DEPARTMENT OF THE ARMY TECHNICAL MANUAL

ORGANIZATIONAL, DS, GS, AND DEPOT MAINTENANCE MANUAL

FREQUENCY CONVERTER, HEWLETT-PACKARD MODEL 5253B

HEADQUARTERS, DEPARTMENT OF THE ARMY
MAY 1967

TABLE OF CONTENTS

Section	Page
GENERAL	1-0.1
1-A.1. Scope	1-0.1
1-A.2. Index of Publications	1-0.1
1-A.3. Forms and Records	1-0.1
1-1. Description	1-1
1-5. Specifications	1-1
1-7. Equipment Supplied	1-1
1-9. Cooling	1-1
11 PREPARATION FOR USE	2-1
2-1. Unpacking and Mechanical Inspectio	on
2-3. Electrical Inspection.	2-1
2-5. Storage and Reshipment	2-1
2-8. Installation	2-1
2-11. Power Requirements	2-1
2-13. Electrical Connections	2-1
III OPERATION	3-1
3-1. Front Panel	3-1
3-3. Maximum Input Voltages	3-1
3-5. Operating Procedures	3-1
3-6. Normal Range Measurements	3-1
3-8. Extended Range Measurements.	3-1
3-12. Double-Checking Frequency	
Measurement Result	.3-1
3-14. Aid to Rapid Tuning	3-3
IV PRINCIPLES OF OPERATION	4-1
4-1. General	4-1
4-5 Harmonic Generator (A2, A3), and	
Harmonic Selector Cavity....	4-1
4-7. Mixer (A4)	4-2
4-9 Video Amplifier Assembly (AI)	4-2
4-11. Level Indicator Meter	4-2
V MAINTENANCE	.5-1
5-1. General	5-1
5-2. Introduction	5-1
5-4. Periodic Maintenance	5-1
5-6. Test Equipment	.5-1
5-8. Troubleshooting.	5-1

Section

Page

V MAINTENANCE (cont'd)
5-10. Repair and Replacement5-1

5-12. Printed Circuit Component Replacement .5-3
5-14. Video Amplifier Assembly Replacement
.5-3
5-16. Mixer Diode Replacement5-3
5-18. Meter Replacement Procedure 5-3
5-20. Harmonic Generator Adjustment....... 5-4
5-22. Low Pass Filter Adjustment................5-4
5-25. Mechanical Adjustment of Meter Zero .5-5
5-28. Sensitivity Check5-5
5-29. Meter Accuracy Check..................... 5-5
5-30. Low Pass Filter Check5-5
5-31. In-Cabinet Performance Check.........5-6

Figure 1-1. Model 5253B and Accessory

This manual contains material copyrighted by Hewlett-Packard Company

SECTION I

GENERAL

1-A.1. Scope

This manual includes installation and operation instructions and covers operator's, organizational, direct support (DS), general support (GS), and depot maintenance. It describes Hewlett-Packard (Federal Supply Code 28480) Frequency Converter Model 5253B (fig. 1-1) with serial numbers prefixed by 513 and 450. A basic issue items list for this equipment is not included in this manual.

1-A.2. Index of Publications

Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, changes, or additional publications pertaining to the equipment. DA Pam 310-4 is an index of current technical manuals, technical bulletins, supply manuals (types 7, 8, and 9), supply bulletins, lubrication orders, and modification work orders that are available through publications supply channels. The index lists the individual parts ($-10,-20,-35 \mathrm{P}$, etc) and the latest changes to and revisions of each equipment publication.

1-A.3. Forms and Records

a. Reports of Maintenance and Unsatisfactory Equipment. Use equipment forms and records in accordance with instructions in TM 38-750.
b. Report of Damaged or Improper Shipment. Fill out and forward DD Form 6 (Report of Damaged or Improper Shipment) as prescribed in AR 700-58 (Army), NAVSANDA Publication 378 (Navy), and AFR 71-4 (Air Force).
c. Reporting of Equipment Manual Improvements. Report of errors, omissions, and recommendations for improving this manual by the individual user is encouraged. Reports should be submitted on DA Form 2028 (Recommended Changes to DA Publications) and forwarded direct to Commanding General, U. S. Army Electronics Command, ATTN: AMSEL-MR-NMP-AD, Fort Monmouth, New Jersey 07703.

1-1. DESCRIPTION

1-2. The Hewlett-Packard Model 5253B Frequency Converter is a plug-in unit which converts a HewlettPackard Model 5243L or 5245L Electronic Counter into a direct reading counter from 50 to 512 Mc .
$1-3$. The stability and accuracy of the basic counter are retained by multiplying a $10-\mathrm{Mc}$ signal, derived from the 1 -Mc internal time base of the counter, to a selectable harmonic frequency between 50 and 500 Mc . This known harmonic of 10 Mc is then heterodyned with the INPUT signal. If the resulting difference frequency is between 100 kc and 12 Mc (bandwidth of amplifier in plug-in), it is counted and displayed by the counter. The frequency of the INPUT signal is then indicated by the combination of the MIXING FREQUENCY control (in megacycles; front panel of plug-in) and the digital display of the counter (in megacycles).

1-4. A front panel meter, by monitoring the differencefrequency output of the plug-in to the counter, aids in selecting the desired MIXING FREQUENCY and also in
determining if INPUT signal amplitude is adequate for accurate frequency measurement.

1-5. SPECIFICATIONS.

1-6. Table 1-1 contains all technical specifications for the Model 5253B when operated in the Model 5243L or Model 5245L Electronic Counter. Test specifications given in the Maintenance Section (Section V) of this manual, for the purposes of troubleshooting and adjustment, do not represent the technical specifications of the instrument.

1-7. EQUIPMENT SUPPLIED.

1-8. A 50 -ohm coaxial cable, 48 inches long, male BNC to male BNC, is furnished with the Model 5253B.

1-9. COOLING.
1-10. The Model 5253B is cooled by the ventilation system of the counter in which it is installed. See operating and service manual of counter for cooling system maintenance instructions.

Table 1-1. Specifications ${ }^{\star}$

RANGE: As converter for 5243L or 5245L counter, 50 Mc to 512 Mc , using mixing frequencies of 50 Mc to 500 Mc in 10 Mc steps.

ACCURACY: Retains accuracy of 5243L or 5245L counter
INPUT VOLTAGE RANGE: 50 mv to 1 v RMS
MAXIMUM INPUT: 2 v RMS or 100 vdc will not damage the instrument
INPUT IMPEDANCE: Approximately 50 ohms
LEVEL INDICATOR: Meter aids frequency selection; indicates output voltage level to counter

REGISTRATION: Counter display is added to the converter dial reading
WEIGHT: Net 5-1/2 lbs, shipping 9 lbs

[^0]01874-1

SECTION II

PREPARATION FOR USE

2-1. UNPACKING AND INSPECTION.

2-2. Inspect the equipment for any damage incurred during transit. If the equipment has been damaged, report the damage on DD Form 6 (para 1-A.3).

2-3. ELECTRICAL INSPECTION.

2-4. The performance check procedure
(Paragraph 5-31) may be used to verify proper electrical operation as part of an incoming quality control inspection.

2-5. STORAGE AND RESHIPMENT.

2-6. PACKAGING. To protect valuable electronic equipment during storage or reshipment, always use the best packaging methods available.
a. Original. Place instrument in original container. Replace each packing pad and filler in the exact position that it originally occupied.
b. Alternate. Cover panel with soft wrapping paper. Wrap corrugated cardboard completely around instrument and place in strong corrugated cardboard container ($350 \mathrm{lb} / \mathrm{sq}$ in. bursting test). Insert filler material between wrapped instrument and container to obtain a snug fit on all surfaces. Filler should be rubberized hair (2 in . thick), excelsior (6 in . thick), or equivalent.

2-7. ENVIRONMENT. Conditions during storage and shipment should normally be limited as follows:
a. Maximum altitude 20,000 feet (6,096 meters).
b. Minimum temperature $-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$.
c. Maximum temperature $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$.

CAUTION
TURN COUNTER POWER OFF BEFORE INSTALLING OR REMOVING FREQUENCY CONVERTER.

2-8. INSTALLATION.

2-9. The Model 5253B plugs into the rectangular compartment at the right-hand side of the front panel of the Model 5243L or 5245L Electronic Counter. To install unit in counter, first check that retaining screw (see Figure 3-1 is turned fully counterclockwise, then push unit firmly into compartment until front panel of plug-in is flush with front panel of counter. Then turn retaining screw clockwise until it is tight.

2-10. To remove unit from counter, turn retaining screw counterclockwise to its stop. Then grasp mixing frequency selector (see Fiqure 3-1) and firmly pull unit from counter. If any difficulty is encountered with installation or removal, check that retaining screw is fully counterclockwise.

2-11. POWER REQUIREMENTS.

2-12. All electrical power required to operate the Model 5253B is supplied by the counter in which the unit is installed.

2-13. ELECTRICAL CONNECTIONS.

2-14. INPUT connector on front panel of plug-in (see Figure 3-1) is the only external electrical connection to the unit. All other connections are made through the 50 pin connector at the rear of plug-in when installed in counter.

1. INPUT signal connector.
2. MIXING FREQUENCY SELECTOR. Calibrated in mc, this control tunes the internal cavity to select a harmonic of 10 me to be heterodyned with the INPUT signal.
3. LEVEL INDICATOR METER. The meter circuit continuously monitors the level of the difference-frequency output of converter to
counter. When meter reads in the green portion of its scale, INPUT signal amplitude is adequate for accurate frequency measurement.
4. RETAINING SCREW. The screw which holds the converter in place is located on the front panel of the counter. To tighten, turn fully clockwise. To loosen, turn fully counterclockwise.

Figure 3-1. Front Panel
01874-3

SECTION III

OPERATION

3-1. FRONT PANEL.

3-2. The functions of the front panel control, meter, connector, and retaining screws are given in Figure 3-1.

3-3. MAXIMUM INPUT VOLTAGES.

3-4. Damage to the converter may result if an AC signal greater than 2 v RMS or a DC voltage greater than 100 v is applied to converter INPUT connector.

3-5. OPERATING PROCEDURES.

3-6. NORMAL RANGE MEASUREMENTS.

3-7. Figure 3-2 is the procedure to be used for measurement of frequencies from 50 . 1 to 512 Mc with INPUT signal amplitudes from 50 mv to 1 v RMS. 3-8. EXTENDED RANGE MEASUREMENTS.

3-9. The frequency of signals not within the normal range of 50.1 to 512 Mc , 50 mv to Iv RMS, may be measured using the following procedures:

3-10. 50 TO 50.1 MC, 50 MV TO 1 V RMS. Perform steps 1 through 5 of Figure 3-2. Then:
a. Set mixing frequency control to slightly more than 60 Mc .
b. Turn mixing frequency control slowly clockwise until level indicator meter first reaches a maximum reading in the green portion of its scale.
c. Subtract counter display (in Mc) from reading of mixing frequency control (in Mc) for frequency of INPUT signal.

3-11. 50 TO 512 MC, AMPLITUDE LESS THAN 50 MV RMS. The front panel level indicator meter indicates in the green portion of its scale only when converter is properly tuned and amplitude of INPUT signal is adequate for accurate frequency measurement. However, because of conservative specifications of both the converter and counter, frequencies may often be accurately measured when meter reads in the red portion of its scale. To make these extended range measurements
a. Follow normal procedure (Figure 3-2 or Paragraph 3-10, depending upon frequency range) except that mixing frequency control should be tuned for first maximum reading on the level indicator meter, regardless of the color of region maximum.
b. Check frequency measurement result as described in Paragraph 3-12, or c. Insert an external variable attenuator (such as Hewlett-Packard Model 355A or 355C) in the transmission line between the converter and the source of INPUT signal. Vary attenuation from 0 to 1 db during final step of frequency measurement procedure. If counter display does not change more than momentarily (during switching of attenuator), INPUT signal is above noise threshold and frequency measurement result is valid.

3-12. DOUBLE-CHECKING FREOUENCY MEASUREMENT RESULT.

3-13. Because of the heterodyne action of the converter, frequency measurement results obtained at any one setting of the mixing frequency control may be checked at other settings. See Figure 3-3 for examples.

Table 3-1. Frequency Resolution

INPUT SIGNAL FREQUENCY $=151.1223344 \mathrm{Mc}$ MIXING FREQUENCY CONTROL set to 140 Mc		
Time Base	Counter Display	
Setting		Measurement Resolution
$.1 \mu \mathrm{~s}$	* (no display)	
$1 \mu \mathrm{~s}$	$11 . \mathrm{Mc}$	$151 . \mathrm{Mc}$
$10 \mu \mathrm{~s}$	11.1 Mc	151.1 Mc
.1 ms	11.12 Mc	151.12 Mc
1 ms	$11122 . \mathrm{kc}$	151.122 Mc
10 ms	1122.3 kc	151.1223 Mc
.1 s	11122.33 kc	151.12233 Mc
1 s	11122.334 kc	151.122334 Mc
10 s	1122.3344 kc	151.1223344 Mc

01874-2

1. Turn SAMPLE RATE control slightly out of POWER OFF position.
2. Set SENSITIVITY to PLUG IN.
3. Set TIME BASE to .1 ms .*
4. Set FUNCTION to FREQUENCY.
5. Connect signal whose frequency is to be measured to INPUT of converter.
6. Set mixing frequency control to read slightly less than 50 Mc .
7. Slowly turn mixing frequency control counterclockwise until level indicator meter first reaches a maximum reading in the green portion of its scale.
8. Add counter display (in Mc) to mixing frequency control reading (in Mc) for frequency of INPUT signal.

* TIME BASE setting may vary, depending on desired resolution of INPUT signal frequency. See Table 3-1.

Figure 3-2. Frequency Measurement Procedure
01874-3

3-14. AID TO RAPID TUNING

3-15. To easily obtain an indication of the proper MIXING FREQUENCY when rapidly tuning the Model 5253B through its frequency range in search of an unknown INPUT frequency, set counter FUNCTION control to MANUAL START. This allows the counter to
totalize each cycle of any difference frequency produced during rapid tuning. When counter display changes, indicating that the MIXING FREQUENCY is heterodyning with the INPUT frequency and producing a difference frequency within the frequency range of the basic counter, set counter FUNCTION control to FREQUENCY and proceed with measurement.

Figure 3-3. Typical Frequency Measurements

Figure 4-1. Block Diagram

Figure 4-2. Harmonic Generator (A2, A3)

SECTION IV

PRINCIPLES OF OPERATION

4-1. GENERAL

4-2. The Model 5253B is a heterodyne frequency converter designed to extend the range of frequency measurement of the Model 5243L and 5245L Electronic Counters to 512 Mc .

4-3. The converter contains four basic functional sections: harmonic generator, harmonic selector cavity, mixer, and video amplifier (see Figure 4-1).

4-4. In normal operation, the harmonic generator produces all of the harmonics of 10 Mc between 50 and 500 Mc . The harmonic selector cavity is tuned to select one of these harmonics to be supplied to the mixer. The mixer output is the difference frequency produced by the mixing of the INPUT frequency and the frequency supplied by the harmonic selector cavity. This difference frequency is amplified by the video amplifier and supplied to the counter input circuit. A low-pass filter within the video amplifier prevents all difference frequency signals above approximately 12 Mc from reaching the counter input circuit. The output of the video amplifier is monitored by a meter circuit which indicates when difference frequency output amplitude is
greater than minimum signal required by counter input circuit.

4-5. HARMONIC GENERATOR (A2,A3), AND HARMONIC SELECTOR CAVITY

4-6. A $10-\mathrm{Mc}$ signal, supplied by the Counter, is amplified by A3Q1 to cause a tuned circuit, composed of A3L2, A3C4, A3C5, A3C6, and C22, to oscillate at 10-Mc (Fig. 4-2), Step-recovery diodes A2CR1, takes energy from this tuned circuit during a portion of each cycle of the $10-\mathrm{Mc}$ oscillation and produces a sharp step in the current following in the input loop of the harmonic selector cavity. This current step makes available, inside the cavity, all harmonics of 10 Mc from 10 Mc (fundamental) to over 500 Mc (fiftieth harmonic). The remaining components of the step-recovery diode network (Assembly A2) are used to maintain the sensitivity of the counter across its frequency range. The harmonic selector cavity is tuned to resonate at a particular harmonic of 100 Mc between 50 and 500 Mc so that energy at that frequency is coupled from the input loop to the output loops providing one of the two inputs to the mixer circuit (Fig. 4-4).

Figure 4-3. Harmonic Selector Cavity

4-7. MIXER (A4)

4-8. Matched diodes are used in a balanced mixer circuit in order to minimize the generation of even-order harmonics of both the INPUT signal and the selected mixing frequency. The balanced input signal required by the circuit is accomplished by grounding the junction of the two resistors of equal value, A4R1 and A4R2, and installing ferrite rings (E1, E2, and E3) around the input coaxial cable (see Figure 4-4). Both sides of resistor A4R1 are returned to common for DC currents. However, for AC currents in the frequency range of 50 to 512 Mc , the impedance of the input signal path is large, due to the inductance provided by the ferrite rings E1, E2, and E3, causing a balanced AC signal condition at the mixer diodes. Limiting diode A4CR2 prevents INPUT signals of high amplitude from overloading the mixer circuit. The output of the mixer diodes, during normal operation when the converter is properly tuned, is a complex signal containing the INPUT signal frequency, the frequency of the harmonic of 10 Mc to which the harmonic selector cavity is tuned, the frequency that is the sum of these two frequencies, and the frequency that is the difference between these two frequencies. Inductor A41.1 reduces the amplitude of any signal with a frequency above approximately 15 Mc before the signal reaches the input to the video amplifier. The output of the mixer circuit is then essentially composed of the difference frequency signal.

Model 5253B
Paragraphs 4-7 to 4-12

4-9. VIDEO AMPLIFIER ASSEMBLY (A1)

4-10. The output of the mixer circuit is amplified by transistors A1Q1 and A1Q2 and is fed to the 12-Mc lowpass filter network (see Figure 4-5). This filter passes any signal frequency below approximately 12 Mc and attenuates all higher frequency signals. The low pass filter output is amplified by AIQ3 and A1Q4 and fed to the last transistor amplifier, A1Q5, which provides both the output to the counter and the drive for the level indicator meter. The limiter diode, A1CR1, prevents the amplitude of the video amplifier output signal from exceeding approximately 300 mv RMS so that counter input circuits will not be overloaded. The low frequency limit of the video amplifier, determined by the bypass and interstage coupling networks, is approximately 100 kc. The converter output signal to the counter, when converter is properly tuned, will be between approximately 100 kc and 12 Mc and will have an amplitude that is less than approximately 300 mv RMS.

4-11. LEVEL INDICATOR METER

4-12. The DC current supply for the meter is produced by metering detector A1CR3 and smoothed by capacitor AIC16 (see Figure 4-6). The value of shunt resistor A1R20 is selected to make level indictor meter M1 read at red-green border when amplitude of converter output to counter is in excess of the 100 mv RMS minimum signal amplitude normally required by the counter for accurate frequency measurement.

Figure 4-4. Balanced Mixer,(A4)

Figure 4-5. Video Amplifier (A1)

Figure 4-6. Level Indicator Meter Circuit

5-1. GENERAL.

5-2. INTRODUCTION.

5-3. This section contains information concerning periodic maintenance, troubleshooting and recommended test equipment, repair, circuit adjustments, and performance testing. A complete schematic diagram of the converter is at the rear of this section (Figure 5-5).
5-4. PERIODIC MAINTENANCE.
5-5. No special maintenance procedures are required when the converter is operated in normal environments. However, if unit is subjected to operation in extremely dusty environments, periodically clean all gears with a lint-free cloth and apply a coating of light, petroleum base, open-gear grease to all gear teeth.
5-6. TEST EQUIPMENT.
5-7. All test instruments required for performance testing, troubleshooting, and circuit adjustment after repair are listed in Table 5-1. Instruments having equivalent specifications may be substituted for the specific instruments recommended.

5-8. TROUBLESHOOTING.

5-9. Table 5-2 lists resistances from connecting pins on connectorJ1l to chassis (when unit is not connected to counter) to aid in troubleshooting. Table 5-3 is a suggested troubleshooting procedure which lists circuit conditions at Test Points throughout the converter. These Test Points are keyed to the component location
drawings, Figures 5-1, 5-2, 5-3 and 5-4 and also to the schematic diagram Figure 5-5 Voltages listed in Table 5-3 are approximate and may vary widely between instruments, due to variations in component values. Table 5-4 lists recommended adjustments to be made after repair of any section of the converter.

Table 5-2. Resistance Troubleshooting Aid

Location	Resistance (to Chassis) ${ }^{*}$
J2 - Pin 1	>100 megohms
J2 - Pin 15	1 K ohms $+20 \%$
J2 - Pin 20	140 K ohms $+20 \%$
J2 - Pin 25	125 K ohms $+20 \%$

* Unit not connected to counter.

5-10. REPAIR AND REPLACEMENT.

5-11. Paragraphs 5-12 through 5-19 are replacement procedures to aid in repair of the converter.
Detailed procedures for replacement of all the individual components of the unit are beyond the scope of this manual. In-field repair is, for the most part, simple and straightforward. However, do not attempt adjustment of the gearing arrangement, the harmonic selector cavity or the step-recovery diode. Figures 5-6 and 5-7 show mechanical parts locations.

Table 5-1. Recommended Test Equipment

Instrument	$\begin{gathered} \text { Required } \\ \text { Characteristics } \end{gathered}$	Use	Instrament Recommended
Electronic Counter		Supply Power, Visual Operational Indicator	5p. Model 5243L or 布, Model 5245 L
RF Millivoltmeter	1 Mc to 20 Mc 10 mv to 10 vdc 10 mv resolution	Circuit Adjustment, Troubleshooting	(40) Model 411A with Pen Type Probe Tip, 有11022A (formerly ${ }^{6} 411 \mathrm{~A}-21 \mathrm{~B}$)
DC VTVM and Ohmmeter	0 to +25 vdc 0.1 v resolution 0 to 100 M ohms	Circuit Adjustment, Troubleshooting	(4.) Model 412A
VHF Signal Generator	50 Mc to 480 Mc 10 mv to 1 v	Circuit Adjustment, Troubleshooting	(40) Model 608C
Oscilloscope	15 Mc bandwidth	Circuit Adjustment, Troubleshooting	(40) Model 175A with (4) Model 1752A High Gain Amplifier and (6) Model 1780A Aux Unit
Extension Cable	50 pin straightthru connections	Circuit Adjustment, Troubleshooting	(52) 10506 A (formerly (10) $\mathrm{AC}-16 \mathrm{Y})$

01874-2

Table 5－3．Troubleshooting Procedure

TEST EQUIPMENT：解 Model 411A RF Millivaltmeterwith $\frac{\operatorname{hi}}{f} 11022 \mathrm{~A}$（formerly 4：1A－21B）Pen Type Probe Tip， Model 412 A DC VIVA

REMOVE 费5253B FROM COUNTER； SELF－CHECK COUNTER	See counter manual for self－check procedure．
CONNECT 想5253B TO COUNTER WITH EXTEN－ SION CABLE， 710506 A（formeriy AC－16Y）	Extension cable available from ${ }^{\text {a }}$ ；see parts list．
1）+20 VDC 2．-15 VDC	Checks power supplied to plug－in from counter； see counter manual for power supply adjustment procedure．
（3） $\begin{array}{r}6 \\ 2 \mathrm{VDC} \\ 2 \mathrm{VAC}\end{array}$	Checks 10－Mc drive of harmonic generator．
（4）$\pm 2 \begin{array}{r}2 \mathrm{VDC} \\ 2 \mathrm{VAC}\end{array}$	Checks generator diode drive．Voltages vary widely because of both the detuning effect of voit－ meter probe and the variable value of A3R3．DC voltage may be either＋or－，depending upon fac－ tory determined generator diode orientation．
（5）+100 MV DC （6）+100 MV DC	Voltages vary widely because of diode charac－ teristics．Voltages are 0 VDC when diode shorted， and +20 VDC when diode open，Voltages should be approximately equal because of matched characteristics．

CONNECT SIGNAL GENERATOR TO \＄ 525313.
SET GENERATOR TO $52 \mathrm{MC}, \mathrm{CW}, 100 \mathrm{MV}$ ．
SET COUNTER CONTROLE AND 5253 B TO
MEASURE FREQUENCY OF INPUT SIGNAL．

（7） 5 MV RMS	This voltage is total harmonic energy output of mixer and varies widely．
（8）-11.3 VDC	Checks bias and amplification of A1Q2 and A1Q1．
（9）-12.3 VDC 17 MV RMS	General check of low pass filter section
（10）-9.3 VDC 360 MV RMS	Checks bias and amplification of A1Q3 and A1Q4
（1）-7.1 VDC 300 MV RMS	Checks operation of A1Q5
12 0 VDC 190 MV RMS	Checks operation of limiter，A1CR1
13 0 MV DC WHEN METER READS AT LEFT END OF SCALE； 50 MV DC WHEN METER READS FULL SCALE； 15 MV DC WHEN TEST POINT \＃12 IS 100 MV RMS，AND METER READS AT RED－GREEN BORDER．	Checks accuracy of meter circuit in relation to output to counter

5-12. PRINTED CIRCUIT COMPONENT

 REPLACEMENT.5-13. Component lead-holes in the \$Model 5253B circuit boards have plated walls to insure good electrical contact between conductors on the opposite sides of the board. To prevent damage to this plating and also to the replacement component, apply heat sparingly and work carefully. The following replacement procedure is recommended:
a. Remove defective component.
b. Melt solder in component lead-holes. Use clean, "dry" soldering iron to remove excess solder. Clean holes with toothpick or wooden splinter. Do not use metal tool for cleaning as this may damage the through hole plating.
c. Bend leads of replacement component to the correct shape and insert component leads in component lead-holes. Using heat and solder sparingly, solder leads in place. Heat may be applied to either side of board as is convenient. A heat sink (long-nose pliers, commercial heat-sink tweezers, etc.) should be used when replacing transistors and diodes in order to prevent excessive heat from being conducted by the leads from the soldering iron to the component.
d. Through-hole plating breaks are indicated by the separation from the board of the round conductor-pad on either side of the board. To repair breaks, press conductor-pads against board and solder replacement component lead to conductor-pad on both sides of the board.

5-14.
 VIDEO AN

$5-15$. If video amplifier printed circuit board requires replacement, follow this procedure:
a. Remove the converter from counter.
b. Unscrew and remove small screw (MP1; see Figure 5-4) which holds video amplifier Al in place. Remove screws which secure supporting bracket to front panel. Remove supporting bracket.
c. Firmly grasp assembly at component-free end and pull out of socket using a slight back-and-forth sideways movement.
d. Check that the connecting terminals of replacement assembly are clean. Push replacement assembly firmly into socket and check for proper seating. Replace supporting bracket and all screws.
e. All replacement video amplifier assemblies are adjusted and inspected at the factory for optimum performance. However, if a general operational check is desired, perform the in-cabinet performance check given in Paragraph 5-31

01874-1

5-16. MIXER DIODE REPLACEMENT.

5-17. If either of the matched pair of mixer diodes (A4CR1A or A4CR1B) is found to be defective, both diodes should be replaced. The recommended replacement procedure is as follows:
a. Remove mixer-assembly shield cover (see Figure 5-3).
b. Remove diodes from spring clips, noting orientation.
c. Install replacement diodes with same orientation.
d. Replace mixer-assembly shield cover.
e. Perform the sensitivity check (Paragraph 5-28 to insure that converter operation is within specifications.

5-18. METER REPLACEMENT PROCEDURE.

5-19. If the level indicator meter requires replacement, follow this procedure:
a. Remove converter from counter.
b. Unscrew and remove small retaining screw (MP1; see Figure 5-4) which holds video amplifier board Al in place. Remove screws which secure supporting bracket to front panel. Remove supporting bracket.
c. Firmly grasp video amplifier board at the component-free end and pull board out of socket using a slight back-and-forth sideways movement.
d. Place converter on bench with bottom plate resting on bench surface and with the front panel facing to the rear of the bench.
e. Remove screw (MP2) which holds aluminum spacer-rod (MP3) to plastic rear-support (MP4; see Figure 5-2), Grasp spacer-rod and turn counterclockwise to remove rod from front support.
f. Cut connecting wires at meter terminals.
g. Remove screws (MP5, 6; see Figure 5-4) from meter bezel at sides of meter. Push bezel forward as far as possible.
h. Remove screws (MP7, 8) on top of meter bracket.
i. Grasp meter and gently pull meter (and bracket) backwards out of front panel hole, at the same time twisting rear of meter slightly sideways to the right and pulling up.
j. Remove bracket and hardware from meter and install in identical manner on replacement meter.

Hardware which may come from the manufacturer with the replacement meter may be discarded.
k. Place meter (with bracket) in unit by reversing removal procedure.
m. Replace screws on top of meter bracket.
n . Replace meter bezel at sides of meter.
f. Using plastic tuning tool, tune A3C5 (see Figure 5-2) for maximum reading on RF Millivoltmeter. Tune A3C5 through hole in harmonic generator assembly shield cover.

5-22. LOW PASS FILTER ADJUSTMENT.

$5-23$. To adjust the low pass filter in the video amplifier assembly, proceed as follows:
a. Remove converter from counter and reconnect to counter with Extension Cable, (HP) 10506A.
b. Connect VHF Signal Generator to converter INPUT and set to $110 \mathrm{Mc}, \mathrm{CW}$, at 50 mv .
c. Connect RF Millivoltmeter to Test Point \#12 (see Figures 5-4 and 5-5).
d. Set converter mixing frequency control to 100 Mc and tune for maximum reading on RF Millivoltmeter.
e. Set Signal Generator to $116.2 \mathrm{Mc}, \mathrm{CW}$, at 1 v .
f. Using plastic tool, adjust variable inductor AI L4 (see Figures 5-1 and 5-5) for minimum reading of RF Millivoltmeter.
g. Set Signal Generator to $120.2 \mathrm{Mc}, \mathrm{CW}$,, at 1 v .
h. Using plastic tool, adjust variable inductor AI L3 (see Figures 5 -land 5-5)for minimum reading of RF Millivoltmeter.
i. Set Signal Generator to $115 \mathrm{Mc}, \mathrm{CW}$, at 1 v .
j. Reading of RF Millivoltmeter should be less than 100 mv . If reading is above 100 mv , troubleshoot video amplifier assembly.

Table 5-4. Adjustments after Repair

AFTER REPLACING COMPONENT IN THIS SECTION:	PERFORM:
Harmonic generator (A3)	Harmonic generator adjustment (Paragraph 5-20)
Mixer (A4)	Sensitivity check (Paragraph 5-28)
A1Q1	Sensitivity check (Paragraph 5-28)
A1Q2	Sensitivity check (Paragraph 5-28), and
	Low pass filter adjustment (Paragraph 5-22)
Low Pass Filter	Sensitivity check (Paragraph 5-28), and
	Low pass filter adjustment (Paragraph 5-22)
A1Q3	Sensitivity check (Paragraph 5-28), and
A1Q4	Low pass filter adjustment (Paragraph 5-22)
	Sensitivity check (Paragraph 5-28), and
Meter circuit	Low pass filter adjustment (Paragraph 5-22)
	Meter accuracy check (Paragraph 5-29)

5-24. METER CALIBRATION ADJUSTMENT. (pri.)

a. Turn counter power off, remove converter from counter, and reconnect to counter with Extension Cable, (HP) 10506A.
b. Set VHF Signal Generator to $102 \mathrm{Mc}, \mathrm{CW}$, at 50 mv and connect to INPUT of converter.
c. Set counter controls as shown ir Figure 3-2. Counter should display approximately 2 Mc .
d. Vary VHF Generator output to make level indicator meter read at red-green border.
e. Using RF Millivoltmeter, measure voltage at Test Point \#12. Voltage should be between 100 mv and 130 mv . If not, change value of resistor A1R19 to change voltage to between 100 mv and 130 mv . If voltage is too high, increase value of A1R19. If voltage is too low, decrease value of A1R19. Repeat steps d and e after changing value of A1R19.

5-25. MECHANICAL ADJUSTMENT OF METER ZERO.

5-26. TRUE SIGNAL LEVEL INDICATION. Level indicator meter is adjusted at the factory for proper mechanical zero. However, normal aging of meter components may change indicated zero level. To insure accuracy of input signal level indication, periodic adjustment of meter zero may be necessary.
5-27. ZERO-SET. When meter is properly zero-set, pointer rests over the zero calibration mark at the lefthand end of meter scale when converter is (1) at normal operating temperature, (2) in normal operating position, and (3) without power. Proceed as follows:
a. Allow counter and converter to operate for one hour to permit meter movement to reach normal operating temperature.
b. Turn counter off and allow one minute for all capacitors to discharge.
c. Remove converter from counter to enable access to rear of meter.
d. Remove adhesive-backed-paper cover from meter zero-adjustment access hole on top-rear of meter.
e. Carefully insert small tool in access hole and engage adjustment fork.
f. Vary setting of adjustment fork until meter reads zero.
g. Remove tool and replace adhesive-backedpaper cover on access hole. This completes meter zero adjustment procedure.

5-28. SENSITIVITY CHECK.

a. Turn counter power off, remove converter from counter, and reconnect to counter with Extension Cable, (HP) 10506A.
01874-2
b. Set VHF Signal Generator to $52 \mathrm{Mc}, \mathrm{CW}$, at 50 mv and connect to INPUT of converter.
c. Adjust controls as shown ir Figure 3-2.
d. Set converter mixing frequency control to 50 Mc. Counter should display approximately 2 Mc .
e. Using RF Millivoltmeter, measure output of converter at Test Point \#12 (see Figures 5-4 and 5-5), Voltage should be at least 100 mv .
f. Repeat above steps c, d, and e with VHF Generator frequency of 472 Mc and converter mixing frequency control set to 470 Mc . Converter output to counter, as measured by RF Millivoltmeter, should be at least 100 mv .
g. A similar check may be made at any frequency within the range of the Model 5253B. Converter output to counter should be at least 100 mv when difference frequency is between 100 kc and 12 Mc and converter is properly tuned.

5-29. METER ACCURACY CHECK.

a. Turn counter power off, remove converter from counter, and reconnect to counter with Extension Cable, (HP) 10506A.
b. Set VHF Signal Generator to $102 \mathrm{Mc}, \mathrm{CW}$, at 50 mv and connect to INPUT of converter.
c. Set controls as shown in Figure 3-2. Set converter mixing frequency control to 100 Mc . Counter should display approximately 2 Mc .
d. Vary output of VHF Signal Generator for converter level indicator to make meter read at redgreen border.
e. Using RF Millivoltmeter, measure converter output to counter at Test Point \#12. Voltage should be between 100 mv and 130 mv . If not, see Paragraph 524 for meter calibration adjustment procedure.

5-30. LOW PASS FILTER CHECK.

a. Turn counter power off, remove converter from counter and reconnect to counter with Extension Cable, (HP) 10506A.
b. Set VHF Signal Generator to $110 \mathrm{Mc}, \mathrm{CW}$, at 50 mv and connect to INPUT of converter.
c. Set controls as shown in Figure 3-2. Set converter mixing frequency control to 100 Mc . Counter should display approximately 10 Mc .
d. Connect RF Millivoltmeter to Test Point \#12. Vary output of VHF Signal Generator for RF Millivoltmeter reading of 100 mv . Note output level of VHF Signal Generator.

Section V

Model 5253B
Paragraph 5-31
e. Set VHF Signal Generator to 115 Mc at same output level as noted in step d above. Converter output to counter, as shown on RF Millivoltmeter, should not exceed 50 mv . If converter output to counter is greater than 50 mv , see Paragraph 5-23 for low pass filter adjustment procedure.

5-31. IN-CABINET PERFORMANCE CHECK.

a. Turn counter power off and install converter.
b. Set VHF Signal Generator to $52 \mathrm{Mc}, \mathrm{CW}$, at 50 my and connect to INPUT of converter.
c. Set controls as shown in Figure 3-2. Counter should display approximately 2 Mc .
d. Set VHF Signal Generator to any frequency between 50 Mc and 512 Mc with output of 50 my . Counter should display correct frequency at any frequency within this range.

Figure 5-1. Video Amplifier Assembly Al Component Location

Figure 5-2. Left Side View

01874-3
05253-A-7

Figure 5-3. Right Side View
01874-2
05353-A-10

REF.	STOCK NO.	DESC.	QTY
1	1251-0135	Connector, Printed Crt. 15	1
2	2390-0007	Screw BH SS 6-32 x . 312 with Lock	7
3	05253-0006	Bracket, Panel	1
4	2390-0009	Screw BR SS 6-32 x . 375 with Lock	4
5	2380-0003	Screw Fil H SS 6-32 x . 5	2
6	2190-0046	Washer Lock Split No. $6.141 \mathrm{ID}$	6
7	05253-6007	Ass'y, Vidio Amplifier	1
8	525C-37A	Shaft, Loop Drive	1
9	5253A-12A	Yoke, Loop Drive	1
10	2190-0014	Washer Lock Internal No. 2	6
11	3030-0003	Screw Cap 6-32 x . 375	2
12	0520-0025	Screw Mach RH 2-56 $.125 \text { LG }$	6
13	2500-0001	Nuts - Hex BRS 6-32 x $1 / 4 \times 3 / 32 \mathrm{In}$.	4
14	5253A-41B	Cover	2
15	5253A-55A	Shield	I
16	5253A-17C	Bushing	1
17	3030-0078	Screw Cap Hex Dr 6-32 x 1.125	2
18	525C-108-	Left Cam AL	1
19	0360-0018	Board-Terminal 4 Ins. 1 GRD Term A1A1GA1A1	1
20	2190-0008	Washer Lock External No. 6	3

REF.	STOCK NO.	DESC.	QTY
21	3050-0066	Washer Brass . 375 OD . 147 1D	2
22	1400-0053	Clamp Cable for 188 Dia. Cable	1
23	5253A-12D	Bracket, Connector	1
24	0510-0083	Ring Retain Ext . 025 Thk	1
25	1410-0047	Bushing Flanged . 252 ID 25 LG	2
26	0510-0001	Fastener Steel . 281 Dia. . 083 Thk	1
27	3030-0022	Screw-Set Stl\| 6-32 x 1/8 HD LSS Hex Drive	8
28	2200-0009	$\begin{aligned} & \text { Screw Mach RH SS 4-40 } \\ & .5 \text { LG } \end{aligned}$	4
29	2190-0004	Washer Lock Internal No. 4	4
30	05253-2004	Probe	1
31	5-25C-71E	Collar, Spring	1
32	5253A-17A	Bearing	1
33	1460-0082	Spring Comp 1.5 LG . 484 OD	1
34	5253A-12B	Retainer	4
35	525C-24B	Gear, Drive	2
36	525C-17A	Order 525C-25A	1
37	5253A-37A	Shaft	1
38	3050-0017	Washer Phos Br . 375 OD . 26 ID	1
39	5253A-37B	Shaft	1
40	5253A-24A	Gear	4
41	2190-0006	Washer Lock Split Ring No. 6	1

REF.	STOCK NO.	DESC.	QTY
42	2360-0013	Screw RH SS 6-32 x I	1
43	1410-0021	Bearing Ball 1.5 OD 1.063 Bore	1
44	5253A-17D	Holder	1
45	2550-00089	Screw Mach BH SS 8-32 X .5 with Lock	2
46	2390-0001	Screw BH SS 6-32 x . 5	12
47	0360-0042	Solder Lug - Brs . 144 Mtg Hole 90 Deg Bend	2
48	05253-2002	Collar, Rear	1
49	05253-2011	Flange, Cavity	1
50	5253A-55B	Shield	1
51	2200-0004	Screw Mach RH SS 4-40 with Lock . 250 LG	8
52	05253-6004	Generator Bushing Ass'y	1
53	5253A-20A	Cavity	1
54	05253-6001	Ass'y, Probe Positioning	1
55	5253A-47B	Support	2
56	2380-0004	$\begin{aligned} & \text { Screw Fil N H SS } 6-32 x \\ & .750 \end{aligned}$	4
57	3050-0028	$\begin{aligned} & \text { Washer Brass } .4375 \text { OD } \\ & .251 \mathrm{D} \end{aligned}$	4
58	05253-2009	Bushing, Probe Support	1
59	525C-24C	Gear, Idler	3
60	565A-17A	Retainer, Bearing	4
61	05253-6006	Ass'y Support Capacitor	1
62	5253A-40A	Hub	1
63	1480-0061	Pin Cross . 06 ID .312LG	4
64	525C-108-	Right Cam AR	1
65	5253A-65B	Board Ass'y, Circuit	1
66	5253A-65C	Board Ass'y, Circuit	1

Figure 5-6., Mechanical Parts Location - 5253B

Figure 5-7. Mechanical Parts Location - 5253B

HEADQUARTERS DEPARTMENT OF THE ARMY WASHINGTON, D.C., 16 May 1967

TM 11-6625-1515-15 is published for the use of all concerned.
Distribution:
Active Army:
USAMB (1) Eighth USA (5)
USACDCEC (1)
USACDCCEA (1)
SAAD (5)
USACDCCEA:
TOAD (5)
Ft Huachuca (1)
$N G:$ None.
USAR: None.
For explanation of abbreviations used, see AR 320-50.

Figure 5-4. Top view- Test Points

The Metric System and Equivalents

Linear Measure

1 centimeter $=10$ millimeters $=.39$ inch 1 decimeter $=10$ centimeters $=3.94$ inches 1 meter $=10$ decimeters $=39.37$ inches
1 dekameter $=10$ meters $=32.8$ feet
1 hectometer $=10$ dekameters $=328.08$ feet
1 kilometer $=10$ hectometers $=3,280.8$ feet

Weights

1 centigram $=10$ milligrams $=.15$ grain 1 decigram $=10$ centigrams $=1.54$ grains
1 gram $=10$ decigram $=.035$ ounce
1 decagram = 10 grams $=.35$ ounce
1 hectogram $=10$ decagrams $=3.52$ ounces
1 kilogram $=10$ hectograms $=2.2$ pounds
1 quintal $=100$ kilograms $=220.46$ pounds
1 metric ton $=10$ quintals $=1.1$ short tons

Liquid Measure
1 centiliter $=10$ milliters $=.34 \mathrm{fl}$. ounce
1 deciliter $=10$ centiliters $=3.38 \mathrm{fl}$. ounces
1 liter $=10$ deciliters $=33.81 \mathrm{fl}$. ounces
1 dekaliter = 10 liters = 2.64 gallons
1 hectoliter $=10$ dekaliters $=26.42$ gallons
1 kiloliter $=10$ hectoliters $=264.18$ gallons

Square Measure

1 sq. centimeter $=100$ sq. millimeters $=.155$ sq. inch
1 sq. decimeter $=100$ sq. centimeters $=15.5$ sq. inches
1 sq. meter $($ centare $)=100 \mathrm{sq}$. decimeters $=10.76$ s. feet
1 sq. dekameter $($ are $)=100$ sq. meters $=1,076.4$ sq. feet
1 sq. hectometer (hectare) $=100$ sq. dekameters $=2.47$ acres
1 sq. kilometer $=100$ sq. hectometers $=.386$ sq. mile

Cubic Measure

1 cu. centimeter $=1000 \mathrm{cu}$. millimeters $=.06 \mathrm{cu}$. inch
1 cu . decimeter $=1000 \mathrm{cu}$. centimeters $=61.02 \mathrm{cu}$. inches
1 cu . meter $=1000 \mathrm{cu}$. decimeters $=35.31 \mathrm{cu}$. feet

Approximate Conversion Factors

To change	To	Multiply by	To change	To	Multiply by
inches	centimeters	2.540	ounce-inches	Newton-meters	. 007062
feet	meters	. 305	centimeters	inches	. 394
yards	meters	. 914	meters	feet	3.280
miles	kilometers	1.609	meters	yards	1.094
square inches	square centimeters	6.451	kilometers	miles	. 621
square feet	square meters	. 093	square centimeters	square inches	. 155
square yards	square meters	. 836	square meters	square feet	10.764
square miles	square kilometers	2.590	square meters	square yards	1.196
acres	square hectometers	. 405	square kilometers	square miles	. 386
cubic feet	cubic meters	. 028	square hectometers	acres	2.471
cubic yards	cubic meters	. 765	cubic meters	cubic feet	35.315
fluid ounces	milliliters	29,573	cubic meters	cubic yards	1.308
pints	liters	. 473	milliliters	fluid ounces	. 034
quarts	liters	. 946	liters	pints	2.113
gallons	liters	3.785	liters	quarts	1.057
ounces	grams	28.349	liters	gallons	. 264
pounds	kilograms	. 454	grams	ounces	. 035
short tons	metric tons	. 907	kilograms	pounds	2.205
pound-feet	Newton-meters	1.356	metric tons	short tons	1.102
pound-inches	Newton-meters	. 11296			

Temperature (Exact)

${ }^{\circ} \mathrm{F}$	Fahrenheit	$5 / 9($ after	Celsius	${ }^{\circ} \mathrm{C}$
	temperature	subtracting 32)	temperature	

PIN: 019301-000

[^0]: *When installed in Hewlett-Packard Model 5243L or Model 5245L Electronic Counter.

