
Appears in the Proceedings of the Tenth National Conference on Artificial Intelligence
San Jose, California, July 13–17, 1992, pp. 235–240

Jonathan Gratch and Gerald DeJong
Beckman Institute for Advanced Studies,University of Illinois

405 N. Mathews, Urbana, IL 61801
e–mail: gratch.cs.uiuc.edu

COMPOSER: A Probabilistic Solution to the Utility Problem
 in Speed–up Learning

Abstract
In machine learning there is considerable interest in tech-
niques which improve planning ability. Initial investiga-
tions have identified a wide variety of techniques to address
this issue. Progress has been hampered by the utility prob-
lem, a basic tradeoff between the benefit of learned knowl-
edge and the cost to locate and apply relevant knowledge.
In this paper we describe the COMPOSER system which em-
bodies a probabilistic solution to the utility problem. We
outline the statistical foundations of our approach and com-
pare it against four other approaches which appear in the lit-
erature.

1 Introduction
Machine learning is often entertained as a mechanism for
improving the efficiency of planning systems. Researchers
have proposed a wide array of techniques to modify plan-
ning behavior, including macro–operators [DeJong86,
Fikes72, Mitchell86], chunks [Laird86], and control rules
[Minton88, Mitchell83]. With these techniques comes a
growing battery of successful demonstrations in domains
ranging from 8–puzzle to Space Shuttle payload process-
ing. Unfortunately, in what is now called the utility prob-
lem, learned knowledge can hurt performance [Minton88].
This is underscored by a growing body of demonstrations
where learning degrades planning performance [Etzio-
ni90b, Gratch91a, Minton85, Subramanian90].

In an earlier paper we elaborated the limitations in a par-
ticular learning approach –– [Gratch91b]. That paper
sketched the COMPOSER system as one solution to these
limitations. COMPOSER is intended as a general probabil-
istic solution to the utility problem. In this paper we detail
our approach and report on a series of empirical evaluations.
These tests compare COMPOSER’s learning criterion
against the approaches adopted by PRODIGY/EBL [Min-
ton88], STATIC [Etzioni90b], a hybrid of PRODIGY/EBL
and STATIC [Etzioni90a], and PALO [Greiner92]. The re-
sults substantiate our earlier analyses. They also cast doubt
on the efficacy of nonrecursive control knowledge. This is
significant as nonrecursive control knowledge has received
considerable attention in the literature [Etzioni90b, Letov-
sky90, Subramanian90].
2 Learning as Search
Learning can be viewed as a transformational process in
which the learning system applies a series of transforma-

tions to a performance element (see [Buchanan77,
Gratch92]). The transformations available to a learner de-
fine its vocabulary of transformations. These are essential-
ly learning operators and collectively they define a transfor-
mation space. For instance, acquiring a macro–operator
can be viewed as transforming the initial system (the origi-
nal planner) into a new system (the planner operating with
the macro–operator). A learning system must explore this
space for a sequence of transformations which result in a
better planner.

To evaluate different learning approaches we must clari-
fy our intuitive notions of when one planner is more effi-
cient than another. We characterize planners through a nu-
meric utility function which ranks the behavior of a planner
over a fixed distribution of problems. We equate efficiency
with minimizing planning time. Other measures are possi-
ble and our approach could apply to them as well. For any
given problem, utility increases as the time to solve the
problem decreases. The utility of a planner is defined as the
sum of the utility of each problem in the distribution
weighted by its probability of occurrence:

UTILITY(planneri) =
prob Distribution

Cost(planneri,prob)!Pr(prob)–

Note that higher utility does not entail that the planning
time of any particular problem is reduced. Rather, the ex-
pected cost to solve any representative sample of problems
is less.

Utility is a preference function over planners. It is also
useful to discuss the utility of individual transformations.
The incremental utility of a transformation is defined as the
change in utility that results from applying the transforma-
tion to a particular planner (e.g. adopting a control rule).
This means the incremental utility of a transformation is
conditional on the planner to which it is applied. We denote
this as: "UTILITY(Transformation|Planner).
3 COMPOSER
COMPOSER uses the previous definition of utility to evalu-
ate and adopt control knowledge which, with high probabil-
ity, improves planning performance. Its design was moti-
vated by deficiencies in PRODIGY/EBL. Another paper
illustrates how these deficiencies are shared by many other
speed–up learning techniques [Gratch92]. In this paper we
focus on the implementation of COMPOSER. In

[Gratch91b] we note that PRODIGY/EBL adopts two heuris-
tic simplifications to identify beneficial control rules. First,
aspects of the problem distribution are learned from a single
example. Secondly, control rules are treated as if they do not
interact. These simplifications have the unfortunate conse-
quence that PRODIGY/EBL can learn control strategies
which yield planners which are up to an order of magnitude
slower than the original planner. We replace this heuristic
approach with a rigorous alternative.
3.1 Algorithm
COMPOSER is implemented within the PRODIGY 2.0 ar-
chitecture. This system includes the PRODIGY planner, a
STRIPS–like system. The learning component of PRODI-
GY/EBL analyzes solution traces and proposes control rules
to correct inefficiencies observed during planning. These
control rules are condition–action statements which inform
the PRODIGY planner to delete or prefer certain node, oper-
ator, or variable binding choices. COMPOSER primarily
utilizes selection and rejection rules. This is discussed fur-
ther in Section 5.

COMPOSER differs from PRODIGY/EBL in how statis-
tics are gathered and how control rules are introduced into
the PRODIGY planner. We implement a hill–climbing ap-
proach to the utility problem. The basic algorithm is
sketched in Figure 1. We assume the user has provided a
training set which is drawn randomly according to a fixed
distribution of problems.
Input: TRAINING_EXAMPLES

CONTROL_STRATEGY = #
CANDIDATE_SET = #
While more training examples

solve problem with Planner+CONTROL_STRATEGY
learn new rules and add them to CANDIDATE_SET
acquire statistics for all rules in CANDIDATE_SET from trace
POSITIVE_RULES = #
Forall rules $ CANDIDATE_SET

If "UTILITY(rule|PRODIGY+CONTROL_STRATEGY)
significantly negative
Then remove rule from CANDIDATE_SET

If "UTILITY(rule|PRODIGY+CONTROL_STRATEGY)
significantly positive
Then add rule to POSITIVE_RULES

If POSITIVE_RULES
add rule with highest utility to CONTROL_STRATEGY
remove this rule from CANDIDATE_SET
discard all statistics on rules in CANDIDATE_SET

Output: CONTROL_STRATEGY

Figure 1: The COMPOSER algorithm

Learning occurs with a single pass through the training
examples. The algorithm incrementally adds control rules
to a currently adopted control strategy. A rule is added only
if it has demonstrated its benefit to a pre–specified confi-
dence level. Once added, the rule changes how the planner
behaves on subsequent training examples. New rules are

proposed, and statistics gathered, with respect to the current
control strategy. In this manner a control strategy is
“grown” one rule at a time until the training set is exhausted.
3.2 Acquiring Utility Statistics
Gathering incremental utility statistics is the one aspect of
COMPOSER which ties it to a particular representation for
control knowledge –– control rules. Other transformations
would require analogous data gathering procedures.

A control rule should only be adopted if it improves the
average efficiency of the problem solver. This average can
be estimated by determining how the rule performs on indi-
vidual problems and combining information from several
problems. The next section discusses how to combine in-
formation. But first we will describe how COMPOSER ex-
tracts incremental utility values on individual problems.

How can we determine the incremental utility of a control
rule on a particular problem? Ideally we have access to an
efficient analytic model of the problem solver which can
predict incremental utility. Unfortunately it is difficult to
provide such a model for a non–trivial problem solver like
PRODIGY. Instead we can measure utility empirically. The
obvious approach is to solve the same problem multiple
times –– once for the current control strategy without the
rule in question, and once using the strategy augmented
with a candidate rule. The difference in problem solving
cost between these runs is the incremental utility of the con-
trol rule on that problem. This problem must be repeatedly
solved for each candidate rule. Clearly this approach is too
expensive in practice.

COMPOSER uses a more efficient approach for gathering
incremental utility values. It extracts a utility value for each
candidate rule simultaneously from a single solution trace.
While PRODIGY/EBL also derives multiple estimates from
a single example, its technique is rendered inaccurate by the
interactions which occur among rules (see [Gratch91b]).
COMPOSER solves the interaction problem by extracting
estimates without allowing the candidate rules to change the
search behavior of the planner. Control rules only effect
search behavior if they are adopted into the control strategy.

In contrast to adopted rules, the actions of candidate rules
are not acted upon. They are simply noted in the problem
solving trace. After a problem is solved, COMPOSER ana-
lyzes the annotated trace, and identifies the search paths
which would have been avoided by each rule. The time
spent exploring these avoidable paths indicates the savings
which would be provided by the rule. This savings is com-
pared with the recorded precondition match cost, and the
difference is reported as the incremental utility of the rule
for that problem.

It should be noted that this procedure is more expensive
than the heuristic approach adopted by PRODIGY/EBL.
This is because COMPOSER pays the penalty of matching
preconditions without acquiring any of the benefit of candi-
date control rules. We are not aware of a reliable technique
which avoids this additional cost.

3.3 Commitment Criterion
The incremental utility of a transformation across the prob-
lem distribution is estimated by averaging utility values
from successive problems. The estimates should be accu-
rate but based on as few examples as possible. In the field
of statistics this is referred to as a sequential analysis prob-
lem (see [Govindarajulu81]). Observations are gathered
until some stopping criterion is satisfied. As this criterion
will commit COMPOSER to adopting or discarding a trans-
formation we refer to this as a commitment criterion. In this
case we are estimating the incremental utility of transfor-
mations to some specified confidence.

Formally, COMPOSER must choose among two hypothe-
ses for each candidate:

H0: "UTILITY(rule|planner+control_strategy) <= 0,
H1: "UTILITY(rule|planner+control_strategy) > 0

In general there will be a discrepancy between the aver-
age of a sample and the true population mean. If the rule is
negative, we wish to bound the probability that it will ap-
pear positive, and vice versa. It suffices to restrict the proba-
bility that the difference between the true utility and the esti-
mate is larger than the magnitude of the true utility:1

Pr(|ESTIMATE – "UTILITY| > |"UTILITY|) = %
We use a distribution–free commitment criterion devel-

oped by Nádas [Nadas69]. The technique dynamically de-
termines the number of examples sufficient to approximate-
ly achieve the specified confidence level. By approximate
we mean that if the specified error level is % the observed er-
ror rate may be slightly more or less than %. The discrepancy
is a function of the underlying distribution, but this type of
approximation is very close in practice (see [Woo-
droofe82]). Examples must be taken until the following in-
equality holds:

(Vr,n/Xr,n)2 < n(1/a)2

where Xr,n is the average utility of the rule r over n prob-
lems, Xr,i is the utility of r on the ith problem, Vr,n 2 = n–1 +
n–1 &(Xr,i – Xr,n)2 is the variance of the current sample, and
n is greater than some small constant n0 (we adopt a value
of n0 = 3 recommend by Adam Martinsek (personal com-
munication) and evaluated in [Woodroofe82]). The param-
eter a satisfies the constraint that '(–a) = (1 (%)/2, where
' is the cumulative distribution function of the standard
normal distribution.

The commitment criterion permits COMPOSER to identi-
fy when transformations are beneficial with some pre–spe-
cified probability. After each problem solving attempt,
COMPOSER updates the statistics and evaluates the com-
mitment criterion for each control rule in the candidate set.
If no control rule has attained the confidence requirement,
another problem is solved. If the commitment criterion
identifies control rules with positive incremental utility

1. This is a two–sided statistical test and thus is overly conservative.
We are not aware of a good one–sided test for this problem.

(there may be more than one), COMPOSER adds the control
rule with highest positive incremental utility to the current
strategy, and removes it from the candidate set.2 Statistics
for the remaining candidates are discarded as they are con-
ditional on the previous control strategy. If the commitment
criterion identifies candidate rules with negative incremen-
tal utility, they are eliminated from the candidate set. Elimi-
nating a candidate does not affect the current strategy, so the
statistics associated with the remaining candidate control
rules are not discarded. This cycle is repeated until the train-
ing set is exhausted. Each time a transformation is adopted
the expected efficiency of the PRODIGY planner is in-
creased, giving COMPOSER an anytime behavior [Dean88].
4 Evaluation
We evaluated COMPOSER’s commitment criterion against
several other commitment criteria. Before discussing the
experiments we review these other criteria.
4.1 PRODIGY/EBL’S Utility Analysis
PRODIGY/EBL adopts transformations with a heuristic util-
ity analysis. As control rules are proposed they are added
to the current control strategy. The savings afforded by each
rule is estimated from a single example and this value is
credited to the rule each time it applies. Match cost is mea-
sured directly. If the cumulative cost exceeds the cumula-
tive savings, the rule is removed from the current control
strategy. The issue of interactions among transformations
is not addressed.
4.2 STATIC’s Nonrecursive Hypothesis
STATIC utilizes a commitment criterion based on Etzioni’s
structural theory of utility. The criterion is grounded in the
nonrecursive hypothesis which states that transformations
will have positive incremental utility, regardless of problem
distribution, if they are generated from nonrecursive expla-
nations of planning behavior (i.e. no predicate in a subgoal
is derived using another instantiation of the same predi-
cate). The issue of interactions between transformations is
not addressed. STATIC applies this criterion to control rules
but the issue is important in macro–operators as well [Le-
tovsky90, Subramanian90].

STATIC has out performed PRODIGY/EBL’s on several
domains. The nonrecursive hypothesis is cited as the princi-
ple reason for this success [Etzioni90b]. This claim is diffi-
cult to evaluate as these systems can generate very different
control rules. We clarify this issue by testing the nonrecur-
sive hypothesis with the NONREC system, a re–implemen-
tation of STATIC’s nonrecursive hypothesis within the PRO-
DIGY/EBL framework. NONREC replaces
PRODIGY/EBL’s commitment criterion with a criterion
which only adopts nonrecursive control rules.
2. If each candidate rule is estimated to a particular error level, the strat-
egy of adopting the first positive rule to reach significance can result in
a higher overall error level. The discrepancy is a function of how many
candidate rules with negative utility are estimated to have positive util-
ity. This discrepancy has not proven significant in our experience and
there are ways to bound it at the cost of more training examples.

4.3 A Composite System
Etzioni has suggested that the strengths of STATIC and PRO-
DIGY/EBL could be combined into a single system [Etzio-
ni90a]. He proposed a hybrid system which embodies sev-
eral advancements including a two layered utility criterion.
The nonrecursive hypothesis acts as an initial filter, but the
remaining nonrecursive control rules are subject to utility
analysis and may be later discarded.

We implemented the NONREC–UA system to test this hy-
brid criterion. As control rules are proposed by PRODIGY/
EBL’s learning module, they are first filtered on the basis of
the nonrecursive hypothesis. The remain rules undergo util-
ity analysis as in PRODIGY/EBL.
4.4 PALO’S Chernoff Bounds
Greiner and Cohen have proposed an approach similar to
COMPOSER’s [Greiner92]. The Probably Approximately
Locally Optimal (PALO) approach also adopts a hill–climb-
ing technique and evaluates transformations by a statistical
method. PALO differs in its commitment criteria and and
that it incorporates a criterion for when to stop learning.
PALO terminates learning when it has (with high probabili-
ty) identified a near–local maximum in the transformation
space. We will focus on the different commitment criteria
which is based on Chernoff bounds.

The difference is that PALO provides stronger guarantees
at the cost of more examples. This means that if the user
specifies an error level of %, the true error level will never
exceed %, and may in fact be much lower.3 Our PALO–RI
system evaluates this approach. Like COMPOSER, PALO–
RI uses a candidate set of rules. In this case the size of the
set is fixed before learning begins. A candidate is adopted
when the following inequality holds:

n

i=1

Xr,i >)r 2n ln Cs2 2 (3)

where Xr,i is the incremental utility of rule r on problem i,
C is the maximum size of the candidate set, s is one plus the
number of rules in the current control strategy, and)r is a
is the maximal per problem "UTILITY of rule r. The pa-
rameter C is the size of the candidate set. We discuss the set-
ting of the various parameters in the next section.
4.4 Experiments
We compare the STRIPS domain from [Minton88], the AB–
WORLD domain from [Etzioni90a] for which PRODIGY/
EBL produced harmful strategies, and the BIN–WORLD do-
main from [Gratch91a] which yielded detrimental results
for both STATIC and PRODIGY/EBL’s learning criteria. Re-
sults are summarized in Figure 2. In each domain the sys-
tems are trained on 100 training examples drawn randomly
from a fixed distribution. The current control strategy is

3. PALO adopts three conservative refinements over COMPOSER: 1)
chernoff bounds replace our approximate Nádas technique. 2) the worst
case discrepancy from footnote 2 is bounded. 3) instead of bounding
the error of adopting a bad rule at each step, PALO bounds the sum of all
errors in the transformation sequence.

saved after every twenty training examples.4 The graphs il-
lustrate learning curves where the independent measure is
the number of training examples and the dependent measure
is execution time for 100 test problems drawn from the same
distribution. This process is repeated eight times, using dif-
ferent but identically distributed training and test sets. Val-
ues in Figure 2 represent the average of these eight trials.
“Rules Added” indicates the average number of rules
learned by the system; “Train Time” is the number of sec-
onds required to process the 100 training examples; “Test
Time” is the number of seconds required to generate solu-
tions for the 100 test problems.

COMPOSER and PALO–RI require confidence parame-
ters which were set at 90%. PALO–RI’s behavior is strongly
influenced by parameters whose optimal values are difficult
to assess. We tried to assign values close to optimal given
the information available to us.5

As mentioned, COMPOSER does not implement a gener-
al approach to evaluating preference rules. In particular, it
cannot properly evaluate the incremental utility of prefer-
ence rules in the AB–WORLD and STRIPS domains. To en-
sure that differences reflect the commitment criteria and not
the vocabulary of transformations, we disabled the learning
of preference rules for every system in the STRIPS and AB–
WORLD domains. We evaluated the ramifications of this
change by comparing PRODIGY/EBL with and without
preference rules and found that, in both domains, more effi-
cient strategies resulted when preference rules were dis-
abled. This is consistent with statements made by Minton
concerning preference rules [Minton88 p. 129].

It was quickly apparent that PALO–RI would not adopt
any transformations within the 100 training examples. We
tried to give the system enough examples to reach quies-
cence but this proved too expensive. The problem is two-
fold –– first, too many training examples were required;
secondly, and as a consequence of the first problem, the can-
didate set grew large since harmful rules were not discarded
as quickly as in COMPOSER. This increased the cost to
solve each training example. To collect statistics on PALO–
RI we only performed one instead of five learning trials.
Furthermore, we terminated PALO–RI after the first trans-
formation was adopted or 10,000 examples, whichever
came first.
4.5 Discussion
The results illustrate several interesting features. COMPOS-
ER exceeded the performance of all other approaches in ev-
ery domain. In AB–WORLD and STRIPS, COMPOSER
identified beneficial control strategies. In BIN–WORLD the
system did not adopt any transformations. It does not ap-
4. PRODIGY/EBL’s utility analysis requires an additional settling
phase after training. Each control strategy produced by PRODIGY/
EBL and NONREC+UA received a settling phase of 20 problems fol-
lowing the methodology outlined in [Minton88].
5. C was fixed based on the size of the candidate list observed in prac-
tice. In the best case a rule can save the entire cost of solving a problem,
so for each domain, lambda for each rule was set at the maximum prob-
lem solving cost observed in practice. AB–WORLD – C=30 lambda=15;
STRIPS – C=20, lambda=100; BIN–WORLD – C=5, lambda=150.

0

700

1400

2100

2800

3500

4200

4900

5600

6300

0 20 40 60 80 100

0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100
0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100
0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100
0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

AB–WORLD

STRIPS

BIN–WORLD

of training examples # of training examples # of training examples

Figure 2: Summary of empriical results

COMPOSER

PRODIGY/EBL

NONREC
NONREC+UA

PALO–RI
Rules
Added

Train
Time

Test
Time

No Learning
1 4 0

11
17
9

20
25
10

2
4
2

210
266

311
462
247

1822323
382
622

2021
614

1223

346
346

6020
6305
6110

346

1667
1253
1253
1259

104,387
4133
3775
4012
3821

41,3703425
6383
6710
6359

–––

SYSTEM

AB–WORLD STRIPS BIN–WORLD

10,000+

1182
6069––––––––– –––––––––

Rules
Added

Train
Time

Test
Time

Rules
Added

Train
Time

Test
Time

AB–WORLD
STRIPS

BIN–WORLD

Train
Time

Test
Time

Train
Exmpls

0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100

Performance
after first

rule adopted

pear that any control rule improves performance in this do-
main. It should be stressed that all systems utilized the same
learning module. Therefore the results represent differ-
ences in commitment strategies rather than in the vocabu-
lary of transformations.

As expected, COMPOSER and PALO–RI had the highest
learning times as they incur the precondition cost of candi-
date control rules without gaining the benefit of their rec-
ommendations. The one exception was BIN–WORLD
where COMPOSER quickly discarded a very expensive con-
trol rule which PRODIGY/EBL, NONREC, and NON-
REC+UA retained. An encouraging result is that COMPOS-
ER’s learning times were not substantially higher than the
non–statistical systems. PALO–RI’s learning times were
significantly higher.

The results cast doubts on the nonrecursive hypothesis.
NONREC yielded the worst performance on all domains.
Even in conjunction with utility analysis the results are
mixed –– benefit on the AB–WORLD, slightly worse than
utility analysis alone in STRIPS, and worse than no–learn-
ing in BIN–WORLD. A post–hoc analysis of control strate-
gies did indicate that the best rules were nonrecursive, but
many nonrecursive rules were also detrimental. The slow–
down on BIN–WORLD primarily results from one nonrecur-
sive control rule. Thus it appears that nonrecursiveness may
be an important property but is insufficient to ensure per-
formance improvements. These results are interesting since
Etzioni reports that STATIC outperforms PRODIGY/EBL
and No Learning in AB–WORLD. The nonrecursive hy-
pothesis cannot completely account for this difference. We
attribute the difference to the fact that STATIC and NONREC
entertain different sets of control rules. NONREC was con-

strained to use the vocabulary which was available to PRO-
DIGY/EBL while STATIC has its own rule generator.

Finally, although PALO–RI did not improve performance
within the 100 training examples, we believe that if it were
given sufficient examples it would out perform all other
systems. With extended examples it did exceed COMPOS-
ER’s performance in AB–WORLD. This is because the
PALO approach commits to transformations with highest
incremental utility while COMPOSER balances incremental
utility against variance. Unfortunately the cost of PALO’s
performance improvement is very high, both in terms of ex-
amples and learning time. Thus, while COMPOSER may
identify somewhat less beneficial strategies, it achieves
much faster convergence.

5 Future Research
Our investigations have exposed two important issues for
future research. First, there are difficulties in extending
COMPOSER’s utility gathering approach to preference
rules. It is easy to record the match cost for these rules. The
problem stems from determining how much a rule would
save if it were added to the control strategy. This is straight-
forward in the case of rules which delete alternatives. The
search space explored by the planner using such a rule will
always be a subset of the search search space explored with-
out the rule. This is not necessarily the case with preference
rules. A candidate preference rule can suggest search paths
which are not explored in the solution trace. Determining
the savings of a preference rule under these circumstances
is expensive. The learning system must re–invoke the plan-
ner and explore the alternative path. This need may arise
many times in one problem.

This discussion points to a general issue that some trans-
formation vocabularies may be easier to implement within
the COMPOSER framework than others. Perhaps the issue
can be resolved by identifying alternative means to gather
utility values. This problem disappears if we are willing to
solve training problems multiple times –– with and without
the candidate transformation –– but this is unlikely to be
feasible in practice.

A second issue is that our commitment criteria needs fur-
ther investigation. The PALO approach, compared to COM-
POSER’s, provides stronger guarantees and can yield better
control strategies but at a higher learning cost. Neither tech-
nique directly accesses the tradeoff between the improve-
ment due to learning and the cost to achieve that improve-
ment. Currently we are investigating ways to apply
decision theoretic methods to resolve this tradeoff in a prin-
cipled way.

6 Conclusions
Learning shows great promise to extend the generality and
effectiveness of planning techniques. Unfortunately, many
learning approaches are based on poorly understood heuris-
tics. In many circumstances a technique designed to im-
prove planning performance can have the opposite effect.
In this paper we discussed one general approach to the util-
ity problem which gives probabilistic guarantees of im-
provement through learning. Our implementation is re-
stricted to control rules but could be extended to other
representations of control knowledge. We contrasted COM-
POSER with four other learning techniques –– three which
do not provide guarantees, and one which does. The utility
analysis method of PRODIGY/EBL, the nonrecursive hy-
pothesis of STATIC, and even a combination of both can
produce substantial performance degradations. Greiner
and Cohen’s PALO approach should yield somewhat better
performance improvements than COMPOSER but at a sub-
stantially higher learning cost.

Acknowledgements

This research is supported by the National Science Founda-
tion, grant NSFIRI 87–19766. We benefited from many dis-
cussions with Adam Martinsek and Russ Greiner. Thanks
to Oren Etzioni and Nick Lewins for their comments.
References
[Buchanan77] B. G. Buchanan, T. M. Mitchell, R. G. Smith and C.

R. Johnson, “Models of Learning Systems,”in Encyclopedia
of Computer Science and Technology, Vol. 11, J. Belzer, A.
G. Holzman, & A. Kent (ed.), Marcel Dekker, New York, NY,
1977, pp. 24–51.

[DeJong86] G. F. DeJong and R. J. Mooney, “Explanation–Based
Learning: An Alternative View,” Machine Learning 1, 2
(April 1986), pp. 145–176.

[Dean88] T. Dean and M. Boddy, “An Analysis of Time–Depend-
ent Planning,” AAAI88, Saint Paul, MN, August 1988

[Etzioni90a] O. Etzioni, “Why Prodigy/EBL Works,” AAAI90,
Boston, MA, August 1990, pp. 916–922.

[Etzioni90b] O. Etzioni, “A Structural Theory of Search Control,”
Ph.D. Thesis, Department of Computer Science, Carnegie–
Mellon University, Pittsburgh, PA, In preparation, 1990.

[Fikes72] R. E. Fikes, P. E. Hart and N. J. Nilsson, “Learning and
Executing Generalized Robot Plans,” Artificial Intelligence
3, 4 (1972), pp. 251–288.

[Govindarajulu81] Z. Govindarajulu, The Sequential Statistical
Analysis, American Sciences Press, INC., Columbus, OH,
1981.

[Gratch91a] J. Gratch and G. DeJong, “A Hybrid Approach to
Guaranteed Effective Control Strategies,” ML91, Evanston,
IL, June 1991.

[Gratch91b] J. M. Gratch and G. F. DeJong, “On comparing oper-
ationality and utility,” Technical Report UIUC–
DCS–R–91–1713, Department of Computer Science, Uni-
versity of Illinois, Urbana, IL, 1991.

[Gratch92b] J. Gratch and G. DeJong, “A Framework of Simplifi-
cations in Learning to Plan,” First International Conference
on Artificial Intelligence Planning Systems, College Park,
MD, 1992.

[Greiner92] R. Greiner and W. W. Cohen, “Probabilistic Hill–
Climbing,” Proceedings of Computational Learning
Theory and ’Natural’ Learning Systems, 1992.

[Laird86] J. E. Laird, P. S. Rosenbloom and A. Newell, Universal
Subgoaling and Chunking: The Automatic Generation and
Learning of Goal Hierarchies, Kluwer Academic Publish-
ers, Hingham, MA, 1986.

[Letovsky90] S. Letovsky, “Operationality Criteria for Recursive
Predicates,” AAAI90, Boston, MA, August 1990

[Minton85] S. Minton, “Selectively Generalizing Plans for Pro-
blem–Solving,” IJCAI85, Los Angeles, August 1985, pp.
596–599.

[Minton88] S. N. Minton, “Learning Effective Search Control
Knowledge: An Explanation–Based Approach,” Ph.D. The-
sis, Department of Computer Science, Carnegie–Mellon
University, Pittsburgh, PA, March 1988.

[Mitchell83] T. M. Mitchell, P. E. Utgoff and R. Banerji, “Learn-
ing by Experimentation: Acquiring and Refining Problem–
solving Heuristics,”in Machine Learning: An Artificial In-
telligence Approach, R. S. Michalski, J. G. Carbonell, T. M.
Mitchell (ed.), Tioga Publishing Company, Palo Alto, CA,
1983, pp. 163–190.

[Mitchell86] T. M. Mitchell, R. Keller and S. Kedar–Cabelli, “Ex-
planation–Based Generalization: A Unifying View,” Ma-
chine Learning 1, 1 (January 1986), pp. 47–80.

[Nadas69] A. Nadas, “An extension of a theorem of Chow and
Robbins on sequential confidence intervals for the mean,”
The Annals of Mathematical Statistics 40, 2 (1969), pp.
667–671.

[Subramanian90] D. Subramanian and R. Feldman, “The Utility
of EBL in Recursive Domain Theories,” AAAI90, Boston,
MA, August 1990, pp. 942–949.

[Woodroofe82] M. Woodroofe, Nonlinear Renewal Theory in
Sequential Analysis, SOCIETY for INDUSTRIAL and
APPLIED MATHEMATICS, Philadelphia, PA, 1982.

