PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

UNIVERSAL LOAD UNIT 067-0883-99

The Universal Load Unit is a non-supported Tektronix product.

Although the material in this manual has been thoroughly edited and checked for accuracy, Tektronix, Inc., makes no guarantees against typographical or human errors. Also, Tektronix assumes no responsibility or liability, consequential or otherwise, of any kind arising from misinterpretation or misuse of the material in this manual. The contents of this manual are subject to change without notice.

Copyright © 1979 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved.
U.S.A. and foreign TEKTRONIX products covered by U.S. and foreign patents and/or patents pending.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

TABLE OF CONTENTS

SECTION 1- GENERAL INFORMATION 1-1
Introduction 1-1
Description 1-1
Electrical Characteristics 1-3
Environmental Characteristics 1-5
Accessories 1-5
SECTION 2 - OPERATION 2-1
Front Panel Controls 2-1
Rear Panel Controls \& Connectors 2-4
Initial Turn On 2-7
Operational Notes 2-7
WARNING
THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BYQUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DONOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED INOPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.
SECTION 3 - THEORY OF OPERATION 3-1
Block Diagram Description 3-1
Circuit Description. 3-4
High Current Cells 3-4
Medium Current Cells 3-4
Low Current Cells 3-5
Digital Multimeter 3-5
Program Board 3-8
Power Supplies 3-8
SECTION 4 - CALIBRATION TEST \& PROCEDURE 4-1
Required Equipment List 4-1
Verification Procedure 4-2
Calibration Procedure 4-4
SECTION 5 - REPLACEABLE PARTS
SECTION 6 - DIAGRAMS \& CIRCUIT BOARD ILLUSTRATIONS APPENDIX A - PROGRAMMING PLUG-IN MODULE A-1
Program Resistor Selection A-2
Safe Operating Area Curves A-10
Replaceable Parts List A-13
Diagrams A-18

SECTION 1

GRNERAL INFORMATION

Introduction

Abstract

The Universal Load Unit (ULU) is a bench top testing device that will provide a convenient method of performance checking the internal power supplies in several Tektronix instruments. It may be used to test and verify proper voltage regulation of single and multiple output supplies under variable load conditions. The ULU is used in conjunction with Programming plug-in modules that are temporarily installed, one at a time, into the Load Unit through its front panel.

Description

The Universal Load Unit includes twelve active load cells (channels) and one passive channel through which up to thirteen output voltage levels can be concurrently loaded. The current through any active channel is varied by an internal pulse generator to provide transient response testing. The voltage or current in a selected channel may be displayed on the Load Units front panel digital multi-meter. Also, each channel is monitored for an out-of-tolerance condition as indicated by one of thirteen comparatordriven, front panel LED's. The thirteen position CHANNEL SELECTOR switch is used to connect the ULU controls and output monitoring circuits to each of the 12 active cells. As selected, each active load cell or channel can be set up to provide a resistive load or a constant current load for a given power supply output. Each active load cell includes a current sensing resistor, current amplifier and cell protection circuitry. Each programming/load module supports 12 active and 1 passive channel. All twelve active channels can be programmed by the installation of six user selected resistors per channel (See Appendix A). The resistors select high or low current levels and equivalent load resistances and establish nominal voltages and tolerance limits for the ULU's comparator circuitry. The passive channel (13) is programmed with two fixed resistors.

Each programming module is used to test the internal power supplies in a specific Tektronix instrument and will be separately part numbered.

UNIVERSAL LOAD UNIT

Electrical Characteristics

Input AC Power

The ULU may be operated at 115 or 230 VAC (48 to 67 HZ) and requires less than 80 watts during normal operation. It uses a 1 amp standard 3AG fuse. The power cord is detachable and will plug into a female receptacle conforming with NEMA 非5-15. (Two-pole, three wire grounding).

Load Cells (Channels) Maximum and minimum input voltages and currents are given in the following tabular listing.

Current:	Max	Fused	Accuracy
Channels 1,2,7,8	24. A	30A	$\pm 5 \% \pm 0.5 \% \mathrm{FS}$
Channels 3,4,9,10	10A	15A	$\pm 5 \% \pm 0.5 \% \mathrm{FS}$
Channels 5,6,11,12	2 A	5A	$\pm 5 \% \pm 0.5 \% \mathrm{FS}$
Channel 13	1A		
Voltage:	Max	Trip Voltage (Crowbar)	Saturation Amps (minimum)
Channels 1,2	50 V	55 V	$\leq 2 \mathrm{~V}$ @ 15A max.
Channels 7,8	-50V	-55V	$\leq 2 \mathrm{~V}$ @ 15A max.
Channels 3,4	100 V	110 V	$\leq 4.5 \mathrm{~V}$ ¢ 10A max.
Channels 9,10	-100V	-110V	$\leq 4.5 \mathrm{~V}$ @ 10A max.
Channels 5,6	160 V	180 V	$\leq 8 \mathrm{~V}$ ¢ 2 A max.
Channels 11,12	-160V	180 V	$\leq 8 \mathrm{~V}$ @ 2A max.
Channels 13	350 V	none	$\leq 1 \mathrm{~V}$ ¢ 1A max.
Power		Maximum ${ }^{\text {m }}$	
Channels 1,2,7,8		120W	
Channels 3,4,9,10		80W	
Channels 5,6,11, 12		80W	
Channel 13		10W	

[^0]Operational Modes: The ULU includes two operational modes; Chop individual and Chop All.

Chop Rate:	96 Hz nominal
Chop Duty Cycle:	50% nominal
Chop Rise/Fall time:	$\leq 10 \mu \mathrm{~s}(10 \%-90 \%)$

Indicators: The ULU includes two indicating devices - a digital multimeter (DMM) display and 10 Out-of-Regulation LED's.

Voltage
DMM Ranges:
DMM Accuracy: $\quad \pm 0.1 \% \pm 2$ counts $\quad 1 \% \pm 6$ counts

LED Accuracy: $\pm 5 \%$ deviation from programmed value

Environmental Characteristics

The ULU has been tested and verified operable in the following class 5 categories: shake, shock, transportation, bench handling and abbreviated thermal tests (limited to $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ with instrument on).

Accessories

Standard. Accessories for the ULU include this manual (061-2213-00) and the following listed items:

Mating Connectors P1 \& P2 (2) 131-0097-00
Mating Connector, P3 131-0293-00
AC Power Cord $161-0066-00$
Packing Box 004-0766-00
Foam Pad 004-0281-00
Pad Set 004-1092-00

Optional. Optional Accessories for the ULU include the following listed items:

Unprogrammed Plug-in \& Connector Set	$067-0919-99$
7612D Programming Plug-in	$067-0921-99$
7612D Programming Plug-in Inst. Manual	$061-2214-00$
7912AD Programming Plug-in	
7912AD Programming Plug-in Inst. Manual	$067-0920-99$
$061-2213-00$	

SECTION 2

OPERATION

FRONT PANEL CONTROLS

CHANNEL SELECT Control. This 13 position rotary switch connects one of the 13 channels to other Universal Load Unit front panel controls including: CURRENT ADJUST, CURRENT LIMIT, CHOP/SWITCH, OVER VOLTAGE TEST, to indicators including: Digital Multimeter and OUT-OF-REGULATION Lights and to the External Input Amplifier. The CHANNEL SELECT control also switches the AC output voltage available at the RIPPLE OUT (+) connector.

OVER VOLTAGE TEST Control. The OVER VOLTAGE TEST control is an end-of-rotation switch that inserts (or excludes) an internal 75 K resistive divider in series with the remote sense line of the selected channel. CW rotation increases the magnitude of the output voltage of the selected supply under test. Note that this control will function only if the output is remote sensed. Caution is indicated in that using this control in any but the OFF (detented) position may cause damage to the supply under test. Also, if the supply under test does not have an over-voltage limit, the ULU's crowbar may be initiated causing an open fuse, damage to the supply under test or both.

CURRENT ADJUST Control. The CURRENT ADJUST control is a combination push-pull switch and dual potentimeter. Pulling out on this control engages the current adjust function; pushing in disengages it. With the control pulled out, CW rotation increases and CCW rotation decreases the programmed current level (in positive channels 1 through 6) to the full cell current. Note that CURRENT ADJUST control rotations are reversed for negative channels $7-12$. In the individual chop mode, the transition level current is set with the CURRENT ADJUST potentiometer (with the push-pull switch in).

CURRENT LIMIT Control. The CURRENT LIMIT control is a momentary contact push button switch. Pushing this switch causes the selected channel to draw its maximum safe current. The CURRENT LIMIT switch overrides both programmed current and the setting of the CURRENT ADJUST control. Current magnitudes are a function of the channel number, its voltage and its internal protection circuitry.

HI/LOW/IND LOAD SELECT Control. The HI/LOW/IND LOAD SELECT control is a three position toggle switch (S2110). In its upper position (HI) all active cells are set to their high load current. In its mid position (LOW) all active cells are set to their low load current. The lower position (IND) enables the CHOP/SWITCH control.

CHOP/SWITCH Control. The CHOP/SWITCH control is a two position toggle switch (S2111). With the HI/LOW/IND LOAD SELECT switch in its IND position and the CHOP/SWITCH control down, (SWITCH position) the 12 indiviual MAX/MIN LOAD SELECT switches (S2001 through S2012) are enabled. Each individual channel is then set to its programmed high or low current value by the position of its corresponding MAX/MIN switch.

With the HI/LOW/IND LOAD SELECT switch in its IND position and the CHOP/SWITCH control up (CHOP position) the Chop mode is enabled. Operating at a clock rate of 96 hertz, the Chop mode performs two functions, one at a time, as determined by the positions of two programming jumpers on P2119 (located on the backside of the Load Select Toggle Switches circuit board). These jumpers are accessible with ULU's left side cover off and Programming/Load plug-in module removed.

With the P2119 jumpers connecting pins 1 to 2 and 4 to 5, the INDividual Chop mode is selected in which only the channel selected by the CHANNEL SELECT control is chopped or step loaded. Note that the CURRENT ADJUST switch must be pushed in to enable the chopping action. Chopper state information is available at the SYNC output BNC connector. The cell current value in effect when the SYNC output is in a TTL low state is that set by the MAX/MIN INDividual LOAD SELECT switch for that channel (cell) and the corresponding programming resistor value (in the plug-in module). The cell current value during the SYNC output TTL high state is that set by the CURRENT ADJUST controls. The magnitude of this value can be set by (temporarily) pulling out the CURRENT ADJUST switch and adjusting it to the desired value as read on the DMM in CURRENT mode. Note that the averaging nature of the DMM and the 50 percent duty cycle of the chopper cause the DMM current (while chopping) to be the average of the two switched levels.

With the P2119 jumpers connecting pins 2 to 3 and 5 to 5, the Chop ALL mode is selected. In the Chop All mode all active channels are simultaneously switched between their high and low programmed current values. Note that all channels are high at once and then all low at once irregardless of the positions of their respective MAX/MIN switches.

The Universal Load Unit includes two chop modes to accomodate those instrument power supplies that cannot tolerate all their outputs being chopped at once without activating their internal fault or protection circuits. Damage may occur to some power supplies when all outputs are concurrently chopped.

MAX/MIN Switch Array. The MAX/MIN Switch Array consists of SPST toggle switches (S2001 through S2012). These switches are used to select either high or low load current for each active channel. Both the CHOP ALL (mode) and the HI/LOW/IND LOAD SELECT switch will override the individual MAX/MIN switches.

VOLTAGE/CURRENT Control. The VOLTAGE/CURRENT control is a two position toggle switch located to the right of the Digital Multimeter. It is used to select the type of measurement displayed on the Multimeter (voltage or current). Each switch position is monitored by a corresponding LED indicator. "V" is illuminated for the VOLTAGE switch position and 'I' is illuminated for the CURRENT position.

DIGITAL MULTI-METER. The Digital Multi-Meter (DMM) is an auto-ranging, numerical display indicator with a four and a half digit readout. The DMM is used to indicate the polarity and numerical value of DC voltage or current on a selected channel.

OUT-OF-REGULATION Indicators. The OUT-OF-REGULATION, indicators consist of 13 red lights mounted in a group on the upper front panel. There is one light per channel and when illuminated, each indicates that the particular supply voltage associated with that channel has deviated fom the programmed acceptance limits. Selected resistors on the program board are used to establish the proper comparison voltages and the allowable tolerance margins for the supplies to be monitored.

EXTernal INput Connector. EXTernal INput designates a front panel BNC female connector. Applying a voltage to the center conductor of this connector causes the current in the selected channel (1-12) to be increased or decreased in proportion to the applied voltage. A ten volt level corresponds to approximately 100 percent of rated channel current. For cells 1 through 6, a positive voltage increases the absolute value of the load current while a negative voltage decreases it. For cells 7 through 12, a negative voltage increases and a positive voltage decreases the load current.

RIPPLE OUT (+) \& (-) Connectors. RIPPLE OUT designates two front panel BNC female connectors. The (+) connector's center conductor is capacitively coupled (via the selected channel) to the power supply under test. The (-) connector's center conductor (shell) is connected to return (ground) of the power supply under test.

SYNC Connector. SYNC designates a front panel BNC female connector that is used to output TTL level signals. The SYNC output can drive standard TTL loads and is used to provide an oscilloscope external trigger signal when the ULU is operated in chop mode.

REAR PANEL CONTROLS AND CONNECTORS

POWER SWITCH. The POWER SWITCH is a two-position (ON-OFF) rocker switch used to apply or remove AC power.

230V-115V SWITCH. The 230V-115V switch is a two-position, flush mounted slider switch used to select input AC voltage.

FUSE/FUSEHOLDER. The AC power fuse for the ULU is a 1 amp/250 volt standard fuse. The fuseholder is located just above the AC power receptacle and is designed for 3AG type fuses.

P1 NEGATIVE/P2 POSITIVE CONNECTORS. P2 POSITIVE is the voltage/current input connector for positive channels (cells) 1 through 6. P1 NEGATIVE designates the voltage/current input connector for negative cells 7 through 12. These 32 -pin male connectors mate with Tektronix P/N 131-0097-00 (Amphenol P/N 26-190-32). Pin/function lists for P1 and P2 are given in Tables 1-1 and 1-2.

Table 2-1. P1 NEGATIVE Pin/Function List

Pins

Function

Channel 7, high I -
Channel 8, high I -
Channel 9, med I -
Channel 10, med I -
Channel 11, low I -
Channel 12, low I -
Channel 7, high I - return
Channel 8, high I - return
Channel 9, med I -
Channel 10, med I -
Channel 11, low I -
Channel 12, low I - return

Table 2-2. P2 POSITIVE Pin/Function List

Pins

1,2,3,4,5
6,7,8,9,10
11,12
13,14
15
16
17,18, 19, 20, 21
22,23,24,25,26
27,28
29,30
31
32

Function

Channel 1, high I +
Channel 2, high I +
Channel 3, med I +
Channel 4, med I +
Channel 5, low I +
Channel 6, low I +
Channel 1, high I + return
Channel 2, high I + return
Channel 3, med I + return
Channel 4, med I + return
Channel 5, low I + return
Channel 6, low I + return

P3 SENSE

P3 SENSE is the remote sense connector for all cells and is the power input connector for cell 13. This 36-pin female connector mates with Tektronix P / N 131-0293-00, Amphenol P/N 57-30360. A pin/function list is shown in Table 2-3.

Table 2-3. P3 SENSE Pin/Function List

Pin	Function
1	Voltage remote sense, high, Channel 1
2	Voltage remote sense, high, Channel 2
3	Voltage remote sense, high, Channel 3
4	Voltage remote sense, high, Channel 4
5	Voltage remote sense, high, Channel 5
6	Voltage remote sense, high, Channel 6
7	Voltage remote sense, high, Channel 7
8	Voltage remote sense, high, Channel 8
9	Voltage remote sense, high, Channel 9
10	Voltage remote sense, high, Channel 10
11	Voltage remote sense, high, Channel 11
12	Voltage remote sense, high, Channel 12
13	Channel 13 (Passive HV) high
14	Not Used
15	Not Used
16	Fan interlock jumper
17	Not Used
18	Not Used
19*	Voltage remote sense, low, Channel 1
20*	Voltage remote sense, low, Channel 2
$21 *$	Voltage remote sense, low, Channel 3
22^{*}	Voltage remote sense, low, Channel 4
$23 *$	Voltage remote sense, low, Channel 5
24*	Voltage remote sense, low, Channel 6
25^{*}	Voltage remote sense, low, Channel 7
$26 *$	Voltage remote sense, low, Channel 8
$27^{\text {\% }}$	Voltage remote sense, low, Channel 9
28^{*}	Voltage remote sense, low, Channel 10
29^{*}	Voltage remote sense, low, Channel 11
30*	Voltage remote sense, low, Channel 12
31	Channel 13 (passive HV) return
32	Not Used
33	Not Used
34	Fan interlock jumper
35	Voltage sense return common to all channels
36	Voltage sense return common to all channels

P3 SENSE also provides interlock capability for both exhaust fans. When electrical connection is made between pin 16 and pin 34 of P3 SENSE, the exhaust fans are controlled by a thermal switch internal to the ULU cabinet. When these 2 pins are not connected, both exhaust fans will run continuously whenever the ULU is turned on.

NOTE

> P3-16 and.P3-34 must not be connected whenever one (or more) active load cell is programmed to 80% or more of its maximum power rating; i.e., whenever any high current cells are programmed for 96 watts ($80 \% \mathrm{X} 120 \mathrm{~W}$) or more, or whenever any medium or low current cell is programmed for 64 watts ($80 \% \mathrm{X} 80 \mathrm{~W}$) or more. With the cooling fans running continuously, peak temperature overstresses which might occur before the fans cycle on, will be avoided.

Initial Turn On

Before the power is applied to the ULU. verify that:

1. The 120-230 VAC switch on the rear panel is set to match the line voltage to be used.
2. The AC line fuse is the correct value (1 amp. std.) is intact and properly installed.
3. All rear panel cables are securely connected.
4. A Programming Plug-in module configured to program the ULU to test the power supplies in a specific instrument has been installed.

Operational Notes

1. When testing Tektronix 7912 AD power supplies, do not chop high current levels.
2. CAUTION - Hazardous voltages are present when the ULU is operated with its side covers removed.

SECTION 3

THEORY OF OPERATION

Block Diagram Description

A simplified block diagram of the Universal Load Unit is shown in Fig. 3-1. The diagram illustrates as typical one of the twelve active cells connected to ULU controls and indicators.

When the output from a power supply under test has been connected to the rear panel connectors P1, P2 and P3, continuity can be established between its output and one or more of the active cells within the ULU via the CHANNEL SELECT switch. This thirteen position wafer switch connects ULU controls and output monitoring circuits to each of the twelve active cells. The thirteenth switch position connects one or two user selected, fixed resistors between ground and the power supply under test.

The active channels are divided into six groups of two by polarity and current handling capability as shown in Table 3-1. All cells are ground referenced.

Table 3-1

Channel	Maximum Voltage	Maximum Current	Maximum Power	Polarity
1,2	50 V	24 A	120 W	+
3,4	100 V	10 A	80 W	+
5,6	150 V	2 A	80 W	+
7,8	50 V	24 A	$120 \mathrm{~W}^{*}$	-
9,10	100 V	10 A	$80 \mathrm{~W}^{*}$	-
11,12	150 V	2 A	80 W	-
13	350 V		10 W	+

[^1]

Outputs of the power supply under test are routed through rear panel connectors P1 and P2 to one of the inputs of an active load cell. Selected resistors in the Programming Plug-in Module determine the current fed to the other input of a cell's current amplifier. This current level can be altered by other ULU controls.

If the output voltage being tested deviates beyond predetermined limits, this condition is detected by a window comparator circuit and indicated by the illumination of the Out-Of-Regulation indicator (LED) for that load cell.

The current magnitude may be varied by applying a voltage level of up to plus or minus 10 volts dc to the front panel BNC connector EXT IN. (See EXTernal INput connector description in Section 2.)

Voltage or current from the power supply under test can be alternatively displayed on the digital multimeter. Power supply ripple is available for measurement at two front panel jacks RIPPLE OUT + and RIPPLE OUT -.

When the Step Load (Chop) Generator is activated in the individual chop mode, the control current input to the selected load cell is toggled between its preset value (set by the programming plug-in selectable resistors) and that value induced by the setting of the CURRENT ADJUST control. The toggling rate, 96 Hz is available at the front panel SYNC output BNC connector and may be used to trigger the time base of an external oscilloscope. Alternatively, the chop-all mode causes all active cells to toggle between their programmed min-max values.

CIRCUIT DESCRIPTION

High Current Cells

Each of the four high current cells (1 and 2 positive, 7 and 8 negative) have identically structured circuits as illustrated on diagram 1a. A typical high current cell includes a current amplifier (op-amp) connected to drive a voltage follower transistor that provides the base drive for three parallel sets of current gain transistor stages. The programming current (Ip) develops a control voltage across a 249 -ohm resistor on the positive input of the op-amp. The average voltage developed across three (four terminal, . 03 ohm) Kelvin sense resistors is fed back to the inverting input of the op-amp.

A second operational amplifier connected as a comparator monitors both current through the cell and voltage across it. This comparator then provides a voltage derated current limit. (This derating is a two segment approximation to a constant power curve with break points at 5.1 and 16 volts.)

A 30 amp fuse and SCR crowbar provide over-voltage protection with a nominal trip point of 57 volts. The same fuse and a diode (CR103 typical) provide circuit protection in the event of polarity reversal.

Medium Current Cells

As illustrated on diagram (1b), each of the four medium current cells are of similar construction with two positive channels (3 and 4) and two negative (9 and 10). The input stage for a typical medium current cell is a FET input operational amplifier. This op-amp drives a set of series connected darlington transistors. The series connection allows the applied voltage to be divided across the transistors. Three diodes in series with a 6.2 K -ohm divider resistor allow the medium current cells to operate at a lower voltage (approximately 4.5 volts). The programming current (Ip) develops a control voltage across a 100 -ohm resistor (R317 typical) on the positive input of the op-amp. The voltage developed across a four terminal, .01 ohm, Kelvin sense resistor is fed back to the inverting input of the input op-amp.

Connected as a comparator, a second op-amp provides a voltage-current derated limit. The derating curve is a two segment approximation to a constant power curve with break points at 10 and 30 volts.

The over voltage SCR crowbar will trip at approximately 111 volts and blow the 15 amp fuse. Reverse polarity protection is provided by a diode to ground at one fuse terminal (CR303 typical).

Low Current Cells

As shown on diagram $\langle 10$, the four low current cells (5 and 6 positive, 11 and 12 negative) are similar to the medium current cells. An input operational amplifier drives two series connected, power darlington, monolithic transistor sets. The series connection serves to divide the applied voltage across both transistor sets. A zener diode in series with a $15 \mathrm{~K}-$ ohm resistor across the transistor sets allow the low current cells to operate at approximately 4.5 volts. Programming current (Ip) develops a control voltage across the $200-0 h m$ input resistor (R512 typical) on the positive input of the op-amp. The voltage developed across a (four terminal, .1 ohm) Kelvin sense resistor is routed to the inverting input of the op-amp.

A second operational amplifier functions as a protective comparator to provide a voltage/current derating limit. Due to the relatively small maximum current range of the low current channels (0.2 to 2.0 amps) only linear derating of current with voltage is used. The protection comparator senses only voltages above 51 volts.

The over-voltage SCR crowbar will trip at 161 volts nominal and open the 5 amp fuse. Reverse polarity protection is given by the fuse and an adjacent diode (CR504 typical).

Digital Multimeter

The Digital Multimeter function diagrammed on 4 can be divided into four sub-circuits: an auto-ranging attenuator, analog-to-digital converter, the display circuit and a crystal controlled oscillator.

Auto-Ranging Attenuator

Input analog signals to be displayed are input to resistor network R4004 from harmonica connector P4002 via S4001D. The relay contacts of K4002, K4003, K4004 and K4005 are connected to the segments of R4004 to form an input attenuator.

Once during each measurement cycle, U4003 (part of the A-to-D converter) outputs an under range or an over range signal from pin 13. An under range condition is indicated by a pulse from pin 13 during the D1 strobe interval. An over range condition is indicated by a pulse from pin 13 during the D2 or D3 strobe interval (or during both intervals). The under range condition is detected by U4009A while over range is detected by U4009C via Q4005/Q4006. Outputs from these detectors drive an R-S flip-flop U4009B/D and are also OR'ed by U4011A to generate a clock signal for range counter U4012. Clocking pulses for $U 4012$ are fed to Decade Decoder U4013. Outputs from U4013 drive four relay coils (K4002 through K4005) via four corresponding buffer amplifiers to auto-range the input attenuator.

Analog-to-Digital Converter

The analog-to-digital conversion process of input signals is completed by a four and one-half digit converter consisting of IC's U4001 and U4003. U4001 contains the analog circuitry including the switched input buffer (pins 15 and 1) integrator (pins 9 and 11) comparator (pins 11 and 14) and auto zero buffer and filter (pins 12 and 13). U4003 provides the digital control circuitry for U4001. U4003 also provides digit strobe pulses from pins 1, 2, 13, 16, 17 and 18 and Binary Coded Decimal data to four pins on U4004, the Seven Segment Decoder IC.

DMM Display

The DMM Display consists of four, seven segment LED display units, each with its own decimal point indicator, and one +1 LED display. The LED display is driven by an X-Y matrix. X information is provided by seven segment lines from the BCD decoder $U 4004$ and one decimal point line from Q4014. Q4014 is turned on by U4021 and a logic decoder circuit. Y information is provided on six lines from 44003 consisting of five digit strobes and the sign bit strobe. These six lines are sequentially pulsed in one of five strobe intervals with S and D5 (U4003-13 and -16) concurrent.

Crystal Controlled Oscillator

IC circuits U4002B, C and D operate in conjunction with quartz crystal unit Y4001 and associated circuit components to form a crystal controlled oscillator. Its operating frequency, 2.4576 MHz is applied to pin 4 of Clock IC U4008. The +10 output of U4008 (pins 3 and 12) is level shifted by Q4004 and applied as a clock input to U4003-8.

Step Generator

The Step (Chop) Generator circuit illustrated on diagram 4. generates a low frequency square wave. In Chop mode, this square wave is used to toggle the current of the power supply under test (see CHOP/SWITCH Control description in Section 1). The Step Generator is operated at a sub-harmonic of the DMM clock to ensure that generator induced transients do not cause false DMM indications.

The divide by 100 output of 44008 is transformer coupled to the base of Q4024 which in turn drives decade counter U4019. A 96 Hz square wave output from U4019 drives two separate transistor amplifier circuits; one directly and one via the Chop Individual/Chop All jumper (P2119 on Lower Panel board (2). The first amplifier circuit, consisting of buffer/driver stages Q4017 and Q4020, provides an output to the front panel BNC connector SYNC. The second circuit, consisting of Q4018 and Q4019, drives the gate of DMOS switch Q4021 with a +12 V to -12 V square wave. Q4021 is paralled by S4067, the CURRENT ADJUST switch. Note that the $+5 \mathrm{~V}_{\mathrm{B}}$ supply to U4019 and the buffer/driver circuit is applied only when the CHOP/SWITCH control is set to CHOP (refer to diagram <2).

External Input Amplifier

Electrical signals applied to the front panel jack EXT IN are routed to the External Input (buffer) amplifier. Diagrammed on 4. this 1 megohm input, transconductance amplifier comprises U4020, Q4022, Q4023 and associated components. Both Q4022 and Q4023 are connected to operate as class B amplifiers. A signal applied to R4071 causes a current flow into virtual ground at the inverting input of operational amplifier U4024-2. The op-amp then forces a voltage swing across emitter R4077 or R4079 as determined by input signal polarity. This voltage swing causes a current in the appropriate transistor which is routed to the input of a load cell via the CHANNEL SELECT switch.

Program Board

The program board shown on diagram 5 includes thirteen separate circuits, one for each of twelve active cells and one passive circuit. Each active cell includes six programming resistors ($\mathrm{R}_{\mathrm{FL}}, \mathrm{R}_{\mathrm{FH}}, \mathrm{R}_{\mathrm{PL}}, \mathrm{R}_{\mathrm{PH}}$, $R_{\text {DES }}$, and $R_{\text {COMP }}$) that are selected to facilitate operational tests for a specific power supply.
$R_{F H}$ and $R_{F L}$ designate the resistors that are installed between the input voltage and the input to a typical cell (where R_{FH} equals the high current and $R_{F L}$ equals the low current resistor). These feed a control current into the cell that is proportional to the applied voltage. The cell then draws a current proportional to the applied voltage and acts as a power resistor.
R_{PH} and R_{PL} designate the emitter resistors for two switched constant current source transistors. When conducting, each transistor causes 10 volts to appear across its emitter resistor. Resistor values for R_{PH} and $\mathrm{R}_{\text {PL }}$ are chosen to provide a constant current load for a specific power supply (where R_{PH} equals the high current and R_{PL} equals the low current resistor).
$\mathrm{R}_{\text {COMP }}$ (comparison) designates a resistor in each cell that supplies the upper half of a voltage divider. The output of this divider is compared to a standard to determine if the applied voltage is within prescribed limits.
$\mathrm{R}_{\mathrm{DES}}$ (desensitizing) designates a resistor in each active cell that may be used to desensitize or broaden the comparator circuit "window".

Power Supplies

The power supplies used in the Universal Load Unit are shown on schematic diagrams 3a and 3b. Input power is supplied through ac line filter assembly LF3001, the line fuse F3001, the POWER SWITCH S3001 and the $110 / 220$ VAC SELECTOR switch to the primaries of power transformer T3001. T3001 includes three secondary windings that provide stepped down voltage to three rectifier circuits yielding 6 separate voltages. Floating supplies $+12 \mathrm{~V}_{\mathrm{A}},-12 \mathrm{~V}_{\mathrm{A}}$ and $+5 \mathrm{~V}_{\mathrm{A}}$ are used exclusively for the front panel Digital Multimeter. The B supplies $\left(+12 V_{B},-12 V_{B}\right.$ and $+5 V_{B}$) are distributed throughout the ULU.

CR3002 developes +21 VDC and -21 VDC that are regulated to become the $+12 \mathrm{~V}_{\mathrm{A}}$ and the $-12 \mathrm{~V}_{\mathrm{A}}$ output to the DMM Voltage regulator U 3004 sets the base voltage for pass transistor $Q 3005$ to regulate the $+12 V_{A}$ supply. The $-12 V_{A}$ supply is regulated by U3005 operating in conjunction with Q3006, Q3007 and pass transistor Q3008. R3018 is used to adjust the output voltage for both the $+12 \mathrm{~V}_{\mathrm{A}}$ and $-12 \mathrm{~V}_{\mathrm{A}}$ supplies.

CR3003 and CR3004 develop a dc voltage that is regulated by U3006 to become the $+5 \mathrm{~V}_{\mathrm{A}}$ supply. Neither the $+5 \mathrm{~V}_{\mathrm{A}}$ or $-5 \mathrm{~V}_{\mathrm{B}}$ supplies have adjustment potentiometers.

Abstract

CR3001 developes +21 VDC and -21 VDC that are regulated to become the $-12 V_{B},+5 V_{B}$ and $-12 V_{B}$ supplies. Voltage regulator $U 3003$ sets the base voltage for pass transistor $Q 3001$ to regulate the $+12 \mathrm{~V}_{\mathrm{B}}$ supply. The $-12 \mathrm{~V}_{\mathrm{B}}$ supply is regulated by U3003 operating in conjunction with Q3002, Q3003 and pass transistor Q3004. R3005 is used to adjust the $+12 V_{B}$ supply. R3010 is used to adjust the $-12 \mathrm{~V}_{\mathrm{B}}$ supply.

An adjustment procedure for ULU power supplies is included in Section 4, Calibration.

Power Supply Fuses

The ULU power supply includes five, 1 amp fuses that are accessable with the side covers removed. Fuse numbers and associated supplies are as follows:

F3002 protects the $+12 \mathrm{~V}_{\mathrm{B}}$ and $+5 \mathrm{~V}_{\mathrm{B}}$ supplies	
F3003	$-12 \mathrm{~V}_{\mathrm{B}}$ supply
F3004	$+12 \mathrm{~V}_{\mathrm{A}}$ supply
F3005	$-5 \mathrm{~V}_{\mathrm{A}}$ supply
F3006	$-12 \mathrm{~V}_{\mathrm{A}}$ supply

Exhaust Fans

As shown on schematic 3a, AC power to both exhaust fans FM3001 and FM3002 is via four pins of J8 and through two sets of contacts in K3002. The rear panel connector P3 SENSE also provides interlock capability for both fans. When a jumper is installed between P3-16 and P3-34, the current path for the coil of K3002 is completed to thermal switch S 3002 . When $\mathrm{P} 3-16$ and -34 are not connected, the exhaust fans will run continuously whenever AC power is applied to the Universal Load Unit. (See note preceding Table 2-3 in Section 2.)

SECTION 4

CALIBRATION TEST \& PROCEDURE

The following procedure consists of two self-contained parts. In the first one, a verification test is performed to see if the Universal Load Unit (U.L.U.) is in calibration. The second part is an actual calibration procedure used to align the U.L.U.

REQUIRED EQUIPMENT LIST

The following equipment is required to calibrate the Universal Load Unit or to verify that it is operational without performing a full calibration.

Description

Digital Multimeter (DMM)
Voltage accuracy: 5 1/2 digit - 0.02%

Digital Multimeter (DMM)
Current accuracy: $41 / 2$ digit - 0.3%

Variable regulated DC power supply
Must float and produce up to 20 volts at 1 ampere.

32 Pin Female Connector
Must fit P1 NEGATIVE and P2 POSITIVE
rear panel connectors

```
36 Pin Male Connector - Optional
    Must fit P3 SENSE rear panel connector
    improved signal access
```

CAUTION

Caution should be used wherever line potentials are present. 120 VAC is present at the power switch and line fuse, the cooling fans, the power transformer primary, and the relay for turning the fans on.

VERIFICATION PROCEDURE

Introduction

The following procedure is designed to verify the overall operability and calibration of the Universal Load Unit (U.L.U.). If this test fails, the Calibration Procedures which follow should be performed in the order in which they are given.

Procedure

1. Set Up: The test equipment shown in the Verification Test Set Up diagram, Figure 4-1.

Fig. 4-1. Verification Test Set-up
2. Refer To: Table 4-1, Verification Test, for the Jack and Pin numbers of the inputs associated with each of the CHANNEL SELECT positions.

Table 4-1, Verification Test

Channel	Apply Floa Betwe (+)	$\begin{aligned} & \text { ing } 10 \text { VDC } \\ & \text { (-) } \end{aligned}$	Measure Voltage ${ }^{\text {T }}$	$\begin{aligned} & \text { I Difference }{ }^{\text {要震 }} \\ & \text { (e } 1 \text { amp only) } \end{aligned}$
1	P2-3	P2-19	P3-1	-0.02 to 0.130 A
2	P2-8	P2-24	P3-2	-0.02 to 0.130 A
3	P2-11	P2-27	P3-3	-0.02 to 0.035A
4	P2-13	P2-29	P3-4	-0.02 to +0.035A
5	P2-15	P2-31	P3-5	-0.015 to +0.015A
6	P2-16	P2-32	P3-6	-0.015 to +0.015 A
7	P1-19	P1-3	P3-7	-0.02 to +0.130 A
8	P1-24	P1-8	P3-8	-0.02 to 0.130 A
9	P1-27	P1-11	P3-9	-0.02 to 0.035A
10	P1-29	P1-13	P3-10	-0.02 to 0.035A
11	P1-31	P1-15	P3-11	-0.015 to +0.015A
12	P1-32	P1-16	P3-12	-0.015 to +0.015A
13	P3-13	P3-31	P3-13	(Not applicable)

*

With respect to $\mathrm{P} 3-35$ as a common return connection.
** I Difference $=$ I Int. DMM - I Ext. DMM \leq Above Tabulated Values.

NOTE: V Difference $=\mathrm{V}$ Int. DMM -V Ext. DMM $\leq \pm 0.012$ VDC for all channels.
3. Connect: A female 32 pin connector (Amphenol 26-190-32, Tek 131-0097-00) to the indicated Jacks to make it easier to connect and disconnect the test leads. Also connect a male 36 pin connector (Amphenol 57-30360, Tek 131-0293-00) to the P3 SENSE connector to facilitate connecting test leads.
4. Set: The Universal Load Unit controls as follows: 230V/115V switch to the appropriate position, OVER VOLTAGE TEST control CCW, in OFF detent, CHOP/SWITCH control in SWITCH (down) position, CURRENT ADJUST push-pull switch in, both COARSE and FINE controls set at mid rotation (i.e., both markings at the top of rotation), and the Power Switch ON.

Note: Remove any Program Plug-in which may be installed. The positions of the HI/LOW/IND and MAX/MIN controls are of no consequence.
5. Turn On: The power supply and adjust it for 10.0 ± 0.1 VDC as measured by the external DMM.
6. (Before each measurement) Pull Out: The Current Adjust push pull switch.
Adjust: The CURRENT ADJUST control for $1.00 \pm 0.05 \mathrm{Amps}$ as measured on the external (series) DMM.
7. (For each measurement) Compare: The readings on the U.L.U. Panel DMM to those on the external meters, in both the "Voltage" and "Current" positions of the VOLTAGE/CURRENT switch, for positions 1 thru 12 of the CHANNEL SELECT switch. The U.L.U. Panel Meter should agree with the external (voltage) DMM reading to within ± 0.012 VDC. The current readings should be the values indicated in the Verification Test Table.
8. (After each measurement) Reset: The external power supply to OFF, (before it is disconnected and moved to the next channel), the CURRENT ADJUST push-pull switch to its "in" position, and the COARSE and FINE controls both to their mid-rotation position.

CALIBRATION PROCEDURE

1. Power Supply

Set Up

1. Remove: The U.L.U.'s side covers and any plug-in.
2. Set: The LINE SELECT switch (on the back) to the appropriate position and the POWER switch to the "On" position.
3. Use: Pin probes to reach the signals called out in Table 4-2, Power Supply Calibration, entering from the rear of the specified plugs and pins.
Refer: To Figure 4-2 for the locations of the plugs and pots which are called out in Table 4-2.

Fig. 4-2. Power Supply Board.

Table 4-2, Power Supply Calibration

```
On Supply A:
```

Measure between	Required Voltage	Adjust
P6-3 and P6-2	+11.9 to +12.1 VDC	R3018
		Note: Compromise to attain
P6-1 and P6-2	-11.9 to -12.1 VDC	R3018 both w/ R3018
P2-1 and P6-2	+4.8 to +5.2 VDC	
On Supply B:		
Measure	Required Voltage	Adjust
P11-1 and P11-2	+12.000VDC	R3005
P11-3 and P11-2	-12.000 VDC	R3010
P2-2 and P11-2	+4.8 to +5.2 VDC	

2. Digital Multimeter Board

Calibration procedure

1. Set: The VOLTAGE/CURRENT switch to the "Voltage" position, the CHOP/SWITCH switch to the "Switch" position, and the CHANNEL SELECT switch to position "13".
Verify: That the "Voltage" LED is illuminated.
2. Loosen: The four screws (through the sides) which hold the U.L.U. DMM Assembly in place. (The side covers, which must be removed first to gain access, were taken off as part of the Power Supply Calibration Procedure.)
Tilt: The U.L.U. DMM Assembly out and down to allow access to the following measurement points.
Refer: To Figure 4-3 for the locations of the following measurement and adjustment points.
3. Short: P4002-1 and P4002-4 together firmly.

Adjust: R4022 ($V_{\text {offset }}$) for a reading of 0.0000 VDC on the panel meter.
4. Remove: The short between $\mathrm{P} 4002-1$ and $\mathrm{P} 4002-4$.

Apply: +1.70 ± 0.01 VDC across $\mathrm{P} 4002-1(+)$ and $\mathrm{P} 4002-4$.
Adjust: R4016 to make the U.L.U. DMM agree with the external DMM to within ± 0.0001 VDC.
5. Apply: -1.70 ± 0.001 VDC to $\mathrm{P} 4002-1$ and $\mathrm{P} 4002-4$ (common).

Verify: That the U.L.U. meter agrees with the external DMM to within ± 0.0002 VDC.
Readjust (if necessary): R4022 for a best compromise between this value and the requirement of Step 3 ± 0.0002 VDC.
6. Apply: 17 VDC, and 20.00 VDC to the input.

Verify: That the decimal point shifts to the right as it should, and that the U.L.U. DMM and the external DMM agree within 0.1\%.

Fig. 4-3. Digital Multimeter Board.
7. Set: The VOLTAGE/CURRENT switch to the "Current" position. Short: P4002-2 and P4002-3 together firmly. Adjust: R4005 ($I_{\text {offset }}$) for a reading of 0.0000 ADC on the U.L.U. DMM.
8. Apply: 0.170 ± 0.001 VDC across $\mathrm{P} 4002-2$ (+) and P4002-3. Adjust: R4007 ($I_{\text {gain }}$) until the U.L.U. DMM indicates a voltage 10 x the input signal as measured on the external DMM ± 0.001 VDC.
9. Apply: -. 17 ± 0.01 VDC across $\mathrm{P} 4002-2$ and $\mathrm{P} 4002-3(+)$. Adjust: R 4005 ($I_{\text {offset }}$) for a best compromise between $10 x$ agreement between the U.L.U. DMM and the external DMM ± 0.002 VDC and the requirement of step 7 .
10. Apply: Successively, 1.7 VDC, 17 VDC and 20.0+ VDC across P4002-2 and P4002-3.
Verify: That the decimal point shifts to the right as it should and that the U.L.U. DMM and the external DMM agree to within 0.1%.
11. Return: The U.L.U. DMM Panel Assembly to its installed position, reinserting and tightening the four screws.

External Input -

1. Verify: That the CHANNEL SELECT Switch is in position "13". Set: The external DMM to the 2 mA scale.
Measure: Between the front rotor of the 10 th wafer of the CHANNEL SELECT switch (see Fig. 4-4) and chassis ground. Adjust: R4072 for 0.000 mA on the external DMM.

Fig. 4-4. Channel Select Switch.
2. Apply: $+10.00 \pm 0.01$ VDC to the EXT. IN center conductor. (with respect to chassis ground)
Measure: Between chassis ground and the front rotor of the 10th wafer of the CHANNEL SELECT switch (see Fig. 4-4).
Check: The meter for an indication of between +1.92 mA and +2.08 mA .
3. Apply: $-10.00 \pm 0.01 \mathrm{VDC}$ to the EXT. IN center conductor.

Measure: Between chassis ground and the front rotor of the 10th wafer of the CHANNEL SELECT switch (see Fig. 4-4).
Check: The meter for an indication of between -1.92 mA and -2.08 mA .

3. Channel Offset Null Adjustments

The adjustment procedure which follows is the same for all cells:

1. Set: The VOLTAGE/CURRENT switch to the "Current" position and the CHOP/SWITCH switch to the "Switch" position. Apply: No external voltage or signal.
2. (Before each adjustment) Switch: The CHANNEL SELECT switch to the next position (of positions 1 through 12).
3. (For each position) Use: The Null Offset Pot indicated in Figure 4-5 for the channel being adjusted.
4. (For each position) Adjust: The indicated pot for a U.L.U. DMM reading of 0.000 ± 2 counts in the least significant digit. Note: The high current positions (1,2,7,8) may be expected to "hunt" or "jitter" within this tolerance.
5. (After adjusting every channel) Verify: The results of these adjustments by performing the Verification Test at the beginning of this Section.

Figure 4-5. Main Board Adjustment Locations

SECTION 5

REPLACEABLE PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number
00X Part removed after this serial number

ITEM NAME

In the Parts List, an Item Name is separated from the description by a comma Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

	ABBREVIATIONS		
ACTR	ACTUATOR	PLSTC	PLASTIC
ASSY	ASSEMBLY	QTZ	QUARTZ
CAP	CAPACITOR	RECP	RECEPTACLE
CER	CERAMIC	RES	RESISTOR
CKT	CIRCUIT	RF	RADIO FREQUENCY
COMP	COMPOSITION	SEL	SELECTED
CONN	CONNECTOR	SEMICOND	SEMICONDUCTOR
ELCTLT	ELECTROLYTIC	SENS	SENSITIVE
ELEC	ELECTRICAL	VAR	VARIABLE
INCAND	INCANDESCENT	WW	WIREWOUND
LED	LIGHT EMITT.ING DIODE	XFMR	TRANSFORMER
NONWIR	NON WIREWOUND	XTAL	CRYSTAL

ELECTRICAL PARTS LIST

INSTRUMENT CHASSIS ASSEMBLY Part of 067-0883-99

Circuit No.	Tektronix	
	Part No.	Description
	650-0138-00	ECB, Main Board Assembly
	670-6048-00	ECB, Digital Multimeter
	670-6050-00	ECB, Lower Panel
	670-6051-00	ECB, Interconnect
	670-6049-00	ECB, Power Supply
	179-2718-00	CABLE, Interconnect
	179-2719-00	CABLE, Connector No. 1
	179-2720-00	CABLE, Connector No. 2
	179-2721-00	CABLE, Negative Metering
	179-2722-00	CABLE, Positive Metering
	179-2723-00	CABLE, Negative Program
	179-2724-00	CABLE, Positive Program
	179-2725-00	CABLE, AC
	179-2726-00	CABLE, Power
J1,J2	131-0096-00	CONNECTOR, 32 Pin, Male
J3	131-0294-00	CONNECTOR, 36 Pin , Male
Q3001,3004	151-0373-00	TRANSISTOR, MJE2901, Power, PNP, Si.
3005,3008		
S7002	260-1960-00	SWITCH, Rotary, CHANNEL SELECT
T3001	120-1257-00	TRANSFORMER, AC Power
U3001,3006	156-0277-00	IC, uA7805UC, Linear

MECHANICAL PARTS LIST

INSTRUMENT CHASSIS ASSEMBLY Part of 067-0883-99

Tektronix

 Part No.351-0295-00 1
334-1378-00 1
367-0108-00
200-0728-00
337-2612-00
366-1124-00
377-0119-00
358-0215-00
129-0222-00
342-0203-00
163-0589-00
386-3657-01

343-0003-00
343-0006-00
343-0008-00
343-0009-00
343-0013-00
343-0049-00
343-0056-00

352-0161-00
1
352-0198-00

210-0201-00
1
210-0205-00
1
210-0241-00

211-0062-00
2
211-0159-00 2
211-0008-00 14
212-0628-00 . 4
211-0097-00 8
211-0016-00 2
211-0502-00 6
211-0541-00 8
211-0504-00 17
211-0507-00 1414

Description

GUIDE, Slide
MARKER, Ident.
HANDLE, Carrying
COVER, Handle End
SHIELD, Elec, HV (Rotary SW)
KNOB (CHANNEL SELECT)
INSERT, Foot
GROMMET, Plastic, Black
SPACER, Post
INSULATOR, Mica
THERMOFIT
SUPPORT, Plug-in

CLAMP, Cable

HOLDER, 3 Wire, 0.1 Spacing
HOLDER, 2 Wire, 0.15 Spacing
TERMINAL, Lug, 0.12 ID
TERMINAL, Lug, $4-40 \times 0.42$
TERMINAL, Lug, 0.515 ID

SCREW, 2-56 $\times 0.312$, Panhead
SCREW, 2-56 $\times 0.375$, Panhead
SCREW, $4-40 \times 0.250$, Panhead
SCREW, $4-40 \times 0.250$, Flathead
SCREW, $4-40 \times 0.312$, Panhead
SCREW, $4-40 \times 0.625$, Panhead
SCREW, 6-32 $\times 0.188$, Flathead
SCREW, $6-32 \times 0.250$, Flathead
SCREW, $6-32 \times 0.250$, Panhead
SCREW, $6-32 \times 0.312$, Panhead

MECHANICAL PARTS LIST

INSTRUMENT CHASSIS ASSEMBLY (Cont.)

Part of 067-0883-99

Tektronix

Part No.

211-0538-00 23
211-0510-00 2
211-0511-00 2
211-0512-00 2
211-0522-00 1
211-0532-00 8
212-0023-00 2

210-0405-00 2
210-0586-00 4
210-0457-00 17
210-0590-00 1

210-0001-00 2
210-0054-00 13
210-0840-00 1
210-0863-00 9
210-0994-00 6
210-1122-00 4
210-1178-00 2

Description

SCREW, 6-32 $\times 0.312$, Flathead
SCREW, $6-32 \times 0.375$, Panhead
SCREW, $6-32 \times 0.500$, Panhiead
SCREW, $6-32 \times 0.500$, Flathead
SCREW, $6-32 \times 0.625$, Flathead
SCREW, $6-32 \times 0.750$, Fillisterhead
SCREW, $8-32 \times 0.375$, Flathead

NUT, 2-56
NUT, 4-40, Keps
NUT, 6-32, Keps
NUT, 6-32

WASHER, Intl
WASHER, Split
WASHER, Flat
WASHER, D
WASHER, Flat
WASHER, Concave
WASHER, Shld

ELECTRICAL PARTS LIST

FRONT PANEL ASSEMBLY
Part of 667-0883-00

Tektronix

Circuit No.

J4001, 4002,
4003, 4004

R602	$311-2070-00$
R4067	$311-2053-00$
R4068	$315-0123-00$
R4080	$315-0154-00$
R601	$321-0097-00$

Part No.

670-6048-00
670-6050-00

131-0106-02

311-2070-00

321-0097-00

260-0247-00

Description

ECB, Digital Multimeter
ECB, Lower Panel

CONNECTOR, BNC, [EXT IN $\pm 10 \mathrm{~V}, \mathrm{SYNC}$, RIPPLE OUT (+), RIPPLE OUT (-)]

VARIABLE RESISTOR, $75 \mathrm{k}, 2 \mathrm{~W}, 10 \%$, Linear OVER VOLTAGE TEST
VARIABLE RESISTOR, Dual (w/switch), 5k, 1/2W, 20\%, Linear, CURRENT ADJUST
RESISTOR, 12k, 1/4W, 5\%
RESISTOR, $150 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$
RESISTOR, 100 ohm, $1 / 8 \mathrm{~W}, 1 \%$

SWITCH, SPST, Push, CURRENT LIMIT

MECHANICAL PARTS LIST

FRONT PANEL ASSEMBLY

Part of 667-0883-00

Tektronix Part No.	Quantity	Description
$333-2526-00$	1	
$333-2525-00$	1	PANEL, Front, Top
$386-4107-00$	1	PANEL, Front, Lower
$386-4106-00$	1	SUB-PANEL, Front, Top
$331-0314-00$	1	SUB-PANEL, Front, Lower
$426-0916-00$	1	FINDOW, Readout
$366-1077-00$	1	KNOB, CURRENT ADJUST, Outer
$366-1173-00$	1	KNOB, CURRENT ADJUST, Inner
$366-1189-00$	6	
$211-0022-00$	2	SCREW,
$211-0159-00$	4	SCREW,

ELECTRICAL PARTS LIST

REAR PANEL ASSEMBLY

Part of 667-0883-00

	Tektronix	
Circuit No.	Part No.	Description
F3001	159-0074-00	FUSE, 1.0 Amp/250V, 0.35 sec
$\begin{aligned} & \text { FM3001, } \\ & 3002 \end{aligned}$	119-1024-00	FAN, 115 CFM, 115V, 18W
LF3001	"119-0389-00	FILTER/RCPTL, RFI, $60 \mathrm{~Hz}, 3 \mathrm{~A}$
S3001	260-1842-00	SWITCH, Rocker, DPST, 16A, 250 VAC, POWER SWITCH
S3003	260-1780-00	SWITCH, Slide, DPDT, 3A, 125V/250V
W	179-2725-00	WIRING HARNESS, AC Power

MECHANICAL PARTS LIST

REAR PANEL ASSEMBLY Part of 067-0883-99

Tektronix

Part No.

200-2222-00
441-1469-00 1
441-1470-00 1
334-3379-01 1
204-0833-00 1
210-0202-00 1

200-2264-00 1
200-0237-03 1
200-1788-00 1
200-1903-00 1
200-2222-00 1

211-0008-00 2
211-0012-00 2
211-0510-00 1
211-0514-00 1

210-0586-00 1
210-0407-00 1
210-0457-00 1

210-1039-00

1
Quantity

1

1
.
1
1
1

1
\qquad
1

1

Description

GUARD, Fan
CHASSIS, Calib. Fix., Lower Fan
CHASSIS, Calib. Fix., Upper Fan
LABEL, GND Marker
HOLDER, Fuse
LUG, Solder

COVER, Fuse
COVER, Fuse
COVER, Filter
COVER, Power Switch
COVER, Fan Guard

SCREW, $4-40 \times 0.250$, Panhead
SCREW, $4-40 \times 0.375$, Panhead
SCREW, $6-32 \times 0.375$, Panhead
SCREW, $6-32 \times 0.750$, Panhead

NUT, Keps, 4-40
NUT, Keps, 6-32
NUT, Keps, 6-32

WASHER, Lock, 0.521 ID

ELECTRICAL PARTS LIST

MAIN CIRCUIT BOARD ASSEMBLY
 650-0138-00

Circuit No.	Tektronix	
	Part No.	Description
	670-6052-00	ECB, Main (Complete)
S3002	260-0678-00	SWITCH, Thermal
$\begin{aligned} & \text { Q11,12,13,21 } \\ & 22,23,91, \\ & 92,101,102 \end{aligned}$	151-0616-00	TRANSISTOR, TIP36A, Power, PNP, Si.
$\begin{aligned} & \text { Q14,15,16, } \\ & 24,25,26, \\ & 33,34,43, \\ & 44 \end{aligned}$	151-0426-00	TRANSISTOR, D44H11, Power, NPN, Si.
$\begin{aligned} & \text { Q31,32,41, } \\ & 42,71,72, \\ & 73,81,82, \\ & 83 \end{aligned}$	151-0477-00	TRANSISTOR, TIP35A, Power, NPN, Si.
$\begin{aligned} & \text { Q51,52,61 } \\ & 62 \end{aligned}$	151-0606-00	TRANSISTOR, TIP142, Power, NPN, Si.
$\begin{aligned} & \text { Q74,75,76,84 } \\ & 85,86,93,94 \\ & 103,104 \end{aligned}$	161-0625-00	TRANSISTOR, D45H11, Power, PNP, Si.
$\begin{aligned} & \text { Q111,112,121, } \\ & 122 \end{aligned}$	151-0607-00	TRANSISTOR, TIP147, Power, PNP, Si.

MECHANICAL PARTS LIST

MAIN CIRCUIT BOARD ASSEMBLY
 650-0138-00

Tektronix
Part No.

214-2864-00
386-4108-00
342-0354-00
129-0285-00
210-0201-00

211-0511-00
211-0007-00
211-0097-00 50
211-0061-00

210-0054-00
210-1002-00
210-1178-00
210-0004-00

1 6 11

59 4811

Quantity

1
20

11 25011594812

Description

HEAT SINK
SUPPORT, Heat Sink
INSULATOR
SPACER, Post
LUG, Solder

SCREW, 6-32 $\times 0.500$, Panhead SCREW, 4-40 x 0.188, Panhead SCREW, 4-40 x 0.312, Panhead SCREW, 4-40 $\times 0.500$, Fillisterhead

WASHER, Split
WASHER, Flat
WASHER, Shld
WASHER, Itl.

ELECTRICAL PARTS LIST

MAIN CIRCUIT BOARD
 670-6052-00

	Tektronix	
Circuit No.	Part No.	Description
	670-6052-00	ECB, Main (Complete)
$\begin{aligned} & \mathrm{C} 101,201, \\ & 701 \\ & \hline \end{aligned}$	283-0010-00	CAPACITOR, . $05 \mathrm{uF}, 50 \mathrm{~V}$, Ceramic
$\begin{gathered} \text { C102, 202, } \\ 702,802 \end{gathered}$	283-0100-00	CAPACITOR, 4700pF, 200V, Ceramic
$\begin{aligned} & \text { C103, } 203 \\ & 301,401, \\ & 901,1001 \end{aligned}$	283-0339-00	CAPACITOR, $0.22 \mathrm{uF}, 50 \mathrm{~V}$, Ceramic
$\begin{aligned} & \text { C302, 303, } \\ & 402,403, \\ & 502,503, \\ & 602,603, \\ & 902,903, \\ & 1002,1003, \\ & 1102,1103, \\ & 1202,1203 \end{aligned}$	283-0114-00	CAPACITOR, .0015uF, 200V, Ceramic
$\begin{gathered} \text { C304, 404, } \\ 904,1004 \end{gathered}$	283-0104-00	CAPACITOR, .002uF, 500 V , Ceramic
$\begin{aligned} & \text { C501, 601, } \\ & \text { 1101, } 1201 \end{aligned}$	283-0005-00	CAPACITOR, .01uF, 250V, Ceramic
$\begin{aligned} & \text { C504, 604, } \\ & 1104,1204 \end{aligned}$	283-0110-00	CAPACITOR, . $005 \mathrm{uF}, 150 \mathrm{~V}$, Ceramic
$\begin{aligned} & \text { C505, } 605 \\ & 1105,1205 \end{aligned}$	283-0164-00	CAPACITOR, 2.2uF, 25V, Ceramic
C703, 803	283-0177-00	CAPACITOR, 1 UF, 25 V , Ceramic
CR101, 102, 201, 202, 301, 302, 304, 305, 401, 405, 501, 502, 601, 602, 701, 702, 801, 802, 901, 902, 904, 905,	152-0141-02	DIODE, 1N4152, Signal, Si.

ELECTRICAL PARTS LIST

MAIN CIRCUIT BOARD (Cont.)

Part of 670-6052-00

Tektronix

Circuit No.

CR1001, 1002, 1004, 1005, 1101, 1102, 1201, 1202 CR303, 403, 504, 604, 903, 1003, 1104, 1204

F1, 2, 7, 8
F3, 4, 9, 10
F5, 6, 11, 12

Q17, 27
Q18, 28, 78 , 88

Q35, 45, 53, 151-0347-00
63
Q36, 46, 54,
64, 96, 106,
114, 124
Q77, 87
Q95, 105, 113,
R101, 201,
701, 801
R102, 117,
202, 217,
702, 717,
802, 817
R103, 104,
105, 203,
204, 205,
503, 603,
703, 704,
705, 803,
804, 805,
1103, 1203

151-0521-00

321-1295-01

321-0135-00
159-0162-00
159-0038-00
159-0014-00

151-0103-00
151-0526-00

151-0134-00
151-0350-00

321-0164-00

Description

DIODE, 1N4152, Signal, Si.

DIODE, 1N5625, Rectifier, Si.

FUSE, 30A, Medium
FUSE, 15A, Medium
FUSE, 5A, Fast

TRANSISTOR, 2N2219A, Signal, NPN, Si.
TRANSISTOR, 2N3896, Thyrister

TRANSISTOR, 2N5551, Signal, NPN, Si.

TRANSISTOR, C122B, Thyristor

TRANSISTOR, 2N2905A, Signal, PNP, Si.
TRANSISTOR, 2N5401, Signal, PNP, Si.
RESISTOR, $11.7 \mathrm{k}, 1 / 8 \mathrm{~W}, .5 \%$, MtI. FIm.

RESISTOR, 249 ohm, 1/8W, 1\%, MtI. Flm.

RESISTOR, 499 ohm, 1/8W, 1\%, Mtl. Flm.

ELECTRICAL PARTS LIST
 MAIN CIRCUIT BOARD (Cont.)

Part of 670-6052-00

Circuit No.		
	Part No.	Description
$\begin{gathered} \text { R106, 206, } \\ 706,806 \end{gathered}$	321-0290-00	RESISTOR, $10.2 \mathrm{k}, 1 / 8 \mathrm{~W}, 1 \%$, MtI. FIm.
$\begin{gathered} \mathrm{R} 107,207, \\ 707,807 \end{gathered}$	321-0310-00	RESISTOR, $16.5 \mathrm{k}, 1 / 8 \mathrm{~W}, 1 \%$, MtI. FIm.
R108, 109, 110, 114, 208, 209, 210, 214, 308, 408, 509, 513, 609, 613, 708, 709, 710, 711, 808, 809, 810, 811, 907, 1007, 1107, 1113, 1207, 1213	315-0201-00	RESISTOR, 200 ohm, 1/4W, 5\%, Carbon
R111, 115, 211, 215, 307, 311, 407, 411, 507, 606, 714, 715, 814, 815, 910, 911, 1010, 1011, 1109, 1209	315-0200-00	RESISTOR, 20 ohm, 1/4W, 5\%, Carbon
$\begin{aligned} & \text { R112, 212, } \\ & 313,413, \\ & 511,611, \\ & 712,812, \\ & 913,1013, \\ & 1111,1211 \end{aligned}$	311-1557-00	VARIABLE RESISTOR, 25k, 1/2W, Linear

ELECTRICAL PARTS LIST

MAIN CIRCUIT BOARD (Cont.)

Part of 670-6052-00

Tektronix

Circuit No.

R113, 213,
301-0101-00
713, 813
R116, 216,
716, 816
R118, 218,
718, 818
R119, 219,
508, 514,
608, 614,
719, 819, 1108, 1114, 1208, 1214 R120, 122, 124, 220, 222, 224, 720, 722, 724, 820, 822, 824

R121, 123, 125, 221,

223, 225,
721, 723,
725, 821,
823, 825
R301, 401,
901, 1001
R302, 402,
902, 1002
R303, 403,
903, 1003
R304, 404, 904, 1004 R305, 317, 405, 417, 905, 917, 1005, 1017

Description

RESISTOR, 100 ohm, 1/4W, 5\%, Carbon

RESISTOR, 3k, 1/4W, 5\%, Carbon

RESISTOR, 56 ohm, 1/4W, 5\%, Carbon

RESISTOR, 10 ohm, 1/4W, 5\%, Carbon

RESISTOR, . 1 ohm, 3W, .1\%, WW.

RESISTOR, 11.87k, 1/8W, .25\%, MtI. FIm.

RESISTOR, 113. ohm, 1/8W, 1\%, Mtl. Flm.

RESISTOR, 28.7k, 1/8W, 1\%, MtI. FIm.

RESISTOR, 31.6k, 1/8W, 1\%, Mtl. Flm.

RESISTOR, 100. ohm, 1/8W, 1\%, Mtl. Flm.

ELECTRICAL PARTS LIST

MAIN CIRCUIT BOARD (Cont.)

Part of 670-6052-00

Tektronix

Circuit No.

R309, 315, 318, 409, 415, 418, 506, 515, 607, 615,
908, 915, 918, 1008, 1015, 1018, 1106, 1115, 1206, 1215
R310, 316, 410, 416, 909, 916, 1009, 1016 R312, 412, 510, 610, 912, 1012, 1110, 1210
R320, 420,
920, 1020
R501, 601,
1101, 1201
R502, 602,
1102, 1202,
R504, 604,
1104, 1204
R505, 516,
605, 616,
1105, 1116,
1205, 1216
R512, 612,
1112, 1212
R517, 617,
1117, 1217

Part No.

315-0102-00

315-0331-00

321-0414-00

308-0815-00

321-0296-00

321-0129-00

321-0431-00

301-0153-00

321-0126-00

308-0769-00

Description

RESISTOR, 1k, 1/4W, 5\%, Carbon

RESISTOR, 330 ohm, 1/4W, 5\%, Carbon

RESISTOR, 200.k, 1/8W, 1\%, Mtl. Flm.

RESISTOR, . 01 ohm, $5 \mathrm{~W}, .25 \%$, WW

RESISTOR, $11.8 \mathrm{k}, 1 / 8 \mathrm{~W}, 1 \%, \mathrm{MtI}$. FIm.

RESISTOR, 215. ohm, 1/8W, 1\%, MtI. FIm.

RESISTOR, 301.k, 1/8W, 1\%, Mtl. Flm.

RESISTOR, $15 \mathrm{k}, 1 / 2 \mathrm{~W}, 5 \%$, Carbon

ELECTRICAL PARTS LIST

MAIN CIRCUIT BOARD (Cont.)

Part of 670-6052-00

Tektronix

Circuit No.

Part No.

Description

U11, 12, 21, 22, 71, 72, 81, 82 U31, 41, 51, 61, 91, 101, 111, 121

VR101, 201, 701, 801

VR102, 202, 702, 802
VR103, 203, 703, 803
VR301, 401, 502, 602, 901, 1001, 1101, 1201
VR302, 402, 902, 1002
VR303, 403, 903, 1003
VR306, 406, 505, 605, 906, 1006, 1105, 1205
VR501, 601,
1102, 1202
VR503, 603, 1103, 1203

156-1156-00

156-1191-00

152-0195-00

152-0571-00

152-0268-00

152-0149-00

152-0282-00

152-0287-00

152-0395-00

152-0247-00

152-0255-00

IC, LF356N, Op Amp

IC, TL072CP, Op Amp

ZENER DIODE, 1N751A, 5.1V, .4W

ZENER DIODE, 1N966B, 16V, .4W

ZENER DIODE, 1N979B, 56V, .4W

ZENER DIODE, 1N961B, 10V, .4W

ZENER DIODE, 1N972B, 30V, .4W

ZENER DIODE, 1N986B, 110V, .4W

ZENER DIODE, 1N749A, 4.3V, .4W

ZENER DIODE, 1N989B, 150V, .4W

ZENER DIODE, 1N978B, 51V, .4W

SOCKET, Dual-In-Line, 8 contact

TERMINAL, Pin
TERMINAL, Pin
TERMINAL, Quick Disconn.
TERMINAL, Quick Disconn.

MECHANICAL PARTS LIST

MAIN CIRCUIT BOARD 670-6052-00

Tekironix Part No.	Quantity	Description
$210-0455-00$	4	NUT, .25-28 (1/4)
$210-0586-00$	24	NUT, Keps, 4-40
162-0684-00	1.167 feet	SLEEVING, Elec, 16 AWG
$211-0008-00$	24	SCREW, 4-40 $\times .250$, Panhead

ELECTRICAL PARTS LIST

DIGITAL MULTIMETER BOARD
067-6048-00

Circuit No.	Tektronix	
	Part No.	Description
	670-6048-00	ECB, Digital Multimeter (Complete)
$\begin{gathered} \text { C4001, 4002, } \\ 4003,4004, \\ 4005,4006, \\ 4014,4016 \end{gathered}$	290-0573-00	CAPACITOR, 2.7 L , 50 V , Electr.
C4007	285-1050-00	CAPACITOR, . $1 \mathrm{uF}, 200 \mathrm{~V}$, Mtl'd Mylar
C4008	283-0666-00	CAPACITOR, $890 \mathrm{pF}, 100 \mathrm{~V}$, Mica
C4009	281-0812-00	CAPACITOR, .001uF, 100 V , Ceramic
C4010	290-0534-00	CAPACITOR, $1 \mathrm{uF}, 35 \mathrm{~V}$, Electr.
C4012	283-0604-00	CAPACITOR, 304pF, 300V, Mica
C4013	285-1056-00	CAPACITOR, $1 \mathrm{uF}, 50 \mathrm{~V}$, Mtl'd Polycarb.
C4017	283-0635-00	CAPACITOR, $51 \mathrm{pF}, 100 \mathrm{~V}$, Mica
C4018	281-0773-00	CAPACITOR, . 01 uF , Ceramic
C4020	283-0054-00	CAPACITOR, 150pF, 500V, Ceramic
C4021, 4022	283-0687-00	CAPACITOR, $560 \mathrm{pF}, 300 \mathrm{~V}$, Mica
C4023, 4024	283-0158-00	CAPACITOR, $1.0 \mathrm{pF}, 50 \mathrm{~V}$, Ceramic
CR4002, 4003, 150-1001-00 LED, MV5024, Red6001, 6002,6003, 6004,6005, 6006,6007, 6008,6009, 6010,6011, 6012,6013		
CR4004, 4005	152-0324-00	DIODE, TD55125, Signal, Si.
CR4007, 4008	152-0141-02	DIODE, 1N4152, Signal, Si.
$\begin{gathered} \text { DS4014, } 4015, \\ 4016,4017 \end{gathered}$	150-1048-00	LED DISPLAY, 7 Seg
DS4018	150-1066-00	LED DISPLAY, MAN4605, 7 Seg
K4001	148-0079-00	RELAY, DIP, 28VDC
$\begin{gathered} \mathrm{K} 4002,4003, \\ 4004,4005 \end{gathered}$	148-0079-00	RELAY, DIP, 100VDC
Q4001, 4002,	151-0254-00	TRANSISTOR, 2N5308, Signal, NPN, Si.

ELECTRICAL PARTS LIST

DIGITAL MULTIMETER BOARD (Cont.)
 Part of 067-6048-00

Tektronix

Circuit No.

Q4003, 4011, 4012, 4013, 4023
Q4004, 4007 4008, 4009, 4019, 4020, Q4005, 4006, 4010, 4014, 4015, 4016, 4017, 4018
Q4021
Q4022
Q4024

R4001
R4002, 4003
R4004

R4005
R4006
R4007, 4072
R4008, 4009,
4011
R4010
R4012
R4013, 4065
R4014
R4015
R4016
R4017
R4018, 4019
R4020, 4091
R4021
R4022
R4023, 4041,
4042, 4043, 4045, 4046, 4047, 4064

Description

TRANSISTOR, 2N5308, Signal, NPN, Si.

TRANSISTOR, 2N3906, Signal, PNP, Si.

TRANSISTOR, 2N3904, Signal, NPN, Si.

TRANSISTOR, SD210, MOS FET, N-Ch TRANSISTOR, MPSA65, Signal, PNP, Si. TRANSISTOR, 2N5769

RESISTOR, $6.8 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, 390 ohm, $1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR NETWORK, 9M, 900k, 90k, 9k, 900 ohm, 90 ohm, 10 ohm; DIP
VARIABLE RESISTOR, $25 \mathrm{k}, 1 / 2 \mathrm{~W}, 10 \%$, Linear RESISTOR, $10.97 \mathrm{k}, 1 / 8 \mathrm{~W}, .1 \%$, Mtl. FIm. VARIABLE RESISTOR, 250 ohm, $1 / 2 \mathrm{~W}, 10 \%$, Linear RESISTOR, $100 . \mathrm{k}, 1 / 8 \mathrm{~W}, 1 \%, \mathrm{MtI}$. Flm.

RESISTOR, 130.k, 1/8W, 1%, Mtl. Flm. RESISTOR, $47 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, $100 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, 2.7 ohm, $1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, $1.00 \mathrm{k}, 1 / 8 \mathrm{~W}, 1 \%, \mathrm{MtI}$. FIm. VARIABLE RESISTOR, $2 \mathrm{k}, 1 / 2 \mathrm{~W}, 10 \%$, Linear RESISTOR, $16.2 \mathrm{k}, 1 / 8 \mathrm{~W}, 1 \%, \mathrm{MtI}$. FIm. RESISTOR, 36 ohm, $1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, $4.7 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, $7.5 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$, Carbon VARIABLE RESISTOR, 100k, $1 / 2 \mathrm{~W}, 10 \%$, Linear RESISTOR, 10k, 1/4W, 5\%, Carbon

ELECTRICAL PARTS LIST

DIGITAL MULTIMETER BOARD (Cont.)

Part of 067-6048-00

Tektronix

Circuit No.

R4024, 4025,
4026, 4027
4028
R4029, 4030, 4031, 4032, 4090
R4033
R4034, 6004, 6010, 6016, 6022, 6028, 6034, 6040,
6046, 6052,
6058, 6064,
6070, 6076
R4035, 4039
R4036
R4037, 4040
R4044, 4060
R4048, 4049,
4050, 4051,
4052, 4053,
4054, 4081,
4082, 4083,
4084, 4085,
4088
R4058
R4059
R4062
R4063
R4069
R4070, 4073
R4071, 4074,
4075
R4076, 4078
R4077, 4079
R4086, 4087,

315-0241-00
315-0150-00
315-0561-00
315-0161-00
315-0243-00
321-0289-00
321-0481-00

315-0302-00
321-0260-00
315-0272-00

Description

RESISTOR, 20k, 1/4W, 5\%, Carbon

RESISTOR, 1k, 1/4W, 5\%, Carbon

RESISTOR, $1.8 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$, Carbon
RESISTOR, $1.2 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$, Carbon

RESISTOR, 330 ohm, $1 / 4 \mathrm{~W}, 5 \%$, Carbon
RESISTOR, 680 ohm, $1 / 4 \mathrm{~W}, 5 \%$, Carbon
RESISTOR, 750 ohm, $1 / 4 \mathrm{~W}, 5 \%$, Carbon
RESISTOR, $2 k, 1 / 4 \mathrm{~W}, 5 \%$, Carbon
RESISTOR, 51 ohm, $1 / 4 \mathrm{~W}, 5 \%$, Carbon

RESISTOR, 240 ohm, $1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, 15 ohm, $1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, 560 ohm, $1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, 160 ohm, $1.4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, $24 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, 10.0k, 1/8W, 1\%, Mtl. Flm. RESISTOR, $1.00 \mathrm{M}, 1 / 8 \mathrm{~W}, 1 \%$, MtI. Flm.

RESISTOR, $3 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$, Carbon RESISTOR, $4.99 \mathrm{k}, 1 / 8 \mathrm{~W}, 1 \%, \mathrm{MtI}$. Flm. RESISTOR, $2.7 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$, Carbon

ELECTRICAL PARTS LIST

DIGITAL MULTIMETER BOARD (Cont.)

Part of 067-6048-00

Circuit No.	Tektronix Part No	
	Part No.	Description
S4001	260-1840-00	SWITCH, Toggle, 4PDT, VOLTAGE/CURRENT
T4001	120-1276-00	TRANSFORMER, Line Freq
U4001	156-1306-00	IC, LD120, Analog A to D
U4002	156-0385-00	IC, 74LS04, TTL, Hex-Inverter
U4003	156-1305-00	IC, LD121, Digital A to D
U4004	156-0886-00	IC, 74C48, CMOS, BCD to 7 Seg. Decoder
U4006	156-0783-00	IC, LM399H, 6.95V Reg.
U4008	156-0910-00	IC, 74LS390, TTL, Dual-Decade
U4009, 4022	156-0382-00	IC, 74LS00, TTL, Quad 2-Input NAND
U4010	156-0383-00	IC, 74LS02, TTL, Quad 2-Input NOR
U4011, 4023	156-0386-00	IC, 74LS10, TTL, Triple 3-Input NAND
U4012	156-0422-00	IC, 74LS191, TTL, Syn. 4-bit Up/Dwn Binary
U4013	156-0736-00	IC, 74LS42, TTL, BCD to Deci. Decoder
U4019	156-1172-00	IC, 74LS393, TTL, Dual 4-bit Binary
U4020	156-1156-00	IC, LF356, Op Amp
U4021	156-0465-00	IC, 74LS30, TTL, Single 8-Input NAND
VR4001	152-0195-00	ZENER DIODE, 1N751A, 5.1V, .4W
VR4009, 4010	152-0149-00	ZENER DIODE, 1N961B, 10V, .4W
Y4001	158-0124-00	CRYSTAL, $2.4576 \mathrm{MHz}, .05 \%$
	136-0260-02	SOCKET, Dual In-Line, 16 Contact
	136-0269-02	SOCKET, Dual In-Line, 14 Contact
	136-0494-00	SOCKET, Dual In-Line, 14 Contact
	136-0514-00	SOCKET, Dual In-Line, 8 Contact
	136-0670-00	SOCKET, Dual In-Line, 18 Contact
	136-0338-00	SOCKET, Spring
	136-0352-00	SOCKET, Spring
	131-0608-00	TERMINAL, Pin
	131-1343-00	TERMINAL SET PIN

MECHANICAL PARTS LIST
 INTERCONNECT CIRCUIT BOARD 670-6051-00

Tektronix

Part No.

131-0767-00

131-0589-00
131-0608-00
131-0767-00

213-0034-00

Quantity

1

1

1

1

1

Description

CONNECTOR, Rcpt. Elec.

TERMINAL, Pin
TERMINAL, Pin
TERMINAL SET, Pin

SCREW, $4-40 \times .312$, Panhead

ELECTRICAL PARTS LIST

LOWER PANEL CIRCUIT BOARD
 670-6050-00

Circuit No.	Tektronix	
	Part No.	Description
	670-6050-00	ECB, Lower Panel (Complete)
C2100	281-0775-00	CAPACITOR, . $1 \mathrm{uF}, 50 \mathrm{~V}$, Ceramic
CR2100	152-0141-02	DIODE, 1N4152, Signal, Si.
Q2100, 2101	151-0188-00	TRANSISTOR, 2N3906, Signal, PNP, Si
$\begin{aligned} & \text { R2108, } 2110, \\ & 2114,2118, \\ & 2124,2126 \end{aligned}$	315-0152-00	RESISTOR, 1.5k, 1/4W, 5\%
R2112, 2120	315-0200-00	RESISTOR, 20 ohm, 1/4W, 5\%
$\begin{aligned} & \text { S2001, 2002, } \\ & 2003,2004, \\ & 2005,2006, \\ & 2007,2008, \\ & 2009,2010, \\ & 2011,2012, \\ & 2111 \end{aligned}$	260-1335-00	SWITCH, Toggle, SPDT, MAX/MIN 1 thru MAX/MIN 12 and CHOP/SWITCH
S2110	260-1206-00	SWITCH, Toggle, SPDT (Center Off), HI/LOW/IND
U2100	156-0383-00	IC, 74LS02, TTL, Quad 2-input NOR

ELECTRICAL PARTS LIST

POWER SUPPLY BOARD
 670-6049-00

Circuit No.	Tektronix	
	Part No.	Description
	670-6049-00	ECB, Power Supply (Complete)
$\begin{gathered} C 3000,3003 \\ 3006,3011, \\ 3015,3019 \end{gathered}$	283-0111-00	CAPACITOR, . $1 \mathrm{uF}, 50 \mathrm{~V}$, Ceramic
C3001, 3020	290-0746-00	CAPACITOR, 47uF, 16V, Electr.
$\begin{aligned} & \text { C3002, 3008, } \\ & 3010,3014 \end{aligned}$	290-0583-00	CAPACITOR, 3000 uF , 35 V , Electr.
$\begin{aligned} & C 3004,3009, \\ & 3013,3017 \end{aligned}$	290-0745-00	CAPACITOR, 22 F , 25 V , Electr.
C3005, 3012	283-0114-00	CAPACITOR, 1500 pF , 200 V , Electr.
C3007, 3016	283-0299-00	CAPACITOR, $51 \mathrm{pF}, 500 \mathrm{~V}$, Electr.
C3018	290-0506-00	CAPACITOR, 9600uF, 30V, Elactr.
CR3001, 3002	152-0488-00	DIODE RECTIFIER, KBP02, Bridge
$\begin{aligned} & \text { CR3003, 3004, } \\ & 3005 \end{aligned}$	152-0066-00	DIODE, 1N4004G, Rectifier, Si.
$\begin{aligned} & \text { F3002, 3003, } \\ & 3004,3005, \\ & 3006 \end{aligned}$	159-0022-00	FUSE, 1A, Fast, 250 V
K3002	148-0022-00	RELAY, 12 VDC, Armature, 2 Form C
$\begin{aligned} & \text { Q3001, 3004, } \\ & 3005,3008 \end{aligned}$	151-0373-00	TRANSISTOR, Power, MJE2901, PNP, Si
Q3002, 3006	151-0462-00	TRANSISTOR, Power, TIP30C, PNP, Si.
Q3003, 3007	151-0188-00	TRANSISTOR, Signal, 2N3906, PNP, Si.
$\begin{aligned} & \text { R3001, 3008, } \\ & 3011,3015, \\ & 3022,3023 \end{aligned}$	315-0301-00	RESISTOR, 300 ohms, $1 / 4 \mathrm{~W}, 5 \%$
R3002, 3012	308-0755-00	RESISTOR, .75 ohms, 3W, 10\%
R3003, 3017	315-0512-00	RESISTOR, $5.1 \mathrm{k}, 1 / 4 \mathrm{~W}, 5 \%$
R3004, 3016	321-0282-00	RESISTOR, 8.45k, 1/8W, 1\%
R3005, 3018	311-1749-00	VARIABLE RESISTOR, $1.5 \mathrm{k}, 1 / 2 \mathrm{~W}, 20 \%$
R3006, 3013,	321-0268-00	RESISTOR, $6.04 \mathrm{k}, 1 / 8 \mathrm{~W}, 1 \%$

ELECTRICAL PARTS LIST

POWER SUPPLY BOARD (Cont.)

Part of 670-6052-00

Circuit No.

R3007, 3020
R3009, 3021
R3010
R3014, 3024
R6001, 6006,
6007, 6012,
6013, 6018,
6019, 6024, 6025, 6030,
6031, 6036,
6037, 6042,
6043, 6048, 6049, 6054, 6055, 6060, 6061, 6066, 6067, 6072, 6073, 6078 R6002, 6005, 6008, 6011, 6014, 6017, 6020, 6023, 6026, 6029, 6032, 6035, 6038, 6041, 6044, 6047, 6050, 6053, 6056, 6059, 6062, 6065, 6068, 6071, 6074, 6077 R6003, 6009, 6015, 6021, 6027, 6033, 6039, 6045, 6051, 6057, 6063, 6069, 6075

Tektronix

 Part No.321-0299-00
315-0302-00
311-1567-00
308-0677-00
321-0296-00

321-0143-00

321-0297-00

Description

RESISTOR, 12.7k, 1/8W, 1\% RESISTOR, 3k, 1/4W, 5\% VARIABLE RESISTOR, 100 ohms, $1 / 2 \mathrm{~W}, 20 \%$
RESISTOR, 1 ohm, 2W, 5\%
RESISTOR, 11.8k, 1/8W, 1\%

RESISTOR, 301 ohms, 1/8W, 1\%

ELECTRICAL PARTS LIST

POWER SUPPLY ECB (Cont.)
 Part of 670-6049-00

Tektronix

Circuit No.

```
U3001, 3006
U3002, 3004
U3003, }300
U6001, 6002,
6003,6004,
6005, 6006,
6007
```


Part No.

Description

156-0277-00
156-0071-00
156-0105-00
156-0411-00

388-6546-01
ECB, w/o components

136-0394-00
136-0269-02
136-0514-00

131-0589-00
131-0608-00

344-0154-00.

SOCKET, Relay
SOCKET, Relay, 14 pin
SOCKET, Relay, 8 pin

TERMINAL, Pin
TERMINAL, Pin

HOLDER, Fuse

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols and Reference Designators

Electrical components shown on the diagrams are in the following units unless noted otherwise:

$$
\begin{array}{ll}
\text { Capacitors }= & \text { Values one or greater are in picofarads }(\mathrm{pF}) . \\
& \text { Values less than one are in microfarads }(\mu \mathrm{F}) . \\
\text { Resistors }= & \text { Ohms }(\Omega) .
\end{array}
$$

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.
Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.
The overline on a signal name indicates that the signal performs its intended function when it goes to the low state.
Abbreviations are based on ANSI Y1.1-1972.
Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:
Y14.15, 1966 Drafting Practices.
Y14.2, 1973 Line Conventions and Lettering.
Y10.5, 1968 Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.

The following prefix letters are used as reference designators to identify components or assemblies on the diagrams.

A	Assembly, separable or repairable (circuit board, etc)
AT	Attenuator, fixed or variable
B	Motor
BT	Battery
C	Capacitor, fixed or variable
CB	Circuit breaker
CR	Diode, signal or rectifier
DL	Delay line
DS	Indicating device (lamp)
E	Spark Gap, Ferrite bead
F	Fuse
FL.	Filter

H	Heat dissipating device (heat sink, heat radiator, etc)
HR	Heater
HY	Hybrid circuit
J	Connector, stationary portion
K	Relay
L	Inductor, fixed or variable
M	Meter
P	Connector, movable portion
Q	Transistor or silicon-controlled
	rectifier
R	Resistor, fixed or variable
RT	Thermistor

S	Switch or contactor
T	Transformer
TC	Thermocouple
TP	Test point
U	Assembly, inseparable or non-repairable (integrated circuit, etc.)
V	Electron tube
W	Voltage regulator (zener diode, etc.)
Y	Wirestrap or cable
Z	Crystal
Phase shifter	

PARTIAL A1 MAIN BOARD

To divadust

APPENDIX A

PROGRAMMING PLUG-IN MODULE

General

The following paragraphs describe the Programming plug-in module (unprogrammed) Tektronix part number 067-0919-99, that is included with the Universal Load Unit.

This module is a $2.48^{\prime \prime} \mathrm{X} 4.54$ " X 13.5" metal framework box enclosing a circuit board. The module's front surface is featureless except for a pull-to-release handle. The edge connector on the circuit board protrudes from the rear of the module and is used as the electrical mating connector when the plug-in is installed into the Universal Load Unit.

The Programming Plug-in module may be modified to program a Load Unit to facilitate performance checking the power supplies in a specific Tektronix instrument. This modification process includes the selection of four precision resistors for each supply to be tested. A guide to program resistor selection with specific examples is given in the following pages.

This appendix also includes a schematic diagram, a component location diagram and a complete parts list of the Programming Plug-in module.

PROGRAM RESISTOR SELECTION

Introduction

Each of the twelve active channels of the Universal Load Unit has associated with it four selectable precision resistors. The Comparison and Desensitizing resistors control the operation of the OUT-OF-REGULATION indicators, while the High and Low resistors control the loading levels.

Each channel is programmed to produce a high or low load, depending on the positions of the CHOP/SWITCH control, the HI/LOW/INDividual LOAD SELECT control, and (in the INDividual position) the individual MAX/MIN switches. Depending on whether the Constant Current or Resistive modes of power supply loading are desired, either the R_{P} or the R_{F} High and Low resistors (but not both) are selected. The High and Low resistors need not be selected in the same mode, however. For example, an R_{PH} and an R_{FL} may be used in the same channnel if a high constant current load and a low resistive load were desired.

Channel 13 only has two selectable resistors associated with it, RComparison and R-Load. $\mathrm{R}_{\text {Load }}$ is a direct load resistor whose value is determined by dividing the power supply voltage by the desired load current. $\mathrm{R}_{\text {Comp }}$ is the same as in the other twelve channels, except that it must have a positive input.

Equations

The following equations govern the operation of the Comparator circuits which provide input to the OUT-OF-REGULATION indicators:

$$
\begin{aligned}
& \mathrm{R}_{\text {Comp }}(\text { in } \mathrm{k} \text { ohms })=\mathrm{V}_{\mathrm{S}} \\
& \% \text { Tolerance (nominal) }=\frac{30}{\mathrm{~V}_{\mathrm{S}}}+2.5 \\
& \mathrm{R}_{\text {Des }}=\frac{30}{\% \text { Tol.- } \frac{30}{\mathrm{~V}_{S}}-2.5}
\end{aligned}
$$

Where:
$\mathrm{R}_{\text {Comp }}=$ Comparator Resistor

$$
\mathrm{V}_{\mathrm{S}}=\text { Supply Voltage }
$$

\% Tolerance Nominal $=\%$ Tolerance with no "RDes" used

$$
\mathrm{R}_{\text {Des }}=\text { Desensitizing Resistor }
$$

The following equations define the relationships betweeen the High and Low resistor values, the voltage of the power supply being loaded and the desired High and Low load currents:
$\begin{aligned} \text { High Current Cells }-\quad R_{p}(\text { in } k \text { ohms }) & =\frac{249}{I_{S}} \\ R_{f}(\text { in } k \text { ohms }) & =24.9\left(\frac{V_{S}}{I_{S}}-.01\right)\end{aligned}$

Medium Current Cells - $\quad \mathrm{R}_{\mathrm{p}}($ in k ohms $)=\frac{100}{\mathrm{I}_{\mathrm{s}}}$

$$
\mathrm{R}_{\mathrm{f}}(\text { in } \mathrm{k} \text { ohms })=10\left(\frac{\mathrm{~V}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{s}}}-.01\right)
$$

Low Current Cells -

$$
R_{p}(\text { in } k \text { ohms })=\frac{20}{I_{s}}
$$

$$
R_{f}(\text { in } k \text { ohms })=2\left(\frac{V_{s}}{I_{s}}-.1\right)
$$

Channel 13 -

$$
R_{\text {Load }}(\text { in ohms })=\frac{V_{S}}{I_{s}}
$$

Where: \quad| R_{p} | $=$ Resistor value for a constant current load |
| ---: | :--- |
| | $\mathrm{R}_{\mathrm{f}}=$ Resistor value for a constant resistance load |
| | $\mathrm{R}_{\mathrm{Load}}=$ Resistor value for channel 13 |
| $\mathrm{~V}_{\mathrm{S}}$ | $=$ Supply voltage |
| I_{S} | $=$ Desired load current |

Getting Started

When programming a Universal Load Unit for multiple supplies, start with those which require the largest load or which have the highest voltages, as they generally pose the biggest problems.

To ascertain the limitations of a given cell, consult the appropriate Safe Operating Area Curve (at the end of this procedure). These graphs illustrate which combinations of current and voltage a given cell can handle without exceeding its power dissipation capacity.

If no cell can handle the desired current alone, cells may be paralleled to achieve the desired load.

Paralleling Two Cells

Before two cells may be paralleled, at least two conditions must exist: both cells must be of the same polarity and both cells must be operated within the permissible regions of their Safe Operating Area Curves.

It is also important to attempt to share the load so that both cells are operating at about the same percentage of their full power capability. Also, if any cell is to be operated above 80% of its capacity, the fans must be allowed to run full time. (Remove the jumper at the P3 sense connector to cause the fan to run constantly).

The rotary switch will sense the same total applied voltage in either cell's position, but senses current only for that individual cell. Hence, it will be necessary to add the currents measured for each cell to find the total current for that power supply. The OVER VOLTAGE TEST control will only function in conjuntion with the one cell which is being sensed.

WARNING

> Do not parallel remote sense lines. The voltage may be sensed on either line, but not on both. Failure to heed this warning can lead to catastrophic failure of the instruments involved.

Channel 13

Channel 13 should only be used with positive supplies whose output is less than 350 volts. It must be used when a supply exceeds the Safe Operating Area Curve for the low current cell. Maximum current is 1 A and maximum power is 10 W .

An Example

A hypothetical power supply has the following outputs and load requirements:

Supply Voltage	Low I $($ Amps $)$	High I $($ Amps $)$	Mode
+15.0			
+50.0	0.39	3.0	Constant I
-5.2	20.8	0.8	Constant I
+130	0.022	---	Resistive
			Resistive

The -5.2 volt supply should attract our attention first because it has the largest current requirement. Consulting the Safe Operating Area Curve for high current cells, we find that the maximum safe operating current at 5.2 Volts is about 23 Amps , while we need to be able to handle 32.4 Amps. By consulting the Safe Operating Area Curve for medium current cells, we learn that the remaining 9.4 Amps will not require an additional high current cell, but will fit within the 10 Amps available in a medium current cell at 5.2 Volts.

Medium current cells have a maximum power capacity of 52 W at 5.2 volts, while high current cells have a maximum current capacity of about 120 W at 5.2 volts. The total power capacity available at 5.2 volts is then 172 W . We need $5.2 \mathrm{~V} \times 32.4 \mathrm{~A}=168.5 \mathrm{~W}$. Each cell should then be operated at
about 98% of capacity ($168.5 / 172$). Putting 10 amps in the medium cell and 22.4 amps through the high current cell is an adequately equal division of the power. This represents 100% and 97% capacity respectively, and will necessitate the removal of the jumper between P3-16 and P3-36 to provide continuous cooling fan operation. The relevant equations follow:

Cell 8, High Current:

$$
\begin{aligned}
& R_{f 18}=24.9\left(\frac{V_{S}}{I_{S}}-.01\right)=24.9\left(\frac{5.2}{20.8}-.01\right)=5.98 \mathrm{k} \\
& R_{f h 8}=24.9\left(\frac{\mathrm{~V}_{S}}{I_{S}}-.01\right)=24.9\left(\frac{5.2}{22.4}-.01\right)=5.53 \mathrm{k}
\end{aligned}
$$

Cell 9, Medium Current:

$$
\begin{aligned}
& R_{f 19}=10\left(\frac{V_{S}}{I_{S}}-.01\right)=10\left(\frac{5.2}{5.0}-.01\right)=10.3 \mathrm{k} \\
& R_{f h 9}=10\left(\frac{\mathrm{~V}_{S}}{I_{s}}-.01\right)=10\left(\frac{5.2}{10}-.01\right)=5.1 \mathrm{k}
\end{aligned}
$$

Comparison Resistors:

$$
\mathrm{R}_{\text {Comp8 }}=\mathrm{R}_{\text {Comp9 }}=\mathrm{V}_{\mathrm{s}}=5.2 \mathrm{k}
$$

Out-of-Regulation Tolerance:
$\% \mathrm{Tol}\left(\mathrm{no} \mathrm{R}_{\text {Des }}\right)=\frac{30}{\mathrm{~V}_{\mathrm{S}}}+2.5=\frac{30}{5.2}+2.5=8.3 \%$
For now, let us assume that this OUT-OF-REGULATION tolerance is satisfactory. When it is not, refer to the section of this appendix (below) entitled "Desensitizing".

Returning to our example, the +130 volt supply, as a relatively high voltage and low current power supply, may require special treatment and should be examined next. Examination of the Safe Operating Area Curve for Low Current Cells discloses that these cells can supply a load of 0.2 amps at their limit of 160 volts. Our requirement is only for 0.022 amps, however, and this may require a different analysis. The equations for current accuracy follow:

Current Accuracy (low and medium cells) $= \pm 1.0 \% \pm 0.25 \% \times I_{\text {cell }} \max$

Current Accuracy (high current cells) $= \pm 1.0 \% \pm 0.5 \% \times I_{\text {cell }} \max$

Specifically, in our case:

Current Accuracy (low cell) $= \pm(0.022 \mathrm{~A} \times 1 \%) \pm(0.25 \% \times 2 \mathrm{~A})= \pm 0.00522 \mathrm{~A}$

Expressed as a percentage of the desired current this is:
$\%$ Current Accuracy $=\frac{0.00522}{0.022 \mathrm{~A}}= \pm 24 \%$

At such low currents the percentage accuracy has become intolerable and we would be better off using a simple direct load resistor rather than a low current cell. Substituting into the channel 13 equations, we have:

$$
\begin{aligned}
& R_{\text {Load }}(\text { in ohms })=\frac{V_{S}}{I_{S}}=\frac{130}{.022}=5909 \text { ohms } \\
& R_{\text {Comp } 13}=V_{S}=130 \mathrm{k}
\end{aligned}
$$

The +15 volt supply will require a medium current cell, since its high current requirement exceeds the capacity of a low current cell. Note that the requirement is for a constant current, rather than a resistive, load. Therefore, we will be substituting into equations of the constant current form:

$$
R_{p l 3}=\frac{100}{I_{S}}=\frac{100}{1.0}=100 \mathrm{k}
$$

$$
\begin{aligned}
& R_{\text {ph3 }}=\frac{100}{I_{s}}=\frac{100}{3.0}=33.3 \mathrm{k} \\
& R_{\text {Comp3 }}=V_{S}=15.0 \mathrm{k} \\
& \% \text { Tol }\left(\text { no } R_{\text {Des }}\right)=\frac{30}{V_{S}}+2.5=\frac{30}{15.0}+2.5=4.5 \%
\end{aligned}
$$

The remaining power supply, +50 volts, with its low current requirement, should go to a low current channel, say 5. Again constant current loading is called for and the equations are:

$$
\begin{aligned}
& R_{\mathrm{pl5}}=\frac{20}{I_{\mathrm{S}}}=\frac{20}{0.039}=51.3 \mathrm{k} \\
& R_{\mathrm{ph} 5}=\frac{20}{I_{\mathrm{S}}}=\frac{20}{0.8}=25.0 \mathrm{k} \\
& R_{\text {Comp } 5}=V_{\mathrm{S}}=50.0 \mathrm{k} \\
& \% \text { Tol }\left(\text { no } R_{\text {Des }}\right)=\frac{30}{V_{S}}+2.5=\frac{30}{50.0}+2.5=3.1 \%
\end{aligned}
$$

Desensitizing

If the Out-of-Regulation tolerance generated by the comparison circuitry is inadequate, the tolerance window can be opened by using R Des. In fact, channels which are not being used can have their OUT-OF-REGULATION indicators disabled by the installation of shorts in the $R_{\text {Des }}$ location of those channels.

The following equation indicates how the value of the desensitizing resistor is related to the supply voltage and the desired tolerance percentage:

$$
\mathrm{R}_{\text {Des }}=\frac{30}{\% \mathrm{Tol} \cdot-\frac{30}{\mathrm{~V}_{\mathrm{S}}}-2.5}
$$

In the example above the nominal percentage tolerance of the comparison circuitry in channel five was calculated to be 3.1%. If that were inappropriate to that +50 volt supply, and a tolerance of 10% were desired instead, we would substitute those values to obtain:

$$
R_{\text {Des5 }}=\frac{30}{10-\frac{30}{50.0}-2.5}=4.35 k
$$

REPLACEABLE PARTS LIST PROGRAMMING PLUG-IN (UNPROGRAMMED) CHASSIS ASSEMBLY 067-0919-99

Tektronix

Part No.	Quantity	Description
$670-6047-00$	1	ECB, Programming plug-in, Unprogrammed (Complete) CONNECTOR, Female, 32 Contact
$131-0097-00$	2	CONNECTOR, Male, 36 Contact
$131-0293-00$	1	COVER, Plug-in ext, Plastic
$200-0551-00$	1	
		PANEL, Front
$333-1367-00$	1	SUBPANEL, Front
$386-1447-47$	1	SUBPANEL, Rear
$386-1402-04$	1	SUPPORT, Plug-in
$386-3657-01$	1	FRONT SECTION, Plug-in, Bottom
$426-0499-07$	1	FRONT SECTION, Plug-in, Top
$426-0505-07$	1	SHIELD, Elec, Plug-in Side
$337-1064-04$	2	SHIELD GASKET, Elec.
$348-0235-00$	2	KNOB, Gray, $0.625 \times 0.255 \times 0.485$ in.
$366-1058-00$	1	BOLT, Latch
$105-0075-00$	1	RELEASE BAR, Latch
$105-0076-02$	1	PIN, Spring, 0.187 L $\times 0.1$ OD, Stl-Cd-PI
$214-1095-00$	1	SPRING, Helical, Music Wire
$214-1280-00$	1	SPRING, Flat
$214-1054-00$	1	CONTACT, Elec, Cu-Be
$214-1061-00$	1	SCREW, 4-40 $\times 0.188$, Flathead
$211-0105-00$	6	SCREW, 4-40 $\times 0.312$, Double Sems
$211-0116-00$	6	SCREW, 6-32 $\times 0.500$, Fillisterhead
$213-0192-00$	7	NUT, 4-40
$220-0547-01$	6	MARKER, I.D.
$334-3663-01$	1	MARKER, I.D., Ser. No.
$334-1378-00$	1	BOX, Shipping, $19.55 \times 9.0 \times 9.55$ in.
$004-0748-00$	1	CUSHION MATL, Pkg, $1 / 2$
$004-0241-00$	2	CUSHION MATL, Pkg, End Cap, Front
$004-0243-00$	1	CUSHION MATL, Pkg, End Cap, Rear
$004-0242-00$	1	

ELECTRICAL PARTS LIST PROGRAMMING CIRCUIT BOARD (UNPROGRAMMED)
 670-6047-00

Tektronix

Circuit No.

CR5001, 5002,
5005, 5006, 5010, 5011, 5015, 5016, 5020, 5021, 5025, 5026, 5030, 5031, 5035, 5036, 5040, 5041, 5045, 5046, 5050, 5051, 5055, 5056

Q5011, 5012,
5021, 5022,
5031, 5032,
5041, 5042, 5051, 5052, 5061, 5062, 5071, 5072, 5081, 5082, 5091, 5092, 5101, 5102, 5111, 5112, 5121, 5122 Q5013, 5014, 5023, 5024, 5033, 5034, 5043, 5044, 5053, 5054, 5063, 5064, 5073, 5074, 5083, 5084, 5093, 5094, 5103, 5104, 5013, 5014,

152-0141-02

Part No.

670-6047-00

151-0188-00

TRANSISTOR, 2N3906, Signal, PNP, Si.

Description

ECB, Programming plug-in, Unprogrammed (Complete)

DIODE, 1N4152, Signal, Si.

TRANSISTOR, 2N3904, Signal, NPN, Si.

ELECTRICAL PARTS LIST PROGRAMMING CIRCUIT BOARD (UNPROGRAMMED) (Cont.) 670-6047-00

Tektronix

Circuit No.

5123, 5124
Q5015, 5016 5025, 5026, 5035, 5036, 5045, 5046, 5055, 5056, 5065, 5066, 5077, 5078, 5087, 5088, 5097, 5098, 5107, 5108, 5117, 5118, 5127, 5128
Q5017, 5018 5027, 5028, 5037, 5038, 5047, 5048, 5057, 5058, 5067, 5068, 5075, 5076, 5085, 5086, 5095, 5096, 5105, 5106, 5115, 5116, 5125, 5126

R5001, 5002, 5018, 5019, 5035, 5036, 5051, 5052, 5066, 5067, 5081, 5082, 5109, 5111, 5125, 5127, 5141, 5143, 5157, 5159, 5173, 5175, 5189, 5191

Part No.

151-0443-00

Description

TRANSISTOR, MPSA92, Signal, PNP, Si.

TRANSISTOR, MPSA42, Signal, NPN, Si.

RESISTOR, $10.0 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$, MtI. FIm.

ELECTRICAL PARTS LIST PROGRAMMING CIRCUIT BOARD (UNPROGRAMMED) (Cont.)
 670-6047-00

Tektronix

Circuit No.

R5003, 5020,
Part No.

5037, 5053,
5068, 5083,
5106, 5122,
5138, 5154,
5170, 5186
R5004, 5022,
321-0220-00
RESISTOR, 1.91K, 1/8W, 1\%, MtI. FIm.

5069, 5084,
5108, 5124,
5140, 5156,
5172, 5188
R5005, 5023,
315-0822-00
5040, 5055,
5070, 5085
R5007, 5024,
315-0202-00
5041, 5056,
5071, 5086,
5104, 5120
5136, 5152,
5168, 5184
R5008, 5025
321-0222-00 5042, 5057, 5072, 5087,
R5009, 5027,
321-0280-00
5049, 5059,
5074, 5089
R5010, 5012,
315-0103-00

5045, 5047, 5060, 5062, 5075, 5077, 5090, 5092, 5100, 5101, 5116, 5117, 5132, 5133,

RESISTOR, 2.00K, 1/8W, 1\%, MtI. Flm.

RESISTOR, 8.06K, 1/8W, 1\%, MtI. FIm.

RESISTOR, 10K, 1/4W, 5\%, Carbon
RESISTOR, 8.2K, 1/4W, 5\%, Carbon

RESISTOR, 2K, 1/4W, 5\%, Carbon

ELECTRICAL PARTS LIST PROGRAMMING CIRCUIT BOARD (UNPROGRAMMED) (Cont.) 670-6047-00

Tektronix

Circuit No.

5148, 5149, 5164, 5165, 5180, 5181 R5014, 5031, 5048, 5063, 5078, 5093, 5112, 5128, 5144, 5160, 5176, 5192
R5016
R5017
R5032, 5049, 5064, 5079, 5094, 5114, 5130, 5146, 5162, 5178, 5194, 5015 R5096

308-0643-00
RESISTOR, . 1 ohm, 3W, 3\%, WW

[^0]: *or 500 watts total input power, all channels.

[^1]: * or 500 watts total input power, all channels

