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Abstract. One of the key challenge in social behavior analysis is to au-
tomatically discover the subset of features relevant to a specific social
signal (e.g., backchannel feedback). The way that these social signals
are performed exhibit some variations among different people. In this
paper, we present a feature selection approach which first looks at im-
portant behaviors for each individual, called self-features, before building
a consensus. To enable this approach, we propose a new feature ranking
scheme which exploits the sparsity of probabilistic models when trained
on human behavior problems. We validated our self-feature concensus
approach on the task of listener backchannel prediction and showed im-
provement over the traditional group-feature approach. Our technique
gives researchers a new tool to analyze individual differences in social
nonverbal communication.

Key words: Feature selection, non-verbal behavior analysis, L1 regu-
larization.

1 Introduction

Nonverbal communication is a highly interactive process, in which the partici-
pants dynamically send and respond to nonverbal signals such as speech prosody,
gesture, gaze, posture, and facial expression movements. These signals play a sig-
nificant role in determining the nature of a social exchange. This coherence in
communication plays an important role in various areas including contradict
resolution [1], psychotherapeutic effectiveness [2], and improved classroom test
performances [3]. One of the key challenge in social behavior analysis is to au-
tomatically discover the subset of features relevant to a specific social signal [4].

It is well known that culture, age and gender affect people’s nonverbal com-
munication [5, 6]. The traditional approach for feature selection looks at the
most relevant features from all observations (e.g. all human interactions in the
dataset). This group-feature approach has the potential to select features that
are not relevant to any specific individual but only to the average model. This
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technique is likely to miss some discriminative features which are specific to
subset of the population.

In this paper, we present a feature selection approach which first looks at im-
portant behaviors for each individual, called self-features, before building a con-
sensus. Figure 1 compares our self-feature concensus approach to the typical
group-feature approach. To enable efficient feature selection, we propose a fea-
ture ranking scheme based on a sparse regularization method called L1 regular-
ization [7–9]. This scheme is a non-greedy ranking method where two or more
features can have the same rank, meaning that these features have joint influence
and they should be selected together. Our sparse feature ranking approach can
be applied for both group-features and self-features.

We evaluate our approach on the task of listener feedback prediction, to predict
the starting points of listener head-nods in a dyadic interaction of two people.
We use a sequential probabilistic model, Conditional Random Fields, which is
a recently used technique for predicting the backchannels [10]. The experiments
are conducted on the RAPPORT dataset from [11] which contains 42 storytelling
dyadic interactions.

The following section present related work in nonverbal behavior analysis and
feature selection. In Section 3, we describe our self-feature consensus framework.
Sparse ranking scheme is described in Section 4. In Section 5, we explain the
dataset, features and evaluation metrics used in our experiments, and give the
results on the task of listener head-nod prediction. Finally, we conclude with
discussion and future work.

2 Related Work

Nonverbal behavior plays an important role in human social interactions. The
ability to correctly understand and respond to social signals is considered to be
the indicative of social intelligence [12] [13]. Due to it’s necessity, social signal
processing has became a new domain that aims to automatically sense and un-
derstand human social interactions through machine analysis [4] [14]. One of the
earliest works in this domain focused on social signal detection for predicting the
outcome of dyadic interactions such salary negotiations, hiring interviews, and
speed-dating conversations [15]. Second focus of attention has been analysis of
social interactions in multimedia recordings. There are three main tasks explored
in this context: (1) analysis of interactions in small groups, (2) recognition of
roles, and (3) sensing of users interest in computer characters. An extensive list
of studies for each domain can be found in [4].

One of the recent approaches in dyadic interactions analysis include recogni-
tion [16] and prediction [10] of listener backchannel feedbacks. Earlier, the re-
searchers took a unimodal approach using only either the prosodic features such
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as pitch and power contours [17] [18], or features like pause duration and tri-
gram part-of-speech frequency [19]. Maatman et al. [11] presented a multimodal
approach that combines the prosodic feature based method in [18] with a simple
head-nod mimicking method. Later, Morency et al. [10] proposed a multimodal
approach to automatically learn a predictive model of listener backchannel feed-
back.

Feature selection refers to the task of finding a subset of features that are most
relevant to the model, and provides a good representation of data. It alleviates
the problem of overfitting by eliminating the noisy features. With only the rel-
evant features, a better understanding and analysis of data is facilitated. Based
on the gradient-based feature selection method (grafting) in [20], Vail et. al. [21]
proposed an incremental feature selection technique for Maximum Entropy Mod-
eling. A Boosting-like method was presented in [22] that iteratively constructs
feature conjunctions, which increases the conditional log-likelihood of the model
when added. A well known feature selection technique based on L1 regularization
was also applied for conditional random fields in robot tag domain [9].

Although well studied in psychology and sociology [23] [5] [6], individual differ-
ences in nonverbal communication have not yet been explored through machine
analysis. In this paper, we present a computational approach which enables a
better analysis of individual differences in non-verbal behaviors.

3 Concensus of Self-Features

Figure 1(a) shows an overview of our self-feature concensus approach. The first
step of our algorithm is to find a ranked subset of the most relevant features
for each person individually. We refer to this subset as self-features. Section 4
describes our feature ranking algorithm. Figure 1(b) compares our approach to
the typical group-feature approach.

Once the ranked lists of self-feature are obtained, we create a consensus over
self-features by using only the top n of each list. A concensus is represented by
composing an nth order histogram using the top n of each self-feature. This con-
sensus provides a ranking of self-features, and we expect the relevant features
to be replicated in these histograms. To remove possible outliers, we apply a
threshold on the concensus features to keep only a subset of relevant features.
The intuition behind this threshold is that the relevant features are expected
to appear frequently in top n of many self-features corresponding to different
people, whereas the outlier features would not appear that as often. The mini-
mum required concensus threshold has been selected to be n+1 for an nth order
histogram in our experiments. Figure 1(a) shows two consensus examples: first
and second order histograms.
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(a) (b)

Fig. 1: (a) Self-feature concensus.Features of each person in the data is ranked
first. Then, we select top n from these ranked list of self-features to construct
nth order histogram of feature counts. In this figure, only the 1st and 2nd order
histograms are shown. (b) Group-feature approach. Features are selected by
using all people’s observations at once.

4 Sparse Ranking

Our feature ranking scheme relies on sparse regularization that applies some
constraints on model parameters during training. For a better understanding,
we first describe the Conditional Random Fields model used in our experiments
and then show how sparse regularization enable feature ranking in a non-greedy
manner.

4.1 Conditional Random Fields

Conditional Random Field (CRF) [24] is a probabilistic discriminative model
for sequential data labeling. It is an undirected graphical model that defines a
single log-linear distribution over label sequences given a particular observation
sequence. CRF learns a mapping between a sequence of multimodal observations
x = {x1, x2, ..., xm} and a sequence of labels y = {y1, y2, ..., ym}. Each yj is a

class label for the jth frame of a video sequence and is a member of a set Y of
possible class labels, for example, Y = {head-nod, other-gesture}. Each frame
observation xj is represented by a feature vector φ(xj) ∈ Rd, for example, the
prosodic features at each sample.
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Fig. 2: Sparse ranking using regularization path. As λ goes from higher to
lower values, feature weights start to become non-zero based on their relevance
to the model.

Given the above definitions, the conditional probability of y is defined as follows:

P (y | x, θ) = 1

Z(x)
exp(

∑

α

θαFα(y,x)) (1)

where θ is a vector of linear weights, and Z(x) is a normalization factor over all
possible states of y. Feature function Fα is either a state function sk(yj ,x, j) or a
transition function tk(yj−1, yj ,x, j). State function sk depends on the correlation
between label at position j and the observation sequence; while transition func-
tion tk depends on the entire observation sequence and the labels at positions i
and i-1 in the label sequence.

Given a training set consisting of m labeled sequences (xi,yi) for i = 1...m,
training of conditional random fields involves finding the optimum parameter
set, θ, that maximizes the following objective function:

L(θ) =
m∑

i=1

logP (yi | xi, θ) (2)

which is the conditional likelihood of the observation sequence.

4.2 The Method

Our method exploits regularization technique which provides smoothing when
the number of learned parameters is very high compared to size of available
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data. Using a regularization term in the optimization function during training
can be seen as assuming a prior distribution over the model parameter. The
two most commonly used priors are Gaussian(L2 regularizer) and Exponential
(L1 regularizer) priors. A Gaussian prior assumes that each model parameter is
drawn independently from a Gaussian distribution and penalizes according to
the weighted square of the model parameters. An Exponential prior penalizes
according to the weighted L1 norm of the parameters and is defined as follows:

R(θ) = λ ‖ θ ‖1= λ
∑

i

| θi | (3)

where θ is the model parameters and λ > 0. In training of conditional random
fields, this regularization term is added as a penalty in the log-likelihood function
that is optimized. Therefore, Equation 2 becomes:

L(θ) =
m∑

i=1

logP (yi | xi, θ)−R(θ) (4)

L1 regularization results in sparse parameters vector in which many of the pa-
rameters are exactly zero [25]. Therefore, it has been widely used in different
domains for the purpose of feature selection [22] [9]. The λ in Equation 3 deter-
mines how much penalty should be applied by the regularization term. Larger
values indicate larger penalty, thus produces sparser vector parameters.

Figure 2 shows the effect of regularization on feature weights. This regularization
path was created by starting with a high regularization penalty λ where all
the features are zero and then gradually reduce the regularization until all the
features have non-zero values. In this path, if a feature becomes non-zero in
earlier stages (i.e., large λ), this signifies that it is an important feature. Our
ranking scheme is based on this observation. We rank the features in the order
of it’s becoming non-zero in the regularization path. The pseudo code for our
algorithm is as follows:

ranked features = empty
for λ = ∞ down to 0 do
train a CRF with current λ
for all nonzero feature params θi do
if θi is NOT in selected features then

ranked features = selected features+ θi
end if

end for
end for
return ranked features

5 Experiments

We test the validity of our approach on the multimodal task of predicting listener
nonverbal backchannel (i.e., listener head-nods). Backchannel feedback predic-
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tion has received considerable interest due to its pervasiveness across languages
and conversational contexts [11] [10].

5.1 The Data

We are use the RAPPORT dataset [11] that contains 42 dyadic interactions
between a speaker and a listener. Data is drawn from a study of face-to-face
narrative discourse (’quasi-monologic’ storytelling). In this dataset, participants
in groups of two were told they were participating in a study to evaluate a com-
municative technology. Subjects were randomly assigned the role of speaker and
listener. The speaker viewed a short segment of a video clip taken from the Edge
Training Systems, Inc. Sexual Harassment Awareness video. After the speaker
finished viewing the video, the listener was led back into the computer room,
where the speaker was instructed to retell the stories portrayed in the clips to
the listener. The listener was asked to not talk during the story retelling. Elicited
stories were approximately two minutes in length on average. Participants sat
approximately 8 feet apart.

5.2 Multimodal Features and Encodings

We use four different type of multimodal features in our models: prosodic, lexi-
cal, part-of-speech, and visual gesture features. Prosody refers to the rhythm,
pitch and intonation of speech. Several studies have demonstrated that listener
feedback is correlated with a speaker’s prosody [17]. Listener feedback often fol-
lows speaker pauses or filled pauses such as “um” (see [19]). We encode the
following prosodic features, including standard linguistic annotations and the
prosodic features suggested by Ward and Tsukhara [18]:

– Downslopes in pitch continuing for at least 40ms; regions of pitch lower than
the 26th percentile continuing for at least 110ms (i.e., lowness); drop or rise
in energy of speech (i.e., energy edge); fast drop or rise in energy of speech
(i.e., energy fast edge), vowel volume (i.e., vowels are usually spoken softer),
pause in speech (i.e., no speech).

Gestures performed by the speaker are often correlated with listener feedback [26].
Eye gaze, in particular, has often been implicated as eliciting listener feedback.
Thus, we encode speaker looking at the listener as our visual gesture feature.

Some studies have suggested an association between lexical features and listener
feedback [19]. Therefore, we include top 100 individual words (i.e., unigrams)
that are selected based on their frequency in the data.

Finally, we attempt to capture syntactic information that may provide relevant
cues by extracting four types of features from a syntactic dependency structure
corresponding to the utterance. Using a part-of-speech tagger [27], we extract
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the part-of-speech tags for each word (e.g. noun, verb, etc.) as our Part-of-
speech(POS) features.

We encode our features using 13 different encoding templates as introduced
by [10]. The purpose of this encoding dictionary is to capture different relation-
ships between speaker features and listener backchannels. For instance, listener
backchannels sometimes happen later after speaker features, or when the speaker
features are present for certain amounts of time and its influence may not be
constant over time. To automatically obtain these relations, we use three encod-
ing templates in our experiments: binary encoding that is designed for speaker
features which influence on listener backchannel is constraint to the duration of
the speaker feature, step function that is a version of binary encoding with
two additional parameters: width of the encoded feature and delay between the
start of the feature and its encoded version. and ramp function that linearly
decreases for a set period of time (width parameter). Step and ramp functions
are used with 6 different parameters(width and delay): (0.5 0.0), (1.0 0.0), (0.5
0.5), (1.0 0.5), (0.5 1.0), (1.0 1.0) for step, and (0.5 1.0), (1.0 1.0), (2.0 1.0), (0.5
0), (1.0 0), (2.0 0) for ramp.

5.3 Methodology

We performed hold-out testing by randomly selecting a subset of 10 interactions
(out of 42) for the test set. The training set contains the remaining 32 dyadic
interactions. All models evaluated in this paper were trained with the same
training and test sets. The test set does not contain individuals from the training
set. Validation of model parameters was performed using a 3-fold strategy on
the training set. For L1 regularization, λ ranged 1000 ∗ 0.95k, k = [20, 22..170].
For L2 regularization, the validated range was 10k, k = [−3..3]. The training of
CRF models was done using the hCRF library [28].

The performance is measured by using the F-measure, which is the weighted har-
monic mean of precision and recall. Precision is the probability that predicted
backchannels correspond to actual listener behavior. Recall is the probability
that a backchannel produced by a listener in our test set was predicted by the
model. We use the same weight for both precision and recall, so called F1. During
validation we find all the peaks (i.e., local maxima) from the marginal probabili-
ties. These backchannel hypotheses are filtered using the optimal threshold from
the validation set. A backchannel (i.e., head-nod) is predicted correctly if a peak
happens during an actual listener backchannel with high enough probability.

5.4 Results

We ran four experiments: (1) group-feature approach with sparse ranking, (2)
effect of the order parameter on self-feature concensus, (3) analysis of selected
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Table 1:Group-features with sparse ranking.We incrementally add features
as they appear in the regularization path and use for retraining. Each row shows
the features added at that stage, therefore the model at this stage is retrained
with these new features plus the features above it. Final row shows values for
using all the features instead of feature selection.
Features Precision Recall F1

EyeGazes-binary 0.16469 0.14164 0.1523
... + POS:NN-step(1,.5)
... + VowelVolume-step(.5,1) 0.15281 0.25903 0.19222
... + Pause-step(1,0)
... + Lowness-step(1,.5) 0.19818 0.37516 0.25935
... + POS:NN-step(1,1) 0.2002 0.1918 0.19591
... + Lowness-step(1,0)
... + VowelVolume-step(.5,.5) 0.20512 0.1943 0.19956

Baseline: All features
No feature selection 0.1643 0.6079 0.2587

self-features and (4) comparison of self-feature concensus to group-feature ap-
proach.

For the first experiment, we apply our sparse ranking scheme using all the train-
ing people in a group-feature manner. To show the effect of sparse ranking,
we train a separate CRF for each subset of group-features. For comparison, we
trained one CRF using all features (1833 encoded features). All CRFs were re-
trained using L2 regularization following previous work on CRF-based backchan-
nel prediction [10]. (L1 was still used during the sparse ranking step). Precision,
recall and F1 values are given in Table 1. In each row, features are added as they
appear in the L1 regularization path of our sparse ranking scheme. The best
performance happens in the third step with five selected features and F1 value
of 0.25935. The last row of Table 1 represents the performance when no feature
selection is applied (all features are used). This result shows that sparse ranking
can find a subset relevant of features, with performance similar to the baseline
model that contain all features.

For the same listener backchannel prediction task, Morency et al. [10] used a
greedy-forward feature selection method on the RAPPORT dataset. Although,
the experimental set up was slightly different (i.e. different test and train sets
were used), the best precision, recall and F1 values archived with this method
were 0.1862, 0.4106, 0.2236, respectively.

Our second experiment studies the effect of the order parameter on self-feature
concensus. We constructed feature histograms with orders 1, 2, and 3 by looking
at the top 1st, 2nd, and 3rd features in each list. Then, we applied a threshold
of 2, 3, and 4 respectively on the histograms for outlier rejection. The list of
features for each order is listed in Table 2. This result is really interesting since
the same features appear in all three consensus.
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Table 2: Selected features with self-feature concensus using histograms of differ-
ent orders (after outlier rejection).

1stOrder 2ndOrder 3rdOrder
POS:NN-step(1,1) POS:NN-step(1,1) POS:NN-step(1,1)
Utterence-binary POS:NN-step(1,.5) POS:NN-step(1,.5)
EyeGaze-binary Utterence-binary Utterence-binary
Pause-binary EyeGaze-binary EyeGaze-binary
POS:DT-step(1,.5) EyeGaze-step(1,1) Pause-step(1,0)
Lowness-step(1,0) Pause-binary POS:DT-step(1,.5)

Pause-step(1,0) Lowness-step(1,0)
POS:DT-step(1,.5) Lowness-step(1,.5)
Lowness-step(1,0)

For our third experiment, we analyze the features selected for our task of head-
nod prediction. It is interesting that some features are selected by both self-
feature concensus and group-feature approach, such as Pause, EyeGaze, Low-
ness, POS:NN. Utterance and POS:DT are the two features selected by self-
feature concensus approach that do not appear in the top 20 features from the
group-feature approach. POS:DT refers to determiners in language, such as the,
this, that. Utterance refers to the beginning of an utterance. Mixed together,
these two features represent moments where the speaker starts an utterance with
a determiner. To show the relative importance of the Utterance and POS:DT
features, we added these two features to the list of features obtained by group-
feature approach and trained a new CRF model. Precision, recall and F1 values
are 0.21685, 0.38653, 0.27783, respectively. We see an improvement over group-
feature approach, showing the importance of self-feature concensus.

Our last experiment compares our self-feature concensus approach to the typ-
ical group-feature approach. Using the selected self-features from Table 2, we
retrained a L2 regularized CRFs over all training instances. Precision and re-
call values for these retrained CRFs of self-feature concensus and group-feature
approach (best result from first experiment) are given in Table 3. The best F1

value achieved with 2nd order histogram is 0.3196. Also, all three self-feature
concensus models perform better F1 than the group-feature approach and the
CRF trained with all features (i.e., no feature selection). This results show that
using self-features improves listener backchannel prediction.

6 Conclusion

Nonverbal behaviors play an important role in human social interactions and
a key challenge is to build computational models for understanding and ana-
lyzing this communication dynamic. In this paper, we proposed a framework
for finding the important features involved in human nonverbal communication.
Our self-feature concensus approach first looks at important behaviors for each
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Table 3: Precision, recall and F1 values of retrained CRFs with group-feature
approach and self-feature concensus.
Method Precision Recall F1

self-feature concensus
Order 1 0.2192 0.4939 0.3037
Order 2 0.23802 0.48628 0.3196
Order 3 0.24449 0.28211 0.26196
group-feature approach 0.19818 0.37516 0.25935
Baseline: all features 0.1643 0.6079 0.2587

individual before building a consensus. It avoids the problem with the group-
feature approach which focused on the average model and oversees the inherent
behavioral differences among people. We proposed a feature ranking scheme ex-
ploiting from L1 regularization technique. This scheme relies on the fact that
adding more penalty on the model parameters will result in sparser results in
which only the important features will be promoted.

Our framework was tested on the task of listener head-nod prediction in dyadic
interactions. We used the RAPPORT dataset that contains 42 dyadic communi-
cations between a speaker and a listener. The results are promising and provides
improvement over traditional group-feature approach. In our future work, we
plan to use this framework for different prediction tasks, such as gaze aversion
and turn-taking prediction.
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