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Preface

Group theory, and the theory of symmetric functions, continues to make major
inroads into problems in chemistry, mathematics and physics. This is natural in
a wide range of fields of study where symmetry is exploited. Numerous examples
involving the full range of Lie groups, and their extensions, can be drawn from
such diverse areas as ligand field theory, electronic states of molecules, atomic
physics, nuclear models, particle physics and string theory. In mathematics,
statistics and economics symmetric functions are at the foundations of much
combinatorial analysis while to physicists they are making almost unexpected
appearances in topics such as the quantum Hall effect and the KdV equation for
solitons.
The algorithms required to perform calculations are often quite complex. While
simple examples may be done with pencil and paper the student and professional
alike soon find the labour required for more detailed problems almost, if not,
beyond human endeavour. Such calculations often require such a mastery of
a vast number of algorithms that there is almost no time left for the problem
at hand. SCHUR has been developed to permit the user to carry out complex
calculations reliably but without requiring the user to be familiar with the many
diverse algorithms or any particular programming language. It has been created
as a tool for both learning and research. It provides an environment for the
student to do independent learning and for the teacher wishing to create realistic
examples.
Many of the commands in SCHUR have arisen from direct application to research
problems. These have included applications to the study of Hecke algebras, the
interacting boson model in nuclear physics, the normal forms for tensor polyno-
mials, symplectic models of nuclei etc. As a consequence of this experience it has
been possible to identify many of the requirements of users. Much thought has
gone into the analysis of input and output and the use of unequivocal notation.
No software package is universal in its application and SCHUR is no exception.
Within its domain there are a vast range of problems that can be tackled and
there are equally well a vast range of problems that will forever lie outside its
possibilities for reasons of time and memory. There are problems that are simple
to state but which would require times many times greater than the age of the
universe.

Additional information, downloadable papers, examples, etc relating to
SCHUR may be found at the WEB site:- http://www.phys.uni.torun.pl/∼bgw/
It is hoped that the user will find SCHUR both useful and enjoyable. The quo-
tation on page 11 is with the kind permission of Anita Brookner.

B.G.Wybourne
Instytut Fizyki, Uniwersytet Miko laja Kopernika

ul. Grudzia̧dzka 5/7
87-100 Toruń Poland



Contents i

CONTENTS
Introducing SCHUR

0.1 What is SCHUR ? . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 What can SCHUR do ? . . . . . . . . . . . . . . . . . . . . . 1
0.3 What has SCHUR done ? . . . . . . . . . . . . . . . . . . . . 2
0.4 Working through the Manual . . . . . . . . . . . . . . . . . . . 3

Basics of SCHUR Input and Output

1.1 Input of Lists to SCHUR . . . . . . . . . . . . . . . . . . . . . 5
1.2 Output of Lists from SCHUR . . . . . . . . . . . . . . . . . . . 7
1.3 The SCHUR Modes . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Sample Input and Output Lists . . . . . . . . . . . . . . . . . . 8
1.5 Commands and Expressions . . . . . . . . . . . . . . . . . . 10
1.6 Accessing Help Files . . . . . . . . . . . . . . . . . . . . . 10

Combinatorics and Schur functions

2.1 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Young Diagrams . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Skew Frames . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Frobenius notation for partitions . . . . . . . . . . . . . . . . 14
2.5 Young Tableaux . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Hook Lengths and Dimensions for Sn . . . . . . . . . . . . . . 15
2.7 Unitary Numbering of Young Tableaux . . . . . . . . . . . . . 16
2.8 Young Tableaux and Monomials . . . . . . . . . . . . . . . . 18
2.9 Monomial Symmetric Functions . . . . . . . . . . . . . . . . 18
2.10 The Classical Symmetric Functions . . . . . . . . . . . . . . 18
2.11 The Schur Functions . . . . . . . . . . . . . . . . . . . . . 19
2.12 Calculation of the Elements of the Kostka Matrix . . . . . . . . 20
2.13 Classical Definition of the S−function . . . . . . . . . . . . . 21
2.14 Non-standard S−functions . . . . . . . . . . . . . . . . . . 21
2.15 Skew S−functions . . . . . . . . . . . . . . . . . . . . . . 21
2.16 The Littlewood-Richardson Rule . . . . . . . . . . . . . . . 22
2.17 Relationship to the Unitary Group . . . . . . . . . . . . . . . 24
2.18 Inner Products of S−functions . . . . . . . . . . . . . . . . 25
2.19 Reduced Inner Products . . . . . . . . . . . . . . . . . . . 25
2.20 Plethysm of S−functions . . . . . . . . . . . . . . . . . . . 26
2.21 Inner Plethysm . . . . . . . . . . . . . . . . . . . . . . . 27
2.22 S−function Series . . . . . . . . . . . . . . . . . . . . . . 29
2.23 Symbolic Manipulation . . . . . . . . . . . . . . . . . . . . 30



ii Contents

2.24 The Un → Un−1 Branching Rule . . . . . . . . . . . . . . . . 31
2.25 Schur’s Q−functions . . . . . . . . . . . . . . . . . . . . . 31
2.26 Non-standard Q−functions . . . . . . . . . . . . . . . . . . 33
2.27 Young’s Raising Operators . . . . . . . . . . . . . . . . . . 34

Notation for Lie Groups

3.1 Unitary Group Labels . . . . . . . . . . . . . . . . . . . . . 37
3.2 Orthogonal and Symplectic Group Labels . . . . . . . . . . . . 37
3.3 Associate Irreducible Representations . . . . . . . . . . . . . . 37
3.4 Irreducible Representations of On and SOn . . . . . . . . . . . 38
3.5 Irreducible Representations of Exceptional Groups . . . . . . . . 39
3.6 The Super Lie Groups . . . . . . . . . . . . . . . . . . . . . 39
3.7 Notation for the Symmetric and Alternating Groups . . . . . . . 39
3.8 Standard Labels for Lie Groups . . . . . . . . . . . . . . . . 40
3.9 Standard Labels and Dynkin Labels . . . . . . . . . . . . . . . 41
3.10 Modification Rules . . . . . . . . . . . . . . . . . . . . . . 43
3.11 Fusion Modification Rules . . . . . . . . . . . . . . . . . . 44
3.12 Dimensions of Irreducible Representations . . . . . . . . . . . 44
3.13 Casimir and Dynkin Invariants . . . . . . . . . . . . . . . . 44
3.14 Kronecker Products . . . . . . . . . . . . . . . . . . . . . 45
3.15 Plethysms in Lie Groups . . . . . . . . . . . . . . . . . . . 45
3.16 Automorphisms and Isomorphisms in Lie Groups . . . . . . . . 46
3.17 Branching Rules . . . . . . . . . . . . . . . . . . . . . . . 47
3.18 Odds and Ends . . . . . . . . . . . . . . . . . . . . . . . 48

The non-compact groups Sp(2n, R), Mp(2n) and SO∗(2n)

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Labelling irreps of non-compact Lie groups . . . . . . . . . . . . 51
4.3 Branching rules for subgroups of Mp(2n) and Sp(2n, R) . . . . . . 53
4.4 Kronecker products for Sp(2n, R) . . . . . . . . . . . . . . . . 56
4.5 Sp(2n, R) plethysms . . . . . . . . . . . . . . . . . . . . . . 58

Tutorials in using SCHUR

5.1 Introduction to Tutorials . . . . . . . . . . . . . . . . . . . . 60
5.2 Tutorial 1 : Getting Started in the SFNmode . . . . . . . . . . . 62
5.3 Tutorial 2 : Exploring the REPmode . . . . . . . . . . . . . . 66
5.4 Tutorial 3 : The Branching Rule Mode . . . . . . . . . . . . . 72
5.5 Tutorial 4 : Introduction to the DPMode . . . . . . . . . . . . 75
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



Contents iii

Advanced Tutorials in using SCHUR

6.1 Advanced Tutorial 1 : Writing User Defined Functions . . . . . . . 83
6.2 Advanced Tutorial 2 : Using the Rule command . . . . . . . . . 90
6.3 The U1 trick in SCHUR . . . . . . . . . . . . . . . . . . . . 96
6.4 The Final Test . . . . . . . . . . . . . . . . . . . . . . . . 100

Examples of SCHUR in Physics, Chemistry and Mathematics

7.1 The Simple SU3 Quark Model of Baryons and Mesons . . . . . . . 107
7.2 Unification Models and QCD . . . . . . . . . . . . . . . . . . 109
7.3 Electronic States of the N2 Molecule . . . . . . . . . . . . . . . 111
7.4 Plethysm and Asymptopia . . . . . . . . . . . . . . . . . . . 115

Further Reading for Users of SCHUR

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 118
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Every Command in SCHUR Described

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 129
(see the index for individual commands)

The SCHUR Help Files

B.1 The SCHUR Help Files . . . . . . . . . . . . . . . . . . . . 210
B.2 The Function Files . . . . . . . . . . . . . . . . . . . . . . 212

Practical Details

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Setting up directories . . . . . . . . . . . . . . . . . . . . . . . 213
Limitations and set dimensions . . . . . . . . . . . . . . . . . . . 213
Error messages and runtime errors . . . . . . . . . . . . . . . . . 213

Producing TEX tables

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Making a TEX Table . . . . . . . . . . . . . . . . . . . . . . . 215

Index to SCHUR

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



iv Tables

TABLES
Table 1.1 Brackets used in the output of lists by SCHUR . . . . . . . . 7
Table 3.1 Standard labels for irreducible representations of the Lie groups

of rank k . . . . . . . . . . . . . . . . . . . . . . . 40
Table 3.2a Relationship between standard SCHUR labels and

the corresponding Dynkin labels for the classical
Lie groups . . . . . . . . . . . . . . . . . . . . . . 41

Table 3.2b Relationship between standard SCHUR labels and
the corresponding Dynkin labels for the exceptional
Lie groups . . . . . . . . . . . . . . . . . . . . . . 42

Table 3.3 The modification rules appropriate to the classical
Lie groups . . . . . . . . . . . . . . . . . . . . . . . 44

Table 4.1 Spectroscopic terms of the d5 electron
configuration . . . . . . . . . . . . . . . . . . . . . . 80

Table 4.2 The numbers c([λ][µ][22]) for irreducible
representations of SO5 . . . . . . . . . . . . . . . . . 81

Table A.1 All the commands in SCHUR . . . . . . . . . . . . . 60,130
Table A.2 The branching rule table . . . . . . . . . . . . . . . . 137
Table A.3 Formats for entry of groups in SCHUR . . . . . . . . . . 157
Table A.4 Groups and classes of representations available for

calculating Kronecker products in SCHUR . . . . . . . . . 175
Table B.1 The SCHUR help files . . . . . . . . . . . . . . . . . . 210



0
Introducing

SCHUR

What
is

SCHUR
?



What is SCHUR ? 1

0.1 What is SCHUR ?
SCHUR

c©is an interactive package for calculating properties of representations
of Lie groups and yet it is much more. SCHUR has been designed to answer
questions of relevance to a wide range of problems of special interest to chemists,
mathematicians and physicists. These include not only problems directly relating
to Lie groups but also many properties of symmetric functions.

As the name of the package suggests much of the structure of SCHUR

derives from the pioneering work of the mathematician Issai Schur on symmetric
functions and the representation theory of matrix groups. Many persons find in
their work they need specific knowledge relating to some aspect of Lie groups
or symmetric functions and yet do not wish to be encumbered with complex
algorithms. The objective of SCHUR is to supply results with the complexity
of the algorithms fortunately hidden from view. The user should not only be
able to obtain results but should be able to use SCHUR effectively as a scratch
pad, obtaining a result and then using that result to derive new results in a
fully interactive manner. In using SCHUR interactively the user should be able
to exploit the many commands built into SCHUR and to define his or her own
command structures. The range of possible problems that can be attacked by
SCHUR is largely limited by the ingenuity of the user.

0.2 What can SCHUR do ?

Among the many tasks amenable to attack by SCHUR are the following:
1. The calculation of Kronecker products for all the compact Lie groups and

for the ordinary and spin representations of the symmetric group. Not
only for individual irreducible representations but also lists of irreducible
representations. List handling is a general feature of SCHUR.

2. The calculation of branching rules with the ability to successively branch
through a chain of nested groups.

3. The calculation of the properties of irreducible representations such as
dimensions, second-order Casimir and Dynkin invariants, the trace of
the n−th order Casimir invariants and the conversion between partition
and Dynkin labelling of irreducible representations.

4. The handling of direct products of several groups.
5. The computation of a wide range of properties related to Schur func-

tion operations such as the Littlewood-Richardson rule, inner products,
skew products, and plethysms as well as the inclusion of commands for
generating the terms in infinite series of Schur functions up to a user
defined cutoff.

6. The computation of the properties of the symmetric Q−functions with
respect to operations such as the analogous Littlewood-Richardson rule,
skew and inner products.

7. The standardisation of non-standard representations of groups by the
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use of modification procedures.
8. Calculation of properties of the classical symmetric functions including

expansions between various types of symmetric functions.
9. Kronecker products, plethysms and branching rules involving the non-

compact groups Mp(2n), Sp(2n, R), SO∗(2n) and U(p, q).
Among the special features of SCHUR are:

1. All operations can be made on lists of irreducible representations and
not just single irreducible representations.

2. Sequences of instructions may be set as functions (which may be saved
on disk) allowing easy extension of SCHUR to implement user defined
rules.

3. Results of a session with SCHUR may be saved as a logfile for future
record or editing.

4. Over 200 commands allow a wide variety of applications of SCHUR.
5. SCHUR can be a valuable tool in the teaching of the properties of groups

as students and teachers can readily create examples. Taken with this
manual it can be used as a self-paced learning tool.

6. SCHUR can be used as a research tool in many studies.
0.3 What has SCHUR done ?

SCHUR has found important applications in diverse research topics such as,
a . Constructing character tables for the Hecke algebras Hn(q) of type

An−1.
b . Symmetry properties of the Riemann tensor.
c . Group properties of the Interacting Boson Model of nuclei.
d . Non-compact group properties such as branching rules and Kronecker

products.
e . Problems in supersymmetry.
f . Evaluation of the properties of one- and two-photon processes in rare

earth ions.
g . Symplectic models of nuclei.
i . Studies of the mathematical properties of the exceptional Lie groups.
j . Studies of the symmetric functions such as Schur functions, Q-functions

and Hall-Littlewood polynomials.
k . Expansion of powers of the Vandermonde determinant in the quantum

Hall effect.
l . Discovery of new S−function identities.

m . Discovery of new identities for plethysms in the non-compact group
Sp(2n, R).
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0.4 Working through the Manual

Every user of a new software package is keen to get started even before reading
the manual. SCHUR is a relatively sophisticated package and to gain maximum
benifit from the package it is absolutely essential that the intending user first
read at least some relevant sections of the manual. Different users will come to
SCHUR with differing backgrounds and a uniform approach to the manual will
not be suitable for all users. All users should make a careful reading of Chapter
One on the important issues of Input/Output in SCHUR. Those familiar with the
concepts of partitions of integers should have no difficulties. Others may wish
to first read relevant sections of Chapters Two and Three and then return to
Chapter One. Only then should the user move on to the tutorials. These tutorials
have been designed to take the user through SCHUR systematically starting with
the easier sections first and ending up with an advanced tutorial where the user
constructs his or her own defined functions for carrying out complex tasks.

For every complex question there is a simple answer
— and it’s wrong.

— H. L. Mencken
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Introduction

In this chapter we discuss the basic structure of SCHUR especially in regard to
input and output issues. It is essential that the user becomes familiar with the
integer notation and general syntax used in SCHUR. A careful reading of this
chapter should be made before attempting to use SCHUR. The user who has
patience, and who resists the temptation to start using SCHUR without reading
the manual, will be well rewarded.

1.1 Input of Lists to SCHUR

The input of SCHUR consists of commands and integers while the output consists
of written statements and integers enclosed in a variety of brackets. SCHUR is
case independent so that upper and lower case letters may be freely used in all
input statements. Spaces have no significance and may be inserted anywhere for
the sake of clarity. Spaces, or commas, are mandatory between entries of the
same type as for example between two commands or two numbers. Nevertheless
spaces are forbidden inside an entity. For example, within a command or a
number. A line of input is up to 120 characters long. The ampersand “&” is
reserved for use as a sign of a continued line so in practice input may be continued
over as many lines as desired. Every line of input is followed by a carriage return
(henceforth indicated as <CR> ). Up until <CR> the line may be edited but
after <CR> no further editing is possible. The user is free to use brackets chosen
from the set “{, }, (, ), <, >” in any desired order or combination, to clarify
input which can be convenient in deeply nested command sequences however
SCHUR does no checking on inputted brackets and treats them in a completely
neutral manner. The brackets “[, ]” are reserved for use in the DPMode and
may not be used otherwise.

SCHUR knows only of the existence of integers and hence all input and
output of numbers is in the form of integers. Most frequently input into SCHUR

involves lists of numbers. Each item in a list will normally involve up to five
distinct sub-items entered in the prescribed order

sign multiplicity prefix partition label

The sign will always be “+” or “−”. If the item is the first item in the
list then the “+” is discretionary whereas “−” is always compulsory.

The multiplicity is the multiplier associated with the item and is always
a positive integer. If multiplicity = 1 then it is discretionary and would normally
be omitted. In normal usage if multiplicity ≥ 10 the multiplicity should be
preceded by an exclamation mark “!” (e.g. !137). If the multiplicity is present it
must always be terminated with a period “.” (e.g. !137.).

The prefix will normally be used only in the case of indicating spin
representations for which the letter “s” is used.

The partition is one of the most important objects in SCHUR. Users
unfamiliar with the concepts of partitions of integers should read §2.1 before
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proceeding further. In reading in partitions SCHUR is unconcerned as to the
order of the integers making up the partition. In normal usage SCHUR assumes
that most partitions inputted will have parts ≤ 9 in which cases the integers
may be simply entered together with no spaces required. Thus the partition “9
4 3 2 1” could be entered simply as 94321. A partition containing a negative
part, say “9− 4321”, is entered with a “~” replacing the “−” (i.e. as 9~4321). If
a part of a partition is ≥ 10 it is entered prefixed with the exclamation sign and
the part terminated by a space or a non-digit. Thus ”137 29 10 9 4 1” could be
entered as !137!29!10 941, note the important space separating the 10 from the
941 . Frequently the user will encounter partitions involving several equal parts.
In these cases the user has the option to either enter the repeated parts or if say
the integer i occurs n times (n ≤ 9) it may be entered as i^n. The partition
“9 9 9 9 4 4 3 3 3 3 3 3 2 2 1 1” could be entered either as 9999443333332211
or as 9^44^23^62^21^2 or perhaps with greater clarity as 9^4 4^2 3^4 2^2 1^2.
In a similar manner the partition “12 12 12 11 11 999921” could be entered as
!12^3!11^29^421 or for clarity as !12^3 !11^2 9^4 21 . In rare cases the user may
need to input a partition having a part i which is repeated n ≥ 10 times. In
that case the parts i may be entered as i^!n . Thus the partition “9 9 9 9 9 9 9
9 9 9 9 9 2 2 2 1” would be entered as 9^!12 2^3 1 , note the important space
following the number !12 . Finally we note that inputting !12^!13 !10^!31 9^3 21
would correspond to the partition 121310319321. SCHUR accepts partitions into
a maximum of 100 parts

In reading in partitions SCHUR is unconcerned as to the order of the in-
tegers making up the partition with one exception - it expects that for partitions
have more than one part the last part will be non-zero. Thus entering 3202001
and 3202001000 will both be seen by SCHUR as 3202001. In other words trailing
zeroes are ignored but not zeroes followed by a non-zero integer. A particular
application involving trailing zeroes is discussed in Chapter Five.

The label is a single character, most commonly a “+”, “−” or a “#”.
They are normally discretionary and would be omitted in constructing an item.
They become compulsory only in the case of certain representations of the or-
thogonal, special orthogonal, symmetric and alternating groups.

As mentioned earlier lines of input are limited to 120 characters and the
ampersand & is used to continue lines. The ampersand is placed after the sign
(not after a label) “+” or “−” of the item that is to appear on the next line after
making the <CR> .

Input normally requires no use of brackets. The exception is in the
inputting of lists in the DPMode of SCHUR where square brackets “[ ]” are
compulsory for enclosing items belonging to lists. In the DPMode the items of
a list are of the form

sign multiplicity[groupitem ∗ groupitem ∗ . . . ∗ groupitem]

where the sign and multiplicity are exactly as earlier described with the exception
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that if the multiplicity is placed prior to the “[” bracket then it may take the
form of any integer up to up to MaxInt and must not be preceded by “!” nor
followed by either a “.” or a space “ ”. The number of groupitems is equal to
the number of groups set with each groupitem being separated by a compulsory
“∗”. Each groupitem is characterised by a:-

prefix partition label

with each sub-item defined and specified exactly as before.
1.2 Output of Lists from SCHUR

The usual action of SCHURfollowing the input of a set of commands either gen-
erating a list or acting upon a list, or lists, is to produce an output to screen
involving an echoing of the input and output statements and a new list. The new
list is output in a manner fitting with the types of groups set or functions that
are indexed by partitions. The output list may involve many items spanning
many lines. The items in the output list will normally be of the form:-

sign multiplicity letter bracket outputitem bracket label

The sign, multiplicity and label have the same meanings as for the input except
that the multiplicity always appears as an integer of any magnitude up to the
MaxInt of the installation. The letter (m, e, f, h, p, Q or P) only appears
when monomial−, elementary−, forgotten−, homogeneous−, power sum−, Q−
or P−symmetric functions are being output.

The outputitem normally involves a possible prefix and a partition both
as described earlier. The partitions will normally be output in power notation
with appropriate spaces with no need for exclamation marks to indicate integers
≥ 10. The outputitem is enclosed in brackets appropriate to the nature of the
outputitem. The brackets used to enclose particular types of outputitems are
specified in Table 1.1.
Table 1.1 Brackets used in the output of lists by SCHUR.

Brackets Output items
{ } Un, SUn, Um/n, SUm/n, Sn, An, S − functions
[ ] On, SOn

< > Sp2k, Sn(reduced)
[ > OSpm/n

( ) G2, F4. E6, E7, E8

The precise form of the output depends on the MODE in which SCHUR is oper-
ating. We now give an introduction to these modes and will then be able to give
sample lines of input and output for the user to study.

1.3 The SCHUR Modes
SCHUR operates within four distinct modes that perform distinct tasks, these
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are the DPMode, REPmode, BRMode and SFNmode. The brief features of each
mode are as follows:-

DPMode:

This mode handles direct products of groups and all those operations,
such as branching rules where the number, and type, of the groups set
change. Direct products involving up to six different groups may be set.
This is also the natural mode to use when setting up functions and using
the very important command Rule. The direct product representations
used in this mode are referred to as DPreps.
REPmode:

This mode executes operations involving the representations (frequently
referred to as “reps”) of a single group and does not permit operations
that change the group. It yields more information on the properties of
reps than does the DPMode and has a simpler input.
BRMode:

This mode only executes branching rules and is useful when a given
branching rule is used repeatedly such as when constructing tables. No
other operations are permitted in this mode and data cannot be trans-
ported from this mode to other modes.
SFNmode:

This is the natural mode to use when carrying out operations on lists of
symmetric functions such as the S− or Q−functions. This is the mode
that should be explored first by novice users.

Each of the four modes is the subject of a separate tutorial and the intending
user is strongly advised to systematically follow through the tutorials in their
given sequence.

1.4 Sample Input and Output Lists

The input of a list of items without any command to act on the list results in
SCHUR producing an output list with each item in a form appropriate to the
current group settings and SCHUR mode but with no action on the items in
the list and no attempt to order or standardise items in the list. Following the
output list by the command LAst results in the most recently output list being
re-echoed but with the items in the list presented as a sorted and ordered list.

We now illustrate these features of SCHUR by giving some examples
of typical input lists, the lists as echoed by SCHUR and finally the sorted and
ordered list re-echoed by SCHUR following the issuing of the command LAst. The
first examples all take place in the SFNmode and hence the output outputitems
are enclosed in { } brackets.

Sample: 1
Input: 4321+21+621+54+341+1+321+4~321+0+71
Output: {4321}+ {21}+ {621}+ {54}+ {341}+ {1}+ {321}+ {4− 321}
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+{0}+ {71}
Last: {71}+ {621}+ {54}+ {4321}+ {4− 321}+ {341}+ {321}+ {21}

+{1}+ {0}
Notice that in the Input: list no attempt has been made to order the items and
two non-standard partitions have been included. The Output: list has faithfully
echoed the Input: list except for enclosing the items in the appropriate brackets.
The Last: list has ordered the items in the list with the partition with largest
first part heading the list.

Sample: 2
Input: !12.321+4^32^21−2.4^32^21+3^!12 21^6+2.!13!11 721
Output: 12{321}+{4^3 2^2 1}−2{4^3 2^2 1}+{3^12 21^6 }+2{13 11 721}
Last: 2{13 11 721} − {4^3 2^2 1}+ {3^12 21^6 }+ 12{321}

Notice that in this sample the segment 4^32^21−2.4^32^21 occurs in both the
Input: and Output: lists and the obvious cancellation is made in the Last: list.

Sample: 3
Input: !1371.321+21−31^6+2^!12+31+41+61+71−&

8321+421
Output: 1371{321} + {21} − {31^6 } + {2^12 } + {31} + {41} + {61} +

{71} − {8321}+ {421}
Last: −{8321}+ {71}+ {61}+ {421}+ {41}+ 1371{321} − {31^6 }+

{31}+ {2^12 }+ {21}
This sample illustrates the use of the ampersand “&” to continue a line. Imme-
diately after the & a <CR> was issued and then the next line of input written
and the final <CR> issued and SCHUR responded with the Output: list. Note
carefully the placement of the & after the “−” in the Input: list.

We now turn to a sample constructed in the REPmode where the group
has been set as SO(8). This sample illustrates the input of prefix and label and in
Last: the normal ordering adopted for irreducible representations such as those
for SO(8) by SCHUR.

Sample: 4
Input: 1111++s0−+21+s21++3111−+3111++s2111−+0
Output: [1^4 ] + + [s; 0] − + [21] + [s; 21] + + [31^3 ] − + [31^3 ] +

+ [s; 21^3 ]− + [0]
Last: [31^3 ] + + [31^3 ]− + [s; 21^3 ]− + [s; 21] + + [21] + [1^4 ] +

+ [s; 0]− + [0]
Notice the very compact input used. For clarity spaces could have been inserted.
Nevertheless SCHUR has been able to correctly display the items and in Last:
produce an orderly looking list.

As a final sample we consider a case from the DPMode where three
groups have been set as SU(3) ∗Sp(4) ∗SO(6).

Sample: 5
Input: 13[21∗2∗31]+[31∗42∗321+]+2[42∗31∗s21−]−6[21∗21∗21]



10 Chapter One

Output: 2{42} < 31 > [s; 21]− + {31} < 42 > [321]+
− 6{21} < 21 > [21] + 13{21} < 2 > [31]

Last: 2{42} < 31 > [s; 21]− + {31} < 42 > [321]+
− 6{21} < 21 > [21] + 13{21} < 2 > [31]

Notice that in the DPMode SCHUR echoes the Output: list as an ordered list
exactly as in the Last: list. Notice also the ordering that SCHUR has adopted,
the first group in the list of direct product groups takes precedence and so on.
Changing the order of the groups will change the order of the output list.

1.5 Commands and Expressions

In §1.2 to §1.4 the input and output of lists of items was considered. SCHUR can
create lists in response to the input of commands. Commands can also act on lists
to produce new lists. We shall frequently use the ambiguous term EXPRession
usually abbreviated to just EXPR to stand for a list or a command or a series of
commands that finally produces a list. This usage reflects the interactive nature
of SCHUR, it allows the user to act on the output to create new output. In many
cases a user may nest commands inside commands with only the final output
being displayed by SCHUR with all the intermediate output being suppressed.
Thus, for example, COMmand1,COMmand2,EXPR would have the action of
COMmand2 acting on EXPR to produce a new EXPR which would then be
acted on by COMmand1 to produce a final EXPR which would be ported to the
screen. It is just this feature that makes SCHUR so versatile. Given a large set
of basic commands the user is free to combine them in a multitude of different
ways to achieve the desired results. These features are most strongly exploited
in the possibility of user defined functions that the user can create for particular
tasks. These are fully described in the appropriate tutorials.

1.6 Accessing Help Files

SCHUR contains a large number of Help files that may be accessed within SCHUR.
A complete listing is given in Appendix B. These are pure ASCII files and the
user is free to modify them and indeed add his or her own help files.
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Ah, he thought, the truth bursting on him suddenly,
nobody grows up. Everyone carries around all the
selves that they have ever been, intact, waiting to
be activated in moments of pain, of fear, of danger.
Everything is retrievable, every shock, every hurt.
But perhaps it becomes a duty to abandon the stock
of time that carries within oneself, to discard it in
favour of the present, so that one’s embrace may
be turned outwards to the world in which one has
made one’s home (page 210)

— Anita Brookner, Latecomers
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Introduction

In this chapter we outline the combinatorial concepts used in SCHUR. While
the reader is spared most of the technical details - after all that is the purpose
of SCHUR - to allow you to obtain results without the tedium of constructing
the algorithms - it is most desirable that the user be familiar with matters of
notation. Even those familiar with matters of notation should at least skim this
chapter before using SCHUR.

The key object in SCHUR is the partition of an integer. From that ob-
ject we can define various symmetric functions, most notably the Schur function
(or briefly, the S−function). From the properties of S−functions we are able to
define certain infinite series of S−functions that play a key role in developing
branching rules etc. Various operations associated with S−functions such as
outer products and skews, via the Littlewood-Richardson rule, inner products
and plethysm are presented. This material is essential to understanding the ap-
proach to Lie groups used by SCHUR. In SCHUR the entire theory of Lie groups
is developed in terms of partition labelled representations. This has the advan-
tage of being closely related to the tensor and spinor notations familiar to many
physicists. The relationship to the weight labelling methods that find their ex-
pression in terms of the Coxeter-Dynkin diagrams is outlined. The mathematical
background for the Lie group applications are covered in the succeeding chapter.

2.1 Partitions

We shall take a partition to be any finite sequence of integers

λ = (λ1λ2 . . . λp) (2.1)

which unless otherwise stated we shall assume to be non-negative integers ar-
ranged in non-increasing order:

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 (2.2)

Normally we will omit zeros. The non-zero λi form the parts of λ. The number
of parts is the length, `λ, of λ while the sum of its parts, wλ, is the weight of λ.
If wλ = n then λ is said to be a partition of n. We shall often write λ ` n to
indicate that λ is a partition of n. Repeated parts of a partition will frequently
be indicated as imi where mi is the number of times the part i occurs in the
partition. Thus we shall write the partitions for n = 6 as

(6) (51) (42) (412) (32) (321) (313) (23) (2212) (214) (16)

2.2 Young Diagrams

Every partition λ ` n may be associated with a Young frame or shape Fλ in-
volving n cells, dots, circles or boxes in `λ left-adjusted rows with the i−th row
containing λi cells {SCHUR draws either boxes (if the extended IBM characters
are available) or circles otherwise}. For n = 5 we have the five diagrams
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The conjugate of a partition λ is a partition λ′ whose diagram is the transpose
of the diagram of λ. If λ′ ≡ λ then the partition λ is said to be self-conjugate.
Thus

and

are conjugates of one another while

is self-conjugate. Herein primed lower case greek letters are used to indicate
the conjugate of the partition designated by the corresponding unprimed greek
letter.

2.3 Skew Frames

Given two partitions λ and µ such that λ ⊇ µ implies that the frame Fλ contains
the frame Fµ, i.e. that λi ≥ µi for all i ≥ 1. The difference ρ = λ − µ forms a
skew frame Fλ/µ. Thus, for example, the skew frame F 542/21 has the form

Note that a skew frame may consist of disconnected pieces.
2.4 Frobenius notation for partitions

There is an alternative notation for partitions due to Frobenius. The diagonal
of the nodes in a Young diagram beginning at the top left-hand corner is called
the leading diagonal. The number of nodes in the leading diagonal is called the
rank of the partition. If r is the rank of a partition then let ai be the number
of nodes to the right of the leading diagonal in the i−th row and let bi be the
number of nodes below the leading diagonal in the i−th column. The partition
is then denoted by Frobenius as(

a1, a2, . . . , ar

b1, b2, . . . , br

)
(2.3)

We note that

a1 > a2 > . . . > ar

b1 > b2 > . . . > br

and
a1 + a2 + . . . + ar + b1 + b2 + . . . + br + r = n
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The partition conjugate to that of Eq.(2.3) is just(
b1, b2, . . . , br

a1, a2, . . . , ar

)
(2.4)

As an example consider the mutually conjugate partitions (5 4 32 2 1) and
(6 5 4 2 1). Drawing their diagrams and marking their leading diagonal we have

•
•
• and

•
•
•

from which we deduce the respective Frobenius designations(
4 2 0
5 3 1

)
and

(
5 3 1
4 2 0

)
2.5 Young Tableaux

A Young tableau is an assignment of n numbers to the n cells of a frame Fλ

with λ ` n according to some numbering sequence. A tableau is standard if
the assignment of the numbers 1, 2, . . . , n is such that the numbers are strictly
increasing from left to right in rows and down columns from top to bottom. Thus
for the partitions of the integer 4 we have the standard Young tableaux

1 2 3 4

1 2 3
4

1 2 4
3

1 3 4
2

1 2
3 4

1 3
2 4

1 2
3
4

1 3
2
4

1 4
2
3

1
2
3
4

We notice in the above examples that the number of standard tableaux for conju-
gate partitions is the same. Indeed the number of standard tableaux associated
with a given frame Fλ is the dimension fλ

n of an irreducible representation {λ}
of the symmetric group Sn.

2.6 Hook lengths and dimensions for Sn

The hook length of a given box in a frame Fλ is the length of the right-angled
path in the frame with that box as the upper left vertex. For example, the hook
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length of the marked box in

∗ · · ·
·
·
·
·

is 8. SCHUR makes extensive use of the concept of hook lengths in computing
dimensions of representations of various groups and in its implementation of
modification rules for modifying non-standard labelled representations.

Theorem 2.1: To find the dimension of the representation of Sn corresponding
to the frame Fλ, divide n ! by the factorial of the hook length of each box in
the first column of Fλ and multiply by the difference of each pair of such hook
lengths.

Thus for the partition (5 4 32 2 1) we have the hook lengths

10
8
6
5
3
1

and hence a dimension

f543221
18 = 18 !

2× 4× 5× 7× 9× 2× 3× 5× 7× 1× 3× 5× 2× 4× 2
10 !× 8 !× 6 !× 5 !× 3 !× 1 !

= 10720710

It is not suggested that you check the above result by explicit enumeration! The
above evaluation can also be equivalently made by computing the hook lengths
hij for every box at position (i,j) and then noting that

fλ
n =

n !∏
(i,j)∈λ hij

(2.5)

which is the celebrated result of Frame, Robinson and Thrall.
2.7 Unitary Numbering of Young Tableaux

Many different prescriptions can be given for injecting numbers into the boxes of
a frame. We have already noted the standard numbering which is intimately asso-
ciated with the symmetric group Sn. Another important numbering prescription
is that of unitary numbering where now numbers 1, 2, . . . , d are injected into
the boxes of a frame Fλ such a way that:

i. Numbers are non-decreasing across a row going from left to right.
ii. Numbers are strictly increasing in columns from top to bottom.
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The first condition permits repetitions of integers. Thus using the numbers
1, 2, 3 in the frame F 2 1 we obtain the 8 tableaux

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

Had we chosen d = 2 we would have obtained just two tableaux while d = 4
yields twenty tableaux. In general, for a frame Fλ a unitary numbering using
the integers 1, 2, . . . , d leads to

f
{λ}
d =

Gλ
d

Hλ
(2.6)

where Hλ is the product of the hook lengths hij of the frame and

Gλ
d =

∏
(i,j)∈λ

(d+i−j) (2.7)

Thus for d = 5 and λ = (421) we obtain for G
{421}
5 the numbering

5 6 7 8
4 5
3

leading to G
{421}
5 = 100800 while for H{421} the numbering

6 4 2 1
3 1
1

leads to H{421} = 144 from which we deduce that

f
{4 2 1}
5 = 700

which is the dimension of the irreducible representation {4 2 1} of the general
linear group GL5. In general, f

{λ}
d is the dimension of the irreducible represen-

tation {λ} of GLd. Since the representations of GLd labelled by partitions λ
remain irreducible under restriction to the unitary group Ud Eq.(2.6) is valid for
computing the dimensions of the irreducible representations of the unitary group
Ud.

The same rules for a unitary numbering may be applied to the skew
frames Fλ/µ introduced in §2.3. Thus for F 542/21 an allowed unitary numbering
using just the integers 1 and 2 would be

1 1 1
1 2 2

1 2

Note that our unitary numbering yields what in the mathematical literature are
commonly referred to as semistandard Young tableaux. Other numberings are
possible and have been developed for all the classical Lie algebras.
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2.8 Young Tableaux and Monomials

A numbered frame may be associated with a unique monomial by replacing each
integer i by a variable xi. Thus the Young tableau T

1 1 2 4 5
3 3 3 5
4 6 7
5 7 8
6 8
7

can be associated with the monomial xT = x2
1 x2 x3

3 x2
4 x3

5 x2
6 x3

7 x2
8

2.9 Monomial symmetric functions

Consider a set of variables (x) = x1, x2, . . . , xd. A symmetric monomial

mλ(x) =
∑
α

xα (2.8)

where xα = xα1
1 xα2

2 . . . xαd

d and the sum is over all distinct permutations α =
α1, α2, . . . , αd) of (λ) = (λ1, λ2, . . .). Thus if (x) = (x1, x2, x3) then

m21(x) = x2
1 x2 + x2

1 x3 + x1 x2
2 + x1 x2

3 + x2
2 x3 + x2 x2

3

m13(x) = x1 x2 x3

The unitary numbering of (λ) = (2 1) with 1, 2, 3 corresponds to the sum of
monomials

m21(x) + 2m13(x)

The same linear combination occurs for any number of variables with d ≥ 3.
However, for two variables just m21(x) survives while in terms of a single variable
neither monomial survives.
The monomials mλ(x) are symmetric functions. If λ ` n then mλ(x) is homo-
geneous of degree n. Unless otherwise stated we shall henceforth assume that x
involves an infinite number of variables xi.
The ring of symmetric functions Λ = Λ(x) is the vector space spanned by all
the mλ(x). This space can be decomposed as

Λ = ⊕n≥0Λn (2.9)

where Λn is the space spanned by all mλ of degree n. Thus the {mλ : λ ` n} form
a basis for the space Λn which is of dimension p(n) where p(n) is the number of
partitions of n.

2.10 The Classical Symmetric Functions

There exist various symmetric functions that can also form bases for Λn and are
hence expressible in terms of monomials of degree n. Among these are the bases
that derive from the classical symmetric functions pn, en, hn, and fn known
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as the power sum, elementary, homogeneous and forgotten symmetric functions
respectively. They may each be defined in terms of monomials with:

pn = mn =
∑
i≥1

xn
i

en = m1n =
∑

i1<...<in

xi1 . . . xin

hn =
∑
λ`n

mλ =
∑

i1≤...≤in

xi1 . . . xin

and the forgotten symmetric functions being defined under an involution ω such
that

fλ = ω(mλ)

for all λ.
For example, with n = 3

p3 = m3 = x3
1 + x3

2 + x3
3 + . . .

e3 = m13 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + . . .

f3 = m3 = x3
1 + x3

2 + x3
3 + . . .

h3 = m3 + m21 + m13

= x3
1 + x3

2 + . . . + x2
1x2 + x1x

2
2 + . . . + x1x2x3 + x1x2x4 + . . .

To form a basis for Λn there must be one element for every λ ` n. To that end
multiplicative symmetric functions

zλ = zλ1zλ2 . . . zλk

with z = p, e, h or f are introduced. The symmetric functions

mλ, pλ, eλ, hλ, fλ λ ` n

form five distinct bases for the ring Λn of symmetric functions of degree n and
are indexed by partitions.

2.11 The Schur Functions

An alternative very important basis of Λ is realised in terms of the Schur func-
tions, or for brevity, S−functions, sλ, which may be variously defined. Combi-
natorially they may be defined as

sλ(x) =
∑
T

xT (2.10)

where the summation is over all semistandard λ−tableaux T . For example,
consider the S−functions sλ in just three variables (x1, x2, x3). For λ = (2 1)
we have the eight tableaux T found earlier

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3
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Each tableaux T corresponds to a monomial xT to give

s2 1(x1, x2, x3) = x2
1 x2 +x2

1 x3 +x1 x2
2 +x1 x2 x3 +x1 x2 x3 +x1 x2

3 +x2
2 x3 +x2 x2

3

(2.11)
We note that the monomials in Eq.(2.11) can be expressed in terms of just two
symmetric monomials in the three variables (x1, x2, x3) to give

s2 1(x1, x2, x3) = m2 1(x1, x2, x3) + 2m13(x1, x2, x3) (2.12)

In an arbitrary number of variables

s2 1(x) = m2 1(x) + 2m13(x) (2.13)

This is an example of the general result that an S−function may be expressed
as a linear combination of symmetric monomials as indeed would be expected if
the S−functions are a basis of Λn. In fact

sλ(x) =
∑
µ`n

Kλµmµ(x) (2.14)

where wλ = n and Kλλ = 1. The Kλµ are the elements of an upper triangular
matrix K known as the Kostka matrix. K is an example of a transition matrix
that relates one symmetric function basis to another. The symmetric functions
mλ, eλ, fλ, hλ and sλ have the important property of forming an integral basis
of Λ, whereas the pλ form a non-integral basis of Λ. This means that transforma-
tions between the symmetric functions mλ, eλ, fλ, hλ and sλ all involve integer
coefficients and SCHUR will perform such transformations. The transition ma-
trix relating pλ to sλ is just the character table of Sn for λ ` n and involves just
integer coefficients and is available in SCHUR.

pρ =
∑

λ

χλ
ρsλ

The inverse transformation involves non-integral coefficients and are implement-
ed in SCHUR by presenting the coefficients multiplied by |ρ|!.

2.12 Calculation of the Elements of the Kostka Matrix

The elements Kλµ of the Kostka matrix may be calculated readily by the follow-
ing algorithm :

i. Draw the frame Fλ.
ii. Form all possible semistandard tableaux that arise in numbering Fλ

with µ1 ones, µ2 twos etc.
iii. Kλµ is the number of semistandard tableaux so formed.

Thus calculating K(42) (22 12) we obtain the four semistandard tableaux

1 1 2 2
3 4

1 1 2 3
2 4

1 1 2 4
2 3

1 1 3 4
2 2

and hence K(42) (22 12) = 4.
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For practical reasons SCHUR uses a much faster algorithm to calculate
Kλµ and if desired can present on screen the entire Kostka marix for a given
value of n.

2.13 Classical Definition of the S-function

The classical definition of the S−function, as opposed to the equivalent combi-
natorial definition given in Eq.(2.10), was first given by Jacobi as,

sλ(x) = sλ(x1, x2, . . . , xd) =
aλ+δ(x)
aδ(x)

(2.15)

where λ is a partition of length ≤ n and δ = (d− 1, d− 2, . . . , 1, 0) with

aλ+δ(x) = det(xλj+d−j
i )1≤i,j≤d (2.16)

and
aδ(x) =

∏
1≤i,j≤n

(xi − xj) = det(xn−j
i ) (2.17)

is the Vandermonde determinant.
2.14 Non-standard S−functions

The S−functions are symmetric functions indexed by ordered partitions λ. We
shall frequently write S−functions sλ(x) as {λ}(x) or, since we will generally
consider the number of variables to be unrestricted, just {λ}. This bracket no-
tation is used extensively in SCHUR. As a matter of notation the partitions will
normally be written without spaces or commas separating the parts where λi ≤ 9.
A space will be left after any part λi ≥ 10. Thus we write {12, 11, 9, 8, 3, 2, 1} ≡
{12 11 98321}. While we have defined S−functions in terms of ordered par-
titions (λ) we sometimes encounter S−functions labelled by partitions that are
not in the standard form and we must convert such non-standard S−functions
into standard S−functions. Inspection of the determinantal form (2.15-17) of
the S−function leads to the following modification rules :

{λ1, λ2, . . . ,−λ`} = 0 (2.18)
{λ1, . . . , λi, λi+1, . . . , λ`} = −{λ1, . . . , λi+1 − 1, λi + 1, . . . , λ`} (2.19)

{λ} = 0 if λi+1 = λi + 1 (2.20)

Repeated application of the above three rules reduces any non-standard S−func-
tion to either zero or to a signed standard S−function. In the process of using the
above rules trailing zero parts are omitted. In most cases SCHUR automatically
carries out the standardisation process which is normally hidden from the user.

2.15 Skew S−functions

The combinatorial definition given for S−functions in Eq.(2.10) is also valid for
skew tableaux and can hence be used to define skew S−functions sλ/µ(x) or
{λ/µ}. Since the sλ/µ(x) are symmetric functions they must be expressible in
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terms of S−functions sν(x) such that

sλ/µ(x) =
∑

ν

cλ
µνsν(x) (2.21)

It may be shown that the coefficients cλ
µν are necessarily non-negative integers

and symmetric with respect to µ and ν. The coefficients cλ
µν are commonly

referred to as Littlewood-Richardson coefficients.
2.16 The Littlewood-Richardson rule

The product of two S−functions can be written as a sum of S−functions, viz.

sµ(x).sν(x) =
∑

λ

cλ
µνsλ(x) (2.22)

The Littlewood-Richardson coefficients cλ
µν in Eqs. (2.21) and (2.22) are identi-

cal, though the summations are of course different. In both cases wµ +wν = wλ.
A rule for evaluating the coefficients cλ

µν was given by Littlewood and Richard-
son in 1934 and has played a major role in all subsequent developments and is
central to most of the operations in SCHUR. The rule may be stated in various
ways. We shall state it first in terms of semistandard tableaux and then also
give the rule for evaluating the product given in Eq.(2.22) which is commonly
referred to as the outer multiplication of S−functions. In each statement the
concepts of a row-word and of a lattice permutation is used.
Definition 2.1 A word

Let T be a tableau. From T we derive a row-word or sequence w(T ) by
reading the symbols in T from right to left (i.e. as in Arabic or Hebrew)
in successive rows starting at the top row and proceeding to the bottom
row

Thus for the tableau
1 1 2 2 3
2 2 3 3
4 4
5 6
7
8

we have the word w(T ) = 322113322446578 and for the skew tableau

1 1 1
1 2 2

1 2

we have the word w(T ) = 11122121.

Definition 4.2 A lattice permutation
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A word w = a1a2 . . . aN in the symbols 1, 2, . . . , n is said to be a lattice
permutation if for 1 ≤ r ≤ N and 1 ≤ i ≤ n − 1, the number of
occurrences of the symbol i in a1a2 . . . ar is not less than the number of
occurrences of i + 1.

Thus the word w(T ) = 322113322446578 is clearly not a lattice permutation
whereas the word w(T ) = 11122121 is a lattice permutation. The word w(T ) =
12122111 is not a lattice permutation since the sub-word 12122 has more twos
than ones.

Theorem 2.2 The value of the coefficient cλ
µν is equal to the number of semi-

standard tableaux T of shape Fλ/µ and content ν such that w(T ) is a lattice
permutation.

By content ν we mean that each tableau T contains ν1 ones, ν2 twos, etc.
Example

Let us evaluate the coefficient c542
431 21. We first draw the frame F 542/21.

Into this frame we must inject the content of 431 i.e. 4 ones, 3 twos and 1 three
in such a way that we have a lattice permutation. We find two such numberings

1 1 1
1 2 2

2 3

1 1 1
2 2 2

1 3

and hence c542
431 21 = 2. Note that in the evaluation we had a choice, we could

have, and indeed more simply, evaluated c542
21 431. In that case we would have

drawn the frame F 542/431 to get

Note that in this case the three boxes are disjoint. This skew frame is to be
numbered with two ones and one 2 leading to the two tableaux

1
1

2

1
2

1

verifying the previous result. Theorem 2.2 gives a direct method for evaluating
the Littlewood-Richardson coefficients. These coefficients can be used to evaluate
both skews and products. It is sometimes useful to state a procedure for directly
evaluating products.
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Theorem 2.3 To evaluate the S−function product {µ}.{ν}
1. Draw the frame Fµ and place µ1 ones in the first row, µ2 twos in the

second row etc until the frame is filled with integers.
2. Draw the frame F ν and inject positive integers to form a semistandard

tableau such that the word formed by reading from right to left starting at
the top row of the first frame Fµ and moving downwards along successive
rows to the bottom row and then continuing through the second frame F ν

is a lattice permutation.
3. Repeat the above process until no further words can be constructed.
4. Each word corresponds to an S−function {λ} where λ1 is the number of

ones, λ2 the number of twos etc.
As an example consider the S−function product {21}.{21}. Step 1 gives the
tableau

1 1
2

Steps 2 and 3 lead to the eight numbered frames

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
4

2 3
3

2 3
4

Step 4 then lead to the eight words

112112 112113 112212 112213 112312 112314 112323 112324

from which we conclude that

{21}.{21} = {42}+ {412}+ {32}+ 2{321}+ {313}+ {23}+ {2212}

While it is instructive for the reader to carry out some simple examples
of the evaluation of Littlewood-Richardson coefficients it will quickly become
apparent that such hand calculations are, for all but the simplest cases, tedious
with a high probability of error, it is here that SCHUR comes into its own. The
corresponding problem for expressing the product of a list of monomials with a
list of S−functions to produce a list of S−functions is accomplished in SCHUR

using the so-called Gordan’s formula.
2.17 Relationship to the Unitary Group

Various symmetric functions indexed by partitions may be defined on sets of
variables. The variables can admit many interpretations. We may, for example,
choose as the set of variables a set of matrices. The link between S−functions
and the character theory of groups is such that, if λ is a partition with `λ ≤ N
and the eigenvalues of a group element, g, of the unitary group UN are given by
xj = exp(iφj) for j = 1, 2, . . . , N then the S−function

{λ} = {λ1λ2 . . . λN} = sλ(x) = sλ(exp(iφ1) exp(iφ2) . . . exp(iφN ))

is nothing other than the character of g in the irreducible representation of UN

conventionally designated by {λ}.
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The Littlewood-Richardson rule gives the resolution of the Kronecker
product {µ} × {ν} of UN as

{µ} × {ν} =
∑

wλ=wµ+wν

cλ
µ,ν{λ} (2.23)

where the cλ
µ,ν are the usual Littlewood-Richardson coefficients. Equation (2.23)

must be modified for partitions λ involving more than N parts. Here the modifi-
cation rule is very simple. We simply discard all partitions involving more than
N parts.

2.18 Inner Products of S-functions

The ordinary, or outer, product {λ} · {µ} where λ ` n and µ ` m corresponds to
inducing {λ} · {µ} from Sn × Sm to Sm+n. The Kronecker, or inner product
{λ}◦{µ}, now with λ, µ ` n corresponds to the tensor product of the representa-
tions {λ} and {µ} in Sn. This serves to define the inner product of S−functions.
Thus in terms of the characters of Sn if

χµχν =
∑
λ`n

gµν
λ χλ (2.24)

then
{µ} ◦ {ν} =

∑
λ`n

gµν
λ {λ} (2.25)

2.19 Reduced Inner Products

The tensor irreducible representations of the symmetric group Sn are customarily
labelled as {λ} where λ ` n. Such a notation is clearly n−dependent. It is
often useful to introduce a reduced notation that is n−independent. This is
accomplished for

{λ} = {n−m,µ} µ ` m (2.26)

by writing {λ} in reduced notation < µ >. Thus in reduced notation < 21 >
corresponds to {321} in S6 or equally {721} in S10 etc. SCHUR distinguishes the
reduced notation by always enclosing the partition in the angular brackets <,>.
The resolution of a reduced inner product yields reduced representations and the
product rule is n−independent. Thus

< µ > ◦ < ν >=
∑

λ

rµν
λ < λ > (2.27)

for some non-negative integers rµν
λ For example, SCHUR readily produces the

n−independent result

< 21 > ◦ < 1 >

=< 31 > + < 3 > + < 22 > + < 212 > +2 < 21 > + < 2 > + < 13 >

+ < 12 > (2.28)
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For a specific value of n the result is found by prefixing the part (n-m) to each
partition and changing the brackets to {, }. For small values of n non-standard
partitions arise which must be modified using the modification rules given in
§2.14. Thus for n = 5 we obtain from Eq. (2.28) the inner product result

{221} ◦ {41} = {32}+ {312}+ {221}+ {213}

whereas for n = 7 we obtain

{421} ◦ {61}
= {52}+ {512}+ {43}+ 2{421}+ {413}+ {321}+ {322}+ {3212}

For n ≥ 7 the same number of terms is found, the difference is only in the first
part of each partition.

2.20 Plethysm of S-functions

The plethysm of S−functions plays an important role in many applications. The
concept was originally introduced by D. E. Littlewood as arising in the formation
of an invariant of an invariant matrix written as |A{λ}|{µ} which he took to define
the operation of S−function plethysm as

{λ} ⊗ {µ} =
∑

ν

pν
λµ{ν} (2.29)

where the partitions (ν) are all of weight wλ.wµ and the coefficients pν
λµ are non-

negative integers . The n−th outer multiplication of an S−function, say {λ}n,
may be resolved into a sum of symmetrised powers of S−functions by writing

{λ}n =
∑
µ`n

fµ
n{λ} ⊗ {µ} (2.30)

where fµ
n is the dimension of the irreducible representation {µ} of Sn. Thus, for

example,
{21}3 = {21} ⊗ {3}+ 2({21} ⊗ {21}) + {21} ⊗ {13}

The operation of outer S−function plethysm has a close connection with branch-
ing rules. Thus if {λ} is an S−function corresponding to the character of an irre-
ducible representation of a unitary group Un of dimension m then that irreducible
representation may be embedded in the vector representation, of character {1},
of the unitary group Um. Under Um → Un we have {1} → {λ} while for an
arbitrary irreducible representation of character {µ} the branching rule becomes

Um → Un {µ} → {λ} ⊗ {µ} (2.31)

with the evaluation of the plethysm following from Eq. (2.29) with the result-
ing S−functions being interpreted as characters of irreducible representations
of the subgroup Un with any S−functions associated with partitions having
more than n non-zero parts being discarded. Given this close connection with
branching rules physicists have stayed with Littlewood’s original definition writ-
ing plethysms as in Eq.(2.29) and this notation is used in SCHUR.
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Mathematicians usually give a combinatorial interpretation of the op-
eration of plethysm and instead of writing sλ ⊗ sµ would write sµ[sλ]. In this
way the operation of S−function plethysm is viewed as a substitution process.
We illustrate the general idea with an example. Suppose we wish to evaluate
s2[s12 ](x1, . . . , x4). We express s12(x1, . . . , x4) as a sum of monomials

s12(x1, . . . , x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 (2.32)

Now regard s2 as a function in as many monomials as in Eq. (2.32) writing

s2[s12 ](x1, . . . , x4) = s2(x1x2, x1x3, x1x4, x2x3, x2x4, x3x4) (2.33)

Very tediously the right-hand-side of Eq. (2.33) may be expanded as a sum of
monomials which may then be expressed in terms of S−functions to yield finally

s2[s12 ](x) = s22(x) + s14(x)

which in Littlewood’s notation would be

{12} ⊗ {2} = {22}+ {14}

Noting Eq.(2.30) we could further deduce that

{12} ⊗ {12} = {212}

The above example illustrates some of the complexities that can arise in eval-
uating S−function plethysms. To date no really efficient algorithms exist for
evaluating plethysms though SCHUR will patiently plod through such calcula-
tions, the limit being dictated by time and memory considerations.

The algebra of plethysms is governed by the following rules

A⊗ (B ± C) = A⊗B ±A⊗ C (2.34a)
A⊗ (BC) = (A⊗B) · (A⊗ C) (2.34b)

A⊗ (B ⊗ C) = (A⊗B)⊗ C (2.34c)

(A + B)⊗ {µ} =
∑

ζ

(A⊗ {µ/ζ}) · (B ⊗ {ζ}) (2.34d)

(A−B)⊗ {µ} =
∑

ζ

(−1)ωζ (A⊗ {µ/ζ}) · (B ⊗ {ζ ′}) (2.34e)

(AB)⊗ {µ} =
∑

ρ

(A⊗ {ρ}) · (B ⊗ {µ ◦ ρ}) (2.34f)

SCHUR makes use of the above relations in many of its algorithmic implementa-
tions.

2.21 Inner Plethysm

The plethysm just discussed is often referred to as the outer plethysm of S−func-
tions. It is also possible to define an inner plethysm of S−functions based upon
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the n−th inner product power of S−functions so that for Sn

{λ}◦n =
∑
µ`n

fµ
n{λ} � {µ} (2.35)

where {λ} � {µ} is an inner plethysm. We may write

{λ} � {µ} =
∑
ρ`ωλ

qρ
λµ{ρ} (2.36)

In general, such plethysms are fearsome objects to evaluate and no general al-
gorithm has, as yet, been incorporated in SCHUR. Such objects are especially
important in developing branching rules for the embedding of the symmetric
group Sn in the full orthogonal group On. In this case the reduced notation
given in §2.19 is particularly useful. Plethysms arise of the type
{n− 1, 1} ⊗ {µ} =< 1 > ⊗{µ}. They may be evaluated by use of the identity

< 1 > ⊗{1m} =< 1m > (2.37)

and noting that any S−function {µ} may be expanded as sums of products of
S−functions of type {1k} using the determinantal expansion

{µ} =
∣∣∣1µ′s−s+t

∣∣∣ (2.38)

where µ′ is the partition conjugate to µ.
SCHUR evaluates plethysms of the type < 1 > ⊗{µ} automatically. For

example, SCHUR readily finds that

< 1 > ⊗{3} =< 3 > + < 2 > + < 12 > +2 < 1 > + < 0 >

< 1 > ⊗{21} =< 21 > + < 2 > + < 12 > + < 1 >

< 1 > ⊗{13} =< 13 >

which may be compared with the reduced triple product

< 1 > · < 1 > · < 1 >

=< 3 > +2 < 21 > +3 < 2 > + < 13 > +3 < 12 > +4 < 1 > + < 0 >

Making the partitions up to weight 6 we then deduce the S6 inner plethysms

{51} � {3} = {32}+ {42}+ {412}+ 2{51}+ {6}
{51} � {21} = {321}+ {42}+ {412}+ {51}
{51} � {13} = {313}

which may be compared with the triple inner product in S6:

{51} ◦ {51} ◦ {51}
= {6}+ 4{51}+ 3{42}+ 3{412}+ {32}+ 2{321}+ {313}
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2.22 S-function Series

Infinite series of S−functions play an important role in determining branching
rules and furthermore lead to concise symbolic methods well adapted to computer
implementation. Truncated series are used extensively in SCHUR. As an example
consider the infinite series generated by

L =
∞∏

i=1

(1− xi)

= 1−
∑

x1 +
∑

x1x2 − . . . (2.39)

where the summation is over all distinct terms. e.g.∑
x1x2 = x1x2 + x1x3 + . . . + x2x3 + x2x4 + . . .

Each monomial in Eq. (2.39) corresponds to an S−function {1m} such that

L = 1− {1}+ {12} − {13}+ . . .

=
∞∑

m=0

(−1)m{1m} (2.40)

Taking the inverse of Eq. (2.39) gives another infinite series

M =
∞∏

i=1

(1− xi)−1

= 1 + {1}+ {2}+ {3}+ . . .

=
∞∑

m=0

{m} (2.41)

Clearly

LM = 1 (2.42)

a result by no means obvious by simply looking at the product of the two se-
ries expressed as S−functions. In practice large numbers of infinite series and
their associated generating functions may be constructed. The particular series
implemented in SCHUR include:

A =
∑

α(−1)wα{α} B =
∑

β{β} C =
∑

γ(−1)wγ/2{γ}
D =

∑
δ{δ} E =

∑
ε(−1)(wε+r)/2{ε} F =

∑
ζ{ζ}

G =
∑

ε(−1)(wε−r)/2{ε} H =
∑

ζ(−1)wζ{ζ} L =
∑

m(−1)m{1m}
M =

∑
m{m} P =

∑
m(−1)m{m} Q =

∑
m{1m}

(2.43)
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where (α) and (γ) are mutually conjugate partitions, which in the Frobenius
notation take the form

(α) =
(

a1 a2 . . . ar

a1 + 1 a2 + 1 . . . ar + 1

)
(γ) =

(
a1 + 1 a2 + 1 . . . ar + 1

a1 a2 . . . ar

)
(2.44)

(δ) is a partition into even parts only and (β) is conjugate to (δ). (ζ) is any
partition and (ε) is any self-conjugate partition. r is the Frobenius rank of (α),
(γ) and (ε).
These series occur in mutually inverse pairs:

AB = CD = EF = GH = LM = PQ = {0} = 1 (2.45)

Furthermore,

LA = PC = E MB = QD = F

MC = AQ = G LD = PB = H (2.46)

SCHUR also makes use of the series

R = {0} − 2
∑
a,b

(−1)a+b+1

(
a
b

)
S = {0}+ 2

∑
a,b

(
a
b

)
(2.47)

where we have again used the Frobenius notation, and

V =
∑
ω

(−1)q{ω′} W =
∑
ω

(−1)q{ω}

X =
∑
ω

{ω′} Y =
∑
ω

{ω} (2.48)

where (ω) is a partition of an even number into at most two parts, the second of
which is q, and ω′ is the conjugate of ω. We have the further relations

RS = V W = {0} = 1 (2.49)

and

PM = AD = W LQ = BC = V

MQ = FG = S LP = HE = R (2.50)

Finally, there is the series

T = 1 + {1}+ {21}+ {321}+ {4321}+ . . . (2.51)

2.23 Symbolic Manipulation

The above relations lead to a method of describing many of the properties of
groups via symbolic manipulation of infinite series of S−functions. Thus if {λ}
is an S−function then we may symbolically write, for example,

{λ/M} =
∑
m

{λ/m} (2.51)
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We can construct quite remarkable identities such as:

BD =
∑

ζ

{ζ} · {ζ} (2.52)

or for an arbitrary S−function {ε}

BD · {ε} =
∑

ζ

{ζ} · {ζ/ε} (2.53)

Equally remarkably we can find identities such as

{σ · τ}/Z = {σ/Z} · {τ/Z} for Z = L,M,P,Q,R, S, V, W (2.54a)

{σ · τ}/Z =
∑

ζ

{σ/ζZ} · {τ/ζZ} for Z = B,D,F, H (2.54b)

{σ · τ}/Z =
∑

ζ

(−1)wζ{σ/ζZ} · {τ/ζ ′Z} for Z = A,C, E, G (2.54c)

These various identities lead to a symbolic method of treating properties of
groups particulary amenable to computer implementation.

2.24 The Un → Un−1 branching rule

As an illustration of the preceding remarks we apply the properties of S−func-
tions to the determination of the Un → Un−1 branching rules. The vector irre-
ducible representation{1} of Un can be taken as decomposing under Un → Un−1

as
{1} → {1}+ {0} (2.55)

that is into a vector {1} and scalar {0} of Un−1. In general, the vector spaces
corresponding to tensors for which a particular number of indices, say m, take
on the value n, define invariant subspaces. Such indices must be mutually sym-
metrised. The irreducible representations specified by the quotient {λ/m} are
those corresponding to tensors obtained by contracting the indices of the ten-
sor corresponding to {λ} with an m−th rank symmetric tensor. Thus we may
symbolically write the general branching rule as simply

{λ} → {λ/M} (2.56)

In this example the infinite M−series is truncated by the requirement that
λ1 ≥ m to yield a non-vanishing skew diagram. Thus for example under U3 → U2

we have

{21} → {21/M}
→ {21/0}+ {21/1}+ {21/2}
→ {21}+ {2}+ {11}+ {1}

2.25 Schur’s Q-functions

Schur’s Q−functions play an important role in determining the properties of the
spin (or projective) representations of the symmetric group Sn. They are made
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use of in SCHUR in calculating On → Sn branching rules for the spin irreducible
representions of the full orthogonal group On and in evaluating Kronecker prod-
ucts in Sn involving the spin representations. SCHUR also contains a number of
commands for obtaining properties of Q−functions such as those for calculating
the analogue of the Littlewood-Richardson rule. Within SCHUR, hidden from
the user, are routines that make use of the concept of shifted Young diagrams
and tableaux as well as many other properties such as shifted lattice properties
etc. These will be familiar to the experts and for the most part of minor interest
to the average user of SCHUR. Here we sketch only the briefest of details.

A shifted diagram is a diagonally adjusted Young diagram with the
restriction that the (i+1)−th row does not exceed the i−th row. This condition
restricts us to partitions λ involving only distinct parts. That is λ ∈ DP where
DP stands for the set of partitions involving distinct parts. Formally we have
Definition For each λ ∈ DP there is an associated shifted diagram defined as

D′λ = {(i, j) ∈ Z2 : i ≤ j ≤ λi + i− 1, 1 ≤ i ≤ `λ}

As an example, for the partition (65421) we have the unshifted and
shifted diagrams

⇒

Shifted Young tableaux may be defined as follows. Let P′ denote the
ordered alphabet {1′ < 1 < 2′ < 2 . . .}. The letters 1′, 2′, . . . are said to be
marked.
Definition A shifted tableau T of shape λ is an assignment T : D′

λ → P′

satisfying the following conditions:
1. T (i, j) ≤ T (i + 1, j), T (i, j) ≤ T (i, j + 1)
2. Each column has at most one k (k = 1, 2, . . .)
3. Each row has at most one k′ (k′ = 1′, 2′, . . .)

A typical shifted Young tableau associated with the partition (65421)
and satisfying the above conditions is

1′ 1 1 2′ 2 6′
2 2 2 5′ 7

3′ 5′ 5 8
5′ 6

7

Let γk denote the number of boxes (i, j) ∈ D′
λ such that |T (i, j)| = k where

|k′| = |k| = k. Then the content γ = (γ1, γ2, . . .) and we may associate a
monomial xT = xγ = xγ1

1 xγ2
2 . . . with the tableau T . Schur’s Q−function Qλ(x)
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in the variables x = (x1, x2, . . .) with λ ∈ DP may be defined as

Qλ(x) =
∑

T :D′
λ
→P′

xT (2.57)

where the summation is over all shifted tableaux T .
In exactly the same manner a skew Q−function may be defined in terms

of shifted skew tableaux as

Qλ/µ(x) =
∑

T :D′
λ/mu

→P′

xT (2.58)

where the summation is over all the shifted skew tableaux T (λ/µ). The skew
Q−function may be expanded as a sum of Q−function

Qλ/µ =
∑

ν

fλ
µνQν (2.59)

where µ, ν, λ ∈ DP, wλ = wµ + wν , λ ⊇ µ, ν. The coefficients fλ
µν are non-

negative integers. The same coefficients appear in the Q−function outer product

Qµ ·Qν =
∑

λ

2[`µ+`ν−`λ]fλ
µνQλ (2.60)

Occasionally SCHUR makes use of the P−functions which are related to the
Q−functions.

Pλ(x) = 2−`λQλ(x)

SCHUR contains routines that compute properties of Q−functions such
as outer products and skew quotients as well as various other properties including
inner and reduced inner products etc.

2.26 Non-Standard Q-functions

Schur’s Q−functions are indexed by ordered partitions having distinct parts.
However, situations can arise involving non-standard partitions. In those cases
modification rules must be applied. Any list of Q−functions can be converted
into a list of standard Q−functions by sequential application of the following
four rules to the list:

1. The parts of partition are first ordered so that the absolute magnitude
of the parts are in descending order when read from left to right. This
is achieved by repeated use of

Q(...,λi,λi+1,...) = −Q(...,λi+1,λi,...)

whenever |λi+1| > |λi|, remembering that Q(µ,0) = Q(µ).
2. Q−functions indexed by partitions with consecutive repeated parts are

null.
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3. Q−functions where a negative part −λp precedes λp are modified by use
of the identity

Q(λ1,...,−λp,λp,...,λk) = (−1)λp2Q(λ1,...,λk)

4. Any remaining Q−function indexed by a partition containing a negative
part is null.

The above operations are automatically implemented in SCHUR.
2.27 Young’s Raising Operators

The Young raising operator Rij operates on a partition (λ) by increasing the
part λi by one and decreasing λi+1 by one with i < j. The operators∏

i<j

(1±Rij) and
∏
i<j

(1±Rij)−1 (2.61)

play an important role in the theory of symmetric functions such as the
S−functions and the Q−functions. In the process of using them non-standard
S− or Q−functions may arise which must be modified using the appropriate
standardisation rules. These rules may only be applied after all the operations
of the Young operators have been applied. All four operators defined in Eq.
(2.61) are implemented in SCHUR for action of S−functions and Q−functions as
appropriate.

Young raising operators may also be defined which act on partitions in
reduced notation.
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You boil it in sawdust: you salt it in glue;
You condense it with locusts and tape
Still keeping one principal object in view
To preserve its symmetrical shape.
— Lewis Carroll The Hunting of the Snark
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Introduction

This is not the place for a detailed discussion of the properties of Lie groups.
Books in abundance exist on that subject. However to make effective use of
SCHUR it is essential to have an understanding of the notation used in SCHUR

for individual Lie groups and in particular the choice adopted for referring to la-
belling irreducible representations. As noted earlier SCHUR uses partition based
labels as distinct from the more widely used Dynkin labelling scheme. However
SCHUR does allow the user to relate its partition labels to the corresponding
Dynkin labels.

3.1 Unitary Group Labels

Irreducible representations of the unitary group Un are labelled by partitions
λ, into at most n parts, of ordered integers enclosed in brackets {, } to give
{λ}. The partition λ ` ` serves to specify the symmetry properties of the cor-
responding `−th rank covariant tensor forming the basis of the representation.
There also exist inequivalent irreducible representations of Un associated with
the m−th rank contravariant tensors specified by {µ}. Irreducible representa-
tions associated with mixed tensors are designated by writing {µ; λ} where the
partition λ ` ` specifies the symmetry of the ` covariant indices and (µ), with
µ ` `, that of the m contravariant indices.

3.2 Orthogonal and Symplectic Group Labels

The covariant tensor irreducible representations {λ} of Un form a basis for the
tensor irreducible representations of subgroups of Un, including the orthogonal
group On and, if n is even, the symplectic group Spn. However these repre-
sentations are, in general, reducible due to the existence of the symmetric and
antisymmetric metric tensors of On and Spn respectively. The representations
may be reduced by extracting all possible trace terms formed by contraction
with the metric tensor. In this way irreducible representations of On and Spn

are obtained. In SCHUR the tensor irreducible representations of On are labelled
by ordered partitions λ into at most k parts (where n = 2k + 1 or n = 2k)
with the partition enclosed in brackets [, ] to give [λ]. Likewise the irreducible
representations of Sp2k are labelled by ordered partitions λ having at most k
parts with the partition enclosed in brackets <, > to give < λ >.

As well as the tensor irreducible representations labelled by [λ], the
group On also has double-valued or spin representations denoted by [∆; λ] where
∆ is the fundamental spin irreducible representation of dimension 2k. To avoid
introducing special type SCHUR outputs the spin irreducible representations as
[s; λ].

3.3 Associate Irreducible Representations

For all linear groups there exist among the irreducible representations a one-
dimensional irreducible representation, denoted here by ε, which maps each group
element onto the value of its determinant. By definition all the elements of the
unimodular groups SUn, SOn and Spn have determinant +1, so that irreducible
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representation ε for these groups coincides with the identity irreducible repre-
sentations {0}, [0] and < 0 > respectively. However, for Un and On this is
not the case. For Un ε is the irreducible representation {1n} with an inverse
ε−1 = ε = {1n}. For On all the group elements have determinant ±1 and hence
ε−1 = ε and ε× ε = [0].

The product of ε with any irreducible representation is also an irre-
ducible representation, and inequivalent irreducible representations related by
some power of ε are said to be associated. For Un there are an infinite number of
inequivalent irreducible representations associated with a given irreducible rep-
resentation, one of which will be specified by a partition having less than n parts.
For instance {66521}, {5541}, {443; 1}, {332; 21}, {221; 32}, {11; 43},{541},
{65211}, . . . are all mutually associated irreducible representations of U5. More
generally the Kronecker product εr{µ; λ} = εr × {µ; λ} is an irreducible repre-
sentation of Un associated to the irreducible representation {µ; λ} for any real
value of r. If r is not an integer then such irreducible representations are strictly
speaking not true irreducible representations of Un since they are multivalued.
In particular, if r is half an odd integer they are analogous to the spinor irre-
ducible representations of On which are of course double-valued. The fact that
on restriction from Un to SUn ε → {0} implies that all mutually associated irre-
ducible representations of Un give equivalent irreducible representations of SUn

under this restriction. Moreover, each inequivalent irreducible representation of
SUn may be denoted by means of a partition into less than n parts.

3.4 Irreducible Representations of On and SOn

In the case of On any given irreducible representation can possess at most one
inequivalent associated irreducible representation. Irreducible representations
for which the character is zero for all the group elements having determinant −1
possess an associate which is equivalent to itself. Such irreducible representations
are termed self-associate. For O2k all the spin irreducible representations and
the tensor irreducible representations labelled by partitions having exactly k non-
zero parts are self-associate. The remaining tensor irreducible representations of
O2k and all irreducible representations , spin and tensor, of O2k+1 are not self-
associate. Associated pairs of irreducible representations are denoted in SCHUR

by [λ] and [λ]# = ε× [λ] and by [∆; λ] and [∆; λ]# = ε× [∆; λ].
Under the restriction On → SOn the distinction between an irreducible

representation and its associate is lost. It might be expected that the labels
[λ] and [∆; λ] would suffice for the irreducible representations of SOn. This is
not the case. Only those irreducible representations of On which are not self-
associate remain irreducible under the restriction On → SOn. In contrast, each
self-associate irreducible representation of O2k yields on restriction to SO2k two
inequivalent irreducible representations of the same dimension. These pairs of
irreducible representations are conviently specified by the additional labels ± to
give [λ]± and [∆; λ]± where in the former case λ is necessarily a partition into
k non-zero parts.
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3.5 Irreducible Representations of Exceptional Groups

The irreducible representations of the five exceptional groups G2, F4, E6, E7

and E8 may be conveniently labelled by exploiting the notation introduced to
label the irreducible representations of maximal classical subgroups of the same
rank. Many possible maximal embeddings exist. In SCHUR the embeddings have
been chosen as those associated with G2 ⊃ SU3, F4 ⊃ SO9, E6 ⊃ SU2 × SU6,
E7 ⊃ SU8 and E8 ⊃ SU9. As a consequence every irreducible representation
of the exceptional Lie groups may be uniquely labelled by a constrained set
of partitions. SCHUR outputs the labelled irreducible representations of the
exceptional groups enclosed by brackets (, ). The partition labels associated
with the exceptional groups E6, E7 and E8 carry the additional constraint that
the weight of a partition label for E6 or E7 must be even while that for E8 must
be 0 mod 3.

In the case of G2 it is common for physicists to employ the Racah nota-
tion (u1u2) with u1 ≥ u2 instead of the SU3 based ( l1, l2). The two labelling
schemes are related by

l1 = µ1 − µ2 and l2 = µ2 (3.1)

3.6 The Super Lie Groups

SCHUR handles some of the properties of the super Lie groups Um/n, SUm/n and
OSpm/n. Again certain irreducible representations may be labelled by partitions.
For Um/n and SUm/n SCHUR outputs the partitions enclosed in the brackets {, }
while for the orthosymplectic groups OSpm/n the bracket pair [, > is used.

It should be pointed out that although mixed tensor characters {µ; λ}
of Um/n and SUm/n are well defined, they do not in general correspond to irre-
ducible representations. The same is true, in general, of the characters [λ > od
OSpm/n. Only the characters {λ} of Um/n and SUm/n correspond unequivocally
to irreducible representations.

3.7 Notation for the Symmetric and Alternating Groups

In the case of the symmetric and alternating groups, Sn and An, the ordinary
irreducible representations are labelled by the partitions λ ` n and are output by
SCHUR enclosed in the brackets {, }. Conjugate pairs of irreducible representa-
tions of An are distinguished by attachment of the labels ±. The two-valued spin
representations of Sn correspond to single-valued representations of the covering
group Γn and may be labelled uniquely by partitions λ ` n having distinct parts.
In SCHUR we exploit the fact that under On → Sn the basic spin representation
∆ of On is irreducible if n is even or otherwise it decomposes into an associ-
ated pair of irreducible representations of Sn. In order to maintain the close
connection between the two groups we choose to label the spin irreducible rep-
resentations of Sn using the notation {∆; λ} where λ is a partition into distinct
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parts with the added constraints

n odd λ1, ωλ ≤
n− 1

2
n even λ1 + 1, ωλ ≤

n

2
(3.2)

If λ is a partition into k parts and (n− k) is even we obtain an associated pair
of irreducible representations which we distinguish by attaching the labels ±
by analogy with SOn. A similar labelling is adopted for the spin irreducible
representations of An. SCHUR will normally output the spin representations
using s.

3.8 Standard Labels for Lie Groups

The labels introduced here serve to emphasise the tensor or spin nature of the
irreducible representations. The labels adopted in SCHUR for the Lie groups of
rank k are summarised in Table 3.1.
Table 3.1 Standard labels for irreducible representations of the Lie groups of
rank k.

Group Label Constraints
Un {µ; λ} `λ + `µ ≤ k = n
SUn {λ} `λ ≤ k = n− 1
O2k+1 [λ], [λ]# `λ ≤ k

[∆; λ], [∆; λ]# `λ ≤ k
SO2k+1 [λ], [∆; λ] `λ ≤ k
Sp2k < λ > `λ ≤ k
O2k [λ], [λ]# `λ < k

[λ] `λ = k
[∆; λ] `λ ≤ k

SO2k [λ] `λ < k
[λ]± `λ = k
[∆; λ]± `λ ≤ k

G2 (λ) `λ ≤ 2, λ1 ≥ 2λ2

F4 (λ) `λ ≤ 4, λ1 > λ2 + λ3 + λ4

(∆; λ) `λ ≤ 4, λ1 > λ2 + λ3 + λ4

E6 (s; λ) `λ ≤ 5, s ≥ λ1 + λ2 + λ3 − λ4 − λ5

E7 (λ) `λ ≤ 7, λ1 ≥ λ2 + λ3 + λ4 + λ5 − λ6 − λ7

E8 (λ) `λ ≤ 8
λ1 ≥ 2λ2 + 2λ3 + 2λ4 − λ5 − λ6 − λ7 − λ8

Um/n {µ; λ} λm ≤ n
SUm/n {λ} λm+1 ≤ n
OSpm/n [λ >, [∆; λ > λm ≤ n
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3.9 Standard Labels and Dynkin Labels

The standard or natural labels λ used by SCHUR to label irreducible repre-
sentations of Lie groups gives a unique prescription. Other methods of labelling
irreducible representations exist, most notably that of Dynkin wherein every irre-
ducible representation of a semisimple Lie group is uniquely labelled by a vector
a of non-negative integers with components ai (i = 1, . . . , k) associated with
each simple root r(i) of the corresponding Lie algebra of rank k. This amounts to
assigning non-negative integers to the nodes of the appropriate Coxeter-Dynkin
diagram. The precise relationship between SCHUR ’s standard partition labels
λ and the corresponding Dynkin labels are given in Table 3.2a for the classical
Lie groups and in Table 3.2b for the exceptional groups. In the latter case they
are appropriate to the classical group embeddings given in §3.5.
Table 3.2a Relationship between standard SCHUR labels and the corresponding
Dynkin labels for the classical Lie groups.

Group Dynkin label Standard Label
SUk+1 a1 = l1 − l2 l1 = a1 + a2 + . . . + ak−1 + ak

a2 = l2 − l3 l2 = a2 + . . . + ak−1 + ak

...
...

ak−1 = lk−1 − lk lk−1 = ak−1 + ak

ak = lk lk = ak

SO2k+1 a1 = l1 − l2 l1 = a1 + a2 + . . . + ak−1 + ak

2
a2 = l2 − l3 l2 = a2 + . . . + ak−1 + ak

2
...

...
ak−1 = lk−1 − lk lk−1 = ak−1 + ak

2
ak = 2 lk lk = ak

2

Sp2k a1 = l1 − l2 l1 = a1 + a2 + . . . + ak−1 + ak

a2 = l2 − l3 l2 = a2 + . . . + ak−1 + ak

...
...

ak−1 = lk−1 − lk lk−1 = ak−1 + ak

ak = lk lk = ak

SO2k a1 = l1 − l2 l1 = a1 + a2 + . . . + ak−2 + ak−1
2 + ak

2
a2 = l2 − l3 l2 = a2 + . . . + ak−2 + ak−1

2 + ak

2
...

...
ak−2 = lk−2 − lk−1 lk−2 = ak−2 + ak−1

2 + ak

2
ak−1 = lk−1 − lk lk−1 = ak−1

2 + ak

2
ak = lk−1 + lk lk = ak−1

2 − ak

2
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Table 3.2b Relationship between standard SCHUR labels and the corresponding
Dynkin labels for the exceptional Lie groups.

Group Dynkin label Standard Label
G2 a1 = l2 l1 = 2a1 + a2

a2 = l1 − 2 l2 l2 = a1

F4 a1 = l2 − l3 l1 = a1 + 2a2 + 3a3
2 + a4

a2 = l3 − l4 l2 = a1 + a2 + a3
2

a3 = 2 l4 l3 = a2 + a3
2

a4 = l1 − l2 − l3 − l4 l4 = a3
2

E6 a1 = l2 − l3 l1 = a1 + 2a2 + 3a3 + 2a4 + a5 + 2a6

a2 = l3 − l4 l2 = a1 + a2 + a3 + a4 + a5

a3 = l4 − l5 l3 = a2 + a3 + a4 + a5

a4 = l5 − l6 l4 = a3 + a4 + a5

a5 = l6 l5 = a4 + a5

a6 = 1
2 ( l1 − l2 − l3 − l4 + l5 + l6)

l6 = a5

E7 a1 = l7 l1 = 2a1 + 3a2 + 4a3 + 3a4 + 2a5

+ a6 + 2a7

a2 = l6 − l7 l2 = a1 + a2 + a3 + a4 + a5 + a6

a3 = l5 − l6 l3 = a1 + a2 + a3 + a4 + a5

a4 = l4 − l5 l4 = a1 + a2 + a3 + a4

a5 = l3 − l4 l5 = a1 + a2 + a3

a6 = l2 − l3 l6 = a1 + a2

a7 = 1
2 ( l1 − l2 − l3 − l4 − l5 + l6 + l7)

l7 = a1

E8 a1 = l8 l1 = 2a1 + 3a2 + 4a3 + 5a4 + 6a5 + 4a6

+ 2a7 + 3a8

a2 = l7 − l8 l2 = a1 + a2 + a3 + a4 + a5 + a6 + a7

a3 = l6 − l7 l3 = a1 + a2 + a3 + a4 + a5 + a6

a4 = l5 − l6 l4 = a1 + a2 + a3 + a4 + a5

a5 = l4 − l5 l5 = a1 + a2 + a3 + a4

a6 = l3 − l4 l6 = a1 + a2 + a3

a7 = l2 − l3 l7 = a1 + a2

a8 = 1
3 ( l1 − 2 l2 − 2 l3 − 2 l4 + l5 + l6 + l7 + l8)

l8 = a1

Users of table 3.2a should note that for SO2k with λk 6= 0

[λ]± ≡ [λ1, λ2, . . . ,±λk]
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For SO2k+1, O2k+1 and O2k the spin representations

[∆; µ] ≡ [µ1 +
1
2
, µ2 +

1
2
, . . . , µk +

1
2

]

≡ [λ1, λ2, . . . , λk]

while for SO2k

[∆; µ]± ≡ [µ1 +
1
2
, µ2 +

1
2
, . . . ,±µk ±

1
2

]

≡ [λ1, λ2, . . . , λk]

3.10 Modification Rules

Non-standard labelled representations may arise in the process of evaluating
Kronecker products or branching rules. These do not conform to the constraints
given in Table 3.1. SCHUR contains a set of modification rules that automatically
transform non-standard labelled representations into either null objects or into
standard labelled representations. These modification rules are accessible to
the user. This feature is especially important for users putting together their
own functions where it may be essential to employ the modification rules. For
the classical Lie groups the modification rules involve drawing the Young frame
associated with the non-standard partition λ and removing a continuous strip of
boxes of length h, starting at the foot of the first column and working up along
the right edge. The strip of boxes removed is known as the striplength. The strip
removal is symbolised by λ − h. A phase factor also occurs which is dependent
upon the column c in which the removal ends. If the resulting Young diagram
corresponds to an ordered partition then λ → λ− h, otherwise λ is discarded.

The modification rules appropriate to the classical groups are sum-
marised in Table 3.3. It should be noted that the result of a single modification
may still leave a non-standard label and the process must be repeated until
either a standard label, or a null result, is obtained. Fortunately the SCHUR

modification routines carry out the process to completion. The rules for the
exceptional groups and for the super groups in Table 3.1 are implemented in
SCHUR. In the case of the super groups the modification rules are such that
a single non-standard labelled representation may lead to a string of modified
representations.
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Table 3.3 The modification rules appropriate to the classical Lie groups.

Group modification rule h
Un, SUn {µ; λ} = (−1)c+d−1{µ− h; λ− h} h = `µ + `λ − n− 1 ≥ 0
O2k+1 [λ] = (−1)c−1[λ− h]# h = 2`λ − 2k − 1 > 0

[λ]# = (−1)c−1[λ− h] h = 2`λ − 2k − 1 > 0
[∆; λ] = (−1)c[∆; λ− h]# h = 2`λ − 2k − 2 ≥ 0
[∆; λ]# = (−1)c[∆; λ− h] h = 2`λ − 2k − 2 ≥ 0

SO2k+1 [λ] = (−1)c−1[λ− h] h = 2`λ − 2k − 1 > 0
[∆; λ] = (−1)c[∆; λ− h] h = 2`λ − 2k − 2 ≥ 0

Sp2k < λ >= (−1)c < λ− h > h = 2`λ − 2k − 2 ≥ 0
O2k [λ] = (−1)c−1[λ− h]# h = 2`λ − 2k > 0

[λ]# = (−1)c−1[λ− h] h = 2`λ − 2k > 0
[∆; λ] = (−1)c[∆; λ− h] h = 2`λ − 2k − 1 ≥ 0

SO2k [λ] = (−1)c−1[λ− h] h = 2`λ − 2k > 0
[λ]± = (−1)c−1[λ− h]∓ h = 2`λ − 2k > 0
[∆; λ]± = (−1)c[∆; λ− h]∓ h = 2`λ − 2k − 1 ≥ 0

3.11 Fusion Modification Rules

Fusion rules for WZW models based on SUn and Sp2k are incorporated into
SCHUR. In applying such rules the standard modification rules are first applied
followed by the fusion modification rules. It seems at this stage desirable to treat
these operations separately rather than combining them into a single command.

3.12 Dimensions of Irreducible Representations

SCHUR computes the dimensions of the irreducible representations of Lie groups
and the symmetric and alternating groups. The dimensions of whole lists of
irreducible representations for either single groups or product of groups may be
calculated. Normally the dimensions are calculated using the standard Weyl
formulae. However, for the classical Lie groups the user has the option of having
SCHUR either use the standard Weyl formulae or the dimensional formulae based
upon hooklengths. The latter assume that the irreducible representation labels
are already in standard form whereas the former can be used even on non-
standard labelled irreducible representations.

3.13 Casimir and Dynkin Invariants

The Casimir and Dynkin invariants play a key role in the calculation of anomaly
factors in gauge theories and in the many variants of the interacting boson model
of nuclei. SCHUR calculates the eigenvalues of the standard second order Casimir
invariant C2(λ) and the second-order Dynkin index I2(λ) for a given irreducible
representation (λ) of a semisimple group G and implements the formula for the
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trace of the n−th order Casimir invariant

I
{ν}
N {λ} =

N

2N

∑
ρ

Kρ
νλ

d(ρ)
d(λ)

[C2(ρ)− C2(ν)− C2(λ)]N (3.3)

where the trace for the representation (λ) is calculated with respect to the rep-
resentation (ν), Kρ

νλ is the coefficient of (ρ) in the Kronecker product (ν)× (λ),
C2(α) is the second order Casimir invariant and d(ρ) is the dimension of (ρ) and
d(λ) that of (λ).

SCHUR gives the user the choice of either using a command that uses
the adjoint representation for (ν) or using a command that allows the user to
specify (ν).

Note that as it stands I
{ν}
N {λ} is not necessarily an independent invari-

ant. To form a genuine independent N−th order invariant it is necessary to form
the appropriate linear combination of invariants. This can be readily determined
by using SCHUR to compute the eigenvalues of a few simple invariants. Thus in
the case of F4 SCHUR finds

I
(11)
2 (11) = 18 and I

(11)
3 (11) = −81

However there is no independent third order invariant for F4 and we have the
relation

9
2
I
(11)
2 (λ) + I

(11)
3 (λ) = 0

for all λ.
3.14 Kronecker Products

The Kronecker product of a pair of irreducible representations, say λ and µ, of
a Lie group G results in the creation of a list of irreducible representations

λ× µ =
∑

ν

mν
λµν (3.4)

The coefficients mν
λµ are the multiplicities which are non-negative integers. The

key to resolving Kronecker products is the determination of the multiplicities.
SCHUR achieves this for all compact semisimple Lie groups using algorithms that
all involve ultimately the use of the Littlewood-Richardson rule for S−functions.
The algorithms are constructed so that SCHUR can resolve the Kronecker prod-
ucts of lists of irreducible representations not only for a single group G but also
for group products such as G1 × G2 . . .Gn where n is usually limited to n ≤ 6.
While exact arithmetic is used in calculating properties such as dimensions and
Casimir and Dynkin invariants multiplicities are calculated using ordinary inte-
ger arithmetic with the consequence that the maximum multiplicity output by
SCHUR is limited to the computers value of maxint. In nearly all practical cases
this imposes no limitation.
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3.15 Plethysms in Lie Groups

If λ is an irreducible representation of a semisimple Lie group G then the n−th
power of λ may be resolved into a sum of symmetrised powers each corresponding
to a plethysm of type

λ⊗ {µ} =
∑

ν

pν
λµν (3.5)

where µ ` n and the pν
λµ are non-negative integers. The ν are irreducible rep-

resentations of G. SCHUR currently evaluates plethysms for tensor irreducible
representations of the groups Un (but not for mixed tensors), SUn, On, SO2k+1,
Sp2k and for the exceptional group G2. Thus for the 14 dimensional representa-
tion (21) of G2 SCHUR readily finds that

(21)⊗ {3} = (63) + (41) + (3) + (21) + (1)
(21)⊗ {21} = (51) + (42) + (41) + (31) + (3) + 2(21) + (2)
(21)⊗ {13} = (42) + (4) + (3) + (2) + (0) (3.6)

which is consistent with

(21)× (21)× (21) = (21)⊗ {3}+ 2[(21)⊗ {21}+ (21)⊗ {13}

The dimension of a plethysm λ ⊗ {µ} may be checked by noting that if in G
DimG(λ) = p then

Dim(λ⊗ {µ}) =
∑

ν

gν
λµDimG(ν)

= DimUp({µ}) (3.7)

Thus in U14 we find DimU14{3} = 560. Noting Eq. (3.6) and (3.7) we find after
computing the dimensions of the relevant irreducible representations of G2

560 = 273 + 189 + 77 + 14 + 7

3.16 Automorphisms and Isomorphisms in Lie Groups

For low rank Lie groups it is sometimes useful to be able to exploit the locally
isomorphic sets of Lie groups

SO2 ∼ U1 (3.8a)
SU2 ∼ SO3 ∼ Sp2 (3.8b)
SO4 ∼ SU2 × SU2 ∼ SO3 × SO3 ∼ Sp2 × Sp2 (3.8c)
Sp4 ∼ SO5 (3.8d)
SO6 ∼ SU4 (3.8e)

and their associated representation correspondences

[a] ∼ {a} (3.9a)
{a} ∼ [a/2] ∼< a > (3.9b)
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[a, b] ∼ {a + b} × {a− b} ∼ [(a + b)/2]× [(a− b)/2]
∼< a + b > × < a− b > (3.9c)

< a, b > ∼ [(a + b)/2, (a− b)/2] (3.9d)
[abc] ∼ {a + b, a− c, b− c} (3.9e)

In addition there is the outer automorphism of order 3 of SO8 such that

[a, b, c, d] ∼
[

(a + b + c + d)
2

,
(a + b - c - d)

2
,

(a - b + c - d)
2

,
(- a + b + c - d)

2

]
∼

[
(a + b + c - d)

2
,

(a + b - c + d)
2

,
(a - b + c + d)

2
,

(a - b - c - d)
2

]
∼ [a, b, c, d] (3.10)

This automorphism relates spin and tensor irreducible representations of SO8.
For example

∆+ ∼ [1] ∼ ∆− ∼ ∆+ (3.11)

These isomorphisms and automorphism are fully implemented in SCHUR.
3.17 Branching Rules

The decomposition of a representation λG of a group G into irreducible represen-
tations µH of a subgroup G ⊃ H is a very frequent problem of applications of Lie
groups. The subgroup H need not be a simple Lie group, it may be a product of
several simple Lie groups, or possibly a finite group such as arises in On ⊃ Sn.
In general

λG →
∑
µH

mµH
λG

µH (3.11)

and the fundamental problem is to determine the non-negative integers mµH
λG

known as the branching multiplicities. As with Kronecker products SCHUR solves
this problem using properties of S−functions. While such an approach suffers
from an inherent lack of universality it does permit the construction of efficient
algorithms for specific branching rules. SCHUR covers a large range of branching
rules and allows the user to successively branch through chains of embedded
groups. It is possible for the user to define his or her own functions to cover
additional branching rules. The case of SO7 ⊃ SU2 × SU2 × SU2 is given as a
detailed example of constructing a user defined function in the advanced tutorials
on user defined functions. The specific branching rules are restricted to compact
Lie groups and the symmetric and alternating groups however it is possible to
apply SCHUR even to the determination of the branching content, up to a user
defined limit, of group-subgroup combinations such as Sp2k(R) ⊃ Uk.

In handling the decompositions for the spin representations in On ⊃ Sn

SCHUR makes extensive use of the properties of Q−functions which are thought-
fully hidden from the user.
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3.18 Odds and Ends

In this and the previous chapter we have outlined some of the mathematical
foundations of SCHUR often giving only the barest details. The user wishing more
details should consult the bibliography in Chapter 7. Several features of SCHUR

have been omitted in this account as being of interest to only a few specialists.
They should consult the Appendix A where every command in SCHUR is detailed
giving information on not only the common SCHUR commands but also rather
exotic commands of specialist interest only. Of course it is our ultimate hope
that eventually every user will become a specialist with a deep understanding of
the philosophy behind SCHUR and its many potentialities.
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It has been rumoured that the “group pest” is
gradually being cut out of quantum physics

—H. Weyl The Theory of Groups and Quantum
Mechanics, 1930

We wish finally to make a few remarks concerning
the place of the theory of groups in the study of
the quantum mechanics of atomic spectra. The
reader will have heard that this mathematical
discipline is of great importance for the subject.
We manage to get along without it.

— E. U. Condon and G. H. Shortley Theory of
Atomic Spectra, 1935
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4.1 Introduction

A knowledge of the properties of compact Lie groups, and their associated Lie
algebras, is essential in many areas of physics. The unitary irreducible repre-
sentations of the compact Lie groups are all of finite dimension and hence it
is possible to compute complete results even though at times the dimensions
may be very large. Much less is known of the non-compact Lie groups and yet
they too find applications in physics. The non-compact symplectic Lie group
Sp(2n, R), and its metaplectic covering group, Mp(2n), occur in the theory of
three-dimensional harmonic oscillator (n = 3) and more generally in symplectic
models of nuclei, quantum dots and quantum optics. A fundamental difference
between the non-compact and compact Lie groups is that the non-trivial unitary
irreducible representations of the former are all of infinite dimension. Thus in
most cases it is only possible to compute such things as tensor products and
branching rules up to some prescribed cutoff.
In this chapter we outline extensions to SCHUR that permit the calculation of
Kronecker products and branching rules involving irreducible representations of
the non-compact groups Mp(2n), Sp(2n, R), SO∗(2n) and important subgroups
thereof.

4.2 Labelling the Irreps of Non-compact Lie Groups

Here we shall limit ourselves to discussion of the so-called positive dis-
crete unitary irreducible representations of the group Sp(2n, R) and its double
covering group, Mp(2n) and the group SO∗(2n). These irreducible represen-
tations are all infinite dimensional and are characterised by a lowest weight
with respect to the ordering of weights of the maximal compact subgroup U(n).
There exists a harmonic representation, ∆̃, associated with the Heisenberg al-
gebra. This is a true, unitary, infinite dimensional irreducible representation of
the double covering group Mp(2n) of Sp(2n, R), the so-called metaplectic group.
This representation is reducible into the sum of two irreducible representations
∆̃+ and ∆̃− whose leading weights are ( 1

2
1
2 . . . 1

2 ) and ( 3
2

1
2 . . . 1

2 ) corresponding
to the highest weights of the representations ε

1
2 {0} and ε

1
2 {1} which appear in

the restriction of Sp(2n, R) to its maximal compact subgroup U(n).
The tensor powers ∆̃k all decompose into a direct sum of unitary irre-

ducible representations of Mp(2n). All those irreducible representations which
derive from ∆̃k for some k will be referred to as harmonic series representaions.
All those irreducible representations that appear in ∆̃k will be labelled by the
symbols 〈k

2 (λ)〉. The harmonic series representations appearing in ∆̃k are in one-
to-one correspondence with the terms arising in the branching rule appropriate
to the restriction from Mp(2nk) to Sp(2n, R)×O(k)

∆̃ →
∑

λ

〈k
2

(λ)〉 × [λ] (4.1)

where the summation is carried out over all partitions (λ) = (λ1, λ2, . . .) for
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which the conjugate partition (λ̃) = (λ̃1, λ̃2, . . .) satisfies the constraints

λ̃1 + λ̃2 ≤ k (4.2a)

and
λ̃1 ≤ n (4.2b)

Irreducible representations of Sp(2n, R) 〈 1
2k(λ)〉 satisfying Eq.(4.2) will be said

to be standard and we may limit our attention to these irreducible representations
of Sp(2n, R).

The value of k
2 maybe an integer (k even) or a half-odd-integer (k odd).

In terms of inputting and outputting Sp(2n, R) labelled irreducible representa-
tions into SCHUR it is useful to introduce the equivalent notation

〈sκ; (λ)〉 ≡ 〈k
2

(λ)〉 (4.3)

where
k

2
= s + κ (4.4)

with κ being the integer part of k
2 and the residue part is s = 0 or 1

2 . Thus we
have the typical notational equivalences

〈s1; (λ)〉 ≡ 〈3
2

(λ)〉, k = 3 〈1; (λ)〉 ≡ 〈1(λ)〉 k = 2

SCHUR accepts irreducible representation labels in the form of lists of 〈sκ; λ〉
and standardises the input in accordance with the constraints of Eq.(4.2) making
null all non-standard Sp(2n, R) irreducible representations. As an example taken
from SCHUR with the inputs marked − > we have

->gr spr8

Group is Sp(8,R)

REP>

->2;211 + 2;31 + 2;2211 + s1;21 + s2;32

<2;(21^2) > + <2;(31)> + <2;(2^2 1^2) > + <s1;(21)>

+ <s2;(32)>

REP>

->std last

<s2;(32)> + <2;(31)> + <2;(21^2)> + <s1;(21)>

The second instruction has applied Eq.(4.2) to the list and eliminated
the non-standard < 2; (2211) > label.
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4.3 Branching Rules for subgroups of Mp(2n) and Sp(2n, R)
The branching rule for the group-subgroup decomposition Sp(2n, R) → U(n)
has been shown to be

〈k
2

(λ)〉 → ε
k
2 · {{λs}k

N ·DN}N (4.5)

with N = min(n, k). The infinite S−function series

D =
∑

δ

{δ} (4.6)

involves a sum over all partitions (δ) whose parts are even. This series is re-
stricted to DN in Eq.(4.6) involving members (δ) of the D−series having not
more than N parts. Nevertheless, the series DN remains as an infinite series of
S−functions.

The signed sequence {λs}k
N is the set of terms ±{ρ} such that ±[ρ] is

equivalent to [λ] under the modification rules of the group O(k). The signed
sequence is rendered finite by restriction to terms {ρ} involving not more than
N parts.

The first · indicates a product in U(n) and the second · a product in
U(N) as implied by the final subscript N .

The harmonic discrete series irreducible representations of Sp(2n, R)
are all of infinite dimension and hence there are an infinite number of U(n)
irreducible representations arising on the right-hand-side of Eq.(4.5). Clearly,
in practical implementations of the branching rule a user definable cutoff must
be introduced to produce a manageablely finite number of terms. In SCHUR we
solve this problem by introducing a user defined integer constant SETLIMit that
results in the computation of all terms up to a chosen maximal weight partition.
SCHUR possesses procedures to generate the necessary signed sequences and
S−function series, as well as carrying out the relevant Kronecker products and
modification rules. A typical example of verbatim SCHUR input and output is
given below:

->gr spr8

Group is Sp(8,R)

DP>

->br36,8gr1[s1;21]

Group is U(4)

{s;11 21^2 } + {s;10 31^2 } + {s;10 2^2 1} + {s;941^2 }

+ {s;9321} + {s;921^2 } + {s;851^2 } + 2{s;8421}

+ {s;831^2 } + {s;82^2 1} + {s;761^2 } + {s;7521}

+ {s;7431} + {s;741^2 } + {s;7321} + {s;721^2 }

+ {s;6^2 21} + {s;6531} + {s;651^2 } + {s;64^2 1}
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+ 2{s;6421} + {s;631^2 } + {s;62^2 1} + {s;5431}

+ {s;541^2 } + {s;5321} + {s;521^2 } + {s;4^2 21}

+ {s;431^2 } + {s;42^2 1} + {s;321^2 }

The branching rule for the decomposition of the irreducible represen-
tation ∆̃ ≡ 〈s; (0)〉 of the metaplectic group Mp(2nk) upon restriction to the
subgroup Sp(2n, R)×O(k) follows from implementation of Eq.(4.1) into SCHUR.

We find for example:
DP>

->sb_tex true

DP>

->columns3

DP>

->gr mp24

Group is Mp(24)

DP>

->br39,6,4gr1[s;0]

Groups are Sp(6,R) * O(4)

< 2; (12 ) > [12 ] + < 2; (11 1) > [11 1] + < 2; (11 ) > [11 ]
+ < 2; (10 2) > [10 2] + < 2; (10 12) > [10 12] + < 2; (10 1) > [10 1]
+ < 2; (10 ) > [10 ] + < 2; (93) > [93] + < 2; (92) > [92]
+ < 2; (912) > [912] + < 2; (91) > [91] + < 2; (9) > [9]
+ < 2; (84) > [84] + < 2; (83) > [83] + < 2; (82) > [82]
+ < 2; (812) > [812] + < 2; (81) > [81] + < 2; (8) > [8]
+ < 2; (75) > [75] + < 2; (74) > [74] + < 2; (73) > [73]
+ < 2; (72) > [72] + < 2; (712) > [712] + < 2; (71) > [71]
+ < 2; (7) > [7] + < 2; (62) > [62] + < 2; (65) > [65]
+ < 2; (64) > [64] + < 2; (63) > [63] + < 2; (62) > [62]
+ < 2; (612) > [612] + < 2; (61) > [61] + < 2; (6) > [6]
+ < 2; (52) > [52] + < 2; (54) > [54] + < 2; (53) > [53]
+ < 2; (52) > [52] + < 2; (512) > [512] + < 2; (51) > [51]
+ < 2; (5) > [5] + < 2; (42) > [42] + < 2; (43) > [43]
+ < 2; (42) > [42] + < 2; (412) > [412] + < 2; (41) > [41]
+ < 2; (4) > [4] + < 2; (32) > [32] + < 2; (32) > [32]
+ < 2; (312) > [312] + < 2; (31) > [31] + < 2; (3) > [3]
+ < 2; (22) > [22] + < 2; (212) > [212] + < 2; (21) > [21]
+ < 2; (2) > [2] + < 2; (13) > [13] + < 2; (12) > [12]
+ < 2; (1) > [1] + < 2; (0) > [0]

Note that in this case SCHUR has been requested to produce TEX output in
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four columns forming a setbox with the appropriate settabs and TEX commands
automatically inserted.

Under the restriction Mp(2n) → Sp(2n, R) we have

〈s; (0)〉 → 〈s; (0)〉+ 〈s; (1)〉 (4.7)

It the case of the harmonic oscillator this corresponds to separating the odd and
even states. The appropriate branching rules for these two irreducible represen-
tations have been implemented in SCHUR. For example,

->gr spr24

Group is Sp(24,R)

DP>

->br38,6,4gr1[s;0]

Groups are Sp(6,R) * O(4)

< 3; (12 ) > [12 ] + < 3; (11 1) > [11 1] + < 3; (10 2) > [10 2]
+ < 3; (10 ) > [10 ] + < 3; (93) > [93] + < 3; (91) > [91]
+ < 3; (84) > [84] + < 3; (82) > [82] + < 3; (8) > [8]
+ < 3; (75) > [75] + < 3; (73) > [73] + < 3; (71) > [71]
+ < 3; (62) > [62] + < 3; (64) > [64] + < 3; (62) > [62]
+ < 3; (6) > [6] + < 3; (52) > [52] + < 3; (53) > [53]
+ < 3; (51) > [51] + < 3; (42) > [42] + < 3; (42) > [42]
+ < 3; (4) > [4] + < 3; (32) > [32] + < 3; (31) > [31]
+ < 3; (22) > [22] + < 3; (2) > [2] + < 3; (12) > [12]
+ < 3; (0) > [0]

->gr spr24

Group is Sp(24,R)

DP>

->br38,6,4gr1[s;1]

Groups are Sp(6,R) * O(4)

< 3; (11 ) > [11 ] + < 3; (10 1) > [10 1] + < 3; (92) > [92]
+ < 3; (9) > [9] + < 3; (83) > [83] + < 3; (81) > [81]
+ < 3; (74) > [74] + < 3; (72) > [72] + < 3; (7) > [7]
+ < 3; (65) > [65] + < 3; (63) > [63] + < 3; (61) > [61]
+ < 3; (54) > [54] + < 3; (52) > [52] + < 3; (5) > [5]
+ < 3; (43) > [43] + < 3; (41) > [41] + < 3; (32) > [32]
+ < 3; (3) > [3] + < 3; (21) > [21] + < 3; (1) > [1]

Not surprisingly the sum of the above two results coincides with those
for the Mp(24) → Sp(6, R)×O(4) decomposition given earlier.
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The final branching rule we require is the general reduction for
Sp(2n, R) → Sp(2, R) × O(n). Again the relevant result is available and has
been added to SCHUR. As a typical example we have:-

->gr spr8

Group is Sp(8,R)

DP>

->br45,8gr1[s1;21]

Groups are Sp(2,R) * O(4)

< 6; (11 ) > [10 1] + < 6; (11 ) > [92] + < 6; (11 ) > [9]#
+ 2 < 6; (11 ) > [9] + < 6; (11 ) > [83] + 4 < 6; (11 ) > [81]
+ < 6; (11 ) > [74] + 5 < 6; (11 ) > [72] + 3 < 6; (11 ) > [7]#
+ 4 < 6; (11 ) > [7] + < 6; (11 ) > [65] + 5 < 6; (11 ) > [63]
+ 10 < 6; (11 ) > [61] + 3 < 6; (11 ) > [54] + 9 < 6; (11 ) > [52]
+ 6 < 6; (11 ) > [5]# + 8 < 6; (11 ) > [5] + 6 < 6; (11 ) > [43]
+ 13 < 6; (11 ) > [41] + 8 < 6; (11 ) > [32] + 5 < 6; (11 ) > [3]#
+ 7 < 6; (11 ) > [3] + 7 < 6; (11 ) > [21] + 2 < 6; (11 ) > [1]#
+ 3 < 6; (11 ) > [1] + < 6; (9) > [81] + < 6; (9) > [72]
+ < 6; (9) > [7]# + 2 < 6; (9) > [7] + < 6; (9) > [63]
+ 4 < 6; (9) > [61] + < 6; (9) > [54] + 5 < 6; (9) > [52]
+ 3 < 6; (9) > [5]# + 4 < 6; (9) > [5] + 3 < 6; (9) > [43]
+ 8 < 6; (9) > [41] + 5 < 6; (9) > [32] + 4 < 6; (9) > [3]#
+ 5 < 6; (9) > [3] + 6 < 6; (9) > [21] + < 6; (9) > [1]#
+ 2 < 6; (9) > [1] + < 6; (7) > [61] + < 6; (7) > [52]
+ < 6; (7) > [5]# + 2 < 6; (7) > [5] + < 6; (7) > [43]
+ 4 < 6; (7) > [41] + 3 < 6; (7) > [32] + 2 < 6; (7) > [3]#
+ 3 < 6; (7) > [3] + 4 < 6; (7) > [21] + < 6; (7) > [1]#
+ 2 < 6; (7) > [1] + < 6; (5) > [41] + < 6; (5) > [32]
+ < 6; (5) > [3]# + 2 < 6; (5) > [3] + 2 < 6; (5) > [21]
+ < 6; (5) > [1]# + < 6; (5) > [1] + < 6; (3) > [21]
+ < 6; (3) > [1]

The above results give an indication of the application of SCHUR to
branching rules involving non-compact groups. The examples have been kept
quite small but SCHUR can evaluate terms almost without limit if required.
4.4 Kronecker Products for Sp(2n, R)

The evaluation of Kronecker products of harmonic series irreducible rep-
resentations of the non-compact group Sp(2n, R) have been considered by King
and Wybourne. They establish the complete result

〈k
2

(µ)〉 × 〈 `
2

(ν)〉 = 〈k + `

2
(({µs}k · {νs}` ·D))k+`,n〉 (4.8)

where ((λ))k+`,n is interpreted as null unless the constraints of Eq.(4.2) are



4.4 Kronecker Products for Sp(2n, R) 57

satisfied.
They have conjectured the validity of a somehat simpler formula

〈k
2

(µ)〉 × 〈 `
2

(ν)〉

= 〈k + `

2
(({µ} · {νs}`

N ·DN )N )n with N = min(n, `) (4.9a)

= 〈k + `

2
(({ν} · {µs}`

N ·DM )M )n with M = min(n, k) (4.9b)

The symbol 〈k+`
2 (λ)〉n is interpreted as a harmonic series irreducible representa-

tion subject to a two stage modification that first modifies (λ) in O(k + `) and
then modifies in U(n). These modifications are automatically done in SCHUR .

To date no counter-example to Eq.(4.9) is known in spite of much search-
ing. King and Wybourne have presented arguments in favour of the plausibility
of their conjecture but to date no formal proof has been offered. Currently there
is implementation of both Eq.(4.8) and (4.9) in SCHUR but only when a complete
proof is obtained can one consider the results with certainty from Eq.(4.9). As
an example of the implementation of Eq. (4.9) we have

REP>

->gr spr8

Group is Sp(8,R)

->p s1;21,2;31

< 3; (92) > + < 3; (912) > + 2 < 3; (83) >
+ 4 < 3; (821) > + 2 < 3; (813) > + 3 < 3; (74) >
+ 7 < 3; (731) > + 4 < 3; (722) > + 5 < 3; (7212) >
+ < 3; (72) > + < 3; (712) > + 2 < 3; (65) >
+ 8 < 3; (641) > + 8 < 3; (632) > + 8 < 3; (6312) >
+ 2 < 3; (63) > + 4 < 3; (6221) > + 4 < 3; (621) >
+ 2 < 3; (613) > + 3 < 3; (521) > + 7 < 3; (542) >
+ 6 < 3; (5412) > + 2 < 3; (54) > + 4 < 3; (532) >
+ 8 < 3; (5321) > + 5 < 3; (531) > + 3 < 3; (522) >
+ 4 < 3; (5212) > + < 3; (52) > + < 3; (512) >
+ 3 < 3; (423) > + 4 < 3; (4221) > + 3 < 3; (421) >
+ 4 < 3; (4321) > + 4 < 3; (432) > + 4 < 3; (4312) >
+ < 3; (43) > + 2 < 3; (4221) > + 2 < 3; (421) >
+ < 3; (413) > + < 3; (33) > + 2 < 3; (3221) >
+ < 3; (321) > + < 3; (322) > + < 3; (3212) >

also in agreement with Eq.(4.8). A boolean SB_CONJecture has been added
to SCHUR to permit the user to toggle between the two equations. Setting the
boolean as TRUE leads to use of Eq.(4.8) and FALSE to use of Eq.(4.9).
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4.5 Sp(2n, R) Plethysms

The resolution of symmetrised powers of the fundamental irreps 〈s; (0)〉
and 〈s; (1)〉 is important in practical calculations. The Sp(2n, R) content of
such plethysms involves an infinite set of irreps and clearly, as with Kronecker
products, the output must be truncated. This requires some experience. In
making these calculations SCHUR first performs plethysms at the U(n) level and
then innverts the resulting U(n) irreps to produce a list of Sp(2n, R) irreps up
to the weight prescribed by the value of SETLIMit. The plethysms at the U(n)
level are rendered finite by setting the value of SET PWT.

The procedure is illustrated by the following example to obtain the
Sp(6, R) content of 〈s; (0)〉 ⊗ {21} to weight 16 and to produce the output as a
TEX table.

REP mode

REP>

group spr6

Group is Sp(6,R)

REP>

setlimit16

REP>

set_pwt16

REP>

sb_rev true

REP>

sb_tex true

REP>

columns2

REP>

pl s;0,21

\+$<s1;(2)>$&$ + \ <s1;(4)>$\cr

\+$ + \ <s1;(51)>$&$ + \ <s1;(6)>$\cr

\+$ + \ <s1;(71)>$&$ + \ 2<s1;(8)>$\cr

\+$ + \ <s1;(91)>$&$ + \ 2<s1;(10\ )>$\cr

\+$ + \ 2<s1;(11\ 1)>$&$ + \ 2<s1;(12\ )>$\cr

\+$ + \ 2<s1;(13\ 1)>$&$ + \ 3<s1;(14\ )>$\cr

\+$ + \ 2<s1;(15\ 1)>$&$ + \ 2<s1;(16\ )>$\cr

REP>

The group was set as Sp(6, R). The output was limited to terms of
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weight ≤ 16 by invoking the SCHUR commands SETLIMit and SET PWT.
The command SB REV TRUE was issued to have the output list partitions
in order increasing weight while the command SB TEX TRUE instructed
SCHUR to output the result in plain TEX with COLumns¿ set to 4. The re-
sultant output was then capable of being trivially formed into TEX boxes. The
table was then formed from the above output by writing

\setbox1=\vbox{\settabs3\columns{

\+$<s;(0)>\otimes\{21\}$&$<s1;(2)>$&$ + \ <s1;(4)>$\cr

\+&$ + \ <s1;(51)>$&$ + \ <s1;(6)>$\cr

\+&$ + \ <s1;(71)>$&$ + \ 2<s1;(8)>$\cr

\+&$ + \ <s1;(91)>$&$ + \ 2<s1;(10\ )>$\cr

\+&$ + \ 2<s1;(11\ 1)>$&$ + \ 2<s1;(12\ )>$\cr

\+&$ + \ 2<s1;(13\ 1)>$&$ + \ 3<s1;(14\ )>$\cr

\+&$ + \ 2<s1;(15\ 1)>$&$ + \ 2<s1;(16\ )>$\cr}}

$$\boxit{\boxit{\box1}}$$ which when TEX compiled yields

< s; (0) > ⊗{21} < s1; (2) > + < s1; (4) >
+ < s1; (51) > + < s1; (6) >
+ < s1; (71) > + 2 < s1; (8) >
+ < s1; (91) > + 2 < s1; (10 ) >
+ 2 < s1; (11 1) > + 2 < s1; (12 ) >
+ 2 < s1; (13 1) > + 3 < s1; (14 ) >
+ 2 < s1; (15 1) > + 2 < s1; (16 ) >

There are no restrictions placed on the Sp(2n, R) irrep used in the
plethysm computation but the evaluation of plethysms for irreps other than
the two basic irreps will be very slow.

The group SO∗(2n) has recently been added to SCHUR. Plethysms for
the group SO∗(2n) are evaluated as for the group Sp(2n, R) except for the
entry of the SO∗(2n) irrep [k; (λ)] as k; λ, likewise for the evaluation of the
SO∗(2n) → Un branching rules. Extensive examples of the use of SCHURfor the
group SO∗(2n) can be seen at the WEB pages:-
http://www.phys.uni.torun.pl/∼bgw
At the same site there is information on using SCHURfor the non-compact group
U(p, q). More technical details on these groups can be found by consulting
references [46], [52], [119] and [120].
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5.1 Introduction to Tutorials

It is now time for the user to start seriously getting into SCHUR. In this chapter
we present four tutorials designed to assist the user in gaining familiarity with
the many features of SCHUR. It is highly desirable that the user work through
the tutorials in the order they are presented. In Chapter Six we continue with
two advanced tutorials which will fully demonstrate the versatility of SCHUR.
Finally in Chapter Seven we give some detailed examples drawn from various
areas of physics, mathematics and chemistry.

The individual commands of SCHUR are described in detail in Appendix
A and the novice will need to refer to the appropriate entries as he or she pro-
ceeds through the tutorial. In most cases the abbreviated forms of the commands
are used. In order to shorten the length of commands a number of other ab-
breviations have been used. These are given in the table below. We also repeat
here the table of commands as given in Appendix A, with the abbreviated forms
being printed in boldface letters.

ch = change, conv = convert, e = elementary
fn = function grN = group number, h = homogeneous
i = inner, int = integer m = monomial
o = outer, op = operator, p = power sum
p = pfn, q = qfn , rd = reduce
rk = rank, rm = remove rp = replace
s = sfn, sb = setboolean, std = standardise
wr = write, wt = weight

Table A.1 All the commands in SCHUR.
ABSoluteValue ADD ALLskewSfn
ASSOCiate ATtachPartitionToSfn AUtoOrIsoMorphism

BRanch BRMode

CANcelDatFile CASIMIRGnthTrace CASimirNthordertrace
CH_CoeffsToOneForSfns CH_LabelForOn CH_PhaseOfSfns
CH_SpinIndex CH_UoneReps CLASS
COLumns COMPare COMPLement
CONJADD CONJugateSfnList CONSPLIT
CONTENT CONTractGroups CONTRAGredientRep
CONV_D_TO_Rep CONV_D_TO_Sfn CONV_R_TO_Sfn
CONV_S_TO_Rep COUNTCoeffsInList COUNTTermsInList
COVariant

DEAD DIMension DPMode
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D_TO_Plabel DYNKINIndex

END ENTerVar EQualSfnList
E_TO_FSymmFn E_TO_HSymmFn E_TO_MSymmFn
E_TO_SSymmFn EXITmode EXPandSfnList

FFPROD FIRSTPart FN
FPROD FRACAHnotation FROB
F_TO_ESymmFn F_TO_HSymmFn F_TO_MSymmFn
F_TO_SSymmFn FUSion

GENERIC GENprod GRoup
GWT

HALLpolynomialProduct HCLASS HEAPstatus
HECKE HELP HSTD
HSTDList H_TO_ESymmFn H_TO_FSymmFn
H_TO_MSymmFn H_TO_SSymmFn

INDEXsequence INSertPartitionIntoSfn INTegerDivideCoeffs
INVerseseries I_PLethysmRd I_QfnProduct
I_sfnProduct I_SFNQfnProduct

KINSert KMatrix Kostka

LABel LASTresult LATticetest
LENgthOfPartitionsSelectLICENSE LINES
LOadFile LOGfile LSEQuence

MACMixedSeries MACseries MAKEwtOfSfnToN
MAXCoeffInList MIXedTensorReps M_TImesSfnProduct
M_TO_ESymmFn M_TO_FSymmFn M_TO_HSymmFn
M_TO_SSymmFn MUlt_CoeffsByAnInt MULT_List
MULT_Ntimes MULT_PartsByAnInt MULT_SelectInList
MULT_SPlitIntoTwoLists MYlistOfSfns

NLambda NSKew NSTDise

ONSCalar O_PfnProduct O_QfnProduct
O_Restrict O_sfnProduct

PARITYsequence PAUSE PLethysm
PLG ProductKronecker PROPertyOfRepList
P_TO_Dlabel P_TO_SSymmFn
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QEXPandSpecialSeries QQEXpandSpecialSeries QQSEries
QSAME QSERies Q_TO_SsymmFn

RACAHnotation RAISEInverseOp RAISEop
RD_I_QfnProduct RD_I_sfnProduct RD_RAISEInverseOp
RD_RaiseOp READFnFromDisk REMark
REPmode RETurn RIEMANNList
RIEMANNPlethList RIEMANNScalarsOrderN RM_EVENPARTS
RM_EVENRkSfnsOnly RM_EVENWtInList RM_FirstPartOfSfn
RM_Group RM_NMP RM_ODDPARTS
RM_ODDRkSfnsOnly RM_ODDWtInList RM_PartitionFromSfn
RM_PARTSequalN RM_RepeatedPartsSfns RM_SOnEvenLabels
RM_UoneWtOverMax RP_FirstPartBySpin RP_RepOrSfnByWt
RP_SfnCoeffByInt RSAMEwtSfnList RULE
RVar

SAMEwtSfns SAVEsetVar SB_Bell
SB_CONjecture SB_CUT SB_Digits
SB_DIMension SB_LISToutput SB_More
SB_POWerNotation SB_PROGress SB_Qfn
SB_RD_notation SB_REVerseOrder SB_TexOutPut
SCALARInner SCHAR SERIESTErmsThatSkew
SERiesToIntWt SETFnVar SETLIMit
SET_PWT SETRVar SETSVar
SETVarInDPmode SFNmode SIGNSEQuence
SK_Pfn SK_Qfn SK_sfn
SMON SNchar SPIN
SPLitIntoSpinAndTensor SPONModify SPRCH
SPREXtend SPSTAR SQuares
STARequivalent STATusOfSchur STD
STD_OneDprep STD_Qfn S_TO_ESymmFn
S_TO_FSymmFn S_TO_HSymmFn S_TO_MSymmFn
STOP S_TO_PsymmFn S_TO_QsymmFn
SUBtract SUM SUMSQuares
SUPpressOutputToScreen SVar SWAPgroups

TABleOfBranchingRules

UONEAddInteger UONEDivInteger UONETrace

VarForDpreps VMult

WHATGroup WITH WRFNTODisk
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WRfnToScreen WSEQuence WTofRepOrSfnSelect

YHooklengths YOungDiagrams YShapeSelect

Zero

5.2 Tutorial 1. : Getting Started in the SFNmode

The objective of this tutorial is to gain familiarity with input/output in SCHUR

and to explore features of the SFNmode. We assume you have loaded the files
supplied into the appropriate directories. To start up a SCHUR session simply go
to the appropriate directory in your setup and enter the command SCHUR to
activate the SCHUR.EXE file. (You’ll probably want to set up a SCHUR.BAT
file to handle your start-up). Your screen should now be exhibiting information
similar to that below with a flashing cursor below DP>.

(If you wish to EXIT, enter ’END’)

(If you wish to obtain HELP, enter ’?help’)

DPrep Mode (with function)

DP>

-

Notice the very important message telling you how to exit SCHUR and how to
obtain HELP information. Let us put SCHUR into the SFNmode by entering
the command SFN followed by <CR> to give:

sfn

Schur Function Mode

SFN>

-

SCHUR is case independent so it matters not that we have entered the command
in lower case. Now try and repeat the Sample: 1 input given on page 8 and
follow it with the command lastresult. Your screen output should look like:-
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4321+21+621+54+341+1+4~321+0+71

{4321} + {21} + {621} + {54} + {341} + {1} + {4-321}

+ {0} + {71}

SFN>

last

{71} + {621} + {54} + {4321} + {4-321} + {341} + {21}

+ {1} + {0}

SFN>

std last

{71} + {621} + {54} + {4321} + {21} + {1} + {0}

SFN>

-

Notice how even after the command last produced a nice sorted list there
remained two non-standard partitions “4-321” and “341”. Use of the command
sequence std last results in a list that is correctly standardised. This is our first
example of nested commands. Issue the command yo last and we obtain:-

SFN>

yo last

OOOOOOO OOOOOO OOOOO OOOO OO O .

O OO OOOO OOO O

O OO

O

SFN>

-

Do not ignore the important “.” which represents the empty Young diagram
corresponding to {0}.
An example of the Littlewood-Richardson rule is readily generated by entering
the command “o21,21”.If we wanted to see the Young diagrams drawn we could
follow with the command “yo last”. We could however get to the desired result
by issuing the command sequence “yo o21,21” to give
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SFN>

yo o21,21

2

OOOO OOOO OOO OOO OOO OO OO

OO O OOO OO O OO OO

O O O OO O

O O

SFN>

-

Notice that the multiplicities other than +1 appear above the relevant Young
diagram. The result of “o21,21” has not been lost as a return of “last” will
quickly reveal. Entering the command “countc last” will show that the sum of
the multiplicities is indeed 8. More dramatically, enter the command sequence
“countc o4321,4321” and note the output is simply “CoeffSum = 930” meaning
that the sum of the multiplicities is 930. How many distinct Young diagrams
arise in that case? Simply enter “countt last” and find out! The result of
“o4321,4321” is still there as the command “last” will quickly fill the screen and
the presence of “more” on the screen awaits your pressing a key to give another
full screen and some more.

By now you should be getting the idea of inputting into the SFNmode
of SCHUR. Appendix A gives many examples of the use of all the commands
in SCHUR. Try to reproduce some of these and then make up some examples
of your own. Then try making sequences of nested commands. The following
exercises are chosen to illustrate further use of SCHUR.

2.1 Study the output produced successively from the following commands
“sk21,p” , “sk last,q” and ”sk sk21,p,q” and explain the final result.

2.2 Study the output produced successively from the following commands
“i32,41”, “rd_i2,1” and “makewt5,rd_i2,1”. Why is the output from the
first and last command the same?

2.3 Consider the command sequence “wt4,o ser4,p,ser4,q”. Before entering
the command what output do you think will result? Now try it.

2.4 You want a list of all the partitions of all the integers up to n where n is
not too large, say n < 20. Show that the command “ser n,f” yields the
desired result and that “countc ser20,f” shows that the total number of
partitions for n = 0, 1, . . . , 20 is 2715.

2.5 Show that by issuing the command “countc wt-20ser20,f” there are 627
partitions of the integer 20. NB. On installations that are short on
memory you might want to consider smaller examples.

2.6 Show that the command sequence “wt-105,ser105,t” generates just one
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partition. Why?
2.7 Try analysing the following command sequence

“wt4,pl,ser4,m,4”

and then try running it first as a single command and then try to repro-
duce the result by issuing a sequence of three separate commands. The
above sequence is actually relevant to a problem involving the symplectic
nuclear model.

2.8 Just to remind ourselves that SCHUR handles lists of objects use SCHUR

to calculate the following: “o21+3,21+4”, “i21+3,21+4” and
“pl21+3,21+4”. Think about the second result.
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5.3 Tutorial 2 : Exploring the REPmode

The REPmode is primarily for calculating the properties associated with a par-
ticular group. Only operations that stay within the set group are permitted.
That, for example, excludes branching rules that result in a change of the group.
Entry into the REPmode is made by issuing the command “rep” from either
the SFNmode or the DPMode. The first action to be taken upon entering the
REPmode is to check if a group has been set. If a group is already set, perhaps
from a previous excursion into the REPmode, it will be obvious to the user be-
cause below the REP> will be the statement “The group is ...” with the group
name being given. If the group is not set then you must set it as described under
the command GRoup. For the purposes of this tutorial we shall set the group
as SO8 by issuing the command “gr so8”.

DP>

rep

REP mode

REP>

gr so8

Group is SO(8)

REP>

-

At this stage try to repeat the input/output obtained in Sample:4 (Page 9). We
can obtain information on the properties of an irreducible representation of SO8

by using the command prop followed by one or more irreducible representations
. Thus for the irreducible representation [21] we have:-

REP>

prop21

<dynkin label>(1100)

dimension=160 48*2nd-casimir=84

2nd-dynkin=60

REP>

-

Now evaluate the Kronecker square of the irreducible representation [21] and
then determine its properties as follows:-
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prod21,21

[42] + [41^2 ] + [4] + [3^2 ] + 2[321] + [31^3 ]+

+ [31^3 ]- + 3[31] + [2^3 ] + [2^2 1^2 ]+ + [2^2 1^2 ]-

+ 2[2^2 ] + 3[21^2 ] + 2[2] + [1^4 ]+ + [1^4 ]-

+ 2[1^2 ] + [0]

REP>

prop last

<dynkin label>(2200) + (3011) + (4000) + (0300) + 2(1111)

+ (2020) + (2002) + 3(2100) + (0022) + (0120)

+ (0102) + 2(0200) + 3(1011) + 2(2000)

+ (0020) + (0002) + 2(0100) + (0000)

dimension=25600 2nd-dynkin=19200

REP>

-

We have two checks that indicate the calculation was correctly performed.
1. The dimensional check

Dim(λ× µ) =
∑

ν

cν
λµDim(ν)

which in the above case we have 1602 = 25600 as expected.
2. The 2nd-Dynkin index check that

I2(λ× µ) = I2(λ)×Dim(µ) + Dim(λ)× I2(µ)

=
∑

ν

cν
λµI2(ν)

which in the above case gives 160× 60 + 60× 160 = 19200.
All the basic ideas found in the SFNmode tutorial of nesting commands

carry over into the REPmode. Furthermore, the operations of the SFNmode may
be used in the REPmode by making use of the command conv_s. Thus if the
group had been set as S105 we could issue the command “conv_s wt-105ser105,t”
followed by further commands to get the following
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REP>

gr s105

Group is S(105)

REP>

conv_s wt-105ser105,t

{14 13 12 11 10 987654321}

REP>

dim last

dimension=51378256858073195736701976780308532039663

2776099975918380865685412418054992691200

REP>

dim conv_s wt-105ser105,t

dimension=51378256858073195736701976780308532039663

2776099975918380865685412418054992691200

REP>

Just to get a feeling for the above result spend a few moments imagining you
have a supercomputer that calculates the diagonal matrix elements of the repre-
sentation matrix for a single group element at 109 elements/second. When will
the computer finish its task? Would a 109 times faster computer help?

By now you should have gained sufficient experience to explore on your
own the many commands associated with the REPmode mentioned in Appendix
A. Let us try an exercise. We have set the group as U3 and we want to deter-
mine the decomposition of the irreducible representation {31} when the group
is restricted to U2. We already mentioned that branching rules are not part of
the REPmode but let us see if we can get around that problem. We first set the
group as U3 and calculate the dimension of {31} using the sequence:-

REP>

gr u3

Group is U(3)

REP>

dim 31

dimension=15

REP>

-

It follows from Eq. (2.56) that we need to evaluate {31/M} where M is an
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S−function series. Here we can use the command conv_s. Thus

REP>

conv_s sk31,m

{31} + {3} + {21} + {2} + {1^2 } + {1}

REP>

dim last

dimension=45

REP>

-

In our enthusiasm we have gone ahead and computed the dimension to check the
result and clearly got a wrong answer! We have not reset the group to U2 which
is now the relevant group. Let us fix that now:-

REP>

gr u2

Group is U(2)

REP>

dim last

dimension=15

REP>

rem That is correct!!!

REP>

-

Notice the use of the command rem. Let us repeat the exercise but this time
considering the group-subgroup combination SU3 ⊃ SU2. Eq. (2.56) is still the
relevant result.
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REP>

gr su3

Group is SU(3)

REP>

dim 31

dimension=15

REP>

gr su2

Group is SU(2)

REP>

conv_s sk31,m

{31} + {3} + {21} + {2} + {1^2 } + {1}

REP>

std last

{3} + 2{2} + 2{1} + {0}

REP>

dim last

dimension=15

REP>

-

Notice the introduction of the command std. This has been introduced in SU2

because standard irreducible representations of SUn have n−1 or fewer parts so
that the two part irreducible representations {31}, {21} and {12} must be mod-
ified to produce a list of standard SU2 irreducible representations . It is usually
good practice to follow the use of conv_s with the std command just to be on
the safe side. The above two examples involved the issuing of several commands
to finally yield the result for a single irreducible representation. Clearly the same
set of commands could have handled a string of irreducible representations such
as {31} + {22} + {21} or we could have repeated the commands each time we
wanted the branching for a different irreducible representation. Later we shall
learn how to encaspulate the set of commands in a user defined function that
can be called whenever needed.

Let us conclude this tutorial with some exercises.
3.1 The branching rule for the maximal embedding of Sp2k in U2k is given

as {λ} ↓ {λ/B}. Inversely, for Sp2k ↑ U2k we have < λ >↑ {λ/A}.
(a.) Use SCHUR to show that for 2k = 8

< 21 >↑ {21} − {1} and {21} ↓< 21 > + < 1 >
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(b.) Use the knowledge gained in (a.) to write a single sequence of
commands to evaluate the Sp8 Kronecker product < 21 > × < 21 >.
Check that your result is dimensionally correct and compare your result
with that obtained by simply setting the group as Sp8 and using the
command “prod21,21”.

3.2 Read the information in Appendix A about the command au and use the
command to show that under the SO8 automorphism [1] → [s; 0]− →
[s; 0]+. Use that observation to obtain the content of the Kronecker
products [s; 0]−× [s; 0]− and [s; 0] +× [s; 0]+ from the result obtained
from the command “prod1,1”.

3.3 Set the group as Sp8 and use SCHUR to calculate the Kronecker product
< 321 > × < 421 >. Now save the result by using the command “setr1
last” . Use the command ”zero” to eliminate “last” and then issue
the command “rv1” and you should once again see the output of the
Kronecker product. Now save the “rvar” to a diskfile using the command
“save rvar ’filename’ ” as described in Appendix A. If you now issue the
command “setr1 zero” you will find on saying “rvar 1” the data for the
Kronecker product has been lost and “rvar 1” simply reports zero. All
is not lost as we can reload, even days later, the saved “rvar1” using the
command load as described in Appendix A. Thus issuing the command
“load rvar’filename’ ” followed by the command “rv1” will put to screen
once again the Kronecker product. Note however, we must set the group
as appropriate to that of the saved rvar.
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5.4 Tutorial 3 : The Branching Rule Mode

The BRMode is called from the DPMode by the command BRMode. It al-
lows the user to pick one of SCHUR’s predefined branching rules and evaluate it
repeatedly for different irreducible representations or strings of irreducible repre-
sentations without having to reset the groups or the rule. However, the results of
a calculation, unlike in all other modes of SCHUR, cannot be further processed.
SCHUR considers 55 different group-subgroup structures as shown in Table A.2
of Appendix A. In each case the embedding chosen is defined by that of the
vector irreducible representation of the group. The user may scroll through the
contents of Table A.2 in an active session using the helpfile command ?tab. A
simple example of the use of the BRMode has already been given in Appendix
A which the beginning user should now consult and repeat. Let us begin by
switching to the BRMode to give:-

DP>

brm

Branch Mode

enter branching & rule numbers>

Our response is to decide on the rule we wish to invoke and then enter the rule
number and the group numbers. Thus to evaluate decompositions for SO9 →
SO4×SO5 the rule number is 27 and the group numbers would be 4 and 5. This
information is entered as follows:-

27,4,5

SO(9) to SO(4) * SO(5)

BRM>

-

Note the commas that have been used to separate the numbers. Spaces could
have been equally well used. To obtain branching rules we now simply enter
irreducible representations or strings of irreducible representations of the group
SO9. For example:-
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BRM>

1

[1][0] + [0][1]

BRM>

21

[21]+[0] + [21]-[0] + [2][1] + [1^2 ]+[1]

+ [1^2 ]-[1] + [1][2] + [1][1^2 ] + [1][0]

+ [0][21] + [0][1]

BRM>

21+1

[21]+[0] + [21]-[0] + [2][1] + [1^2 ]+[1]

+ [1^2 ]-[1] + [1][2] + [1][1^2 ] + 2[1][0]

+ [0][21] + 2[0][1]

BRM>

s2

[s;2]+[s;0] + [s;2]-[s;0] + [s;1]+[s;1] + [s;1]+[s;0]

+ [s;1]-[s;1] + [s;1]-[s;0] + [s;0]+[s;2] + [s;0]+[s;1]

+ [s;0]+[s;0] + [s;0]-[s;2] + [s;0]-[s;1] + [s;0]-[s;0]

BRM>

-

Note the appearance of the auxilliary ± labels associated with two-part tensor
irreducible representations and all the spin irreducible representations of the
subgroup SO4. Also note the example of using several irreducible representations
at once. There is nothing to stop you entering multiple copies of irreducible
representations as for example “2.21 + 5.321 + s21”. Let us now change the rule
to obtain some decompositions for the super Lie group chain

SU7/11 → U1 × SU4/5 × SU3/6

In this case the relevant rule number is 33 and the group numbers 4,3,5,6 . But
first we must issue the command “stop” to change the rule leading to:-
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BRM>

stop

enter branching & rule numbers>

33,4,5,3,6

SU(7/11) to U(1) * SU(4/5) * SU(3/6)

BRM>

21

{3}{0}{21} + {-1}{1}{2} + {-1}{1}{1^2 }

+ {-5}{2}{1} + {-5}{1^2 }{1} + {-9}{21}{0}

BRM>

-

In the case of rules 40 to 55 the group-subgroup structures are fixed and it suffices
to enter just the rule number. Thus we have, for example,

BRM>

stop

enter branching & rule numbers>

52

E(8) to SU(3) * E(6)

BRM>

21

{2^2 }(1:1^5 ) + {21}(2:0) + {21}(0:0) + {2}(1:1)

+ {1^2 }(2:1^4 ) + {1^2 }(1:1) + {1}(2:1^2 )

+ {1}(1:1^5 ) + {0}(2:21^4 ) + {0}(0:0)

BRM>

exit

DPrep Mode (with function)

DP>

-

Issuing the command “exit” takes us back to the DPMode the subject of our
next tutorial. In this tutorial you should have not only gained some experience
in using the BRMode but also noted the frequent occurrence of direct products
of groups and that in invoking branching rules the set groups change.
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5.5 Tutorial 4. : Introduction to the DPMode

In many respects the DPMode is the most important of all the modes of SCHUR.
The data created in all the other modes can be accessed in the DPMode and
much more. This is the mode for handling all those situations where more than
one group is involved and where certain operations lead to a change in the set
groups. It is also the mode in which the user can define his or her own functions
and use the important command rule. These two uses are discussed in the two
advanced tutorials given in Chapter Six.

As with the REPmode it is usually necessary to first set the groups. Note
the use of the plural as here we may set products of up to eight groups. The
setting of the groups follows use of the command groups described in Appendix A
and following the formats specified in Table A.3. The entry of the direct product
irreducible representations, commonly herein referred to as DPreps, follows that
of Sample: 5 on page 9. It is important to note that most operations in the
DPMode act on a particular group and it is necessary to indicate the number of
the group being acted upon. The action of some operations will be to change the
group to another group, or even groups, and as a result the order of the groups
may change. After any group changing operation SCHUR will indicate the new
setting of the groups. Where a product of several groups has been set the user
needs to be aware that often seemingly simple operations on relatively modest
irreducible representations may generate a very large output possibly exhausting
the available heap space result in a runtime error being produced.

To illustrate some of the preceding matters let us start in the DPMode
by setting the groups as SU3 × Sp4 × SO6.

DP>

gr3su3sp4so6

Groups are SU(3) * Sp(4) * SO(6)

DP>

-

Now work through the following sequences of commands:-
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DP>

[1*1*1]

{1}<1>[1]

DP>

dim last

Dimension = 72

DP>

prod last,last

{2}<2>[2] + {2}<2>[1^2 ] + {2}<2>[0] + {2}<1^2 >[2]

+ {2}<1^2 >[1^2 ] + {2}<1^2 >[0] + {2}<0>[2]

+ {2}<0>[1^2 ] + {2}<0>[0] + {1^2 }<2>[2]

+ {1^2 }<2>[1^2 ] + {1^2 }<2>[0] + {1^2 }<1^2 >[2]

+ {1^2 }<1^2 >[1^2 ] + {1^2 }<1^2 >[0] + {1^2 }<0>[2]

+ {1^2 }<0>[1^2 ] + {1^2 }<0>[0]

DP>

dim last

Dimension = 5184

The group Sp4 is locally isomorphic to SO5 and hence we should be able to use
the command au to replace the Sp4 irreducible representations by the corre-
sponding SO5 irreducible representations by issuing the command “au gr2,so5”
to produce:-

DP>

au gr2,so5,last

Groups are SU(3) * SO(5) * SO(6)

{2}[1^2 ][2] + {2}[1^2 ][1^2 ] + {2}[1^2 ][0]

+ {2}[1][2] + {2}[1][1^2 ] + {2}[1][0] + {2}[0][2]

+ {2}[0][1^2 ] + {2}[0][0] + {1^2 }[1^2 ][2]

+ {1^2 }[1^2 ][1^2 ] + {1^2 }[1^2 ][0] + {1^2 }[1][2]

+ {1^2 }[1][1^2 ] + {1^2 }[1][0] + {1^2 }[0][2]

+ {1^2 }[0][1^2 ] + {1^2 }[0][0]

DP>

dim last

Dimension = 5184

Note that the groups have been changed but as expected the dimension of the
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result is unchanged. Let us now branch the group SO6 → U1×SU3 noting Table
A.2 of Appendix A. We obtain:-

DP>

br26,6gr3last

Groups are SU(3) * SO(5) * U(1) * SU(3)

{2}[1^2 ]{4}{2} + {2}[1^2 ]{4}{1^2 }

+ 2{2}[1^2 ]{0}{21} + 2{2}[1^2 ]{0}{0}

+ {2}[1^2 ]{-4}{2^2 } + {2}[1^2 ]{-4}{1}

+ {2}[1]{4}{2} + {2}[1]{4}{1^2 }

+ 2{2}[1]{0}{21} + 2{2}[1]{0}{0}

+ {2}[1]{-4}{2^2 } + {2}[1]{-4}{1}

+ {2}[0]{4}{2} + {2}[0]{4}{1^2 }

+ 2{2}[0]{0}{21} + 2{2}[0]{0}{0}

+ {2}[0]{-4}{2^2 } + {2}[0]{-4}{1}

+ {1^2 }[1^2 ]{4}{2} + {1^2 }[1^2 ]{4}{1^2 }

+ 2{1^2 }[1^2 ]{0}{21} + 2{1^2 }[1^2 ]{0}{0}

+ {1^2 }[1^2 ]{-4}{2^2 } + {1^2 }[1^2 ]{-4}{1}

+ {1^2 }[1]{4}{2} + {1^2 }[1]{4}{1^2 }

+ 2{1^2 }[1]{0}{21} + 2{1^2 }[1]{0}{0}

+ {1^2 }[1]{-4}{2^2 } + {1^2 }[1]{-4}{1}

+ {1^2 }[0]{4}{2} + {1^2 }[0]{4}{1^2 }

+ 2{1^2 }[0]{0}{21} + 2{1^2 }[0]{0}{0}

+ {1^2 }[0]{-4}{2^2 } + {1^2 }[0]{-4}{1}

DP>

dim last

Dimension = 5184

Let us now use the command ContractGroups, described in Appendix A, to
combine the two SU3 groups under the Kronecker product as follows:-
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DP>

cont1,4,last

Groups are SU(3) * SO(5) * U(1)

{42}[1^2 ]{-4} + {42}[1]{-4} + {42}[0]{-4}

+ 2{41}[1^2 ]{0} + 2{41}[1]{0} + 2{41}[0]{0}

+ {4}[1^2 ]{4} + {4}[1]{4} + {4}[0]{4}

+ {3^2 }[1^2 ]{-4} + {3^2 }[1]{-4} + {3^2 }[0]{-4}

+ 4{32}[1^2 ]{0} + 4{32}[1]{0} + 4{32}[0]{0}

+ 3{31}[1^2 ]{4} + 3{31}[1]{4} + 3{31}[0]{4}

+ {3}[1^2 ]{-4} + {3}[1]{-4} + {3}[0]{-4}

+ 2{2^2 }[1^2 ]{4} + 2{2^2 }[1]{4} + 2{2^2 }[0]{4}

+ 4{21}[1^2 ]{-4} + 4{21}[1]{-4} + 4{21}[0]{-4}

+ 6{2}[1^2 ]{0} + 6{2}[1]{0} + 6{2}[0]{0}

+ 6{1^2 }[1^2 ]{0} + 6{1^2 }[1]{0} + 6{1^2 }[0]{0}

+ 3{1}[1^2 ]{4} + 3{1}[1]{4} + 3{1}[0]{4}

+ 2{0}[1^2 ]{-4} + 2{0}[1]{-4} + 2{0}[0]{-4}

Finally let us remove the group U1 by use of the command rm_group :-

DP>

rm_g3,last

Groups are SU(3) * SO(5)

{42}[1^2 ] + {42}[1] + {42}[0] + 2{41}[1^2 ]

+ 2{41}[1] + 2{41}[0] + {4}[1^2 ] + {4}[1] + {4}[0]

+ {3^2 }[1^2 ] + {3^2 }[1] + {3^2 }[0] + 4{32}[1^2 ]

+ 4{32}[1] + 4{32}[0] + 3{31}[1^2 ] + 3{31}[1]

+ 3{31}[0] + {3}[1^2 ] + {3}[1] + {3}[0]

+ 2{2^2 }[1^2 ] + 2{2^2 }[1] + 2{2^2 }[0]

+ 4{21}[1^2 ] + 4{21}[1] + 4{21}[0] + 6{2}[1^2 ]

+ 6{2}[1] + 6{2}[0] + 6{1^2 }[1^2 ] + 6{1^2 }[1]

+ 6{1^2 }[0] + 3{1}[1^2 ] + 3{1}[1] + 3{1}[0]

+ 2{0}[1^2 ] + 2{0}[1] + 2{0}[0]

DP>

dim last

Dimension = 5184
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Note our frequent use of the dimensional check. It is a good habit. It helps
avoid mistakes of input etc, or more likely, to indicate mistakes. The preceding
examples illustrate some of the rich features of the DPMode. Note that the
REPmode command conv_s may be also used in the DPMode by the simple
expedience of enclosing the expression in square brackets “[ , ]”. In a similar
fashion rvars can be imported into the DPMode. This feature can often be of
use in writing functions as discussed in the next chapter.
5.6 Exercises

The following exercises illustrate some problems you should now be able to tackle
using SCHUR.

1. The states of the dn electron configuration may be classified by the fol-
lowing chain of groups leading, finally, to the spectroscopic terms 2S+1L.
Use SCHUR to establish the results of Table 5.1 for the spectroscopic
terms of the d5 configuration

U10 ⊃ Sp10 ⊃ SU2 × SO5 ⊃ SU2 × SO3 ∼ SOS
3 × SOL

3 ≡2S+1 L

Table 5.1 Spectroscopic terms of the d5 electron configuration.

Dim SU10 Sp10 SU2 × SO5 SU2 × SO3 SOS
3 × SOL

3
2S+1L

252 {15} < 15 > {5} × [0] {5} × [0] [∆; 2] × [0] 6S
{3} × [2] {3} × [4] [∆; 1] × [4] 4G

[2] [2] 4D
{1} × [22] {1} × [6] [∆; 0] × [6] 2I

[4] [4] 2G
[3] [3] 2F
[2] [2] 2D
[0] [0] 2S

< 13 > {3} × [12] {3} × [3] [∆; 1] × [3] 4F
[1] [1] 4P

{1} × [21] {1} × [5] [∆; 0] × [5] 2H
[4] [4] 2G
[3] [3] 2F
[2] [2] 2D
[1] [1] 2P

< 1 > {1} × [1] {1} × [2] [∆; 0] × [2] 2D

2. If two sets of states of a dn configuration transform under SO5 as the
irreducible representations [λ] and [µ] respectively their matrix elements
of an operator transforming as [ν] will certainly vanish unless

[λ]× [µ] ⊃ [ν]

The Coulomb interaction within the dn configuration can be expanded
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in terms of operators symmetrised with respect to the same groups used
to classify the states. One of the relevant operators transforms as [22]
under SO5. Let c([λ][µ][22]) be the number of times [22] occurs in the
SO5 Kronecker product [λ] × [µ]. Use SCHUR to construct the entries
given in Table 5.2 for the numbers c([λ][µ][22]).

Table 5.2 The numbers c([λ][µ][22]) for irreducible representations of SO5

appropriate to the states of the dn configurations.

[0] [1] [12] [2] [21] [22]
[0] – – – – – 1
[1] – – – – 1 1
[12] – – 1 – 1 1
[2] – – – 1 1 1
[21] – 1 1 1 2 1
[22] 1 1 1 1 1 1

3. Show that for SO5 the irreducible representation [22] occurs once in the
symmetric part of the Kronecker square of the irreducible representation
[22] and once in the antisymmetric part.

5. In the simple SU3 quark model of baryons and mesons the (u, d, s) quarks
span the three-dimensional SU3 irreducible representation {1} while the
corresponding antiquarks (u, d, s) span the three-dimensional SU3 irre-
ducible representation {12}. The SU3 group is sometimes referred to as
the flavour group SUfl

3 .
a. Show that combining quarks with antiquarks leads to an octet and
singlet of mesons.
b. Show that combining a triple product of quarks leads to a baryon
singlet and two baryon octets.

5. A student tries to unite the lowest lying baryons into a single irreducible
representation of a Lie group G. Noting that the baryon octet has spin
Jp = 1

2

+ and the decuplet spin Jp = 3
2

+ identify G and the relevant
irreducible representation she found.

6. Assume that you have the group SUfl
3 , as in exercise 5. Your quarks

are now also endowed with spin (SUs
2 ) and color (SU c

3 ). The total of
18 single quark states span the vector irreducible representation {1} of
SU18 and you have the chain of groups

SU18 ⊃ SUfl
3 × (SU cs

6 ⊃ SUs
2 × SU c

3 )

Assume that each quark is in an S−state and that the states of the six
quark configuration q6, span the totally antisymmetric irreducible repre-
sentation {16} of SU18. In terms of QCD (Quantum ChromoDynamics)
physical states correspond to color singlets i.e. states transforming as
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{0} under SU c
3 . With respect to the color-spin group SU cs

6 this can
only happen if the weight wλ of the partition λ labelling the irreducible
representation {λ} of SU cs

6 is divisible by three. That is for irreducible
representations of null triality.
a. Determine the irreducible representations of SUfl

3 × SU cs
6 contained

in {16} of SU18 that have null triality.
b. Determine the spin content of each SU cs

6 found in (a).
c. Which of the multi-quark configurations q7, q8 and q9 might you
expect to contain color singlet states?
d. In the MIT bag model of multi-quark states there is an energy term
proportional to the eigenvalues of the second-order Casimir operator
of the color-spin group. Show that the eigenvalues for the irreducible
representations {214}, {23} and {32} are in the ratio 1:2:3.

7. Use the command p_to_s to construct the character table of the sym-
metric group S4.

8. Show that the command sequence

compare λ,p_to_s ρ λ, ρ ` n

brings to the screen the value of the characteristic χλ
ρ of Sn.

9. A person wishes to be able to form the product of two S−functions λ
and µ using the Littlewood-Richardson rule retaining only terms whose
first part is ≤ n. Show that the command sequence

conj len n conj o λ, µ

will achieve the desired result.
10. Repeat (9.) for the combination of Q−functions.

— and many a man lives a long life through, think-
ing he believes certain universally received and well
established things and yet never suspects that if he
were confronted by those things once, he would dis-
cover he did not really believe them before, but only
thought he believed them

— Mark Twain, Roughing it, 1872
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Introduction

It is the purpose of this chapter to introduce the user to the task of writing user
defined functions and using the command Rule. These two tutorials are at a
more advanced level and assume that the user has already worked through the
earlier tutorials gaining some familiarity with most of the available commands.
A number of technical points will arise which assume the user is familiar with
much of the material in chapters Two and Three. In the first tutorial the writing
of relatively simple user defined functions is considered. The second tutorial is at
a still more advanced level leading into research applications. For some of these
applications the user may wish to consult the reading list in Chapter Eight.

6.1 Advanced Tutorial 1 : Writing User Defined Functions

The objective of writing user defined functions is to be able to create sequences
of commands that can be encaspulated into a single function which maybe re-
peatedly called upon to carry out the same sequences of commands. In the early
stages the user will want the function to write to screen every line of output and
make frequent dimensional checks until fully convinced that the function fulfils
its tasks correctly. At that stage the output can be restricted to final results and
some of the checking procedures removed.

While it is entirely possible to write functions using the SCHUR com-
mand SetFnVar it is usually preferable to use a text editor to write the function
line-by-line and then read it into SCHUR using the command ReadFnFromDisk.

As a first exercise let us write a simple function that reads in two lists of
S−functions forms their outer product, writes out the number distinct partitions
and the sum of the multiplicities as well as the resultant list of S−functions.

Our objective can be attained by writing the following function:-

rem This forms outer products of S-functions

sfn

sup false

enter sv1

enter sv2

o sv1,sv2

countt last

countc last

stop

We shall assume you have saved this function to your SCHUR directory with the
filename ‘test.fn’. This function deserves a line-by-line comment. The first line is
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a remark that will not appear in the output. The second line “sfn” puts SCHUR

into the SFNmode. The command “sup false” ensures that every line of output
will go to the screen. The next two lines will lead to SCHUR instructing the
user to enter two lists of S−functions. The next line “o sv1,sv2” combines the
two lists using the Littlewood-Richardson rule. The next line counts the number
of distinct terms or partitions while the pentultimate line reports the sum of
the coefficients or multiplicities. The final line “stop” (with a <CR> ) marks
the end of the function. The function is loaded in the DPMode by issuing the
command “readf1’test.fn’ ”. Notice the single quotes about the filename. Failure
to include them will result in an error message. We have designated that this
function be loaded as function 1. Let us now see the function in use:-

DP>

readf1’test.fn’

=-

=-

=-

=-

=-

=-

=-

=-

=-

DP>

wrfn1

rem This forms outer products of S-functions

sfn

sup false

enter sv1

enter sv2

o sv1,sv2

countt last

countm last

DP>

-

Having read the function in we can inspect it in the DPMode at anytime by
issuing the command “wrfn1”. To run the function we simply enter the command
“fn1” and then respond to SCHUR’s requests as shown on the next page.
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DP>

fn1

Schur Function Mode

enter sv1

21

enter sv2

31

{52} + {51^2 } + {43} + 2{421} + {41^3 } + {3^2 1}

+ {32^2 } + {321^2 }

TermSum = 8

CoeffSum = 9

SFN>

-

Note that after finishing its task SCHUR has remained in the SFNmode. We
could have made SCHUR return to the DPMode by putting the command “exit”
as the pentultimate line in the function. However if we wish to use the function
repeatedly we may as well stay in the SFNmode as the function can be accessed
directly within the SFNmode as seen in the following:-

SFN>

fn1

enter sv1

2+1

enter sv2

2+3

{5} + {41} + 2{4} + {32} + 2{31} + {3} + {2^2 } + {21}

TermSum = 8

CoeffSum = 10

SFN>

-

As a second exercise suppose we wished to construct a table of O6 → S6

branching rules, obtaining the dimension of the inputted O6 irreducible repre-
sentation and with the output in TEX. We could construct a function ‘o6s6.fn‘
of the form:-
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gr o6

sb_tex true

enter rv1

sup false

dim[rv1]

br18,6gr1[rv1]

dim last

sb_tex false

stop

Note that before ending the function we restore sb_tex to its default setting.
The entry of the irreducible representation has been given appropriate to the
REPmode even though all the action is taking place in the DPMode. The rvar is
encased in square brackets. If we load this new function as fn1 it will overwrite
the earlier fn1 otherwise we may load it as say fn2 and we may then access either
fn1 or fn2. We shall choose to load it as fn2 and run it as follows:-
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DP>

readf2’o6s6.fn’

=-

=-

=-

=-

=-

=-

=-

=-

DP>

fn2

Group is O(6)

enter rv1

21

Dimension = 64

Group is S(6)

2\{51\} + 2\{42\} + 2\{41^2 \} + \{321\}

Dimension = 64

DP>

fn2

Group is O(6)

enter rv1

s21

Dimension = 280

Group is S(6)

2\{\Delta;21\}_+ + 2\{\Delta;21\}_- + 8\{\Delta;2\}

+ 6\{\Delta;1\} + \{\Delta;0\}_+ + \{\Delta;0\}_-

Dimension = 280

As a third example we consider the use of the reduced notation in-
troduced on page 25 for giving an n−independent treatment of the On ↓ Sn

branching rules for tensor type representations [λ] of On. Salam and Wybourne
(J. Phys. A:Math. Gen. 22 ,3771 (1989) ) have shown that the branching rule
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can be succintly written as

[λ] ↓< 1 > ⊗{λ/G} (6.1)

where we note the skew operation with the S−function series G described on
page 29 and the use of the inner plethysm operation described on page 27. We
propose to write a function acting in the SFNmode that inputs a λ as an svar
and outputs a list of Sn irreducible representations in reduced notation. This
can be accomplished by the following function:-

sfn

enter sv1

i_pl sk sv1,g

stop

Notice how the two operations ‘sk’ and ‘i_pl’ have been combined into
a one line statement. Let us run the function for λ = 321.

DP>

fn1

Schur Function Mode

enter sv1

321

<41> + 2<4> + <321> + 3<32> + 3<31^2 > + 9<31> + 6<3>

+ 3<2^2 1> + 7<2^2 > + <21^3 > + 9<21^2 > + 15<21>

+ 6<2> + 2<1^4 > + 6<1^3 > + 6<1^2 > + 2<1>

SFN>

For an application of this function to the nuclear symplectic shell model
see:-

B. G. Wybourne, The representation space of the nuclear symplectic
Sp(6, R) shell model, J. Phys. A: Math. Gen. 25 4389-98 (1992).
The above function is quite general, making no reference to a particular

value of n. Had we wanted results for a specific value of n we could have followed
the function with the command “MakeWtOfSfnToN” indicating the value of the
integer n.

As the fourth example we consider the writing of a function to evaluate
signed sequences for the groups ON and Sp2k. In practical applications it is
sometimes necessary to determine what sequence of non-standard labels will,
upon application of the appropriate modification rules yield a given standard [λ]
or [λ]∗ of ON or < λ > of Sp2k. (See, for example, D. J. Rowe, B. G. Wybourne
and P. H. Butler, Unitary representations, branching rules and matrix elements
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for the non-compact symplectic groups J. Phys. A: Math. Gen. 18 939–953
(1985).) For the group O2k the modification rules can be written in the form

[λ1λ2 . . . λk(Co)] = [λ1λ2 . . . λk]∗ (6.2a)
[λ1λ2 . . . λk(Ce)] = [λ1λ2 . . . λk] (6.2b)

with all other partitions having more than k parts vanishing. The series Co and
Ce are restricted to members of the C series with Co containing only partitions
of odd Frobenius rank and Ce of even rank.

The corresponding rules for O2k+1 are

[λ1λ2 . . . λk(Go)] = [λ1λ2 . . . λk]∗ (6.3a)
[λ1λ2 . . . λk(Ge)] = [λ1λ2 . . . λk] (6.3b)

with all other partitions having more than k parts vanishing. The series Go

and Ge are restricted to members of the G series parts with Go containing only
partitions of odd weight and Ge of even weight.

For the symplectic group Sp2k the rule is

< λ1λ2 . . . λk(A) >=< λ1λ2 . . . λk > (6.4)

with all other partitions having more than k parts vanishing and here the A
series is used. This last case is the simplest and exposes most of the essential
features that will arise in writing functions for the other signed sequences.

It is crucially important to note that in both Eq.(6.3) and (6.4) the
partitions (λ) may have fewer than k vanishing parts and hence may involve the
trailing zeroes referred to in Chapter One.

Since we are dealing with a single group that will stay constant we should
work in the REPmode. This will be done by making the first line of our function
the command ‘rep’. The second line must set the group which we will here choose
as ‘gr sp10’. For reasons that will shortly become apparent, we will enter the
standard tensor irreducible representation as an svar and hence will write the
third line as ‘enter svar 1’. So as to initially see every line of output let us make
the fourth line ‘sup false’. That completes the preamble.

The next step is to generate the terms in the appropriate series up to a
prescribed cutoff in the weight and length of the partitions. This maybe done
by use of the two commands ‘Length’ and ‘SeriesToIntWt’ . For example we
might use the command sequence ‘len10 ser20,a’ which would generate all the
terms of the A−series up to weight 20 and length 10. These must then have the
partition (λ) INSerted in front of them as in Eq. (6.4). If `λ < k then there will
be trailing zeroes. This problem can be overcome if before issuing the INSert
command we ATtach the partition (1k) to ‘svar1’. This will ensure there are
no trailing zeros and later we can remove the partition (1k) using the command
rm_PartitionFromSfn. Thus we have for Sp10 the command sequence

ins at svar1 1^5 len10ser20,a
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We can now safely remove the partition 15 which will result in a list of non-
standard S−functions which must be made standard by use of the command
std resulting in a list of now standard S−functions which must be converted
into irreducible representations using the conv_s command. Thus we could
accomplish all of this paragraph by issuing the single command sequence

conv_s std rm_p1^5 ins at svar1 1^5 len10 ser 20,a

We can check the result by applying the modification rules to the output by
again using the command std and we should obtain the inputted irreducible
representation with a multiplicity equal to the number of terms in the outputted
signed sequence.

Thus the final function could be written as:-

rep

gr sp10

enter sv1

sup false

conv_s std rm_p1^5 ins at svar1 1^5 len10 ser20,a

std last

stop

Running this function leads to the output:-

DP>

fn1

REP mode

Group is Sp(10)

enter sv1

1

<421^13 > - <321^12 > + <2^2 1^11 > - <1^11 > + <1>

5<1>

REP>

The above example illustrates the way in which quite complex sets of
commands can be written as a single sequence. By now the user should be
able to write simple functions with some facility and should be able to write
functions for each of Eq. (6.2a) - (6.3b). (You will need to use commands such
as Rm_EvenRkSfnsOnly.). See also SIGNSEQuence.

6.2 Advanced Tutorial 2 : Using the Rule Command

So far all the functions we have written involved the setting of, at most, a single
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group. There are many cases where we might wish to consider direct product
groups or to evaluate quite complex expressions say for example

[λ] →
∑

ζ

< {{λ/C} ◦ ζ}/B > × < ζ/B > (6.5)

which is the O4mn → Sp2m×Sp2n branching rule for tensor irreducible represen-
tations. As we shall see shortly such expressions can be evaluated readily using
the Rule command. To start with using Rule let us consider the formula for
evaluating the Kronecker product of two irreducible representations of Sp2k

< λ > × < µ >=
∑

ζ

< λ/ζ · µ/ζ > (6.6)

where the · signifies outer S−function multiplication and we have to sum over
all S−functions ζ that will simultaneously skew with both λ and µ. We can
anticipate that the outer S−function multiplication will be accomplished by the
command Contract which will change the number of groups set. This suggests
we should start by setting two identical symplectic groups. A possible function
could read:-

enter group sp(n)*sp(n)

enter rv1

enter rv2

dim[rv1*rv2]

sup false

rule[rv1*rv2]sum sk1sk2

cont1,2 o last

std last

dim last

stop

Study each line carefully and see if you can determine its action. Note
that the function runs in the DPmode and λ and µ are entered as rv1 and rv2
and then the dimension of their product calculated for checking purposes. The
summation with respect to ζ is done using Rule with the 1 and 2 referring to
the irreducible representations of groups 1 and 2. Contract is used after Rule
to evaluate the outer S−function products. At that stage we cannot gaurantee
that all of the resulting partitions will correspond to standard labelled irreducible
representations of Sp2k and hence we should apply std to the output. Finally
we should make a dimensional check of the result. Now run the function:-
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fn1

enter group sp(n)*sp(n)

2sp6sp6

Groups are Sp(6) * Sp(6)

enter rv1

21

enter rv2

31

Dimension = 12096

<21><31> + <2><3> + <2><21> + <1^2 ><3> + <1^2 ><21>

+ 2<1><2> + <1><1^2 > + <0><1>

Group is Sp(6)

<52> + <51^2 > + <5> + <43> + 2<421> + <41^3 > + 3<41>

+ <3^2 1> + <32^2 > + <321^2 > + 3<32> + 3<31^2 > + 2<3>

+ 2<2^2 1> + <21^3 > + 3<21> + <1^3 > + <1>

<52> + <51^2 > + <5> + <43> + 2<421> + 3<41> + <3^2 1>

+ <32^2 > + 3<32> + 3<31^2 > + 2<3> + 2<2^2 1> + 3<21>

+ <1^3 > + <1>

Dimension = 12096

DP>

Notice that in replying to the request to ‘enter group sp(n)*sp(n)’ the
reply includes the number of groups but not the prefix group. The first lot of
output has given the result of the skew operations while the second lot of output
has come from the contraction with the consequential reduction in the number
of groups set. The action of the std command has modified the non-standard
irreducible representations involving partitions into more than three parts.

Let us return to the evaluation of Eq. (6.5). To begin we need to set the
initial group O4mn and then enter the desired irreducible representation as an
rvar. We should then compute its dimension for checking purposes. We are now
finished with the group O4mn and must change the group setting to Sp2m×Sp2n.
We now have set the direct product of two groups and our starting irreducible
representation will be of the form [rv1 ∗ 0]. The first task is to skew rv1 with
the C−series. This can be done by the Rule command ‘rule [rv1*0] sk1 with c’.
This gives a number of irreducible representations of Sp2m×Sp2n which may be
referred to as ‘last’. We need to sum over all S−functions ζ that can form an
inner product with the terms in {λ/C} and at the same time associate the same
value of ζ with the second group, Sp2n. This may be accomplished by the Rule
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command ‘rule last sum i1 eq2’. At this stage we have calculated the terms in∑
ζ

< {{λ/C} ◦ ζ} > × < ζ > (6.7)

It remains now only to skew the irreducible representations of each group sep-
arately with the compatible members of the B−series and then to modify the
resulting list of irreducible representations of Sp2m × Sp2n and make a dimen-
sional check. All the above can be encaspulated in the function given below:-

enter group o4mn

enter rv1

dim[rv1]

enter group sp2m*sp2n

rule[rv1*0]sk1with c

rule last sum i1eq2

rule last sk1with b

rule last sk2with b

sup false

std last

dim last

stop

Notice where we have inserted the ‘sup false’ command. We have agreed
to suppress all output bar that of the last two commands. Had we omitted it
the only output would be that of the last commmand. Had we placed ‘sup false’
after the third line all the intermediate steps of the calculation would have been
sent to the screen. Let us now run the function:-
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fn1

enter group o4mn

o32

Group is O(32)

enter rv1

21

Dimension = 10880

enter group sp2m*sp2n

2sp8sp4

Groups are Sp(8) * Sp(4)

<3><21> + <3><1> + <21><3> + <21><21> + 2<21><1>

+ <1^3 ><21> + <1^3 ><1> + <1><3> + 2<1><21> + 2<1><1>

Dimension = 10880

DP>

Notice the function was written so that we could choose the groups O4mn

and Sp2m ∗Sp2n. Had we wished to obtain results for many different irreducible
representations for say O32 → Sp8×Sp4 then we might have written the function
as:-

group o32

enter rv1

dim[rv1]

group2sp8sp4

rule[rv1*0]sk1with c

rule last sum i1eq2

rule last sk1with b

rule last sk2with b

sup false

std last

dim last

stop

As a further example of writing functions, this time using both Rule and
Contract, let us consider writing a function to evaluate the branching rule
SO7 ↓ SU2 × SU2 × SU2 first for tensor irreducible representations [λ] and
then for spin irreducible representations [s; λ]. We first note that the vector
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irreducible representation [1] decomposes as

[1] ↓ {1}{1}{0}+ {0}{0}{2}

An arbitrary tensor irreducible representation [λ] of SO7 decomposes as

[λ] ↓
∑
ρ,τ

{λ/Cρ} ◦ {τ} · {τ} · {2} ⊗ {ρ} (6.8)

The above result follows from using Eqs. (2.34) to evaluate the plethysm

({1}{1}{0}+ {0}{0}{2})⊗ [λ]

and making the observation that under SO7 ↑ SU7

[λ] ↑ {λ/C}

We note from Eq. (6.8) that the operations skew, inner and plethysm must be
used as well as the modification rules for SU2. The following function may be
constructed to do the job:-

gr so7

enter rv1

dim[rv1]

gr4su2su2su2su2

rule[rv1*0*2*0]sk1 with C

rule last sum sk1 eq4

cont3,4 pl last

std_o gr3,last

rule last sum i1eq2

std last

sup false

last

dim last

stop

This function deserves close attention as it illustrates a number of new features.
First note that 4 SU2 groups have been set, this is so that we can perform
the necessary plethysm and then contract the last two SU2 groups to a single
SU2 group. Second note the use of the operation Equal and SUM being used
together. Third note that after performing the contraction the resulting SU2

irreducible representations have been modified using std_o. This has been done
to reduce the number of intermediate terms and hence memory requirements.
The modification could have been left to the end using std but larger examples
will readily exhaust the available heap space. The reduction in the number of
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intermediate terms can be seen by moving the command ’supoutpt false’ to just
below the fourth line and entering rv1 as ’221’ and then repeating the example
with the command line ’std_o gr3,last’.

To obtain the corresponding result for the spin irreducible representa-
tions [∆; λ] of SO7 we first note that

[∆; λ] = ∆ · [λ/P ] = ∆ · {λ/PC} = ∆ · {λ/E} (6.9)

and that under SO7 ↓ SU2 × SU2 × SU2

∆ ↓ {0}{1}{1}+ {0}{0}{2} (6.10)

Noting Eq. (6.8) we then obtain the branching rule

[∆; λ] ↓ ∆ ·
∑
ρ,τ

{λ/Eρ} ◦ {τ} · {τ} · {2} ⊗ {ρ} (6.11)

leading us to write the function as

gr so7

enter rv1

dim[rv1]

setr1ch_s rv1

gr4su2su2su2su2

rule[rv1*0*2*0]sk1 with e

rule last sum sk1eq4

cont3,4,pl,last

std_o gr3,last

rule last sum i1eq2

std last

p last,[0*1*1]+[1*0*1]

sup false

last

dim last

stop

In this case rv1 is entered as a spin irreducible representation and its dimension
determined. The command line ’setr1ch_s rv1’ removes the spin index and the
function follows closely the previous case, apart from changing the skew series
from C to E. Finally the whole result is multiplied by the result of Eq. (6.10).

6.3 The U1 trick in SCHUR

The unitary group in one dimension has one dimensional irreducible represen-
tations . Kronecker multiplication is accomplished by simple addition of the ir-
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reducible representation labels. This simple observation allows the SCHUR user
to employ a simple trick to get information that might be thought to be outside
the scope of SCHUR. We illustrate this by an application to the calculation of
the characters of the Hecke algebras Hn(q) of type An−1 as outlined by King
and Wybourne (J. Phys. A: Math.Gen. 23 L1193–l1197 (1990). Basically they
give a generalised power sum expansion

pr(q; t) =
r−1∑

a,b=0
a+b+1=r

(−1)bqas(a+1,1b)(t) (6.12)

where q is an arbitrary but fixed complex parameter, t = (t1, t2, . . .) an arbitrary
set of indeterminates and the S−functions sλ are all single hooks. For ρ =
(ρ1, ρ2, . . .) they let

pρ(q; t) = pρ1(q; t), pρ2(q; t), . . . (6.13)

and establish the relationship

pρ(q; t) =
∑

λ

χλ
ρ(q)sλ(t) (6.14)

where the χλ
ρ(q) are characters of Hn(q) for the representation πλ for the conju-

gacy class ρ.
As an example, consider the case of calculating the characters χλ

ρ(q) for
the conjugacy class (321) for H6(q). We have from Eq. (6.12) that

p3(q) = q2s3 − qs21 + s13

p2(q) = qs2 − s12

p1(q) = s1 (6.15)

where for typographical convenience we have suppressed the variables t. It fol-
lows from Eq. (6.13) that

p(321)(q) = (q2s3 − qs21 + s13)(qs2 − s12)s1 (6.16)

Thus to calculate the desired characters we need to multiply out the right-hand-
side of Eq. (6.16) and then gather together the polynomials in q associated with
each sλ. This may be done in SCHUR as follows.

1. Set the groups in the DPMode as U6 × U1.
2. Set three variables var1, var2, and var3 for the three terms in Eq. (6.15)

with the S−function as an irreducible representation of U6 and its asso-
ciated q exponent as the U1 irreducible representation.

3. Now multiply the three vars together using the command ’p var1,p
var2,var3’.

4. Each irreducible representation {a} of U1 is associated with a q exponent
a.
The whole procedure can be viewed as:-
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DP>

group 2 u6u1

Groups are U(6) * U(1)

DP>

setp1[3*2]-[21*1]+[1^3*0]

DP>

setp2[2*1]-[1^2*0]

DP>

setp3[1*0]

DP>

p var1,p var2,var3

{6}{3} + 2{51}{3} - 2{51}{2} + 2{42}{3} - 3{42}{2}

+ {42}{1} + {41^2 }{3} - 4{41^2 }{2} + 2{41^2 }{1}

+ {3^2 }{3} - {3^2 }{2} + {3^2 }{1} + {321}{3}

- 4{321}{2} + 4{321}{1} - {321}{0} - 2{31^3 }{2}

+ 4{31^3 }{1} - {31^3 }{0} - {2^3 }{2} + {2^3 }{1}

- {2^3 }{0} - {2^2 1^2 }{2} + 3{2^2 1^2 }{1}

- 2{2^2 1^2 }{0} + 2{21^4 }{1} - 2{21^4 }{0}

- {1^6 }{0}

DP>

leading to the TEXoutput:-
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sb_tex true

DP>

last

\{6\}\{3\} + 2\{51\}\{3\} - 2\{51\}\{2\} + 2\{42\}\{3\}

- 3\{42\}\{2\} + \{42\}\{1\} + \{41^2 \}\{3\}

- 4\{41^2 \}\{2\} + 2\{41^2 \}\{1\} + \{3^2 \}\{3\}

- \{3^2 \}\{2\} + \{3^2 \}\{1\} + \{321\}\{3\}

- 4\{321\}\{2\} + 4\{321\}\{1\} - \{321\}\{0\}

- 2\{31^3 \}\{2\} + 4\{31^3 \}\{1\} - \{31^3 \}\{0\}

- \{2^3 \}\{2\} + \{2^3 \}\{1\} - \{2^3 \}\{0\}

- \{2^2 1^2 \}\{2\} + 3\{2^2 1^2 \}\{1\}

- 2\{2^2 1^2 \}\{0\} + 2\{21^4 \}\{1\} - 2\{21^4 \}\{0\}

- \{1^6 \}\{0\}

DP>

$$\eqalignno{

&\{6\}q^3 + \{51\}(2q^3-2q^2) + \{42\}(2q^3-3q^2+q)

+ \{41^2\}(q^3-4q^2+2q)\cr

& + \{3^2\}(q^3-q^2+q) + \{321\}(q^3-4q^2+4q-1)

+\{31^3\}(-2q^2+4q-1)\cr

& + \{2^3\}(-q^2+q-1) + \{2^2 1^2\}(-q^2+3q-2)

+ \{21^4\}(2q-1)- \{1^6 \}\cr}$$

where the last segment was obtained by use of a text editor to produce a result
for direct incorporation into TEX for publication purposes.

{6}q3 + {51}(2q3 − 2q2) + {42}(2q3 − 3q2 + q) + {412}(q3 − 4q2 + 2q)
+ {32}(q3 − q2 + q) + {321}(q3 − 4q2 + 4q − 1) + {313}(−2q2 + 4q − 1)
+ {23}(−q2 + q − 1) + {2212}(−q2 + 3q − 2) + {214}(2q − 1)− {16}

Exercise

Establish the following character table for the Hecke algebra H4(q) of type A3 and
show that if q → 1 the character table for the symmetric group S4 is recovered:-

(14) (212) (22) (31) (4)
{4} 1 q q2 q2 q3

{31} 3 2q − 1 q2 − 2q q2 − q q2

{22} 2 q − 1 q2 + 1 q 0
{212} 3 q − 2 −2q2 + 1 −q + 1 q

{14} 1 −1 1 1 −1
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6.4 The Final Test

As a final test for the user we suggest the following exercises. The person
who completes this test without looking at the answers will indeed be qualified
as a Master of SCHUR.

1. Use SCHUR to confirm the following three results in reduced notation:-

< 2 > =< 1 >2 − < 12 > − < 1 > − < 0 >

< 21 > =< 12 >< 1 > − < 13 > − < 1 >2 + < 0 >

< 3 > =< 1 >3 + < 13 > −2 < 12 >< 1 > − < 1 >2 + < 0 >

(6.17)

2. Show that for the group Sn the dimensions f<µ>
n of the irreducible

representations < 2 >, < 21 > and < 3 > are as follows:-

f<2>
n =

n(n− 3)
2

(6.18a)

f<21>
n =

n(n− 2)(n− 4)
3

(6.18b)

f<3>
n =

n(n− 1)(n− 5)
6

(6.18c)

3. Show that if under Un(n−3)
2

→ Sn {1} →< 2 > then for an arbitrary
irreducible representation {λ} we have

{λ} →

< 1 > ⊗

[ ∑
ρ,µ,ν

(−1)ωρ{λ/ρ ◦ µ} · {µ} · ({12} ⊗ {ρ̃/ν}) · {ν/M}

]
(6.19)

4. Let x = f<21>
n . Show that if under Ux → Sn {1} →< 21 > then

for an arbitrary irreducible representation {λ} we have

{λ} →
< 1 > ⊗

∑
ρ,µ,ν,τ

(−1)ωρ({12} ⊗ {λ/Mρ ◦ µ} · {µ})

× ·({13} ⊗ {ρ̃/τ}) · {τ ◦ ν} · {ν} (6.20)

5. Write a function to obtain the branching rule for Eq.(6.19) for n = 8
and obtain the decomposition for the {21} irreducible representation for
U20 → S8.

6. Write a function to obtain the branching rule for Eq.(6.20) for n = 8
and obtain the decomposition for the {21} irreducible representation for
U64 → S8.
Possible answers to (5.) and (6.) are now given:-
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Answer to 5. The function could be defined as:

gr u20

enter rv1

dim[rv1]

gr5u8u8u8u8u8

rule[rv1*0*1^2*0*0]sum sk1conj4

rule last ch_phase4

rule last sum i1eq2

cont1,2o,last

rule last sum sk3eq4

cont2,3pl last

cont1,2,o,last

rule last sk2,with m

cont1,2,o,last

gr s8

rule last i_pl1

sup false

rule last make1,8

dim last

stop

Running the above function gives:
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DP>

->fn1

Group is U(20)

->21

Dimension = 2660

Groups are U(8) * U(8) * U(8) * U(8) * U(8)

Groups are U(8) * U(8) * U(8) * U(8)

Groups are U(8) * U(8) * U(8)

Groups are U(8) * U(8)

Group is U(8)

Group is S(8)

2{71} + 5{62} + 4{61^2 } + 4{53} + 9{521} + 3{51^3 }

+ 2{4^2 } + 6{431} + 5{42^2 } + 5{421^2 } + {41^4 }

+ 2{3^2 2} + 3{3^2 1^2 } + 2{32^2 1} + {321^3 }

Dimension = 2660

Answer to 6. The function could be defined as:
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gr u64

enter rv1

dim[rv1]

gr7u8u8u8u8u8u8u8

rule[1^2*rv1*0*1^3*0*0*0]sk2with m

rule last sum sk2conj5

rule last ch_phase5

rule last sum i2eq3

cont1,2pl last

cont1,2last

rule last sum sk3eq4

cont2,3pl last

cont1,2last

rule last sum i2eq3

cont1,2last

cont1,2last

gr s8

rule last i_pl1

sup false

rule last make1,8

dim last

stop

DP>

Running the above function gives the answer:
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->fn1

Group is U(64)

->21

Dimension = 87360

Groups are U(8) * U(8) * U(8) * U(8) * U(8) * U(8) * U(8)

Groups are U(8) * U(8) * U(8) * U(8) * U(8) * U(8)

Groups are U(8) * U(8) * U(8) * U(8) * U(8)

Groups are U(8) * U(8) * U(8) * U(8)

Groups are U(8) * U(8) * U(8)

Groups are U(8) * U(8)

Group is U(8)

Group is S(8)

2{8} + 19{71} + 53{62} + 54{61^2 } + 69{53} + 156{521}

+ 79{51^3 } + 33{4^2 } + 160{431} + 126{42^2 }

+ 195{421^2 } + 70{41^4 } + 91{3^2 2} + 118{3^2 1^2 }

+ 142{32^2 1} + 124{321^3 } + 37{31^5 } + 25{2^4 }

+ 51{2^3 1^2 } + 35{2^2 1^4 } + 10{21^6 } + {1^8 }

Dimension = 87360
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People have now a-days, got a strange opinion that
everything should be taught by lectures. Now, I
cannot see that lectures can do so much good as
reading the books from which the lectures are taken.
I know nothing that can be best taught by lectures,
except where experiments are to be shewn. You
may teach chymistry by lectures. You might teach
the making of shoes by lectures!

— Samuel Johnson 1766
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Introduction

In this chapter we give some detailed examples of using SCHUR in the fields of
physics, chemistry and mathematics. In physics we illustrate the use of SCHUR

in studying group aspects of the Standard Model and its extensions in particle
physics while for chemistry we look at some aspects of the electronic states
of the nitrogen molecule, N2. Finally we look at the problem of the asymptotic
behaviour of certain group-subgroup decompositions and unimodal distributions.
The examples in this chapter should also indicate some of the potential of SCHUR

in pedagogical as well as research situations.
7.1 The Simple SU3 Quark Model of Baryons and Mesons

The simple quark model of the low energy baryons and mesons was based upon
the group structure SU3 ⊃ UY

1 × SU I
2 where Y is the hypercharge and I the

isospin. Using SCHUR in the REPmode with the group set as SU3 we find
that there are two irreducible representations of dimension 3 corresponding to
the vector representation {1} and its conjugate {12}. In the literature these
are often designated as 3 and 3. Now to find the subgroup content of these
two irreducible representations. We return to the DPMode and thence to the
BRMode and set the branching rule numbers to 16 1 2 and see that the groups
are set as SU(3) to U(1) * SU(2). Entering the first irreducible representation,
{1} gives the result

{1} → {1}{1}+ {−2}{0} (7.1)

while entering {12} gives

{12} → {2}{0}+ {−1}{1} (7.2)

Now to determine the hypercharge Y and isospin I for each irreducible repre-
sentation. The irreducible representations of the isospin group SU I

2 are labelled
by a single part partitions, {m}. Recalling the local isomorphism between SO3

and SU2 with SU2 being the covering group of SU2 we obtain the usual isospin
quantum number I by dividing m by 2. i.e. {m} ∼ [m

2 ]. In normalising the
U1 irreducible representations for SUn → U1 × SUn−1 SCHUR ensures that they
come as integers and satisfy the usual tracelessness condition for a U1 group that
occurs in a direct product. The normalisation is fixed so that the weight of the
label of the U1 irreducible representation associated with the vector irreducible
representation {1} of SUn−1 is of unit magnitude.With these remarks in view,
the hypercharge Y is one third of the U1 weight reported by SCHUR. Thus in
terms of the hypercharge Y and the isospin I we could rewrite Eqs (7.1) and
(7.2) as

{1} → ( 1
3 , 1

2 ) + (− 2
3 , 0) (7.1′)

and
{12} → ( 2

3 , 0) + (− 1
3 , 1

2 ) (7.2′)

where the quantum number pairs Y and I are given in curved brackets as (Y, I).
These quantum numbers are exactly those associated with the (u, d, s) quarks
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and (u, d, s) antiquarks respectively. The charges Q of these objects can be
deduced from the relationship (in units of e)

Q = I3 + Y
2 (7.3)

leading to

SU3 quark I Iz Y Q
u 1

2
2
3

1
2

1
3

{1} d − 1
2 − 1

3
s 0 0 − 2

3 − 1
3

ū − 1
2 − 2

3
1
2 − 1

3
{12} d̄ 1

2
1
3

s̄ 0 0 2
3

1
3

Mesons are built from quark-antiquark (qq) pairs. Returning to the
REPmode with the group set as for SU3 we find that

{1} × {12} = {21}+ {0} (7.4)

The irreducible representation {21} is found to be of dimension 8 and hence
we obtain an octet and a singlet of mesons. The quantum numbers (Y,I) to
be associated with members of the octet follow by determination of the SU3 →
U1 × SU2 branching rule in either the DPMode or BRMode to give

{21} → {3}{1}+ {0}{2}+ {0}{0}+ {−3}{1} (7.5)

and hence the (Y, I) quantum numbers

{21} → (1, 1
2 ) + (0, 1) + (0, 0) + (−1, 1

2 ) (7.6)

The meson charges may be determined from Eq. (7.3) and it is left as an exercise
to plot out the numbers (I3, Y ) to obtain the familiar display of the meson nonet
(octet + singlet).

The baryons are built from triple products of quarks (qqq). Evaluating
the triple product in the REPmode with the group set as for SU3 and using the
nested command “prod1,prod1,1” leads to

{1} × {1} × {1} = {3}+ 2{21}+ {0} (7.7)

The irreducible representation {3} is of dimension 10 and thus we have ob-
tained the irreducible representations associated with a decuplet ({3}), two
octets ({21}) and a singlet ({0}) of baryons. The (Y, I) quantum numbers asso-
ciated with the baryon octets are exactly the same as those found for the meson
octet found in Eq. (7.6). Those for the decuplet follow from the SU3 → U1×SU2

branching rule with SCHUR readily yielding

{3} → {3}{3}+ {0}{2}+ {−3}{1}+ {−6}{0} (7.8)
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and hence the (Y, I) quantum numbers

{3} → (1, 3
2 ) + (0, 1) + (−1, 1

2 ) + (−2, 0) (7.9)

Again it is left as an exercise to make the familiar (I3, Y ) plot for the baryon
decuplet.

The above gives an introduction to using SCHUR as a tool for learn-
ing about the simple SU3 model of the low energy mesons and baryons. The
SCHUR user should now have enough skill to be able to look at models involving
additional quarks such as, for example, the charmed quark (c) in SU4.
7.2 Unification Models and QCD

Many attempts have been made to unify the weak and strong interactions. Here
we use SCHUR to give the group content of some well-known examples. The
simplest model is that associated with the group structure

SU5 ⊃ UYwk
1 × SU Iwk

2 × SU c
3 (7.10)

where the UYwk
1 × SU Iwk

2 group is that associated with electroweak theory and
SU c

3 is the color group of quantum chromodynamics (QCD), the theory of strong
interactions. For this study it is convenient to write the short SCHUR function

group su5

enter rv1

dim[rv1]

br8 2 3gr1[rv1]

stop

and to run the function for the SU5 irreducible representations {1}, {14}, {12},
{13} and {213} to yield the following results:-

5 {1} →{3}{1}{0}+ {−2}{0}{1} (7.11a)
5 {14} →{2}{0}{12}+ {−3}{1}{0} (7.11b)

10 {12} →{6}{0}{0}+ {−1}{1}{1}+ {−4}{0}{12} (7.11c)
10{13} →{4}{0}{1}+ {−1}{1}{12}+ {−6}{0}{0} (7.11d)

24 {213} →{5}{1}{12}+ {0}{2}{0}+ {0}{0}{21}+ {0}{0}{0}
+ {−5}{1}{1} (7.11e)

The above results can be rewritten in terms of the quantum numbers (Y wk, Iwk)
and the dimensions of the SU c

3 irreducible representations as

5 {1} →(1, 1
2 ,1c) + (− 2

3 , 0,3c) (7.12a)

5 {14} →( 2
3 , 0,3c) + (−1, 1

2 ,1c) (7.12b)

10 {12} →(2, 0,1c) + ( 1
3 , 1

2 ,3c) + (− 4
3 , 0,3c) (7.12c)

10{13} →( 4
3 , 0,3c) + (− 1

3 , 1
2 ,3c) + (−2, 0,1c) (7.12d)
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24 {213} →( 5
3 , 1

2 ,3c) + (0, 1,1c) + (0, 0,8c) + (0, 0,1c) + (− 5
3 , 1

2 ,3c)
(7.12e)

We can associate a family of fermions with the 15 dimensional reducible rep-
resentation {14} + {12} ∼ 5 + 10 of SU5 ⊃ U1 × SU2 × SU c

3 and a set of 24
bosons with the adjoint representation {213} ∼ 24. The relevant (Y, I, I3, Q)
follow exactly as before to give for the 15 fermions:-

SU5 fermion I Iz Y Q color
νL

1
2 0

1
2 −1 1c

eL − 1
2 −1

5̄
dc

L 0 0 2
3

1
3 3̄c

uL
1
2

2
3

1
2

1
3 3c

dL − 1
2 − 1

3
10

uc
L 0 0 − 4

3 − 2
3 3̄c

ec
L 0 0 2 1 1c

These are precisely the quantum numbers of the first family of 15 fermions of
the SU5 Grand Unification Theory.

The quantum numbers for the 24 gauge bosons follow from Eq. (7.12e)
in a similar manner . Thus (0, 0,1c) yields the quantum numbers of the photon,
(0, 1,1c) those of the W± weakons, with their Z0 partner coming from (0, 0,1c)
and (0, 0,8c) leads to the quantum numbers of the eight gluons of QCD.

A disappointing feature of this model is the occurence of the fermions
in a reducible representation. One might wish to search for a group having a
single irreducible representation that can be spanned by an entire fermion family.
Returning to SCHUR and looking at the dimensions of rank 5 Lie groups we find
there is no suitable group with an appropriate 15 dimensional irreducible repre-
sentation. Setting the group for SO10 we find that the two basic spin irreducible
representations ∆± are of dimension 16 and decompose under SO10 → U1×SU5

(using branching rule 11 with n = 10) as

∆+ → {3}{14}+ {−1}{12}+ {−5}{0} (7.13a)
∆− → {5}{0}+ {1}{13}+ {−3}{1} (7.13b)

The decomposition of the ∆+ irreducible representation of SO10 yields the 5+10
reducible representation of SU5 but contains one additional fermion having the
quantum numbers of a right-handed neutrino.

The above examples should suffice for the user to explore other structures
in particle physics using SCHUR.
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7.3 Electronic States of the N2 Molecule

The following example illustrates a number of aspects of applying SCHUR

to the problem of enumerating the electronic states of the nitrogen molecule, N2,
and at the same time should give the user additional insights into using SCHUR

and the need, sometimes, to adopt particular strategies.
The nitrogen molecule has 14 electrons that we shall consider to be dis-

tributed among the ten atomic orbitals (1s, 2s and 2p). The atomic orbitals can
be considered as forming a basis for the vector irreducible representation {1}
of SU10. The two spin states (ms = ± 1

2 ) give a basis for the vector irreducible
representation {1} of SU2. The total wavefunction should be antisymmetric. For
a single particle, combining the spin part of the wavefunction with the orbital
part leads to a basis for the vector irreducible representation {1} of the group
U20. The complete set of antisymmetric states formed by the 14 electrons in N2

distributed over the ten atomic orbitals will span the {114} irreducible represen-
tation of U20. To find out how many states arise we set the group as for U20 and
issue the command in the DPMode

dim[1ˆ!14]

and are informed that the dimension of {114} is 38 760. What are the total spins
associated with these states? To answer that question issue the command

br8 2 10gr1[1ˆ!14]

and SCHUR responds with
Groups are U(2)*U(10)

{10 4}{2ˆ4 1ˆ6}+ {95}{2ˆ5 1ˆ4}+ {86}{2ˆ6 1ˆ2}+ {7ˆ2}{2ˆ7}

If we reset the groups with the command

gr2su2su10

and then
std last

we obtain the output
Groups are SU(2)*SU(10)

{6}{1ˆ4}+ {4}{2ˆ5 1ˆ4}+ {2}{2ˆ6 1ˆ2}+ {0}{2ˆ7}
Recalling the isomorphism SU2 ∼ SO3 we can obtain the spin S by dividing the
one part label of the SU2 irreducible representations by 2 alternatively we may
issue the command

au gr1so3,last
giving the output
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Groups are SO(3)*SU(10)

{3}{1ˆ4}+ {2}{2ˆ5 1ˆ4}+ {1}{2ˆ6 1ˆ2 }+ {0}{2ˆ7 }

We can save this result for later use, if desired, by simply issuing the command
setp1last

We can recover it anytime later by issuing the command
v1

but remember to reset the groups back to SO(3)*SU(10) first if the groups have
in the meantime been changed.

Computing the dimensions of the above SU10 irreducible representations
we find there are 210 states with S = 3, 2310 with S = 2, 6930 with S = 1 and
4950 with S = 0. Thus the answer to our question is that there are 4950 singlet
states.

Let us now assume that the the core orbitals (1s, 2s) are separated from
the valence orbitals (2p). This means that we can consider the orbitals as span-
ning irreps of SU10 ⊃ SU c

2 × SUv
8 . For the singlet states of N2 we need the

decomposition of the irreducible representation {2ˆ7} under SU10 ⊃ SU c
2×SUv

8 .
To do this set the group for SU10 and then issue the command

br8 2 8gr1[2ˆ7]

SCHUR responds with the output
Groups are U(1)*SU(2)*SU(8)

{12}{0}{2ˆ5}+ {2}{1}{2ˆ51}+ {−8}{2}{2ˆ6}+ {−8}{0}{2ˆ51ˆ2}

+{−18}{1}{2ˆ61}+ {−28}{0}{2ˆ7} (7.14)

What are we to make of the U1 irreducible representations? Had we branched the
vector irreducible representation {1} we would have obtained the decomposition

{1} → {8}{1}{0}+ {−2}{0}{1} (7.15)

Here the interpretation is clear the first irreducible representation is associated
with a single electron in the core and none in the valence orbitals and the second
vice versa. Let n, nc and nv be the total number of, the number of core, and
number of valence electrons respectively. Noting the Eq. (7.14) and that

n = nc + nv (7.16)

we readily conclude that if k is the U1 eigenvalue labelling the U1 irreducible
representation then

nc =
2n + k

10
(7.17)
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If we issue the command
uonediv10gr1uoneadd28gr1last

where last is the output given in Eq. (7.14) we obtain the output

{4}{0}{2ˆ5}+ {3}{1}{2ˆ51}+ {2}{2}{2ˆ6}

+{2}{0}{251ˆ2}+ {1}{1}{2ˆ61}+ {0}{0}{2ˆ7} (7.18)

where now for each irreducible representation the first label gives the number
of electrons nc occupying core orbitals. The number of electrons nv occupying
valence orbitals follows trivially from Eq. (7.16).

The total spins Sc and Sv carried by the core and valence electrons can
now be readily determined. Remembering that we are dealing with molecular
singlet states we must necessarily have Sc = Sv. The first term in Eq. (7.18) has
Sc = 0 since it coreesponds to total occupancy of the core. The second and fifth
terms have Sc = 1

2 corresponding to single hole in the core for the second and a
single electron in the core in the fifth. The sixth term corresponds to an empty
core and hence Sc = 0. The third term and fourth term have two electrons in
the core and thus we could expect Sc = 0 or 1. But for the third term the core
is orbital symmetric and hence the spin part must be antisymmetric leading to
Sc = 0 whereas the opposite is the case for the fourth term and Sc = 1.

In general the spins may be quickly determined by noting that for n
electrons in orbital states classified by some SUN the irreducible representations
are all of the form

{λ} = {2
n−2S

2 12S} (7.19)

where the length of the partition satisfies

`λ = n+2S
2 ≤ N (7.20)

and if `λ = N then there is the SUN equivalence

{λ1, λ2, . . . , λN} ≡ {λ1 − λN , λ2 − λN , . . . , 0} (7.21)

Thus for 12 electrons in SU8 we have possible irreducible representations of
the form {26−S 12S} which for S = 1 corresponds to {25 12} and hence our
assignment of Sc = Sv = 1 for the fourth term in Eq. (7.18).

Now consider the case of the singlet states of N2 with the core fully
occupied. That leaves 8 electrons in valence orbitals associated with the {25}
irreducible representation of SU8. SCHUR gives the dimension of that irreducible
representation as 1176 and thus we have 1176 singlet states associated with the
two atoms which we will distinguish by the letters a and b. If we now perform
the branching SU8 → U1 × SUa

4 × SU b
4 and then use the commands uonediv

and uoneadd, as before, we obtain the SCHUR output
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DP>

br8 4 4gr1[2^5]

Groups are U(1) * SU(4) * SU(4)

{24 }{0}{2} + {16 }{1^3 }{21} + {8}{2^3 }{2^2 }

+ {8}{1^2 }{21^2 } + {0}{2^2 1}{2^2 1} + {0}{1}{1}

+ {-8}{2^2 }{2^3 } + {-8}{21^2 }{1^2 }

+ {-16 }{21}{1^3 } + {-24 }{2}{0}

DP>

uonediv8gr1uoneadd40gr1last

{8}{0}{2} + {7}{1^3 }{21} + {6}{2^3 }{2^2 }

+ {6}{1^2 }{21^2 } + {5}{2^2 1}{2^2 1} + {5}{1}{1}

+ {4}{2^2 }{2^3 } + {4}{21^2 }{1^2 }

+ {3}{21}{1^3 } + {2}{2}{0}

where now the U1 label gives the number of electrons in orbitals associated with
atom a. The corresponding spins associated with the respective atoms again
follow from Eqs. (7.19) - (7.21) to give the states

{0}a,s
8 {2}b,s

2 + {13}a,d
7 {21}b,d

3 + {23}a,s
6 {22}b,s

4 + {12}a,t
6 {212}b,t

4

+ {221}a,d
5 {221}b,d

5 + {1}a,d
5 {1}b,d

5 + {22}a,s
4 {23}b,s

6 + {212}a,t
4 {12}b,t

6

+ {21}a,d
3 {13}b,d

7 + {2}a,s
2 {0}b,s

8 (7.22)

where the electron numbers are given as subscripts and the superscript letters
s, d, t designate singlet, doublet and triplet spin states respectively.

The preceding example gives a brief view of the application of SCHUR to
electronic states of molecules and the user is encouraged to explore such topics
further.
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7.4 Plethysms and Asymptopia

The user of almost any software package quickly learns its limitations. Some
problems take too long to execute while others quickly exhaust all the memory
available to the user. Many of these problems cannot be overcome simply by the
acquisition of a larger and faster computer. They, in principle, become combi-
natorially explosive and even a better algorithm will not significantly improve
the situation. In these cases alternative strategies have to be devised. For large
problems we may no longer be interested in individual numbers but rather in
their asymptotic behaviour. The future is more likely to be found in asymptopia
rather than in utopia. Plethysms form an example of a combinatorially explosive
situation which we will now briefly explore, for a very restricted case, by way of
several open-ended user exercises.
Suppose the rotation group SO3 is embedded in the unitary group U2j+1 so that
under U2j+1 ⇒ SO3 the vector representation {1} → [j]. An arbitrary irre-
ducible representation {λ} of U2j+1 decomposes into irreducible representations
[J ] of SO3 as

[j]⊗ {λ} =
∑

J

c
{λ}
J [J ] (7.23)

where the coefficients c
{λ}
J are non-negative integers. These coefficients may be

calculated using branching rule 7. In evaluating these coefficients SCHUR uses a
method involving polynomial division rather than the usual plethysm routines.
It is worth noting the identity, for SO3,

[j]⊗ {1n} = [(2j − n + 1)/2]⊗ {n} (7.24)

as the symmetric plethysms are evaluated much faster than the corresponding
antisymmetric SO3 plethysms.

Choose j = 8 and determine the decomposition of the U2j+1 irreducible
representations {n} for values of n ≤ 13 (Going to n ≥ 14 will create problems
for users of 16-bit computers as then many of the coefficients exceed MaxInt).
Observe the strong tendency to a unimodal distribution of the c

{λ}
J with respect

to J . Can we approximate the form of the distribution?
For sufficiently large j and wλ we have

c
{λ}
J ∼ A(J +

1
2

) exp
[
−

(J + 1
2 )2

2σ(j, λ)2

]
(7.25)

Replacing summations by integration leads to∑
J

c
{λ}
J ∼ A

∫ ∞

0

(J +
1
2

) exp
[
−

(J + 1
2 )2

2σ(j, λ)2

]
dJ

= Aσ(j, λ)2 (7.26)

The left-hand-side of (7.26) is the sum of the coefficients as computed by the
SCHUR command countc.
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Likewise ∑
J

(2J + 1)c{λ}J ∼ Aσ(j, λ)3
√

2π

= Dimλ (7.27)

where Dimλ is the dimension of the irreducible representation {λ} of U2j+1

furthermore∑
J

J(J + 1)(2J + 1)c{λ}J ∼ Aσ(j, λ)3
√

2π(3σ(j, λ)2 − 1
4

)

= j(j + 1)(2j + 1)I{λ}2 (7.28)

where I
{λ}
2 is the second-order Dynkyn index for the irreducible representation

{λ} of U2j+1. The factor j(j + 1)(2j + 1) appearing in the right-hand-side of
(7.28) arises from matching the normalisation of second-order Dynkin indexes
for the two groups.

Let Jm denote the SO3 irreducible representation [Jm] associated with
the maximal coefficient c

{λ}
Jm

. We find

Jm ∼ σ(j, λ)− 1
2

c
{λ}
Jm

∼ Aσ(j, λ) exp(−1
2

) (7.29)

Use of the above results leads to

σ(j, λ) ∼

√
j(j + 1)(2j + 1)I{λ}2

3Dimλ
(7.30)

Thus all the parameters defining the distribution can be directly calculated by
SCHUR within the group SU2j+1. But how closely does the distribution given
in Eq. (7.25) approximate the exact calculations by SCHUR? That is left as
an exercise for the user. Perhaps the user can obtain a better approximation
and explore the many aspects of the asymptotic distribution of the coefficients
generated by SCHUR.

If your experiment needs statistics you ought to have
done a better experiment

— Ernest Rutherford 1851–1937
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8.1 Introduction

SCHUR incorporates a large amount of mathematics that is unfamiliar to many
mathematicians and physicists. While many may wish to simply treat SCHUR

as a black box that responds to commands and issues forth results others may
wish to know more of the background mathematics contained in SCHUR and
to explore the literature in greater detail. This chapter is for the latter class
of SCHUR users. Historically many of the tools were forged at the end of the
nineteenth and beginning of the twentieth centuries. Elie Cartan10 classified the
complex semisimple Lie algebras in his thesis of 1894 while Issia Schur110 in his
dissertation of 1901 discussed the properties of matrix groups. Meanwhile, the
English cleric Alfred Young was starting his monumental work on the symmetric
group. Young’s papers159 while rich in content are rather inpenetrable. Young’s
work was brought to the attention of physicists largely by Hermann Weyl125

who himself had made major contributions to the character theory of Lie groups.
Daniel Rutherford101 drew to the attention of mathematicians the work of Young.

The 1930’s saw considerable developments in the theory of the sym-
metric group and matrix groups in general especially in the hands of Francis
Murnaghan80 and Dudley Littlewood60. Both wrote significant books though it
would be fair to say that their style of presentation probably appears obscure
to modern readers. Littlewood placed considerable emphasis on the theory of
symmetric functions which had already made its appearance in Isaac Newton’s
1707 Arithmetica Universalis. Much of the theory of symmetric functions had
been collected together and further developed by Major Percy MacMahon in his
two volume work Combinatory Analysis of 1915. Littlewood’s treatment of the
characters of the classical continuous groups involved extensive use of what he
termed ”Schur functions” and abbreviated to S−functions. These functions had
been introduced by Jacobi in 1841 and extensively exploited by Schur. Little-
wood and Richardson68 in 1934 were fortunate to guess the rule for multiplying
Schur functions with formal proofs coming in the 1970’s.

Littlewood56−68 continued for some thirty years developing the theory
of group characters and symmetric functions. Notable for SCHUR was his intro-
duction of the plethysm of S−functions and the two papers57,58 of 1944 in which
the entire subject was developed in connection with invariant theory. The com-
putation of plethysms still remains an incomplete problem in spite of numerous
studies, some of which are listed in the references.

Since the time of Littlewood and Murnaghan there have been many
further developments and the collected references, while representative, are far
from complete. New applications are coming to note almost daily and only a
selection of applications have been referenced. For a gentle introduction to the
symmetric group the book by Sagan103 is recommended followed by the more
comprehensive books of Macdonald71 and of James and Kerber35. For physicists
Messiah73 gives a gentle summary of Young tableaux and Young symmetrisers
while Hamermesh31 gives rather more detail. For papers giving specific appli-
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cations of SCHUR the reader could note the references [23, [28], [45], [49], [51],
[79], [100], [108]–[111], [119], [120], [147]–[150], [153-155] and [158].
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Introduction

This appendix seeks to give a brief description of each SCHUR command. The
commands are listed alphabetically. The format for explaining a command is as
follows:
COMmand

Format:
Modes:
Description:
Examples:

The boldface letters of the command are the minimal letters required by SCHUR.
To respond correctly, they may be entered as either lower case or upper case
letters.
Format: gives a general format for entry of the command appropriate to the
relevant modes. EXPR in a format line is any expression appropriate to the
modes, e.g. it may be a list of Sfns, reps or Dreps, or even a set of nested
commands.
Modes: lists the modes of SCHUR in which the command may be used (SFN,
REP, DPM, BRM).
Description: gives a brief description of the SCHUR command.
Examples: here one or more simple examples of the command are given. User
input is indicated by an arrow ⇒. All other entries represent responses from
SCHUR. Throughout the examples the abbreviated forms of the commands are
used. Occasionally, optional brackets are used to clarify heavily nested sequences
of commands.

In order to shorten the length of commands a number of abbreviations
have been used. These are given in the table below.

ch = change, conv = convert, e = elementary
fn = function grN = group number, h = homogeneous
i = inner, int = integer m = monomial
o = outer, op = operator, p = power sum
p = pfn, q = qfn , rd = reduce
rk = rank, rm = remove rp = replace
s = sfn, sb = setboolean, std = standardise
wr = write, wt = weight

A complete list of all the commands in SCHUR is given in Table A.1.
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Table A.1 All the commands in SCHUR.
ABSoluteValue ADD ALLskewSfn
ASSOCiate ATtachPartitionToSfn AUtoOrIsoMorphism

BRanch BRMode

CANcelDatFile CASIMIRGnthTrace CASimirNthordertrace
CH_CoeffsToOneForSfns CH_LabelForOn CH_PhaseOfSfns
CH_SpinIndex CH_UoneReps CLASS
COLumns COMPare COMPLement
CONJADD CONJugateSfnList CONSPLIT
CONTENT CONTractGroups CONTRAGredientRep
CONV_D_TO_Rep CONV_D_TO_Sfn CONV_R_TO_Sfn
CONV_S_TO_Rep COUNTCoeffsInList COUNTTermsInList
COVariant

DEAD DIMension DPMode
D_TO_Plabel DYNKINIndex

END ENTerVar EQualSfnList
E_TO_FSymmFn E_TO_HSymmFn E_TO_MSymmFn
E_TO_SSymmFn EXITmode EXPandSfnList

FFPROD FIRSTPart FN
FPROD FRACAHnotation FROB
F_TO_ESymmFn F_TO_HSymmFn F_TO_MSymmFn
F_TO_SSymmFn FUSion

GENERIC GENprod GRoup
GWT

HALLpolynomialProduct HCLASS HEAPstatus
HECKE HELP HSTD
HSTDList H_TO_ESymmFn H_TO_FSymmFn
H_TO_MSymmFn H_TO_SSymmFn

INDEXsequence INSertPartitionIntoSfn INTegerDivideCoeffs
INVerseseries I_PLethysmRd I_QfnProduct
I_sfnProduct I_SFNQfnProduct

KINSert KMatrix Kostka

LABel LASTresult LATticetest
LENgthOfPartitionsSelectLICENSE LINES
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LOadFile LOGfile LSEQuence

MACMixedSeries MACseries MAKEwtOfSfnToN
MAXCoeffInList MIXedTensorReps M_TImesSfnProduct
M_TO_ESymmFn M_TO_FSymmFn M_TO_HSymmFn
M_TO_SSymmFn MUlt_CoeffsByAnInt MULT_List
MULT_Ntimes MULT_PartsByAnInt MULT_SelectInList
MULT_SPlitIntoTwoLists MYlistOfSfns

NLambda NSKew NSTDise

ONSCalar O_PfnProduct O_QfnProduct
O_Restrict O_sfnProduct

PARITYsequence PAUSE PLethysm
PLG ProductKronecker PROPertyOfRepList
P_TO_Dlabel P_TO_SSymmFn

QEXPandSpecialSeries QQEXpandSpecialSeries QQSEries
QSAME QSERies Q_TO_SsymmFn

RACAHnotation RAISEInverseOp RAISEop
RD_I_QfnProduct RD_I_sfnProduct RD_RAISEInverseOp
RD_RaiseOp READFnFromDisk REMark
REPmode RETurn RIEMANNList
RIEMANNPlethList RIEMANNScalarsOrderN RM_EVENPARTS
RM_EVENRkSfnsOnly RM_EVENWtInList RM_FirstPartOfSfn
RM_Group RM_NMP RM_ODDPARTS
RM_ODDRkSfnsOnly RM_ODDWtInList RM_PartitionFromSfn
RM_PARTSequalN RM_RepeatedPartsSfns RM_SOnEvenLabels
RM_UoneWtOverMax RP_FirstPartBySpin RP_RepOrSfnByWt
RP_SfnCoeffByInt RSAMEwtSfnList RULE
RVar

SAMEwtSfns SAVEsetVar SB_Bell
SB_CONjecture SB_CUT SB_Digits
SB_DIMension SB_LISToutput SB_More
SB_POWerNotation SB_PROGress SB_Qfn
SB_RD_notation SB_REVerseOrder SB_TexOutPut
SCALARInner SCHAR SERIESTErmsThatSkew
SERiesToIntWt SETFnVar SETLIMit
SET_PWT SETRVar SETSVar
SETVarInDPmode SFNmode SIGNSEQuence
SK_Pfn SK_Qfn SK_sfn
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SMON SNchar SPIN
SPLitIntoSpinAndTensor SPONModify SPRCH
SPREXtend SPSTAR SQuares
STARequivalent STATusOfSchur STD
STD_OneDprep STD_Qfn S_TO_ESymmFn
S_TO_FSymmFn S_TO_HSymmFn S_TO_MSymmFn
STOP S_TO_PsymmFn S_TO_QsymmFn
SUBtract SUM SUMSQuares
SUPpressOutputToScreen SVar SWAPgroups

TABleOfBranchingRules

UONEAddInteger UONEDivInteger UONETrace

VarForDpreps VMult

WHATGroup WITH WRFNTODisk
WRfnToScreen WSEQuence WTofRepOrSfnSelect

YHooklengths YOungDiagrams YShapeSelect

Zero
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ABSolutevalue
Format: Abs EXPR
Modes: SFN
Description: Makes all coefficients positive in EXPR.
Example: SFN>

⇒ abs 3.21ˆ3-2.321+42-1ˆ5
{ 42} +2{ 321} +3{ 21ˆ3 } +{ 1ˆ5 }

SFN>

ADD
Format: ADD EXPR1, EXPR2
Modes: DPM, REP, SFN
Description: Adds EXPR1 to EXPR2 to produce the resultant.
Example: SFN>

⇒ add 3.21ˆ3 -2.321 +42 -1ˆ5, -3.21ˆ3 -2.321 +42 -1ˆ5
2{ 42} -4{ 321} -2{ 1ˆ5 }

SFN>

ALLskewsfn
Format: ALL EXPR
Modes: SFN
Description: Generates all Sfns which will skew with EXPR. There is no

overcounting so if one Sfn skews with several members of
EXPR it only appears once.

Example: SFN>
⇒ all 3.321+2.21+42

{ 42} +{ 41} +{ 4} +{ 321} +{ 32} +{ 31ˆ2 } +{ 31}
+{ 3} +{ 2ˆ2 1}

+{ 2ˆ2 } +{ 21ˆ2 } +{ 21} +{ 2} +{ 1ˆ3 } +{ 1ˆ2 } +{
1} +{ 0}

SFN>

ASSOCiate
Format: ASSOC EXPR (REP)

ASSOC GRNO EXPR (DPM)
Modes: REP, DPM
Description: ASSOCiate replaces every irrep in EXPR by its associate.

It is assumed that the group has been set as Sp(2n,R) or
O(n) - other settings will give an error message. See also
SPONModify. Notice that some representations are self-associate.

Example: REP>
⇒ gr spr8

Group is Sp(8,R)
REP>

⇒ assoc 3.2;53+2.2;511+2;5
3<2(53)> +<2(5)># +2<2(5)>
REP>
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⇒ sponm last
3<2(53)> +3<2(5)>
REP>

ATtachPartitionToSfn
Format: AT PARTITION, EXPR
Modes: SFN
Description: Adds the parts of PARTITION to the corresponding parts of

each term in EXPR, preserving their multiplicities.
Example: SFN>

⇒ at321, 6 +2.321 -3.21ˆ5
{ 921} +2{ 642} -3{ 5321ˆ3 }

SFN>

AUtoOrIsoMorphisms
Format: AU gr grN TARGET GR,EXPR(DPM)

AU TARGET GR,EXPR (REP)
Modes: DPM, REP
Description: Performs the automorphism or isomorphism current

group -> TARGET GR on EXPR. In particular for SO(8) ->
SO(8), SO(6) -> SU(4),
SO(5) -> Sp(4), SU(2) -> SO(3) -> Sp(2) and SO(2) -> U(1).

Example: DP>
⇒ gr2so6sp4

Groups are SO(6) * Sp(4)
DP>

⇒ au gr1su4,[s1ˆ3+ * 21]
Groups are SU(4) * Sp(4)
{ 3}<21>
DP>

⇒ REP
REP mode
Group is SU(4)
REP>

⇒ gr so8
Group is SO(8)
REP>

⇒ au so8,1
Group is SO(8)
[s;0]-
REP>

⇒ au so8,last
Group is SO(8)
[s;0]+
REP>
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⇒ au so8,last
Group is SO(8)
[1]
REP>

Notes:
Note the compulsory comma (,) after the name of the tar-

get group.
The isomorphisms SO(4) -> SU(2) * SU(2) -> SO(3) * SO(3)
-> Sp(2) * Sp(2)
result in a change in the number of groups set. The ac-
tion of such
isomorphisms can be evaluated in the DPMode using branch-
ing rule 15
for SO(4) -> SU(2) * SU(2).

BRanch
Format: BR RULE NUMBERS gr grN EXPR
Modes: DPM
Description: Executes the branching rule defined by ‘RULE NUMBERS’

on the group ‘grN’ of EXPR. Rule numbers are entered as
rule number n, m, p, q taken from Table A.2.
When a rule is executed on grN the resulting groups are
shifted to the end of the sequence of DPrep groups.

Example: DP>
⇒ gr g2

Group is G(2)
DP>

⇒ br41gr1[52+2.31-3.1]
Group is SO(3)

[13 ] +[12 ] +[11 ] +[10 ] +2[9] +4[8] +4[7] +2[6]
+4[5]

+4[4] +[3] +3[2] +[1]
⇒ br41gr1[92]

Group is SO(3)
[25 ] +[24 ] +2[23 ] +2[22 ] +4[21 ] +5[20 ] +6[19

] +7[18 ]
+9[17 ] +10[16 ] +12[15 ] +12[14 ] +14[13 ] +14[12

] +15[11 ]
+15[10 ] +15[9] +14[8] +14[7] +12[6] +12[5] +9[4]

+8[3]
+5[2] +4[1] +[0]

DP>
⇒ gr spr6

Group is Sp(6,R)
DP>

⇒ br36,6gr1[s0;1-s0;0]
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Group is U(3)
-{ s;10 } -{ s;8} -{ s;6} -{ s;4} -{ s;2} -{ s;0}

DP>
Notes:

01/26/2006 : all branching rules are not fully verified

BRMode
Format: BRM
Modes: DPM
Description: Switches from the DPMode to the BRMode. Going into the BR-

Mode
allows the user to pick a branching rule and to evaluate it
for a number of representations taken one at a time, without
multiplicity, without having to reset the rule. However, the
result of a calculation cannot be processed further.
When this mode is called it first asks you to
”enter branching & rule numbers”. This should be done in the
form: rule number,m,n,p,q
where m,n,p,q are any necessary group-subgroup parameters.
To change the rule enter STOP. To exit to the DPMode enter
EXITmode. See also the helpfile TABleOfBranchingRules.

Example: DP>
⇒ brm

Branch Mode
enter branching & rule numbers>

⇒ 1,6
U(6) to O(6)
BRM>

⇒ 421
[421] +[41] +[32] +[31ˆ2 ] +[3] +[2ˆ2 1] +2[21]

+[1]
BRM>

⇒ stop
enter branching & rule numbers>

⇒ 41
G(2) to SO(3)
BRM>

⇒ 52
[13 ] +[12 ] +[11 ] +[10 ] +2[9] +2[8] +2[7]

+2[6] +2[5]
+2[4] +2[3] +[2] +[1]
BRM>

⇒ stop
enter branching & rule numbers>

⇒ 27,3,5
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SO(8) to SO(3) * SO(5)
BRM>

⇒ 32
[3][2] +[3][1] +[3][0] +[2][3] +[2][21] +[2][2]

+[2][1ˆ2 ] +2[2][1] +[2][0] +[1][31] +[1][2ˆ2 ] +[1][21]
+2[1][2] +[1][1ˆ2 ] +[1][1] +[1][0] +[0][32] +[0][3]
+[0][21] +[0][1]
BRM>

⇒ exit
DPrep Mode (with function)

DP>

CANcelDatFile
Format: CAN INTEGER
Modes: DPM, REP, BRM
Description: Used to delete the *.DAT file called in connection with certain

branching rules and products. Assists in the conservation of heap
space.

Example: DP>
⇒ gr e8

Group is E(8)
DP>

⇒ br50gr1[21ˆ7]
Group is SO(16)

[1ˆ2] + [s;0]+
DP>

⇒ can 50
DP>

CASIMIRGeneralNthTrace
Format: CasimirG INTEGER REP1, REP2
Modes: REP
Description: Calculates the trace of the INTEGER-th order Casimir invariant

for rep1 with respect to rep2. The command is available
for all the compact semisimple Lie groups.

Example: REP>
⇒ gr e8

Group is E(8)
REP>

⇒ casimirg 2 21ˆ7,21
60**1*trace 2th order Casimir invariant is

96
REP>

⇒ casimirg 3 21,21
60**2*trace 3th order Casimir invariant is

-36000
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REP>
Notes:

The output actually gives the Casimir invariant for REP2
with respect
to REP1 since setting REP1=adjoint gives the same results
as CASIMIRN.

CAsimirNthOrderTrace
Format: CA INTEGER EXPR
Modes: REP
Description: Computes the trace of the INTEGER-th order Casimir invariant

with
respect to the adjoint representation of the set group. This
command is available for all the compact semisimple Lie groups.

Example: REP>
⇒ gr sp6

Group is Sp(6)
REP>

⇒ casimirn 2 2
16**1*trace 2th order Casimir invariant is

16
REP>

⇒ casimirn 3 2
16**2*trace 3th order Casimir invariant is

-64
REP>

Ch CoeffsToOneForSfns
Format: Ch C EXPR
Modes: SFN
Description: Reduces all multiplicities in EXPR to + 1.
Example: SFN>

⇒ ch c 2.32+5.21-7.2
{ 32} + { 21} + { 2}
SFN>

CH LabelForOn
Format: Ch L gr grN EXPR (DPM)

Ch L EXPR (REP)
Modes: DPM, REP
Description: Used for swapping the (+) and (-) labels that arise in EXPR

for the groups SO(2n). This operation corresponds to an SO(2n)-
>SO(2n)
automorphism that is NOT covered by the command AUtoOrIso-
Morphisms.

Example: DP>
⇒ gr so8

Group is SO(8)
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DP>
⇒ [s1+] + [s0-]

[s;1]+ + [s;0]-
DP>

⇒ ch l gr1last
[s;1]- + [s;0]+
DP>

⇒ rep
REP mode
Group is SO(8)
REP>

⇒ s1+ + s0- + 21ˆ3- + 1ˆ4+ + 1ˆ3 + 2ˆ4
[s;1]+ +[s;0]- +[21ˆ3 ]- +[1ˆ4 ]+ +[1ˆ3 ] +[2ˆ4

]
REP>

⇒ ch l last
[2ˆ4 ] +[21ˆ3 ]+ +[s;1]- +[1ˆ4 ]- +[1ˆ3 ] +[s;0]+

REP>

CH PhaseOfSfns
Format: Ch P EXPR
Modes: SFN
Description: Multiplies each coefficient in EXPR by (-1)̂ omega where omega

is the weight of the associated partition in EXPR.
Example: SFN>

⇒ ch p 321-2.21+3.2
{ 321} +2{ 21} +3{ 2}

SFN>

CH SpinIndex
Format: Ch S gr grN EXPR (DPM)

Ch S EXPR (REP)
Modes: DPM, REP
Description: Ch S deletes the spin index s in a rep [s;a]

to give [a], and inserts a spin index s in
any tensor rep [a] to give [s;a]. This may be useful in setting up
functions,
however please note that this command deletes any + or - labels.

Example: DP>
⇒ gr2so8su4

Groups are SO(8) * SU(4)
DP>

⇒ ch s gr1 [s31+ * 21] + [21 * 321]
[31]{ 21} +[s;21]{ 321}
DP>

⇒ rep
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REP mode
Group is SO(8)

REP>
⇒ gr so7

Group is SO(7)
REP>

⇒ ch s 321+s31ˆ2
[s;321] +[31ˆ2]

REP>

CH UoneReps
Format: Ch U INTEGER gr grN EXPR (DPM)

Ch U INTEGER EXPR (REP)
Modes: DPM, REP
Description: This operation multiplies the weights of all U(1) reps in

EXPR by INTEGER for the group specified by the grN.
Example: DP>

⇒ gr2u1su5
Groups are U(1) * SU(5)
DP>

⇒ ch u 3 gr1 [6 * 21] + [~2 * 21ˆ2] + [~6 * 2ˆ3 1]
{ 18 }{ 21} + { -6}{ 21ˆ2} + { -18 }{ 2ˆ3 1}
DP>

CLASS
Format: CLASS EXPR
Modes: SFN
Description: EXPR should be a list of partitions without multiplicity, and

the output of CLASS EXPR is the same list but now with
multiplicities equal to the number of elements in the
corresponding class of the symmetric group of the appropriate
weight. For partitions of weight N>13 overflow can be expected.
To obtain results for N > 13 you may determine the number of
elements in a single class using the command HCLass as shown
below.

Example: SFN>
⇒ class 5 + 41 + 32 + 31ˆ2 + 2ˆ21 + 21ˆ3 + 1ˆ5

24{ 5} + 30{ 41} + 20{ 32} + 20{ 31ˆ2 } + 15{ 2ˆ2
1} + 10{ 21ˆ3 } + { 1ˆ5 }

SFN>
⇒ class 32+42

90{ 42} +20{ 32}
SFN>

⇒ hclass!15 5
Number of elements in the class =
32438693442355200



CONJADD 141

SFN>

COLumns
Format: COL INTEGER
Modes: DPM, REP, SFN
Description: Used to set tables in TeX. INTEGER is the desired

number of columns. The default value has been set
at 5. See also SB Tex and LINES.

COMPare
Format: Comp EXPR1,EXPR2
Modes: REP, SFN
Description: Compares EXPR1 and EXPR2, and creates a new EXPR in which

the multiplicities are the products of the corresponding
multiplicities in EXPR1 and EXPR2.

Example: SFN>
⇒ comp 42 +31, 5 +4.42 +5.31 +2ˆ2

4{ 42} + 5{ 31}
SFN>

⇒ comp 2.42 -3.31, 5 +4.42 +5.31 +2.2ˆ2
8{ 42} -15{ 31}
SFN>

COMPLement
Format: COMPLement INTEGER1, INTEGER2, EXPR
Modes: SFN
Description: INTEGER1 should be greater than or equal to greatest number

of parts of any partition in EXPR, while INTEGER2 should be
greater than or equal to the largest part of any partition in EXPR.
(Otherwise an error message appears). Each partition in EXPR is
then replaced by its complement with respect to
INTEGER1̂ INTEGER2. Thus, given that the above conditions
on
these integers are satisfied, then COMPL M,N,EXPR is equivalent
to SKew MˆN,EXPR, complete with multiplicities.

Example: SFN>
⇒ compl 6, 4, 321 -2.2+31ˆ5

-2{ 4ˆ5 2} +{ 4ˆ3 321} +{ 3ˆ5 1}
SFN>

CONJADD
Format: CONJADD EXPR
Modes: SFN
Description: Acts on each term in EXPR by replacing each partition a by

its conjugate a’ if and only if a’>a with respect to the
usual reverse lexicographic ordering, whereby for example
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41̂ 2 > 31̂ 3
Example: SFN>

⇒ outer 21,21
{ 42} + { 41ˆ2 } + { 3ˆ2 } + 2{ 321} + { 31ˆ3

} + { 2ˆ3 } + { 2ˆ2 1ˆ2 }
SFN>

⇒ conjadd last
2{ 42} + 2{ 41ˆ2 } + 2{ 3ˆ2 } + 2{ 321}
SFN>

CONJugateSfnList
Format: Conj EXPR
Modes: SFN
Description: Takes the conjugate of the S-functions in EXPR.
Example: SFN>

⇒ conj 42+31
{ 2ˆ21ˆ2} + { 21ˆ2}
SFN>

⇒ conj last
{ 42} + { 31}
SFN>

CONSPLIT
Format: CONSPLIT EXPR
Modes: REP
Description: This command only works with groups SU(n). It interprets EXPR

as a list of irreps of SU(n) and splits it into three sets of
terms. Self-contragredient irreps are stored
as RVAR19. In the case of contragredient pairs of irreps
the lowest weight partner is stored as RVAR18 and the higher
weight partner as RVAR20.

Example: REP>
⇒ gr su6

Group is SU(6)
REP>

⇒ p21ˆ4,21ˆ4
{ 42ˆ4 } + { 3ˆ2 2ˆ3 } + { 31ˆ3 } + { 2ˆ2

1ˆ2 } + 2{ 21ˆ4 } + { 0}
REP>

⇒ consplit last
REP>

⇒ rv18
{ 31ˆ3 }
REP>

⇒ rv19
{ 42ˆ4 } + { 2ˆ2 1ˆ2 } + 2{ 21ˆ4 } + { 0}
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REP>
⇒ rv20

{ 3ˆ2 2ˆ3 }
REP>

CONTENT
Format: CONTENT INTEGER EXPR
Modes: SFN
Description: If x is a cell in a Young frame with coordinates x = (i,j) then

the ’content’ of the cell is c(x) = j - i. If INTEGER = 0 and
EXPR is a list of S-functions then the content of every cell
of every Young frame is displayed. If INTEGER = n then the
display is of the integers n + c(x).

Example: SFN>
⇒ content 0 4321

+--+--+--+--+
: 0: 1: 2: 3:
+--+--+--+--+
:-1: 0: 1:
+--+--+--+
:-2:-1:
+--+--+
:-3:
+--+
SFN>

⇒ content 2 o21,21
2.

+-+-+-+-+ +-+-+-+-+ +-+-+-+ +-+-+-+ +--+--+--+ +-+-+ +-
-+--+
:2:3:4:5: :2:3:4:5: :2:3:4: :2:3:4: : 2: 3: 4: :2:3: : 2:
3:
+-+-+-+-+ +-+-+-+-+ +-+-+-+ +-+-+-+ +--+--+--+ +-+-+ +-
-+--+
:1:2: :1: :1:2:3: :1:2: : 1: :1:2: : 1:
2:
+-+-+ +-+ +-+-+-+ +-+-+ +--+ +-+-+ +-
-+--+

:0: :0: : 0: :0:1: : 0:
+-+ +-+ +--+ +-+-+ +-

-+
:-1: :-

1:
+--+ +-

-+
SFN>

CONTractGroups
Format: Cont INTEGER1, INTEGER2 OPERATION EXPR
Modes: DPM
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Description: Operates with OPERATION on reps of the INTEGER1 (=n)-th
and
INTEGER2 (=m)-th groups of the DPrep EXPR and assigns the
result
to repm whilst removing repn. The set of groups are changed
accordingly. The default operation is Kronecker product under the
m-th group whilst the other five operations involve the
partitions labelling reps m and n.
default rep = repm * repn under the m-th group.
Mix rep = { a;b}, a mixed tensor as in U m.
O a = a.b, the Sfn outer product.
I a = a\circ b, the Sfn inner product.
Sk a = a/b, the Sfn skew.
Pleth a = a\otimes b, the Sfn plethysm.
These operations are especially useful in implementing new
product or branching rules.

Example: DP>
⇒ gr2su8su8

Groups are SU(8) * SU(8)
DP>

⇒ prod[1 * 1],[2 * 1ˆ2]
{ 3}{ 21} + { 3}{ 1ˆ3} + { 21}{ 21} + { 21}{

1ˆ3}
DP>

⇒ cont 1,2 last
Group is SU(8)
{ 51} + 2{ 42} + 3{ 41ˆ2} + { 3ˆ2} + 4{ 321}

+ 3{ 31ˆ3} + { 2ˆ3}
+ 2{ 2ˆ21ˆ2} + { 21ˆ4}

DP>
⇒ gr2u8u8

Groups are U(8) * U(8)
DP>

⇒ [2 * 2]
{ 2}{ 2}
DP>

⇒ cont 1,2 pleth,last
Group is U(8)
{ 4} + { 2ˆ2}
DP>

CONTRAGredientRep
Format: Contrag gr grN EXPR (DPM)

Contrag EXPR (REP)
Modes: DPM, REP
Description: Replaces the representations in EXPR by their
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contragredient representations for the U(1), SU(n),
and E(6) groups. The command CH LabelForOn may be
used for SO(2k) where appropriate.

Example: DP>
⇒ gr3e6su3u1

Groups are E(6) * SU(3) * U(1)
DP>

⇒ [1ˆ2 * 1 * ~3]
(1:1){ 1}{ -3}
DP>

⇒ contrag gr1last
(1:1ˆ5){ 1}{ -3}
DP>

⇒ contrag gr2last
(1:1ˆ5){ 1ˆ2}{ -3}
DP>

⇒ contrag gr3last
(1:1ˆ5){ 1ˆ2}{ 3}
DP>

⇒ rep
REP mode

Group is E(6)
REP>

⇒ contrag 1ˆ6
(1:1)

REP>

CONV D TO Rep
Format: Conv D to R EXPR
Modes: REP
Description: Converts a list of DPreps into a list of REPs.

N.B. It is assumed that the DPreps involve just one
group else an error message is given.

CONV D TO Sfn
Format: Conv D to S EXPR
Modes: SFN
Description: Converts a list of DPreps into a list of S-functions.

N.B. It is assumed that the DPreps involve just one
group else an error message is given. Assumes the irreps
are of type tensor and do not have attached labels or
mixed notation. Useful for doing plethysms in the DPMode.
The inverse of converting a list of S-functions into a
list of DPreps is accomplished by [conv s to r EXPR] where
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EXPR can be a list of S-functions or an S-function
expression that generates a list of S-functions. e.g.
[conv s to r 21+321] or [conv s to r o21,21] etc.

CONV R TO Sfn
Format: Conv R to S EXPR
Modes: SFN
Description: Converts a list of REP irreps into a list of S-functions.

N.B. Assumes the irreps are of tensor type and do not have
attached labels or mixed notation.

Example: REP>
⇒ gr sp8

Group is Sp(8)
REP>

⇒ 21 + 321 + 42
<21> + <321> + <42>

REP>
⇒ sfn

Schur Function Mode
SFN>

⇒ conv r to s last
{ 42} + { 321} + { 21}
SFN>

CONV S TO Rep
Format: Conv S to R OPERATION(s) EXPR
Modes: REP, DPM
Description: Converts an S-function EXPR to REP form. default = direct

transfer a -> { a}
SPin EXPR adds a spin label to EXPR, a -> [s;a]
MIXedTensorReps EXPR1,EXPR2 forms a mixed tensor a,b ->
{ a;b}
LABel CHAR adds a one character label CHAR to EXPR as in
SO(2k)
(e.g. a -> [a]+)
More than one operation may be used at a time. The hierachy is
SPin, LABel, MIXedTensorReps.
The resulting irreps may not be in standard form in which case
the command STD should be used. The command may be used
for an
appropriately set group in either REP or DPMode. In the case of
the latter this command may be applied to one or more groups.

Example: REP>
⇒ gr so6

Group is SO(6)
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REP>
⇒ conv s to r spin label - outer2,1

[s;3]- + [s;21]-
REP>

⇒ gr u5
Group is U(5)
REP>

⇒ Conv s to r mixed 21,31
{ 21;31}
REP>

⇒ dpm
DPrep Mode (with function)
Group is U(5)

DP>
⇒ gr3 u5sp4so6

Groups are U(5) * Sp(4) * SO(6)
DP>

⇒ [conv s to r mixed 21,31*43*conv s to r spin label - o2,1]
{ 21;31}<43>[s;3]- +{ 21;31}<43>[s;21]-
DP>

COUNTCoeffsInList
Format: Countc EXPR
Modes: DPM, REP, SFN
Description: Computes the sum of the coefficients of the terms in EXPR

and returns CoeffSum
Example: SFN>

⇒ countc 42+41ˆ2+3ˆ2+2.321+31ˆ3 +2ˆ3 +2ˆ2 1ˆ2
CoeffSum = 8
SFN>

⇒ countc outer 21,21
CoeffSum = 8
SFN>

COUNTTermsInList
Format: CountT EXPR
Modes: DPM, REP, SFN
Description: Counts the number of distinct terms in EXPR without regard to

their multiplicity, and returns TermCount.
Example: SFN>

⇒ outer21,21
{ 42} + { 41ˆ2} + { 3ˆ2} + 2{ 321} + { 31ˆ3}

+ { 2ˆ3} + { 2ˆ2 1ˆ2}
SFN>

⇒ countt last
TermCount = 7
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SFN>
⇒ countt outer4321,4321

TermCount = 206
SFN>

COVariant
Format: COV EXPR
Modes: REP
Description: Converts a mixed tensor irrep of the group U(n) into an

equivalent covariant irrep. The group must be set as U(n)
else an error message is generated. The result is
printed as { p;lambda} where the integer ’p’ is to be
interpreted as the exponent of the one-dimensional irrep
whose basis is a totally antisymmetric n-th rank covariant
tensor and ’lambda’ is a standard covariant irrep of U(n).

Example: REP>
⇒ gr u6

Group is U(6)
REP>

⇒ cov 21;321
{ -2;54321}
REP>

DEAD
Format: DEAD qfn1,qfn2,qfn3
Modes: SFN
Description: qfn1,qfn2, qfn3 are Q-functions specified by partitions.

DEAD is a Boolean operator that is FALSE if the Q-function
qfn1 does not appear in the Q-function product qfn2 . qfn3.
If DEAD is TRUE then qfn1 probably appears in the product,
This is an implementaion of Theorem 2 in J. Math. Phys, (31)
1310 (1990).

Example: SFN>
⇒ dead!10 654321,32,765431

dead =true
SFN>

⇒ dead 9875421,32,765431
dead =false
SFN>

DIMensions
Format: Dim EXPR
Modes: DPM, REP
Description: Calculates the dimensions of EXPR. Dimensions are computed

for all the compact semisimple Lie groups and the symmetric
groups and for the representations associated with products
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of those groups. Dimensions for the supergroups U(m/n) and
OSp(m/n) can be calculated by first branching to their maximal
subgroups U(m) * U(n) or O(m) * Sp(n).

Example: DP>
⇒ gr3su8sp4so6

Groups are SU(8) * Sp(4) * SO(6)
DP>

⇒ dim[4321*42*s321+]
Dimension = 6035420160

DP>
Notes:

See also Sb Dimensions

DPMode
Format: DPM
Modes: REP, SFN
Description: Invoking DPMode in the REPmode or SFNmode returns SCHUR

to the DPMode. The same effect can be produced by the
command EXITmode.

D TO Plabel
Format: D to P DYNKIN LABEL
Modes: REP
Description: Converts the partition labels for the irreps in EXPR to Dynkin

labels. The group must first be set to be one of the simple Lie
groups: SU(n), SO(n), Sp(2n), E6, E7, E8, F4 or G2.

Example: REP>
⇒ gr g2

Group is G(2)
REP>

⇒ d to p 12
<<partition>> (41)
REP>

⇒ gr e8
Group is E(8)
REP>

⇒ d to p 021+2.10ˆ61
<<partition>> (10 3ˆ5 2) +2(51ˆ7 )
REP>

DYNKINIndex
Format: DynkinI EXPR
Modes: REP
Description: Computes the total second order Dynkin index for the

irreps in EXPR. See also the entry for the command PROP.
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The normalisation is chosen to give the dynkin index a value
of 1 for the fundamental irrep of the group.

Example: REP>
⇒ gr e8

Group is E(8)
REP>

⇒ dynkini 21ˆ7
2nd-dynkin = 1
REP>

⇒ dynkini 21
2nd-dynkin = 25
REP>

⇒ dynkini 21ˆ7 +2.21
2nd-dynkin = 51
REP>

END
Format: End
Modes: All
Description: Ends the current session. Closes and saves any LOGfiles

still open.

ENTerVar
Format: Ent OPERATION comment
Modes: DPM, REP, SFN
Description: Use of this line in a function allows the user to

input data to the function while it is being executed.
SVar N requires the user to input Sfn variable N and
is available in the DPM, REP and SFN modes. RVar N
requires the user to input rep variable N and is
available in DPM and REP modes. Var N requires the
user to input DPrep N and is available in the DPM mode.
GRoup requires the user to enter the groups the function
requires in the same format as for the GRoup command,
(see GRoup). ’comment’ is any text you wish that
may be helpful to the user of the function.

EQualSfnList
Description: This command is used in conjunction with the command RULE

and
is described under that heading.

E To FsymmFn
Format: E To F EXPR
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Modes: SFN
Description: Treats EXPR as a list of elementary symmetric functions

e { \lambda} and transforms them into a list of forgotten
symmetric functions f { \mu}.

Example: SFN>
⇒ e to f 21

f { 3} + 2f { 21} + 3f { 1ˆ3}
SFN>

E To HsymmFn
Format: E To H EXPR
Modes: SFN
Description: Treats EXPR as a list of elementary symmetric functions

e { \lambda} and transforms them into a list of homogeneous
symmetric functions h { \mu}.

Example: SFN>
⇒ e to h 21

- h { 21} + h { 1ˆ3}
SFN>

E To MsymmFn
Format: E To M EXPR
Modes: SFN
Description: Treats EXPR as a list of elementary symmetric functions

e { \lambda} and transforms them into a list of monomial
symmetric functions m { \mu}.

Example: SFN>
⇒ e to m 21

m { 21} + 3m { 1ˆ3}
SFN>

E TO SsymmFn
Format: E To S EXPR
Modes: SFN
Description: Treats EXPR as a list of elementary symmetric functions

e { \lambda} and transforms them into a list of Schur
symmetric functions.

Example: SFN>
⇒ e to s 21

{ 21} + { 1ˆ3}
SFN>

EXITmode
Format: EXIT
Modes: REP, SFN, BRM
Description: Returns the user to the DPMode from any other mode.
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EXPandSfnList
Format: Exp EXPR
Modes: SFN
Description: Expands EXPR by expressing every term c{ a} as a sum of c

terms
{ a} if c is positive, and as a sum of -c terms -{ a} if c is
negative, so that in the final expression all coefficients are either
+1 or -1.

Example: SFN>
⇒ exp 3.321 -2.21

{ 321} +{ 321} +{ 321} -{ 21} -{ 21}
SFN>

FFPROD
Format: FFPROD EXPR1,EXPR2
Modes: REP
Description: EXPR1 is a list of finite non-unitary irreps of Sp(2n,R)

while EXPR2 is an infinite dimensional unitary irrep.
The action of FFPROD is to form the generic product of
EXPR1 x EXPR2 to give a finite list of unitary irreps of
Sp(2n,R).
The group must be set as Sp(2n,R) else an error message is
generated. If any term in the intermediateproducts do not
correspond to a generic product an error message is generated.
See also FPROD, GENERIC and COVariant.

Example: REP>
⇒ gr spr6

Group is Sp(6,R)
REP>

⇒ ffprod 0;21 ,6;21
<8(0)> +<7(3)> +2<7(21)> +3<7(1)> +<6(42)> +<6(4)>
+<6(3ˆ2 )> +4<6(31)> +3<6(2ˆ2 )> +3<6(2)> +3<6(1ˆ2
)>
+<6(0)> +<5(52)> +2<5(43)> +2<5(41)> +4<5(32)>
+<5(3)> +2<5(21)> +<4(53)> +<4(4ˆ2 )> +<4(42)>
+<4(3ˆ2 )>

REP>

FIRSTPartsort
Format: FIRSTP INTEGER, EXPR
Modes: REP, SFN
Description: If INTEGER is positive then this command returns all

terms in EXPR whose first part is less than or equal to
INTEGER. If INTEGER is negative then the command returns
all
terms in EXPR whose first part is exactly equal to INTEGER.
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Example: SFN>
⇒ firstp 3,42+321+2ˆ3+1ˆ4

{ 321} + { 2ˆ3} + { 1ˆ4}
SFN>

⇒ firstp -3,last
{ 321}

SFN>

FN
Format: Fn INTEGER
Modes: DPM, REP, SFN
Description: INTEGER is N. Fn executes function N, N =1,...,50.

The first command in function N must match the mode you start
the
function in. Usually only the result of the last command in
function N is ported to the screen. The exceptions are the
results of the PROP, DIM, GRoup and mode change commands.
If you
wish other intermediate results to appear on the screen use the
command SUPpressOutputToScreen at the appropriate place in
your
function. N.B. Functions cannot call other functions, i.e. you
may not have Fn N as a line in a function. An extensive account
of the construction and use of functions is given in the
Tutorial 5.1.

FPROD
Format: FPROD EXPR1,EXPR2
Modes: REP
Description: EXPR1 is a list of finite covariant irreps of U(n) entered in

the covariant form p;a, 0;a or ~p;a, where p is a positive
integer and ~p signifies -p.
EXPR2 is an irrep of the non-compact group Sp(2n,R).
The action of FPROD is to form the generic product of
EXPR1 x EXPR2 to give a finite list of irreps of Sp(2n,R).
The group must be set as Sp(2n,R) else an error message is
generated. If any terms in the products do not correspond
to a generic product an error message is generated.

Example: REP>
⇒ gr spr6

Group is Sp(6,R)
REP>

⇒ fprod ~1;21, 5;21
<4(42)> +<4(41ˆ2 )> +<4(3ˆ2 )> +2<4(321)>

+<4(2ˆ3 )>
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REP>
⇒ fprod 0;1+~2;32, 4;21

<4(31)> +<4(2ˆ2 )> +<4(21ˆ2 )> +<2(53)> +<2(521)>
+<2(4ˆ2 )> +2<2(431)> +<2(42ˆ2 )> +<2(3ˆ2 2)>

REP>

FRACAHnotation
Format: FRACAH EXPR
Modes: REP
Description: Converts an EXPR of Racah G(2) irreps labelled in Racah’s

SO(3) basis into a list of G(2) irreps labelled in the SU(3)
basis. See also RACAHnotation.

Example: REP>
⇒ gr g2

Group is G(2)
REP>

⇒ prod31,21
(52) + (41) + (4) + 2(31) + (3) + (2) + (1)
REP>

⇒ racah last
(4) + (32) + (31) + (3) + 2(21) + (2) + (1)

REP>
⇒ fracah last

(52) +(41) +(4) +2(31) +(3) +(2) +(1)
REP>

FROBenius
Format: FROBenius INTEGER, EXPR
Modes: SFN
Description: If INTEGER is positive then this command returns all

terms in EXPR which are of Frobenius rank INTEGER or
less. If INTEGER is negative then the command returns all
terms in EXPR which are of Frobenius rank INTEGER exactly.

Example: SFN>
⇒ outer21,21

{ 42} + { 41ˆ2 } + { 3ˆ2 } + 2{ 321} + { 31ˆ3
} + { 2ˆ3 } + { 2ˆ2 1ˆ2 }

SFN>
⇒ frob-2last

{ 42} + { 3ˆ2 } + 2{ 321} + { 2ˆ3 } + { 2ˆ2
1ˆ2 }

SFN>

F To EsymmFn
Format: F To E EXPR
Modes: SFN
Description: Treats EXPR as a list of forgotten symmetric functions
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f { \lambda} and transforms them into a list of elementary
symmetric functions e { \mu}.

Example: SFN>
⇒ f to e 21

- 3e { 3} + 5e { 21} - 2e { 1ˆ3}
SFN>

F To HsymmFn
Format: F To H EXPR
Modes: SFN
Description: Treats EXPR as a list of forgotten symmetric functions

f { \lambda} and transforms them into a list of homogeneous
symmetric functions h { \mu}.

Example: SFN>
⇒ f to h 21

- 3h { 3} + h { 21}
SFN>

F To MsymmFn
Format: F To M EXPR
Modes: SFN
Description: Treats EXPR as a list of forgotten symmetric functions

f { \lambda} and transforms them into a list of monomial
symmetric functions m { \mu}.

Example: SFN>
⇒ f to m 21

- 2m { 3} - m { 21}
SFN>

F To SsymmFn
Format: F TO S EXPR
Modes: SFN
Description: Treats EXPR as a list of forgotten symmetric functions

f { \lambda} and transforms them into a list of S−functions
{ \mu}.

Example: SFN>
⇒ f to s 21

-2{ 3} +{ 21}
SFN>

FUSion
Format: Fus INTEGER EXPR
Modes: REP
Description: The INTEGER, which should be positive, is the level of an affine

representation, and EXPR a list of irreps of either SU(n) or
Sp(n). In the case of SU(n) the group should be set as U(n) and
the irreps given in mixed form. It is assumed that the irreps are
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either standard or have been made standard with the operation
STD. For further details see Cummins, J.Phys.A:Math.Gen. 24,391-
400(1991).

Example: REP>
⇒ gr sp10

Group is Sp(10)
REP>

⇒ std532ˆ6
- <532ˆ3 >
REP>

⇒ fus 3 last
<3ˆ2 2ˆ3 >
REP>

⇒ gr u8
Group is U(8)
REP>

⇒ std 7632ˆ31;982ˆ41
{ 7631;9821}
REP>

⇒ fus 10 last
{ 43ˆ2 1;6521}
REP>

GENERIC
Format: GENERIC REP1 and REP2
Modes: REP
Description: REP1 and REP2 should be standard irreps of Sp(2n,R). Then

this command gives the output generic=true if the product
of REP1 and REP2 is generic, otherwise the return is
generic=false. For further details see F. Toumazet, in
”Symmetry, Spectroscopy and SCHUR”, Proc. Brian G. Wybourne
Conference, UMK Publ, Torun, Poland, 2006 pp????”.

Example: REP>
⇒ gr spr8

Group is Sp(8,R)
REP>

⇒ generic 2;1,5;62
generic=true

REP>

GENprod
Format: GEN INTEGER
Modes: SFN
Description: Generates the list of monomials corresponding to the expansion

of the product over i from 1 to (INTEGER N - 1) of (x i - x N)̂ 2.



GWT 157

A typical monomial x 1 x 3̂ 3 is represented by { 103}. See also
VMult and SMON.

Example: SFN>
⇒ gen 3

{ 2ˆ2 } - 2{ 21ˆ2 } + { 202} - 2{ 121} + 4{ 1ˆ2 2}
- 2{ 103} + { 02ˆ2 } - 2{ 013}

+ { 0ˆ2 4}
SFN>

GRoup
Format: Gr INTEGER GROUPNAMES (DPM)

Gr GROUPNAME (REP)
Modes: DPM, REP
Description: Sets the group(s) with respect to which all rep and DPrep

calculations are done. INTEGER is the number of groups in a
direct
product and is not required if equals to 1. The maximum number
of
groups that may be set in DPM is 6. Table A.3 shows how the
available groups are to be entered.
N.B. Not all the groups listed in Table A.3 are available for
all the commands in SCHUR so check the appropriate commands.

Example: DP>
⇒ gr4e8f4g2e6

Groups are E(8) * F(4) * G(2) * E(6)
DP>

⇒ gr sumn4 6
Group is SU(4/6)
DP>

Notes:
Table A.3: Formats for entry of groups in SCHUR
Name of : code for Name of : code for
Group : group Group : group
--------+--------- ---------+---------
U(n) : u n S(n) : s n
SU(n) : su n E(6) : e6
O(n) : o n E(7) : e7
SO(n) : so n E(8) : e8
Sp(n) : sp n OSp(m/n) : osp m n
G(2) : g2 U(p/q) : umn p q
F(4) : f4 SU(p/q) : sumn p q
Sp(n,R) : spr n Mp(n) : mp n
SOˆ*(2p): son 2p

GWT
Format: GWT INTEGER EXPR
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Modes: SFN
Description: Takes the list of S-functions generated by EXPR and removes

all those of weight less than INTEGER.
Example: SFN>

⇒ o21,3+5
{ 71} + { 62} + { 61ˆ2 } + { 521} + { 51} +

{ 42} + { 41ˆ2 } + { 321}
SFN>

⇒ gwt7,last
{ 71} + { 62} + { 61ˆ2 } + { 521}
SFN>

HALLpolynomialProduct
Format: Hall SFN, INTEGER
Modes: SFN
Description: Forms the product of a single Hall-Littlewood polynomial, for

arbitrary variable t, corresponding to the partition associated
with SFN with the Hall-Littlewood polynomial involving a single
part INTEGER. The resulting coefficients are given as an array
of integers a,b,c... displayed as (abc...). Each integer x
corresponds to (1 - t̂ x).
The polynomial constructed from (abc...) must be divided by
(1 - t). The implementation is based on Macdonald’s ”Symmetric
Functions and Hall Polynomials” page 113 3.8.
An error is indicated if INTEGER is entered with more than one
part

Example: SFN>
⇒ hall 32ˆ21,3

(1){ 62ˆ2 1} + (1){ 5321} + (31){ 52ˆ3} + (21){
52ˆ2 1ˆ2} + (1){ 432ˆ2} + (21){ 4321ˆ2}

+ (31){ 42ˆ3 1} + (2){ 3ˆ2 2ˆ2 1}
SFN>

Notes:

(31){ 52ˆ3} -> (1 - tˆ3){ 52ˆ3}
where for example { 52ˆ3} is interpreted as the HL-polynomial
corresponding to the partition (52ˆ3) etc.

HCLASS
Format: HCLASS EXPR
Modes: SFN
Description: Used in place of CLASS to record the number of elements of

the class of S(N) specified by each partition in EXPR in
those cases for which their might be an integer overflow.

Example: SFN>
⇒ class !15 5
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-543424512{ 15 5}
SFN>

⇒ hclass !15 5
Number of elements in the class =
32438693442355200
SFN>

HEAPstatus
Format: HEAPstatus
Modes: SFN, REP, DPM
Description: This command is mainly used by SCHUR code developpers.

It displays count, rcount and pcount values: counters of dynamic
allocations made respectively of sfn, ocharptr and prodtype struc-
tures.

Example: SFN>
⇒ o21,2

{ 41} +{ 32} +{ 31ˆ2 } +{ 2ˆ2 1}
SFN>

⇒ heap
Count = 4 Rcount = 0 Pcount = 0
SFN>

⇒ nskew6,!18 !12 6,6
23766{ 0}
SFN>

⇒ heap
Count = 1 Rcount = 0 Pcount = 0
SFN>

⇒ rep
REP mode
REP>

⇒ gr spr8
Group is Sp(8,R)
REP>

⇒ 2;0 + 2;2 + 2;2ˆ2
<2(0)> +<2(2)> +<2(2ˆ2 )>

REP>
⇒ heap

Count = 1 Rcount = 3 Pcount = 0
REP>

⇒ sfn
Schur Function Mode
SFN>

⇒ last
23766{ 0}
SFN>
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HECKE
Format: HECKE PARTITION
Modes: DPM
Description: Determines the character of the irrep of the Hecke algebra

H n(q), for q not a root of unity, in the class specified by
a single PARTITION, entered without any enclosing brackets,
whose parts give the cycle structure and whose weight is n.
Prior to using HECKE the group must be set as U(n)*U(1), where
n is the order of the Hecke algebra. (See pages 88-91 of the
SCHUR manual for some additional details). In the output the
partitions associated with U(n) correspond to the irrep labels
of H n(q), while the irrep of U(1) gives the exponents of q.

Example: DP>
⇒ gr2u6u1

Groups are U(6) * U(1)
DP>

⇒ Hecke 42
{ 6}{ 4} + { 51}{ 4} - 2{ 51}{ 3} + { 42}{

4} - { 42}{ 3} + { 42}{ 2}
- 2{ 41ˆ2 }{ 3} + 2{ 41ˆ2 }{ 2} - { 3ˆ2 }{ 3} - {

321}{ 3} + 2{ 321}{ 2}
- { 321}{ 1} + 2{ 31ˆ3 }{ 2} - 2{ 31ˆ3 }{ 1} - { 2ˆ3

}{ 1} + { 2ˆ2 1ˆ2 }{ 2}
- { 2ˆ2 1ˆ2 }{ 1} + { 2ˆ2 1ˆ2 }{ 0} - 2{ 21ˆ4 }{ 1}

+ { 21ˆ4 }{ 0}
+ { 1ˆ6 }{ 0}

DP>
Notes:

Thus we can deduce that the character of the ir-
rep { 321} and class
(42) of H 6(q) is (-qˆ3 + 2qˆ2 - q). Putting q = 1 gives
the
corresponding character of the symmetric group S(6), in
this case zero.

HSTD
Format: HSTD REP
Modes: REP
Description: HSTD is a Boolean that gives the result as ”True” if rep is a

highly standard irrep of the group Sp(2n,R) or SO*(2n).
For all other groups an error mesage results.

Example: REP>
⇒ gr spr6

Group is Sp(6,R)
REP>



H To MsymmFn 161

⇒ hstd 3;21
highlystandard =true
REP>

⇒ hstd 2;32
highlystandard =false
REP>

HSTDList
Format: HSTDL EXPR
Modes: REP
Description: HSTDList is a Boolean that gives the result as ”True”

if the list of all reps in EXPR contains only highly standard
irreps of the group Sp(2n,R) or SO*(2n). For all other
groups an error mesage results. If EXPR contains any non-highly
standard irreps the result is ”False”. See also HSTD.

Example: REP>
⇒ gr spr6

Group is Sp(6,R)
REP>

⇒ hstdl 3;21 + 4;22
highlystandard list =true
REP>

⇒ hstdl 3;21 + 4;22 + 2;32
highlystandard list =false
REP>

H To EsymmFn
Format: H To E EXPR
Modes: SFN
Description: Treats EXPR as a list of homogeneous symmetric functions

h { \lambda} and transforms them into a list of elementary
symmetric functions e { \mu}.

Example: SFN>
⇒ h to e 21

- e { 21} + e { 1ˆ3}
SFN>

H To FsymmFn
Format: H To F EXPR
Modes: SFN
Description: Treats EXPR as a list of homogeneous symmetric functions

h { \lambda} and transforms them into a list of forgotten
symmetric functions f { \mu}.

Example: SFN>
⇒ h to f 21

f { 21} + 3f { 1ˆ3}
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SFN>

H To MsymmFn
Format: H To M EXPR
Modes: SFN
Description: Treats EXPR as a list of homogeneous symmetric functions

h { \lambda} and transforms them into a list of monomial
symmetric functions m { \mu}.

Example: SFN>
⇒ h to m 21

m { 3} + 2m { 21} + 3m { 1ˆ3}
SFN>

H To SsymmFn
Format: H To S EXPR
Modes: SFN
Description: Treats EXPR as a list of homogeneous symmetric functions

h { \lambda} and transforms them into a list of Schur
symmetric functions.

Example: SFN>
⇒ h to s 21

{ 3} + { 21}
SFN>

INDEXsequence
Format: INDEX INTEGERS
Modes: SFN
Description: INDEX acts on a sequence of positive integers to produce

a new sequence known as the Index of the Sequence. If the
members of the sequence are a(r) r = 1,2 ...,N then the
index i(r) is defined as the number of integers in the
sequence lying to the left of a(r) which are equal to a(r),
including a(r) itself, minus the number of integers lying
to the left of a(r) which are equal to a(r) - 1.

Example: SFN>
⇒ index111223324

{ 123-2-1ˆ2 0ˆ2 -1}
SFN>

INSertPartitionIntoSfn
Format: Ins PARTITION, EXPR
Modes: SFN
Description: Inserts the PARTITION together with trailing 0’s if required,

in front of every member of EXPR without standardising the new
expression.

Example: SFN>
⇒ ins 62,-43+2.321+21
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-{ 6243} +2{ 62321} +{ 62ˆ2 1}
SFN>

⇒ std last
{ 63ˆ3 } +{ 62ˆ2 1}

SFN>
⇒ ins 6200,64

{ 620ˆ2 64}
SFN>

⇒ std last
-{ 63ˆ2 2ˆ3 }

SFN>

INTegerDivideCoeffs
Format: Int INTEGER EXPR
Modes: DPM, REP, SFN
Description: Divides the coefficients in EXPR by the

INTEGER. Gives an error message if the
coefficients are not 0 mod INTEGER.

Example: SFN>
⇒ !288.543 + !12.4321 + !48.321 - !72.21

288{ 543} + 12{ 4321} + 48{ 321} - 72{ 21}
SFN>

⇒ int 12 last
24{ 543} + { 4321} + 4{ 321} - 6{ 21}
SFN>

INVseries
Format: INV INTEGER EXPR
Modes: DPM
Description: Used to compute the terms of the inverse of the series

defined by EXPR up to weight INTEGER. The group is first
set as appropriate to the irreps of the terms in EXPR. If
the group is of the form U(1)*G then INTEGER refers to the
weight of the irreps of U(1).

Example: DP>
⇒ gr u12

Group is U(12)
DP>

⇒ [conv s to r ser3,t]
{ 21} + { 1} + { 0}
DP>

⇒ inv 3 last
- { 3} - 3{ 21} + { 2} - { 1ˆ3 } + { 1ˆ2 } - { 1} + { 0}
DP>

⇒ gr2u1u12
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Groups are U(1) * U(12)
DP>

⇒ mac a 6
- { 3}{ 31ˆ3 } - { 3}{ 2ˆ3 } + { 2}{ 21ˆ2 } - { 1}{ 1ˆ2
} + { 0}{ 0}
DP>

⇒ setv1 last
DP>

⇒ inv6 last
{ 3}{ 3ˆ2 } + { 3}{ 2ˆ2 1ˆ2 } + { 3}{ 1ˆ6 } + { 2}{ 2ˆ2
} + { 2}{ 1ˆ4 }
+ { 1}{ 1ˆ2 } + { 0}{ 0}
DP>

⇒ wt 2, 6, p last, v1
{ 0}{ 0}
DP>

⇒ gr2 u1 sp4
Groups are U(1) * Sp(4)
DP>

⇒ mac c 4
{ 2}<31> -{ 1}<2> +{ 0}<0>
DP>

I PLethysmRd
Format: I Pl, EXPR
Modes: SFN
Description: Evaluates the plethysm <1> \otimes EXPR for S(N) in

the reduced notation.
Example: SFN>

⇒ i pl 21
<21> + <2> + <1ˆ2 > + <1>
SFN>

I QfnProduct
Format: I Q EXPR1,EXPR2
Modes: SFN
Description: I Q forms the inner product of the Q-functions in EXPR1 and

EXPR2 to yield S-functions.
Example: SFN>

⇒ i q21+31,3+21+4
2{ 31} + 2{ 2ˆ2} + 2{ 21ˆ2} + 4{ 21}

Notes:
02/01/2006 This example seems to be wrong !

I sfnProduct
Format: I EXPR1,EXPR2
Modes: SFN
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Description: Calculates the sum of the inner products of all pairs of
S-functions in EXPR1 and EXPR2 that have the same weight,
including the product of their coefficients. It gives zero if
there no such pairs having the same weight.

Example: SFN>
⇒ i 31, 21ˆ2

{ 31} + { 2ˆ2} + { 21ˆ2} + { 1ˆ4}
SFN>

⇒ i 31, 21
zero
SFN>

⇒ i 31-21, 2.21+21ˆ2
{ 31} -2{ 3} +{ 2ˆ2 } +{ 21ˆ2 } -2{ 21} +{ 1ˆ4 } -

2{ 1ˆ3 }
SFN>

I SFNQfnProduct
Format: I SfnQ EXPR1,EXPR2
Modes: SFN
Description: Calculates the sum of the inner products of pairs consisting of

an S-function in EXPR1 and a Q-function in EXPR 2 that have
the
same weight, including the product of their coefficients. It
gives zero if there no such pairs having the same weight.

Example: SFN>
⇒ i sfnq 321, 6 -5 +2.51

4Q { 6} +11Q { 51} +18Q { 42} +3Q { 321}
SFN>

KINSert
Format: KINS INTEGER gr grN EXPR (DPM)

KINS INTEGER EXPR (REP)
Modes: REP, DPM
Description: Use restricted to reps of the groups Sp(2n,R) and SO *̂(2n).

Replaces the integer k in <k(\lambda)> or [k(\lambda)] by IN-
TEGER.
In the case of harmonic reps of Sp(2n,R) the spin index s is left
unchanged. It may be changed using the command ch spin.

Example: DP>
⇒ gr spr8

Group is Sp(8,R)
DP>

⇒ [s2;21]
<s2(21)>
DP>

⇒ kins 3 gr1 last
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<s3(21)>
DP>

⇒ ch spin gr1 last
<3(21)>
DP>

KMatrix
Format: KM INTEGER
Modes: SFN
Description: Computes the elements of the Kostka matrix and displays the

result as a square array. The order of the rows and columns
are those of reverse lexicographic ordering of the partitions
of INTEGER. For example, in the case INTEGER=4 the order is
4, 31, 2̂ 2, 21̂ 2, 1̂ 5.

Example: SFN>
⇒ km 4

1 1 1 1 1
0 1 1 2 3
0 0 1 1 2
0 0 0 1 3
0 0 0 0 1
SFN>

Kostka
Format: Kostka SFN1, SFN2
Modes: SFN
Description: Computes the element of the Kostka matrix K { a,b} where

a=SFN1 and b=SFN2 which are single S-functions.
Example: SFN>

⇒ k4321,221ˆ6
Kostka matrix element =

192
SFN>

LABel
Format: Conv S to R OPERATION(s) EXPR
Modes: REP, DPM
Description: The command LABel is used in conjunction with CONV S TO Rep.

The ”LABel CHAR” OPERATION adds a one character label
CHAR
to EXPR as in SO(2k) (e.g. a -> [a]+)
More than one operation may be used at a time.
The hierachy is SPin, LABel, MIXedTensorReps.
The resulting irreps may not be in standard form in which case
the command STD should be used.

Example: REP>
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⇒ gr so6
Group is SO(6)
REP>

⇒ conv s to r spin label - outer2,1
[s;3]- + [s;21]-
REP>

LASTresult
Format: Last
Modes: DPM, REP, SFN
Description: LAST is the result of the last operation and is used as

an expression.
Example: SFN>

⇒ o 2,2
{ 4} + { 31} + { 2ˆ2}
SFN>

⇒ last
{ 4} + { 31} + { 2ˆ2}
SFN>

⇒ sk last,2
3{ 2} + { 1ˆ2}
SFN>

Notes:
Some commands, such as DIM, produce an output that is nei-
ther an EXPR,
nor a REP nor an SFN. In such cases, usually indicated by
some text, such as
"dimension=124702", LAST may give zero or a previous EXPR,
REP or SFN.

LATticetest
Format: LAT Sequence
Modes: SFN
Description: Sequence is a sequence of positive integers. LATTICE is a

boolean that is TRUE if the sequence is a lattice
permutation or FALSE otherwise

Example: SFN>
⇒ lattice1111223324

lattice test = true
{ 1ˆ4 2ˆ2 3ˆ2 24}

SFN>

LENgthOfPartitionsSelect
Format: Len grno,INTEGER, EXPR (DPM)

Len INTEGER, EXPR (REP, SFN)
Modes: DPM, REP, SFN
Description: In the DPMode if INTEGER is positive all terms in EXPR which
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are of length INTEGER or less for grno are returned.
If INTEGER is negative then all terms in EXPR having a
number of parts equal to the magnitude of INTEGER for grno
are returned.
In the REP or SFN mode If INTEGER is positive then all terms
in EXPR which are of length INTEGER or less are returned.
If INTEGER is negative then all terms in EXPR having a
number of parts equal to the magnitude of INTEGER are re-
turned.

Example: SFN>
⇒ len 3,321+321ˆ2 + 31 +2ˆ6+2

{ 321} + { 31} + { 2}
SFN>

⇒ len -3,last
{ 321}
SFN>

LINES
Format: LINES INTEGER
Modes: DPM, REP, SFN
Description: Sets the number of lines for output. The default value

has been set at 50.

LOadFile
Format: Lo RVar ’filename’ (REP)

Lo SVar ’filename’ (SFN)
Modes: REP, SFN
Description: Loads a previously saved file of RVar or Svar as

chosen. See SAVEsetVar and SETSfnVar for additional
details.

Example: SFN>
⇒ setsv1 3+21+2

SFN>
⇒ save svar ’filename’

save[1]
SFN>

⇒ load svar ’filename’
load[1]
SFN>

⇒ sv1
{ 3} + { 21} + { 2}
SFN>

LOGfile
Format: Log ’filename’
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Modes: DPM, REP, SFN
Description: A logfile maybe setup at anytime by use of the command

Log’filename’. This has the effect of directing current
results to the file ‘filename’. This file may be closed
at anytime by issuing the command Log”. The filename
’prn.’ should direct the output to an attached printer.
Exiting SCHUR will automatically close the current logfile.
A logfile may be subsequently edited by any appropriate
text editor.

Example: DP>
⇒ log’testfile.tst’

DP>
⇒ gr e8

Group is E(8)
DP>

⇒ dim[63]
Dimension = 2903770000
DP>

⇒ log’’ (Closes logfile)
DP>

LSEQuence
Format: LSEQ Sequence
Modes: SFN
Description: LSEQ acts on a sequence of integers to produce the number of

parts, or length, of the Sequence.
Example: SFN>

⇒ lseq 1112234576
length = 10

{ 1ˆ3 2ˆ2 34576}
SFN>

MACseries
Format: Macm ch INTEGER
Modes: DPM
Description: Used to generate both the q-dependent version of the Littlewood

S-function series and the Macdonald denominator series expansion
for the affine Kac-Moody algebras A { n-1}̂ { (1)}. The group is
first set as U(1)*U(n). The group U(1) is used to store the
exponent w of q, which is the weight of the partition specifying
each term in the SERIES which is to be entered as the single
character f. INTEGER is the maximum weight of the irrep of
U(1),
that is the maximum exponent of q, that is required. The output
is a sum of mixed tensor irreps of U(N), { zeta’;zeta}, where
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zeta’ is the conjugate of the partition zeta, with coefficient
(-1)̂ w and U(1) label { w}, where w is the weight of the partition
zeta.

Example: DP>
⇒ gr2 u1 u8

Groups are U(1) * U(8)
DP>

⇒ macm f 4
{ 4}{ 4;1ˆ4 } +{ 4}{ 31;21ˆ2 } +{ 4}{ 2ˆ2 ;2ˆ2 } +{ 4}{
21ˆ2 ;31} +{ 4}{ 1ˆ4 ;4}
+{ 3}{ 3;1ˆ3 } +{ 3}{ 21;21} +{ 3}{ 1ˆ3 ;3} +{ 2}{ 2;1ˆ2
} +{ 2}{ 1ˆ2 ;2}
+{ 1}{ 1;1} +{ 0}{ 0;0}
DP>

MACseries
Format: Mac ch INTEGER
Modes: DPM
Description: Used to generate both the q-dependent version of the Littlewood

S-function series and the Macdonald denominator series expansion
for affine Kac-Moody algebras. The group is first set as U(1)*G,
where G=U(n) for S-function series, and is any one of the
classical groups for the affine case. The group U(1) is used to
store the exponent of q, which is w/2 for the series a,b,c,d,
and w in all other cases, where w is the weight of the partition
specifying each irrep of G. The SERIES is entered as a single
character a,b,...,z, and INTEGER is the maximum weight of the
irrep of U(1), that is the maximum exponent of q, that is
required.

Example: DP>
⇒ gr2 u1 u8

Groups are U(1) * U(8)
DP>

⇒ mac g 6
{ 2}{ 321} +{ 2}{ 31ˆ2 } -{ 1}{ 2ˆ2 } -{ 1}{ 21} +{ 0}{
1} +{ 0}{ 0}
DP>

⇒ mac c 6
-{ 3}{ 41ˆ2 } -{ 3}{ 3ˆ2 } +{ 2}{ 31} -{ 1}{ 2} +{ 0}{ 0}
DP>

⇒ last
-{ 3}{ 41ˆ2 } -{ 3}{ 3ˆ2 } +{ 2}{ 31} -{ 1}{ 2} +{ 0}{ 0}
DP>

⇒ gr2 u1 sp4
Groups are U(1) * Sp(4)
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DP>
⇒ last

-{ 3}<41ˆ2 > -{ 3}<3ˆ2 > +{ 2}<31> -{ 1}<2> +{ 0}<0>
DP>

MAKEwtOfSfnToN
Format: Make INTEGER EXPR
Modes: SFN
Description: Takes each partition in EXPR and makes each one up to weight

INTEGER by inserting an appropriate first part and then returns
a
standardised list. Useful in going from reduced notation for S(N)
to a specific value of INTEGER.

Example: SFN>
⇒ make 10 421+32+31+2ˆ3

{ 631} + { 532} + { 42ˆ3}
SFN>

⇒ make 8 421+32+31+2ˆ3
{ 431} +{ 3ˆ2 2} -{ 32ˆ2 1} +{ 2ˆ4 }
SFN>

MAXCoeffInList
Format: Maxc, EXPR
Modes: DPM, REP, SFN
Description: Finds the largest multiplicity coefficient in the list

produced by EXPR and echoes it to the screen.
Example: SFN>

⇒ maxc 6.321 + 4.32 + !12.21
MaxCoeff = 12
SFN>

MIXedTensorReps
Format: [Conv s to r mix EXPR1,EXPR2] (DPM)

Conv s to r mix EXPR1,EXPR2 (REP)
Modes: DPM, REP
Description: This command is used in conjunction with the command

CONV S TO Rep and is used to combine two Sfn expressions
to produce mixed tensor reps of SU(n) or U(n). Mixed tensor
reps are of the form { a;b} and are always entered by placing
a semicolon ‘;’ between the partition entries for a and b.

Example: DP>
⇒ gr2u6u4

Groups are U(6)*U(4)
DP>

⇒ [conv s to r mix 32,421 * conv s to r mix 1,21]
{ 32;421} { 1;21}
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DP>
⇒ repm

REP mode
Group is U(6)
REP>

⇒ gr su6
Group is SU(6)
REP>

⇒ conv s to r mix 32+2.21,43-2ˆ3
{ 32;43} -{ 32;2ˆ3 } +2{ 21;43} -2{ 21;2ˆ3 }
REP>

M TImesSfnProduct
Format: M Ti EXPR1,EXPR2
Modes: SFN
Description: Evaluates the product of a list of monomial symmetric functions

(EXPR1) and a list of S-functions (EXPR2) to produce a list
of S-functions.

Example: SFN>
⇒ m ti 21-1,3+1ˆ2

{ 51} +{ 42} -{ 41ˆ2 } -{ 4} +{ 321} +{ 32} -2{ 31ˆ3 } +{
31ˆ2 } -{ 31}
-{ 2ˆ2 1} -{ 21ˆ3 } -{ 21} -2{ 1ˆ5 } -{ 1ˆ3 }
SFN>

M To EsymmFn
Format: M To E EXPR
Modes: SFN
Description: Treats EXPR as a list of monomial symmetric functions

m { \lambda} and transforms them into a list of elementary
symmetric functions e { \mu}.

Example: SFN>
⇒ m to e 21

- 3e { 3} + e { 21}
SFN>

M To FsymmFn
Format: M To F EXPR
Modes: SFN
Description: Treats EXPR as a list of monomial symmetric functions

m { \lambda} and transforms them into a list of forgotten
symmetric functions f { \mu}.

Example: SFN>
⇒ m to f 21

- 2f { 3} - f { 21}
SFN>
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M To HsymmFn
Format: M To H EXPR
Modes: SFN
Description: Treats EXPR as a list of monomial symmetric functions

m { \lambda} and transforms them into a list of
homogeneous symmetric functions h { \mu}.

Example: SFN>
⇒ m to h 21

- 3h { 3} + 5h { 21} - 2h { 1ˆ3}
SFN>

M To SsymmFn
Format: M To S EXPR
Modes: SFN
Description: Treats EXPR as a list of monomial symmetric functions

m { \lambda} and transforms them into a list of
Schur symmetric functions.

Example: SFN>
⇒ m to s 21

{ 21} - 2{ 1ˆ3}
SFN>

MUlt CoeffByAnInt
Format: Mu INTEGER EXPR
Modes: DPM, REP, SFN
Description: Multiplies the coefficient of each term in EXPR by INTEGER,

either N or -N.
Example: SFN>

⇒ mu 7 2.321-3.21
14{ 321} -21{ 21}
SFN>

⇒ mu -5 2.321-3.21
-10{ 321} +15{ 21}
SFN>

MULT List
Format: MULT L EXPR
Modes: SFN
Description: If EXPR generates a list of S-functions then the command

MULT List creates a table of the multiplicities and the
number of terms having that multiplicity. See also
MULT Select.

Example: SFN>
⇒ setsv1 o 321,321

SFN>
⇒ mult l sv1
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Mult =1 Number of Terms =18
Mult =2 Number of Terms =7
Mult =3 Number of Terms =6
Mult =4 Number of Terms =3
SFN>

⇒ mult s 4 sv1 t
4{ 5421} + 4{ 5321ˆ2 } + 4{ 432ˆ2 1}
SFN>

MULT Ntimes
Format: Mult N INTEGER EXPR
Modes: REP, SFN
Description: Multiplies EXPR by itself INTEGER times.
Example: SFN>

⇒ mult n2,21+1
{ 42} + { 41ˆ2} + { 3ˆ2} + 2{ 321} + { 31ˆ3} + 2{ 31} +
{ 2ˆ3} + { 2ˆ2 1ˆ2}
+ 2{ 2ˆ2} + 2{ 21ˆ2} + { 2} + { 1ˆ2}
SFN>

MULT PartsByAnInt
Format: Mult P INTEGER EXPR
Modes: SFN
Description: MULT P multiplies every part of every partition appearing as a

term in EXPR by INTEGER.
Example: SFN>

⇒ mult p 3 321+21
{ 963} + { 63}
SFN>

MULT SelectInList
Format: Mult S INTEGER, EXPR [BOOLEAN]
Modes: DPM, REP, SFN
Description: Mult S selects from the list generated by EXPR all items whose

multiplicity coefficient is INTEGER or less.
If the optionnal BOOLEAN is True then it gives the items whose
multiplicity coefficient is exactly the magnitude of Integer.

Example: SFN>
⇒ setsv1 o 321,22-21

SFN>
⇒ mult s -1 sv1

-{ 531} -{ 52ˆ2 } -{ 521ˆ2 } -{ 4ˆ2 1} -2{ 432} -2{ 431ˆ2
} -2{ 42ˆ2 1}
-{ 421ˆ3 } -{ 3ˆ3 } -2{ 3ˆ2 21} -{ 3ˆ2 1ˆ3 } -{ 32ˆ3 } -
{ 32ˆ2 1ˆ2 }
SFN>

⇒ mult s 2 sv1 t
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2{ 4321}
SFN>

MULT SPlitIntoTwoLists
Format: Mult Sp EXPR
Modes: SFN
Description: This command takes the EXPR and saves all the terms with odd

coefficients as SVar17 and those with even coefficients as
SVar18. Sometimes useful when working with memory restric-
tions.

Example: SFN>
⇒ o 31,22-21

{ 53} +{ 521} -{ 52} -{ 51ˆ2 } +{ 431} -{ 43} +{ 42ˆ2 }
+{ 421ˆ2 } -2{ 421}
-{ 41ˆ3 } +{ 3ˆ2 2} -{ 3ˆ2 1} +{ 32ˆ2 1} -{ 32ˆ2 } -{ 321ˆ2
}
SFN>

⇒ mult sp last
SFN>

⇒ status
digits:true reverse:false more:false setlimit:12 pwt:200
logging:false

10 20 30 40 50
fns:
svar: 78 schur function
mode
SFN>

⇒ sv18
-2{ 421}
SFN>

⇒ sv17
{ 53} +{ 521} -{ 52} -{ 51ˆ2 } +{ 431} -{ 43} +{ 42ˆ2 }
+{ 421ˆ2 } -{ 41ˆ3 }
+{ 3ˆ2 2} -{ 3ˆ2 1} +{ 32ˆ2 1} -{ 32ˆ2 } -{ 321ˆ2 }
SFN>

MYlistOfSfns
Description: This command is used in conjunction with the command RULE

and
is discussed under RULE.

NLambda
Format: NLambda SFN
Modes: SFN
Description: For each SFN specified by a partition lambda, NL evaluates the

parameter n(lambda) which is the sum of the numbers obtained
by
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inserting 0 into each box of the first row of the frame specified
by lambda, 1 into each box of the second row, and so on until the
last row.

Example: SFN>
⇒ nlambda 43221

nlambda = 17
SFN>

NSKew
Format: Nsk INTEGER EXPR1, EXPR2
Modes: SFN
Description: INTEGER should be a positive integer N. Then NSKEW skews

EXPR1 by EXPR2 N times.
Example: SFN>

⇒ nskew 2 432,21
4{ 3} +8{ 21} +2{ 1ˆ3 }
SFN>

⇒ nskew 3 432,21
8{ 0}
SFN>

NSTDise
Format: Nstd INTEGER EXPR
Modes: SFN
Description: EXPR is a list of S-functions. Nstdise applies the

S-function standardisation rules to the first INTEGER
parts of each partition in the EXPR list to produce a
new list. INTEGER must be >1 else an error message is
produced.

Example: SFN>
⇒ nstd 3,1415

-{ 3215}
SFN>

ONSCalar
Format: Onsc EXPR1, EXPR2
Modes: REP
Description: EXPR1 and EXPR2 are to be treated as lists of O(N) tensor

irreps.
Onscalar compares the two lists and for any common
pair of irreps forms the product of the multiplicities
and adds them, and then writes to screen # scalars = .
This command was introduced in the enumeration of Weyl scalars.

Example: REP>
⇒ gr o5

Group is O(5)
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REP>
⇒ p 21,21

[42] + [41] # + [4] + [3ˆ2 ] + 2[32] # + 3[31] + [3] #
+ 2[2ˆ2 ] + 3[21] # + 2[2] + 2[1ˆ2 ] + [1] # + [0]
REP>

⇒ p 3,21
[51] + [42] + [41] # + [4] + [32] # + 2[31] + [2ˆ2 ] +
[21] #
+ [2] + [1ˆ2 ]
REP>

⇒ onsc p21,21 , p3,21
# of scalars = 20
REP>

O PfnProduct
Format: O P EXPR1, EXPR2
Modes: SFN
Description: Forms the outer product of two lists of P-functions.
Example: SFN>

⇒ o p 321,42
P { 741} + P { 732} + P { 651} + 2P { 642}

+ P { 6321} + P { 543} + P { 5421}
SFN>

O QfnProduct
Format: O Q EXPR1,EXPR2
Modes: SFN
Description: Forms the outer product of two lists of Q-functions.
Example: SFN>

⇒ o q 321+2.1,42-3.2
4Q { 741} +4Q { 732} +4Q { 651} +8Q { 642} +2Q { 6321} +4Q {
543} +2Q { 5421}
-6Q { 521} +4Q { 52} -6Q { 431} +4Q { 43} +2Q { 421} -12Q {
3} -6Q { 21}
SFN>

O Restrict
Format: O Restrict INTEGER EXPR1,EXPR2
Modes: SFN
Description: Evaluates the S-function outer product of EXPR1 and EXPR2

using
the Littlewood-Richardson rule but with the maximum number of
parts of each partition being restricted to INTEGER.

Example: SFN>
⇒ o r 3 32-2.21,21+3.1ˆ2

{ 53} +{ 521} +{ 4ˆ2 } +2{ 431} +3{ 43} +{ 42ˆ2 } +3{ 421}
-2{ 42}
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-2{ 41ˆ2 } +{ 3ˆ2 2} +3{ 3ˆ2 1} -2{ 3ˆ2 } -4{ 321} -6{ 32}
-6{ 31ˆ2 }
-2{ 2ˆ3 } -6{ 2ˆ2 1}
SFN>

O sfnProduct
Format: O EXPR1,EXPR2
Modes: SFN
Description: Evaluates the S-function outer product of EXPR1 and EXPR2

using
the Littlewood-Richardson rule.

Example: SFN>
⇒ o 32-2.21, 21+3.1ˆ2

{ 53} +{ 521} +{ 4ˆ2 } +2{ 431} +3{ 43} +{ 42ˆ2 } +{ 421ˆ2
} +3{ 421}
-2{ 42} -2{ 41ˆ2 } +{ 3ˆ2 2} +{ 3ˆ2 1ˆ2 } +3{ 3ˆ2 1} -2{
3ˆ2 } +{ 32ˆ2 1}
+3{ 321ˆ2 } -4{ 321} -6{ 32} -2{ 31ˆ3 } -6{ 31ˆ2 } -2{ 2ˆ3
} -2{ 2ˆ2 1ˆ2 }
-6{ 2ˆ2 1} -6{ 21ˆ3 }
SFN>

PARITYsequence
Format: PARITY SEQUENCE
Modes: SFN
Description: SEQUENCE is a sequence of positive integers. PARITY is EVEN

if the sequence can be ordered as an increasing sequence by
an even permutation otherwise PARITY is ODD.

Example: SFN>
⇒ parity1112233254

parity of sequence is odd
SFN>

PAUSE
Format: Pause
Modes: DPM, REP, SFN
Description: Halts operation until a key is pressed. Useful as an

interrupt in functions.

PLethysm
Format: Pl EXPR1, EXPR2
Modes: REP, SFN
Description: Calculates the plethysm of EXPR1 \otimes EXPR2.

In the SFN MODE EXPR1 and EXPR2 may be lists of
S-functions while in the REP MODE EXPR1 may be
tensor reps of U(n), SU(n), SO(2k+1), O(n) or G(2).
Plethysms may also be evaluated for single irreps of Sp(2n,R) or
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SO *̂(2n).
In that case first setlimit to say 12 and set pwt to say 12
and terms to weight 12 will be computed. Higher values of
setlimit and set pwt will yield higher weight terms but will
take longer to compute.

Example: REP>
⇒ gr g2

Group is G(2)
REP>

⇒ pl 21,2
(42) + (2) + (0)
REP>

⇒ sfn
Schur Function Mode
SFN>

⇒ pl 21,2
{ 42} + { 321} + { 31ˆ3} + { 2ˆ3}
SFN>

PLG
Format: PLG rep
Modes: REP
Description: The group must be set to be G2. Then PLG acts on a single REP

of
G2 to produce an EXPR consisting of a list of irreps of G2,
together with appropriate coefficients, such that the plethysm
(10) \otimes EXPR returns just REP.
Example:-REP>
-> gr g2
Group is G(2)
REP>
-> plg 21
(1̂ 2 ) - (1)
REP>
-> pl 1,last
(21)
REP>

ProductKronecker
Format: P EXPR1, EXPR2
Modes: DPM, REP
Description: Calculates the product EXPR1 \times EXPR2 as a sum of

irreducible representations of the set groups. In DPMode
p [a*b],[c*d] is equal to [p a,c * p b,d], that is the direct
product of the product of the reps a and c of group 1 with
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the product of the resp b and d of group 2.
The groups and classes of representations for which products
are available is given in Table A.4 of the SCHUR manual.

Example: DP>
⇒ gr2so5sp4

Groups are SO(5) * Sp(4)
DP>

⇒ p [2 * 1],[1 * 2]
[3]<3> + [3]<21> + [3]<1> + [21]<3> + [21]<21> + [21]<1>
+ [1]<3> + [1]<21> + [1]<1>
DP>

⇒ repm
REP mode
Group is SO(5)
REP>

⇒ gr su3
Group is SU(3)
REP>

⇒ p 32-2.21,1ˆ2+3.1
{ 43} +3{ 42} +3{ 3ˆ2 } -2{ 32} -5{ 31} -5{ 2ˆ2 } +3{ 21}
-2{ 2} -2{ 1ˆ2 } -6{ 1}
REP>

Notes:
Table A.4: Groups and classes of representations avail-
able for
calculating Kronecker products in SCHUR.
Group : Classes of representations

----------+---------------------------
Un : { \mubar; l}, { l}
SUn : { l}
On : [l]#, [l], [s;l]#, [s;l]
SO{ 2k+1} : [l], [s;l]
SO{ 2k} : [l], [l]+/-, [s;l]+/-
Sp{ 2k} : <l>
Sp{ 2k}(R) : <s\kappar (l)>, <\kappa (l)>
SO*(2n) : [k (l)]
G2 : (l)
F4 : (l), (s;l)
E6 : (l)
E7 : (l)
E8 : (l)
Sn : { l}, { s;l}, { s;l}+/-

PROPertyOfRepList
Format: Prop EXPR
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Modes: REP
Description: Computes dimensions, second order Casimir and Dynkin indices

and
Dynkin labels for irreps for the set groups. The available groups
are those listed in Table A.4 of the SCHUR manual.
Notice that the eigenvalue of the second order Casimir operator
is only given in those cases for which EXPR is a single REP, with
or without multiplicity.

Example: REP>
⇒ gr e8

Group is E(8)
REP>

⇒ prop21ˆ7
<dynkin label> (10000000)
dimension=248 60*2nd-casimir=60
2nd-dynkin = 1
REP>

⇒ prod21ˆ7,21ˆ7
(42ˆ7) + (31ˆ6) + (21ˆ7) + (21) + (0)
REP>

⇒ prop last
<dynkin label> (20000000) + (01000000) + (10000000) + (00000010)
+ (00000000)
dimension = 61504 2nd-dynkin = 496
REP>

P TO Dlabel
Format: P to D EXPR
Modes: REP
Description: Converts the Dynkin labels for the irreps in EXPR to

partition labels. The group must first be set to be one of
the simple Lie groups: SU(n), SO(n), Sp(2n), E6, E7, E8, F4 or
G2.

Example: REP>
⇒ gr e8

Group is E(8)
REP>

⇒ p to d 21ˆ7
<dynkin label>(10000000)
REP>

⇒ p 21ˆ7,21ˆ7
(42ˆ7 ) +(31ˆ6 ) +(21ˆ7 ) +(21) +(0)
REP>

⇒ p to d last
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<dynkin label>(20000000) +(01000000) +(10000000) +(00000010)
+(00000000)
REP>

P To SsymmFn
Format: P To S EXPR
Modes: SFN
Description: Expands a power sum symmetric function EXPR as a sum of

S-functions.
Example: SFN>

⇒ p to s 31
{ 4} - { 2ˆ2} + { 1ˆ4}
SFN>

QEXPand
Format: Qexp EXPR
Modes: SFN
Description: Gives a polynomial expansion of the first SETLIMit terms in

powers of q of the sum of all S-functions in EXPR with their
variables specialised to (1,q,q̂ 2,...)

Example: SFN>
⇒ qexp 21

q +2qˆ2 +3qˆ3 +5qˆ4 +7qˆ5 +9qˆ6 +12qˆ7 +15qˆ8 +18qˆ9 +22qˆ10
+26qˆ11 +30qˆ12
{ 21}
SFN>

QQEXpandSpecialSeries
Format: Qqex EXPR
Modes: SFN
Description: Gives a polynomial expansion of the first SETLIMit terms in

powers of q of the sum of all supersymmetric S-functions in
EXPR with their variables specialised to (q,q̂ 2,.../q,q̂ 2,...)

Example: SFN>
⇒ qqex 21-1

-2q -2qˆ2 +6qˆ4 +14qˆ5 +24qˆ6 +38qˆ7 +54qˆ8 +72qˆ9 +94qˆ10
+118qˆ11 +144qˆ12
{ 21} -{ 1}
SFN>

QQSEries
Format: Qqse SERIES
Modes: SFN
Description: Gives a polynomial expansion of the first SETLIMit terms in

powers of q of the sum of all supersymmetric S-functions in
SERIES with their variables specialised to (q,q̂ 2,.../q,q̂ 2,...)”.
SERIES is any one of the S-function series A,B,C,D,E,F,G,H,L,M,P,Q.
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Example: SFN>
⇒ qqse b

1 +2qˆ2 +4qˆ3 +8qˆ4 +16qˆ5 +32qˆ6 +60qˆ7 +114qˆ8 +212qˆ9
+384qˆ10 +692qˆ11 +1232qˆ12
SFN>

QSAME
Format: QSAME qfn1,qfn2
Modes: SFN
Description: qfn1,qfn2 are Q-functions specified by partitions. QSAME

produces a list of Q-functions that could but do not
necessarily arise in the Q-function product qfn1.qfn2. Most
”dead” partitions have been removed from the list. See also DEAD.

Example: SFN>
⇒ qsame 32,765431

Q { 10 85431} + Q { 10 76431} + Q { 10 75432} + Q { 10 654321}
+ Q { 986431} + Q { 985432}
+ Q { 976531} + Q { 976432} + Q { 9754321} + Q { 876541}
+ Q { 876532} + Q { 8764321}
SFN>

QSERies
Format: qser Series
Modes: SFN
Description: Gives a polynomial expansion of the first SETLIMit terms in

powers of q of the sum of all S-functions in SERIES with their
variables specialised to (q,q̂ 2,...)”. SERIES is any one of the
S-function series A,B,C,D,E,F,G,H,L,M,P,Q.

Example: SFN>
⇒ qser A

1 - qˆ3 - qˆ4 -2qˆ5 -2qˆ6 -2qˆ7 - qˆ8 + 2qˆ10 + 5qˆ11 +
7qˆ12
SFN>

Q TO SsymmFn
Format: Q To S EXPR
Modes: SFN
Description: Treats EXPR as a list of Q-functions and transforms them

into a list of S-functions of type S(x,-1).
Example: SFN>

⇒ q to s 31
- { 4} + { 31}

SFN>

RACAHnotation
Format: Racah EXPR
Modes: REP
Description: Converts an EXPR of G(2) irreps labelled in the SU(3) basis into
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a list of G(2) irreps labelled in Racah’s SO(3) basis.
N.B. This operation does not permit further operations on the
EXPR. See FRACAHnotation for the inverse transformation.

Example: REP>
⇒ gr g2

Group is G(2)
REP>

⇒ prod31,21
(52) + (41) + (4) + 2(31) + (3) + (2) + (1)
REP>

⇒ racah last
(4) + (32) + (31) + (3) + 2(21) + (2) + (1)
REP>

RAISEInverseOp
Format: RaiseI s,EXPR (s = +/- 1)
Modes: SFN
Description: RaiseI is the inverse of the operator RaiseOp with

s being the phase. The result is standardised as for
S-functions. Formally RaiseI s gives
\prod { i<j}1/(1 + sR { ij}).

Example: SFN>
⇒ raisei 1,21

{ 3} + { 21}
SFN>

⇒ raisei -1,21
-{ 3} + { 21}
SFN>

RAISEop
Format: Raise s, EXPR (s = +/- 1)
Modes: SFN
Description: Raise is the raising operator defined with the

phase s. EXPR is a list of S-functions. If s = 1
then the raising operator acts on EXPR and then
standardises the resultant as for Q-functions
whereas for s = -1 the resultant is standardised
as for S-functions.

Example: SFN>
⇒ raise1,21

{ 3} + { 21}
SFN>

⇒ raise1,2ˆ2
{ 31}
SFN>
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⇒ raise-1,2ˆ2
- { 31} + { 2ˆ2}
SFN>

RD I QfnProduct
Format: Rd I Q EXPR1, EXPR2
Modes: SFN
Description: Forms the reduced inner product of an

S-function EXPR1 with a Q-function EXPR2 to
yield a list of reduced Q-functions.

Example: SFN>
⇒ rd i q 1ˆ2,2

2Q <4> + 2Q <31> + 6Q <3> + 3Q <21> +
8Q <2> + 4Q <1> + 2Q <0>

SFN>
⇒ rd i q 2,1ˆ2

zero
SFN>

RD I sfnProduct
Format: Rd I EXPR1, EXPR2
Modes: SFN
Description: Forms the product of two lists of S(n) irreps

in reduced notation.
Example: SFN>

⇒ rd i 2,1
<3> + <21> + <2> + <1ˆ2> + <1>

SFN>

RD RaiseOp
Format: Rd R s, EXPR (s = +/- 1)
Modes: SFN
Description: As for RaiseOp except for reduced notation.
Example: SFN>

⇒ rd r 1,21
<3> + <21> + 2<2> + <1>
SFN>

⇒ rd r -1,21
- <3> + <21> - <1ˆ2 > + <1>
SFN>

RD RaiseOp
Format: Rd R s, EXPR (s = +/- 1)
Modes: SFN
Description: As for RaiseOp except for reduced notation.
Example: SFN>

⇒ rd r 1,21
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<3> + <21> + 2<2> + <1>
SFN>

⇒ rd r -1,21
- <3> + <21> - <1ˆ2 > + <1>
SFN>

READFnFromDisk
Format: ReadF INTEGER ’filename’
Modes: DPM
Description: Reads function INTEGER (=N), N = 1... 20, from a disk file

’filename’. Whilst reading the function from disk a ”=-”
will appear for each line read.

Example: DP>
⇒ readf 1 ’test.fn’

=-
=-
=-
.
.
=-
DP>

REMark
Description: This command allows the insertion of remarks into logfiles and

functions. If a Remark is encountered inside a function then the
line is echoed if the function is written to screen with WRfnTo-
Screen.
REMark may also be used to insert REMarks into a LOGfile.

REPmode
Format: Rep
Modes: DPM, SFN
Description: Allows the user to go from the DPMode and SFNmode into

the REPmode.

RETurn
Format: RETurn
Modes: DPM, REP, SFN
Description: Used in functions to insert a blank line between

sets of output data.

RiemannList
Format: RiemannL N
Modes: SFN
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Description: Creates a list of S-functions corresponding to the partitions
of the integer N with no parts = 1.

Example: SFN>
⇒ riemannl 8

{ 8} + { 62} + { 53} + { 4ˆ2} + { 42ˆ2} + {
3ˆ2 2} + { 2ˆ4}

SFN>

RIEMANNPlethList
Format: RiemannP N
Modes: SFN
Description: A list of S-functions is formed as for RiemannL N

and then the operation RiemannP is performed on that list.
The operation RiemannP is related to a problem posed by
S. A. Fulling in relationship to the determination of the
independent scalars that can be formed by contraction
of the Riemann tensor and its covariant derivatives.

Example: SFN>
⇒ riemannp 6

{ 6ˆ2} + { 642} + 2{ 64} + { 62ˆ3} + 2{ 62ˆ2}
+ { 62} + { 4ˆ3} + 2{ 4ˆ2 2ˆ2}

+ 2{ 4ˆ2 2} + { 42ˆ4} + 2{ 42ˆ3} + { 2ˆ6}
SFN>

RIEMANNScalarsOrderN
Format: RiemannS SFN
Modes: SFN
Description: Takes a single S-function and replaces each part p by { p2}.

If { p2} occurs k times then the plethysm { p2} \otimes { k}
is formed. The resulting lists are combined via the
Littlewood-Richardson rule and all partitions involving odd
parts discarded. Thus { 42̂ 2} becomes { 42}.({ 2̂ 2} \otimes {
2}).

Example: SFN>
⇒ riemanns 42ˆ2

{ 86} + 2{ 842} + { 82ˆ3} + 2{ 6ˆ2 2} + 2{
64ˆ2} + 6{ 642ˆ2} + 2{ 62ˆ4}

+ 2{ 4ˆ3 2} + 2{ 4ˆ2 2ˆ3} + { 42ˆ5}
SFN>

RM EVENPARTS
Format: RM EVENPARTS List
Modes: SFN
Description: Removes from List all S-functions involving at least one even

part.
Example: SFN>

⇒ o21,21
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{ 42} + { 41ˆ2 } + { 3ˆ2 } + 2{ 321} + { 31ˆ3 } +
{ 2ˆ3 } + { 2ˆ2 1ˆ2 }

SFN>
⇒ rm evenparts last

{ 3ˆ2 } + { 31ˆ3 }
SFN>

RM EVENRkSfnsOnly
Format: Rm EvenR EXPR
Modes: SFN
Description: Removes all partitions from EXPR whose Frobenius rank is even.
Example: SFN>

⇒ rm evenr { 1} + { 2} + { 21} + { 42}
{ 21} + { 2} + { 1}
SFN>

RM EVENWtInList
Format: Rm EvenW EXPR
Modes: REP, SFN
Description: Removes all partitions from EXPR whose weight is even.
Example: SFN>

⇒ rm Evenw { 1} + { 2} + { 21} + { 42}
{ 21} + { 1}
SFN>

RM FirstPartOfSfn
Format: Rm F EXPR
Modes: SFN
Description: Removes the first part of an S-function.

Used in the reduced notation for the
irreps of the symmetric group S(n).

Example: SFN>
⇒ o 21,21

{ 42} + { 41ˆ2} + { 3ˆ2} + 2{ 321} + { 31ˆ3}
+ { 2ˆ3} + { 2ˆ2 1ˆ2}

SFN>
⇒ rm f last

<3> + <2ˆ2> + <21ˆ2> + 2<21> + <2> + <1ˆ3>
+ <1ˆ2>

SFN>
⇒ make6last

{ 42} + { 41ˆ2} + { 3ˆ2} + 2{ 321} + { 31ˆ3}
+ { 2ˆ3} + { 2ˆ2 1ˆ2}

SFN>

RM Group
Format: Rm G grN EXPR
Modes: DPM
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Description: Eliminates the N-th group from DPrep EXPR.
This can be useful in branching chains where
groups may become redundant.

Example: DP>
⇒ gr2u1su5

Groups are U(1) * SU(5)
DP>

⇒ [1*31] + [2*2]
{ 2}{ 2} + { 1}{ 31}
DP>

⇒ rm g 1,last
Group is SU(5)
{ 31} + { 2}
DP>

RM NMParts
Format: Rm NMParts N, M, EXPR
Modes: REP, SFN
Description: Removes from EXPR all partitions with any part between N and

M.
Example: REP>

⇒ gr U8
Group is U(8)
REP>

⇒ pl 0+2+4+6,3
{ 18 } + { 16 2} + { 16 } + { 15 3} + { 15 1}

+ { 14 4} + { 14 2ˆ2 }
+ 2{ 14 2} + 2{ 14 } + { 13 5} + { 13 41} + 2{ 13

3} + { 13 21} + 2{ 13 1}
+ 2{ 12 6} + { 12 42} + 3{ 12 4} + { 12 31} + { 12

2ˆ2 } + 4{ 12 2}
+ 3{ 12 } + { 11 61} + { 11 52} + 2{ 11 5} + 2{ 11

41} + { 11 32}
+ 3{ 11 3} + 2{ 11 21} + 2{ 11 1} + { 10 8} + { 10

71} + { 10 62}
+ 3{ 10 6} + 2{ 10 51} + { 10 4ˆ2 } + 2{ 10 42} +

5{ 10 4} + 2{ 10 31}
+ 2{ 10 2ˆ2 } + 5{ 10 2} + { 10 1ˆ2 } + 3{ 10 } +

{ 97} + { 963}
+ 2{ 961} + { 952} + 3{ 95} + { 943} + 3{ 941} +

{ 932} + 4{ 93}
+ 2{ 921} + 3{ 91} + { 8ˆ2 2} + { 8ˆ2 } + { 871}

+ { 864} + 2{ 862}
+ 4{ 86} + { 853} + 2{ 851} + { 84ˆ2 } + 3{ 842}

+ 5{ 84}
+ 2{ 831} + 2{ 82ˆ2 } + 5{ 82} + 3{ 8} + { 763} +

2{ 761} + { 752}
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+ 2{ 75} + { 743} + 3{ 741} + { 732} + 3{ 73} + 2{
721} + 2{ 71}

+ { 6ˆ3 } + { 6ˆ2 4} + 2{ 6ˆ2 2} + 3{ 6ˆ2 } + { 651}
+ { 64ˆ2 }

+ 2{ 642} + 4{ 64} + { 631} + 2{ 62ˆ2 } + 4{ 62}
+ 3{ 6} + { 541}

+ { 53} + { 521} + { 51} + { 4ˆ3 } + { 4ˆ2 2} + 2{
4ˆ2 } + { 42ˆ2 }

+ 2{ 42} + 2{ 4} + { 2ˆ3 } + { 2ˆ2 } + { 2} + { 0}
REP>

⇒ rm nmp7,18last
{ 6ˆ3 } + { 6ˆ2 4} + 2{ 6ˆ2 2} + 3{ 6ˆ2 } + {

651} + { 64ˆ2 }
+ 2{ 642} + 4{ 64} + { 631} + 2{ 62ˆ2 } + 4{ 62}

+ 3{ 6} + { 541}
+ { 53} + { 521} + { 51} + { 4ˆ3 } + { 4ˆ2 2} + 2{

4ˆ2 } + { 42ˆ2 }
+ 2{ 42} + 2{ 4} + { 2ˆ3 } + { 2ˆ2 } + { 2} + { 0}
REP>

RM ODDPARTS
Format: RM ODDPARTS List
Modes: SFN
Description: Removes from List all S-functions involving at least one odd part.
Example: SFN>

⇒ o21,21
{ 42} + { 41ˆ2 } + { 3ˆ2 } + 2{ 321} + { 31ˆ3 } +

{ 2ˆ3 } + { 2ˆ2 1ˆ2 }
SFN>

⇒ rm oddparts last
{ 42} + { 2ˆ3 }

SFN>

RM ODDRkSfnsOnly
Format: Rm OddR EXPR
Modes: SFN
Description: Removes all partitions from EXPR whose Frobenius rank is odd.
Example: SFN>

⇒ rm oddr { 1} + { 2} + { 21} + { 42}
{ 42}
SFN>

RM ODDWtInList
Format: Rm OddW EXPR
Modes: REP, SFN
Description: Removes all partitions from EXPR whose weight is odd.
Example: SFN>

⇒ rm oddw { 1} + { 2} + { 21} + { 42}
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{ 42} + { 2}
SFN>

RM PartitionFromSfn
Format: Rm P PARTITION, EXPR
Modes: SFN
Description: Removes the PARTITION from each member of the EXPR.

The inverse of the command ATtachPartitionToSfn.
Example: SFN>

⇒ rm p 21,52
{ 31}
SFN>

⇒ rm p 21,41ˆ2
{ 201}
SFN>

⇒ std rm p 21,41ˆ2
zero
SFN>

RM PARTSequalN
Format: Rm Parts N, EXPR
Modes: REP, SFN
Description: Removes from EXPR all partitions with any part equal to N.

If N = -1 then all partitions with any odd part are removed
while if N = -2 then all partition with any even part are
removed.

Example: SFN>
⇒ rm parts 2,4321+3ˆ31+21+1ˆ6

{ 3ˆ3 1} + { 1ˆ6}
SFN>

⇒ rm parts -1,42+321+421
{ 42}

SFN>

Rm RepeatedPartsSfns
Format: Rm R EXPR
Modes: SFN
Description: Removes from the EXPR all S-functions involving repeated parts.
Example: SFN>

⇒ 321ˆ3+2.321+21+2+ 1ˆ2 + 0
{ 321ˆ3 } +2{ 321} +{ 21} +{ 2} +{ 1ˆ2 } +{ 0}

SFN>
⇒ rm r last

2{ 321} + { 21} + { 2} + { 0}
SFN>

RM SOnEvenLabel
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Format: Rm so EXPR
Modes: REP
Description: Removes the labels +/- from SO(2k) irreps . Used in

Functions.

RM UoneWtOverMax
Format: Rm U INTEGER, grN, EXPR (DPM)

Rm U INTEGER, EXPR (REP)
Modes: DPM, REP
Description: Removes from EXPR all representations involving a U(1) group

rep whose integer weight exceeds INTEGER. Originally
introduced in connection with the Macdonald identities.

RP FirstPartBySpin
Format: Rp F grN EXPR (DPM)

Rp F EXPR (REP)
Modes: DPM, REP
Description: Removes the first part of each partition and replaces it

by a spin index
Example: DP>

⇒ gr2so5so7
Groups are SO(5) * SO(7)
DP>

⇒ rp f gr1[21 * 321]
[s;1][321]
DP>

RP RepOrSfnByWt
Format: Rp R group grN EXPR (DPM)

Rp R EXPR (REP),(SFN)
Modes: DPM, REP, SFN
Description: This command replaces a rep or sfn by its weight. This command

is especially useful with RULE when U(1) reps are involved.
Example: DP>

⇒ gr2su8so8
Groups are SU(8) * SO(8)
DP>

⇒ branch1,8gr1[321*1]
Groups are SO(8) * O(8)
[1][321] + [1][31] + [1][2ˆ2] + [1][21ˆ2] +

[1][2] + [1][1ˆ2]
DP>

⇒ rp r gr2last
[1][6] + 3[1][4] + 2[1][2]
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DP>

RP SfnCoeffByInt
Format: Rp S INTEGER EXPR
Modes: SFN
Description: Returns EXPR with every coefficient replaced by the same

INTEGER which must not be zero
Example: SFN>

⇒ -4.4321+2.321+3.21
-4{ 4321} + 2{ 321} + 3{ 21}
SFN>

⇒ rp s 12 last
12{ 4321} + 12{ 321} + 12{ 21}
SFN>

RSAMEwtSfnList
Format: RSAME Sfn
Modes: SFN
Description: Creates a list of all S-functions which have the same

weight as Sfn and in reverse-lexicographic order less
than or equal to Sfn.

Example: SFN>
⇒ rsame 321

{ 321} + { 31ˆ3 } + { 2ˆ3 } + { 2ˆ2 1ˆ2 } +
{ 2 1ˆ4 } + { 1ˆ6 }

SFN>

RULE
Format: (1). Rule EXPR Sum Operations With

(2). Rule EXPR1 Sum MyList Operations With EXPR2
(3). Rule EXPR1 Operation With EXPR2

Modes: DPM
Description: RULE makes use of the DPrep structure by allowing

S-function operations on the partitions labelling the
representations of the component groups. This is the most
complex, and also most powerful, command in SCHUR and is
fully discussed in the Advanced Tutorial:Using Rule. Use
of this command should not be attempted until the user
has become familiar with most of the commands and structures
in SCHUR.

RVar
Format: Rv N
Modes: REP
Description: Contains the rep variable N, N=1...50, set with

SETRepVar. Use as a rep EXPR when required.
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SAMEwtSfnList
Format: Same Sfn
Modes: SFN
Description: Creates a list of all S-functions which have the same

weight as Sfn.
Example: SFN>

⇒ same 4
{ 4} + { 31} + { 2ˆ2} + { 21ˆ2} + { 1ˆ4}

SFN>

SAVEsetVar
Format: Save RVar INTEGER ’filename’ (REP)

Save SVar INTEGER ’filename’ (SFN)
Modes: REP, SFN
Description: If INTEGER is omitted then all non-zero xVars are saved to the

file ‘filename’. If INTEGER is included then only xVar INTEGER
is saved. Saved files contain ’type’ information distinguishing
SVars from RVars so that entering
> save SVAR, ’test’
> Load RVAR, ’test’
will generate an error. The files are pure ASCII so they are
available for external modification: the user can generate a
LOADable file outside SCHUR or use a Saved file outside.
if SB LISToutput is TRUE, the output is in a list format
compatible to Maple.

SB Bell
Description: When TRUE, BELL writes and ASCII 7 before getting the next

command line in all modes except BRM. BELL is turned on by
entering the command Sb B TRUE

SB CONJecture
Description: When FALSE, Kronecker products for the non-compact group

Sp(2n,R)
are computed using the conjecture of King and Wybourne. When
TRUE
the Kronecker products are calculated directly. The default value
is set as TRUE.

SB CUt
Format: Sb Cu n
Modes: DPM, REP, SFN
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Description: Gives an output in power notation whenever multiplicities
of a part of a partition exceeds n and Sb POW TRUE. The
default value is set as n = 1.

Example: SFN>
⇒ sb pow false

SFN>
⇒ 32211111+321111111+222111111

{ 32211111} + { 321111111} + { 222111111}
SFN>

⇒ sb pow true
SFN>

⇒ sb cut 3
SFN>

⇒ last
{ 3221ˆ5} + { 321ˆ7} + { 2221ˆ6}

SFN>

SB Digits
Format: Sb D [TRUE:FALSE]
Modes: DPM, REP, SFN
Description: Sb D is a Boolean flag. When Sb D is TRUE all numbers

occurring in a partition (or a multiplicity) are assumed
to be single digits. The default is set TRUE. When partition
numbers are larger than 9 they are entered by prefixing them
with a ! and terminating with a space. When Sb D is FALSE
every number must be followed by a space. Consider the
inputting, in the SFNmode, of the partition (15 13 11 9 7 5)
with a multiplicity of 137. If Sb D is TRUE it could be
entered as !137.!15!13!11 975 whereas if Sb D was FALSE
it could be entered as 137.15 13 11 9 7 5. In both cases the
result will appear on the screen as 137{ 15 13 11 975}.

SB DIMension
Description: Sb Dim is a Boolean whose default value has been set as

TRUE which permits the command DIMension to calculate the
dimensions of representations using the Weyl formulae. Setting
Sb Dim FALSE permits the command DIMension to calculate the
corresponding dimensions using the hooklength formulae. The
Boolean may be set in any of the three modes SFN, REP or DPM.

SB LISToutput
Format: sb list TRUE:FALSE
Modes: REP, SFN
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Description: Setting SB LIST to TRUE forces variable saving (see SAVEset-
Var)
to be in a Maple compatible format (see SchurToMaple
functions in the dat directory). The default is FALSE.

SB More
Format: Sb M TRUE:FALSE
Modes: DPM, REP, SFN
Description: Sb M is a Boolean which once set acts within all modes. If

Sb M FALSE is entered the screen freely scrolls while if
Sb M TRUE is entered the screen is filled and awaits a
keypress to give more output. The default is set as FALSE.

SB PowerNotation
Format: Sb P TRUE:FALSE
Modes: DPM, REP, SFN
Description: Sb P TRUE allows both the input and the output to be

in power (or exponent) notation. Setting Sb P FALSE gives
output without exponent notation. The default setting is
Sb P TRUE. The setting persists in all modes including the
BRMode until it is changed by the user.
See also Sb CUt.

Example: SFN>
⇒ o 21ˆ2,1ˆ2

{ 321} + { 31ˆ3} + { 2ˆ3} + { 2ˆ2 1ˆ2} + {
21ˆ4}

SFN>
⇒ sb power false

SFN>
⇒ last

{ 321} + { 3111} + { 222} + { 2211} + { 21111}
SFN>

SB PROGress
Format: Sb prog TRUE:FALSE
Modes: DPM, REP, SFN
Description: The default setting is Sb prog TRUE and during a calculation

the cursor rotates indicating the calculation is progressing.
Setting Sb prog FALSE turns off the display.

SB Qfn
Format: Sb Q TRUE:FALSE
Modes: SFN
Description: If Sb Q is set TRUE then any partitions entered
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in the SFNMode will be standardised as if they
were Q-functions. The default value is FALSE.

SB RDnotation
Format: Sb Rd TRUE:FALSE
Modes: SFN
Description: Putting Sb Rd TRUE forces SCHUR to output reduced notation.

The default setting is Sb Rd FALSE. The user should always
return Sb Rd to its default setting to ensure correct
results.

SB REVerseOrder
Format: SB REV TRUE:FALSE
Modes: DPM, REP, SFN
Description: Schur outputs lists of expressions that are normally

sorted antilexicographically with respect to the alphabet
1,2,3,.... In the DPMode this will be for the
first group in the list of product groups. Setting
SB REVerseOrder TRUE reverses this order. FALSE is the
default setting.

Example: SFN>
⇒ o21,3

{ 51} + { 42} + { 41ˆ2} + { 321}
SFN>

⇒ sb rev true
SFN>

⇒ last
{ 321} + { 41ˆ2} + { 42} + { 51}
SFN>

SB TexOutput
Format: Sb T TRUE:FALSE
Modes: DPM, REP, SFN
Description: Setting Sb T TRUE forces output from all modes to be in

TeX format. The default is Sb T FALSE which gives normal
output. Mainly for producing output in tabular form. See
also COLumns and LINES as well as Appendix D Producing
TeX Tables.

SCALARInner
Format: SCALARI n,k
Modes: REP
Description: Computes the sum of the squares of the irreps of S(n)

for all partitions up to length k. If k is set as
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negative then the sum of squares of the irreps of S(n)
is computed for all partititons of length k.

Example: REP>
⇒ gr S4

Group is S(4)
REP>

⇒ scalari4,3
4{ 4} + 2{ 31} + 3{ 2ˆ2 } + 2{ 21ˆ2 } + { 1ˆ4

}
REP>

⇒ scalari4,-3
{ 4} + { 31} + { 2ˆ2 } + { 21ˆ2 }
REP>

SCHAR
Format: SCHAR REP, CLASS
Modes: REP
Description: REP is a single irrep of the symmetric group S(N) and

CLASS is a single class of the symmetric group S(N).
SCHAR returns the characteristic as an integer.

Example: REP>
⇒ gr s56

Group is S(56)
REP>

⇒ schar !48 8,86ˆ35ˆ24ˆ32ˆ4
characteristic = 27
REP>

SERIESTErmsThatSkew
Format: SeriesTe EXPR, Series
Modes: SFN
Description: Finds all the members of the SFN Series which can skew

with the SFN EXPR.
Example: SFN>

⇒ serieste 321 + 21,m
{ 3} + { 2} + { 1} + { 0}
SFN>

SERiesToIntWt
Format: Ser N, Series
Modes: SFN
Description: Finds all the members of the SFN Series of weight <= N.
Example: SFN>

⇒ ser 4,m
{ 4} + { 3} + { 2} + { 1} + { 0}
SFN>
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SETFn
Format: Setf N
Modes: DPM
Description: Used to set function N, N = 1... 50, during a

SCHUR session. It prompts you to enter each line with
a ”=-”. STop signals completion. If you make a mistake
there is no way of editing the function. Either retype the
function or save it on disk with WRFNTODisk and use
a text editor to correct it. If editing a function saved on
disk remember to make the last line STop (with a carriage
return). For an extensive discussion see the tutorial on
writing functions.

Example: DP>
⇒ setfn1

=-
⇒ rem evaluates the sfn outer product sv1.sv2

=-
⇒ sfn

=-
⇒ enter sv1

=-
⇒ enter sv2

=-
⇒ o sv1,sv2

=-
⇒ stop

DP>
⇒ fn1

Schur Function Mode
enter sv1

⇒ 21
enter sv2

⇒ 2ˆ2
{ 43} + { 421} + { 3ˆ2 1} + { 32ˆ2} + { 321ˆ2}

+ { 2ˆ3 1}
SFN>

SETLIMit
Format: SETLIMit INTEGER
Modes: DPM, REP, SFN
Description: Sets the variable SETLIMIT which is used in non-compact

group calculations. The default value has been set at 12.

SET PWT
Format: SET PWT INTEGER
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Modes: REP, SFN
Description: Used in plethysm calculations. Computes only those plethysms

of weight Integer or less. Default value set at 200.

SETRVar
Format: SetRV N, EXPR
Modes: REP
Description: Defines Rep Variable N ( RVar N, N = 1...50) to be EXPR. See

also
RVar command.

SETSVariable
Format: Setsv N, EXPR
Modes: SFN
Description: Defines Sfn Variable N ( SVar N, N = 1...50) to be EXPR. See

also
SVar command.

SETVarInDPmode
Format: SetV N, EXPR
Modes: DPM
Description: Defines DPrep variable N ( Var N, N = 1...50) to be EXPR. See

also Var command.

SFNmode
Format: sfn
Modes: DPM, REP
Description: Allows the user to shift from the DPMode or REPmode to

the SFNmode.

SIGNSEQuence
Format: signseq n, rep (REPmode)

signseq k,n,char,boolean,sfn (SFNmode)
Modes: REP,SFN
Description: REP Used to construct a signed sequence of a Rep that involves

up to n parts for the groups O(k), SO(k) or Sp(2k). Signed
sequences may be constructed for any rep except for the
tensor reps of SO(2k) having k non-zero parts.
In the special case of the group U(k) the signed sequence is
constructed as in page 3127 of
J.Phys.A:Math. Gen.(18), 3113 (1985). The format for entry
in this case is
signseq Q,P, rep
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where rep is a mixed tensor irrep of U(k) and Q and P limit
the parts of the contravariant and covariant tensors respectively.
SFN Used to construct a signed sequence of an S-function
that involves up to n parts which when treated as group
representations in the REP mode of O(k) or Sp(2k) all
modify to a single irrep of the group. Of particular
use in developing algorithms for the non-compact groups.
The character char designates the A, C or G series of
S-functions. Choosing the boolean TRUE results in a
signed sequence of S-functions whose maximal number of
parts is min(k,n) while setting the boolean FALSE restricts
the number of parts to n. It is assumed that sfn is a single
S-function. The S-function may be followed by the character
’#’ if associated characters of O(k) are being considered.
In the case of Sp(2k) char =’A’, while for O(k) if k is even
char = ’C’ while for odd k char = ’G’.

Example: REP>
⇒ gr o5

Group is O(5)
REP>

⇒ wt 16 signseq10,21
-[432ˆ2 1ˆ4 ] +[3ˆ2 2ˆ2 1ˆ3 ] -[2ˆ4 1] +[21]
REP>

⇒ wt 16 signseq10,21#
[5321ˆ6 ] -[4321ˆ5 ] +[3ˆ2 21ˆ4 ] -[2ˆ3 1ˆ2 ] +[21ˆ2 ]
REP>

SK Pfn
Format: Sk P EXPR1, EXPR2
Modes: SFN
Description: Forms the skew product of two lists of P-functions.
Example: SFN>

⇒ sk p 4321,32
P { 41}
SFN>

SK Qfn
Format: Sk Q EXPR1, EXPR2
Modes: SFN
Description: Forms the skew of the Q-functions in EXPR1 with those

in EXPR2.
Example: SFN>

⇒ sk q 4321,32
Q { 41}
SFN>
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⇒ sk q 4321,m
Q { 4321} + Q { 432} + Q { 431} + Q { 421}

+ Q { 321}
SFN>

SK sfn
Format: (1). Sk EXPR1, EXPR2

(2). Sk EXPR, SERIES
Modes: SFN
Description: (1). Calculates the Sfn Skew EXPR1/EXPR2

(2). Calculates Sfn Skew EXPR/SERIES
SERIEs is a letter representing one of the series
A, B, C, D, E, F, G, H, L, M, P, Q, R, S, T, V, W, X, Y
which may be specified in upper or lower case.

Example: SFN>
⇒ sk 321,2

{ 31} + { 2ˆ2} + { 21ˆ2}
SFN>

⇒ sk321,m
{ 321} + { 32} + { 31ˆ2} + { 31} + { 2ˆ2 1} + { 2ˆ2} + {
21ˆ2} + { 21}
SFN>

SMON
Format: SMON INTEGER, EXPR1, EXPR2
Modes: SFN
Description: EXPR1 is a list of S-functions in (INTEGER - 1) variables

and EXPR2 is a list of monomials in INTEGER variables. The
product of the two expressions is formed and the outputted
expression is a set of standardised S-functions in INTEGER vari-
ables.
See also GENprod and VMult. Used in the expansion of the
square of the Vandermonde determinant in INTEGER variables
as a sum of S-functions. The example below corresponds to
the expansion in three variables.

Example: SFN>
⇒ gen 3

{ 2ˆ2 } - 2{ 21ˆ2 } + { 202} - 2{ 121} + 4{ 1ˆ2 2}
- 2{ 103} + { 02ˆ2 } - 2{ 013}

+ { 0ˆ2 4}
SFN>

⇒ smon3,2-3.11,last
{ 42} - 3{ 41ˆ2 } - 3{ 3ˆ2 } + 6{ 321} - 15{ 2ˆ3 }

SFN>

SNchar
Format: SN INTEGER SFN
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Modes: SFN
Description: SFN is a partition of N labelling a class of S(N). SNchar

computes all non-zero characteristics for all irreps of S(N)
indexed by partitions of N into not more than INTEGER parts.

Example: SFN>
⇒ sn2,9ˆ38ˆ47ˆ365431

{ 99 } - { 97 2} + { 96 3} + { 95 4} + 3{ 92 7} + 4{ 91
8} + { 90 9} - { 89 10 } + 3{ 88 11 }
+ 7{ 87 12 } + 3{ 86 13 } + 3{ 85 14 } + 12{ 84 15 } + 14{
83 16 } + 6{ 82 17 } + 4{ 81 18 }
+ 11{ 80 19 } + 20{ 79 20 } + 16{ 78 21 } + 15{ 77 22 }
+ 26{ 76 23 } + 34{ 75 24 } + 21{ 74 25 }
+ 12{ 73 26 } + 29{ 72 27 } + 39{ 71 28 } + 36{ 70 29 }
+ 32{ 69 30 } + 42{ 68 31 } + 49{ 67 32 }
+ 38{ 66 33 } + 23{ 65 34 } + 37{ 64 35 } + 53{ 63 36 }
+ 46{ 62 37 } + 36{ 61 38 } + 41{ 60 39 }
+ 43{ 59 40 } + 32{ 58 41 } + 25{ 57 42 } + 22{ 56 43 }
+ 35{ 55 44 } + 31{ 54 45 } + 16{ 53 46 }
+ 8{ 52 47 } + 10{ 51 48 } + 5{ 50 49 }
SFN>

SPin
Description: This command is only used in conjunction with the command

CONV sfnToRep and is discussed under that heading.

SPLitIntoSpinAndTensor
Format: Spl EXPR
Modes: REP
Description: Spl acts on a REP List and writes the tensor reps to

RVar 1 and the spinor reps to RVar 2. This command
is very useful in problems involving supersymmetry.
Spl Lists may be recombined by use of ADD RV1,RV2.

Example: REP>
⇒ gr so6

Group is SO(6)
REP>

⇒ split 321+ + s21- + 2 + s1+
REP>

⇒ rv1
[321]+ + [2]
REP>

⇒ rv2
[s;21]- + [s;1]+
REP>

SPONModify
Format: SPONM EXPR
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Modes: REP
Description: SPONModify acts on the Sp(2n,R) irreps contained in EXPR

and applies the O(k) modification rule to produce a new
list of Sp(2n,R) irreps with associate labels ’#’ where
appropriate. NB. The group must be set as Sp(2n,R) - other
group settings will produce an error message. See also
ASSOCiate.

Example: REP>
⇒ gr spr8

Group is Sp(8,R)
REP>

⇒ p1;11,1;11
<2(10 2)> + <2(10 1ˆ2 )> + <2(84)> + <2(82)> +

<2(81ˆ2 )>
+ <2(6ˆ2 )> + <2(64)> + <2(62)> + <2(61ˆ2 )> +

<2(4ˆ2 )>
+ <2(42)> + <2(41ˆ2 )> + <2(2ˆ2 )> + <2(21ˆ2 )>

+ <2(1ˆ4 )>
REP>

⇒ sponm last
<2(10 2)> + <2(10 )># + <2(84)> + <2(82)> + <2(8)>#
+ <2(6ˆ2 )> + <2(64)> + <2(62)> + <2(6)># + <2(4ˆ2

)>
+ <2(42)> + <2(4)># + <2(2ˆ2 )> + <2(2)># + <2(0)>#

REP>

SPRCH
Format: SPRCH EXPR
Modes: REP
Description: EXPR generates a list of irreps of the group Sp(2n,R).

SPRCH acts on every member of the list to replace any
irrep involving an n-part partition by an equivalent irrep
involving fewer than n-parts while those involvingpartitions
involving fewer than n-parts are left unchanged. The group
must be set as Sp(2n,R), all other group settings produce
an error message.

Example: REP>
⇒ gr spr6

Group is Sp(6,R)
REP>

⇒ wt6p2;21,3;1
<5(51)> + 2<5(42)> + 2<5(41ˆ2 )> + <5(3ˆ2

)> + 3<5(321)>
+ <5(31)> + <5(2ˆ3 )> + <5(2ˆ2 )> + <5(21ˆ2

)>
REP>
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⇒ sprch last
<7(0)> + 2<6(3)> + 3<6(21)> + <6(1)> +

<5(51)>
+ 2<5(42)> + <5(3ˆ2 )> + <5(31)> + <5(2ˆ2

)>
REP>

SPREXtend
Format: SPREX EXPR1
Modes: REP
Description: Takes a set of Sp(2n,R) irreps and extends the partitions

labelling the irreps to yield new standard irreps of Sp(2n,R)
such that if the appropriate O(k) modification rules were
applied the original irreps would be restored to within an
associate label ’#’ which is suppressed. See also ASSOCiate
and SPONModify. NB. The group must be set as Sp(2n,R) - other
group settings will produce an error message.

Example: REP>
⇒ gr spr8

Group is Sp(8,R)
REP>

⇒ 2;0 + 2;2 + 2;2ˆ2
<2(0)> + <2(2)> + <2(2ˆ2)>
REP>

⇒ sprex last
<2(2ˆ2)> + <2(21ˆ2)> + <2(1ˆ4)>
REP>

SPSTAR
Format: SPSTAR EXPR1 (REP)

SPSTAR gr GRNO EXPR1 (DPM)
Modes: REP, DPM
Description: Takes a set of Sp(2n,R) irreps and replaces each irrep by its

”star” equivalent.
NB. The group must be set as Sp(2n,R) - other
group settings will produce an error message.
Example:-REP>
->gr spr6
Group is Sp(6,R)
REP>
->p s;0,1;0
<s1(12 )> + <s1(10 )> + <s1(8)> + <s1(6)> + <s1(4)>
+ <s1(2)> + <s1(0)>
REP>
->spstar last
<s1(12 1)> + <s1(10 1)> + <s1(81)> + <s1(61)> + <s1(41)>
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+ <s1(21)> + <s1(1̂ 3 )>
REP>

SQuares
Format: SQ EXPR
Modes: REP, SFN
Description: Sums the absolute squares of the coefficients in EXPR.
Example: SFN>

⇒ o 21,41
{ 62} +{ 61ˆ2 } +{ 53} +2{ 521} +{ 51ˆ3 }

+{ 431} +{ 42ˆ2 } +{ 421ˆ2 }
SFN>

⇒ sq last
Sum of absolute squares of multiplicities =11
SFN>

STARequivalent
Format: STAR GRNO EXPR
Modes: DPM
Description: Forms the star equivalent of a list of irreps of the product

group Sp(2n,R) x O(k). The list usually comes from the output
of the group-subgroup decomposition
Sp(2nk,R) -> Sp(2n,R) x O(k).
GRNO is the group number of the group Sp(2n,R). See also
ASSOCiate and SPSTAR. NB. In this case we designate the
infinite set of Sp(2nk,R) irreps of even weight by <s(0)>
and those of odd weight by <s(1)>.

Example: DP>
⇒ gr spr40

Group is Sp(40,R)
DP>

⇒ wt2,6br38,8,5gr1[s;0]
Groups are Sp(8,R) * O(5)

<s2(6)>[6] + <s2(51ˆ3 )>[5]# + <s2(51)>[51] + <s2(42)>[42]
+ <s2(41ˆ2 )>[41]#

+ <s2(4)>[4] + <s2(3ˆ2 )>[3ˆ2 ] + <s2(321)>[32]#
+ <s2(31ˆ3 )>[3]# + <s2(31)>[31]

+ <s2(2ˆ2 )>[2ˆ2 ] + <s2(21ˆ2 )>[21]# + <s2(2)>[2]
+ <s2(1ˆ4 )>[1]#

+ <s2(1ˆ2 )>[1ˆ2 ] + <s2(0)>[0]
DP>

⇒ star gr1 last
<s2(61ˆ3 )>[6]# + <s2(51ˆ2 )>[51]# + <s2(5)>[5]

+ <s2(421)>[42]# + <s2(41ˆ3 )>[4]#
+ <s2(41)>[41] + <s2(3ˆ2 1)>[3ˆ2 ]# + <s2(32)>[32]

+ <s2(31ˆ2 )>[31]# + <s2(3)>[3]
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+ <s2(2ˆ2 1)>[2ˆ2 ]# + <s2(21ˆ3 )>[2]# + <s2(21)>[21]
+ <s2(1ˆ3 )>[1ˆ2 ]#

+ <s2(1)>[1]
DP>

Notes:
the result has been STDandardized.

STATusOfSchur
Format: Stat
Modes: DPM, REP, SFN
Description: Determines the status of SCHUR by displaying information

about the status configuration of SCHUR.
The format is:
digits:f more:f logging:f/’LOG filename’
10 20 30 40 50
FNS:12–6—-0—————————————-
VAR:123–8————–1—————————–
where f indicates the status of the flag, i.e. TRUE or FALSE.
If LOGGING is TRUE then the chosen name of the
current logfile is displayed. The third line indicates the
numbers of the functions that have been set. In the above example
FNS 1,2,6 and 10 have been set. The forth line displays the VARS
that
have been set in the DPMode. In the REPmode the number of
RVARS are
displayed or in the SFNmode the number of SVARS are displayed.
In
each case the number of VARS, RVARS, or SVARS is given mod-
ulo 10 and
hence in the above the VARS 1,2,3,8, and 21 have been set.

STD
Format: Std EXPR
Modes: DPM, REP, SFN
Description: Converts a list of DPreps, Reps or Sfns into a list of

standardised DPreps, Reps or Sfns. The command is available
for all compact semisimple Lie groups, for the tensor reps
of U(m/n), SU(m/n) and OSp(m/n) and the spin and ordinary
reps of S(n). See also STD OneDprep and STD Qfn.

Example: DP>
⇒ gr2so5sp4

Groups are SO(5) * Sp(4)
DP>

⇒ std[31ˆ3 * 31ˆ3]
-[3]<31>
DP>
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STD OneDprep
Format: Std O gr grN EXPR
Modes: DPM
Description: Standardises the irreps of the group grN leaving all other

group irreps unmodified.
Example: DP>

⇒ gr3su2su3so6
Groups are SU(2) * SU(3) * SO(6)
DP>

⇒ [21*321*s21ˆ4+]
{ 21}{ 321}[s;21ˆ4 ]+
DP>

⇒ std o gr1 last
{ 1}{ 321}[s;21ˆ4 ]+

DP>
⇒ std o gr2 last

{ 1}{ 21}[s;21ˆ4 ]+
DP>

⇒ std o gr3 last
- { 1}{ 21}[s;21]-
DP>

STD Qfn
Format: Std Q EXPR
Modes: SFN
Description: Standardises Q-functions arising from EXPR.
Example: SFN>

⇒ o21,21
{ 42} + { 41ˆ2} + { 3ˆ2} + 2{ 321} + { 31ˆ3}

+ { 2ˆ3} + { 2ˆ21ˆ2}
SFN>

⇒ std q last
Q { 42} + 2Q { 321}
SFN>

S TO EsymmFn
Format: S To E EXPR
Modes: SFN
Description: Treats EXPR as a list of S-functions and transforms them into

a list of elementary symmetric functions e { \mu}.
Example: SFN>

⇒ s to e 21
- e { 3} + e { 21}

SFN>

S TO FsymmFn
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Format: S To F EXPR
Modes: SFN
Description: Treats EXPR as a list of S-functions and transforms them into

a list of forgotten symmetric functions f { \mu}.
Example: SFN>

⇒ s to f 21
f { 21} + 2f { 1ˆ3}
SFN>

S TO HsymmFn
Format: S To H EXPR
Modes: SFN
Description: Treats EXPR as a list of S-functions and transforms them into a

list of homogeneous symmetric functions h { \mu}.
Example: SFN>

⇒ s to h 21
-h { 3} + h { 21}
SFN>

S TO MsymmFn
Format: S To M EXPR
Modes: SFN
Description: Treats EXPR as a list of S-functions and transforms them into a

list of monomial symmetric functions m { \mu}.
Example: SFN>

⇒ s to m 21
m { 21} + 2m { 1ˆ3}
SFN>

Stop
Format: stop
Modes: BRM, DPM
Description: In the BRMode Stop causes a current sequence of

branchings to be terminated and a request to the
user to set a new branching rule. In setting functions
Stop is always used to mark the end of a function.

S TO PsymmFn
Format: S To P EXPR
Modes: SFN
Description: Treats EXPR as a list of S-functions and transforms them into

a list of powersum symmetric functions p { \mu}. The normali-
sation
has been chosen to give integer coefficients. The actual
coefficients may be obtained by dividing by n! where n is the
weight of the partitions in EXPR. It is assumed that all the
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partitions in EXPR are of the same weight. Transformations
from other symmetric functions to power sum symmetric functions
may be found by combining sequences of commands. Thus if EXPR
is a set of elementary symmetric functions then the command
sequence E TO S, S TO P, EXPR will yield the desired result.

Example: SFN>
⇒ s to p 31

- 6p { 4} - 3p { 2ˆ2 } + 6p { 21ˆ2 } + 3p {
1ˆ4 }

SFN>

S TO QsymmFn
Format: S To Q EXPR
Modes: SFN
Description: Treats EXPR as a list of S-functions of type S(x,-1) and transforms

them into a list of Q-functions.
Example: SFN>

⇒ s to q 31
Q { 4} + Q { 31}

SFN>

SUBtract
Format: Sub EXPR1, EXPR2
Modes: DPM, REP, SFN
Description: Subtracts EXPR2 from EXPR1.
Example: SFN>

⇒ setsv1 321+3+21
SFN>

⇒ setsv2 4321+32-21
SFN>

⇒ sv1
{ 321} + { 3} + { 21}
SFN>

⇒ sv2
{ 4321} + { 32} - { 21}
SFN>

⇒ sub sv1,sv2
- { 4321} + { 321} - { 32} + { 3} + 2{ 21}
SFN>

SUM
Description: This command only arises in using the command RULE and is

discussed under that heading.

SUMSQuares
Format: SUMSQ EXPR
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Modes: SFN
Description: EXPR is a list of S-functions. The action of SUMSQuares is to

sum the Littlewood-Richardson squares of every S-function in
EXPR.

Example: SFN>
⇒ sumsq { 2} + { 1}

{ 4} + { 31} + { 2ˆ2} + { 2} + { 1ˆ2}
SFN>

SUPpressOutPutToScreen
Format: Sup TRUE:FALSE
Modes: DPM, REP, SFN
Description: This line in a function allows the user to turn the output

on or off during the execution of a function. Normally only
the last line of a function is outputted. SUP FALSE turns
it off. Placed at the beginning of a function it results in
the output of the result of each line of the function. Useful
for debugging functions. At the completion of a function SUP
is automatically returned to TRUE.

SVar
Format: Sv N
Modes: SFN
Description: Contains the Sfn variable N, (N = 1...50), set with

SETSfnVar. Used as an Sfn when required.

SWAPgroups
Format: SWAP grno a,grno b,Expr
Modes: DPM
Description: Interchanges the order of the groups a and b and

appropriately reorders Expr.
Example: DP>

⇒ gr3su3sp4so5
Groups are SU(3) * Sp(4) * SO(5)
DP>

⇒ [1*1*1]
{ 1}<1>[1]
DP>

⇒ p last,last
{ 2}<2>[2] + { 2}<2>[1ˆ2 ] + { 2}<2>[0] + { 2}<1ˆ2

>[2]
+ { 2}<1ˆ2 >[1ˆ2 ] + { 2}<1ˆ2 >[0] + { 2}<0>[2]

+ { 2}<0>[1ˆ2 ]
+ { 2}<0>[0] + { 1ˆ2 }<2>[2] + { 1ˆ2 }<2>[1ˆ2 ]

+ { 1ˆ2 }<2>[0]
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+ { 1ˆ2 }<1ˆ2 >[2] + { 1ˆ2 }<1ˆ2 >[1ˆ2 ] + { 1ˆ2
}<1ˆ2 >[0]

+ { 1ˆ2 }<0>[2] + { 1ˆ2 }<0>[1ˆ2 ] + { 1ˆ2 }<0>[0]
DP>

⇒ swap1,3last
Groups are SO(5) * Sp(4) * SU(3)
[2]<2>{ 2} + [2]<2>{ 1ˆ2 } + [2]<1ˆ2 >{ 2} + [2]<1ˆ2

>{ 1ˆ2 }
+ [2]<0>{ 2} + [2]<0>{ 1ˆ2 } + [1ˆ2 ]<2>{ 2} +

[1ˆ2 ]<2>{ 1ˆ2 }
+ [1ˆ2 ]<1ˆ2 >{ 2} + [1ˆ2 ]<1ˆ2 >{ 1ˆ2 } + [1ˆ2

]<0>{ 2}
+ [1ˆ2 ]<0>{ 1ˆ2 } + [0]<2>{ 2} + [0]<2>{ 1ˆ2 }

+ [0]<1ˆ2 >{ 2}
+ [0]<1ˆ2 >{ 1ˆ2 } + [0]<0>{ 2} + [0]<0>{ 1ˆ2 }
DP>

TABleOfBranchingRules
Description: Table A.2 : Table of branching rules

Rule No. Group Subgroup Rule and number(s) in BRM
1 :- U(n) -> O(n) 1,n
2 :- U(n) -> Sp(n) 2,n
3 :- U(n) -> U(n-1) 3,n
4 :- U(m+n) -> U(m) x U(n) 4,m,n
5 :- U(mn) -> U(m) x U(n) 5,m,n
6 :- U(2k) -> U(k) 6,2k
7 :- U(n) -> SO(3) 7,n
8 :- SU(m+n) -> U(1) x SU(m) x SU(n) 8,m,n
9 :- Sp(2k) -> SO(3) 9,2k
10 :- Sp(2k) -> U(1) x SU(k) 10,2k
11 :- Sp(2k) -> SU(2) x SO(k) 11,2k
12 :- Sp(2k) -> U(2k) 12,2k
13 :- Sp(2k) -> U(k) 13,2k
14 :- Sp(2m+2n) -> Sp(2m) x Sp(2n) 14,2m,2n
15 :- Sp(2mn) -> Sp(2m) x O(n) 15,2m,n
16 :- S(m+n) -> S(m) x S(n) 16,m,n
17 :- S(n) -> A(n) 17,n
18 :- O(n) -> S(n) 18,n
19 :- O(n) -> S(n+1) 19,n
20 :- O(n) -> U(n) 20,n
21 :- O(2k) or O(2k+1)-> U(k) 21,2k (or 2k+1)
22:- O(m+n) -> O(m) x O(n) 22,m,n
23 :- O(mn) -> O(m) x O(n) 23,m,n
24 :- O(4mn) -> Sp(2m) x Sp(2n) 24,2m,2n
25 :- SO(2k+1) -> SO(3) 25,2k+1
26 :- SO(2k) or SO(2k+1)-> U(1) x SU(k) 26,2k (or 2k+1)
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27 :- SO(m+n) -> SO(m) x SO(n) 27,m,n
28 :- SO(4) -> SU(2) x SU(2) 28
29 :- SO(4) -> SO(3) 29
30 :- SO(7) -> SO(3) 30
31 :- SO(7) -> G(2) 31
32 :- SU(m/n) -> U(1) x SU(m) x SU(n) 32,m,n
33 :- SU(m+n/p+q) -> U(1) x SU( m/p) x SU( n/q)
33,m,p,n,q
34 :- U(mn+pq/mq+np) -> U( m/p) x U( n/q) 34,m,p,n,q
35 :- OSp(m/n) -> O(m) x Sp(n) 35,m,n (n even)
36 :- Sp(2n,R) -> U(n) 36,2n
37 :- Sp(2n,R) -> Sp(2,R) x O(n) 37,2n
38 :- Sp(2nk,R) -> Sp(2n,R) x O(k) 38,2n,k
39 :- Mp(2nk) -> Sp(2n,R) x O(k) 39,2n,k
40 :- G(2) -> SU(3) 40
41 :- G(2) -> SO(3) 41
42 :- G(2) -> SO(7) 42
43 :- F(4) -> SO(9) 43
44 :- E(6) -> SU(2) x SU(6) 44
45 :- E(6) -> U(1) x SO( 10) 45
46 :- E(6) -> G(2) 46
47 :- E(7) -> SU(8) 47
48 :- E(7) -> U(1) x E(6) 48
49 :- E(8) -> SU(9) 49
50 :- E(8) -> SO(16)) 50
51 :- E(8) -> SU(2) x E(7) 51
52 :- E(8) -> SU(3) x E(6) 52
53 :- SU(27) -> E(6) 53
54 :- SU(56) -> E(7) 54
55 :- SU(248) -> E(8) 55
56 :- E(6) -> F(4) 56
57 :- F(4) -> SO(3) x G(2) 57
58 :- E(6) -> SU(3) x G(2) 58
59 :- SO(26) -> F(4) 59
60 :- E(8) -> F(4) x G(2) 60
61 :- SO *̂(2n) -> U(n) 61,2n
62 :- U(n) -> S(n) 62,n
63 :- S(8) -> L168 63

UONEAddInteger
Format: UOneA INTEGER gr grN EXPR (DPM)

UOneA INTEGER EXPR (REP)
Modes: DPM, REP
Description: Adds the INTEGER on to the first part of each partition in EXPR.
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While specifically introduced for the group U(1) it may be used
for any group.

Example: DP>
⇒ gr2u1su5

Groups are U(1) * SU(5)
DP>

⇒ [~6*21]
{ -6}{ 21}
DP>

⇒ uoneadd8gr1last
{ 2}{ 21}
DP>

UONEDivInteger
Format: UOneD INTEGER gr grN EXPR (DPM)

UOneD INTEGER EXPR (REP)
Modes: DPM, REP
Description: Divides the INTEGER into the first part of each partition in

EXPR. An error message is generated if the division is not exact.
While specifically introduced for the group U(1) it may be used
for any group.

Example: DP>
⇒ gr2u1su5

Groups are U(1) * SU(5)
DP>

⇒ [~6*21]
{ -6}{ 21}
DP>

⇒ uoned3gr1last
{ -2}{ 21}
DP>

UONETrace
Format: UONET EXPR
Modes: DPM
Description: UONETrace evaluates the trace when one of the set

Groups is U(1). This is useful in checking branching rules
leading to the appearance of a U(1) group. UONETrace
multiplies the dimension of each rep in EXPR by its
corresponding U(1) weight and should yield a null result.

Example: DP>
⇒ gr so8

Group is SO(8)
DP>

⇒ branch26,8gr1[s1+]
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Groups are U(1) * SU(4)
{ 6}{ 1} + { 2}{ 21} + { 2}{ 1ˆ3} + { -2}{

2ˆ2 1} + { -2}{ 1}
+ { -6}{ 1ˆ3}

DP>
⇒ uonet last

Utrace = 0
DP>

VarForDpreps
Format: V N
Modes: DPM
Description: Contains the DPrep variable N, (N = 1...50), set with

SETVarInDPmode. Used as the DPrep EXPR when required.

VMult
Format: VM INTEGER, EXPR1, EXPR2
Modes: SFN
Description: EXPR1 and EXPR2 are two lists of monomials in INTEGER

variables. Their product is output as a list of monomials.
The two monomials (x 1 - x 3) and (x 2 - x 3) are represented
as { 1} - { 001} and { 01} - { 001} and their product
x 1x 2 -x 2x 3 - x 1x 3 + x 3̂ 2
is represented as
{ 11} - { 011} - { 101} + { 002}
See also GENprod and SMON

Example: SFN>
⇒ vm3,1-001,01-001

{ 1ˆ2 } - { 101} - { 01ˆ2 } + { 0ˆ2 2}
SFN>

WHATGroup
Format: WhatG
Modes: DPM, REP
Description: This command returns the current setting of the groups.

WITH
Description: This command is only used in conjunction with the command

RULE
and is discussed under that heading.

WRFNTODisk
Format: Wrfntod INTEGER ‘filename’
Modes: DPM
Description: Writes the function INTEGER (=N), (N = 1...50) to a disk file
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‘filename’. This file can be read from disk with ReadF to
create a function.

WRfnToScreen
Format: Wr N
Modes: DPM
Description: Displays the contents of function N, (N = 1...50) on the

screen.

WSEQuence
Format: WSEQ Sequence
Modes: SFN
Description: WSEQ acts on a sequence of integers to produce the sum of the

parts, or weight, of the Sequence.
Example: SFN>

⇒ wseq 1112234576
weight = 32

{ 1ˆ3 2ˆ2 34576}
SFN>

WTofRepOrSfnSelect
Format: Wt grno, INTEGER, EXPR (DPM)

Wt INTEGER, EXPR (REP, SFN)
Modes: DPM, REP, SFN
Description: In the DPMode if INTEGER is positive then this command re-

turns all
terms in EXPR which are of weight INTEGER or less for the
grno.
If INTEGER is negative then the command returns all
terms in EXPR which are of weight INTEGER for the grno ex-
actly.
In the REP or SFN modes if INTEGER is positive then this com-
mand
returns all terms in EXPR which are of weight INTEGER or less.
If INTEGER is negative then the command returns all
terms in EXPR which are of weight INTEGER exactly.

Example: SFN>
⇒ wt6 outer21ˆ2,21+2+1

{ 41ˆ2} + { 321} + { 31ˆ3} + { 31ˆ2} + { 2ˆ2
1ˆ2} + { 2ˆ2 1} + { 21ˆ3}

SFN>

YHooklengths
Format: YH EXPR
Modes: SFN
Description: Writes to screen the hooklengths of every cell of every
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Young diagram of every partition in EXPR.
Example: SFN>

⇒ yh o21,21
2.

+-+-+-+-+ +-+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+ +-+-+
:5:4:2:1: :6:3:2:1: :4:3:2: :5:3:1: :6:2:1: :4:3: :5:2:
+-+-+-+-+ +-+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+ +-+-+
:2:1: :2: :3:2:1: :3:1: :3: :3:2: :4:1:
+-+-+ +-+ +-+-+-+ +-+-+ +-+ +-+-+ +-+-+

:1: :1: :2: :2:1: :2:
+-+ +-+ +-+ +-+-+ +-+

:1: :1:
+-+ +-+

SFN>

YOungDiagrams
Format: YO EXPR
Modes: SFN
Description: Draws on the screen the frames corresponding to the Sfns

in EXPR. Multiplicities appear above each frame except for
multiplicity 1. The empty frame corresponding to { 0} appears
as a dot. Each cell of a frame is represented by a circle.

Example: SFN>
⇒ 42+41ˆ2+3ˆ2+2.321+31ˆ3+2ˆ3+2ˆ2 1ˆ2

{ 42} + { 41ˆ2} + { 3ˆ2} + 2{ 321} + { 31ˆ3}
+ { 2ˆ3} + { 2ˆ2 1ˆ2}

SFN>
⇒ yo last

2
OOOO OOOO OOO OOO OOO OO OO
OO O OOO OO O OO OO

O O O OO O
O O

SFN>

YShapeSelect
Format: YS letter EXPR
Modes: SFN
Description: letter belongs to the character set [’c’,’d’,’r’,’s’,’t’].

Choosing ’c’ gives the column partitions in EXPR.
Choosing ’d’ gives the double hook partitions in EXPR.
Choosing ’r’ gives the single row partitions in EXPR.
Choosing ’s’ gives the single hook partitions in EXPR.
Choosing ’t’ gives the two row partitions in EXPR.
Any other choice of letters gives an error message.

Example: SFN>
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⇒ ys s 42+41ˆ2+3ˆ2+2.321+31ˆ3+2ˆ3+2ˆ2 1ˆ2
{ 41ˆ2} + { 31ˆ3}
SFN>

Zero
Description: Returns a null expression. Can be used in initialisation of stored

variables
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B.1 Help Files

Most of the information given in Appendix A can be obtained online by inputting
the command ?filename where the minimal filename is the set of boldface upper-
case letters associated with the command name as indicated in the table below.
The user may input the filename in upper, lower, or mixed case using letters up
to the full command name. Thus the commands ?abs, ?AbS, ?AbSoLuTeV will
all result in a display on the screen of the helpfile associated with the command
ABSoluteValue. The helpfiles are pure ASCII files and hence the user may add
helpfiles of his/her own provided these are placed in the \HELP directory and
their filenames do not conflict with existing filenames.
Table B.1 Helpfiles in SCHUR.
ABSoluteValue ADD ALLskewSfn
ASSOCiate ATtachPartitionToSfn AUtoOrIsoMorphism

BRanch BRMode

CANcelDatFile CASIMIRGnthTrace CASimirNthordertrace
CH_CoeffsToOneForSfns CH_LabelForOn CH_PhaseOfSfns
CH_SpinIndex CH_UoneReps CLASS
COLumns COMPare COMPLement
CONJADD CONJugateSfnList CONSPLIT
CONTENT CONTractGroups CONTRAGredientRep
CONV_D_TO_Rep CONV_D_TO_Sfn CONV_R_TO_Sfn
CONV_S_TO_Rep COUNTCoeffsInList COUNTTermsInList
COVariant

DEAD DIMension DPMode
D_TO_Plabel DYNKINIndex

END ENTerVar EQualSfnList
E_TO_FSymmFn E_TO_HSymmFn E_TO_MSymmFn
E_TO_SSymmFn EXITmode EXPandSfnList

FFPROD FIRSTPart FN
FPROD FRACAHnotation FROB
F_TO_ESymmFn F_TO_HSymmFn F_TO_MSymmFn
F_TO_SSymmFn FUSion

GENERIC GENprod GRoup
GWT

HALLpolynomialProduct HCLASS HEAPstatus
HECKE HELP HSTD
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HSTDList H_TO_ESymmFn H_TO_FSymmFn
H_TO_MSymmFn H_TO_SSymmFn

INDEXsequence INSertPartitionIntoSfn INTegerDivideCoeffs
INVerseseries I_PLethysmRd I_QfnProduct
I_sfnProduct I_SFNQfnProduct

KINSert KMatrix Kostka

LABel LASTresult LATticetest
LENgthOfPartitionsSelectLICENSE LINES
LOadFile LOGfile LSEQuence

MACMixedSeries MACseries MAKEwtOfSfnToN
MAXCoeffInList MIXedTensorReps M_TImesSfnProduct
M_TO_ESymmFn M_TO_FSymmFn M_TO_HSymmFn
M_TO_SSymmFn MUlt_CoeffsByAnInt MULT_List
MULT_Ntimes MULT_PartsByAnInt MULT_SelectInList
MULT_SPlitIntoTwoLists MYlistOfSfns

NLambda NSKew NSTDise

ONSCalar O_PfnProduct O_QfnProduct
O_Restrict O_sfnProduct

PARITYsequence PAUSE PLethysm
PLG ProductKronecker PROPertyOfRepList
P_TO_Dlabel P_TO_SSymmFn

QEXPandSpecialSeries QQEXpandSpecialSeries QQSEries
QSAME QSERies Q_TO_SsymmFn

RACAHnotation RAISEInverseOp RAISEop
RD_I_QfnProduct RD_I_sfnProduct RD_RAISEInverseOp
RD_RaiseOp READFnFromDisk REMark
REPmode RETurn RIEMANNList
RIEMANNPlethList RIEMANNScalarsOrderN RM_EVENPARTS
RM_EVENRkSfnsOnly RM_EVENWtInList RM_FirstPartOfSfn
RM_Group RM_NMP RM_ODDPARTS
RM_ODDRkSfnsOnly RM_ODDWtInList RM_PartitionFromSfn
RM_PARTSequalN RM_RepeatedPartsSfns RM_SOnEvenLabels
RM_UoneWtOverMax RP_FirstPartBySpin RP_RepOrSfnByWt
RP_SfnCoeffByInt RSAMEwtSfnList RULE
RVar
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SAMEwtSfns SAVEsetVar SB_Bell
SB_CONjecture SB_CUT SB_Digits
SB_DIMension SB_LISToutput SB_More
SB_POWerNotation SB_PROGress SB_Qfn
SB_RD_notation SB_REVerseOrder SB_TexOutPut
SCALARInner SCHAR SERIESTErmsThatSkew
SERiesToIntWt SETFnVar SETLIMit
SET_PWT SETRVar SETSVar
SETVarInDPmode SFNmode SIGNSEQuence
SK_Pfn SK_Qfn SK_sfn
SMON SNchar SPIN
SPLitIntoSpinAndTensor SPONModify SPRCH
SPREXtend SPSTAR SQuares
STARequivalent STATusOfSchur STD
STD_OneDprep STD_Qfn S_TO_ESymmFn
S_TO_FSymmFn S_TO_HSymmFn S_TO_MSymmFn
STOP S_TO_PsymmFn S_TO_QsymmFn
SUBtract SUM SUMSQuares
SUPpressOutputToScreen SVar SWAPgroups

TABleOfBranchingRules

UONEAddInteger UONEDivInteger UONETrace

VarForDpreps VMult

WHATGroup WITH WRFNTODisk
WRfnToScreen WSEQuence WTofRepOrSfnSelect

YHooklengths YOungDiagrams YShapeSelect

Zero

B.2 Function Files

Included with the package SCHURis a complete set of files for every function
described in this manual. These files have the extension .fn and are prefixed
by p# where # is the page number in the manual where the given function
is described. The user may call upon any of these function files by issuing
the command ”readfn1’filename’” (e.g. readfn1’p83.fn’) and then issuing the
command ”fn1” to run the function.

He pūreirei whakamatatanga
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(Ancient Māori proverb)
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Introduction

In this appendix we outline some practical details in running SCHUR.
Setting up directories

Before installing SCHUR three directory structures should be created on your
system. These should be named SCHUR, SCHUR\HELP and SCHUR\DAT.
The executable file SCHUR.EXE should be placed in the directory SCHUR
while the files *.DAT are placed in the directory SCHUR\DAT. The HELP
files are then placed in the directory SCHUR\HELP. SCHUR normally expects
to find any userdefined functions of your creation in the directory SCHUR. If
you choose to place them in a separate directory such as SCHUR\UFN then
when you use the commands relating to functions you will need to give the path
e.g. readfn1’\UFN\myfn.fn’. A similar situation holds for loading and saving
with the commands save and load.

Limitations and set dimensions

SCHUR has preset values for a number of quantities. In particular
Maximum number of groups that may be set = 8.
Maximum number of functions that may be set = 10.
Maximum number of svar that may be set = 20.
Maximum number of rvar that may be set = 20.
Maximum number of var that may be set = 20.
Maximum size of a part of a partition =127.
Maximum size of a coefficient in an expression = MaxInt.
Maximum length for the dimension of a representation = 400 digits.
The above settings may be modified upon request in very special cases

but most users are likely to find the preset values as optimum values.
Error messages and runtime errors

Considerable effort has been devoted to the avoidance of fatal runtime errors.
Many errors, especially those associated with input errors, are trapped and re-
ported to the screen. The error messages are usually self-explanatory. Results
that appear beneath and error message should be ignored. Errors associated
with exhaustion of memory are not trapped and as such will result in a fatal
runtime error.

No man is wise enough to think of all the ideas that
can occur to a fool

—Rudolph Peierls Bird of Passage, Princeton 1985
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In many cases the output from Schur is quite voluminous and without appro-
priate procedures the production of tabular information can be a very tedious
process requiring much editing of saved logfiles. However SCHUR can produce
tabular output that can almost immediately compiled for printing as a TEX file.
This is accomplished by issuing the following commands:-

Sb_TexOutput
Format: Sb_T TRUE:FALSE
Modes: DPM, REP, SFN
Description: Setting Sb_T TRUE forces output from all modes

to be in TEX format. The default is Sb_T FALSE
which gives normal output.

Columns
Format: Columns INTEGER
Modes: DPM, REP, SFN
Description: Columns allows the user to determine the number

of columns in which to tabulate information. The
default value is 5. The choice of INTEGER de-
pends on the multiplicities and width of partitions
involved.

Lines
Format: Lines INTEGER
Modes: DPM, REP, SFN
Description: Lines allows the user to determine the number of

lines to be placed on a given page. The default
value is 50. Every INTEGER lines printed leaves
two blank lines.

Making a TEX table

To produce a TEX file the user first sets SCHUR for producing TEX output by
issuing the command Sb_Tex TRUE and then, if desired, uses the commands
Columns and Lines to set the number of columns and lines per page. All
commands will now automatically produce TEX output. This output may be
collected into a Logfile as discussed on page 153. A text editor can then be used
to remove any extraneous information and to add any desired textual informa-
tion. Any page of the TEX output can now be converted into a TEX box for
printing by attaching, for example, the line
\setbox1 = \hbox{\vbox{\settabs3\columns
to the start of the TEX page and at the bottom of the page the lines
}}
$$\box1$$
\vfill\eject
where it has been assumed the user has set the number of columns at 3.
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As an example consider the following logfile created in SCHUR
DP>

->sb_tex true

DP>

->columns3

DP>

->gr u4

Group is U(4)

DP>

->p[321],[321]

\+$\{642\}$&$ + \ \{641^2\}$&$ + \ \{63^2\}$\cr

\+$ + \ 2\{6321\}$&$ + \ \{62^3\}$&$ + \ \{5^22\}$\cr

\+$ + \ \{5^21^2\}$&$ + \ 2\{543\}$&$ + \ 4\{5421\}$\cr

\+$ + \ 3\{53^21\}$&$ + \ 3\{532^2\}$&$ + \ \{4^3\}$\cr

\+$ + \ 3\{4^231\}$&$ + \ 2\{4^22^2\}$&$ + \ 3\{43^22\}$\cr

\+$ + \ \{3^4\}$\cr

DP>

->end

Using a text editor we can produce a TEXbox as
\setbox1 = \hbox{\vbox{\settabs3\columns

\+$\{642\}$&$ + \ \{641^2\}$&$ + \ \{63^2\}$\cr

\+$ + \ 2\{6321\}$&$ + \ \{62^3\}$&$ + \ \{5^22\}$\cr

\+$ + \ \{5^21^2\}$&$ + \ 2\{543\}$&$ + \ 4\{5421\}$\cr

\+$ + \ 3\{53^21\}$&$ + \ 3\{532^2\}$&$ + \ \{4^3\}$\cr

\+$ + \ 3\{4^231\}$&$ + \ 2\{4^22^2\}$&$ + \ 3\{43^22\}$\cr

\+$ + \ \{3^4\}$\cr

}}

$$\box1$$

Which when TEXcompiled yields

{642} + {6412} + {632}
+ 2{6321} + {623} + {522}
+ {5212} + 2{543} + 4{5421}
+ 3{5321} + 3{5322} + {43}
+ 3{4231} + 2{4222} + 3{4322}
+ {34}
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I prefer the open landscape under a clear sky with
its depth of perspective, where the wealth of sharply
defined nearby details gradually fades away towards
the horizon.

— H. Weyl, Classical Groups 1938
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abbreviations, 60
of commands, 60, 130

AbsValue, 133
Add, 133
Allskewsfn, 133
alternating groups, 6, 39, 44
ampersand & , 5, 9
associate representations, 37
Associate. 133
AttachPartitionToSfn, 89, 134
AutoOrIsoMorphisms, 76, 134
automorphisms, 46

baryons, 107
brackets, 5, 7, 37
Branch, 135
branching rules, 47, 53, 137
branching rule mode

tutorial, 72
BRMode, 8, 72, 136

Capabilities of SCHUR, 1
Casimir invariants, 44
CancelDatFile, 138
carriage return, 5, 9
CasimiGeneralNthTrace, 139
CasimirNthOrderTrace, 139
characters

calculation of, 20, 81, 97, 193, 198
for S4, 81
for H4(q), 99
for Hecke algebras, 97

Ch CoeffsToOneForSfns, 139
Ch LabelForOn, 140
Ch PhaseOfSfns, 140

Ch SpinIndex, 141
Ch UOneReps, 141
classical symmetric functions, 18
Class, 142
Columns, 59, 142
commands, 10, 60, 130
commas in SCHUR, 5
Compare, 81, 142
Complement, 143
ConjugateSfnList, 143
Consplit, 143
Content, 144

continuing a line, 5

ContractGroups, 77, 91, 145

ContragradientRep, 146

Conv DprepToRep, 147

Conv DprepToSfn, 147

Conv RepToSfn, 148

Conv SfnToRep, 67,70, 148

CountCoeffsInList, 64, 149

CountTermsInList, 64, 149

<CR>, 5,9

dimension, 15, 17, 67, 150, 213

Dimensions, 150

examples of, 67, 77

directories, setting up, 213

DPMode

tutorial in, 75

DPMode, 7, 150

DynkinIndex, 67, 151

Dynkin invariants, 44

Dynkin labels, 41

DynkinToPartition, 151
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E To FSymmFn, 152

E To HSymmFn, 152

E To MSymmFn, 152

E To SSymmFn, 152

electronic states, 111

of the N2 molecule, 111

of dn configurations, 79

elementary symmetric functions,
19

End, 153
EnterVar, 83, 90, 153
EqualSfnList, 93, 153
error messages, 213
exceptional groups, 39
exclamation mark ! , 5
ExitMode, 153
ExpandSfnList, 153
expressions, 10

Firstpart, 154
Fn, 154
F To ESymmFn, 155
F To HSymmFn, 155
F To MSymmFn, 155
F To SSymmFn, 155

frames, 13
skew, 14

Frobenius notation, 14
functions

tutorial, 83
user defined, 83
function files, 212

fusion, 44

Fusion, 156

GENprod, 156
Gordan’s formula, 24
Group, 157

setting the, 66
maximum number allowed, 75, 213

groupitem, 6
groups

formats, 157
super Lie, 37
standard labels, 40

GWT, 157

H To ESymmFn, 158
H To FSymmFn, 158
H To MSymmFn, 158
H To SSymmFn, 158
HallPolynomialProduct, 159
Hall-Littlewood polynomials, 159
Hecke, 159
Hecke algebra, 97, 99
Help files, 11, 210
homogeneous symmetric functions, 19
hooklength, 15, 207
hypercharge, 107

input of lists, 5
I PlethysmRd, 88, 160
I QfnProduct, 160
I SfnProduct, 161
I SfnQfnProduct, 161
inner plethysm, 27, 88

products, 25
reduced, 25



Index 221

Indexsequence, 161
InsertPartitionIntoSfn, 89, 161
IntegerDivideCoeffs, 162
integral basis, 20
InverseSeries, 162
irreducible representations

associate, 37
contravariant, 37
covariant, 37
dimensions of, 44
double valued, 37
equivalent, 38
mixed tensor, 37
of exceptional groups, 39
of Mp(2n), 51
of On, 37
of SOn, 38
of Spn, 37
of Sp(2n, R), 51
of Sn, 39
of SUn, 38
of Un, 37
self-associate, 38
spin, 37, 43
symplectic, 37
unitary group, 37

isomorphisms, 46

KINSert, 163
Kmatrix, 163
Kostka matrix, 20, 164
Kostka, 164
Kronecker products, 45, 56, 175

label, 5

Label, 164
LastResult, 8, 164
lattice permutation, 22
Latticetest, 164
leading diagonal, 14
length, 13
LengthOfPartitionsSelect, 89, 165
Lie groups

compact, 37
non-compact, 51
standard labels, 40
plethysms, 45, 58

limitations, 214
Lines, 165
Littlewood-Richardson rule, 22
LoadFile, 165
LogFile, 166
Lsequence, 166

M TimesSfnProduct, 166
M To ESymmFn, 167
M To FSymmFn, 167
M To HSymmFn, 167
M To SSymmFn, 167
Macseries, 168
MakeWtOfSfnToN, 88, 168
MaxCoeffInList, 169
mesons, 107
metaplectic groups, 51, 53

branching rules for, 53
mixed notation, 37
MixedTensorReps, 169
modes, 7
modification rules, 21, 43
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fusion, 44
monomials, 18
Mult CoeffByAnInt, 169
multiplicity, 5
Mult NTimes, 170
Mult PartsByAnInteger, 170
Mult SelectInList, 170
Mult SplitInToTwoLists, 171
MyListOfSfns, 171

negative parts, 6
non-integral basis, 20
NLambda, 171
NSTDise, 171

O PfnProduct, 171
O QfnProduct, 172
O Restrict, 172
O SfnProduct, 172
outputitem, 7
Onscalar, 173
orthogonal groups, 37

labels, 37
Sn subgroup, 28

output of lists, 7

P−functions, 33
P To SfnSymmFn, 176
partition, 5, 13
partitions

Frobenius notation, 14
leading diagonal, 14
negative parts, 5
rank, 14
reading, 6

Parity, 173
Pause, 174
PlabelToDlabel, 174
plethysm, 26

and asymptopia, 115
in Lie groups, 45
in Sp(2n, R, 58
inner, 27
outer, 26
reduced, 28

Plethysm, 174
power sum symmetric functions, 19,

81, 97, 173, 188
ProductKronecker, 175
prefix, 5
preset values, 213
PropertyOfRepList, 176

Qexpand, 176
Q−functions, 31

non-standard, 33
QqexpandSpecialSeries, 177
Qqseries, 177
Qseries, 177
quark model, 80, 107
quantum chromodynamics, 80, 109

RacahNotation, 178
RaiseInverseOp, 178
RaiseOp, 178
Rd I QfnProduct, 179
Rd I SfnProduct, 179
Rd RaiseInverseOp, 179
Rd RaiseOp, 180
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ReadFnFromDisk, 84, 180
reduced notation, 25
references, 120
Remark, 180
REPmode

exploring the, 66
REPmode, 8, 181
Return, 181
RiemannList, 181
RiemannPlethList, 181
RiemannScalarsOrderN, 181
ring of symmetric functions, 18
Rm EvenRkSfnsOnly, 182
Rm EvenWtInList, 182
Rm FirstPartOfSfn, 182
Rm Group, 78, 183
RM NMParts, 183
Rm OddRkSfnsOnly, 183
Rm OddWtInList, 183
Rm PartitionFromSfn, 90, 183
Rm PartsEqualN, 184
Rm RepeatedPartsSfns, 184
Rm SOnEvenLabel, 185
Rm UoneWtOverMax, 185
row-word, 22
Router, 185
Rp FirstPartBySpin, 185
Rp RepOrSfnByWt, 186
Rp SfnCoeffByInt, 186
RsameWtSfnList, 186
Rule command

using the, 90, 187
runtime errors, 213
Rvar, 187

S To ESymmFn, 187
S To FSymmFn, 187
S To HSymmFn, 187
S To MSymmFn, 188
S To PSymmFn, 188
S To QSymmFn, 189
SameWtSfnList, 189
SaveSetVar, 189
Sb Bell, 189
Sb Conjecture, 57, 190
Sb Cut, 190
Sb Digits, 190
Sb Dimension, 191
Sb More, 191
Sb PowerNotation, 191
Sb PROGress, 191
Sb Qfn, 192
Sb RdNotation, 192
Sb ReverseOrder, 59, 192
Sb TexOutput, 58, 85, 98, 192, 215
Schar, 193
Schur functions

definition, 19
classical, 20
inner product, 25
non-standard, 21
outer product, 22
plethysm of, 26
series, 28
skew, 21

Schur’s Q−function, 31
definition of, 32
non-standard, 33
skew of, 33
exercise, 72
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SeriesTermsThatSk, 193
SeriesToIntWt, 67, 89, 193
Set pwt, 58, 194
Setfn, 194
Setlimit, 53, 194
SetProductVar, 195
SetRepVar, 195
SetSfunctionVariable, 195
SFNmode

getting started, 62
SfnMode, 8, 195
shape, 13
shifted tableaux, 32

skew, 33
sign, 5
signed sequences, 53, 89

content of, 89
Signsequence, 195
skew frames, 14
Sk Pfn, 196
Sk Qfn, 197
Sk Sfn, 197
SMON, 197
Snchar, 198
Spin, 199
SplitIntoSpinAndTensor, 199
Sponmodify, 199
Sprextend, 200
Spstar, 201
StatusOfSchur, 201
Std, 63, 202
Std OneDprep, 202
Std Qfn, 202
Stop, 83, 203
striplength, 43

Subtract, 203
Sum, 95, 97, 203
super Lie groups, 39
SuppressOutPutToScreen, 94, 203
Svar, 204
Swapgroups, 204
symbolic manipulation, 30
symmetric functions

elementary, 19
forgotten, 19
homogeneous, 19
monomial, 18
multiplicative, 19
power sum, 19, 81
ring of, 18
Schur,19

symplectic group, 37
non-compact, 51

TEXoutput, 58, 99, 192, 215
transition matrix, 20
triality, 81

unification models, 109
unitary group, 24, 26

labels, 37
UOneAddInteger, 204
UOneDivInteger, 205
UOneTrace, 205

Vandermonde determinant, 21
VarForDpreps, 206
VMult, 206
weight, 13
WhatGroup, 206
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With, 206
word

definition of, 22
WrFnToDisk, 206
WrFnToScreen, 84, 207
Wsequence, 207
WtOfRepOrSfnSelect, 67, 207

Young diagrams, 13
YHooklengths, 15, 207
YOungDiagrams, 13, 208
Young tableaux, 15

and monomials, 18
content of, 23
semistandard, 17
shifted, 32
standard numbering, 15
unitary numbering, 16

Young’s raising operators, 34
YShapeSelect, 208

Zero, 208


