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Abstract
In interpersonal interactions, speech and body gesture channels
are internally coordinated towards conveying communicative
intentions. The speech-gesture relationship is influenced by the
internal emotion state underlying the communication. In this
paper, we focus on uncovering the emotional effect on the in-
terrelation between speech and body gestures. We investigate
acoustic features describing speech prosody (pitch and energy)
and vocal tract configuration (MFCCs), as well as three types
of body gestures, viz., head motion, lower and upper body mo-
tions. We employ mutual information to measure the coordi-
nation between the two communicative channels, and analyze
the quantified speech-gesture link with respect to distinct lev-
els of emotion attributes, i.e., activation and valence. The re-
sults reveal that the speech-gesture coupling is generally tighter
for low-level activation and high-level valence, compared to
high-level activation and low-level valence. We further pro-
pose a framework for modeling the dynamics of speech-gesture
interaction. Experimental studies suggest that such quantified
coupling representations can well discriminate different levels
of activation and valence, reinforcing that emotions are en-
coded in the dynamics of the multimodal link. We also verify
that the structures of the coupling representations are emotion-
dependent using subspace-based analysis.
Index Terms: emotion attributes, body gesture, speech
prosody, speech-gesture interplay, mutual information

1. Introduction
Body gesture is an important nonverbal behavior in interper-
sonal communication. The expression of body gesture often
spontaneously accompanies speech production. Such verbal
and nonverbal behavior forms, which are usually modulated by
the internal emotion state, are coherently linked to an integrated
communication system towards signaling a desired message [1]
[2]. Understanding the interplay of speech and body gesture
as a function of the underlying emotions can facilitate research
on multimodal emotion recognition, emotional gesture synthe-
sis driven by speech, as well as human-machine interaction.

Speech and gesture are coordinated towards conveying
communication intentions and many research efforts have been
devoted to study such connection. Bernardis and Gentilucci
found that the voice spectra were enhanced by gestures when
speech and gesture were emitted simultaneously [3]. Kelly et
al. examined the neural correlates between speech and hand
gesture comprehension and suggested a possible integration of
hand gesture and speech at the early and late stages of language
processing [4]. Based on the analyses of speech-gesture corre-
lation, much progress has been made on speech-driven gesture
synthesis. A rule-based conversational agent has been devel-
oped in [5] by synthesizing coordinated facial expressions and
hand gesture with speech intonation. Likewise, a framework for
full body language synthesis in real-time from speech prosody
has been proposed in [6].
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As one of the major elements that control and influence the
multimodal communicative channels, emotion has been widely
studied in terms of its relation to speech and gesture. The
emotional fingerprint in the acoustic measurements of speech
prosody and spectral energy distribution has been explored [7]
[8]. Evidence has shown that both speech prosody and short-
time spectral measurements carry emotional content. Such au-
dio features have been commonly used by the affective com-
puting community, e.g., [9] [10]. Besides speech, gesture is
another essential communicative channel which encodes emo-
tion information. Castellano et al. used information from fa-
cial expressions and body gestures to discriminate eight cate-
gorical emotions [11]. Metallinou et al. similarly applied body
language features for dynamically tracking changes in contin-
uous emotion over an interaction [12]. Recently, we have also
attempted to model attitude-related dynamics of hand gesture
based on data-driven gesture primitives [13]. Despite these ef-
forts focusing on the link of emotions and a given expressed
communication modality, relatively few studies have analyzed
the emotional influence on the joint relationship between speech
and gesture. An HMM framework was proposed in [14] to cap-
ture the emotion-related dependency of speech and head mo-
tion. Busso et al. made an initial attempt at quantizing the
emotional effect on the linear mapping between speech and fa-
cial gestures using data of a single subject, and found a strong
speech-gesture correlation depending on the emotional content
of the utterance [15]. Nevertheless, they also pointed out that
a linear mapping is not sufficient to capture the speech-gesture
relation especially for some facial gestures and the vocal tract
features which are associated with more complex structures.

In this work, we aim at quantitatively modeling the more
general dynamic coupling between speech and body gestures
at utterance level and uncovering the emotional modulation of
such speech-gesture dependency. To this end, we investigate
acoustic features describing speech prosody (pitch and energy)
and vocal tract configuration (MFCCs), as well as three types
of body gestures, viz., head motion, lower and upper body mo-
tions. The speech-gesture coupling is analyzed with respect to
distinct levels of emotion attributes, i.e., activation and valence.
This work is based on the USC CreativeIT database which con-
tains improvised dyadic interactions performed by 16 actors
[16]. We first examine the activeness of body gestures, which
is quantified as a measure of angular velocities, as a function
of different activation/valence levels, and find that there exists a
significant inter-emotion difference of body gesture activeness.
We further employ mutual information to measure the coordi-
nation of each speech-gesture pair (e.g., prosody-head motion),
and analyze the quantified speech-gesture link with respect to
distinct levels of activation or valence. Analysis results reveal
that the speech-gesture coordination depends on the emotions,
i.e., the coupling is generally tighter for low-level activation
and high-level valence, compared to high-level activation and
low-level valence. In addition, a stronger MFCCs-gesture rela-
tionship is observed compared to the one between prosody and
gestures, suggesting a closer interaction between the speech ar-
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ticulatory process and gesture production. Motivated by these
analyses, we propose a framework for quantitatively modeling
the speech-gesture coupling to further inspect how the dynam-
ics of their dependency are affected by emotions. More specif-
ically, we quantize both speech and gesture feature vectors at
each frame into discrete representations through unsupervised
clustering. The speech-gesture coupling at utterance level is
then quantified in a straightforward manner by computing the
transition probabilities between speech and gesture. Experi-
mental studies show that such coupling representations can well
discriminate distinct levels of activation or valence, reinforcing
that emotions are encoded in the dynamics of the multimodal
link. We also verify that the quantified speech-gesture coupling
representations are located in a low-dimensional subspace us-
ing principal component analysis (PCA), and the corresponding
subspace structures are emotion-dependent. These results also
shed light on emotion-dependent multimodal modeling.

2. Data Description
We use the USC CreativeIT database in this work, which is a
multimodal database of dyadic theatrical improvisations [16].
The interactions performed by the pairs of actors are either im-
provisations of scenes from theatrical plays or theatrical exer-
cises where actors repeat sentences to express interaction goals
featuring specific emotions. The interactions were guided by a
theater expert (professor/director), and were performed follow-
ing the Active Analysis improvisation technique pioneered by
Stanislavsky [17]. According to this technique, interactions are
goal-driven; actors have predefined goals, e.g., to comfort or to
avoid, which can elicit natural realization of emotions as well
as expressive speech and body language behavior.

This database contains detailed full body Motion Capture
(MoCap) data of the two interacting participants during a dyadic
interaction, and audio data obtained through close-up micro-
phones at 48 kHZ. A Vicon motion capture system with 12 cam-
eras was used to capture the (x, y, z) positions of the 45 mark-
ers of each actor at 60fps, as shown in Figure 1(a). There are 50
interactions in total performed by 16 actors (9 female).

(a) (b) (c) (d)
Figure 1: (a) The positions of the Motion Capture markers; (b)
– (d) Euler angles of the hand, head and leg joints.

2.1. Feature Extraction

After capturing the motion data, we manually mapped the 3D
locations of markers to the angles of different human body
joints using MotionBuilder [18]. The mapped angles will be
used as body gesture features. The joint angles are preferred
instead of 3D coordinates to describe gestures, because they
are more suitable for animation purposes [6] [19] and subject-
dependent gesture characteristics (e.g., the arm length) have
been removed through the mapping process. In this work, we
focus on three types of body gestures: lower body motion (legs),
upper body motion (hands) and head motion. Figure 1(b) – (d)
illustrates the Euler angles of the hand (arm and forearm), head
and leg (upleg and leg) joints in the x, y and z directions. The
head motion is described by the three angles (3D) shown in Fig-
ure 1(c); the upper body gesture is represented by the angles of
both right and left hands (12D); and the lower body gesture is
featured by the angles of both right and left legs (12D).

We extracted acoustic features of pitch and the rms energy
representing the speech prosody, as well as 12 Mel Frequency
Cepstral Coefficients (MFCCs) describing the vocal tract con-
figuration, using the Praat speech processing software [20].
These features were extracted every 16.67ms (60fps) with an
analysis window length of 30ms, in order to match with the
MoCap frame rate. The pitch features were smoothed and inter-
polated over the unvoiced/silence regions. We further augment
the acoustic features with their 1st and 2nd derivatives to incor-
porate the temporal dynamics. In this way, we have 6D prosody
and 36D MFCC feature vectors. All the audio features are z-
score normalized in a subject-dependent manner.

2.2. Emotion Annotation

To preserve the continuous flow of body gestures during the
improvisation, we annotated time-continuous dimensional emo-
tion attributes for each actor throughout the interaction, i.e.,
activation (excited vs calm) and valence (positive vs nega-
tive). Annotators used the Feeltrace instrument [21] to time-
continuously indicate the attribute value from −1 to 1 for each
actor while watching the video recording. The emotional state
of each actor was annotated by three or four annotators. For the
detailed annotation process, we refer readers to [22].

We first examine the inter-rater agreement for the contin-
uous emotion annotations. As described in [12], we define
the agreement as the linear correlation between two annota-
tors. For each actor recording, we compute the correlation be-
tween every pair of annotators and only keep the annotator pairs
with correlations greater than 0.5. Our work is based on sen-
tences/utterances in an interaction. Each actor recording is par-
titioned into utterances according to speech regions. For each
selected annotator, we take the average emotional annotation
over an utterance, and map the value into high-level [0.5, 1]
and low-level [−1,−0.5] activation or valence. To better cap-
ture potential differences between the extreme emotional ex-
pressions, the ambiguous values in the middle level [−0.5, 0.5]
are not analyzed in this work, but we intend to include this level
in future work. The inter-rater agreement for the categorical la-
bels of utterances is 0.85 for activation and 0.87 for valence.
The final emotional attribute level of each utterance is decided
by majority voting. This process results in 444 utterances from
all subjects for activation (195 low-level and 249 high-level),
and 611 for valence (280 low-level and 331 high-level).

3. Emotional Modulation
3.1. Emotional Modulation of Body Gestures

In this section, we investigate how body gestures are influenced
by emotions during speech. For this purpose, we define a mea-
sure δ describing the activeness of the body gesture of M joints
at the utterance level,

δ =
1

N

N∑
t=1

1

M

M∑
i=1

ω(i)2t , (1)

where N is the number of frames in the utterance, ω(i)t is the
angular velocity of the i-th joint (α(i)t, β(i)t, γ(i)t) at frame
t, i.e., ω(i)t =

√
∆α(i)2t + ∆β(i)2t + ∆γ(i)2t , and ∆ means

the 1st order derivative of the corresponding angle.
Table 1 shows the average gesture activeness amongst utter-

ances within a specific emotional level. We also perform t-tests
to examine whether the activeness difference between distinct
emotional levels is statistically significant. The p-values for the
comparison tests are also presented in Table 1. We can observe
that the activeness difference between the two activation lev-
els is significant, i.e., body gestures are generally more active
for excitement (high activation) compared to that for calmness
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(low activation). In addition, head motion is less active than
the other two motions for the high-level activation. The signif-
icant activeness difference between the low and high levels of
valence can also be observed for the head and lower body mo-
tions. These results underscore the encoding of emotional cues
in body gestures during speech communication.

Table 1: Average activeness of body gestures during speech, and
statistical significance of activeness difference between emotion
levels (Act: Activation, Val: Valence).

Mean activeness δ
Body gesture Low Act High Act Low Val High Val

Upper 0.51 2.33 1.47 1.29

Lower 0.83 2.03 1.23 1.59

Head 0.68 1.59 1.22 0.95

Statistical significance (p-values)
Body gesture Low-High Act Low-High Val

Upper 0.000 0.127

Lower 0.000 0.013

Head 0.000 0.009

3.2. Emotional Modulation of Speech-Gesture Coupling

In the previous section, we explored the emotional fingerprint
in the single communicative channel of body gestures as re-
flected in activeness. Since speech and gesture are known to
interact with one another and such interaction is influenced by
the internal emotion state, this section focuses on understanding
how the speech-gesture interplay is affected by underlying emo-
tions. We use mutual information to measure the strength of the
speech-gesture dependency at the utterance level. Compared to
the correlation coefficient which captures a linear relationship
between random variables, mutual information can model more
general inter-variable connection.

Given an utterance, we denote the speech feature vector at
frame t as xt ∈ Rn, and the gesture feature vector as yt ∈ Rm.
We model the joint probability distribution of xt and yt as a
Gaussian distribution: P (xt,yt) = N (µ(xy),Σ(xy)), where
µ(xy) is the mean vector and Σ(xy) is the covariance matrix.
The speech-gesture relationship in terms of mutual information
at the utterance level is:

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (2)

=
1

2
log
|Σ(x)| · |Σ(y)|
|Σ(xy)|

. (3)

It is noteworthy that the mutual information I (I ≥ 0) depends
on the dimensionality (m + n) of the joint feature vector. To
compare the speech-gesture coupling across different speech-
gesture pairs, we use the normalized version by dividing I with
(m+ n), i.e., Ī = I

m+n
.

Table 2 presents the average mutual information for each
speech-gesture pair (e.g., prosody-head motion) across utter-
ances from a specific emotional level. Similar to Section 3.1,
we perform comparison tests to examine whether the speech-
gesture interplay in terms of mutual information is emotion-
dependent. The statistical significance is shown in Table 2.

As can be observed, the normalized mutual information be-
tween speech and body gestures is much greater than 0, imply-
ing certain level of speech-gesture dependency. Moreover, the
coupling of speech and the lower/upper body motions is tighter,
compared to the connection between speech and head motion.
This may result from the lower level of expressiveness and ac-
tiveness of head motion as analyzed in Section 3.1. It is also
interesting to observe that the link between MFCCs and body
gestures, especially the upper and lower body gestures, is much
stronger than the prosody-gesture link. Since MFCCs represent
the vocal tract configuration which is related to the articulatory
movements, this result indicates that the body gesture produc-
tion is more closely coordinated with the speech articulatory

Table 2: Average mutual information of speech-gesture pairs at
utterance level, and statistical significance of the speech-gesture
coupling difference between emotion levels.

Average normalized mutual information
Speech-Gesture pair Low-Act High-Act Low-Val High-Val

Prosody-Upper 0.162 0.142 0.149 0.162

Prosody-Lower 0.158 0.140 0.146 0.156

Prosody-Head 0.112 0.095 0.101 0.107

MFCCs-Upper 0.292 0.223 0.257 0.286

MFCCs-Lower 0.288 0.223 0.255 0.283

MFCCs-Head 0.127 0.091 0.108 0.126

Statistical significance (p-values)
Speech-Gesture pair Low-High Act Low-High Val

Prosody-Upper 0.003 0.028
Prosody-Lower 0.006 0.027
Prosody-Head 0.010 0.170

MFCCs-Upper 0.000 0.001
MFCCs-Lower 0.000 0.001
MFCCs-Head 0.000 0.000

process. Another interesting observation is the significant inter-
emotion difference in speech-gesture coupling. Specifically, the
speech-gesture interrelation is stronger for the low-level activa-
tion utterances than that with the high-level activation speech.
Similarly, a tighter speech-gesture coupling is observed for the
high-level valence utterances. These results are in concordance
with the analysis of the interrelation between speech and facial
gestures in [15], suggesting that the strength of speech-gesture
coupling depends on emotions.

4. Speech-Gesture Interplay Modeling
In section 3.2, we analyzed the speech-gesture coupling
strength with respect to emotions in a holistic manner. Herein,
we aim at modeling the speech-gesture interplay and decoding
emotion from the quantified link to further inspect how the dy-
namics of their mutual dependency are affected by emotions.

4.1. Framework For Speech-Gesture Modeling

Inspired by the literature [23] which has reported the tight tem-
poral co-occurrence between speech and gesture, we propose a
transition model to capture the speech-gesture dependency. We
first employ the clustering approach of k-means to separately
group speech and gesture feature vectors of all utterances into
Ks and Kg clusters. In this way, each speech or gesture fea-
ture vector at frame t is described as the discrete cluster ID Ct,
where Ct ∈ {1, 2, · · ·K} with K = Ks for speech signals and
K = Kg for gesture signals. According to this quantization,
each utterance is represented by a sequence of speech cluster
IDs and a sequence of gesture cluster IDs.

Figure 2: The illustration of speech-gesture coupling modeling.

Based on the sequences of cluster IDs, the speech-gesture
coupling of each utterance is explicitly modeled as the transition
probability P (gt+1|st) from the speech signal st to the gesture
signal gt+1, and vice versa, i.e., P (st+1|gt). The modeling
process is illustrated in Figure 2. Hence, the temporal dynamics
of speech-gesture dependency of an utterance are quantified by
the transition probabilities of P (gt+1|st) and P (st+1|gt), i.e.,
a 2KsKg×1 feature vector. This framework corresponds to the
hidden state layers of coupled hidden Markov model (CHMM)
which is popular in learning interaction dynamics [24]. A sim-
ilar approach has been applied to model the temporal coordina-
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tion of two interaction partners in [13].

4.2. Empirical Studies and Results

In order to validate the emotional modulation of speech-gesture
coupling dynamics, we use the quantified coupling representa-
tions (the 2KsKg × 1 transition probability vector) in Section
4.1 as features for emotion recognition, i.e., classifying an ut-
terance as high or low level of activation or valence. In ad-
dition, we investigate the widely applied linear mapping from
speech to gesture [15] [25], i.e., y = Tx + m, where y is
the gesture vector and x is the speech vector (see Section 3.2).
The mapping parameters T, an m × n matrix, is obtained for
each utterance by affine minimum mean square error estimation
(AMMSE) [15]. Since the linear relation of speech and gesture
is mainly captured by T, we reshape it into an mn× 1 vector t
and utilize t as baseline features for emotion recognition. In the
experiment, we employ the SVM classifier and the leave-one-
subject-out scheme. In each fold, the emotional utterances are
divided into training and testing data according to subjects, and
the optimal cluster numbers Ks and Kg ranging from 5 to 30
are determined using cross-validation on the training set.

Table 3 presents the recognition results with the transition
probabilities and with the linear mapping parameters t for each
speech-gesture pair. In general, the coupling dynamics repre-
sented by the transition probabilities exhibit much higher dis-
criminative power for distinguishing different levels of emo-
tion attributes, compared to the linear mappings, indicating that
the transition model in Section 4.1 can better capture the gen-
eral dynamic interaction between speech and gesture. For ex-
ample, the recognition accuracy for activation is 62.8% using
the linear mapping of prosody and lower body motion, and has
been improved to 90.8% using our proposed coupling dynam-
ics. Specifically for the transition modeling, the coupling of
lower body motion and speech especially shows the superiority
of emotion discrimination over other speech-gesture pairs.

The effectiveness of decoding (recognizing) emotion from
our quantified speech-gesture relationship reinforces that the
dynamics of the multimodal link are controlled and modulated
by the emotional content of an utterance. These results also un-
derscore possibilities for multimodal emotion recognition and
gesture synthesis by emotional speech.

Table 3: Recognition accuracy (%) for discriminating low and
high levels of activation and valence.

Prosody MFCC
Method Upper Lower Head Upper Lower Head

Activation (Chance: 56.1)
Linear 66.4 62.8 58.8 67.8 61.7 62.6

Transition 87.6 90.8 86.7 88.3 88.1 86.9

Valence (Chance: 54.2)
Linear 59.1 58.9 56.8 56.5 57.8 56.6

Transition 67.4 79.7 73.5 73.5 81.3 74.6

4.3. Analysis of Speech-Gesture Coupling Structure

As described in Section 4.1, the transition probabilities capture
the temporal dynamics of speech-gesture interaction. Hence,
analysis of the structures of such quantified coupling represen-
tations can provide further insights about the emotional effect
on speech-gesture coupling dynamics.

Similar to [15], we use PCA to analyze the complexity of
coupling structure. If the coupling representations (transition
probabilities) are located in a linear low-dimensional subspace,
PCA is capable of finding the subspace by selecting the eigen-
vectors of the covariance matrix of the coupling data. The se-
lected eigenvectors correspond to the highest eigenvalues which
explain the most variance of the data. For each speech-gesture
pair, we compute the coupling representations using the corre-
sponding optimal cluster numbers Ks and Kg which are ob-
tained through cross-validation in Section 4.2. We perform

PCA upon the coupling representations of emotion-specific ut-
terances (from a specific emotional level) to obtain an emotion-
dependent subspace, and also for utterances from both low
and high emotional levels to find the emotion-independent sub-
space. Note that emotion-independent utterances are obtained
by randomly sampling equal utterances from low and high emo-
tional levels, such that the emotion-independent utterance num-
ber is comparable to the emotion-specific ones.

Table 4 presents the fraction of eigenvectors which explain
90% or more of total variance of the coupling representations
for each speech-gesture pair. As can be observed, for both ac-
tivation and valence, the fraction of eigenvectors needed for
spanning emotion-independent subspace is higher than the per-
centage for emotion-dependent subspace. This result demon-
strates that the structure complexity of speech-gesture coupling
increases as the emotion variability grows, supporting the ob-
servation that in addition to the coupling strength, the emotion
content also affects the corresponding structures. Moreover, we
can observe that a much higher fraction (greater than 0.5) of
eigenvectors is needed for the valence-related subspace of the
coupling representations between prosody and upper body mo-
tion. This observation is consistent with the result in Section
4.2 that a relatively lower accuracy for discriminating positive
and negative emotions is obtained when using the correspond-
ing transition probabilities. We could infer that the coupling
structures between prosody and the upper body motion are more
difficult to model in terms of valence.

Table 4: Fraction of eigenvectors explaining 90% or more of
total variance of the speech-gesture coupling representations.

Gesture Low-Act High-Act All-Act Low-Val High-Val All-Val
Prosody

Upper 0.21 0.23 0.32 0.60 0.64 0.68

Lower 0.16 0.19 0.24 0.20 0.22 0.26

Head 0.16 0.19 0.23 0.26 0.22 0.28

MFCCs
Upper 0.26 0.27 0.33 0.40 0.41 0.46

Lower 0.20 0.21 0.24 0.18 0.23 0.26

Head 0.22 0.23 0.27 0.25 0.20 0.27

5. Conclusion and Future Work
In this paper, we studied how the relationship between speech
and body gestures is affected by the emotional state. Overall,
the analysis results revealed that the emotion content of an ut-
terance modulates the corresponding speech-gesture coupling.
The interrelation between the multimodal channels measured by
mutual information is generally stronger for low-level activation
and high-level valence, compared to the high-level activation
and low-level valence. We further proposed a framework for
modeling the dynamics of speech-gesture dependency. Exper-
imental studies showed that such quantified coupling represen-
tations can well discriminate different levels of activation and
valence, reinforcing that emotions are encoded in the coupling
dynamics. We also verify that the structures of the coupling
representations are emotion-dependent using PCA.

These results provide important implications for emotion-
dependent multimodal modeling. For example, the tight cou-
pling between speech and lower body motion, as well as their
significant inter-emotion difference, suggest the possibility of
synthesizing emotional lower body gesture driven by speech.
Moreover, the effectiveness of our proposed coupling represen-
tations for discriminating distinct emotions indicates the useful-
ness of temporal dynamic models, such as CHMM, for speech-
gesture modeling. In future work, it would also be interesting to
study inter-subject and inter-gender variabilities regarding ges-
ture activeness and speech-gesture interplay.
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