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ABSTRACT

The aim of this research was to compare the data analytic applicability of a backpropagated neural network
with that of regression analysis. Thirty individuals between the ages of 64 and 86 (Mean age ¼ 73.6; Mean
years education ¼ 15.4; % women ¼ 50) participated in a study designed to validate a new test of spatial
ability administered in virtual reality. As part of this project a standard neuropsychological battery was
administered. Results from the multiple regression model (R2 ¼ .21, p< .28; Standard Error ¼ 18.01) were
compared with those of a backpropagated ANN (R2 ¼ .39, p< .02; Standard Error ¼ 13.07). This 18%
increase in prediction of a common neuropsychological problem demonstrated that an ANN has the potential
to outperform a regression.

Conventional methods for prediction in neuro-

psychological research make use of the General

Linear Model’s (GLM) statistical regression

(Neter, Wasserman, & Kutner, 1989). Although

linear regression analysis subsumes univariate

analyses and can provide a robust understanding

of data, studies are regularly carried out and

inferences made without verifying normality and

error independence (Box, 1966; Darlington, 1968;

Dempster, 1973; Tukey, 1975). While linear

regression analysis is fairly robust against depar-

tures from the normality assumption (Mosteller &

Tukey, 1977), there are instances (correlated

error, curvilinear relations, etc.) where parametric

data analysis can pose a significant amount of

constraint. Consequently, nonparametric models

(Gallant, 1987; Gordon, 1968; Green &

Silverman, 1994; Haerdle, 1990; Ross, 1990;

Seber & Wild, 1989), including Artificial Neural

Networks (ANNs), have become more appealing

(Bishop, 1995; Ripley, 1993).

ANNs can provide several advantages over

conventional regression models. They are claimed

to possess the property to learn from a set of data

without the need for a full specification of the

decision model; they are believed automatically

to provide any needed data transformations. They

are also claimed to be more robust in the presence

of noise and distortion (Bishop, 1995; Hertz,

Krogh, & Palmer, 1991; Hinton, 1992; Pao,

1989; Ripley, 1993; Soucek, 1992; Wasserman,

1989).

In this research the aim was to demonstrate the

applicability of a backpropagated ANN for use in

a common neuropsychological problem. Addi-

tionally we compared its performance with that of

conventional regression analysis. The goal is to

make the often heuristic and ad hoc process of

neural network development transparent to inter-

ested neuropsychologists and to encourage neuro-

psychological researchers to view ANNs as viable

data analytical tools.
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General Linear Model

The GLM underlies most of the statistical anal-

yses used in neuropsychological research. It is a

conceptualization of variance between-groups

(effect) and within-groups (error). It is comprised

of three components: the grand mean, the pre-

dicted effect, and random error (McCullagh &

Nelder, 1989; Licht, 1995). In the GLM’s regres-

sion analysis, relationships among variables are

expressed in a linear equation that conveys a

criterion as a function of a weighted sum of

predictor variables. Neuropsychological research-

ers use regression to assess both (a) the degree of

accuracy of prediction and (b) the relative impor-

tance of different predictors’ contribution to var-

iation in the criterion (Kachigan, 1986).

Although the GLM is well known in data

analysis, is reliable, and can provide robust

particulars, the user must have the time and

resources to perform an evaluation of the entire

database. Further, managing the error indepen-

dence problems found in neuropsychological

research necessitates even more sophisticated

proficiencies (Gallant, 1987; Haerdle, 1990).

The GLM tends to ascertain the more concrete

significant trends while negating individual partic-

ularities (Gordon, 1968). In cases where linear

approximation is not possible due to noise (noise

is not an inherent randomness or absence of

causality in the world; rather, it is the effect of

missing, or inaccurate, information about the

world. In neuropsychology, noise may include

things such as confounding variables, nonpara-

metric data, nonlinear associations, measurement

error), or when nonlinear approximations may

prove more efficacious the models suffer accord-

ingly (Green & Silverman, 1994; Ross, 1990;

Seber & Wild, 1989). An example of a situation in

which neuropsychologists confront conditions

where noise could confound a linear association

is the testing individuals with physical conditions

that preclude standardized administration of tests

or when testing environments face external

interruptions. Nonlinear associations, not neces-

sarily clearly understood but likely present,

include age-related changes in cognition

(Lineweaver & Hertzog, 1998) and differences

in the qualitative characteristics of memories

(Qin, Raye, Johnson, & Mitchell, 2001).

Artificial Neural Network

To offset these deficiencies, artificial neural net-

works (ANNs) can be used. ANNs exhibit robust

flexibility in the face of dimensionality problems

that hamper attempts to model nonlinear func-

tions with large numbers of variables (Geman,

Bienenstock, & Doursat, 1992; Wasserman,

1989). Though noisy input causes refined degra-

dation of function and can result in failure of the

GLM, ANNs can still respond appropriately given

their nonlinear proficiencies (Lippman, 1987).

ANNs are also well adapted for problems that

require the resolution of many conflicting con-

straints in parallel (Bishop, 1995; Pao, 1989;

Soucek, 1992). Although GLMs are capable of

multiple constraint satisfaction, ANNs have been

found to provide more unaffected measures for

dealing with such problems (Hertz et al., 1991).

Backpropagation is the most popular ANN

(BN–ANN) methodology in use today (Cherkassky

& Lari-Najafi, 1992; Dayhoff, 1990; Fausett,

1994; Fu, 1994; Rumelhart & McClelland, 1986;

Zurada, 1992). This popularity has resulted from

the ANNs’ ability to provide robust nonlinear

modeling and their availability in commercial

ANN shells (Medsker & Liebowitz, 1994;

Schocken & Ariav, 1994). The BP_ANN is based

upon the multilayer perceptrons (MLPs) originally

developed by Rumelhart and McClelland (1986)

and is discussed at length in most neural network

texts (e.g., Bishop, 1995). Like regression, the

BP_ANN makes use of a weighted sum of their

inputs (predictors). The configuration of a

BP_ANN allows it to adjust its weights to new

circumstances. The BP_ANN consists of a system

of interconnected artificial neurons (nodes) made

up of three groups, or layers, of units: a layer of

‘‘input’’ units is connected to a layer of ‘‘hidden’’

units, which is connected to a layer of ‘‘output’’

units. Input units (predictors) are ‘‘weighted,’’ to

create hidden units. Hidden unit activity is

determined by weighted connections between

input and hidden units. Hence, the effect each

input (predictor) has on the output (criterion) is

dependent upon the weight of a particular input.

An input weight is a quantity which when

multiplied with the input gives the weighted

input. If the sum of weighted inputs exceeds a

preset threshold value the ‘‘neuron’’ fires
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(X1W1þX2W2þX3W3þ � � � > T). In any other

case the neuron does not fire. The BP_ANN

differs from the GLM in that it runs multiple

simulation runs in which the weights of the net are

continually adjusted and updated to reflect the

relative importance of different patterns of input.

Eventually, the trained system generates the

(unknown) function that relates input and output

variables, and can subsequently be used to make

predictions where the output is not known

(Hinton, 1992; Ripley, 1993).

A BP_ANN with only one input layer (single-

layer perceptron) functions in a manner analogous

to a simple linear regression (SLR). SLR fits a

straight line through one predictor and criterion

by the method of least squares. This fit is used to

test the null hypothesis that the slope is 0.

Likewise, each neuron in the BP_ANN adjusts

its weights according to the predicted output and

the actual output using the ‘‘perceptron delta

rule’’: [�wi ¼ xi�] where [�] (delta) is the desired

output minus the actual output. A single-layer

BP_ANN uses an activation function that sums

the total net input and outputs ‘‘1’’ if this sum is

above a threshold, and ‘‘0’’ otherwise.

A BP_ANN, with multiple layers, functions in

a manner analogous to that of a multiple linear

regression (MR). MR fits a criterion as a linear

combination of multiple predictors by the method

of least squares. Likewise, the extension of the

single-layer perceptron to a multi-layer percep-

tron requires delta level modifications to avoid

nonlinearly separable problems (see Minsky &

Papert, 1969; Rumelhart & McClelland, 1986).

Weight adjustments anywhere in the network

necessitate a deduction of the effect said adjust-

ment will have on the overall outcome of the

network. The multi-layered network makes use of

the backpropagated delta rule. This is a further

development of the simple delta rule, in which a

hidden layer is added. Here, the input layer

connects to a hidden layer (more than one hidden

layer can be used if desired). The hidden layer

(interconnects with other hidden layers if present)

learns to provide a representation for the inputs

through an alteration of the weights and then

connects to the output layer.

Weight alteration depends upon an amount

proportional to the error at a given unit multiplied

by the yield of the unit connecting into the weight.

One must look at the derivative of the error

function with respect to a given weight. Weighted

information is summed and presented to a pre-set

‘‘activation function’’ (threshold value). Altera-

tions in weights require an existing point on the

error surface to descend into a vale of the error

surface.

This ‘‘gradient descent’’ occurs in a direction

that corresponds to the steepest gradient or slope

at the existing point on the error surface
Fig. 1. Sigmoid function plateaus at 0 and 1 on the

y-axis, and crosses the y-axis at 0.5.

Fig. 2. Single-layer network using the ‘‘perceptron
delta rule.’’
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(Kindermann & Linden, 1990). However, the

descent of total error into a vale of the error

surface may not lead to the lowest point on the

entire error surface. Consequently, it may become

‘‘trapped in a local minimum.’’ Further, if the

gradient is very steep, it approaches a hard limiter

function (a sigmoid with infinite). Of special

importance at this juncture is that the hard-limiter

function for the perceptron is non-continuous,

thus non-differentiable. To deal with this pro-

blem, a sigmoid function is used, in which the

function plateaus out at 0 and 1 on the y-axis, and

crosses the y-axis at 0.5, making the function

relatively easy to differentiate. A sigmoid func-

tion (or squashing function) introduces nonlinear-

ity into input mapping, in which low inputs are

mapped near the minimum activation, high inputs

are mapped close to the maximum activation, and

intermediate inputs are mapped nonlinearly

between the activation limits. The sigmoid

function is not the only squashing function used

in ANNs. Other functions, such as Gaussian and

tanh can be used, but sigmoid is the most common

and is therefore chosen here. As a result, the

earlier formula for the delta rule (�wi ¼ xi�)

receives the addition of a constant y ¼ 1/

(1þe�x). This allows one to look at the

derivative of the error function with respect to a

given weight.

The network’s calculation of hidden layer error

requires a further addendum to a definition of [�].

This supplement is important because the

researcher needs to know the effect on the output

of the neuron if a weight is to change. Therefore,

the researcher needs to know the derivative of the

error with respect to that weight. To find this, the

researcher analyses the backpropagation learning

[�pþ1], in which each hidden layer’s [�] value

requires that the [�] value for the layer after it be

calculated. It is important that the learning rate [�]

(eta) is kept to a minimum so that the back-

propagation accurately follows the path of

steepest descent on the error surface. In a multi-

layered network, ‘‘backpropagation’’ is viewed as

the error from the output layer that is slowly

propagated backwards through the network

through the following process: (a) first, the

output-layer’s [�] is calculated using the first [�]

formula shown, (b) next, this value is used to

calculate the remaining hidden layers using the

formula shown above.

ANNs appear to offer a promising alternative to

standard regression techniques. However, their

usefulness for neuropsychological research is

limited if researchers present only prediction

results and do not present features of the underlying

process relating the inputs to the output (Barron &

Barron, 1988; Geman et al., 1992; Ripley, 1993,

1996). A foundational necessity for any data

analytic strategy incorporated by a neuropsycho-

logical researcher is always an empirical confirma-

tion (Kibler & Langley, 1988). In order for the

neuropsychological researcher to be certain that the

portion that he or she is able to observe is

representative of the whole number of events in

question the procedures of statistical inference will

need to be incorporated. This allows researchers to

draw conclusions from the evidence provided by

samples. Through the use of statistical testing,
Fig. 3. Multi-layered network using the ‘‘perceptron

delta rule.’’

Fig. 4. Error surface.
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researchers can be ensured that the observed effects

on the dependent variables are caused by the varied

independent variables and not by mere chance.

Consequently, statistical evaluation of neural net-

work research is fundamental.

In summary, the backpropagated algorithm

includes a feed-forward transmission, in which

the outputs are computed and the output unit(s)

error is determined. Next, there is a backward

dissemination, in which the error of the output

unit is exercised to revise weights on the output

units. Finally, a backpropagation of output unit

error through the weights determines the hidden

nodes and their weights are altered. This process

is a recursive process that occurs until the error is

at a low enough level. Currently, interpretability

of the backpropagated ANN necessitates reincor-

porating it back into the parametric model.

Comparison of ANNs and the GLM

This study aims to compare the performance of

regression models with that of ANNs. In the

analysis, both classes of models will be used to

model data with various distributional properties.

To perform this kind of research, neuropsycholog-

ical researchers advocate (e.g., Hogarth, 1986)

testing alternative models side by side in critical

experiments. There is precedent for this kind of

study using ANNs (Fisher & McKusick, 1989;

Weiss & Kapouleas, 1989) and in statistics

(Paarsch, 1984; Pendleton, Newman & Marshall,

1983). Thus, this experiment is a side-by-side

comparison of two competing methods.

METHOD

An exemplary analytic problem in neuropsychology is
to understand what contributes to performance in a
specific domain. We used both the general linear
model’s multiple regression and the artificial neural
network model’s backpropagated algorithm to compare
the performance of these two analytic methods.

Participants
Thirty community dwelling older adults (15 men and
15 women) between the ages of 64 and 86 (Mean
age ¼ 73.6) participated in the present study. Partici-
pants consisted mainly of volunteers from the Andrus

Gerontology Center at the University of Southern
California and resided in the greater Los Angeles area.
Participants were paid $50.00 for their participation in
the study. The average level of education was
15.4 years. None reported a history of any neurological
condition. All were screened for cognitive functioning
with the Telephone Interview of Cognitive Status
(TICS) and all scored above 31. Welsh, Breitner, and
Magruder-Habib (1993) have reported that no cases of
dementia have been observed among individuals
scoring above 31 on the TICS.

Tests
The neuropsychological test battery included: Trails A;
Block Design from the Wechsler Adult Intelligence
Scale – Revised (Wechsler, 1981); Long Delay Free
Recall from the California Verbal Learning Test
(CVLT; Delis, Kramer, Kaplan, & Ober, 1987), Visual
Reproduction II (VR II) test from the Wechsler
Memory Scale – Revised (Wechsler, 1987); and the
Judgment of Line Orientation (JLO; Benton, Varney, &
Hamsher, 1978).

Data Analysis
To compare results from two analytic procedures (GLM
vs. ANN) – used to test the hypothesis that processing
speed substantially reduces or eliminates age-related
variance in memory measures – a multiple regression
was first performed. Next, we trained a BP_ANN and
calculated its output-layer’s delta. This value was then
used to calculate the remaining hidden layers. The
layered BP_ANN’s adjusted outputs were compared
with the results of the multiple regression analysis.

In order to increase the probability of generalization
and to avoid the overfitting of the observed sample, we
considered three data sets: (a) the ‘‘training set’’ was
used to develop estimates of the network’s weights for
prediction; (b) the ‘‘validation set’’ was used to assess
the predictive ability of the network on sample units
that had not been considered in the training; and (c) the
‘‘test set’’ was used to calculate the global predictive
ability of the network for generalizations to future
practical applications.

Following Kindermann and Linden (1990), we used
a gradient descent technique (in our BP_ANN) to
minimize least squared error and avoid getting ‘‘trapped
in a local minima.’’ To accomplish this, we adjusted
nodes in the BP_ANN’s hidden layer. To assure that the
BP_ANN got as close as possible to true (absolute)
minimum error, we followed Maghami and Sparks’s
(2000) findings that one should build a BP_ANN with
one hidden layer and continually double the number of
nodes until the error is no longer reduced.

After the development and implementation of the
BP_ANN, we compared its output and that of the
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GLM’s regression by performing the following tasks in
hierarchical order: (a) the same predictor data was input
into both systems; (b) the criterion from the BP_ANN
was recorded; (c) predictor set and the criterion output
from the BP_ANN were input into a new regression
analysis; (d) standard error of the estimate and R2 were
computed from the BP_ANN and regression; (e) the
results of (d) were compared with the straightforward
regression analysis; (f) the variance of the standard
error of the estimates was noted to determine if the
difference was statistically significant – the model with
the smallest standard error of the estimate was
considered preferable.

In an effort to be efficient in our comparison, we
also used a significance test of the difference between
the independent Bs of the backpropagated ANN versus
those of the GLM. This test of significance was done
with reference to the rationale that the differences
found between the backpropagated ANN and the GLM
may be found in the delta rule’s adjustment of the
backpropagated ANN’s weights. Consequently, we
tested the significance of the differences between the
bs using a significance test of the difference between
two proportions.

RESULTS

Training

In the preliminary tests to assure that the ANN

achieved its optimal point, we experimented with

networks containing 3, 6, 12, and 24 nodes in the

single hidden layer. We found the improvement in

error after 6 nodes insignificant, while the proces-

sing speed and convergence rate were signifi-

cantly worse. Given these results and our small

sample size, we chose the network with 3 interior

nodes to be most appropriate over all conditions.

Thus, the ANN structure implemented in this

exercise consisted of 5 input nodes, 1 output

node and 3 nodes in a single hidden layer (5-3-1

network; �¼ 0.35). The neural network weights

were adjusted following the presentation of each

(x, y) pattern. Convergence was reached in 500

training epochs.

Generalization

Descriptive statistics for all tests are shown in

Table 1. The results from the regression and

neural network are represented in Table 2. The

results from the significance test comparing the

respective independent bs of the backpropagated

ANN versus those of the GLM are presented in

Table 3. When analyzing results from the multiple

regression, the model (using Trails A as criterion)

included five predictors: age (b ¼ .69, p ¼ .32),

Block Design (b ¼ .24, p ¼ �.55), CVLT

(b ¼ 1.31, p ¼ .23, VRII test (b ¼ �.28, p ¼ .20)

and JLO (b ¼ .41, p ¼ .68). Further, results

revealed an R2 ¼ .21, p< .28; and a Standard

Error of estimate ¼ 18.01.

When analyzing the BP_ANN, the model

(using Trails A as criterion; and corrected for

BP_ANN training) included five predictors: age

(b ¼ .81, p< .11), Block Design (b ¼ .03,

p ¼ .89), CVLT (b ¼ 1.36, p ¼ .09), VRII test

(b ¼ �0.36, p ¼ .02); and JLO (b ¼ .22, p ¼ .76).

Further, results revealed an R2 ¼ .39, p< .02; and

a Standard Error of estimate ¼ 13.07.

Table 1. Descriptive Statistics for Neuropsychological Tests.

Test Mean SD Range

Judgment of Line Orientation
Raw Score 24.2 5.40 10–30
Trails A 39.9 18.49 17–102
Block Design 32.03 12.97 0–65

Visual Reproduction II
Raw Score 46.43 24.15 0–87

California Verbal Learning Test
List A – Long Delay Free Recall 8.10 3.80 0–15

Note. For all analyses, N ¼ 30.
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DISCUSSION

In conclusion, the research reported demonstrated

the applicability of the BP_ANN. With a simple

multiple-layered, fully connected BP_ANN

typology (5-3-1 with systematically selected net-

work parameters, a learning rate of 0.35, and

about 500 epochs) this research illustrated that

the BP_ANN can perform better than regression

in both prediction and generalization. Although

the reported regression analysis provided us with

an adequate understanding of our data, the regres-

sion model’s normality and independence of error

variance restrictions may limit its ability to pre-

dict and generalize under nonlinear conditions.

Contrariwise, our backpropagated ANN pos-

sesses the property to learn from a set of data

without the need for a full specification of the

decision model.

When compared to the GLM’s multiple

regression analysis, the BP_ANN was found to

proffer an 18% increase in prediction of a

common neuropsychological problem. A possible

reason for this increase in predictability may be

found in the BP_ANN’s ability to learn from new

examples and generalize. Their ability to adjust

the interconnectivity of weight coefficients

between neurons results in error (between the

computed output dependent vector and the known

dependent vector of the trained patterns) to be

minimized. The training process of the BP_ANN

transmits backward the error to the network and

adjusts the weights between the units connecting

the output layer and the hidden layer and the

hidden layer and the input layer.

In situations where age-related changes in the

cognitive system are associated with a decline in

some general and fundamental mechanism, all of

the age-related variance in cognitive variables

may be shared by a single common factor

(Verhaeghen & Salthouse, 1997). If this is the

case, the age-related influences on many cognitive

variables may be caused by the same factor.

Although a multiple regression analysis will not

work well with such non-independence of error

variance, ANNs can see through noise and

irrelevant data and are comparatively robust and

fault tolerant. Consequently, ANNs are better able

to identify patterns between predictors and

criterions in a data set – they are not as affected

(as the GLM) by nonlinear transformations and

data discontinuities.

A possible drawback of applying the ANN

approach is that the current techniques for

development of high-quality neural networks are

not effortless tasks. In fact, the multiple regression

method is a much more straightforward method

and requires less human judgment than does a

backpropagation model. However, as Darlington

(1968) has pointed out, the regression model tends

to be one of the most abused statistical methods, in

which, tests are routinely performed and infer-

ences made without verifying whether the

assumptions of regression such as normality and

independence of error variance are satisfied.

Hence, there are situations where regression is

more appropriate than a trained system and the use

of ANN could be inappropriate as well.

Table 2. Processing Speed Results From the Regression
and Neural Network.

Test Processing
speed

regression

Processing speed
corrected for

BP_ANN

Age .69 .81
ns ns

Block Design .24 .03
ns ns

CVLT LD Free 1.31 1.36
ns ns

VR II �.28 �0.36
ns .02

JLO .41 .22
ns ns

Note. For all analyses, N ¼ 30.

Table 3. Significance Test Comparing Independent bs
of ANN Versus GLM.

Test Regression b BP_ANN b p

Age .69 .81 .14
Block Design .24 .03 .01
CVLT LD Free 1.31 1.36 .5
VR II �.28 �0.36 .25
JLO .41 .22 .05

Note. For all analyses, N ¼ 30.
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Despite familiarity with regression there

appear to be compelling reasons why neuropsy-

chologists should consider incorporating ANNs

into their analytic repertoire. Linear regression

imposes a linear form on the mapping function

that can limit its accuracy. However, cognition

is clearly not limited to linear associations.

Consequently, utilitarian linear regression models

typically necessitates a transformation of the vari-

ables to make the relationship between indepen-

dent and dependent variables linear – commonly

through ‘‘dummy coding.’’ The transformation of

variables to make the data linear can theoretically

enable linear regression to be as accurate as any

statistical model. However, the achievement of

this goal in problems of any complexity is an

arduous task that may result in violations of the

linear model’s assumptions. If the neuropsycho-

logical researcher is unable to locate and resolve

nonlinearities, the linear regression model will

not aid the data analytic process. Further, since all

the variables must be understood as an inter-

related group, the use of linear regression on

complex problems can lead to correlated error and

erroneous results. The ANN automates the

process of deciding the shape that the mapping

function should have. Further, the ANN offers a

statistical modeling technique that uses the data

set to model the shape of a complex and flexible

mapping function. Although some researchers

may desire to move from standard linear regres-

sion (straight lines) to polynomial and logistic

regression (simple curves), or to the arduous task

of spline regression, we argue that a preferable

solution is the ANN methodology because it can

take on any form the data requires. On a

theoretical level it can be argued that linear

regression imposes a linear form on the mapping

function that can limit its accuracy. This meth-

odology, while novel, has concrete applications to

frequent neuropsychological associations likely

containing nonlinearities, for example, aging and

cognition.

Any discussion of the adoption of ANNs for

use in neuropsychological research leads to

questions related to the ways in which researchers

can develop an architectonic methodology for

ANN training and analysis that does not require

the biomedical researcher to be a computer

specialist. Other issues that arise for the applica-

tion of ANNs to neuropsychological research

include: network weight testing, network optimi-

zation, and determination of the neuropsycholog-

ical significance of network weights relative to

the backpropagated ANNs hidden layers. Again,

it seems possible that the development and

evolution of ANNs will result in architectonic

procedures that will allow neuropsychological

researchers reasonably to evaluate data given

differing conditions. Further comparisons of

ANNs and conventional methods from the general

linear model, should aid in researchers’ under-

standings of the ways in which topology and

parameters may be automated and selected. The

resulting work that would need to be done, then,

includes the development of a methodology that

allows the ANN to ‘‘learn’’ incrementally without

major network re-training when new neuropsy-

chological information becomes available.

The research found in this paper presented a

discussion of the developmental process of train-

ing, recall, and generalization of ANNs for a

neuropsychological application. Further, this paper

had as its goal the elucidation of specific details

about backpropagation, neuropsychological ex-

perimentation, and resulting hazards of which the

researcher needs to be aware. A further goal of this

research was to explicate the potential use of ANNs

as data analytical tools for the increasingly com-

plex endeavors of neuropsychological research.
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