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Abstract: Selectively canceling signals at specific
locations within an acoustical environment with
multiple listeners is of significant importance for home
theater, automobile, teleconferencing, office, industrial
and other applications. The traditional noise
cancellation approach is impractical for such
applications because it requires sensors that must be
placed on the listeners. In this paper we investigate the
theoretical properties of eigenfilters for signal
cancellation proposed in [1]. We also investigate the
sensitivity of the eigenfilter as a function of the room
impulse response duration. Our results show that with
the minimum phase model for the room impulse
response, we obtain a better behaviour in the sensitivity
of the filter to the duration of the room response.

1. INTRODUCTION

Selective signal cancellation is required in applications
that require a signal of interest to be enhanced while mini-
mizing the effects of noise or other signals. For example, in
home theater or television viewing applications a listener in
a specific position in a room may not want to listen to the
audio signal being transmitted, while another listener at a
different position would prefer to listen to the signal. Con-
sequently, if the objective is to keep one listener in a region
with a reduced sound pressure level, then one can view this
problem as that of signal cancellation in the direction of that
listener. Similar applications arise in the automobile or any
other environment with multiple listeners in which only a
subset wish to listen to the audio signal.

In this paper we investigate the theoretical aspects of the
filter proposed in [1] - where we viewed the signal cancel-
lation problem as a maximization of the difference in the
received power at two different locations. Specifically we
have not considered the perceptual (psychoacoustical) view-
point (where an added condition would be to satisfy some
listening requirement in a given direction). Any signal can-
cellation methodology must inevitably take into account as-

pects of human perception in the given environment. We
shall consider this in forthcoming papers. In the next sec-
tion, we briefly discuss the proposed eigenfilter method. In
Section 3, we discuss the algebraic and linear phase proper-
ties of the proposed filter. We investigate the performance
of the filter as a function of the room impulse response du-
ration. We also show in section 4, that, in general an eigen-
filter based on the minimum phase model of the room re-
sponses provides a better sensitivity behaviour. Section 5
concludes the paper.

2. INFORMATION THEORY MODELS

In [1], we proposed a filter based on optimizing the mu-
tual information function. Mutual information (MI)
measures arbitrary dependencies between two random vari-
ables , and with marginal distributions denoted by ,
and , and their joint distribution (where may
be considered as an input to a channel, and is the corre-
sponding output). The general form for this measure is,

(1)

, with equality being achieved on general statis-
tical independence between , and , and .
We showed that in the presence of a linear time invariant
channel -representing the room impulse response, and
additive white gaussian noise (AWGN) , the mutual in-
formation can be rewritten as

(2)

where, , and represents
the average power of the additive white gaussian noise.

As mentioned above, we view the signal cancellation
problem as a maximization of the difference in the received
power in dB at two different locations, with their corre-
sponding room impulse responses denoted as , and



. Thereby, we proceeded to show that the objective
function for this problem can be cast as (with the fact that
the is a monotonic function in (2)),

(3)

which pertains to maximization of the signal power in the
direction of listener , while retaining the power towards
listener at least , and

; with

(4)

where, denotes convolution, and are the filter coeffi-
cients. The solution to the constrained optimization prob-
lem (3) is the optimal FIR filter, given by,

(5)

where, is the eigenvector corresponding to themax-
imum eigenvalue of the matrix , with,

(6)

The correlation matrix is defined by,

(7)

The gain in dB can be computed by,

(8)

For a WSS process the matrix is toeplitz, and the
gain can be expressed as,

(9)
where, and form a fourier trans-
form pair.

In the next section we shall characterize this eigenfilter
in terms of its mathematical properties.

3. PROPERTIES OF EIGENFILTERS

In this section, we state and prove some theoretical prop-
erties of the eigenfilter (5). Below, we provide some defini-
tions and properties pertaining to doubly symmetric matri-
ces, which toeplitz matrices are a special case of.

Definition 1: A doubly symmetric matrix satis-
fies the following relation,

(10)

where, is a diagonal matrix with unit elements along the
northeast-southwest diagonal. Basically, premultiplying (post-
multiplying) a matrix with exchanges the rows (columns)
of the matrix.

Property 1: A scaling term - , associated with a doubly
symmetric matrix leaves its doubly symmetricity unaltered.
This can be easily seen as follows,

(11)

Property 2: Linear combination of doubly symmetric
matrices yields a doubly symmetric matrix.

(12)

Hence, from the above properties, the matrices , and are
doubly symmetric.

Property 3: The inverse of a doubly symmetric matrix
is doubly symmetric.

(13)

Property 4: The product of doubly symmetric matrices
is doubly symmetric.

(14)

where, we have used the fact that . Thus,
is doubly symmetric.

Property 5:The roots of the eigenfilter corresponding to
a distinct maximum eigenvalue, lie on the unit circle for a
toeplitz

Since the matrix is doubly symmetric, we can in-
corporate a proof similar to the one given in [3] to establish
this.

Property 6 [2]: The eigenvectors associated with
satisfy either,

symmetric
skew-symmetric (15)

Property 7[2]: If is doubly symmetric with distinct
eigenvalues, then has symmetric eigenvectors, and



skew symmetric eigenvectors, where ( ) indi-
cates the smallest(largest) integer greater(less) than or equal
to .

A doubly symmetric matrix is not symmetric about the
main diagonal, hence the eigenvectors are not mutually or-
thogonal. However, in light of the present theory we can
prove the following theorem.

Theorem 1 Skew-symmetric and symmetric eigenvectors for
doubly symmetric matrices are orthogonal to each other.

Proof:Let,

(16)

Now,
(17)

then with we have,

(18)

But,
(19)

using the fact the . Substituting (19) into (18) gives,

(20)

which proves the theorem.
Property 8:From the unit norm property of eigenfilters

( ), and parsevals relation, we have

(21)

Property 9 (Linear phase): Linear phase filters are im-
portant for applications where frequency dispersion due to
nonlinear phase is harmful (such as speech processing, data
transmission, etc.) [4]. The optimal eigenfilter (5) is a
linear phase FIR filter having a constant phase and group
delay (symmetric case), or a constant group delay (skew-
symmetric case) (15), thus

symmetric
skew-symmetric

(22)

since exchanges the elements of the optimal eigenfilter.

4. SENSITIVITY PERFORMANCE OF
EIGENFILTERS

In this section, we present some results pertaining to the
sensitivity of the eigenfilter to the length of the room im-
pulse response. Essentially, we design the filter of length

( being the duration of the captured room impulse
responses in the two directions), based on the windowed
room impulse response with duration . We then ana-
lyze the performance (8), (9) of the filter to increasing room
impulse response length (in other words can we design an
eigenfilter with a sufficiently short impulse response whose
signal cancellation performance would be reasonably in-
variant to the duration of the room impulse response). Thus
the procedure is,

a) Design the eigenfilter ,

(23)

with,

(24)

where, the hat above the matrices in (24) denotes an approx-
imation to the true quantities in (6), and the corresponding
eigenfilter (23) is the approximation to (5).

b) Evaluate the performance (8) or (9) of the filter to
increased room response duration ,
based on the computed eigenfilter (23).

We shall consider the performance when a)
, and b) .

The impulse responses , and (comprising of
points) were obtained in a room from microphones

placed at a radial distance of m, with azimuth angle of
degrees and elevation of degrees relative to a loudspeaker,
and are shown in Fig 1 (a),(b). For the input we shall con-
sider the following simple AR(1) (autoregressive process of
unit order) linear model generated by filtering noise with a
linear time-invariant filter having a rational system function,

(25)

where, the describes a white noise process of zero mean
and unit variance. It is well established from the Yule-
Walker equations (with and being wide-sense sta-
tionary) that the correlation function for (25) satisfies the
following relation,

(26)

The power spectrum is,

(27)



since . The reason for this model (25), is that it
allows us to establish a framework for speech based signal
cancellation, where AR( ) ( ) could represent the LPC
model of the vocal tract over a short time interval, with un-
voiced speech (like s in snow) as the noise-free excitation

.

A. :

In Fig. 2 we show the performance (9) of the eigenfilter
design as a function of the length of the impulse response.
The length of the FIR filter was . The performance
in each subplot as a function of the impulse response incre-
ments is shown, where we chose

, where denotes the integer set. Thus, Fig.
2(a), represents an eigenfilter of length , designed
with duration of the windowed impulse response to be
(after removing the pure delay). The second performance
asterisk is at , and is obtained
by using (27) in (9). In Fig. (3) and Fig. (4), we show the
sensitivity of the eigenfilter for filter length , and

for various windowed room impulse responses.
From the figures, it can be immediately seen that, we

obtain a better gain performancewith increased filter length.
By considering a larger duration room impulse response, we
lower the gain but improve its evenness (flatness)–which is
important, since a minimal duration filter length with large
gain and uniform performance (low sensitivity to the length
of the room impulse response) is the requirement.

B. :

In Figs. (5)-(7), we show the performance of the eigenfil-
ter for various windowed duration of the room response and
different filter lengths. The performance (in terms of uni-
formity and gain) is better than the case mentioned above.
This can be understood intuitively from (9), which is an al-
ternative expression for (8). Observe that,

where (28)
and

Thus, the eigenfilter design using (3) for a WSS process is
influenced by the minimum phase room impulse responses.
Any other choice of impulse responses (nonminimumphase)
in (9) leads to poorer sensitivity performance. Hence, is
as given by (5), with

(29)

5. CONCLUSIONS

In this paper we considered the eigenfilter design per-
spective for “signal cancellation”. We introduced its theo-
retical properties based on simple linear algebra, as well as
its linear phase property. We demonstrated that the eigenfil-
ter based on the minimum phase room impulse response ex-
hibits better performance than the actual room response for
the AR(1) process. This is due to the explicit dependence
on the minimum phase room responses of the eigenfilter.

Clearly, we have not addressed the issue pertaining to
the human perception of SPL (loudness), which has a fre-
quency dependence on the signal. We shall explore this is-
sue in the future, along with the eigenfilter performance as a
function of the source-receiver positions (which affects the
reverberant energy). We also plan to implement the filter for
speech and audio based models.
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Figure 1: (a), (b) Room impulse responses for given s-r lo-
cations
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Figure 2: M=64, (a) P=64, (b)P=128, (c)P=512
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Figure 3: M=128, (a) P=128, (b)P=256, (c)P=512
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Figure 4: M=256, (a) P=256, (b)P=512
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Figure 5: M=64, (a) P=64, (b)P=128, (c)P=512
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Figure 6: M=128, (a) P=128, (b)P=256, (c)P=512
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Figure 7: M=256, (a) P=256, (b)P=512


