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Abstract
We compare the performance of Directional Derivatives

features for automatic speech recognition when extracted from
different time-frequency representations. Specifically, we use
the short-time Fourier transform, Mel-frequency, and Gamma-
tone spectrograms as a base from which we extract spectro-
temporal modulations. We then assess the noise robustness of
each representation with varied number of frequency bins and
dynamic range compression schemes for both word and phone
recognition. We find that the choice of dynamic range compres-
sion approach has the most significant impact on recognition
performance. Whereas, the performance differences between
perceptually motivated filter-banks are minimal in the proposed
framework. Furthermore, this work presents significant gains
in speech recognition accuracy for low SNRs over MFCCs,
GFCCs, and Directional Derivatives extracted from the log-Mel
spectrogram.
Index Terms: time-frequency representations, spectro-
temporal features, automatic speech recognition, noise robust-
ness

1. Introduction
Spectro-temporal modulation features offer increased noise ro-
bustness for several speech applications including automatic
speech recognition (ASR) [1–3]. The typical scenario for ex-
tracting spectro-temporal modulations from speech is to fil-
ter an appropriate time-frequency representation with two di-
mensional derivative-like filters oriented in the time-frequency
plane. The choice of time-frequency representation is essen-
tial for providing relevant speech information to the subsequent
spectro-temporal filtering stage.

Several time-frequency representations have been intro-
duced for speech processing. Many of them make use of human
perception or biology such as the Mel-frequency spectrogram,
perceptual linear prediction (PLP) [4], the cocleagram (Gam-
matone spectrogram) [5], and the auditory spectrogram [6].
To further make use of human inspired auditory knowledge,
there are many post processing steps that have been applied
to these time-frequency representations such as: the discrete
cosine transform (DCT), which provides energy compaction;
RASTA filtering, which models humans’ insensitivity to slow
varying stimuli [7]; and Gabor features, which use spectro-
temporal modulation filters to approximate processing done by
the auditory system [8–10].

In [11], the authors propose Gabor features extracted from
the Power Normalized Spectrogram, a version of the Gamma-
tone spectrogram with power-law compression and power bias
subtraction. They reported a large performance gain by using
this representation over previous Gabor features which were
computed using the log-Mel spectrogram. However, a direct
comparison of the two, both with the same compression scheme

and power bias subtraction, was not made. A direct comparison
of these two for Gabor features is made in [12] on the Aurora-
2 corpus. They find, as we will confirm, the performance gain
achieved by using a power-law nonlinearity instead of the nat-
ural logarithm for dynamic range compression of the spectro-
gram before spectro-temporal feature extraction. The major
differences in these studies and the present work are: we use
filter-bank for extracting spectro-temporal features from time-
frequency representations and perform dimensionality reduc-
tion of the resulting features using the discrete cosine transform
(DCT) computed per filter-bank sub-band, rather than with mul-
tilayer perceptrons (MLPs) computed on the entire feature set
versus . An advantage of the DCT method is that it requires no
training.

In our previous work, we introduced Directional Derivative
(DD) features: a multi-resolution, spectro-temporal speech rep-
resentation that filters the log-Mel spectrogram with two dimen-
sional oriented derivative filters [13]. We drew comparisons to
both Mel-frequency cepstral coefficients (MFCCs) and Gabor
features and demonstrated their competitive accuracy to these
existing representations. These features successfully model
speech salient information such as energy onset/offset regions
and the rising and falling of formants, and do so robustly in the
presence of noise. We chose to use the log-Mel spectrogram as
the base from which the original DD features were extracted,
because it is the most common time-frequency representation
used for speech modeling and to give a more direct comparison
to other spectro-temporal features. We now explore the efficacy
of the Directional Derivative methodology when paired with al-
ternate time-frequency representations.

2. Methodology
We begin by extracting time-frequency representations from
speech for comparison. Each of the time-frequency represen-
tations is extracted for various number of frequency bins and
dynamic range compression schemes. All the evaluated repre-
sentations are computed using 25 ms frames at a 10 ms rate
weighted with a hamming window. Directional Derivative fea-
tures will then be extracted from each of the resulting represen-
tations and tested for word and phone recognition.

2.1. Time-Frequency Representations
2.1.1. Short-time Fourier Transform
The short-time Fourier transform is the most general of the com-
pared time-frequency representations. It makes no assumptions
about the human auditory system in addition to frequency anal-
ysis. This serves as a comparison of time-frequency represen-
tations with non-perceptually inspired versus perceptually in-
spired processing. It also serves as the base from which the
perceptually motivated time-frequency representations will be
extracted via non-linear frequency scaling and compression.
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2.1.2. Mel-frequency

The Mel-frequency spectrogram is one of the first time-
frequency representations to be inspired by human auditory per-
ception. It scales the frequency axis to the Mel scale using over-
lapping triangular filters. The Mel scale is an approximation
to the non-linear scaling of frequencies in the cochlea. This
is typically followed by dynamic range compression using the
log operator. The Mel-frequency spectrogram is one of the most
widely used and it is the basis for Mel-frequency cepstral coeffi-
cients, which are a standard feature for many speech recognition
systems.

2.1.3. Gammatone

The Gammatone (GT) spectrogram addresses limitations of the
Mel-frequency representation. The most significant of these is
the introduction of asymmetric filters to replace the triangular
filters of the Mel filter-bank [14]. It was argued that these fil-
ters better approximate the filtering done in the basilar mem-
brane. The final stage of processing is cubed root compression.
The cubed root is motivated by Steven’s power-law of hear-
ing [4]. Other power-law non-linearities have been proposed
for use with Gammatone based features [15,16], however to our
knowledge, a direct empirical comparison has not been made.

2.2. Directional Derivative Features

2.2.1. The Steerable Pyramid Filter-bank

Directional Derivative features are computed by extracting
spectro-temporal modulations, using the steerable pyramid
wavelet from time-frequency images. The steerable pyramid
filter-bank consists of multi-resolution, two-dimentional ori-
ented derivative filters [17]. These filters are designed according
to the equation:

ψk(~ω) = (−j~ω cos(θ − θk))K ψ(~ω), (1)

where θ = arg(~ω), θk = kπ
K

, k indicates the kth orientation,
andK is the derivative order. In this equation, ~ω = [

ωt
ωf ], where

ωt is the frequency of time frames axis and ωf is the freuency
of frequency bins axis, and ψk(~ω) is the mother wavelet proto-
type. We show the impulse response of the filters used in for
extracting DD features for the present work in Figure 1. We
use the first and second levels of decomposition and the 45◦,
62.5◦, 90◦, −62.5◦, and −45◦ filter orientations, respectively,
where the 90◦ filter computes the derivative along the time axis
in a similar manner to ∆ features. We employ the Steerable
Pyramid Toolbox implementation for all experiments [18].
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Figure 1: Impulse response of the steerable pyramid filter-bank.

2.2.2. Feature decorrelation and dimensionality reduction

We wish to obtain decorrelated feature dimensions, so as to
comply with diagonal covariance Gaussian assumptions, which
are commonly made to reduce the complexity of the acoustic
models. To achieve this goal and for dimensionality reduction
we apply the DCT to the output sub-bands of the steerable pyra-
mid filter-bank. Typically, approximately half the coefficients
are retained when applying the DCT to a spectrogram to pro-
duce cepstral features. This is due to assumptions about the
smoothness of the frequency axis of the speech representation.
When we extract directional components from speech using ori-
ented filters this assumption no longer holds. We use the rela-
tion:

Mθ =

⌈(
1− |θ|

180◦

)
N

⌉
, (2)

to choose the number of coefficients retained, Mθ , from a par-
ticular filter, where θ is the orientation angle, N is the dimen-
sion of the filter output, and d·e is the ceiling operator . Further
information on Directional Derivative feature computation can
be found in [13].

2.2.3. DD features extracted from alternate time-frequency
representations

We show the compared time-frequency representations of the
phomeme ‘iy’ from the word ‘greasy’ in Figure 2. Below each
spectrogram is the corresponding sub-band from the 45◦ filter,
the sub-band that is responsible for capturing rising formants.
This figure provides a depiction of the ability of the steerable
pyramid filter-bank to robustly capture formant dynamics in
both clean and noise corrupted speech.

3. Experiments and Results
Next, we evaluate the compared features with two automatic
speech recognition tasks. The first is continuous digit recogni-
tion using the Aurora-2 corpus [19]. The second is continuous
phone recognition using the TIMIT corpus [20]. For both tasks,
we examine the noise robustness of the compared features with
speech corrupted by additive noise for several speech-to-noise
ratios (SNRs). We use MFCCs and GFCCs with their first and
second temporal derivatives (∆&∆∆) as the first baseline, as
these is two of the most common features for ASR. The sec-
ond baseline is DD features extracted from the log-Mel spec-
trogram, as this was the original spectrogram used for this task.
For all DD features in this work, we concatenate 13 cepstral
coefficients computed from the associated time-frequency rep-
resentation. This yields linear-frequency cepstral coefficients
(LFCCs), MFCCs, and Gammatone-frequency cepstral coeffi-
cients (GFCCs) for the STFT, Mel-frequency, and Gammatone
representations, respectively. This is to provide a static repre-
sentation to compliment the dynamic DD features.

3.1. Spoken Digit Recognition

The Aurora-2 corpus consists of a training set with 8,440 utter-
ances and three testing sets each with 1,001 utterances. Each
utterance is a sequence of the digits 0-9 [19]. The the first two
test sets contain four distinct noise types and the third contains
two noise types from the other test sets that were collected with
a different recording procedure. We use the Hidden Markov
Model Toolkit (HTK) [21] to perform recognition. Each word
is modeled with a left-to-right Hidden Markov Model (HMM)
with 16 states and twenty diagonal covariance Gaussians per
state. All models are trained on clean speech and tested on
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Figure 2: The top row shows the compared time-frequency representations for clean and 5 dB SNR conditions. The bottom row shows
the resulting outputs of the 45◦ steerable pyramid filter-bank sub-band corresponding to the time-frequency representations above.

speech corrupted with additive noise. We use mean-variance
normalization, per utterance, for all final features as it offers
additional noise robustness [22].

We show word recognition accuracy (WRA) for the MFCC
baseline in Table 1. In Table 2, we compare WRA for DD
features extracted from each TFR with a varied number of
frequency channels in order to examine how spectrogram fre-
quency resolution affects recognition performance of the result-
ing spectro-temporal resolution. In this comparison, we use the
dynamic range compression scheme which was proposed for
each time-frequency representation (i.e., no compression for the
STFT, log for Mel-frequency, and cubed root for Gammatone).
First, we find that DD features extracted from the log-Mel spec-
trogram significantly (p < 0.05 using the Wilcoxon rank sum
test) outperform the baseline MFCC features for all SNRs. We
find that 64 frequency bins gives better WRA than 24 or 32 bins
for nearly all SNR levels. Both DD of log-Mel and GT outper-
form the MFCC baseline for all SNRs. DD of GT outperforms
GFCCs for 0 and 5 dB SNRs (p < 0.05). DD of GT also out-
performs that of log-Mel for SNRs 0-15 dB, and the result is
significant (p < 0.05) for SNRs 0-10 dB, when comparing rep-
resentations with the same number of frequency bins.

Table 1: Word Recognition Accuracy (%) of baseline features.
Feature 20dB 15dB 10dB 5dB 0dB
MFCC 98.4 96.4 91.0 75.6 48.0
GFCC 98.9 97.7 94.1 83.3 58.3

Table 2: Word Recognition Accuracy (%) of DD features ex-
tracted from time-frequency images with various number of fre-
quency bins. We show the highest WRA for each SNR in bold.

TFR NB 20dB 15dB 10dB 5dB 0dB
24 91.6 90.3 86.8 77.7 60.0

STFT 32 92.3 91.1 87.8 79.0 61.3
64 92.7 91.6 88.5 80.3 62.5
24 98.7 97.1 93.0 82.5 61.2

log-Mel 32 98.8 97.4 93.5 83.3 61.5
64 98.8 97.5 94.2 84.1 61.2
24 98.7 97.5 94.1 85.0 65.0

GT0.33 32 99.0 97.8 94.8 86.3 66.7
64 98.8 97.9 95.3 87.5 68.9

We evaluate recognition accuracy using the same compres-
sion scheme for all three time-frequency representations in Ta-
ble 3. We choose cubed root compression for this task as it is
used for the Gammatone representation, which gave the highest
overall accuracy in the first comparison. Also, all three rep-
resentations in Table 3 use 64 frequency bins as it gave the
highest average performance in the previous experiment. We
find that cubed root compression greatly increases the WRA for
DD features extracted from the STFT and Mel spectrograms.
The cubed root Mel representation significantly (p < 0.05)
outperforms the log-Mel representation for 0-10 dB. Further-
more, when using cubed root compression, DD features ex-
tracted from the Mel spectrogram now surpass performance of
those from Gammatone for low SNRs (0-10 dB), although this
difference is not significant at the 5% level.

Table 3: Word Recognition Accuracy (%) of DD features ex-
tracted from time-frequency images with cubed root compres-
sion. We show the highest WRA for each SNR in bold.

TFR 20dB 15dB 10dB 5dB 0dB
STFT0.33 98.9 97.7 94.5 85.4 65.7
Mel0.33 98.8 97.9 95.4 87.9 69.8
GT0.33 98.8 97.9 95.3 87.5 68.9

3.2. Phone Recognition

We use the TIMIT database to evaluate performance for the
phone recognition task. The TIMIT corpus consists of 630
speakers, each reading ten sentences [20]. The sentences were
carefully constructed to achieve phonetic balance. In order to
assess the noise robustness of the features, we corrupt the utter-
ances from the TIMIT database with noises from the Noisex-
92 corpus. The Noisex-92 consists of fifteen noise types [23].
We use three for this analysis: pink noise, speech babble, and
F16 cockpit noise. Phone recognition accuracy (PRA) is aver-
aged across the three noise types for each SNR level. We use
the Kaldi speech recognition toolkit for recognition [24]. We
trained three-state monophone GMM-HMMs on clean speech
and subsequently tested on noise corrupted speech. There are
16,000 Gaussians distributed between all phone models. Mean-
variance normalization is applied to all feature representations
per speaker.
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Table 4 shows phone recognition performance for the
MFCC baseline and Table 5 shows performance for DD features
extracted from the compared spectrograms. For these experi-
ments the DD features outperform MFCCs for all SNRs and all
time-frequency representations. Similar to the digit recognition
experiments, spectrograms with cubed root compression result
in better performance than those with log compression. Direc-
tional Derivatives of Mel and Gammatone with cubed root com-
pression outperform MFCCs, GFCCs, and their log version for
all SNR levels. For both cubed root and log, DD features from
Mel spectrograms slightly outperform those from Gammatone
for all SNRs, although these differences are not statistically sig-
nificant.

Table 4: Phone Recognition Accuracy (%) of baseline features.
Feature 20dB 15dB 10dB 5dB 0dB
MFCC 64.66 56.87 46.91 36.94 29.25
GFCC 67.55 63.58 56.91 47.30 36.74

Table 5: Phone Recognition Accuracy (%) of DD features ex-
tracted from time-frequency images. We show the highest PRA
for each SNR in bold.

TFR 20dB 15dB 10dB 5dB 0dB
log-Mel 66.23 60.32 52.01 42.57 33.70
log-GT 65.78 59.33 50.25 40.42 32.43
STFT0.33 66.91 63.02 57.00 48.28 37.49
Mel0.33 69.16 65.82 60.39 51.94 41.32
GT0.33 68.47 65.05 59.54 51.12 40.35

4. Conclusions and Future Work
We presented an empirical comparison of ASR performance
of Directional Derivative features extracted from various time-
frequency representations. We demonstrated the word and
phone recognition performance differences that result from
changing the spectrogram from which spectro-temporal fea-
tures are extracted. We found that the dynamic range compres-
sion scheme had a large effect on performance, with the cubed
root giving significantly better performance than the log, which
is likely because it more accurately reflects processing of the
human auditory system. There was not, however, a larger per-
formance difference between the DD features extracted from
perceptually motivated time-frequency representations, i.e., the
Mel and Gammatone spectrograms.

In the future, we plan to explore dimensionality reduction of
these features with global decorrelation schemes, such as prin-
ciple component analysis, and discriminative methods, such as
linear discriminant analysis. Also, we plan to investigate the
efficacy of Directional Derivative features for large vocabulary
continuous speech recognition (LVCSR) tasks.
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