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ABSTRACT
This study explores manifold representations of emotionally mod-
ulated speech. The manifolds are derived in the articulatory space
and two acoustic spaces (MFB and MFCC) using isometric feature
mapping (Isomap) with data from an emotional speech corpus. Their
effectiveness in representing emotional speech is tested based on the
emotion classification accuracy. Results show that the effective man-
ifold dimensions of the articulatory and MFB spaces are both about
5 while being greater in MFCC space. Also, the accuracies in the
articulatory and MFB manifolds are close to those in the original
spaces, but this is not the case for the MFCC. It is speculated that the
manifold in the MFCC space is less structured, or more distorted,
than others.

Index Terms— Emotional speech, Isomap, manifold, acoustic
feature, articulatory feature

1. INTRODUCTION

Speech events have been analyzed and modeled using various sets of
signal feature descriptions. For example, articulatory measurement
features have shown how the articulatory movement dynamics are
shaped during emotional expression [1]. Similarly, acoustic infor-
mation pertaining to emotional speech has been described by spec-
tral features, for instance using Mel-frequency cepstral coefficients
(MFCCs) and Mel-frequency filter banks (MFBs). All these articu-
latory and acoustic signal (measurement) descriptions are on feature
spaces that vary in their size, as well as redundancy in description. It
has been claimed that the speech space, both articulatory and acous-
tic, can be represented in a lower dimensional feature space than
what is obtained with conventional feature descriptions [2] [3]. This
claim is based on the innate constraints of human speech production,
rules that underlie the creation of linguistically meaningful sounds,
and the physiological limits in the vocal tract. Since the modula-
tion of speech source signal results from the combination of articu-
lator motions, these constraints may limit the variation patterns in the
speech signal. In this sense, speech data samples in the original sig-
nal feature space can indeed be represented in a lower dimensional
space that reflects the actual underlying structure. A previous study
presented experimental evidence that, for Linear Predictive Coding
(LPC) coefficients and MFBs, the underlying structures were best
approximated by three to five dimensions [2].

Recently, manifold methods for representing informative signa-
tures in the speech signal have been studied. A manifold is a mathe-
matical space created by the information of distance among a certain
amount of data samples. It allows considerable data reduction while
retaining critical information of the modulation patterns. Isometric
feature mapping (Isomap) [4] is one of the most popularly used al-
gorithms to discover a manifold. A previous study showed that the

Isomap-learning based manifold spaces were capable of retaining
the distinctive information between phone classes [5].

This paper expands the scope of these previous studies to emo-
tional speech. The main goal is to examine the effectiveness of man-
ifolds for the representation of emotionally modulated speech, both
in the articulatory and acoustic domains. In previous studies [1]
[6], more peripheral movements of articulators for expressive speech
production were discovered. Also, four basic emotions, such as an-
gry, neutral, sad and happy, have distinctive probability distribution
functions (PDF) in the spectral feature space [7]. If a manifold is ca-
pable of retaining the emotional information of the original feature
space, the PDFs between emotions will still be distinctive from each
other in the manifold space.

Our experimental investigation considers the following acoustic
and articulatory data: MFCCs, MFBs and the trajectory measure-
ments of articulators, such as tongue tip, lower lip and jaw. Manifold
representations derived using Isomap were evaluated using emotion
classification rate and confusion and compared to those obtained in
the original feature spaces.

This paper is organized as follows. First, Isomap is described
briefly in section 2. Next, the databases used and the original fea-
ture extraction methods, as well as the training and testing methods
of four basic emotion models, are explained in section 3. Experi-
mental results and discussions are provided in section 4. Finally, the
conclusion of this study and future work are discussed in section 5.

2. ISOMETRIC FEATURE MAPPING

Isomap is an unsupervised learning algorithm which uses geodesic
distance on multidimensional scaling (MDS) [4]. This algorithm
provides residual variance, which is calculated as below.

Ed = 1 − R2(DG, DY ) (1)

where Ed is residual variance; DG is an approximated geodesic dis-
tance matrix which is estimated by computing shortest path distances
on a manifold; DY is a Euclidean distance matrix in the embedded
feature space; R is the standard linear correlation coefficient, taken
over all entries of DG and DY . Ed was used as an indicator of
how well original features fit Isomap better, because a lower resid-
ual variance indicates less metric distortion.

The success of finding a manifold depends on how a suitable
number of neighborhoods, or K, is chosen. In theory, Isomap guar-
antees that the intrinsic geometric structure of a manifold is recov-
ered better asymptotically, as K increases [4]. However, a large K
causes heavy computational cost. Therefore, an optimized K value,
which is cost effective, is generally used. Ed was used for estimating
the proper K.
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(a) Articulator features
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(b) MFB
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Fig. 1. Residual variance in low dimensional space from three different original feature spaces, such as articulatory feature space, MFB space
and MFCC space. Note the tendency of residual variance of MFCC to saturate in the higher dimensions than articulatory features and MFB.
This implies the manifold space from MFCC is less structured than others.

3. METHODS

3.1. Dataset

The USC Electromagnetic Articulography (EMA) emotion database
was used for this study [1]. It has both speech waveforms at a 16
kHz sampling rate and synchronized articulatory movement mea-
surements on the x axis and the y axis along the mid-sagittal view
of tongue tip, lower lip and jaw at a 200 Hz sampling rate. Articula-
tory position values were aligned to speech automatically by forced-
alignment using hidden Markov models of English monophones.
A total of 680 utterances were spoken by three native speakers of
American English: two females and a male. One of the females, JN
had vocal training in theatre/acting. 10 sentences were commonly
spoken by all talkers, and each sentence was repeated 5 times for
each of the four basic emotions: neutral, angry, sad and happy.

Only a subset of the corpus (120 utterances of JN) was used in
this initial study (3 utterances × 10 sentences × 4 emotions). One
reason for this was the innate computational complexity of Isomap.
Dijkstras algorithm, with Fibonacci heaps with K neighborhoods,
which was used for the calculation of the shortest-paths distance ma-
trix is O(kN2logN ), and the MDS eigenvalue calculation is O(N3)
[8]. These two processes require high computation time.

Also, it is necessary to use the frames which are more likely
colored by emotion for this study. A previous study showed both
that the second half of a sentence is more consistently influenced
by emotion and that verbs provide less emotional information than
adjectives or nouns [9]. So, the first words at the beginning of
utterances, which are all pronouns, and verbs were excluded in
this study. Also, we assumed that prepositions and articles were
too short to include emotional information in a consistent manner,
so they were excluded as well. Finally, we chose total 22 words:
GRANDMOTHER, PHONE, DOCTOR, SCAR, FOAM, ANTI-
SEPTIC, FATHER, DEAF, TANTAMOUNT, ISOLATION, ECHO,
VOICES, SOUND, SHOES, COMPANY, FUTURE, PICTURE,
DRESS, ASIA, LONG, VERY and SAME and then used the frames
within boundaries of those words.

3.2. Feature extraction for original feature space

For the articulatory domain, position values on the x axis and the
y axis of tongue tip, lower lip and jaw (6 features) are directly ex-
tracted from the EMA database. Since syllable level is considered as
the minimum duration for conveying emotion, we applied a 100 mil-
lisecond Hamming window, which is close to the shortest average
syllable duration of words, with 50 millisecond shifting. The mean
of samples in a window was used as the articulatory feature.

For the acoustic domain, two sets of speech spectral features are
used from the speech signal down sampled to 8 kHz. One set is
12th-order MFCCs, and the other is 12th-order MFBs. They were
extracted using the HTK toolkit [10]. DC mean normalization and
first order preemphasis with a coefficient of 0.98 were applied as pre-
processing. For fair comparison, we used identical window settings
with articulatory feature extraction.

3.3. Training and Testing of Emotion Models

80 utterances, two from each sentence of each emotion, were used
for training each emotion model, and the other utterances were used
for testing. Each emotion class was modeled by Gaussian Mixture
Models (GMMs). For training emotion models, we used NETLAB,
which provides MATLAB functions for parameter initialization by
k-means algorithm, and expectation-maximization algorithms [11].
Each frame was classified based on log-likelihood ratio. K-means
algorithm, which was used for determination of initial parameters of
GMMs, causes some variation of them. However, the standard devi-
ations of emotion classification results repeated 10 times in the orig-
inal feature space were small enough to be ignored: less than 0.02 in
the articulatory feature domain and less than 0.01 in both MFCC and
MFB domains. The number of mixtures was chosen experimentally
at the performance elbow point: 8 mixtures for articulation-feature-
based models, 20 mixtures for MFB-based models and 8 mixtures
for MFCC-based-models.

Table 1 shows the confusion matrix of each feature type at their
elbow points. These results will be compared with those of Isomap
embedded space.



Table 1. Confusion matrix in the original feature space of each fea-
ture type. Bold characters indicate highest classification rate. (Ang
= Angry, Neu = Neutral, Sad = Sadness, Hap = Happy, T = Total
number of samples, CR = Classification rate)

Classified
Ang Neu Sad Hap T CR

G
ro

un
d

tru
th

ARTI

Ang 183 25 66 30 304 .60
Neu 5 259 0 7 271 .96
Sad 7 96 195 3 301 .65
Hap 80 26 4 203 313 .65

MFB

Ang 121 43 57 83 304 .40
Neu 15 139 109 8 271 .51
Sad 8 91 193 9 301 .64
Hap 133 26 24 129 312 .41

MFCC

Ang 121 47 66 70 304 .40
Neu 5 173 74 19 271 .64
Sad 8 97 188 8 301 .62
Hap 91 27 23 171 312 .55

4. RESULTS AND DISCUSSIONS

4.1. Residual variances

Residual variance allows us to find the inflection point where a suit-
able neighborhood size and dimensionality of the low dimensional
space are decided in general. Figure 1 shows residual variances for
different settings of Ks and dimensions. A suitable K is determined
to be between 3 to 9 in practice [12]. In this figure, 7 to 8 neigh-
borhoods appear to be adequate enough to convey geodesic distance
information, so 8 neighborhoods are used in this study.

Figure 1 also indicates that elbow points exist at 3 to 5 dimen-
sions and their residual variances are not much different from those
of higher dimensions when suitable Ks are used. These results in-
dicate that 3 to 5 dimensional spaces by Isomap preserves geodesic
information as much as higher dimensional spaces.

4.2. Emotion information in low-dimension feature space

In this section, the capability of representing emotional information
in low dimensional feature space was examined. It was done by
comparing classification performances in the low dimensional fea-
ture space with those in the original feature space. The number of
mixtures in the low dimensional feature space was identically set
with that in the original feature space for fair comparison.

Figure 2 shows emotion classification results in the low dimen-
sional feature spaces. In this figure, classification rates do not in-
crease significantly after 4 dimensions for both articulatory features
and spectral features. Even when we tested with different numbers
of mixtures ranging from 2 to 32, the elbow points appeared consis-
tently in 3 to 5 dimensions, mostly in 4 dimensions. It may indicate
that about 4 dimensions are optimum to retain distinctive PDF in-
formation between basic emotions in the manifold space. In general,
the motions of jaw and lower lip are highly correlated, which may in-
fluence the saturation in 4 dimensions for articulatory features. Inter-
estingly, a previous study reported that the inflection point of phone
group classification results in a manifold also appeared in 3 to 5 di-
mensions [5].

For MFBs and articulatory features, manifold spaces retain
emotional information almost as much as the original feature
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Fig. 2. Emotion classification results of three feature types in mani-
fold. Baseline indicates emotion classification rate in original feature
space.

space: 2.2% lower for MFBs and 3% lower for articulatory fea-
tures. However, the manifold space from MFCCs retains relatively
much smaller emotional information: 9.4% lower. These results
may indicate that the manifold space from MFCCs is less structured
than those from MFBs and articulatory features. On the other hand,
the classification rates of embedded spaces of the identical dimen-
sion sizes as their original feature space are inferior to those in the
original feature spaces. It may be due to the fact that the embed-
ding process has an information loss problem from the distortion of
geodesic distance information as shown by the residual variances in
Figure 1.

Table 2 shows the confusion matrix for the four basic emotion
classes in the 4-dimensional feature space. As we can see in Table
1 and Table 2, confusion patterns in the classification in the original
feature spaces and Isomap feature spaces are similar overall. This
supports the observation that the manifold space retains distinctive
information between basic emotions well.

5. CONCLUSION AND FUTURE WORK

In this paper, we explored the effectiveness of using manifold repre-
sentations for analyzing emotional speech utterances. The represen-
tation capability was evaluated using emotion classification rates and
the confusion matrix. Results show that 3 to 5 feature dimensions
are the optimum numbers to convey emotional information in man-
ifold spaces derived from three different feature sets derived from



Table 2. Confusion matrix in 4 dimensional space of each feature
set. Bold characters indicate highest classification rate. (Ang = An-
gry, Neu = Neutral, Sad = Sadness, Hap = Happiness, T = Total
number of samples, CR = Classification rate)

Classified
Ang Neu Sad Hap T CR

G
ro

un
d

tru
th

ARTI

Ang 169 31 86 18 304 .56
Neu 7 252 4 8 271 .93
Sad 6 71 222 2 301 .74
Hap 75 66 10 161 312 .52

MFB

Ang 108 69 69 58 304 .36
Neu 10 125 123 13 271 .46
Sad 2 86 202 11 301 .67
Hap 105 46 39 122 312 .39

MFCC

Ang 93 72 88 51 304 .31
Neu 18 142 97 14 271 .52
Sad 3 103 181 14 301 .60
Hap 106 49 32 125 312 .41

speech articulatory and acoustic data. Also, the classification results
showed that the manifold spaces derived from MFBs and articula-
tory features were close to those obtained from the original feature
spaces. The manifold space from MFCCs shows relatively higher
information loss, which indicates that it has a more noisy underlying
structure than in the original feature space.

While the results from this initial study point to the potential ef-
fectiveness of a lower dimensional manifold representation for emo-
tional speech, more detailed experiments are required to further val-
idate the observations made here. First, we need more and further
detailed articulatory data; we hope the creation of a more exten-
sive corpus of emotional speech with EMA and Magnetic Reso-
nance Imaging can help in this regard for future studies. Second,
for the manifold based embedding algorithms, it is difficult to in-
terpret what physical constraint corresponds to each parameter, so
this remains an interesting open question. Finally, it is necessary to
develop more sophisticated manifold learning algorithms that are ca-
pable of retaining more information with less distortion. Our future
work will include these directions.
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