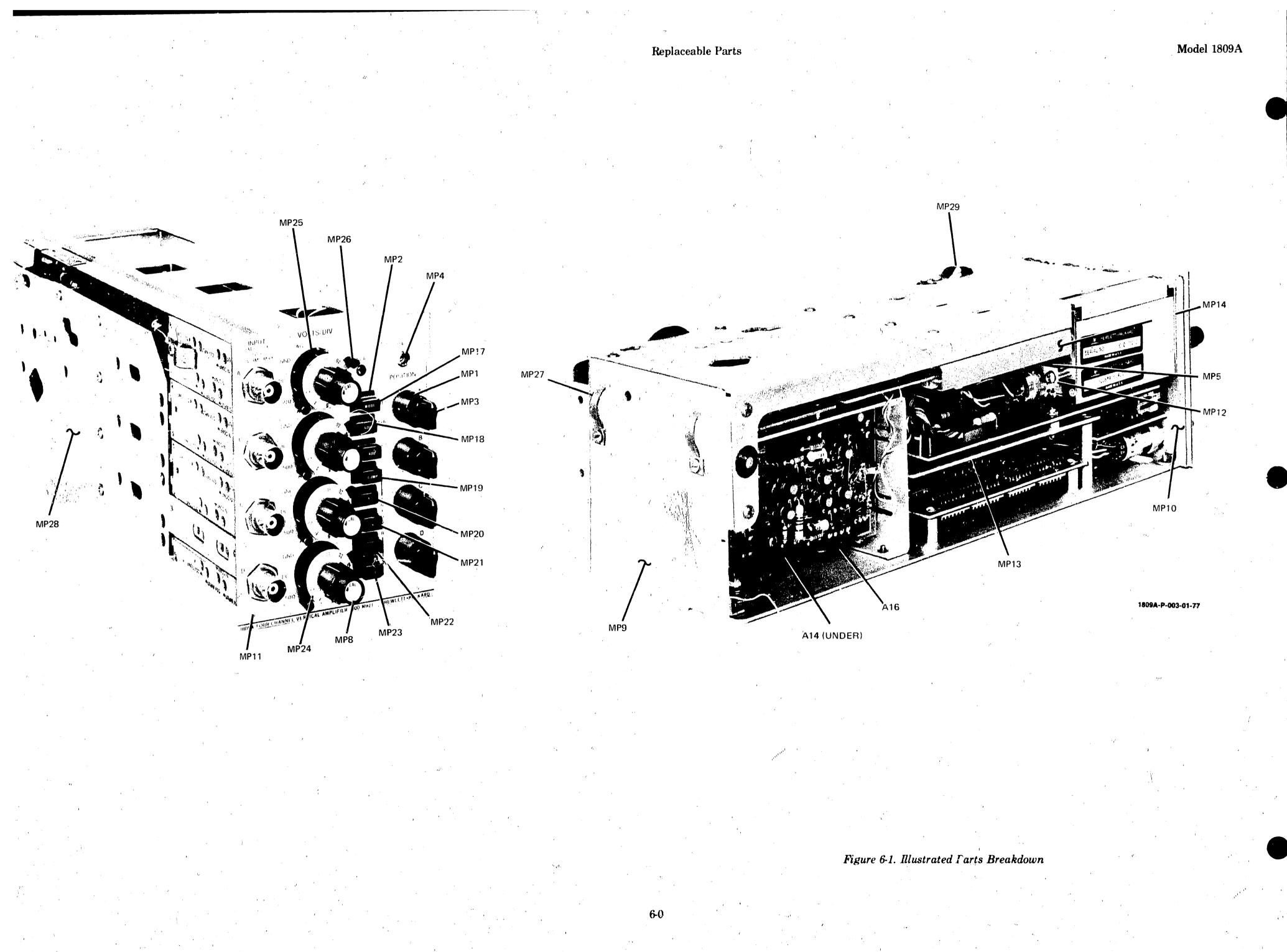

A3 -

OGV INPUT 05V COMP 02V COM 05V COME 05V COM

> INPL THM **Le**:8

C1

C2 R11 R2 C3 C2 C4 C5 C7 C8 R4 C6 TYPICAL 4 PLACES TYPICAL 4 PLACES



1809A-P-002

Figure 5-8. Adjustment Locations 5-11

en Name

DA RIS

SECTION VI

REPLACEABLE PARTS

INTRODUCTION. 6-1.

6-2. This section contains information for ordering replacement parts. The abbreviations used in the parts list are described in table 6-1. Table 6-2 lists the parts in alphanumeric order by reference designation and includes the manufacturer and manufacturer's part number. Table 6-3 contains the list of manufacturers' codes.

ORDERING INFORMATION. 6-3.

6-4. To obtain replacement parts from Hewlett-Packard, address order or inquiry to the nearest Hewlett-Packard Sales/Service Office and supply the following information:

7) 7)

a. Instrument model and serial number.

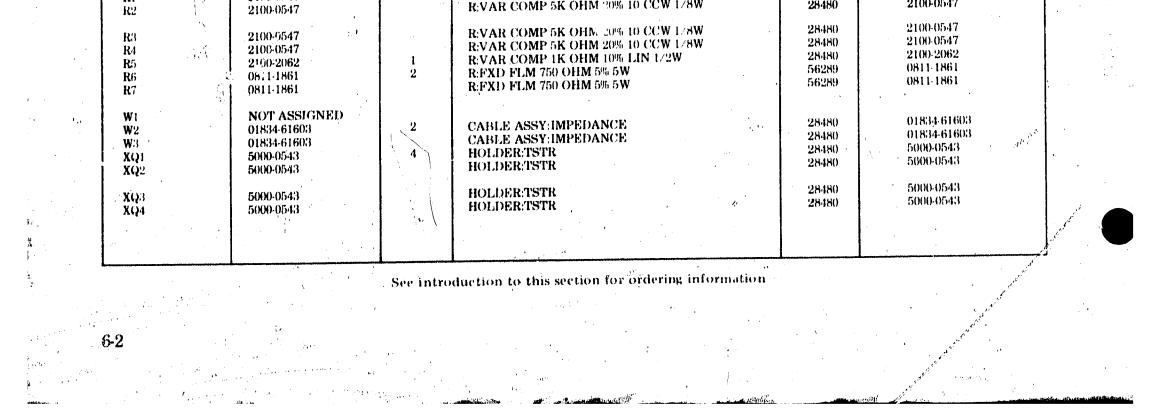
b. HP part number of item(s).

Quantity of part(s) desired. с.

d. Reference designator of part(s).

6-5. To order a part not listed in the table, provide the following information:

a. Instrument model and serial number.


b. Description of the part, including function and location in the instrument.

c. Quantity desired.

A .	AMPERE (S)	н	HENRY(IES)	NPN	NEGATIVE POSITIVE	RWV	REVERSE WORKING
ASSY	ASSEMBLY	HG	MERCURY		NEGATIVE		VOLTAGE
		HP	HEWLETT PACKARD	NSR	NOT SEPARATELY		
8D	BOARD(S)	HZ	HERTZ		REPLACEABLE	S-B	SLOW BLOW
BH	BINDER HEAD					SCR	SILICON CONTROLLED
BP	BANDPASS	IF	INTERMEDIATE FREQ.				RECTIFIER
	<i>y</i> ¹	IMPG	IMPRESNATED	OBD	ORDER BY	SE	SELENIUM
С	CENTI (10 ⁻²)	INCD	INCANDESCENT		DESCRIPTION	SEC	SECOND(S)
CAR	CARBON	INCL	INCLUDE(S)	OH	OVAL HEAD	SECT	SECTION(S)
CCW	COUNTERCLOCKWISE	INS	INSULATION(ED)	OX	OXIDE	SI	SILICON
CER	CERAMIC	INT	INTERNAL			SIL	SILVER
CMO	CABINET MOUNT ONLY			Ρ	PEAK	SL	SLIDE
COAX	COAXIAL	ĸ	KILO (10 ³)	PC	PRINTED (ETCHED)	SP	SINGLE POLE
COEF	COEFFICIENT	KG	KILOGRAM		CIRCUIT(S)	SPL	SPECIAL
COMP	COMPOSITION			PF 🛷	PICOFARADS	ST	SINGLE THROW
CONN	CONNECTOR(S)	LB	POUND(S)	PHL	PHILLIPS	STD	STANDARD
CRT	CATHODE RAY TUBE	LH	LEFT HAND	PIV	PEAK INVERSE		
CW	CLOCKWISE	LIN	LINEAR TAPER		VOLTAGE(S)	TA	TANTALUM
		LOG	LOGARITHMIC TAPER	PNP	POSITIVE NEGATIVE	TD	TIME DELAY
D	DECI (10 ⁻¹)	LPF	LOW PASS FILTER(S)		POSITIVE	TFL	TEFLON
DEPC	DEPOSITED CARBON	LVR	LEVER	P/O	PART OF	TGL	TOGGLE
DP	DOUBLE POLE	100 ¥ 7 5	944 Mar 17 Bar 17 7	PORC	PORCELAIN	THYR	THYRISTOR
DT	DOUBLE THROW	M	MILLI (10 ⁻³)	POS	POSITION(S)		TITANIUM
		MEG	MEGA (10 ⁶)	POT	POTENTIOMETER(S)		TUNNEL DIODE(S)
ELECT	ELECTROLYTIC	MET FILM		P.P	PEAK TO PEAK	TOL	TOLERANCE
ENCAP	ENCAPSULATED	METOX	METAL OXIDE	PRGM		TRIM	TRIMMER
EXT	EXTERNAL	MFR	MANUFACTURER	PS	POLYSTYRENE		
		MINAT	MINIATURE	PWV	PEAK WORKING	U	MICRO (10 ⁻⁶)
F	FARAD(S)	MOM	MOMENTARY		VOLTAGE	*	
FET	FIELD-EFFECT	MTG	MOUNTING		аранан тарат таратан калан к	v	VOLTS
F G 1	TRANSISTOR(S)	MY	MYLAR	RECT	RECTIFIER(S)	VAR	VARIABLE
FH	FLAT HEAD	141-1		RF	RADIO FREQUENCY	VDCW	DC WORKING VOLT(S)
	FILLISTER HEAD	N	NANO (10 ⁻⁹)	RFI	RADIO FREQUENCY		
		N/C	NORMALLY CLOSED	ni i	INTERFERENCE	W	WATT(S)
FXD	FIXED	NE	NEON	RH	ROUND HEAD	W/	WITH
Ċ	CICA (109)	N/O		nn	OR	WIV	WORKING INVERSE
G	GIGA (10 ⁹)	NOP	NORMALLY OPEN NEGATIVE POSITIVE		RIGHT HAND		VOLTAGE
GE	GERMANIUM	NUP	ZERO (ZERO TEMPER-	DMO	RACK MOUNT ONLY	W/O	WITHOUT
GL	GLASS:		•	RMO		ww	WIREWOUND
GRD	GROUNDED	· · ·	ATURE COEFFICIENT)	RMS	ROOT MEAN SQUARE	****	WINEWUUND

Table 6-1. Abbreviations for Replaceable Parts List

	1	Fable 6-2. Replaceable Parts	<u>را</u>	and a second
Reference Designation HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
		CHASSIS PARTS		
A1 01834-63401 A2 01834-63401 A3 01834-63401 A4 01834-63401 A5 01835-66504		ATTENUATOR ASSY:CHANNEL A ATTENUATOR ASSY:CHANNEL B ATTENUATOR ASSY:CHANNEL C ATTENUATOR ASSY:CHANNEL D PREAMPL ASSY:CHANNEL Å	28480 28480 28480 28480 28480 28480	01834-63401 01834-63401 01834-63401 01834-63401 01835-66504
A6 01835-66504 A7 01835-66504 A8 01835-66504 A9 01809-66503 A10 NOT AVAILABLE		PREAMPL ASSY:CHANNEL B PREAMPL ASSY:CHANNEL C PREAMPL ASSY:CHANNEL D BOARD ASSY:INTERMEDIATE OUTPUT AMPLIFIER ASSY	28480 28480 28480 28480 28480	01835-66504 01835-66504 01835-66504 01809-66503
AS ASSEMBLY A10A1 01809-66502 A10A2 01809-66501 A11 01809-66507 A12 01834-66510 A13 01809-66506	1	BD ASSY:MAIN AMP BOARD ASSY:OUTPUT BOARD ASSY:MOTHER BOARD ASSY:POSITION-INVERTER BOARD ASSY:CHASSIS INTERCONNECT	28480 28480 28480 28480 28480 28480	01809-66502 01809-66501 01809-66507 01834-66519 01834-66506
A14 01809-61601 A15 01809-66504 A16 01809-66505 DS1 2140-0018 J1 1250-0897 L1 thru 9170-0016	1 1 24	ASSY:DELAY LINE BOARD ASSY:CHANNEL CONTROL BOARD ASSY:SYNC LAMP:GLOW 1.0 MILLIAMPS 0.1W CONN:COAX 75 OHM MALE CORE-SHIELDING BEAD	28480 28480 28480 08806 24931 02114	01809-61601 01809-65504 01809-66505 A9A-C(NE-2E1) 33JR137-1 56-599-65A1/3B
L16 MP1 0370-0682 MP2 0370-0451 MP3 0370-2498 MP4 1490-0968 MP5 5040-0218	4 8 4 1 4	KNOB:RND BLK 0.540" DIA (POSITION) BEZEL:PUSHBUTTON KNOB BLK NYLON KNOP:BAR (OFF-ON-INVT) BUSHING:POTENTIOMETER 1/4-22 EXT THRD COUPLER:SWITCH SHAFT	28480 28480 28480 00000 28480	0370-0682 0370-0451 0370-2498 ORD 5040-0248
MP6 5060-0451 MP7 5060-0458 MP8 01804-67401	1 1 1	LENS ASSY HEADER:LAMP KNOB ASSY:VERNIER (CAL)	28480 28480 28480	5060-0451 5060-0458 01804-67401
MP9 01834/00204 MP10 01834/00201	1	PANEL:REAR PANEL:SUB	28480 28480	01834-00204 01834-00201
MP11 01809-00201 MP12 01834-01201 MP13 01834-01203 MP14 01835-01201 MP15 01808-23201		PANEL:FRONT BRACKET:POTENTIOMETER MOUNTING BRACKET:MAIN BRACKET:PREAMPLIFIER SHAFT:VERNIER	28480 28480 28480 28420 28420 28480	01809-00201 01834-01201 01834-01203 01835-01201 01808-23201
MP16 01809-60101 MP17 01834-67401 MP18 01834-67402 MP19 01834-67403 MP20 01834-67404	1 1 2 1 1	ASSY:CHASSIS PUSHBUTTON ASSY:MODE PUSHBUTTON ASSY:ADD PUSHBUTTON ASSY:COMP PUSHBUTTON ASSY:A	28480 28480 28480 28480 28480 28480	01809-60101 01834-67401 01834-67402 01834-67403 01834-67404
MP21 01834-67405 MP22 01834-67406 MP23 01834-67407 MP24 01834-67409 MP25 01834-67410	1 1 1 4 4	PUSHBUTTON ASSY:B PUSHBUTTON ASSY:C PUSHBUTTON ASSY:D KNOB ASSY:VOLTS/DIV SPACER:DIAL ASSY	284480 28480 28480 28480 28480 28480	01834-67405 01834-67406 01834-67407 01834-67409 01834-67410
MP26 5040-7475 MP27 00180-09104 MP28 01809-04701 MP29 01834-09103 Q1 1854-0567 Q2 1854-0567	4 2 1 1 4	LEVER:COUPLING CLIP:GND SUPPORT:PLUGIN SPRING:GROUNDING TSTR TSTR	28480 28480 28480 28480 28480 28480 28480 28480	5040-7475 00180-09104 01809-04701 01834-09103 1854-0567 1854-0567 1854-0567

6-3

		Г	, 		DAG-	
Refei Desig	ence nation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numbe
A1 A1A1 A1A1Q A2	• •	01834-63401 5081-3008 1855-0408 01834-63401	4 4 1	ATTENUATOR ASSY:CHANNEL A ASSY:SUBSTRATE TSTR:DUAL ATTENUATOR ASSY:CHANNEL B (SAME AS A1, USE PREFIX A2)	28480 28480 28480 28480 28480	01834-63401 5081-3008 1855-0408 01834-63401
Ä3	۱	01834-63401		ATTENUATOR ASSY:CHANNEL C (SAME AS A1, USE PREFIX A3)	28480	01834-63401
A 4		01834-63401		ATTENUATOR ASSY:CHANNEL D (SAME AS A1, USE PREFIX A4)	28480	01834-63401
A5 A5C1 A5C2	•	01835-66504 0160-3567 0121-0467	4 3 3 · ·	PREAMPL ASSY:CHANNEL A C:FXD CER 10.0 PF 5% 100VDCW C:VAR CER 3.0-9.0 PF 100VDCW	28480 72082 72982	01835-66504 8101-100-COG-100J 511-000-3-9A
*A5C3 A5C4 A5C5 A5C6 A5C6 A5C7		0160-3565 0180-0291 0460-3565 0160-3470 0160-3470	7 7 12	C:FXD CER 6.8 PF 100VDCW C:FXD ELECT 1.0 UF 10% 35VDCW C:FXD CER 6.8 PF 100VDCW C:FXD CER 0.01 UF +80 20% 50VDCW C:FXD CER 0.01 UF +80 20% 50VDCW	72982 56289 72982 72982 72982 72982	8101-100-COG-689J 150D105X9035A2-DYS 8101-100-COG-689J 8121-050-651-103Z 8121-050-651-103Z
A5C8 A5C9 A5C10 A5C11 A5C12 A5C13 A5C13 A5C14 A5C14 A5C14 A5C14 A5C14 A5C14 A5C14 A5C14 A5C2 A5C13 A5L2 A5L3 A5L4 A5C12 A5C1 A5C12 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C10 A5C12 A5C13 A5C13 A5C13 A5C14 A5C12 A5C13 A5C14 A5C12 A5C13 A5C14 A5C14 A5C14 A5C14 A5C12 A5C13 A5C14 A5C12 A5C13 A5C14 A5C14 A5C12 A5C13 A5C14 A5C12 A5C13 A5C14 A5C14 A5C12 A5C13 A5C14 A	· · ·	$\begin{array}{c} 0160.3567\\ 0160.3470\\ 0160.3470\\ 0160.3470\\ 0160.3470\\ 0160.3451\\ 0160.3802\\ 1910.0030\\ 9100.2268\\ 9100.2268\\ 9170.0016\\ 9170.0016\\ 0698.7274\\ 2100.2655\\ 0698.7242\\ 2100.1984\\ 0757.0069\\ \end{array}$		C:FXD CER 10.0 PF 5% 100VDCW C:FXD CER 0.01 UF +8020% 50VDCW C:FXD CER 0.01 UF +8020% 50VDCW C:FXD CER 150 PF + 10% 50VDCW C:FXD CER 0.01 UF +8020% 50VDCW C:FXD CER 0.01 UF +8020% 100VDCW C:FXD CER 150 PF +8010% 50VDCW DIODE:SWITCHING 15V MAX 50MA COIL:FXD 22.0 UH 10% COIL:FXD 22.0 UH 10% CORE-SHIELDING BEAD CORE-SHIELDING BEAD CORE-SHIELDING BEAD R:FXD FLM 38.3K OHM 2% 1/8W R:VAR CERMET 100K OHM 10% LIN 1/2W R:FXD FLM 1.78K OHM 2% 1/8W R:VAR FLM 100 OHM 10% LIN 1/2W R:VAR MET FLM 121 OHM 1% 1/4W	$\begin{array}{c} 72982 \\ 72982 \\ 72982 \\ 28480 \\ 72982 \\ 56289 \\ 28480 \\ 28480 \\ 82142 \\ 82142 \\ 82142 \\ 82142 \\ 02114 \\ 02114 \\ 02114 \\ 28480 \\$	8101-100-COG-100J 8121-050-651-103Z 8121-050-651-103Z 0160-3802 8121-050-651-103Z C023B101F103ZS25-CDH 0160-3802 1910-0030 09-1316-4K 09-1316-4K 56-590-65A1/3B 56-590-65A1/3B 56-590-65A1/3B 0698-7274 2100-2655 0698-7243 2100-1984 0757-0069
A5R6 A5R7 A5R8 A5R9 A5R10	•	0698-7252 0698-7252 0C98-7243 0757-1094 0757-0421	$egin{array}{c} 1 \\ 1 \\ 2 \end{array}$	R:FXD FLM 4.64K OHM 2% 1/8W R:FXD FLM 4.64K OHM 2% 1/8W R:FXD FLM 1.96K OHM 2% 1/8W R:FXD MET FLM 1.47K OHM 1% 1/8W R:FXD MET FLM 825 OHM 1% 1/8W	28480 28480 28480 28480 28480 28480	0698-7252 0698-7252 0698-7243 0757-1094 0757-0421
A5R11 A5R12 A5R13 A5R14 A5R15	. · ·	2100-1986 0757-0444 0757-0438 0757-0431 0757-0447	2 1 2 2 1	R:VAR CERMET 1000 OHM 10% LIN 1/2W R:FXD MET FLM 12.1K OHM 1% 1/3W R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 2.43K OHM 1% 1/8W R:FXD MET FLM 16.2K OHM 1% 1/8W	28480 28480 28480 28480 28480 28480	2100-1986 0757-0444 0757-0438 0757-0431 0757-0447
A5R16 A5R17 A5R18 A5R19 A5U1		0757-0279 2100-2216 0757-0418 0698-7212	$egin{array}{c}1\\1\\2\\3\\1\end{array}$	R:FXD MET FLM 3.16K OHM 1% 1/8W R:VAR FLM 5K OHM 10% LIN 1/2W R:FXD MET FLM 619 OHM 1% 1/8W R:FXD FLM 100 OHM 2% 1/8W IC:P/O A5 (NSR)	28480 28480 28480 28480 28480	0757 0279 2100-2216 0757 0418 .0698 7212
A5VR1 A5XU1 A6 A7		1902-3125 1200-0441 01835-66504 01835-66504	4 ⁶	DIODE-BREAKDOWN 6.98V 2% SOCKET:IC 14 PIN MINATURE PREAMPLASSY:CHANNEL B SAME AS A5, USE PREFIX A6 PREAMPLASSY:CHANNEL C SAME AS A5, USE PREFIX A7	04713 29480 28480 28480	SZ 10939-138 1200-0441 01835-66504 01835-66504
A8 A9 A9C1 A9C2 A9C3 A9C4 A9C5		01835-66504 01809-66503 0160-3470 0160-3647 0160-3647 0160-3565 0160-3470 0160-3647	, l 2	PREAMPL ASSY:CHANNEL D SAME AS A5, USE PREFIX A8 BOARD ASSY:INTERMEDIATE C:FXD CER 0.01 UF +8020% 50VDC W C:FXD CER 22 PF 5% 100VDCW C:FXD CER 6.8 PF 100VDCW C:FXD CER 0.01 UF +8020% 50VDCW C:FXD CER 22 PF 5% 100VDCW	28480 28480 72982 72982 72982 72982 72982 72982 72982	01835-66504 01809-66503 8121-050-651-103Z 8111-A112-COG-220J 8101-100-COG-689J 8121-050-651-103Z 8111-A112-COG-220J
A9C6 A9C7 A9C8 A9C9 A9C10		0160-3565 0160-2204 0121-0467 0160-3799 0140-0191	1	C:FXD CER 6.8 PF 100VDCW C:FXD MICA 100PF 5% C:VAR CEP 3.0-9.0 PF 100VDCW C:FXD CER 18 PF ±10% 100VDCW C:FXD MICA 56 PF ±5% 300VDCW	72982 72136 72982 28480 28480	8101-100-COG-689J RDM15F101J3C 511-000-3-9A 0160-3799 0140-0191
A9C11 A9C12	ŕ	0160-3470 0160-3451	27	C:FXD CER 0.01 UF +80	72982 56289	- 8121-050-651-103Z C023B101F103ZS25-CDH

See introduction to this section for ordering information

ghi.

Replaceable Parts

••

.

abasis, a

6-4

 \cdot .

.

1

Model 1809A

e

1

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number	1 1
		1				
A9C13 A9C14 A9C15	, 0160-3567 0160-3470 0160-3470 0160-3470		C:FXD CER 10.0 PF 5% 100VDCW C:FXD CER 0.01 UF +80 -20% 50VDCW C:FXD CER 0.01 UF +80 -20% 50VDCW	72982 72982 72982	8101-100-COG-100J 8121-050-651-103Z +8121-050-651-103Z	
A9C16 A9C17 A9C18 A9C19 A9C20	0160-3451 0160-3470 0160-3470 0160-3446 0160-3451		C(FXD CER 0.01 UF +8020% 100VDCW C(FXD CER 0.01 UF +8020% 50VDCW C(FXD CER 0.01 UF +8020% 50VDCW C(FXD CER 220 PF ±10% 1000VDCW C(FXD CER 0.01 UF +8020% 100VDCW	56289 72982 72982 28480 56289	C023B101F103ZS25-CDH 8121-050-651-103Z 8121-050-651-103Z 0160-3446 C023B101F103ZS25-CDH	
A9C21 A9C22 A9C23 A9C23 A9CR1 A9CR2	0160-3451 0160-3470 0160-3451 0122-0287 0122-0287	2	C:FXD CER 0.01 UF +8°20% 100VDCW C:FXD CER 0.01 UF +8020% 50VDCW C:FXD CER 0.01 UF +8020% 100VDCW DIODE-VVC SI DIODE-VVC SI	56289 72982 56289 04713 04713	C023B101F103Z\$25-CDH 8121-050-651-103Z C023B101F103ZS25-CDH SMV389-287 SMV389-287	
A9CR3 A9CR4 A9CR5 A9CR5 A9CR6 A9CR7	1901-0047 1901-0047 1901-0047 1901-0047 1901-0047 1901-0040	4	DIODE JUNCTION:SILICON 20PIV DIODE JUNCTION:SILICON 20PIV DIODE JUNCTION:SILICON 20PIV DIODE JUNCTION:SILICON 20 PIV DIODE:SILICON 50 MA 30 WV	28480 28480 28480 28480 28480 07263	1901-0047 1901-0047 1901-0047 1901-0047 FDG1088	
A9CR8 A9J1 A9L1 A9L2 A9Q1	1901-0040 1200-0441 9100-2257 9100-2257 5080-9675	1	DIODE:SILICON 50 MA 30 WV SOCKET:IC 14 PIN MINIATURE COIL/CHOKE .82 UH 10% COIL/CHOKE .82 UH 10% TSTR:MATCHED QUAD	07263 28480 24226 24226 28480	FDG1088 1200-0441 10/820 10/820 5080-9675	١
A9Q2 A9Q3 A9Q4 A9Q5 A9Q6	1854-0546 1854-0546	2	PART OF A9Q1 PART OF A9Q1 PART OF A9Q TSTR:SI NPN TSTR:SI NPN	28480. 28480	1854-0546 1854-0546	
A9Q7 A9Q8 A9Q9 A9Q10 A9R1	1853-0352 1853-0352 1853-0352 1853-0352 1853-0352 0698-7239	4	TSTR:SI PNP TSTR:SI PNP TSTR:SI PNP TSTR:SI PNP R:FXD MET OX 1.33K OHM 2% 1/20W	28480 28486 28480 28480 28480 28480	1853-0352 1853-0352 1853-0352 " 1853-0352 0698-7239	
A9R2 - A9R3 - A9R4 - A9R5 - A9R6	0698-7239 0757-0284 0757-0284 0757-0718 0698-7197	6 2 2	R:FXD MET OX 1.33K OHM 2% 1/20W R:FXD MET FLM 150 OHM 1% 1/8W R:FXD MET FLM 150 OHM 1% 1/8W R:FXD MET FLM 200 OHM 1% 1/4W R:FXD FLM 23.7 OHM 2.0% 1/20W	28480 28480 28480 28480 28480 28480	0698-7239 0757-0284 0757-0284 0757-0718 0698-7197	
A9R7 A9R8 A9R9 A9R10 A9R11	0698-7197 0698-7239 0698-7239 0698-7239 0698-7235 0698-7209	5 2 2	R:FXD FLM 23.7 OHM 2.0% 1/20W R:FXD FLM 1.33K OHM 2% 1/8W R:FXD FLM 1.33K OHM 2% 1/8W R:FXD FLM 909 OHM 2% 1/8W R:FXD FLM 75 OHM 2% 1/8W	28480 28480 28480 28480 28480 28480	0698-7197 0698-7239 0698-7239 0698-7235 0698-7209	
A9R12 A9R13 A9R14 A9R15 A9R16	0698-7239 0698-7239 0757-0284 0757-0284 0757-0718,		R:FXD MET OX 1.33K OHM 2% 1/20W R:FXD MET OX 1.33K OHM 2% 1/20W R:FXD MET FLM 150 OHM 1% 1/8W R:FXD MET FLM 150 OHM 1% 1/8W R:FXD MET FLM 200 OHM 1% 1/4W	 28480 28480 28480 28480 28480 28480 	0698-7239 0698-7239 0757-0284 0757-0284 0757-0284 0757-0218	
A9R17 A9R18 A9R19 A9R20 A9R21	0698-7197 0698-7197 0698-7239 0698-7239 0698-7239 0698-7235	2	R:FXD FLM 23.7 OHM 2% 1/20W R:FXD FLM 23.7 OHM 2% 1/20W R:FXD FLM 1.33K OHM 2% 1/20W R:FXD FLM 1.33K OHM 2% 1/20W R:FXD FLM 909 OHM 2% 1/8W	28480 28480 28480 28480 28480 28480	0698-7197 0698-7197 0698-7239 0698-7239 0698-7239 0698-7235	
A9R22 A9R23 A9R24 A9R25 A9R26	0698-7209 0757-0276 .0757-0284 0757-0284 0698-7229.	1	R:EXD FLM 75 OHM 2% 1/8W R:EXD FLM 61.9 OHM 1% 1/8W R:EXD MET FLM 150 OHM 1% 1/8W R:EXD MET FLM 150 OHM 1% 1/8W R:EXD FLM 511 OHM 2% 1/8W	28480 24546 28480 28480 28480 28480	0698-7209 C4-1/8-TO-6192 F 0757-0284 0757-0284 0698-7229	
A9R27 A9R28 A9R29 A9R30 A9R31 A9R32 A9R33 A9R34	0698-7239 0698-7196 0698-7196 2100-1788 0698-7254 0698-7206' 0698-7206 0698-7268	2 1 1 2 1	R:FXD FLM 1.33K OHM 2% 1/20W R:FXD FLM 21.5 OHM 2% 1/8W R:FXD FLM 21.5 OHM 2% 1/8W R:FXD FLM 500 OHM 10% L1N 1/2W R:FXD MET OX 5.62K OHM 2% 1/8W R:FXD MET OX 56.2 OHM 2% 1/8W R:FXD MET OX 56.2 OHM 2% 1/8W R:FXD FLM 21.5K OHM 2% 1/8W	$\begin{array}{r} 28480\\ 28480\\ 28480\\ 28480\\ 28480\\ 24546\\ 24546\\ 24546\\ 24546\\ 28480\\ \end{array}$	0698-7239 0698-7196 0698-7196 2100-1788 C3-1. 8-TO-5621-G C3-1./8TOO-56R2-G C3-1./8TOO-56R2-G 0698-7268	
A9R35 A9R36 A9R37 A9R38 A9R38	0757-0197 0698-3439 0757-04018 0698-3439 0757-0401	1	R:FXD MET FLM 1.5K 1% 1/2W R:FXD MET FLM 178 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 178 OHM 1% 1/8W R:FXD MET FLM 178 OHM 1% 1/8W	30983 - 16299 - 24546 - 16299 - 24546	MF7C1/2/TO-1501/F C4-1/8/TO-178R/F C4-1/8/TO-178R/F C4-1/8/TO-178R/F C4-1/8/TO-178R/F C4-1/8/TO-174F	

See introduction to this section for ordering information

6-5

ł.

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation HP Part Number Oty Description Mfr Code Mfr Part Number Anset	odel 1809A		Table	e 6-2. Replaceable Parts (Cont'd)		Replaceable Pa
Arease BYT DBAT 2 R PAR INST PLATE OF DIAL Sector PTT PLATE AREASE 2 (m) PROF R R PAR INST PLATE OF DIAL Sector PTT PLATE AREASE 2 (m) PROF R R PAR INST PLATE OF DIAL Sector PTT PLATE AREASE 2 (m) PROF R R PAR INST PLATE OF DIAL Sector PTT PLATE AREASE 0 (m) PROF R R PAR INST PLATE OF DIAL Sector PTT PLATE Sector PTT PLATE AREASE 0 (m) PTT PLATE R PAR INST PLATE R PAR INST PLATE Sector PTT PLATE		HP Part Number	T			Mfr Part Numbe
AMAGE GET/TABLE C <thc< th=""> C C <t< td=""><td>· · · ·</td><td></td><td></td><td></td><td></td><td></td></t<></thc<>	· · · ·					
ABR17 (D) 77,7480 1 (EXC) FUET FUEL (FOR 116 (FOR 112, AW) (D) 566 407,77,000 ABR00 (D) 77,7642 1 (EXC) MAT FUEL (FOR 104 (A9R41 A9R42 A9R43 A9R44 A9R44	0757-0407 2100-1986 0757-0431 0698-7219 0698-7219 0698-7228		R:FXD MET FLM 200 OHM 1% 178W R:VAR CERMET 1000 OHM 10% LJN 172W R:FXD MET FLM 2430 OHM 1% 178W R:FXD MET OX 196 OHM 2% 378W R:FXD MET OX 196 OHM 2% 178W R:FXD FLM 464 OHM 2% 178W	28480 28480 28480 24546 24546 28480	0757-0407 2100-1986 0757-0431 C3-1/8-TO-196R G C3-1/8-TO-196R G 0698-7228
Addition 2100 2316 C1 EVALUATION TO A DIAN DIAN 2100 2316 C1 A LAR 200 101 Addition DT7 A POID DT7 A POI	A9R48 A9R49 A9R50* A9R50* A9R51 A9R52 A9R53	0757-0438 0757-0405 0757-0424 0757-0280 0698-7236 0698-7212 0698-7250	1 5 1 1	R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 162 OHM 1% 1/8W R:FXD MET FLM 1.1K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD FLM 1K OHM 2% 1/8W R:FXD FLM 100 OHM 2% 1/8W R:FXD FLM 3.83K OHM 2% 1/8W R FXD MET OX 316 OHM 2% 1/20W	28480 28480 24546 24546 28480 28480 28480 28480 28480	0757/0405 C4-1/8-T0-1101-F C4-1/8-T0-1001-F 0698/7236 0698-7212 0698-7250 0698-7224
ADVED DODR BREAK DOWN ILOV 25: BURG MILEOV 25: BURG M	A9R55 A9R56 A9R57 A9RT1 A9VR1	0757-0401 0837-0035 1902-0636	t	NOT USED R:FXD MET FLM 100 OHM 1% 1/8W THERMISTOR:DISC TYPE DIODE:ZENER	24546 89473 28480	C4-1/8-TO-101 F 10617 1902/0636
AVVIG INTERCANDOWN 6.10V 755 04713 SZERERANDOWN 6.10V 755 04713 04180 520 04180 520 04180 520 04180 520 04180 520 05180 520 05180 520 05180 520 05180 520 05180 520 05180 520 05180 520 05180 520 05180 520 05180 520 05180 520 <	A9VR3 A9VR4	1902-3171 1902-3182	1 1 1	DIODE BREAKDOWN:11.0V 5% DIODE BREAKDOWN:SILICON 12.1V 5%	28480	1902-3182
Abs Abs <td>A9VR6 A9VR7 A9W1</td> <td>1902-0049. ~ 01809-61602</td> <td></td> <td>DIODE:BREAKDOWN 6.19V 5% CABLE ASSY:COAX</td> <td></td> <td></td>	A9VR6 A9VR7 A9W1	1902-0049. ~ 01809-61602		DIODE:BREAKDOWN 6.19V 5% CABLE ASSY:COAX		
A10A1C3 O121-0467 C.YAR CER 10-19-17 29-480 O160-3677 A10A1C3 O160-3667 C.PXD CER 10-19-17 29-480 O160-3667 A10A1C3 O160-3665 C.PXD CER 10-19-17 29-480 O160-3665 A10A1C5 O121-0467 C.PXD CER 10-19-16 29-480 O160-3661 A10A1C5 O121-0467 C.PXD CER 10-19-16 29-480 O160-3651 A10A1C5 O121-0467 C.PXD CER 0.01 UP 480 - 305 100 VDCW 29-480 O160-361 A10A1C5 O160-3651 C.PXD CER 0.01 UP 480 - 305 100 VDCW 29-480 O160-3451 A10A1C12 O160-3451 C.PXD CER 0.01 UP 480 - 305 100 VDCW 29-480 O160-3451 A10A1C12 O160-3451 C.PXD CER 0.01 UP 480 - 305 100 VDCW 29-480 O160-3451 A10A1C13 O160-3451 C.PXD CER 0.01 UP 480 - 305 100 VDCW 29-480 O160-3451 A10A1C13 O160-3451 C.PXD CER 0.01 UP 480 - 305 100 VDCW 29-480 O160-3451 A10A1C13 O160-3451 C.PXD CER 0.01 UP 480 - 305 100 VDCW 29-480 O160-3451 <	A10A1 A19A1C1	AS ASSEMBLY 01809-66502 0160-3470		MAIN AMPLIFIER BD ASSY C:FXD CER 0.04 UF +8020% 50VDCW	28480	
AIDA1CS 1060-3451 C2P AID FAIL 001 UP 2025 5000 W 562-29 1500100X0050A2 AIDA1C9 51800 230 C2FXD TAIL 001 UP 2025 5000 DCW 28480 0160-3451 AIDA1C10 0160-3451 C2FXD TAIL 001 UP 2025 5000 DCW 28480 0160-3451 AIDA1C12 0160-3451 C2FXD CER 0.01 UF 980 -2025 1000 DCW 28480 0160-3451 AIDA1C12 0160-3451 C2FXD CER 0.01 UF 980 -2025 1000 DCW 28480 0160-3451 AIDA1C13 0160-3451 C2FXD CER 0.01 UF 980 -2025 1000 DCW 28480 0160-3451 AIDA1C15 0160-3451 C2FXD CER 0.01 UF 980 -2026 1000 DCW 28480 0160-3451 AIDA1C15 0160-3451 C2FXD CER 0.01 UF 980 -2026 1000 DCW 28480 0160-3451 AIDA1C17 1060-3451 C2FXD CER 0.01 UF 980 -2026 1000 DCW 28480 0160-3451 AIDA1C17 1060-3451 C2FXD CER 0.01 UF 980 -2026 1000 DCW 28480 0160-3451 AIDA1C18 1060-3451 C2FXD CER 0.01 UF 980 -2026 1000 DCW 28480 0160-3451 AIDA1C17 1060-3451 C2FXD CER 0.01 UF 980 -2026 1000 DCW	A10A1C4 A10A1C5 A10A1C6	0160-3567 0160-2261 0160-3565		C:FXD CER 10 PF 45% 400VDCW C:FXD CER 15 PF 45% 500VDCW C:FXD CER 6.8 PF ±5% 100VDCW FACTORY SELECT	28480 28480 28480	0160-3567 0160-2261 0160-3565
AltoAlt('13) Olde0.3451 CEND (CR 0.01 UF 980 -20% 100VDCW) 28480 Olde0.3451 AltoAlt('14) Olde0.3451 CEND (CR 0.01 UF 980 -20% 100VDCW) 28480 Olde0.3451 AltoAlt('15) Olde0.3451 CEND (CR 0.01 UF 980 -20% 100VDCW) 28480 Olde0.3451 AltoAlt('15) Olde0.3451 CEND (CR 0.01 UF 980 -20% 100VDCW) 28480 Olde0.3451 AltoAlt('18) I060.3451 CEND (CR 0.01 UF 980 -20% 100VDCW) 28480 Olde0.3451 AltoAlt('18) I060.3451 CEND (CR 0.01 UF 980 -20% 100VDCW) 28480 Olde0.3451 AltoAlt('18) I060.3451 CEND (CR 0.01 UF 980 -20% 100VDCW) 28480 Olde0.3451 AltoAlt('18) I060.3451 CEND (CR 0.01 UF 980 -20% 100VDCW) 28480 Olde0.3451 AltoAlt('18) I060.251 COILFXD RF 220H 10% 28480 Olde0.3451 AltoAlt('2) I901-0040 DIODESI 50MA 30WV 07283 FDG10088 AltoAlt('2) I900-2251 COILFXD RF 220H 10% 28480 9100.2251 AltoAlt('2) IFXD MET FLM 182 OHM 1% 1/8W 24546 C4.1.	A10A1C9 A10A1C10 A10A1C11	± 180.0230 ± 0160.3451 ± 0160.3451		CFXD TA 1.0 UF +20% 50VDCW CFXD CER 0.04 UF +8020% 100VDCW CFXD CER 0.04 UF +8020% 100VDCW	56289 28480 28480	150D105X0050A2 0460/3451 0460/3451
A10A1R1 0757.0406 R:FXD MET FLM 182 0HM 1% 1/8W 24546 C4.1/8/TO-182R F A10A1R2 0698.7209 R:FXD METOX 75 0HM 2% 1/20W 28480 C3.1:8/TOO.75R0- A10A1R3 2100-1772 R:VAR WW 500 0HM 5% 24340 2100-1772 A10A1R3 0698.3154 R:FXD MET FLM 4.22K 0HM 1% 1/8W 16299 C4.1/8/TO-4221 F A10A1R5 0698.3154 R:FXD MET FLM 392 0HM 1% 1/8W 16299 C4.1/8/TO-4221 F A10A1R6 0757.0724 R:FXD MET FLM 392 0HM 1% 1/4W 24546 C5.1/4/TO-392R F A10A1R6 0757.0724 R:FXD MET FLM 392 0HM 1% 1/4W 24546 C4.1/8/TO-4221 F A10A1R6 0757.0397 R:FXD MET FLM 392 0HM 1% 1/4W 24546 C4.1/8/TO-4221 F A10A1R8 0757.0405 R:FXD MET FLM 182 0HM 1% 1/4W 24546 C4.1/8/TO-454R G A10A1R9 0698/7228 R:FXD MET FLM 182 0HM 1% 1/8W 24546 C4.1/8/TO-1002 F A10A1R10 0757.0444 R:FXD MET FLM 10K 0HM 1% 1/8W 24546 C4.1/8/TO-1002 F A10A1R11 0757.0444 R:FXD MET FLM 10K 0HM 1% 1/8W 24546 C4.1/8/TO-1002 F A10A1R11 0757.0444 R	A10A1C14 A10A4C15 A10A1C16 A10A1C46 A10A1C47 A10A1C48 A10A4CR1 A10A4CR2 A10A4CR2 A10A4L1	0160-3451 0160-3451 0180-0230 1060-3451 1060-3451 1901-0040 1901-0040 9100-2251		C:FXD CER 0.01 UF +80 20% 100VDCW C:FXD CER 0.01 UF +80 20% 100VDCW C:FXD TA 4.0 UF ±20% 50VDCW C:FXD CER 0.01 UF ±80 20% 400VDCW C:FXD CER 0.01 UF ±80 20% 100VDCW DIODE: SI 50MA 30WV DIODE: SI 50MA 30WV COIL:FXD RF .22UH 10%	28480 28480 56289 28480 28480 07263 07263 28480	0160-3451 0160-3451 150D105X0050A2 0160-3451 0160-3451 FDG1088 FDG1088 9100-2251
A10A1R6 0757-0724 A R:FXD MET FLM 392 OHM 1% 1/4W 24546 C5-1/4 TO-392R F A10A1R7 0757-0397 R:FXD MET FLM 68.1 OHM 1% 1/8W 24546 C4-1./8 TO-68R1 F A10A1R8 0757-0406 R:FXD MET FLM 182 OHM 1% 1/8W 24546 C4-1./8 TO-68R1 F A10A1R9 0698:7228 R:FXD MET FLM 182 OHM 1% 1/2W 24546 C4-1./8 TO-464R G A10A1R10 0757-0444 R:FXD MET FLM 10K OHM 1% 1/2W 24546 C4-1./8 TO-1002 F A10A1R11 0757-0442 R:FXD MET FLM 10K OHM 1% 1/8W 24546 C4-1./8 TO-1002 F A10A1R12 2100-2061 R:VAR C 200 OHM 10% 28480 2100-2061 A10A1R13 2100-1738 R:VAR C 10K OHM 1% 1/2W 28480 2100-2061 A10A1R13 0757-0817 R:FXD MET FLM 750 OHM 1% 1/2W 30983 MF7C1/2 TO-7514 A10A1R15 0698-7209 R:FXD MET OX 75 OHM 2% 1/20W 24546 C3-1/8 TO0-75R0	A10A1R1 A10A1R2 A10A1R3 A10A1R3	0698-7209 2100-1772 0698-3154		R:FXD METOX 75 OHM 2% 1/20W R:VAR WW 500 OHM 5% R:FXD MET FLM 4.22K OHM 1% 1/8W R:FXD MET FLM 4.22K OHM 1% 1/8W	28480 28480 16299	C441/8/TO-4221 F
A10A1R11 0757-0442 R.PAD MET FIAM COUNT 10 10 10 10 10 10 10 10 10 10 10 10 10	A10A1R7 A10A1R8 A10A1R9	0757-0397 0757-0406 0698:7228		R:FXD MET FLM 392 OHM 1% 1/4W R:FXD MET FLM 68.1 OHM 1% 1/8W R:FXD MET FLM 182 OHM 1% 1/8W R:FXD MET OX 464 OHM 2% 1/20W	24546 24546 24546	C4-1/8-TO-68R1 F C4-1/9-TO-182R F C3-1/8-TO-464R-G C4-1/8-TO-1212 F
$\mathbf{X} = \mathbf{X} + \mathbf{X} + \mathbf{Y} + $	A10A1R12 A10A1R13 A10A1R14	2100-2061 2100-1738 0757-0817		R:VAR C 200 OHM 10% R:VAR C 10K OHM 10% R:FXD MET FLM 750 OHM 1% 1/2W	28480 28480 30983	2100-2061 2100-1738 MF7C1/2 TO-751-F C3-1/8-TOO-75R0-G
A10A1R17 0757-0716 R:FXD MET FLM 162 OHM 1% 1/4W 24546 C.547/4 UV 162R+F A10A1R17 0757-0397 R:FXD MET FLM 68.1 OHM 1% 1/8W 24546 C4-1, 8/TO-68R1 F A10A1R18 0757-0397 R:FXD MET FLM 68.1 OHM 1% 1/8W 24546 FP32-1/TOO-121-J B:FXD MET OX 120 OHM 5% 1W 24546 FP32-1/TOO-121-J R:FXD MET OX 120 OHM 5% 1W 24546	A10A1R18 A10A1R19	0757-0397 0761-0025	<u>, 1</u>	R:FXD MET FLM 162 OHM 1% 1/4W R:FXD MET FLM 68.1 OHM 1% 1/8W R:FXD MET OX 120 OHM 5% 1W	24546 24546 24546	C5-1/4 TO-1621 F C5-1/4 TO-162R F C4-1/8 TO-68R1 F FP32-1/TOO-121-J FP32-1/TOO-181-J

See introduction to this section for ordering information

Table 6-3.Replaceable Parts

1	Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A	M0A2 M0A2C1 M0A2C2	01809-66501 0121-0466 0160-3451	1	OUTPUT BD ASSY C:VAR CER 1-3 PF C:FXD CER 0.01 UF +8020% 100VDCW	28480 28480 28480	01809-66501 0121-0466 0160-3451
A A A A A A A	A10A2C3 A10A2CR1 A10A2CR2 A10A2CR3 A10A2CR4 A10A2R1 A10A2R2 A10A2R3 A10A2R3 A10A2R4 A11	0160-2240 1901-0040 1901-0040 1901-0040 0757-0159 0757-0159 0757-0159 0757-0169 9757-0159 01809-66507	I	C:FXD CER 2 PF 500VDCW DIODE:SI 50MA 30WV DIODE:SI 50MA 30WV DIODE:SI 50MA 30WV DIODE:SI 50MA 30WV R:FXD MET FLM 1K OHM 1%1/2W R:FXD MET FLM 1K OHM 1% 1/2W R:FXD MET FLM 1K OHM 1% 1/2W R:FXD MET FLM 1K OHM 1% 1/2W BOARD ASSY:MOTHER	28480 07263 07263 07263 07263 30983 30983 30983 30983 28480	0160-2240 FDG1088 FDG1088 FDG1088 FDG1088 MF7C1/2:TO-1R0-F MF7C1/2:TO-1R0-F MF7C1/2:TO-1R0-F MF7C1/2:TO-1R0-F 01809-66507
A A A	A11C1 A11C2 A11C3 A11C3 A11C4 A11C5	0160-3451 0360-3451 0160-3451 0160-3451 0180-0230	2	C:FXD CER 0.01 UF +8020% 100VDCW C:FXD CER 0.01 UF +8020% 100VDCW	56289 56289 56289 56289 56289 56289	C023B101F103ZS25-CDH C023B101F103ZS25-CDH C023B101F103ZS25-CDH C023B101F103ZS25-CDH 150D105X0050A2-DYS
A A A	A11C6 A11J1 A11J2 A11L1 A11R1	0180-0230 1200-0438 1200-0438 9100-2257 0757-0453	4	C:FXD ELECT 1.0 UF 20% 50VDCW SOCKET:IC 1.6 CONTACT DUAL TYPE, BROWN SOCKET:IC 1.6 CONTACT DUAL TYPE, BROWN COIL/CHOKE .82 UH 10% R:FXD MET FLM 30.1K OHM 1% 1/8W	56289 00779 00779 24226 28480	150D105X0050A2-DYS 583529-1 583529-1 107820 0757-0453
A A A	.41R2 M1R3 M1R4 M1R5 M1R6	0757-0428 0757-0821 0757-0821 0757-0821 0757-0821 0757-0821	4	R:FXD MET FLM 1.62K OHM 1% 1/8W R:FXD MET FLM 1.21K OHM 1% 1/2W R:FXD MET FLM 1.21K OHM 1% 1/2W R:FXD MET FLM 1.21K OHM 1% 1/2W R:FXD MET FLM 1.21K OHM 1% 1/2W	28480 30983 30983 30983 30983 30983	0757-0428 MF7C1/2/TO-1211/F MF7C1/2/TO-1211/F MF7C1/2/TO-1211/F MF7C1/2/TO-1211/F
A	A11R7 A11R8 A11R8	0757-0280 0757-0280		R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W DELETED	28480 28480	0757-0280 0757-0280
A	A11R9 A11S1 A11VR1	3101-0580 1902-0074	t I	SWITCH:PUSHBUTTON DIODE:BREAKDOWN 7.15V 5%	28480 04713	5101-0580 5Z10939-140
A A A	A11W1 A11W2 A11W3 A11W3 A11W4 A11W5	8120-0573 8120-0573 8120-0573 8120-0573 8120-0573 8120-0572	4	CABLE:SPECTRO STRIP CABLE:SPECTRO STRIP CABLE:SPECTRO STRIP CABLE:SPECTRO STRIP CABLE:SPECTRO STRIP	28480 28480 28480 28480 28480 28480	8120-0573 8120-0573 8120-0573 8120-0573 8120-0573 8120-0572
A A A	A12 (12R1 A12R2 A12R3 A12R3 A12R4	01834-66510 2100-3437 2100-3437 2100-3437 2100-3437 2100-3437	4	BOARD ASSY:POSITION-INVI RTER R:VAR COMP 10K OHM 20% LIN 174W W/SW R:VAR COMP 10K OHM 20% LIN 174W W/SW R:VAR COMP 10K OHM 20% LIN 174W W/SW R:VAR COMP 10K OHM 20% LIN 174W W/SW	28480 28480 28480 28480 28480 28480	01834-66510 2100-5437 2100-3437 2100-3437 2100-3437 2100-3437
A A A A A A A	A12R5 A12S1 A12S2 A12S2 A12S3 A12S4 A12S4 A13C1 A13C1 A13C1 A13C2 A13C3	0757-0436 8120-0574 01809-66506 0160-3665 0180-0094 0160-3451	1	R:FXD MET FLM 4.32K OHM 1% 1/8W NSR:PART OF A12R1 NSR:PART OF A12R2 NSR:PART OF A12R3 NSR:PART OF A12R4 CABLE:SPECTRO STRIP BOARD ASSY:CHASSIS INTERCONNECT C:FXD CER 0.91 UF +80 -20% 500VDCW C:FXD CER 0.01 UF +80 -20% 100VDCW	28480 28480 28480 56289 56289 56289	0757-0436 8120-0574 01809-66506 C071A501K 103ZS25-CD 30D107G025DD2 DS M C023B101F103ZS25-CD
A A A	A19C4 A19C5 A19C6 A19C7	0180-0094 0160-3451 0160-3451 0160-365	 N	C:FXD ELECT 100 F +75 -10% 25VDCW C:FXD CER 0,01 UF +80 -20% 100VDCW C:FXD CER 0.01 UF +80 -20% 100VDCW C:FXD CER 0.01 UF +80 -20% 500VDCW	56289 56289 56289 56289 56289	30D107G025DD2-DSM C023B401F103ZS25-CD C023B101F103ZS25-CD C071A501K103ZS25-CD
A A A	13P1 13W1 13XA15 114 115	01801-27601 8126-0575 1251-0553 01809-61601 01809-66504	1 1 1 1	P:MALE 24 PIN CBL: ASSY:RBN 16 CONNECTOR:PC EDGE (2 X 5) 10 CONTACT ASSY:DELAY LINE BOARD ASSY:CHANNEL CONTROL	28480 28480 74868 28480 28480	01801-27601 8120-0575 225-21021 105 01809-61601 01809-66504
A A A	115C1 115C2 115C3 115C3 115C4 115C5	0160-3470 0180-0230 0180-0230 0160-3451 0160-3470		C:FXD CER 0.01 UF +8020% 50VDCW C:FXD TA 1.0 UF ±20% 50VAC C:FXD TA 1.0 UF ±20% 50VDCW C:FXD TA 1.0 UF ±20% 50VDCW C:FXD CER 0.01 UF ±8020% 100VDCW C:FXD CER 0.01 UF ±8020% 50VDCW	28480 56289 56289 56289 28480	0160-3470 150D105X0050A2 150D105X0050A2 C023B101F103ZS25-CDH 0160-3470
				C:FXD MICA 270 PF ±5% 500VDCW	72136	DM15F271J0500WV1CR

eraika.

anticesco (1997)

....

Replaceable Parts

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A15C8 A15C9 A15C10 A15C11 A15C12 A15C12 A15C13 A15C14 A15C15	0160-2204 0160-3470 0160-3470 0140-0192 0160-3451 0160-3451 0160-3451 0160-3451	-	C:FXD MICA 100 PF ±5% 300VDCW C:FXD CER 0.01 UF ±8020% 50VDCW C:FXD CER 0.01 UF ±8020% 50VDCW C:FXD MICA 68 PF ±5% 300VDCW C:FXD CER 0.01 UF ±8020% 100VDCW C:FXD CER 0.01 UF ±8020% 100VDCW C:FXD CER 0.01 UF ±8020% 100VDCW C:FXD CER 0.01 UF ±8020% 100VDCW	28480 28480 28480 72136 56289 56289 56289 56289 56289	0160-2204 0160-3470 0160-3470 DM15F274J0500WV1CR C023B101F103ZS25-CDH C023B101F103ZS25-CDH C023B101F103ZS25-CDH C023B101F103ZS25-CDH
A15C16 A15C17 A15CR1 A15CR2 A15CR2 A15CR3	0180-0230 0160-3451 1901-0040 1901-0040 1901-0040		C:FXD TA 1.0 UF 420% 50VDCW C:FXD CER 0.01 UF 480	56289 56289 07263 07263 07263	150D105X0050A2 C023B101F103ZS25-CDH FDG1088 FDG1088 FDG1088
A15L1 A15L2 A15Q1 A15Q2 A15Q3	9100-2251 9100-2251 1854-0215 1854-0215 1854-0215	. . .	COIL:FXD RF 22UH 10% COIL:FXD RF 22UH 10% TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN	28480 28480 80131 80131 80131	9100:2251 9100-2251 2N3904 2N3904 2N3904
A15Q4 A15Q5 A15Q6 A15R1 A15R2	1854-0215 1854-0215 1853-0015 0757-0437 0757-0427	122	TSTR:SI NPN TSTR:SI NPN TSTR:SI PNP R:FXD MET FLM 4750 OHM 1% 1/8W R:FXD MET FLM 1.5K OHM 1% 1/8W	80131 80131 80131 28480 28480	2N3904 2N3904 2N3640 0757-0437 0757-0427
A 15R3 A 15R4 A 15R5 A 15R6 A 15R7	0757-0289 0698-0082 0757-0283 0757-0283 0757-0422 0757-0413	1	R:FXD MET FLM 13.3K OHM 1% 1/8W R:FXD MET FLM 464 OHM 1% 1/8W R:FXD MET FLM 2K OHM 1% 1/8W R:FXD MET FLM 909 OHM 1% 1/8W R:FXD MET FLM 392 OHM 1% 1/8W	30983 16299 24546 24546 28480	MF4C1/8/TO-1332/F C4-178/TO-4640/F C4-178/TO-2001/F C4-178/TO-2001/F C4-178/TO-909R-F 0757-0413
A15R8 A15R9 A15R10 A15R11 A15R12	0757-0410 0757-0410 0757-0274 0757-0274 0757-0418 0757-0431		R:FXD MET FLM 301 OHM 1% 1/8W R:FXD MET FLM 301 OHM 1% 1/8W R:FXD MET FLM 1.21K OHM 1% 1/8W R:FXD MET FLM 619 OHM 1% 1/8W R:FXD MET FLM 619 OHM 1% 1/8W	28480 28480 24546 24546 24546 24546	0757-0410 0757-0410 C4-1/8-TO-4213-F C4-1/8-TO-619R-F C4-1/8-TO-2431-F
A15R13 A15R14 A15R15 A15R16 A15R16 A15R17	0757-0283 0698-3440 0757-0419 0757-0274 0698-0082	2 1 1	R:FXD MET FLM 2K OHM 1% 1/8W R:FXD MET FLM 196 OHM 1% 1/8W R:FXD MET FLM 681 OHM 1% 1/8W R:FXD MET FLM 681 OHM 1% 1/8W R:FXD MET FLM 464 OHM 1% 1/8W	$\begin{array}{c} 24546 \\ 16299 \\ 24546 \\ 24546 \\ 16299 \end{array}$	C4-1/8/TO-2001-F C4-1/8/TO-196R F C4-1/8/TO-681R-F C4-1/8/TO-1213-F C4-1/8/TO-1213-F
A15R18 A15R19 A15R20 A15R21 A15R22	0757-0283 0757-0427 0698-7236 0698-7236 0698-7236	I .	R:FXD MET FLM 2K OHM 1% 1/8W R:FXD MET FLM 1.5K OHM 1% 1/8W R:FXD MET OX 1K OHM 2% 1/20W R:FXD MET OX 1K OHM 2% 1/20W R:FXD MET OX 1K OHM 2% 1/20W	24546 24546 28480 28480 28480 28480	C4-1/8-TO-2001 F C4-1/8-TO-1501 F 0698-7236 0698-7236 0698-7236
A15R23 A15R24 A15R25	0698-7236 0757-0283		R:FXD MET OX 1K OHM 2% 1720W R:FXD MET FLM 2K OHM 1% 178W NOT USED R:FXT. WW 56 OHM 5%	28480 24546 91637	0698-7236 C4-178-TO-2001-F CW5-2
A15R26 A15R27 A15R28 A15U1	0811-0610 0698-3150 1820-0581	1	REFAL WW 56 OTHER 5% NOT USED REFAD MET FLM 2.37K OHM 1% 1/8W IC:DIGITAL ECL DUAL AC-COUPLED J-K-FF	16299 28480	C4-1-8-TO-2371-F 1820-0581
A15U2 A15U3 A15U4 A15U5 A15U6	1820-0145 1820-0897 1820-0897 1820-0275 1820-0275 1820-0142	1 2 2	IC:DIGITAL QUAD 2-INPT NOR GATE IC:ECL QUAD 2-INPUT AND GATE IC:ECL QUAD 2-INPUT AND GATE IC:ECL TO TTL QUAD 2-INPUT OR TRANS. IC:4-INPUT, 2-OR(NOR	$\begin{array}{c} 28480\\ 04713\\ 04713\\ 04713\\ 04713\\ 04713\\ 04713\end{array}$	1820:0145 MC1047B MC1047B MC1039P MC1039P
A15U7 A15VR1 A15VR2 A15VR2 A15XU1 A15XU2	1820-0142 1902-0052 1902-3094 1200-0438 1200-0441	1 v 1	IC:4-INPUT, 2-OR/NOR DIODE:BREAKDOWN 6.81V 400 MW DIODE:BREAKDOWN 5.11V 400 MW SOCKET:IC 16 CONTACT DUAL TYPE, BROWN SOCKET:IC 14 PIN MINIATURE	$\begin{array}{c} 0.4713 \\ 0.4713 \\ 0.4713 \\ 0.0779 \\ 28480 \end{array}$	MC1004P SZ10939-135 SZ10939-99 583529-1 -1200-0441
A15XU3 A15XU4 A15XU5 A15XU6 A15XU7 A16	1200-0441 1200-0441 1200-0438 1200-0441 1200-0441 1200-0441 01809-66505	1	SOCKET:IC 14 PIN MINIATURE SOCKET:IC 14 PIN MINIATURE SOCKET:IC 16 CONTACT DUAL TYPE, BROWN SOCKET:IC 14 PIN MINIATURE SOCKET:IC 14 PIN MINIATURE BOARD ASSY:SYNC	28-480 28-480 00779 28-480 28-480 28-480 25-480	1200-0441 1200-0441 583529-1 1200-0441 1200-0441 01809-66505
A16C1 A16C2 A16C3 A16C3 A16C4 A16C5	0160-3450 0160-3450 0160-3569 0160-2234 0160-2234		C:FXD CER .005 UF ±10% 250VDCW C:FXD CER .005 UF ±10% 250VDCW C:FXD CER 27 PF ±5% 100VDCW C:FXD CER.51 PF 500VDCW C:FXD CER .51 PF 500VDCW	28480 28480 28480 28480 28480 28480	0160-3450 0160-3450 0160-3569 0160-2234 0160-2234

See introduction to this section for ordering information

.. • 7 a and the second second and the

.

6-7

. ,

•

Replaceable Parts

· · .

6-8

ر

Model 1809A

ī.

	Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
	A16C6 A16C7 A16C8 A16C9 A16C10	0160-3567 0160-3443 0180-0230 0160-3443 0180-0230		C:FXD_CER_10_PF +5% 100VDCW C:FXD_CER_0.1_UF +8020% 50VDCW C:FXD_TA_1.0_UF +20% 50VDCW C:FXD_CER_0.1_UR +8020% 50VDCW C:FXD_TA_1.0_UF +20% 50VDCW	28480 28480 56289 28480 56289	0160-3567 0160-3443 1509105X00507.2 0160-3443 1509105X0050A2
	A1C11 A16C12 A16C13 A16C14 A16C14	0160-3451 0160-3451 0160-3451 0160-3454 0160-3592 0160-0298		C:FXD CER 0.01 UF +8020% 100VDCW C:FXD CER 2.4 PF 200VDCW C:FXD 1500 PF +10% 200VDCW	28480 28480 28480 28480 28480 56289	0160-3451 0160-3451 0160-3451 0160-3592 292P15292
	A 16CR1 A 16CR2 A 46CR3 A 16CR4 A 16L1	1901-0040 1901-0040 1901-0040 1901-0040 9100-2251		DIODE:SI 50 MA 30WV DIODE:SI 50 MA 30WV DIODE:SI 50 MA 30WV DIODE:SI 50 MA 30WV COIL:FXD RF .22 UH 10%	07263 07263 07263 07263 28480	FDG1088 FDG1088 FDG1088 FDG1088 9100-2254
	A16L2 A16Q1 A16Q2 A16Q3 A16Q4	9100-2251 1854-0345 1854-0345 1854-0345 1854-0345 1854-0345		COIL:FXD RF .22 UH 10% TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN	$\begin{array}{c} 28480 \\ 04713 \\ 04713 \\ 04713 \\ 04713 \\ 04713 \\ 04713 \end{array}$	9100-2251 2N5179 2N5179 2N5179 2N5179 2N5179
	A 16Q5 A 16Q6 A 16Q7 A 16Q8 A 16Q9	1854-0345 1854-0345 1854-0296 1853-0354 1854-0074		TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI PNP TSTR:SI NPN	04713 04713 28480 28480 28480	2N5179 2N5179 1854-0296 1853-0354 1854-0071
	A16R1 A16B2 A16R3 A16R3 A16R4 A16R5	0757-0316 0757-0422 0757-0422 0757-0422 0757-0399 0698-3444		R:FXD MET FLM 42.2 OHM 1% 1/8W R:FXD MET FLM 909 OHM 1% 1/8W R:FXD MET FLM 909 OHM 1% 1/8W R:FXD MET FLM 909 OHM 1% 1/8W R:FXD MET FLM 82.5 OHM 1% 1/8W R:FXD MET FLM 316 OHM 1% 1/8W	24546 24546 24546 24546 24546 16299	C441.8TO42R2F C441.8TO909RF C41.8TO909RF C4128TO82R5F C41.8TO82R5F C441.8TO816RF
	A 16R6 A 16R7 A 16R8 A 16R9 A 16R10	0757-0438 0757-0465 0757-0316 0757-0316 0757-0316 0757-0274		R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/8W R:FXD MET FLM 42.2 OHM 1% 1/8W R:FXD MET FLM 42.2 OHM 1% 1/8W R:FXD MET FLM 42.2 OHM 1% 1/8W	24546 24546 24546 24546 24546 24546	C4 1/8 TO-5111 F C4 1/8 TO-1003 F C4 1/8 TO 42R2 F C4 1/8 TO-42R2 F C4 1/8 TO-42R2 F C4 1/8 TO-1213 F
17 17	A16R11 A16R12 A16P13 A16P13 A15R14 A16R15	0757-1094 0698-3446 0698-3446 0757-0422 0757-0422		R:FXD MET FLM 1.47K OHM 1% 1.78W R:FXD MET FLM 383 OHM 1% 1.78W R:FXD MET FLM 383 OHM 1% 1.78W R:FXD MET FLM 309 OHM 1% 1.78W R:FXD MET FLM 909 OHM 1% 1.78W	24546 16299 16299 24546 24546	C4+1+8/TO-1471-F C4+1-8/TO-383R/F C4+1-8/TO-383R/F C4+1-8/TO-909R/F
	A16R16 A16R17 A16R18 A16R19 A16R20	0698-3430 0698-3430 0698-3439 0757-0402 0757-0402		R:FXD MET FLM 21.5 OHM 1% 1/8W R:FXD MET FLM 21.5 OHM 1% 1/8W R:FXD MET FLM 178 OHM 1% 1/8W R:FXD MET FLM 178 OHM 1% 1/8W R:FXD MET FLM 110 OHM 1% 1/8W	03888 03888 16299 24546 24546	PME55-1, 8/TO 21R6/F PME55-1/8/TO 21R5/F C4-1, 8/TO 178R/F C4-1/8/TO 111/F C4-1/8/TO 111/F
	A16R21 A16R22 A16R23 A16R23 A16R24 A16R25	0757-0817 0757-0465 0698-3430 0757-0415 0757-0415	5	R:FXD MET FLM 750 OHM 1% 1/2W R:FXD MET FLM 100K OHM 1% 1/8W R:FXD MET FLM 21.5 OHM 1% 1/8W R:FXD MET FLM 475 OHM 1% 1/8W R:FXD MET FLM 475 OHM 1% 1/8W	7 30983 24546 03888 24546 24546	MF7C1 (2/TO/754)F C4-1-8/TO-1003/F PME55-1/8/TO-21R5/F C4-1/8/TO-475R/F C4-1/8/TO-475R/F
	A16R26 A16R27 A16R28 A16R29 A16VR1	0757-0316 0757-0316 0757-0438 0757-0438 0757-0419 1902-3139	98 - L	R:FXD MET FLM 42.2 OHM 1% 1/8W R:FXD MET FLM 42.2 OHM 1% 1/8W R:FXD MET FLM 42.2 OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W R.FXD MET FLM 681 OHM 1% 1/8W DIODE:BREAKDOWN 8.25V .4W MAX PD	$\frac{24546}{24546}$ $\frac{24546}{24546}$ $\frac{24546}{04713}$	C4 1/8/TO-42R2 F C4 1/8/TO-42R2 F C4 1/8/TO-5111 F C4 1/8/TO-681R F SZ 10939/158
						4 4

Table 6-2. Replaceable Parts (Cont'd)

See introduction to this section for ordering information

una seconda de la companya de la comp

.

; ; ; ,

Replaceable Parts

MFR NO.	MANUFACTURER NAME	ADDRESS	ZIP CODE
, 00000	U.S.A. COMMON	ANY SUPPLIER OF U.S.A.	
00779	AMP INC. (AIRCRAFT MARINE PROD.)	HARRISBURG, PA.	17101
02114	FERROXCUBE CORP	SAUGERTIES, N.Y.	12477;
03888	PYROFILM CORP	WHIPPANY, N.J	07981
04713	MOTOROLA SEMICONDUCTOR PROD. INC.	PHOENIX, ARIZ.	85008
07263	TAIRCHILD CAMERA & INST. CORP. SEMICONDUCTOR DIV.	MOUNTAIN VIEW, CALIF.	94040
08806	G. E. CO. MINIATURE LAMP DEPT.	CLEVELAND, OHIO	44112
16299	CORNING GL WK ELEC CMPNT DIV.	RALEIGH, N.C.	27604
24226	GOWANDA ELECT CORP.	GOWANDA, N.Y	14070
24546	CORNING GL WK (C STYLE RES)	BRADFORD, PA.	16701
24931	SPECIALTY CONN CO. INC.	IND. IN.	46227
28480	HEWLETT-PACKARD CO. CORPORATE HQ	YOUR NEAREST HP OFFICE	
30983	MEPCO/ELECTRA CORP (VAR RES)	SAN DIEGO, CA.	92121
56289	SPRAGUE ELECTRIC CO.	, N. ADAMS, MASS.	01247
72136	ELECTRO MOTIVE MFG. CO. INC.	WILLIMANTIC, CONN.	06226
72982	ERIE TECHNOLOGICAL PROD. INC.	ERIE, PA,	16512
74868	AMPHENOLCORP. RF DIV.	DANBURY, CONN.	06810
80131	ELECTRONIC INDUSTRIES ASSOCIATION	WASHINGTON D.C.	20006
82142	AIRCO SPEER FLECT, COMP.	DU BOIS, PA.	15801

Table 6-3. List of Manufacturers' Codes

1

XX.

6-9/(6-10 blank)

a not the second france the second france in the second second second second second second second second second

BACK DATING

CHANGES

SECTION VII

MANUAL CHANGES AND OPTIONS

7-1. INTRODUCTION

7-2. This section contains information required to backdate or update this manual for a specific instrument. Description of special options and standard options are also in this section.

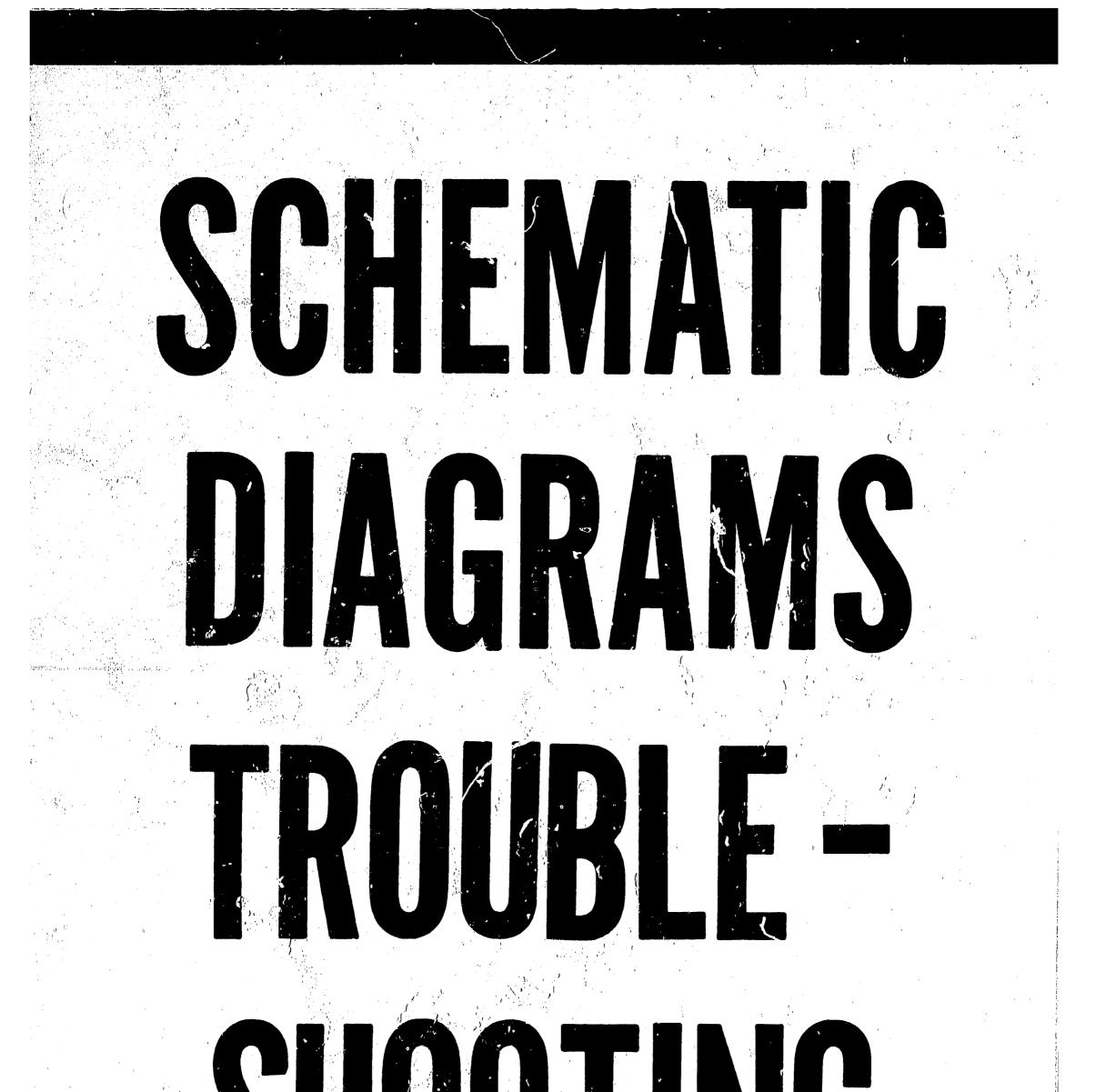
7-3. MANUAL CHANGES.

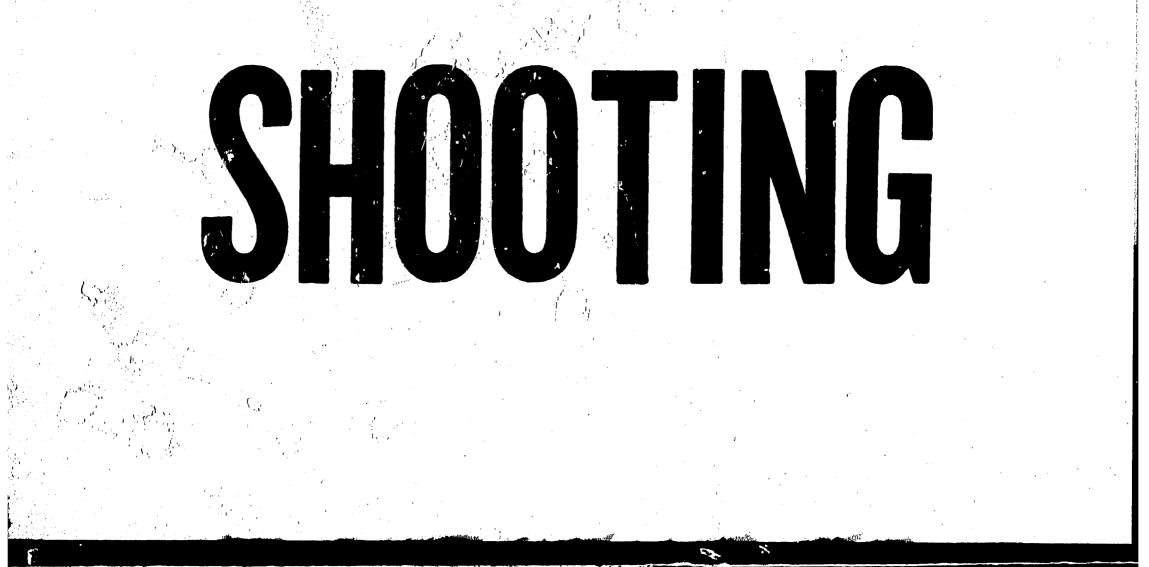
7-4. This manual applies directly to the instrument. having the same serial prefix shown on the manual title page. If the serial prefix of the instrument is not the same as the one on the title page, find your serial prefix in table 7-1 and make the changes to the manual that are listed for that serial prefix. When making changes listed in table 7-1, make the change with the highest number first. Example: if backdating changes 1, 2, and 3 are required for your serial prefix, do change 3 first, then change 2, and finally change 1. If the serial prefix of the instrument is not listed either in the title page or in table 7-1, refer to an enclosed MANUAL CHANGES sheet for 3 updating information. Also, if a MANUAL CHANGES sheet is supplied, make all indicated ERRATA corrections.

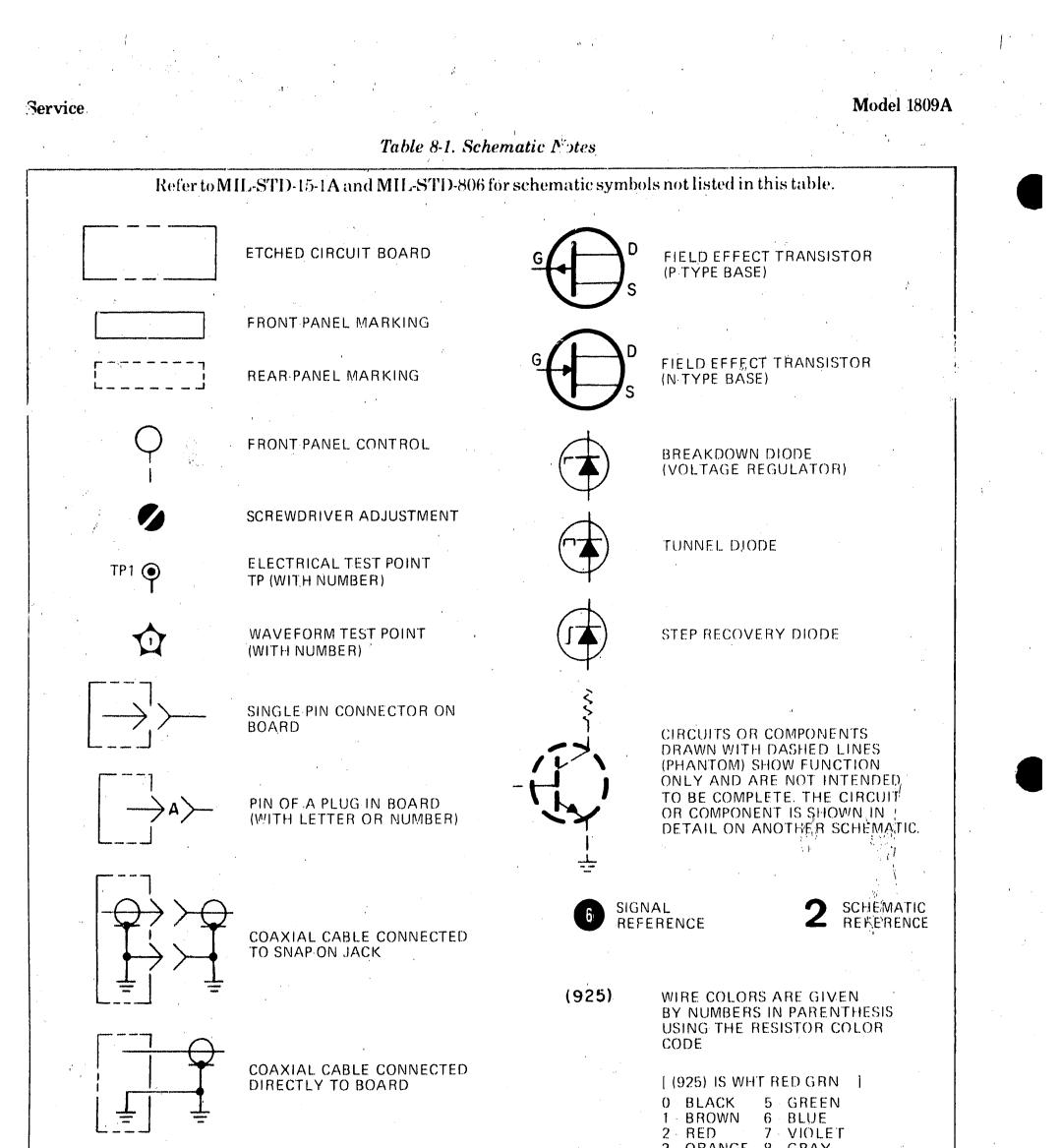
Table 7-1. Manual Uhanges

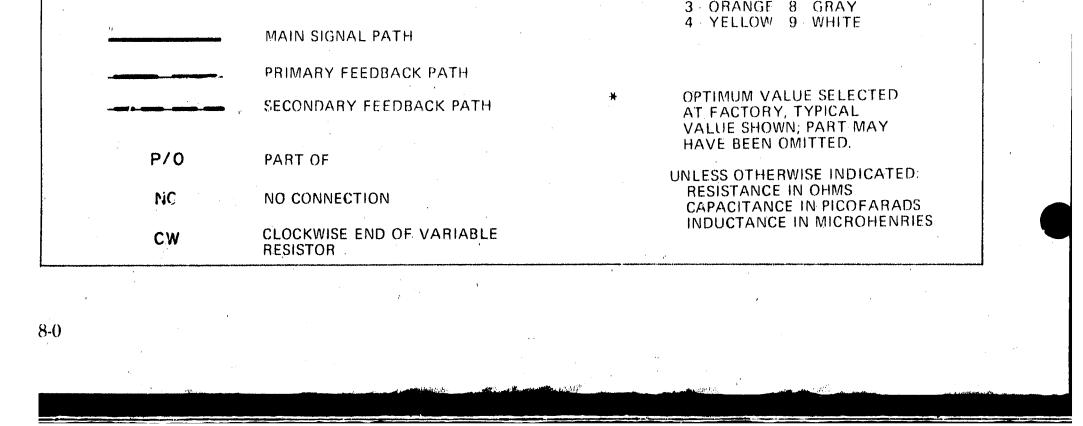
Serial Prefix	Make Changes
No backdating changes	are required at this time.

SPEC!AL OPTIONS. 7-5.


7-6. Most customer special application requirements and/or specifications can be met by factory modification of a standard instrument. A standard instrument modified in this way will carry a special option number, such as Model 0000A/Option C01.


7-7. An operating and service manual and a manual insert are provided with each special option instrument. The operating and service manual contains information about the standard instrument. The manual insert for the special option describes the factory modifications required to produce the special option instrument. Amend the operating and service manual by changing it to include all manual insert information (and MANUAL CHANGES sheet information, if applicable). When these changes are made, the operating and service manual will apply to the special option instrument.


7-8. If you have ordered a special option instrument and the manual insert is missing, notify the nearest Hewlett-Packard Sales/Service Office. Be sure to give a full description of the instrument, including the complete serial number and special option number.


STANDARD OPTIONS. 7-9.

7-10. Standard options are modifications installed on HP instruments at the factory and are available on request. Contact the nearest Hewlett-Packard Sales/Service Office for information concerning standard options.

Service

SECTION VIII

SCHEMATICS AND TROUBLESHOOTING

8-1. INTRODUCTION.

This section contains schematics, repair and replacement information, component-identification illustrations, test conditions, and troubleshooting information for the Model 1809A. Schematic 1 is a detailed block diagram that provides a guide to locating possible problems when troubleshooting. Table 8-1 defines symbols and conventions used on the schematics. A disassembly procedure for attenuator repair and replacement is also contained in this section.

NOTE

Current amplifiers are used throughout the instrument. This manual does not contain waveform photographs because current waveforms will not aid in troubleshooting the Model 1809A.

8-3. SCHEMATICS.

8-4. Schematics are printed on foldout pages for easy reference to the text and figures in other sections. The schematics are drawn to show the electronic function of the circuits. Any one schematic may include all or part of several different physical assemblies. Non-MIL-standard symbols and conventions used in the schematics are defined in table 8-1.

8-5. The schmatics are numbered in sequence with a large bold number at the lower right-hand corner of each page. These numbers are used to cross reference signal connections between the schematics. At each circuit breaking point, a number in a circle is shown, followed by another number in bold type. The circled number indicates the signal or circuit and the bold number indicates the associated schematic that contains the source or destiof USA Standard Y32.16-1968, Reference Designations for Electrical and Electronics Parts and Equipments, dated March 1, 1968. Minor variations from the standard, due to design and manufacturing practices, may be noted.

8-9. Each electrical component is assigned a class letter and a number. This letter-number combination is the basic reference designation. Components that are part of an assembly have, in addition to the basic designation, a prefix designation indicating the assembly of which the component is a part. For instance, resistor R23 of assembly A1 is designated as A1R23.

8-10. Assemblies are numbered consecutively. If an assembly reference designation is assigned and later deleted, that number is not reused.

8-11. COMPONENT LOCATIONS.

8-12. Locations of components on assemblies and subassemblies are illustrated in figures adjacent to the schematics. Since the schematics are drawn to show function, portions of a particular assembly may appear on several different schematics. The component identification is printed next to the schematic that shows most of the circuitry on the assembly.

8-13. Chassis parts are identified on figure 6-1 in Section VI. The locations of most adjustments are shown in Section V.

8-14. PREVENTIVE MAINTENANCE.

8-15. Preventive maintenance consists of periodic performance checks, calibration, mechanical inspection, lubrication, and other services designed to prevent breakdown and failure. Performance checks and calibration are covered in Section V of this manual. The other preventive maintenance services are covered in the following paragraphs.

nation of the signal. To find the source or destination of the signal, turn to the indicated schematic and find the circled number.

8-6. A table on each schematic lists all components shown on the schematic by reference designation. Component reference designators that have been deleted from the schematic are listed below the table.

8-7. REFERENCE DESIGNATIONS.

8-8. The unit system of reference designations used in this manual is in accordance with the provisions 8-16. MECHANICAL INSPECTION. Periodically inspect the instrument for damaged components, excess grease, dirt, and corrosion. Look for loose and misaligned assemblies. Ensure that all screws and fasteners are tight and serviceable.

8-17. Refer to the paragraphs in this section on repair and replacement for instructions on replacing damaged components.

Service

8-18. Painted surfaces can be cleaned with a commercial, spray-type window cleaner or with a mild soap and water solution. Excess grease can be removed with a degreaser such as M-180 FREON TF DEGREASER produced by Miller-Stevenson Company.

8-19. Corroded spots are best removed with soap and water. Stubborn residues can be removed with a fine abrasive. When using abrasives, be careful that fine particles do not fall into instrument. Such areas should be protected from further corrosion by an application of a silicon resin such as GE DRI-FILM 88.

8-20. SWITCH MAINTENANCE. The pushbutton switches used in this instrument have been designed for long, trouble-free service. In the event that one of these switches becomes defective, replacement rather than repair is recommended.

8-21. REPAIR AND REPLACEMENT.

8-22. The following paragraphs provide procedures for removal and replacement of attenuator assemblies, and other components. Special servicing instructions for etched circuit boards are provided in paragraph 8-28. Section VI provides a detailed parts list for use in ordering replacement parts.

8-23. ATTENUATOR REPAIR. Attenuator assemblies A1 through A4 use a thick-film substrate type circuit board with cam-actuated spring switch contacts. Because of the advanced design of the attenuators, it is best to send the attenuators to the nearest HP Sales/Service Office for repair. The following paragraphs provide instructions for disassembly, assembly, and care while handling.

CAUTION

Always wear protective cotton gloves (such as HP Part Number 8650-0030) while handling the thick-film substrate. The substrate is extremely susceptible to conduction paths caused by finger prints.

8-24. The only repairs that should be attempted, by other than factory personnel, are replacement of the thick-film substrate and impedance converter trana. Set coupling switch to GND position.

b. Set VOLTS/DIV switch to .01 position.

c. Remove attenuator adjustment cover by removing 4 retaining screws.

d. Unsolder attenuator output wires (color code (4) and (1)) from preamplifier assembly (A5 through A8). Use controlled output type soldering iron with tip temperature of 700°F (371°C).

e. Disconnect attenuator voltage wires (square pin connections) from preamplifier assembly (A5 through A8.)

f. Unsolder input wire from BNC connector (A1J1 through A4J1).

g. Tilt rear of substrate about 45 degrees (so contacts clear pushrods).

h. Remove substrate from spring mounting clips by sliding substrate toward preamplifier assembly.

8-26. SUBSTRATE INSTALLATION. To install attenuator substrate, proceed as follows:

a. Hold substrate with spring contacts down and input toward BNC connector (A1J1 through A4J1).

b. Tilt substrate about 45 degrees while sliding it under spring mounting clips at front of attenuator.

c. Verify substrate is centered in and flush with side cover channels.

d. Solder input wire from BNC connector to substrate. Use controlled output type soldering iron with tip temperature of 700°F (371°C).

e. Solder output wires (color code (4) and (1)) to preamplifier assembly (A5 through A8).

f. Verify grounding springs are seated inside adjustment cover channels (figure 8-1).

g. Install adjustment cover.

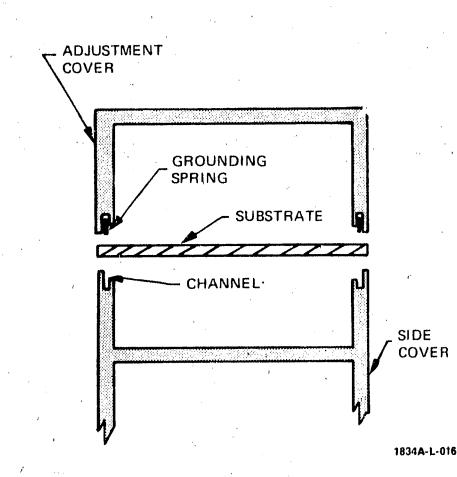
sistor Q1. If a mechanical failure occurs, replace the entire attenuator by following the procedures outlined in paragraph 8-27.

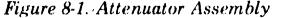
NOTE

When replacing Q1 on any attenuator assembly, lead 4 of the replacement transistor must be removed (cut off close to the mechanical base of the transistor).

8-25. ATTENUATOR DISASSEMBLY. To disassemble the attenuator, proceed as follows:

8-2


NOTE


Slight pressure applied to the adjustment cover may be necessary to align boles.

8-27. ATTENUATOR REMOVAL. The mechanical switch section of the attenuator is ruggedly constructed and will normally require no replacement. In the event of a mechanical malfunction, the entire attenuator should be replaced. To remove the attenuator from the instrument proceed as follows:

Service :

Model 1809A

a. Remove plug-in support (side panel).

b. Unsolder wires from preamplifier assemblies to buffer assembly.

c. Disconnect dual twin-lead wire connections from buffer amplifier.

d. R move chassis attaching screw from preamplifier assembly support.

e. Remove sub-panel attaching screws from chassis.

f. Move front panel and attachments forward approximately 1 inch.

g. Disconnect mother board assembly cables from preamplifier assemblies.

h. Disconnect A12 assembly cable from mother board assembly.

n. Unsolder twin-lead wires (impedance cable) from associated preamplifier of attenuator being removed.

o. Remove front-panel attaching hardware of attenuator being removed.

p. Remove rear attaching screw from associated preamplifier of attenuator being removed.

q. Remove attenuator and associated preamplifier from front panel location.

r. Disconnect attenuator wires from associated preamplifier assembly.

 \mathbf{s}_{e_0} Remove vernier bracket attaching screws.

t. Remove vernier shaft from attenuator.

u. To reinstall attenuator, reverse removal procedure.

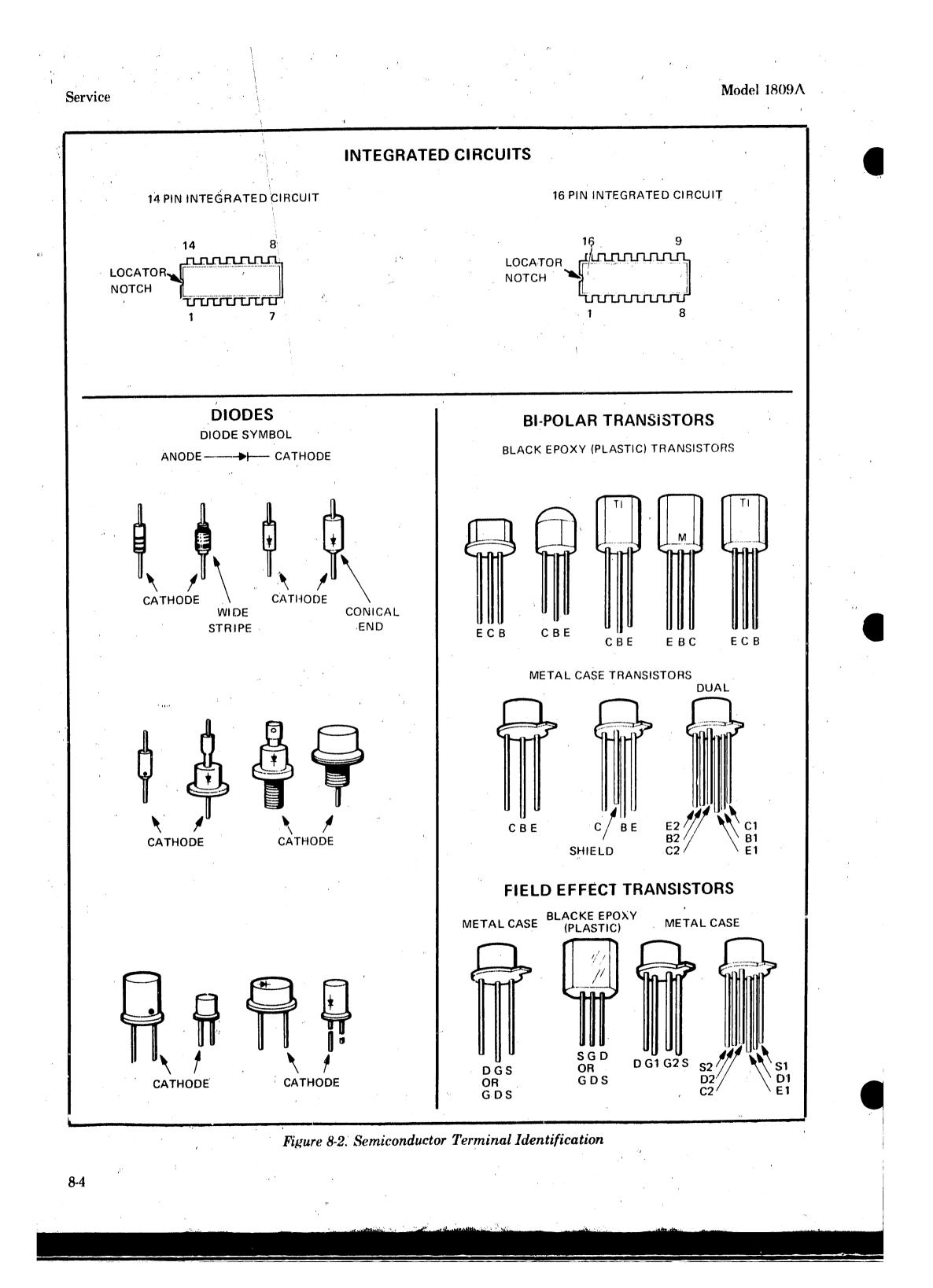
8-28. CIRCUIT BOARDS.

8-29. The following paragraphs provide information regarding servicing procedures for etched circuit boards, use of heat sinks, and special soldering considerations.

9-30. BOARD CONNECTIONS. Square-pin connectors are identified on circuit boards by the color code of the connecting wire. Connector pins on plugs and jacks are identified by either a numeral or a letter. The letters G, I, O, and Q have been omitted. Table 8-1 shows the types of board connections used in the instrument.

8-31. SERVICING ETCHED CIRCUIT BOARDS. This instrument uses etched circuit boards with platedthrough component holes. This allows components to be removed or replaced by unsoldering or soldering from either side of the board. When removing large components, such as potentiometers, rotate the soldering iron tip from lead to lead while applying pressure to the part to lift it from the board. HP Service Note M-20E contains additional information for repair of etched circuit boards.

i. Disconnect POSITION potentiometer wires from mother board assembly.


j. Disconnect CAL potentiometer wire from mother board assembly.

k. Disconnect A12 assembly wire from chassis interconnect assembly A13.

"I. Unsolder wires from vernier potentiometer of attenuator to be removed.

m. Remove vernier knobs, volts/division knobs, and coupling levers.

8-32. SEMICONDUCTOR REMOVAL AND REPLACE-MENT. Figure 8-2 is included to help identify the leads on the common shapes and sizes of semiconductor devices. When removing a semiconductor, use long-nosed pliers as a heat sink between the device and the soldering iron. When replacing a semiconductor, ensure sufficient lead length to dissipate the soldering heat by using the same length of exposed lead as used for the original part.

8-33. INTEGRATED CIRCUIT REPLACEMENT.

CAUTION

Unless an integrated circuit has definitely failed, be careful to prevent damage when removing or replacing it.

8-34. The integrated circuits in this instrument are of two general configurations: plug-in types and those soldered in place. Remove a plug-in integrated circuit with a straight pull away from the board. Soldered integrated circuits can be removed with soldering irons which simultaneously heat all connections. These irons are available from various manufacturers. Soldering irons with built-in desoldering tools also facilitate quick removal.

8-35. Use the following procedure for removing an integrated circuit with a standard soldering iron.

a. Heat lead solder joint. Use small tip such as a Weller No. PT-H7 iron.

b. When solder is fluid, remove with desoldering tool such as deluxe Model Soldapullt manufactured by Edsyn Company of California.

c. Repeat steps a and b for each lead until all leads are free.

d. Grasp each lead with long-nosed pliers and check that it is mechanically free from circuit board.

e. When all leads are free, carefully remove integrated circuit. Dual in-line type can be removed by gently gripping top and bottom with long-nosed pliers and rolling circuit out.

f. Use desoldering tool or toothpick to remove all remaining solder from circuit board holes.

CAUTION

Be careful not to damage the integrated circuit with excessive heat. Work quickly.

g. Insert replacement integrated circuit into circuit board and solder in place.

8-36. When replacing an integrated circuit, note the mark or notch used for orientation. The component-identification photographs and the integrated circuit pin-location diagrams in this manual show the correct orientation.

8-37. SOLDERING TOOL, SOLDER, AND AIDS. Table 8-2 contains a list of soldering tools, solder, and soldering aids. These items or equivalents should be used to obtain the very best results when repairing and replacing soldered-in components on etched circuit boards.

8-38. HEAT SINK REMOVAL. There are two types of transistor heat sinks: the friction type and the screwon type. The friction type can be removed by care-

Item	Use	Specification	Item Recommended
Soldering tool	Soldering Unsoldering	Wattage rating: 37.5 Tip Temp: 750-800°F	Ungar #775 handle with Ungar #1237 Heating Unit
Soldering Tip	Soldering	Shape: chisel	Ungar #PL113
Desoldering aid	To remove molten solder from connection	Suction device	Soldapullt by Edsyn Co., Arleta, California
Resin (flux) Solvent	Remove excess flux from soldered area before application of protective coating	Must not dissolve etched circuit base board material or conductor bonding agent	Freon Acetone Lacquer Thinner Isopropyl Alcohol (100% dry)
Solder	Component replacement Circuit board repair Wiring	Resin (flux) core, high tin content (60/40 tin/lead). 18-gauge (SWG) preferred	
Protective Coating	Contamination, Corrosion protection	Good electrical insulation, corrosion-prevention properties	Silicon Resin such as GE DRI-FILM 88
		λ <u>α</u>	8-5

Table 8-2. Etched Circuit Soldering Equipment

Service

Service

fully pulling them off. To remove the screw-on type, proceed as follows:

- a. Remove transistor from circuit board.
- b. Grasp cooling fins with taped pliers.
- c. Remove nut with 1/2-inch wrench.

CAUTION

When replacing heat sinks, especially friction type, support the bottom of the transistors to avoid lead damage caused by downward pressure.

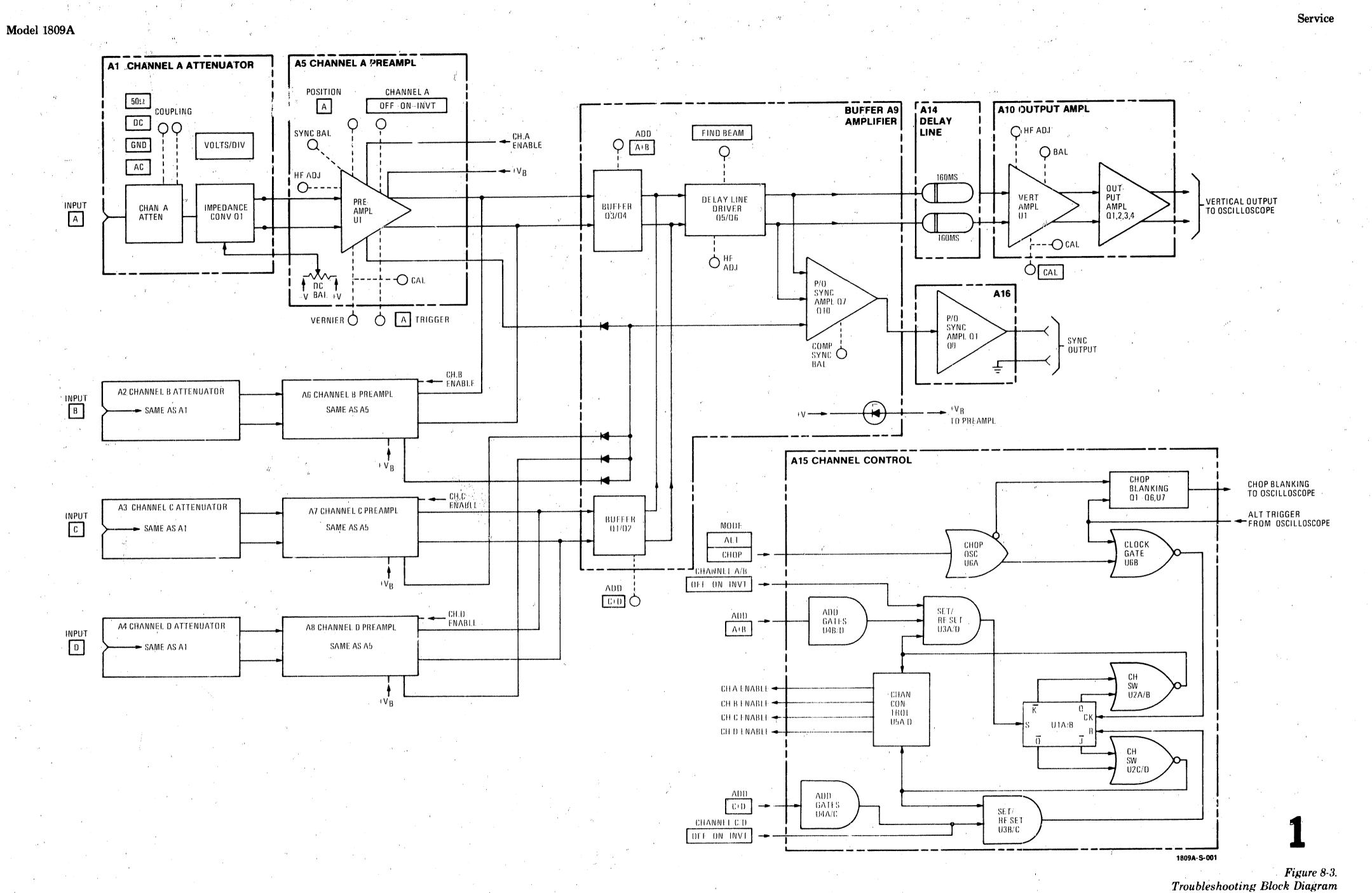
8-39. TROUBLESHOOTING.

8-40. The most important prerequisite for successful troubleshooting is understanding how the instrument is designed to operate and correct use of frontpanel controls. Improper control settings or circuit connections can cause apparent malfunctions. Read Section III (operating procedure) for an explanation of controls and connectors and general operating considerations. Read Section IV (Principles of Operation) for explanations of circuit theory.

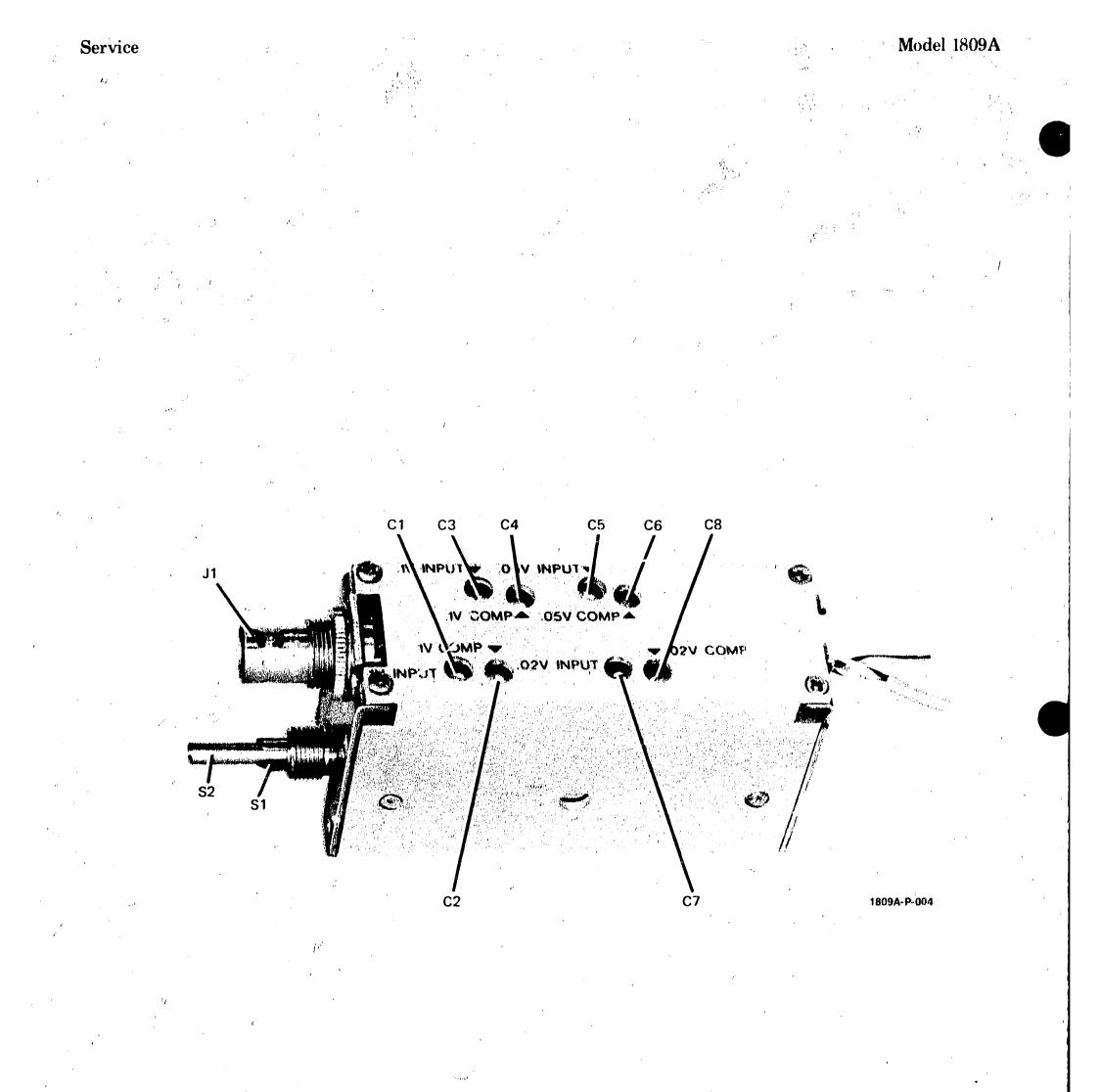
8-41. If trouble is suspected, visually inspect the instrument. Look for loose or burned components that might suggest a source of trouble. Check to see that all circuit board connections are making good contact and are not shorting to an adjacent circuit. If no obvious trouble is found, check the power supply voltages in the instrument. Prior to any extensive troubleshooting, also check the external power sources.

8-42: DC: VOLTAGES. On some of the schematics, dc voltages are indicated for active components

(transistors, etc). Conditions for making these voltage measurements are listed adjacent to the schematics. Since the conditions for making the measurements may differ from one circuit to another, always check the specific conditions listed adjacent to the schematic.


8-43. CIRCUIT CHECKING. The block diagram (schematic i) has been provided to enable rapid isolation of a malfunction to a particular circuit group. Once the circuit group is isolated, the input and output to the block are located on the appropriate schematic and progressive troubleshooting techniques (voltage measurements, resistance measurements, and substitution) are employed between two points to isolate the malfunction to a particular component(s).

8-44. INITIAL TROUBLESHOOTING PROCEDURE. Before troubleshooting the Model 1809A in detail, try to perform the adjustment procedures listed in Section V of this manual. Some apparent malfunctions can be corrected by these adjustments; in addition, the inability to obtain a correct adjustment will often reveal the source of trouble.

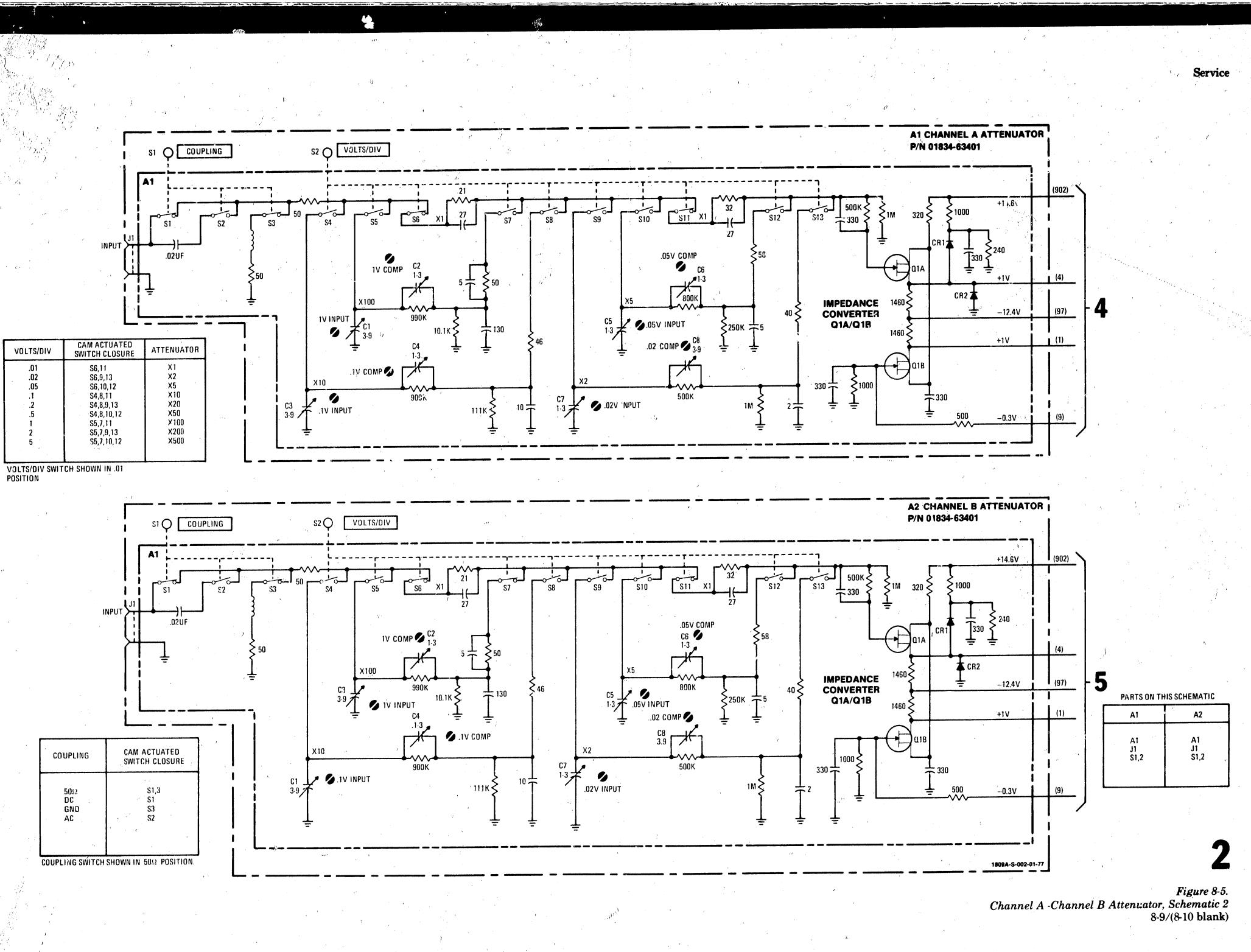

8-45. TROUBLE DIAGNOSIS. By use of front-panel controls, obtain as many symptoms of the malfunction as possible. From the symptoms noted, one can usually determine which circuit is malfunctioning.

8-46. The sync pulse required for internal triggering is developed in the vertical preamplifier section. If the instrument does not trigger internally, but triggers properly when an external trigger is applied, the vertical preamplifier section should be checked.

8-47. Most stages in the vertical preamplifier section are current amplifiers which make signal tracing difficult. When troubleshooting the preamplifier, check dc bias voltages for best results.

^{- 8-7}

Figure 8-4. Attenuator Component Identification


Table 8-3. Schematic 2 Measurement Conditions

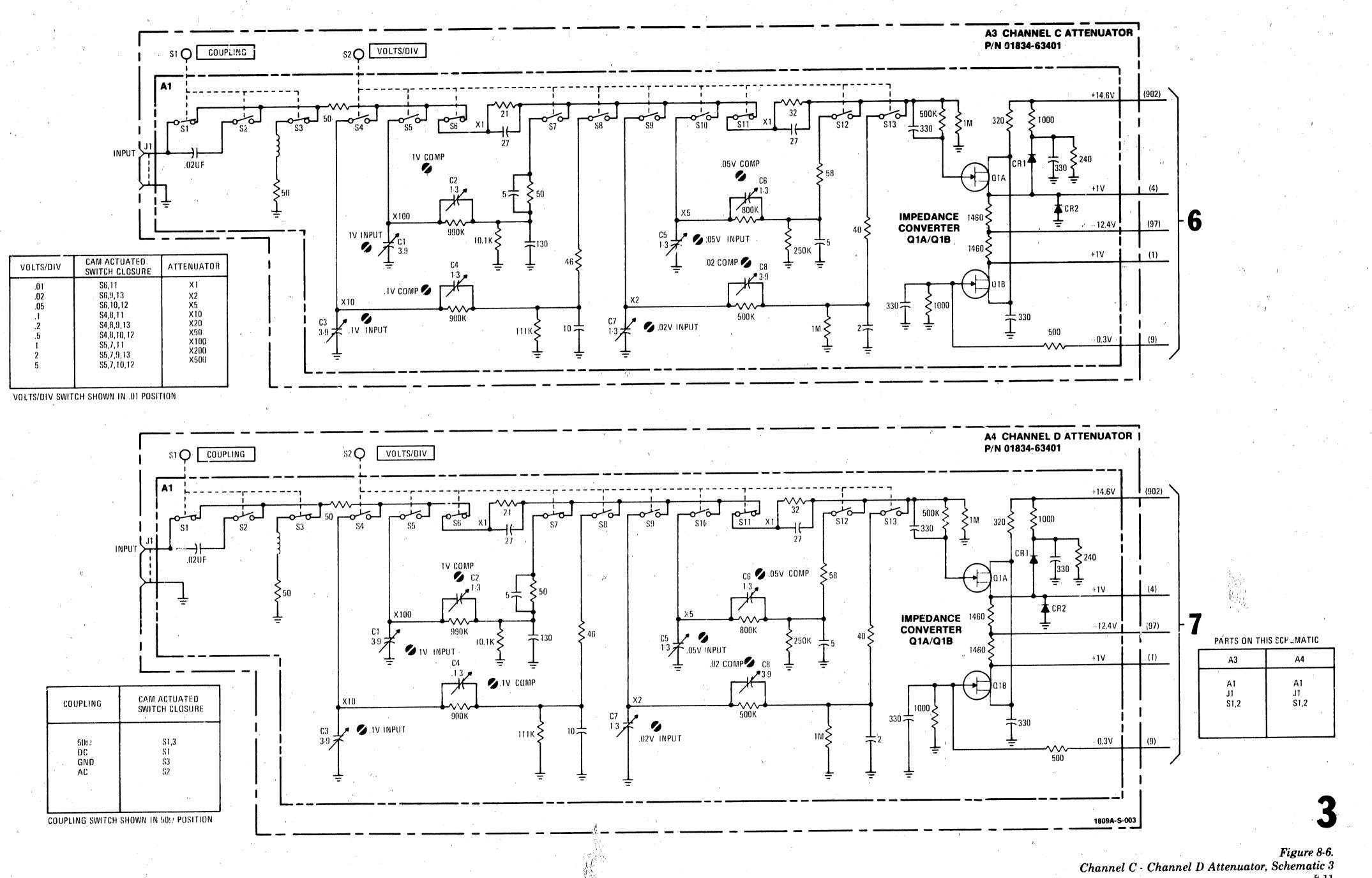
DC VOLTAGE MEASUREMENT CONDITIONS

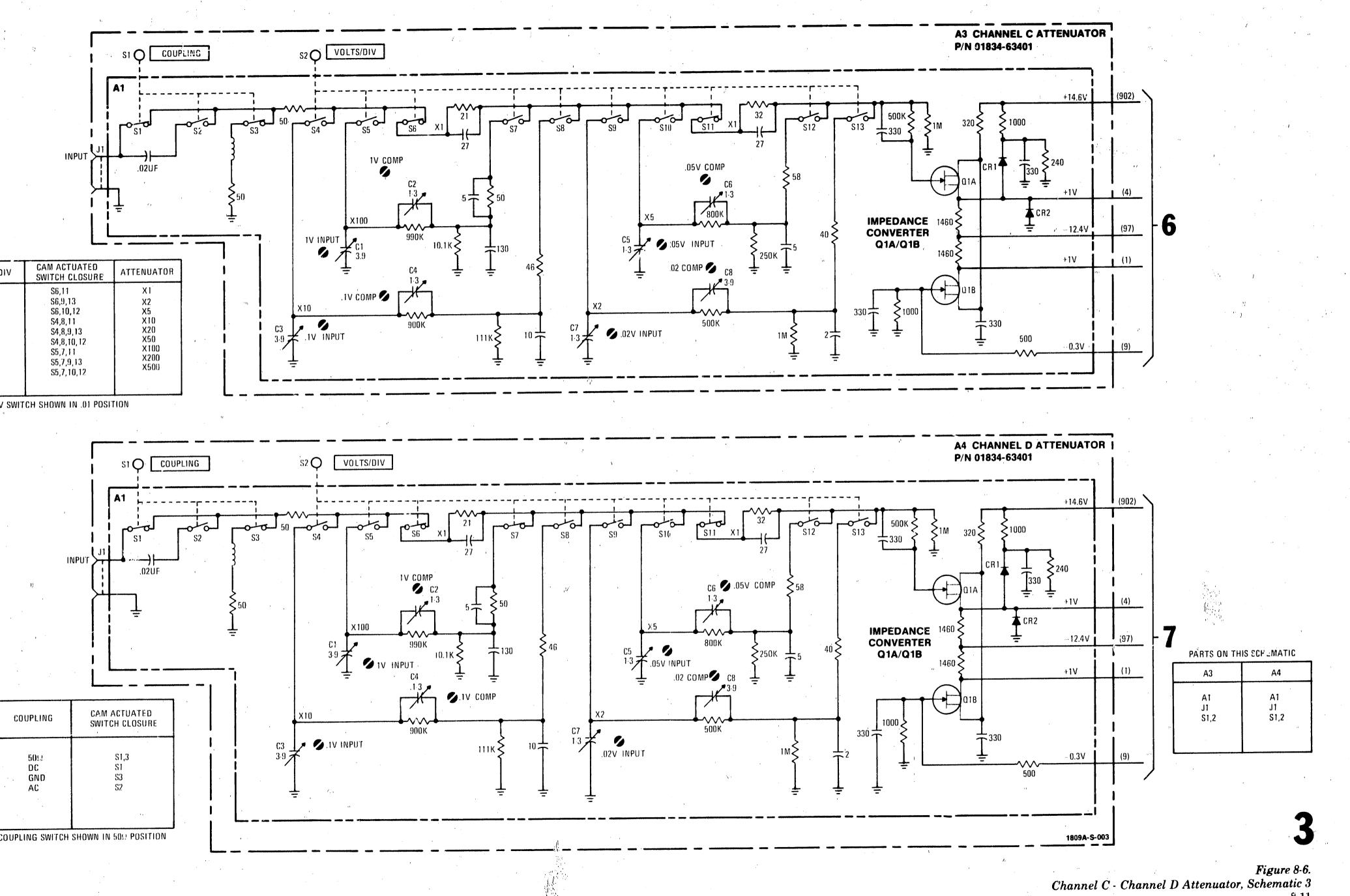
1. Set Model 1809A front-panel controls as follows (channel A and channel B):

Coupling OFF-ON-INVT	
POSITION	midrange
VOLTS/DIV Vernier	

2. All voltages are referenced to chassis ground. All indications are nominal and may vary slightly from those indicated.

•


Table 8-4. Schematic 3 Measurement Conditions


DC VOLTAGE MEASUREMENT CONDITIONS

1. Set Model 1809A front-panel controls as follows (channel C and channel D):

Coupling				•												•		C	IN	1D)
OFF-ON-INV	Ϋ.	 			 ÷			•								•			C)N	ſ
POSITION .								••					:		1	m	id	re	n	ge	3
VOLTS/DIV											•									1	5
Vernier								•						C	1	١		de	ete	'n	t

2. All voltages are referenced to chassis ground. All indications are nominal and may vary slightly from those indicated.

8-11

Service

Service

["] Model 1809A

RE F DESIG

R2 R3 R4

R5

R5

R7 R8 R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

VR1

U1

GRID LOC

C-5

B-8 C-8 B-4

C-7

B-7

B-7

B-6

B-5

C-5

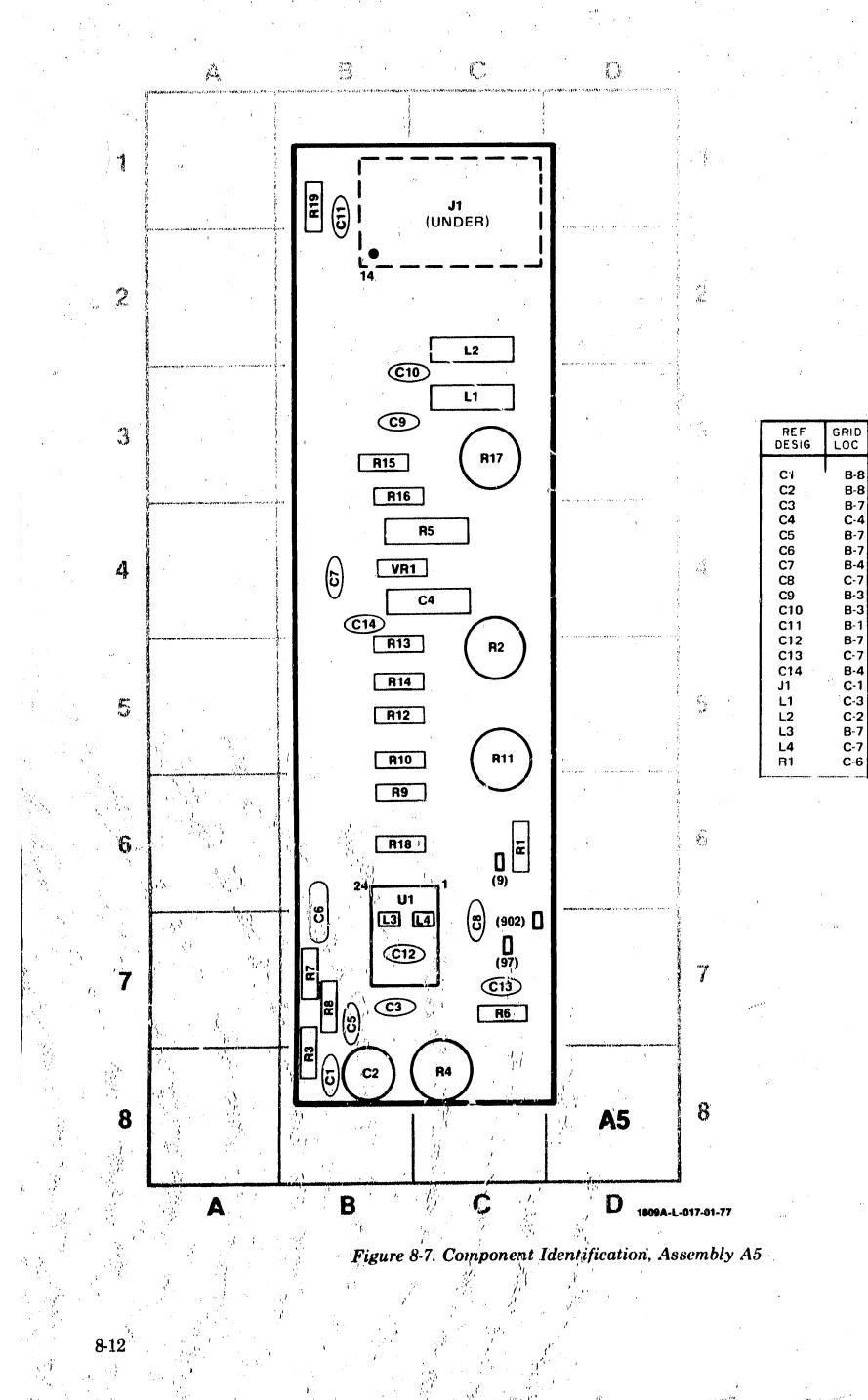
B-5

B-5

B-5

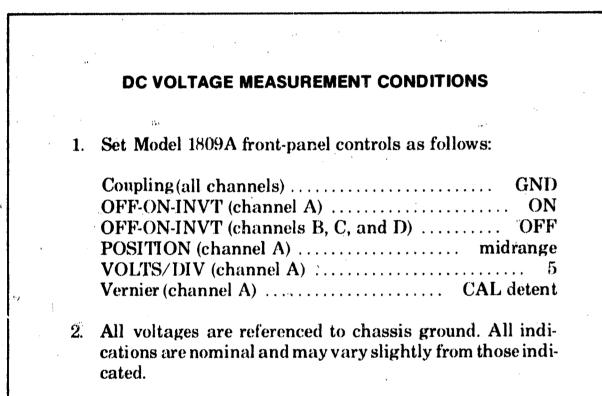
B-3

B-4

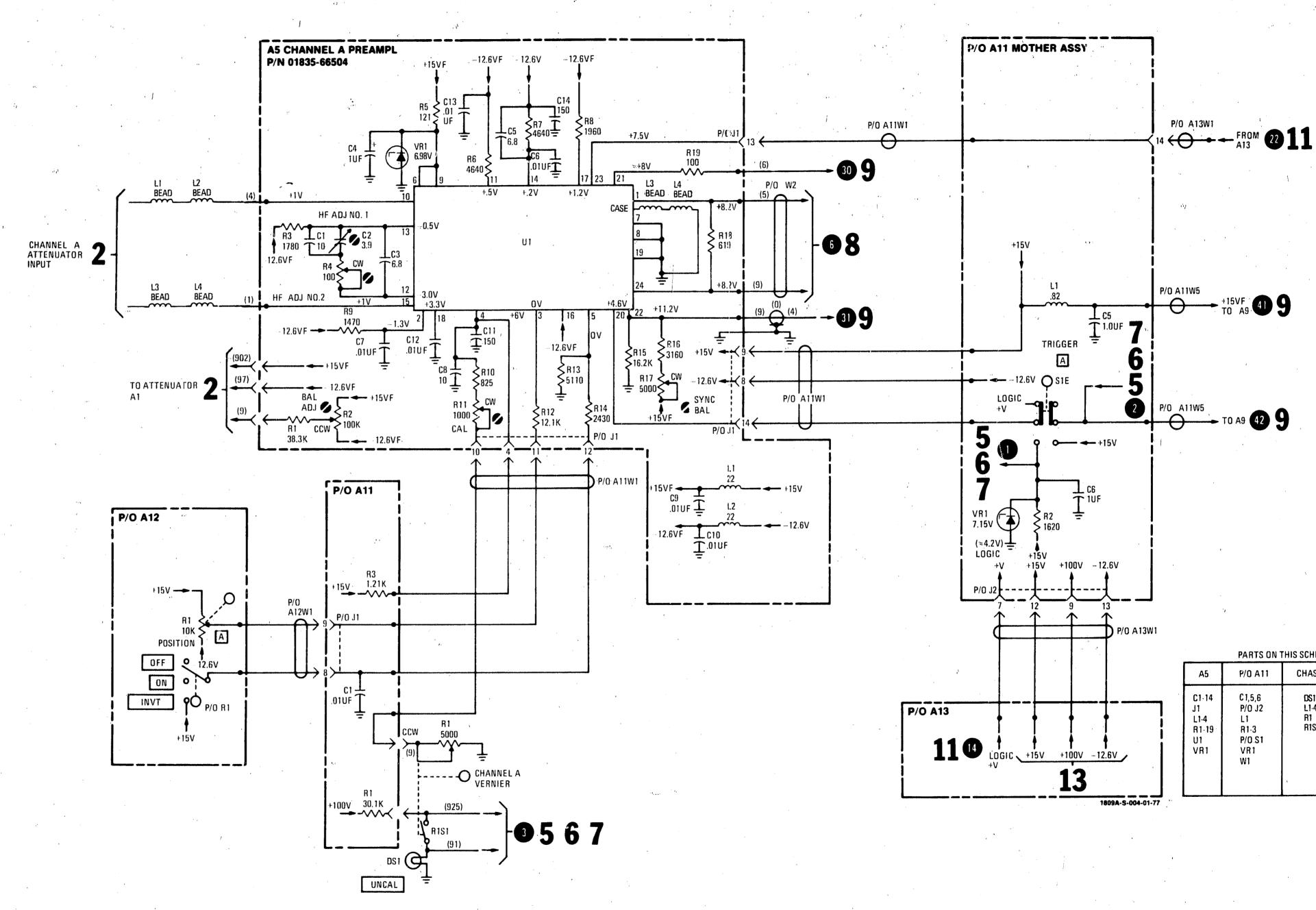

C-3

8-6

B-1


B∙7

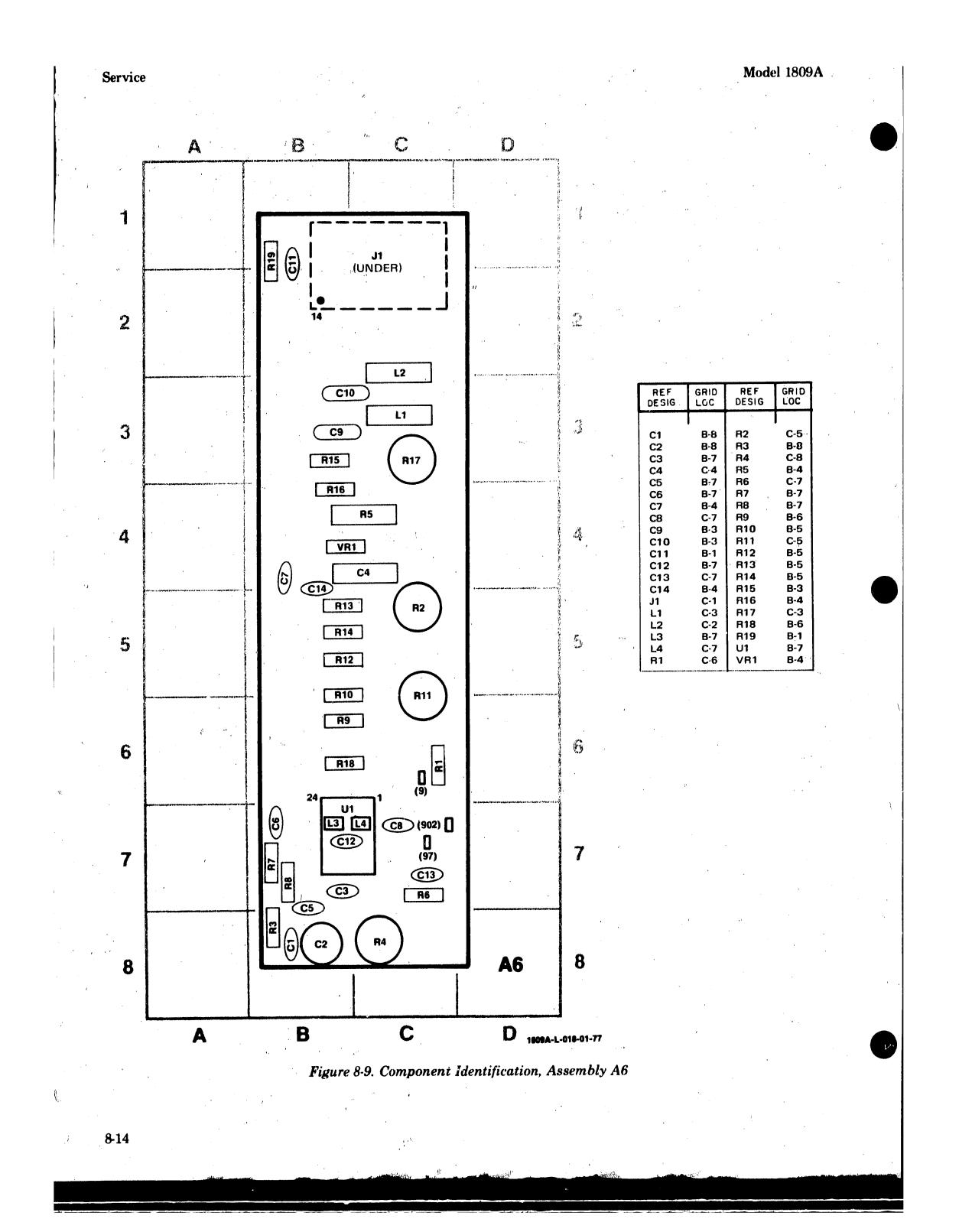
B-4

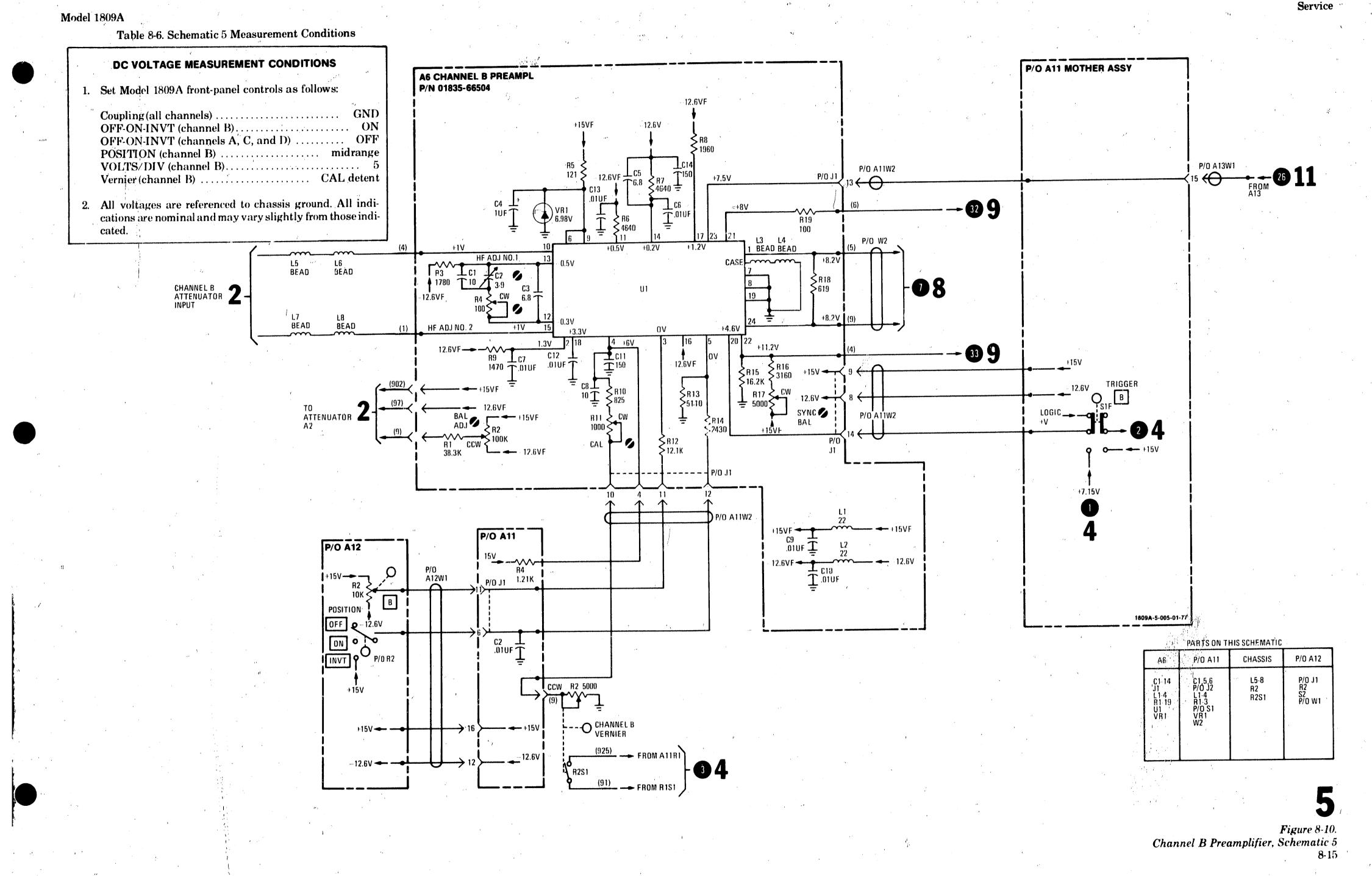


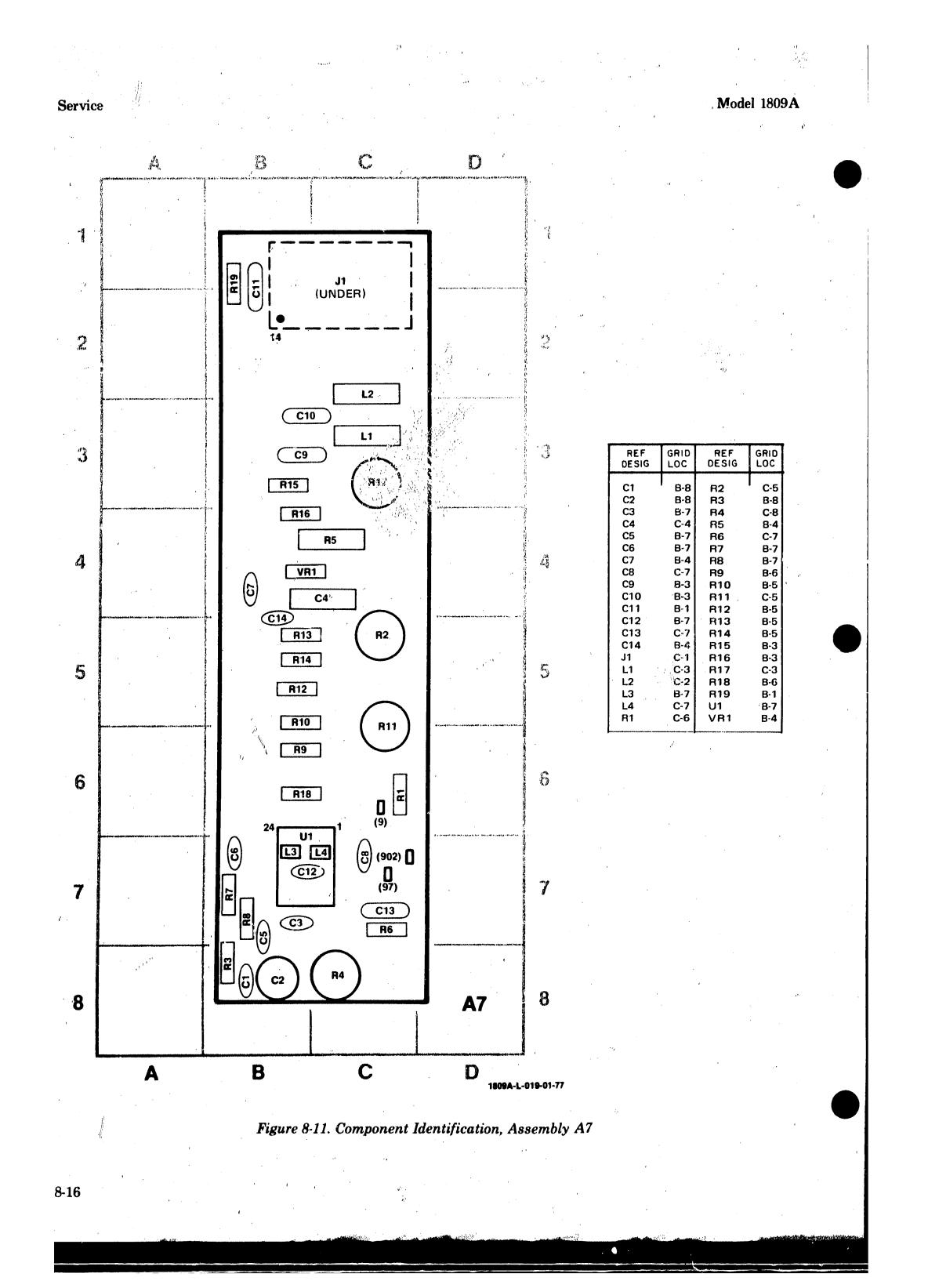
and manifestation of the base will confident the property of the

Table 8-5. Schematic 4 Measurement Conditions

. . Model 1809A

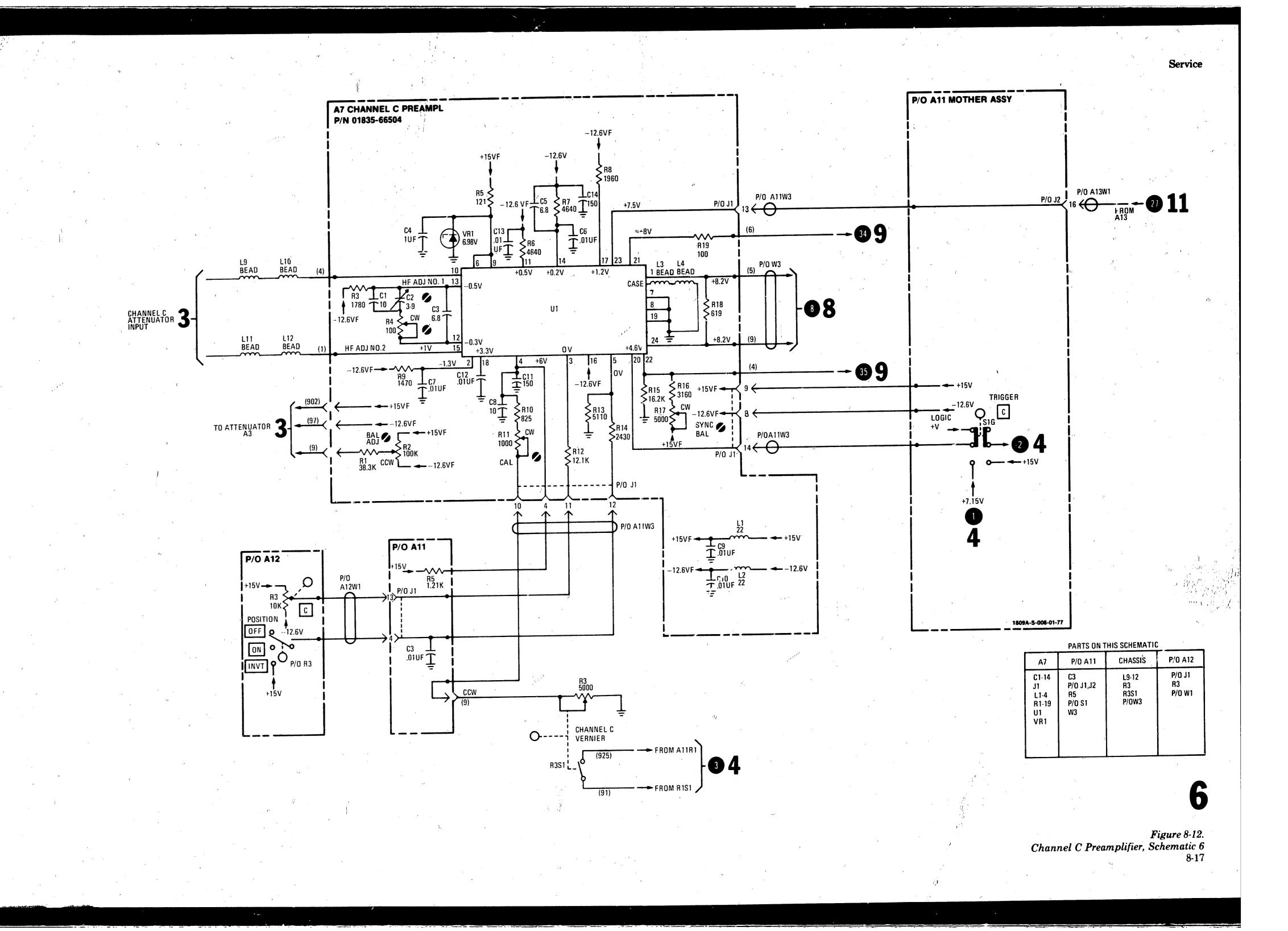


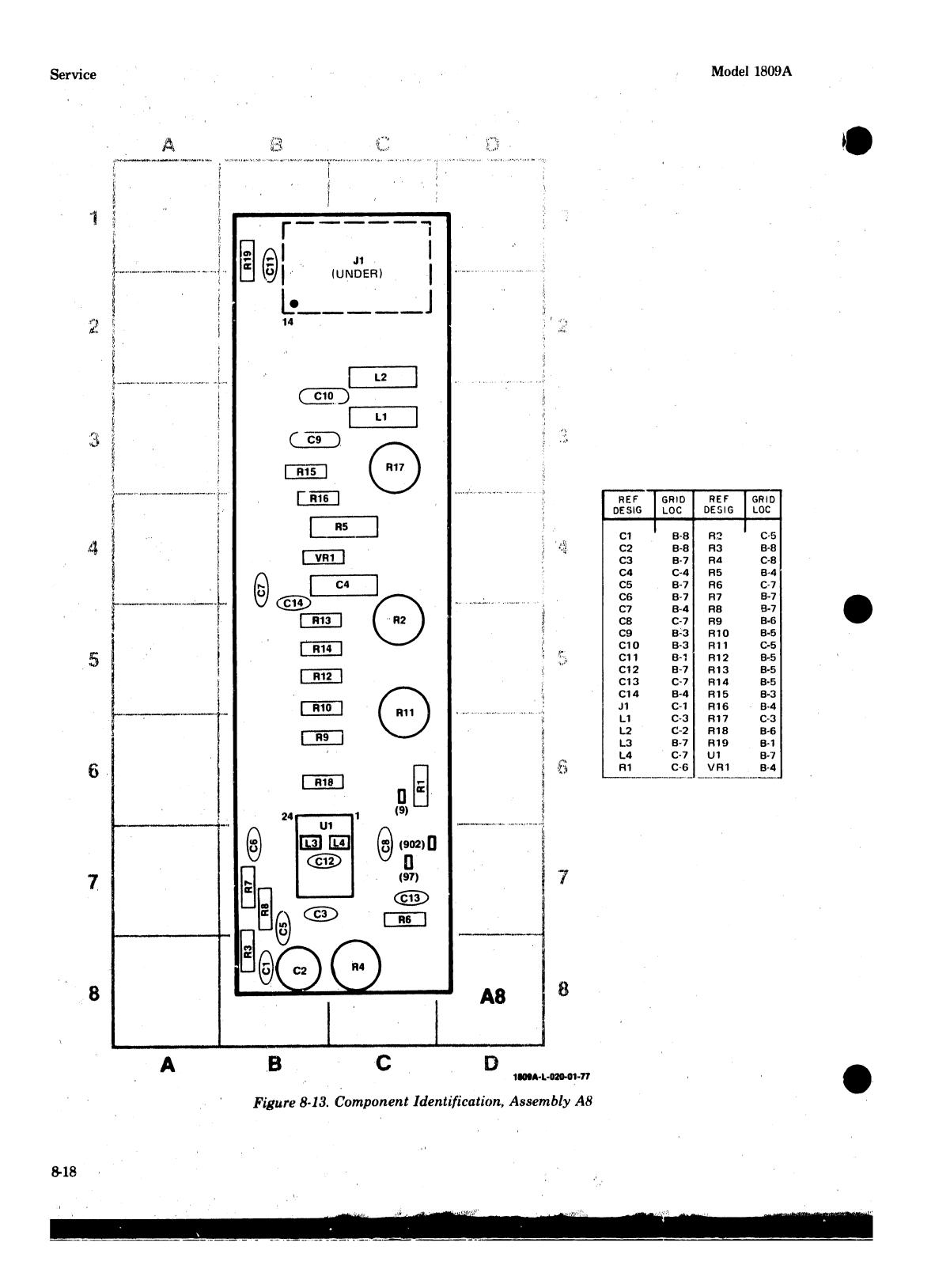

Service


PARTS ON THIS SCHEMATIC

A5	P/0 A11	CHASSIS	P/0 A12
C1 14 J1 L1-4 R1 19 U1 VR1	C1,5,6 P/OJ2 L1 R1-3 P/OS1 VR1 W1	DS1 L1-4 R1 R1S1	P/O J1 R1 S1 P/O W1

Figure 8-8. Channel A Preamplifier, Schematic 4 8-13


Table 8-7. Schematic 6 Measurement Conditions

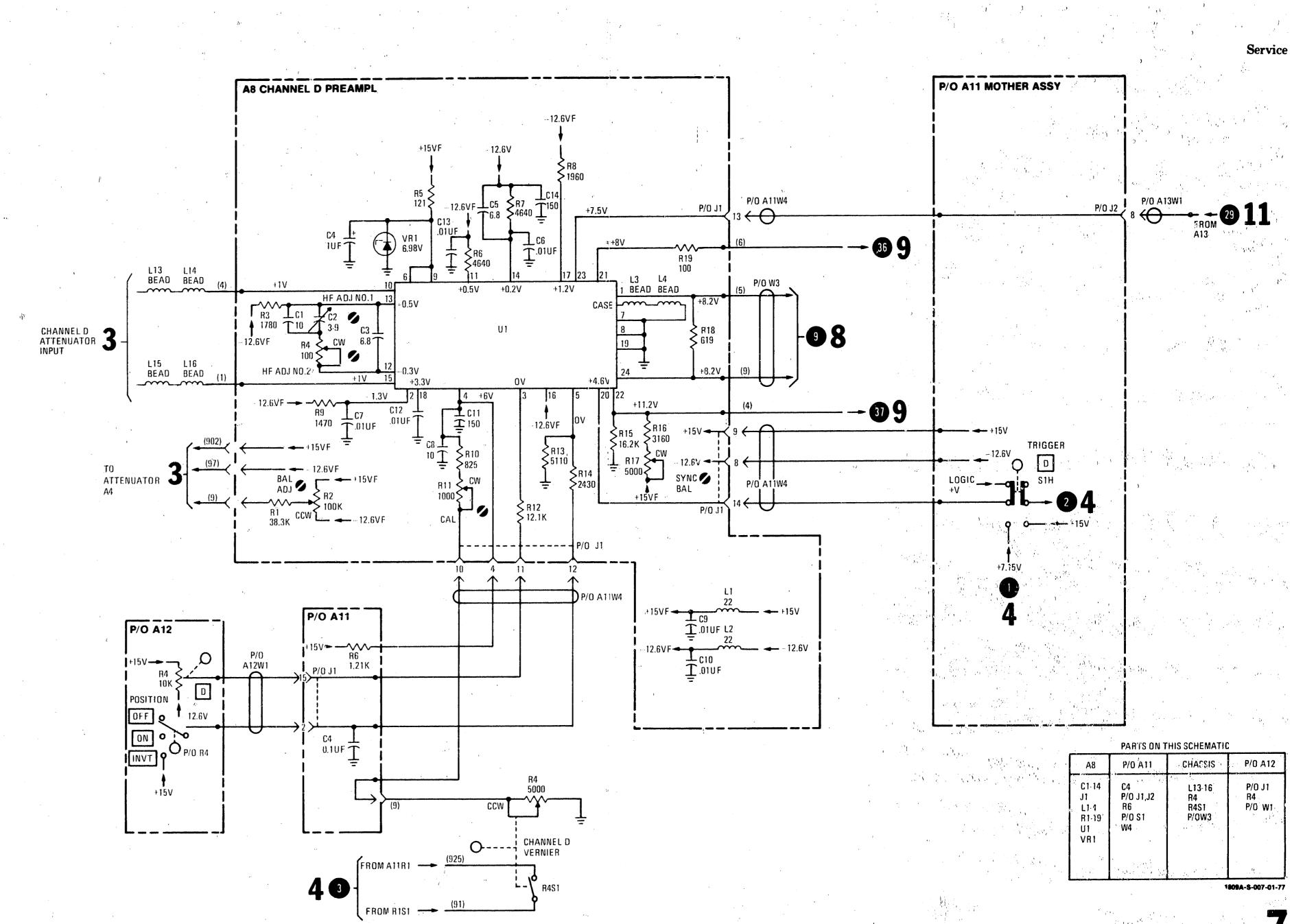

DC VOLTAGE MEASUREMENT CONDITIONS

1. Set Model 1809A front-panel controls as follows:

Coupling (all channels) (GND
OFF-ON-INVT (channel C)	ON
OFF-ON-INVT (channels A, B, and D)	
POSITION (channel C) midra	
VOLTS/DIV (channel C)	
Vernier (channel C) CAL de	etent

2. All voltages are referenced to chassis ground. All indications are nominal and may vary slightly from those indicated.

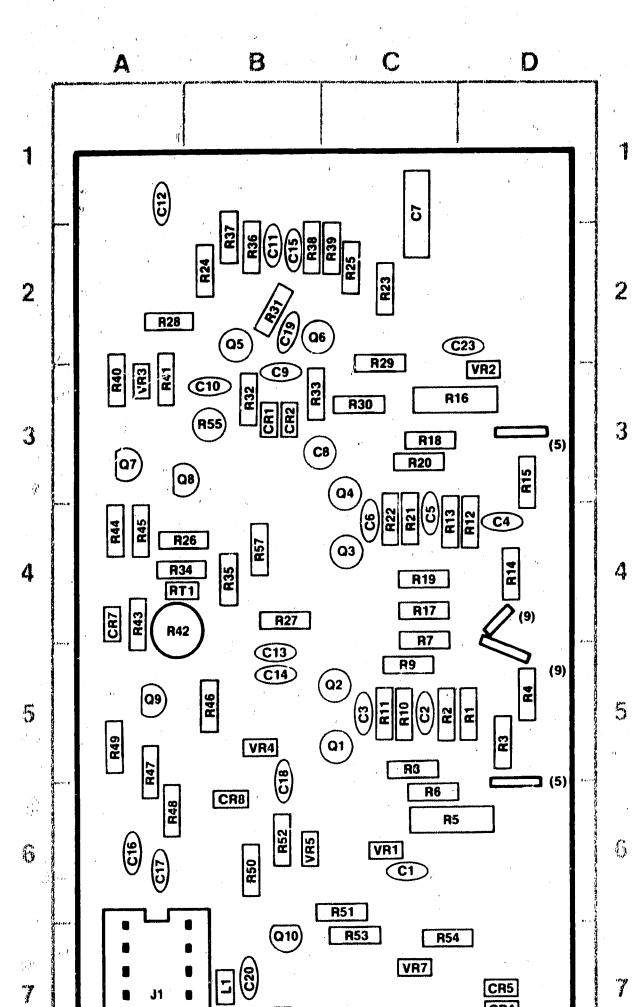
1,8


Table 8-8. Schematic 7 Mesurement Conditions

DC VOLTAGE MEASUREMENT CONDITIONS

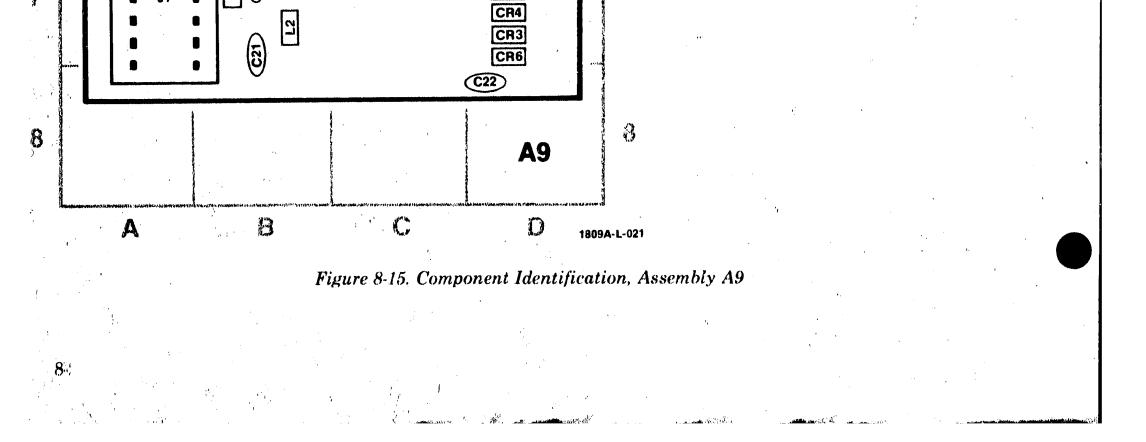
1. Set Model 1809A front-panel controls as follows:

ND
ΟN
FF
nge
5
ent


2. All voltages are referenced to chassis ground. All indications are nominal and may vary slightly from those indicated.

A8	P/0 A11	CHASSIS	P/0 A12
C1-14 J1 L1-4 R1-19 U1 VR1	C4 P/O J1,J2 R6 P/O S1 W4	L13-16 R4 R4S1 P/OW3	P/O J1 R4 P/O W1
18 19 - 19 - 19			

Figure 8-14. Channel D Preamplifier, Schematic 7 8-19


Service

REF GRID LOC REF GRID LOC REF DESIG GRID C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 R1 R2 R3 R4 R5 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 C C B B B A B B B B C A A A A A A B A A B B B B B C A A A A A A B A A R6 R7 R8 C14 C15 C16 R9 R10 R11 C17 C18 C19 C20 C21 C22 C23 CR1 CR2 CR3 R12 R13 R14 R15 A·5 B-6 C·6 R52 R53 R54 R55 R57 R57 R71 B·6 C·7 C-7 B·3 B·4 R16 R17 R18 R19 R20 R21 CR4 CR5 CR6 A-4 C-6 D-3 A-3 B-5 R22 R23 R24 R25 R26 R27 VR1 VR2 VR3 VR4 VR5 VR7 A-4 B-6 A-7 B-7 CR7 CR8 **J1**. L1 L2 B·6 C·7 B-7 Q1 C-5 Ω2 C-5 R28

Model 1809A

DELETED: A9: C24, R56, VR6

Table 8-9. Schematic 8 Measurement Conditions

DC VOLTAGE MEASUREMENT CONDITIONS

1. Set Model 1809A front-panel controls as follows:

Coupling (all channels)	GND
OFF-ON-INVT (channel A)	ON
OFF-ON-INVT (channels B, C, and D)	
POSITION (channel A) mid	range
VOLTS/DIV (channel A)	
Vernier (channel A) CAL	detent

2. All voltages are referenced to chassis ground. All indi-cations are nominal and may vary slightly from those indicated.

, i

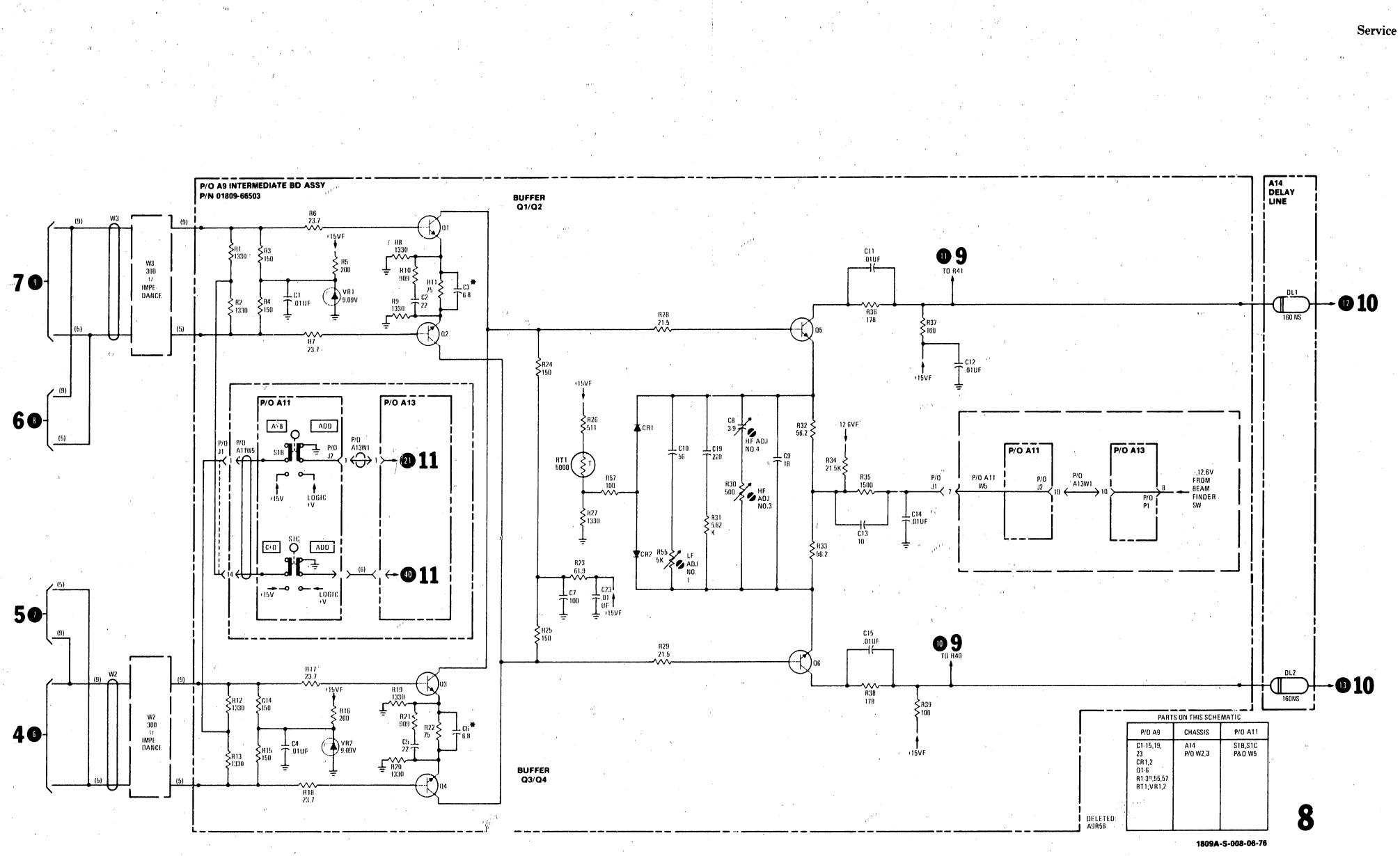


Figure 8-16. Buffer Amplifier, Schematic 8 8-21

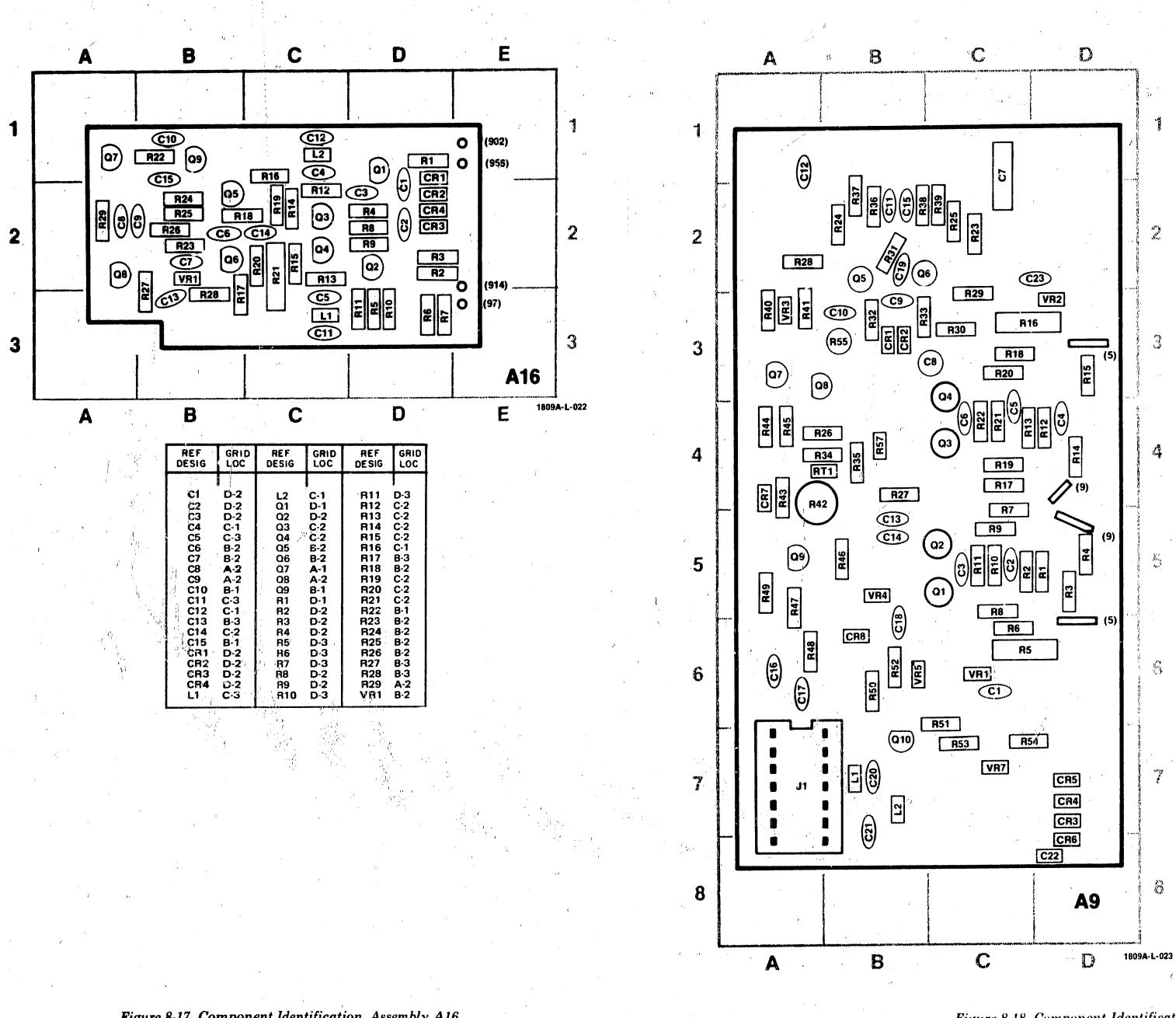


Figure 8-17. Component Identification, Assembly A16

REF REF DESIG REF GRID GRID LOC GRID REF DESIG LOC C-6 C-5 C-5 D-4 C-4

 CR5
 D-7

 CR6
 D-8

 CR7
 A-4

 CR8
 B-6

 J1
 A-7

 L1
 B-7

 L2
 B-7

 Q1
 C-5

 Q2
 C-5

 Q3
 C-4

 Q4
 C-3

 Q5
 B-2

 Q6
 B-2

 Q7
 A-3

 Q8
 A-3

 Q9
 A-5

 Q10
 B-7

 R1
 D-5

 R2
 C-5

 R3
 D-5

 R4
 D-5

 R5
 C-6

 R6
 C-6

 R7
 C-5

 R8
 C-5

 R10
 C-5

 R11
 C-5

 R12
 D-4

 R13
 D-4

 R14
 D-4

 R15
 D-3

 R16
 C-3

 R17
 C-4

 R18
 C-3

 R19
 C-4

 R20
 C-3

 R21
 C-4

 R22
 C-4

 R23
 C-2

 R24
 B-2

 R25
 C-2

 R26
 A-4

 R27
 B-4

 R28
 A-2

 R29
 C-3

 R31
 B-2

 R32
 B-3

 R33
 B-3

 R34
 A-4

 R35
 B-4

 R36
 B-2

 R37
 B-2

 R38
 B-2

 R39
 C-2

 R40
 A-3

 R41
 A-3

 R42
 A-4

 R43
 A-4

 R44
 A-4

 R45
 A-4

 R46
 B-5

 R47
 A-5

 R48
 A-6

 R49
 A-5

 R50
 B-6

 R51
 C-6

 R52
 B-6

 R53
 C-7

 R55
 B-3

 R57
 B-4

 RT1
 A-4

 VR1
 C-6

 VR2
 D-3

 VR3
 A-3

 VR4
 B-5

 VR5
 B-6

 VR7
 C-7

 C1 C2 C3 C4 C5 C6 C7 C8 C-1 B-3 B-3 C9 C10 B·3 B·2 C11 C12 A-1

 C12
 A·1

 C13
 B·5

 C14
 B·5

 C15
 B·2

 C16
 A·6

 C17
 A·6

 C18
 B·6

 C19
 B·2

 C20
 B·7

 C21
 B·7

 C22
 D·8

 C21 B-7 C21 B-7 C22 D-8 C23 D-2 CR1 B-3 CR2 B-3 CR3 D-7

CR4 D-7

DELETED: A9: C24, R56. VR6

Figure 8-18. Component Identification, Assembly A9

8-22

Service

Table 8-10. Schematic 9 Measurement Conditions

DC VOLTAGE MEASUREMENT CONDITIONS

1. Set Model 1809A front-panel controls as follows:

Coupling (all channels) GND	ł
OFF-ON-INVT (channel A) ON	
OFF-ON-INVT (channels B, C, and D) Ol'F	
POSITION (channel A) midrange	
VOLTS/DIV (channel A) 5	
Vernier (channel A) CAL detent	,
Trigger Source COMP)
2. All voltages are referenced to chassis ground. All indi-	•

cations are nominal and may vary slightly from those indicated

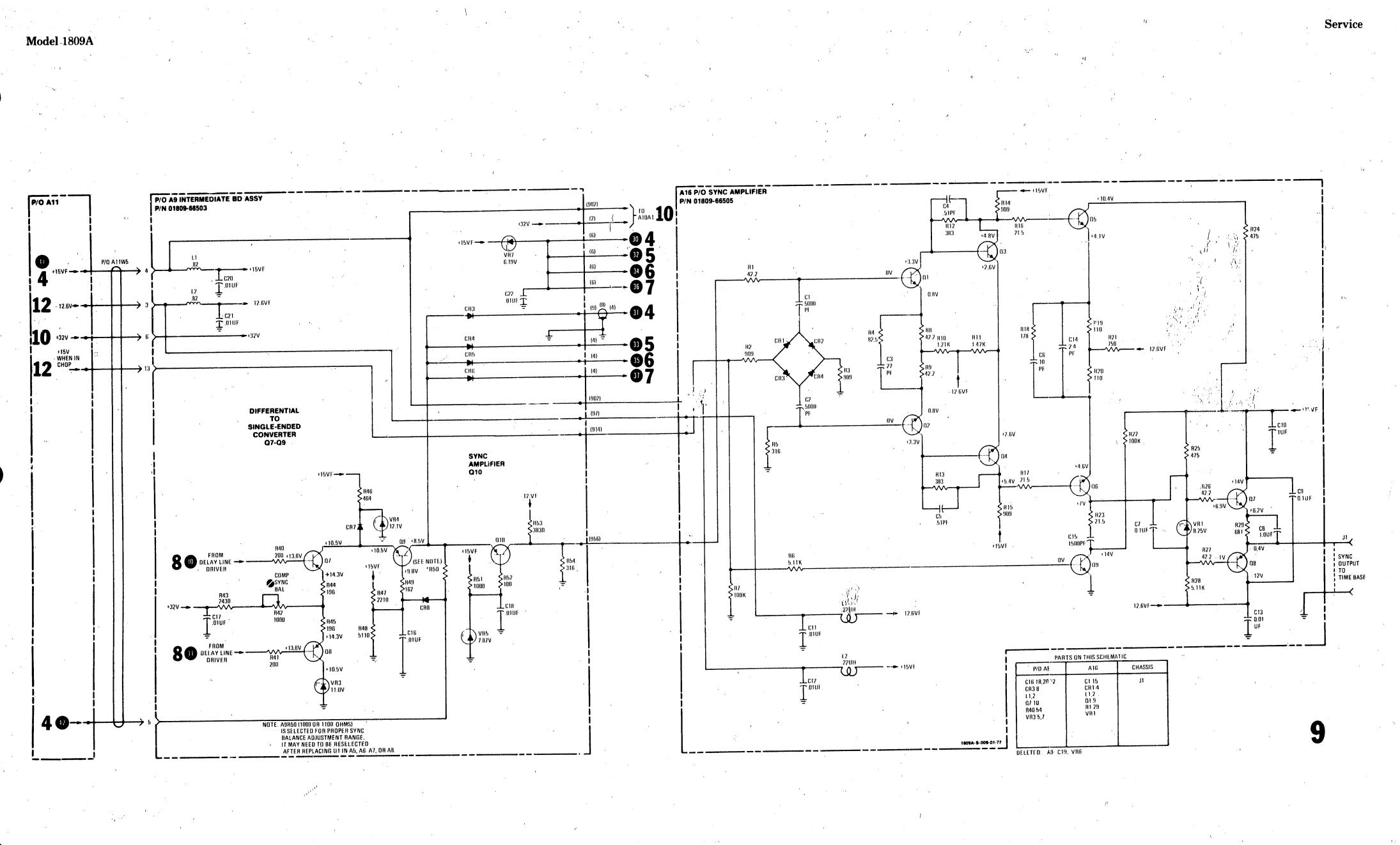


Figure 8-19. Sync Amplifier, Schematic 9 8-23

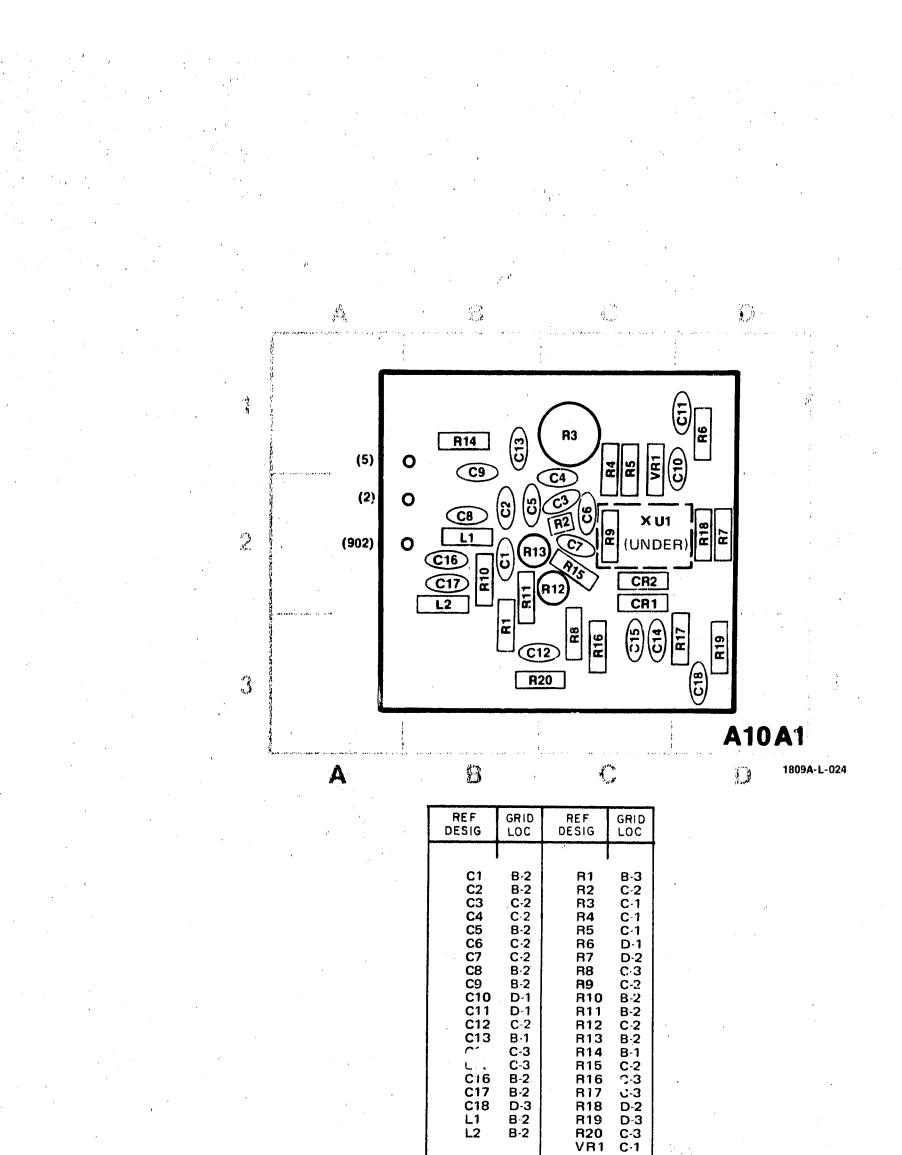
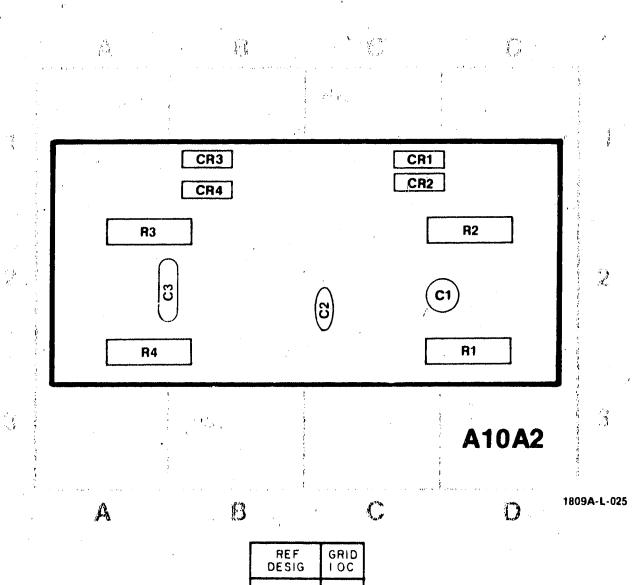



Figure 8:20. Component Identification, Assembly A10A1

٠

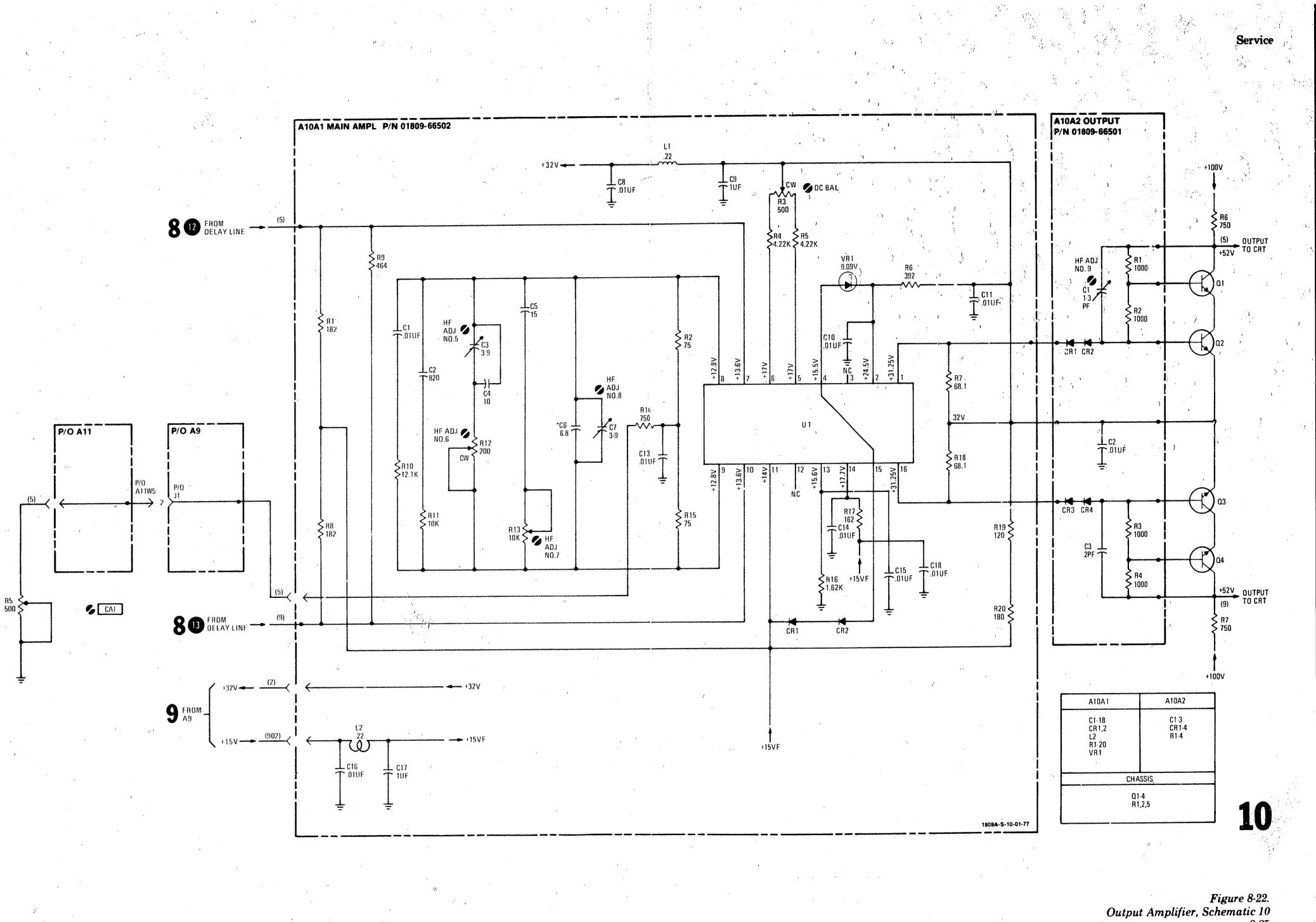
Model 1809A

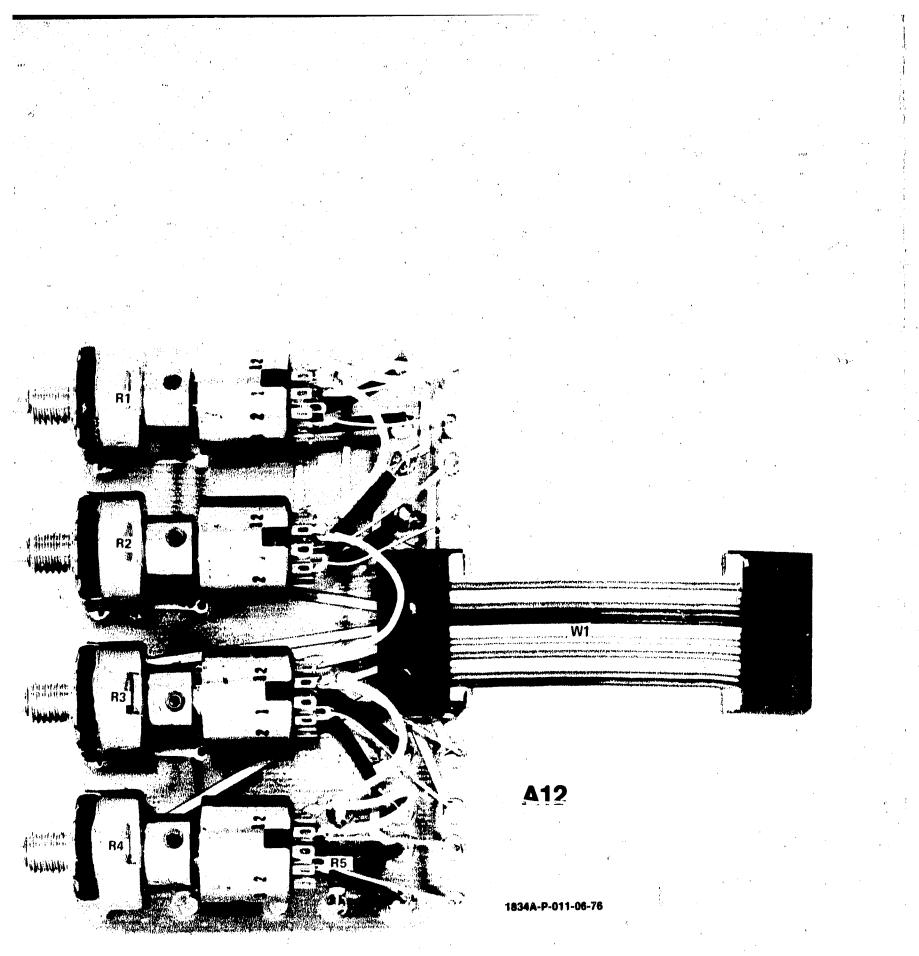
Service

C1 D-2 C2 C-2 C3 A-2 CR1 C-1 CR2 C-1 CR3 B-1 CR4 B-1 R1 D-2 R2 D-2 R3 A-2 R4 A-3

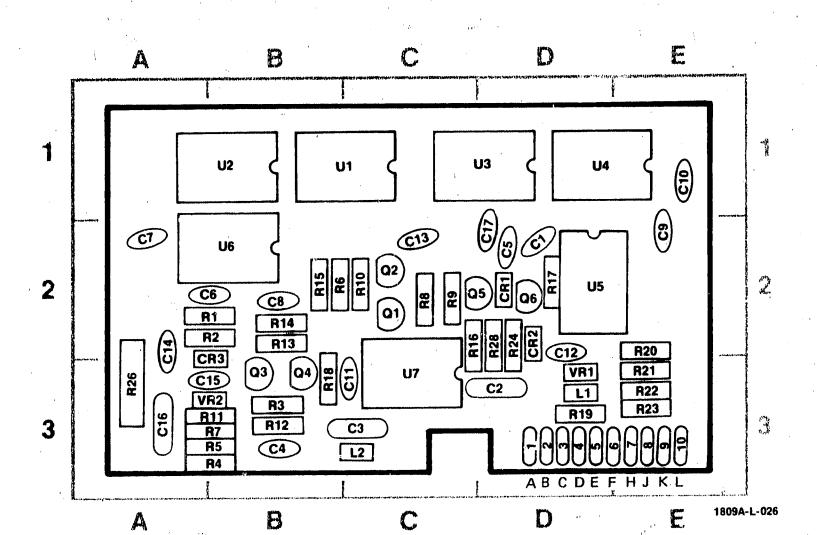
Figure 8-21. Component Identification, Assembly A10A2

8-24


Table 8-11. Schematic 10 Measurement Conditions


DC VOLTAGE MEASUREMENT CONDITIONS

1. Set Model 1809A front-panel controls as follows:


Coupling (all channels) Gl	ND
OFF-ON-INVT (channel A) (ON
OFF-ON-INVT (channels B, C, and D) O	FF
POSITION (channel A) midrar	ige
VOLTS/DIV (channel A)	5
Vernier (channel A) CAL det	ent

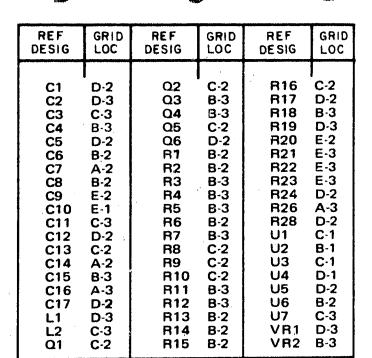

2. All voltages are referenced to chassis ground. All indi-cations are nominal and may vary slightly from those indicated.

Figure 8-23. Component Identification, Assembly A12

A15

Figure 8-24. Component Identification, Assembly A15

0

Service

0

O

0

A15 CHANNEL CONTROL P/N 01808-66504 P/O A13 P/O A12 P/() A12W1 **⊱12** P/0 J1 P/0 S1 P/0 A13W1 P/0 XA15 P/0 OFF ON ₹ R7 1000 INVT P/0 S2 --0+⁻0 8 P/0 \$3 С 0 P/0 S4 ---04-1 1.1 Ð 115V ----102 101 1.2 R5 4320 🛥 +15V 103 TIUF VBB P/O A11 LOGIC +V 囨 ALT ≷ R1 ≥ 4750 SIA MODE $\leftarrow \cup$ 0 (CHOP **_**3 UGA 1500 PARTS ON THIS SCHEMATIC P/0 A11 P/O A12 A15 C1-17 L1-2 Q1-6 R1-24,26,28 U1-7 VR1,2 87,8 S1A 86 P/O S I-S4 P/O W1 -R3 = ≦ 13.3K ≨ ALT -TRIGGEB 64 0101 > 84 > 464

> DELETED A15: 825,827

Service

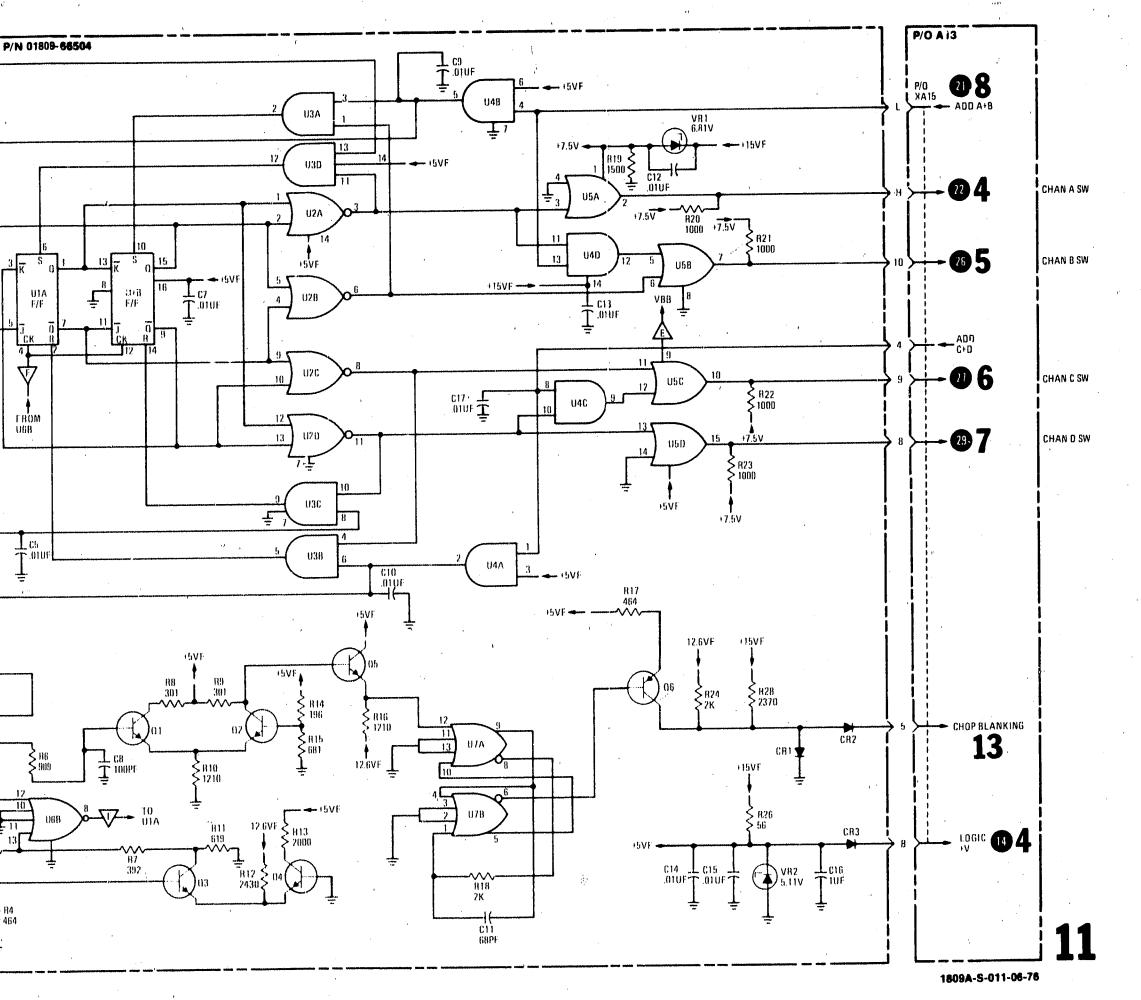
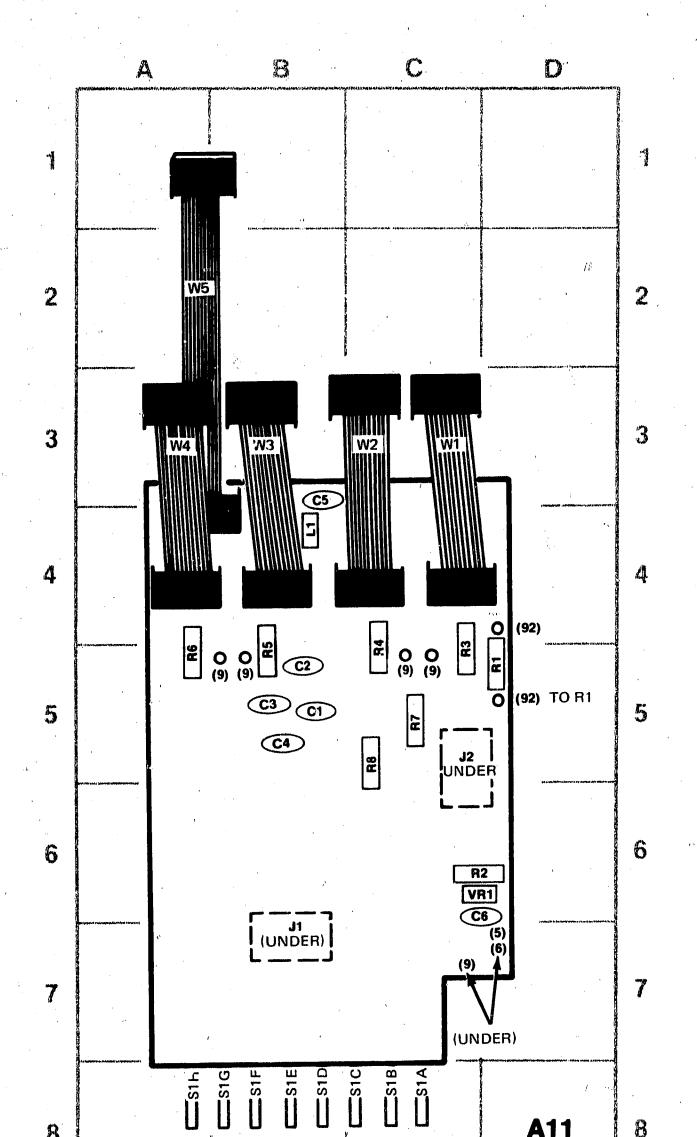



Figure 8-25. Channel Control, Schematic 11 8-27

Service

8-28

 REF DESIG
 GRID LOC
 REF DESIG
 GRID LOC

 C1
 B-5
 R8
 C-5

 C2
 B-5
 S1A
 C-8

 C3
 B-5
 S1B
 C-8

 C4
 B-5
 S1C
 C-8

 C5
 B-3
 S1D
 B-8

 C6
 C-6
 S1E
 B-8

 J1
 B-7
 S1F
 B-8

 J2
 C-5
 S1G
 B-8

 L1
 B-4
 S1H
 A-8

 R1
 D-5
 VR1
 C-6

 R2
 C-6
 W1
 C-3

 R3
 C-5
 W3
 B-3

 R5
 B-5
 W4
 A-3

 R6
 A-5
 W5
 A-2

 R7
 C-5

 S

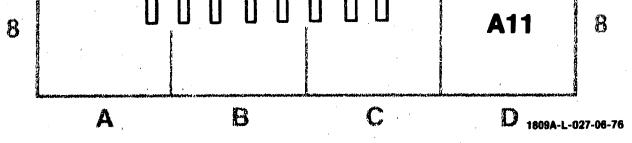
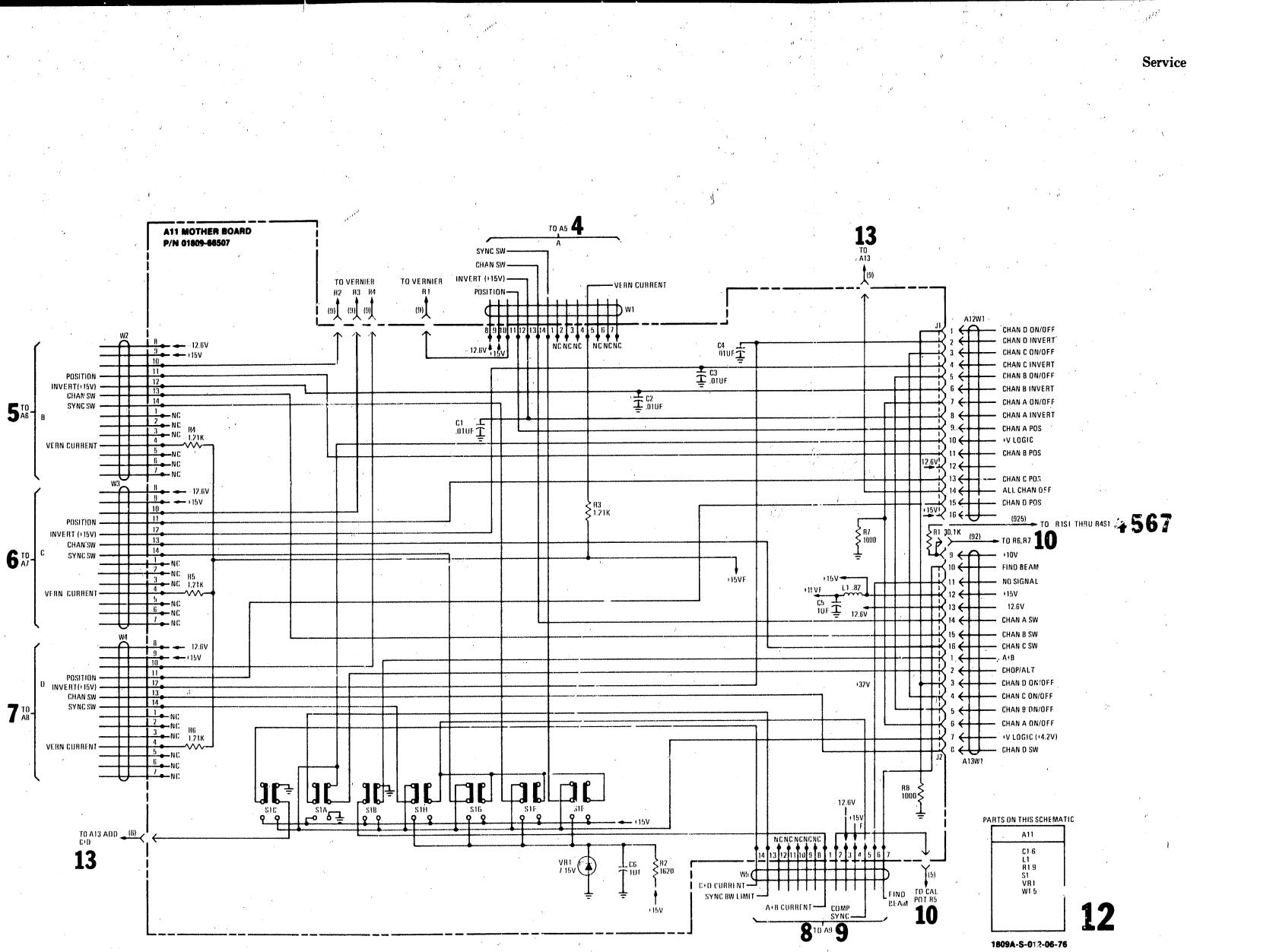



Figure 8-26. Component Iden*ification, Assembly A11.

. .

. .

Figure 8-27. Mother Board Assembly, Schematic 12 8-29

Service

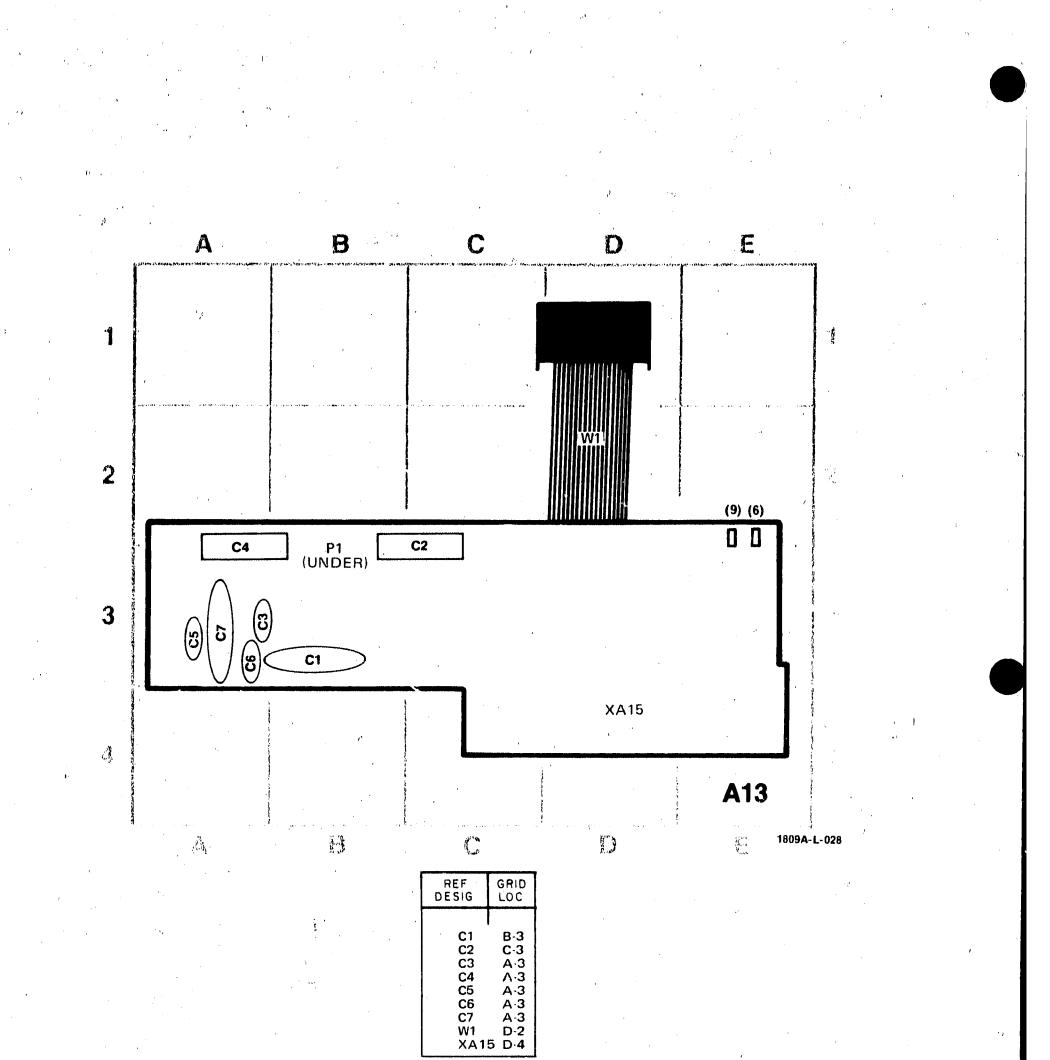
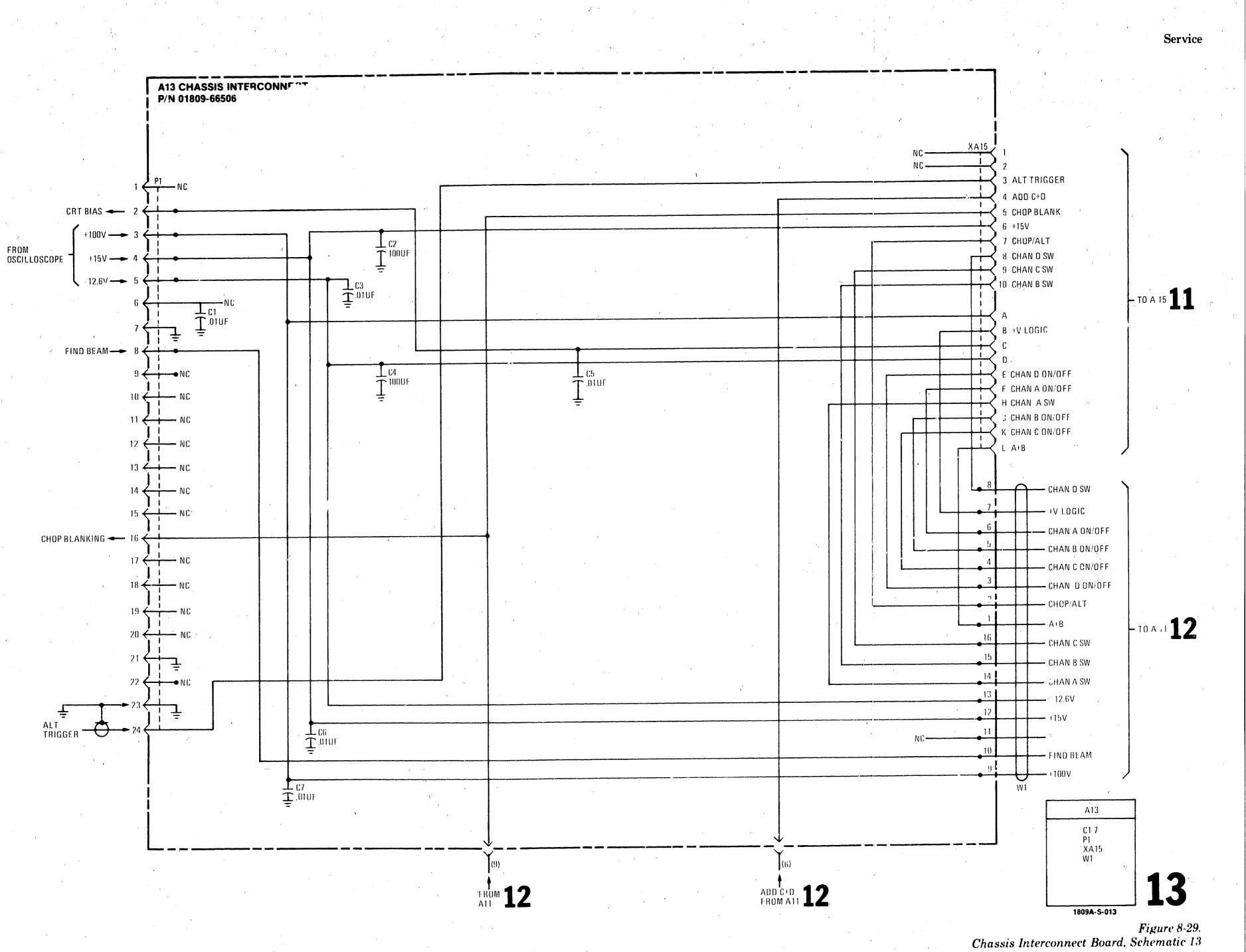


Figure 8-28. Component Identification, Assembly A13

8-30

,


n an an the ann an an the

and a Same and a second second

16

,

, t

,

⁸⁻³¹

CHANGES

MANUAL CHANGES

MANUAL	IDENTIFICATION
Model Number:	1809A
Date Printed:	January 1977
Part Number:	01809-90903

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:

Make all ERRATA corrections.

Make all appropriate serial number related changes indicated in the tables below.

Serial Prefix or Number —	Make Manual Changes	Serial Prefix or Number -	Make Manual Changes -
2043A	1		
2323A	1, 2		

▲ NEW ITEM

PREFERRED PARTS

 \mathcal{A}

Table 1 of this change, Replaceable Parts.

- Change: A15C11, HP and Mfr Part No. 0140-0176, Qty 1, CD9, C: FXD MICA 100PF ±2% 300V, Mir Code 28480.
- Change: A15C12, HP and Mfr Part No. 0140-0175, Qty 1, CD8, C: FXD MICA 39PF ±2% 300V, Mfr Code 28480

Change: A15R5, HP Part No. 0757-0401, Qty 1, CD0, R: FXD MF 100 1% 1/8W, Mfr Code 24546, Mfr Part No. C4/-1/8-TO-100R-F.

Change: A15R6, HP Part No. 0757-0435, Qty 1, CD0, R: FXD MF 3.92K 1% 1/8W, Mfr Code 24546, Mfr Part No. C4/-1/8-TO-3921-F.

Figure 2 of this change, Channel Control, Schematic 11. Change: C11 to 100. Change: C12 to 39. Change: R5 to 100. Change: R6 to 3920.

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

6 June 1983 Page 1 of 5

Printed in U.S.A.

Section VI, Replaceable Parts (pages 6-6 and 6-7),

Replace A15 and associated components with items listed in Table 1 of this document.

Section VIII, Service,

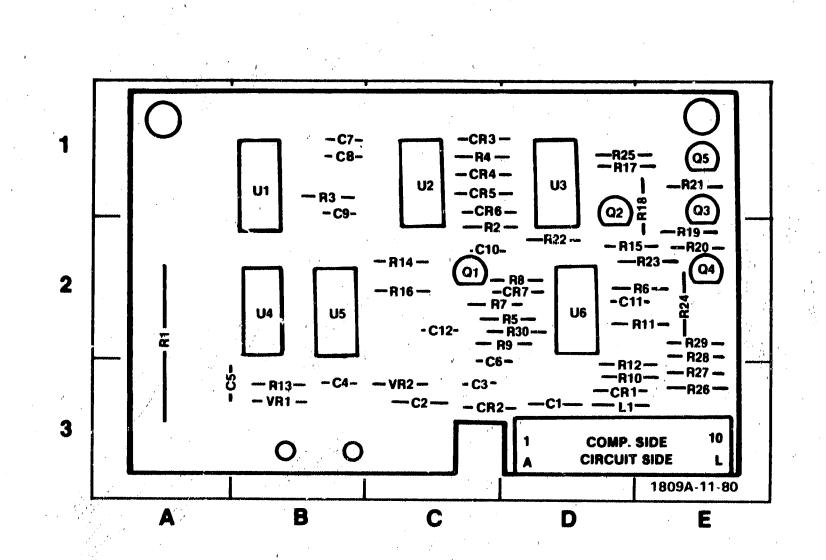
Page 8-26: Replace Figure 8-24 (Component Identification, Assembly A15) with Figure 1 of this document. Page 8-27: Replace Figure 8-25 (Channel Control, Schematic 11) with Figure 2 of this document.

A CHANGE 2

Page 6-2, Table 6-2. Replaceable Parts.

Change: A14, HP and Mfr Part Number to 01809-61604.

2

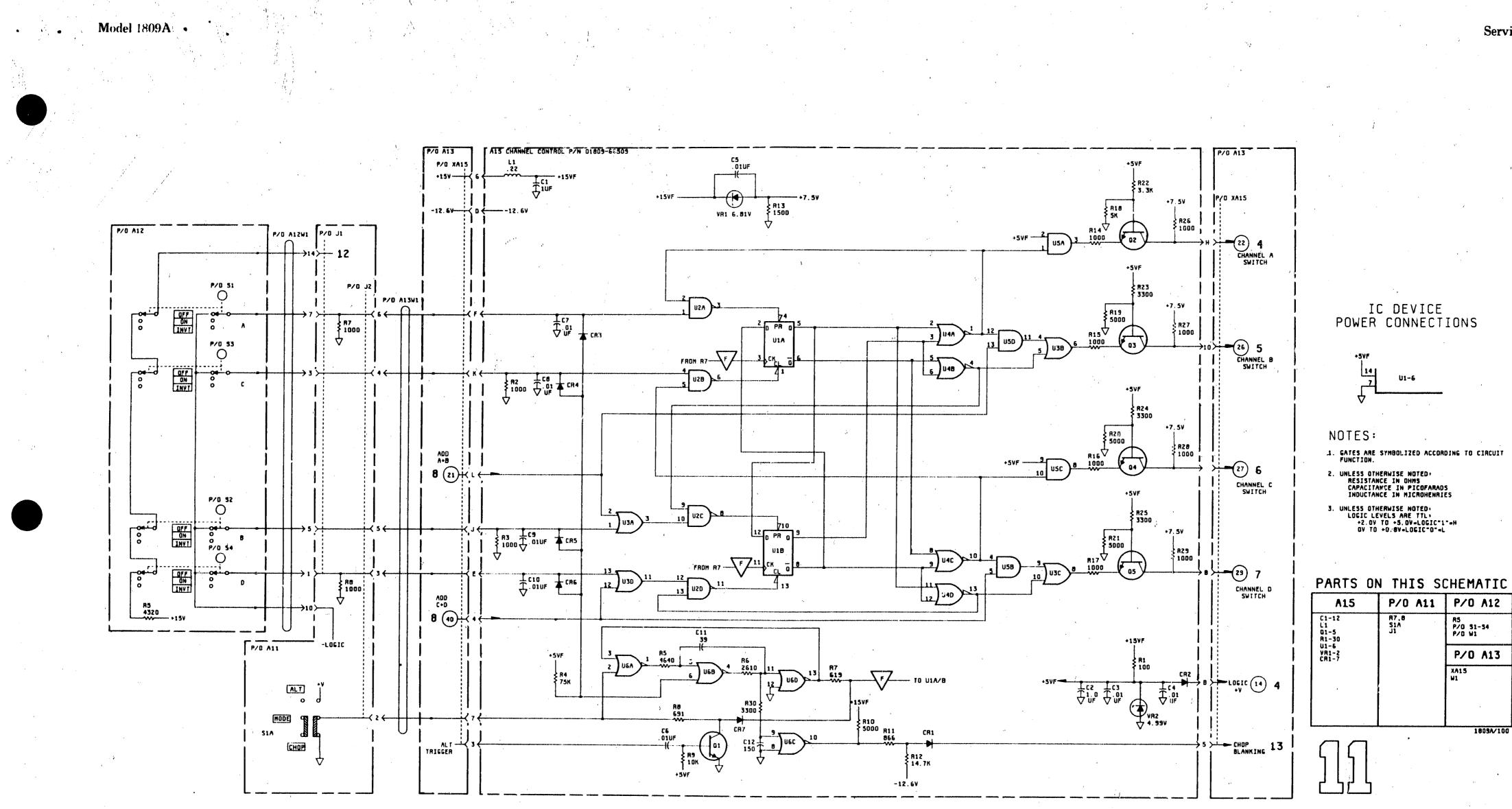

 $(1,1)_{H \to 1}$

Model 1809A

Service

Table 1 Replaceable Pa	irts
------------------------	------

Do '	Reference Designation	HP Part Number	Qty	C D	Description	Mfr Code	Mfr Part Number
ŀ	A15	01809-66509	1	7	BOARD ASSY: CHANNEL CONTROL	28480	01809-66509
	A15C1	0180-0230	2	0	C: FXD TA 1.0UF ±20% 50V	56289	150D105X0050A2
	A15C2	0180-0230		0	C: FXD TA 1.0UF ±20% 50V	56289	150D105X0050A2
	A15C3 A15C4	0160-3451 0160-3451	8		C: FXD CER 0.01UF +80 ×20% 100V C: FXD CER 0.01UF +80 ×20% 100V	28480 28480	0160-3451 0160-3451
	A15C5	0160-3451		i	C: FXD CER 0.01 UF +80 × 20% 100V	28480	0160-3451
	A15C6	0160-3451		1	C: FXD CER 0.01 UF +80 ×20% 100V	28480	0160-3451
	A15C7	0160-3451		1 '	C: FXD CER 0.01UF +80 ×20% 100V	28480	0160-3451
	A15C8	0160-3451			C: FXD CER 0 01 UF +80 ×20% 100V	28480	0160-3451
	A15C9 A15C10	0160-3451 0160-3451			C: FXD CER 0.01 UF +80 ×20% 100V C: FXD CER 0.01 UF +80 ×20% 100V	28480 28480	0160-3451 0160-3451
	A15C11	0140-0175	1		C: FXD MICA 39PF 2% 300V	28480	0140-0175
	A15C12	0140-0196	1	3	C: FXD MICA 150PF 5% 300V	28480	0140-0196
	A15CR1	1901-0040	7	1	DIODE: SILICON 30V 50MA	28480	1901-0040
	A15CR2	1901-0040		1	DIODE: SILICON 30V 50MA	. 28480	1901-0040
,	A15CR3 A15CR4	1901-0040 1901-0040			DIODE: SILICON 30V 50MA DIODE: SILICON 30V 50MA	28480 28480	1901-0040 1901-0040
	A15CR5	1901-0040		1	DIODE: SILICON 30V 50MA	28480	1901-0040
	A15CR6	1901-0040		1	DIODE: SILICON 30V 50MA	28480	1901-0040
	A15CR7	1901-0040		1	DIODE: SILICON 30V 50MA	28480	1 9 01-0040
	A15L1	9100-2251	1	0	COIL: FXD RF 0 22UH 10%	28480	9100-2251
	A15Q1	1854-0215	5	1	TSTR: SI NPN	80131	2N39O4
	A1502	1854-0215		1	TSTR: SI NPN	80131	2 N3904
	A1503 A1504	1854-0215 1854-0215	-		TSTR: SI NPN TSTR: SI NPN	80131 80131	2N3904
	A15Q5	1854-0215		1	TSTR: SI NPN	80131	2N3904 2N3904
	A15R1	0812-0018	1	3	R:RXD/WW 100 OHM 5W 3%	28480	0812-0081
	A15R2	0757-0280	10	3	R:FXD MF 1K OHM 1% 1/8W	24546	C4-1/8-TO-1001/F
	A15R3	0757-0280		3	R:FXD MF 1K OHM 1% 1/8W	24546	C4-1/8-TO-1001-F
	A15R4 A15R5	0757-0969 0698-3155		5	R:FXD MF 75K OHM 2% 1/8W R:FXD MF 4.64 K OHM 1% 1/8W	28480 24546	0757-0969 C4-1/8-T0-4641-F
	A15R6 A15R7	0698-0085 0757-0418	1	0 9	R:FXD MF 2.61 K OHM 1% 1/8W R:FXD MF 619 OHM 1% 1/8W	24546 24546	C4-1/8-TO-2611-F C4-1/8-TO-619R-F
·	A15R8	0757-0418	-	9	R:FXD MF 619 OHM 1% 1/8W	24546	C4-1/8-TO-619R-F
	A15R9	0757-0948	1 🕠	0	R:FXD MF 10K OHM 2% 1/8W	28480	0757-0948
	A15R10	0698-4002	5	9	R:FXD MF 5K OHM 1% 1/8W	24546	C4 1/8-TO 5001 F
	A15R11	0698-3495	1	2	R:FXD MF 866 OHM 1% 1/8W	24546	C4 1/8-TO-866R-F
	A15R12 A15R13	0698-3156 0757-0427		2	R:FXD MF 14.7K OHM 1% 1/8W	24546	C4-1/8-TO-1472-F
	A15R14	0757-0280	1	3	R:FXD MF 1.5K OHM 1% 1/8W R:FXD MF 1K OHM 1% 1/8W	24548 24546	C4-1/8-TO-1501-F C4-1/8-TO-1001-F
	A15R15	0757-0280	ŀ .	3	R:FXD MF 1K OHM 1% 1/8W	24546	C4-1/8-TO-1001-F
Ŧ	A15R16 A15R17	0757-0280		3	R:FXD MF 1K OHM 1% 1/8W	24546	C4 1/8 TO 1001 F
	A15R18	0757 0280 0698 4002	1	3	R:FXD MF 1K OHM 1% 1/8W R:FXD MF 5K OHM 1% 1/8W	24546 24546	C4-1/8-TO-1001-F C4-1/8-TO-5001-F
	A15R19	0698-4002	1	9	R:FXD MF 5K OHM 1% 1/8W	24546	C4-1/8-TO-5001-F
	A15R20	0698-4002	ļ	9	R:FXD MF 5K OHM 1% 1/8W	24546	C4-1/8-TO-5001-F
	A15R21	0698-4002	ļ	9	R:FXD MF 5K OHM 1% 1/8W	24546	C4-1/8-TO-5001-F
	A15R22	0757 0936	4	6	R FXD MF 3.3K OHM 2% 1/8W	24546	C4-1/8-TO-3301-G
	A15R23 A15R24	0757-0936 0757-0936		6	R:FXD MF 3.3K OHM 2% 1/8W R:FXD MF 3.3K OHM 2% 1/8W	24546 24546	C4-1/8-TO-3301-G
	A15R25	0757-0938		6	R:FXD MF 3 3K OHM 2% 1/8W	24546	C4-1/8-TO-3301-G C4-1/8-TO-3301-G
	A15R26	0757-0280		3	R:Fよう MF 1K OHM 1% 1/8W	24546	C4-1/8-TO-1001-F
4	A15R27	0757-0280	1	Э	R:FXD MF 1K OHM 1% 1/8W	24546	C4-1/8-TO-1001-F
	A15R28	0757-0280	1	3	R:FXD MF 1K OHM 1% 1/8W	24546	C4- 1/8-TO- 1001-F
	A15R29 A15R30	0757-0280	1	3 P	R:FXD MF 1K OHM 1% 1/8W R:FXD MF 3.32K OHM 1% 1/8W	24546 24546	C4-1/8-TO-1001-F C4-1/8-TO-3321-F
	A15U1	1820-1112	.				
	A15U2	1820-1197		8 9	IC FF TTL LS D TYPE IC GATE TTL NAND QUAD 2 INPUT	18324 18324	74LS74AN 74LSOON
	A15U3	1820-1208	1	з	IC GATE TTL OR QUAD 2-INPUT	01295	SN74LS32N
	A15U4 A15U5	1820-1144 1820-1201	2	6 6	IC GATE TTL NOR QUAD 2 INPUT	18324	74LS02N
	A15U6	1820-1144	1 '	6	IC GATE TTL AND QUAD 2-INPUT IC GATE TTL NOR QUAD 2-INPUT	18324 18324	74LSOBN 74LS02N
	A15VR1	1902-0052	,	,			н — — — — — — — — — — — — — — — — — — —
	A15VR2	1902-3092	1	7	DIODE: ZNR 6 81V 2% DO 35 PD≕ 4W DIODE: ZNR 4 99V 2% DO 35 PD≕ 4W	28480 28480	1902-0052 1902- 3092
	A15XU1	1200 0638	6	7	SOCKET IC 14 PIN DIP	28480	1200-0638
	A15XU2 A15XU3	1200-0638 1200-0638		7		28480	1200-0638
	A15XU4	1200-0638		7 .	SOCKET:IC 14 PIN DIP SOCKET:IC 14 PIN DIP	28480 28480	1200-0638 1200-0638
	A15XU5	1200-0638	1	7	SOCKETIIC 14 PIN DIP	28480	1200-0638
]	A15XU6	1200-0638	1	7	SOCKET:IC 14 PIN DIP	28480	1200-0638
	· · ·						
					· .		


Service

4

1.6	· · · ·			. 1					
	REF DESIG	GRID LOC	RE F DESIG	GRID LOC	REF DESIG	GRID LOC	REF	GRID LOC	A15
	C1 C2	D-3 C-3	Q1 Q2	C-2 D-1	R16 R17	C-2 D-1	U6 -	D-2	
	C3	С-З	Q3	· E 1	R18	E-1	VR1	B-3	
	C4	B-3	Q4	E 2	R19	E 2	VR2	C-3	
	C5	A-3	Q5	.E-1	R20	E-2			
	C6	C-3			R21	E-1			
	C7 C8 C9 C10 C11	B 1 B 1 C 2 D 2	R1 R2 R3 R4 R5	A-2 C-2 B-1 C-1 D-2	R22 R23 R24 R25 R26	D-2 E-2 D-1 E-3	v		
, ii	< C12	C-2	R6	E 2	R27	E-3	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
•	CR1 CR2 CR3	D-3 C-3 C-1	R7 R8 R9 R10	C-2 D-2 C-2	R28 R29 R30	E-3 E-2 D-2			
	CR4	C 1,		D-3					

CR5 C 1 R11 E 2 U1 CR5 C 1 R12 D 3 U2 CR6 C 1 R13 B 3 U3 CR7 D 2 R14 C 2 U4 L1 D 3 R15 D 2 U5	D 1 B 2
---	------------

Figure 1. Component Identification Assembly A15

.

Figure 2. Channel Control, Schematic 11