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ABSTRACT

This paper describes a method for acquiring procedural knowledge
for use by pedagogical agents in interactive simulation-based learn-
ing environments. Such agents need to be able to adapt their behav-
ior to the changing conditions of the simulated world, and respond
appropriately in mixed-initiative interactions with learners. This re-
quires a good understanding of the goals and causal dependencies
in the procedures being taught. Our method, inspired by human
tutorial dialog, combines direct specification, demonstration, and
experimentation. The human instructor demonstrates the skill be-
ing taught, while the agent observes the effects of the procedure
on the simulated world. The agent then autonomously experiments
with the procedure, making modifications to it, in order to under-
stand the role of each step in the procedure. At various points
the instructor can provide clarifications, and modify the develop-
ing procedural description as needed. This method is realized in a
system called Diligent, which acquires procedural knowledge for
the STEVE animated pedagogical agent.

Categories and Subject Descriptors
1.2 [Computing Methodologies]: Artificial Intelligence

General Terms

Algorithms, Design, Experimentation, Human Factors

Keywords

Interface agents, knowledge acquisition, machine learning, peda-
gogical agents, programming by demonstration

1. INTRODUCTION

Computer tutors are a valuable addition to simulation-based train-
ing. By practicing in a simulation of a real work environment, stu-
dents learn to perform procedural tasks (e.g., operating and main-
taining complicated equipment) in a wide range of situations, with-
out the expense and hazards of mistakes in the real world. Men-
tors play a valuable role in such training by demonstrating proce-
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dures, answering questions, and providing feedback on student per-
formance. While human mentors are a scarce resource, computer
tutors that can provide such guidance can be available whenever the
student desires.

It is useful to design computer tutors in simulation-based train-
ing environments to act as autonomous agents, able to pursue goals
in dynamic environments. A tutor should exhibit the same flexibil-
ity as learners, who will need to perform procedures flexibly and
adaptively under changing conditions, instead of blindly following
them by rote. Moreover, the tutor needs to be able to adapt its in-
struction based upon the actions and requests of the learner, and be
able to explain what to do and why in the current situation.

This paper addresses the problem of how to enable agents to ac-
quire the knowledge necessary to act as procedural skill tutors. The
agent needs to acquire more than the sequence of steps in the pro-
cedure: the agent needs to know what conditions are necessary to
execute each step, what ordering constraints exist between steps,
what effects the steps entail, and how those effects may constrain
the performance of subsequent steps. Specifying all this informa-
tion can be a difficult and error-prone process, particularly for in-
structors and instructional designers who may be unfamiliar with
knowledge representation techniques.

To cope with this knowledge acquisition bottleneck, researchers
have explored three common approaches: direct specification, pro-
gramming by demonstration, and autonomous experimentation. The
first approach, direct specification, requires a domain expert or know-
ledge engineer to formalize the knowledge as code or declarative
statements in the system’s representation language. This approach
is especially useful for adding particular elements of knowledge,
but it is difficult and time consuming to formalize large amounts
of knowledge. The second approach, programming by demonstra-
tion, allows the system to inductively learn domain knowledge by
watching a domain expert perform tasks. This approach is simpler
for the domain expert, but the system may require many demon-
strations to accurately understand the causal relations among task
steps. In the third approach, autonomous experimentation, the sys-
tem actively experiments in the simulated world in order to learn
the preconditions and effects of actions. This approach presents
the least burden on the domain expert. However, without an initial
domain theory or some guidance on relevant goals and actions, the
system may explore many dead ends and useless portions of the
domain, and hence the acquisition of the relevant knowledge may
be impractically slow.

This paper describes Diligent [1], a system that learns procedu-
ral knowledge for simulation-based tutoring systems by exploiting
the complementary strengths of these three approaches. Diligent
has been fully implemented and integrated into STEVE [21, 22],
an animated agent that cohabits virtual environments with students



to teach them procedural tasks. The next three sections of the pa-
per formulate the problem that Diligent solves, describe its learning
methods, and provide empirical evaluation of its approach, respec-
tively, and the final section provides conclusions and discusses ar-
eas for future work.

2. THE KNOWLEDGE ACQUISITION
PROBLEM

2.1 Domain Knowledge

To support intelligent tutors for procedural tasks, Diligent ac-
quires three types of domain knowledge: (1) task models, which
describe domain procedures, (2) operators, which model the pre-
conditions and effects of domain actions, and (3) linguistic knowl-
edge, which allows a tutor to talk about the domain.

The representation for task models must satisfy two requirements.

First, it must allow the tutor to determine the next appropriate ac-
tion while demonstrating a task or watching a student, even if this
requires adapting standard procedures to unexpected student ac-
tions. Second, it must allow the tutor to explain the role of any
suggested action in completing the task.

To meet these requirements, Diligent uses a relatively standard
hierarchical plan representation to formalize tasks [23]. A task
model includes a set of steps, a set of end goals, a set of order-
ing constraints, and a set of causal links. Each step may either be
a primitive action (e.g., press a button) or a composite action (i.e.,
itself a task). The end goals of the task describe a state the envi-
ronment must be in for the task to be considered complete (e.g.,
“valvel open” or “engine on”). Ordering constraints impose binary
ordering relations between steps in the procedure. Finally, causal
links represent the role of steps in a task; each causal link speci-
fies that one step in the task achieves a particular precondition for
another step in the task (or for termination of the task). For exam-
ple, pulling out a dipstick achieves the goal of exposing the level
indicator, which is a precondition for checking the oil level.

This representation was chosen for its compatibility with rele-
vant prior work. It has proven effective in a wide variety of re-
search on task-oriented collaboration and generating procedural in-
structions [5, 11, 34]. For simulation-based tutoring, Rickel and
Johnson [21] have shown how partial-order planning techniques
can use this task representation to construct and revise plans for
completing a task in the face of unexpected student actions, as well
as dynamically generate explanations for the role of each plan step
in completing the task. The causal links in the representation are
especially important. They support plan revision by allowing the
tutor to determine which task steps are still relevant to achieving the
task’s end goals. They also support explanation generation; the tu-
tor can combine its knowledge of the causal links in the task model
with its knowledge of which parts of the task are still relevant in
order to explain the role of an action in completing the task.

To complement the task models it acquires, Diligent also ac-
quires a set of operators that model the preconditions and effects
of the domain actions in the task models. Task models only spec-
ify those preconditions and effects of task steps that are relevant to
completing the task. In contrast, operators specify all the possible
effects of a domain action, and the required preconditions for each
effect. Like most work on planning, our work focuses on actions
with discrete (rather than continuous) effects.

Finally, to allow the tutor to talk to students, Diligent acquires
linguistic knowledge. Specifically, Diligent currently learns text
fragments for the various elements of its ontology (e.g., tasks, steps,
and goals); these can be used with domain-independent text tem-

plates to support natural language generation during tutoring. In
the future, we plan to support the acquisition of more structured lin-
guistic knowledge to support more sophisticated natural language
generation techniques. In the remainder of this paper, we will ig-
nore linguistic knowledge for simplicity.

Some prior systems have focused on methods for acquiring suffi-
cient knowledge for an agent to perform tasks, as opposed to teach-
ing tasks. While learning how to perform tasks and how to teach
tasks are similar problems, an agent that must teach has an extra
requirement: it must be able to explain the rationale behind its task
decisions. Of these prior systems, some only learn reactive rules
that lack sufficient knowledge for generating explanations [3, 8,
18]. Other systems learn representations that would be difficult
to explain [27, 2, 16]. Thus, our target domain knowledge distin-
guishes our work from these prior systems. Of these efforts the
work of Nicolescu and Mataric on teaching robots by demonstra-
tion [16] is closest in objectives, but it assumes that the procedures
are built out of behaviors that have already been specified for the
robot.

2.2 Sources of Knowledge

In simulation-based training, students learn procedural tasks by
practicing them in a simulation of their work environment. The
simulator has a user interface that allows students to perform do-
main actions and see their effects. Diligent exploits the same sim-
ulator to acquire its domain knowledge.

Diligent makes few assumptions about the simulator. First, it
assumes that the human instructor can perform domain actions, so
that the instructor can demonstrate tasks for Diligent. Second, it as-
sumes that Diligent can perform the same actions itself by sending
commands to the simulator; this enables it to experiment with do-
main tasks. Third, it assumes that the simulator will send Diligent
an action observation whenever Diligent or the human instructor
performs an action. The action observation should include the sim-
ulation state in which the action was performed, the action that was
taken, and its effects.' For compatibility with a wide range of sim-
ulators, Diligent assumes that the simulation state is represented as
a set of state variables and their values; an effect is a new value for
a state variable. Finally, Diligent requires the ability to save a state
of the simulator and restore it later, so that it can repeat experiments
from a known state.

Unlike some other systems [19], we do not assume that Diligent
can make arbitrary changes to the simulation state. While the abil-
ity to make arbitrary changes greatly simplifies learning, allowing
the agent to see the effect of each change on an action’s effects,
this ability is impractical for most simulators. Many simulators en-
force a wide variety of constraints among state variables. While
they are able to maintain these constraints for legal domain actions,
they often cannot maintain them in the face of arbitrary changes
to individual state variables. Even if they could, propagation of
these constraints would violate the agent’s desire to make individ-
ual changes.

It may seem as if a computer tutor could simply use the domain
logic in the simulator, rather than acquiring it indirectly by learning
from the simulator. However, this is impractical as a general solu-
tion. A wide variety of simulators exist, each with its own (often
custom) representation. Simulation standardization efforts such as
HLA provide ways to access simulation state data, but do not of-
fer standard representations for simulation logic. Rather than build

'Our current implementation uses STEVE, which acquires action
observations from simulators using a more sophisticated and effi-
cient interface [21], but this simplified interface will suffice for this

paper.



steps in
demonstration
/ o—=>0—>0

identify
dependencies

dependencies task
between steps model

demonstration process
— >

demonstration

initial model | operators

(heuristic)
refine
existing /
operator

version space <—

learning

e

Figure 1: An overview of Diligent’s approach. Arrows indicate
data flow.

tutoring methods that can exploit these different representations, or
build methods that can automatically convert from these represen-
tations into our target representation, our goal is to build general
learning methods that can acquire our target domain knowledge
from any simulator that supports the API described above.

In addition to the simulator, Diligent has a second source of
knowledge: the human instructor. Our research focuses on human
instructors that have domain expertise but not necessarily any abil-
ities to program or formalize knowledge. Thus, teaching Diligent
should be, as much as possible, like teaching another person. The
instructor teaches Diligent by demonstrating tasks in the simula-
tor and by using a GUI to issue commands, directly provide ele-
ments of domain knowledge, answer Diligent’s questions, and re-
view Diligent’s knowledge.

3. INTEGRATING DEMONSTRATION,
EXPERIMENTATION, AND DIRECT
SPECIFICATION

Diligent builds on ideas from a variety of prior systems, but these
prior systems have placed a greater burden on instructors. Some ask
a large number of questions [31, 29, 10, 24], some require a large
number of demonstrations [32, 33, 17], and some require an initial
domain theory [6, 7, 20, 13, 25, 14, 19]. Diligent minimizes the
need for demonstrations, questions, and an initial domain theory
through a novel combination of programming by demonstration,
autonomous experimentation, and direct specification.

3.1 Demonstrations

Diligent begins learning about a procedure through a process of
programming by demonstration [4]. The human instructor issues a
command for Diligent to observe his actions, and then performs the
procedure by taking actions in the simulator. During this demon-
stration, Diligent receives action observation messages from the
simulator, processing them to create operators, and stores the se-
quence of actions as a demonstration.

Diligent records actions as a human instructor executes each step
in the task being learned, noting the state of the simulated environ-
ment before and after each action. For each action observed, as
described in Section 3.2, an operator is created to model the ef-
fects of the action; each step in the demonstration is recorded as an
instance of an operator with a set of particular effects.

By the time the demonstration is complete, Diligent has learned
a sequence of steps that can be used to perform the task. This
provides Diligent with the set of steps required for its target task
model, as well as one possible ordering of those steps; at this point,
as far as Diligent knows, other orderings may also work.

To establish the end goals of the task, the second part of our task
representation, Diligent hypothesizes that likely goals are the final
values of state variables that changed value during the demonstra-
tion. The instructor is then allowed to review this list and remove
goals that are merely side effects of the task.

At this point, Diligent could derive the ordering constraints and
causal links from its operator models, but there would most likely
be errors. During a demonstration, Diligent typically only sees an
action taken under one set of circumstances. This is insufficient to
identify the precise preconditions of operators, which are needed
to identify the ordering constraints and causal links among steps.
To refine how operators model the effects of actions, the system
needs to see the actions performed under different circumstances.
To produce action observations with different preconditions than
seen during the instructor’s demonstration, Diligent experiments
with the task in the simulated world.

3.2 Experimentation

Diligent uses the initial demonstration to generate experiments.
The experiments are conducted by repeating the task once for each
step in the original demonstration. Each time through, Diligent
omits a different step to see how the absence of that step affects sub-
sequent steps. These experiments are a focused way for Diligent to
learn on its own with a minimal amount of background knowledge
of the task and environment.

Diligent learns the preconditions of operators associated with
each action using a version space algorithm [12]. A version space
maintains bounds representing the most specific (s-set) and most
general (g-set) combinations of preconditions possible for each ef-
fect of the operator. The state of the world before each action, and
the changes that occur afterwards, are used to create new opera-
tors and update old ones. To reduce version space memory require-
ments, Diligent uses the INBF algorithm [28] in which the s-set and
g-set are each represented by a single conjunctive condition. Ini-
tially, the s-set is the state before the action and only matches that
state, while the g-set is empty and can match any state. Successful
applications of old operators under new conditions can be used to
broaden the s-set by removing preconditions. Conversely, actions
that fail to replicate the effects of an old operator may be useful in
narrowing the g-set by adding additional preconditions. The com-
bination of the instructor’s original demonstration and Diligent’s
own experiments provide a range of examples of each operator, and
the version space representation represents the conclusions Diligent
has drawn about these operators and any remaining uncertainty due
to insufficient examples.

3.3 Direct Specification

After the system has finished experimenting, it can use the orig-
inal demonstration, the end goals of the task, and its refined opera-
tors to generate a representation of the learned task. Recall that the
record of the demonstration contains the state before and after each
step. Since Diligent associates an operator with each step in the
demonstration, it can use its model of that operator to identify the
preconditions that were required in the state before the step in or-
der to produce the effects that were observed after it was executed.
(Section 3.4 explains how Diligent handles operator models whose
g-set and s-set have not converged.) This allows Diligent to aug-
ment the demonstration to include the preconditions of each step
as well as its effects. Given the initial state, Diligent can then ana-
lytically derive how the initial state and earlier steps establish both
end goal conditions and preconditions for later steps. This allows
Diligent to identify the causal links and ordering constraints of the
task.
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Figure 2: Diligent’s graph of a task model for review by the
instructor.

The instructor can review the knowledge Diligent has learned by
either examining a graph of the task model (e.g., Figure 2) or by
allowing STEVE to demonstrate its understanding of the task by
trying to teach it back to the instructor. During this review, the
instructor can use GUIs to refine Diligent’s task model by adding
or removing steps, ordering constraints, and causal links, as well
as modifying operator effects preconditions. Such modifications
may be necessary if Diligent did not execute an action in a wide
enough variety of circumstances to fully learn the preconditions of
its effects.

3.4 Heuristics for Refining Operators

The g-set and s-set in Diligent’s operator models represent con-
servative, provably correct bounds on the true preconditions (given
the assumption of conjunctive preconditions). When they converge,
Diligent knows the true preconditions. Before they converge, Dili-
gent has a representation of its uncertainty.

In order to derive a task model and display it to the instructor
before the operator models have converged, Diligent must make a
reasonable guess at the true preconditions given the current bounds.
The system addresses this problem by using heuristics to create and
maintain a working set of likely preconditions (h-set). The heuris-
tics are designed to add a small number of preconditions to the g-set
that hopefully cover all or most of the actual preconditions.

The likely preconditions (h-set) are currently identified using two
heuristics:

Earlier steps establish preconditions for later steps. The steps in
a demonstration are related, and the instructor probably has

reasons for demonstrating steps in a given order. A likely
reason is that the state changes of earlier steps establish the
preconditions of later steps. In this case, Diligent uses as
preconditions the values of state variables that were changed
by earlier steps. The system ignores possible preconditions
that were true before the procedure started because only state
variables that change value can differentiate between orders
of steps that achieve the goal state and those that do not.

Focus on state variables that change value. If a step changes a
particular state variable as one of its effects, the previous
value was probably a precondition.

The heuristics are only used to initialize the h-set of each operator.
As Diligent sees additional examples of an operator, the h-set is re-
fined with the inductive version space techniques described above,
so the h-set is guaranteed to lie between the g-set and s-set bounds.

3.5 Example

To illustrate these concepts, we will discuss authoring a very
simple task. Assume that Diligent has no prior knowledge of how
the demonstration’s steps will affect the simulation.

1. The human instructor tells Diligent that he wants to author
a new procedure, and he provides a name (“shut-valves”) to
identify the procedure.

2. The instructor demonstrates the procedure by using the mouse
to manipulate objects in the simulation’s graphical window.
This particular demonstration consists of selecting (i.e., click-
ing on) three valves sequentially: valve1,valve2, and valve3.
When the instructor selects a valve, the valve closes.

3. After the demonstration, the procedure’s goals must be spec-
ified. Diligent hypothesizes that likely goals are the final val-
ues of state variables that changed value during the demon-
stration: (valve1 shut) (valve2 shut) (valve3 shut). In this
case, the instructor verifies that these are the correct goals.

4. Now the instructor tells Diligent to experiment with the pro-
cedure. While Diligent could generate a task model without
experimenting, the task model would contain errors because
Diligent does not yet understand the preconditions of each
step (e.g., preconditions for shutting valve1). The experi-
ments attempt to understand if and how each step depends
on earlier steps. In this example, Diligent will repeat the pro-
cedure twice; the first time it skips step one (closing valve1)
to see the effect on steps two and three, and the second time
it skips step two (closing valve?2) to see the effect on step
three.

To better understand why these experiments are useful, con-
sider the operator that represents shutting valve3. When cre-
ating an operator during the demonstration, Diligent hypoth-
esizes that state changes from earlier steps are likely precon-
ditions (h-set). This is shown in Figure 3. The version space
g-set is empty because no preconditions have been shown to
be necessary, while the version space s-set contains many ir-
relevant conditions. In contrast, the h-set is more focused on
how the demonstration manipulates the simulation’s state.

The demonstration’s three steps are independent and could
correctly be performed in any order. However, because Dili-
gent uses likely preconditions (h-set) to generate the task
model, Diligent initially believes that valve1 needs to be shut
before valve2, and valve2 needs to be shut before valve3.
Diligent’s experiments correct this problem, and, after the



Name: toggle-valve3
Preconditions:
g-set:
empty
h-set:
(valvel shut)(valve2 shut) (valve3 open)
s-set:
Simulation state before shutting valve3
State changes:
(valve3 shut)

Figure 3: The initial operator for shutting valve3

Name: toggle-valve3
Preconditions:
g-set:
empty
h-set:
(valve3 open)
s-set:
Simulation state before shutting valve3, except for
the state of valvel and valve2
State changes:
(valve3 shut)

Figure 4: The final operator for shutting valve3

experiments finish, Diligent can build a correct task model.
Consider the operator for valve3 after the experiments (Fig-
ure 4). Even though there have only been three training ex-
amples (performance of the action in the original demonstra-
tion and the two experiments), the refined operator’s likely
preconditions (h-set) are correct. However, the version space’s
g-set is still empty and useless, and the version space’s s-rep
still contains many unnecessary conditions, but it has been
refined so that it no longer contains conditions for valve1
and valve2 because they have been shown to be irrelevant
when shutting valve3.

3.6 Extensions

To allow Diligent to model more complex procedures and to sup-
port better interaction with the instructor, several extensions to the
above mechanisms have been implemented. One extension is sup-
port for hierarchical task representations, where a subtask is treated
as a single step in a larger task. This allows the reuse of existing
tasks and improves scalability because large, complicated tasks can
be broken into simpler subtasks. An instructor can specify a sub-
task during a demonstration either by defining a new task as a step
in the current procedure or by indicating that an existing task should
be performed at that point.

To treat a subtask as a single step, the internal details of the
subtask are ignored and only its preconditions and effects are con-
sidered by the parent task. To achieve a subtask’s desired effects,
Diligent uses a version of STEVE’s partial-order planning algo-
rithm [21] for deciding how to perform a subtask. Diligent uses
the likely preconditions (h-set) of the subtask’s steps to determine
ordering constraints, causal links and which steps to perform. How-
ever, Diligent will execute all subtask steps that achieve necessary
effects, even if preconditions do not appear to be met, because Dili-
gent’s knowledge of the subtask preconditions might be incomplete
or incorrect.

Besides hierarchical tasks, Diligent also supports information
gathering or sensing actions. A sensing action gathers information
about the simulation’s state without changing it (e.g., looking at a
light). Because sensing actions do not change the state and might
be performed at any time, there needs to be a mechanism to in-
sure that they are performed in the proper context (e.g., look at the
light when the motor is off). For sensing action preconditions, Dili-
gent uses the values of the state variables that have already changed
value in the current task. To record that a sensing action has been
performed in the proper context, Diligent creates internal “mental”
state variables, which are not present in the simulation’s state. To
require that sensing actions are performed, the mental effects are
added to the task’s goals.

The above discussion only mentioned a single demonstration of
each task. However, Diligent allows instructors to provide multiple
demonstrations of tasks. This allows instructors to iteratively refine
task models, correct mistakes, or elaborate on subtasks. However,
multiple demonstrations raise issues of which initial state to use
for each step when deriving causal links and ordering constraints.
Diligent’s algorithms for processing multiple demonstrations, de-
scribed in [1], provide a foundation and are sufficient for the rela-
tively short procedures that we have looked at. Incorporating algo-
rithms for more complicated domains is an area for future work.

4. EVALUATION

Diligent is fully implemented and integrated with a simulation
environment developed independently by our colleagues, and it has
been tested on a variety of tasks for operating the gas turbine en-
gines that propel naval ships. The simulator was implemented by
the USC Behavioral Technology Laboratories using their RIDES
[15] simulation authoring software. The graphics for the simula-
tion environment were developed by Lockheed Martin using their
Vista Viewer software [30]. Diligent, RIDES, and Vista run as sep-
arate processes that communicate by passing messages via a cen-
tral message dispatcher [9]; our current implementation uses Sun’s
ToolTalk as the message dispatcher.

We evaluated Diligent to determine whether it simplifies the job
of authoring procedural knowledge. Since Diligent employs two
techniques to assist instructors, namely demonstrations and exper-
iments, we evaluated their separate contributions in facilitating au-
thoring. Our hypothesis was that both demonstrations and experi-
ments would reduce the effort required by the instructor and result
in more accurate task models. To test the hypothesis, fifteen com-
puter science graduate students were divided into three groups that
authored procedural knowledge differently: group G1 (four sub-
jects) used demonstrations, experiments, and direct specification;
group G2 (six subjects) used only demonstrations and direct speci-
fication; and group G3 (five subjects) used only direct specification.

Two dependent measures were used to assess ease of authoring
and quality of the resulting knowledge base. Edits is the number
of deliberate changes made to the knowledge base (e.g., demon-
strating a step or changing a precondition). Errors is the number of
mistakes in the task model, either missing or spurious steps, order-
ing constraints and causal links. These errors are typically caused
by missing or spurious preconditions and goal conditions. The sum
of the edits and the errors metrics, called total required effort, esti-
mates the total work required to create a correct task model.

For each subject, the evaluation covered two consecutive days.
The subjects were trained for approximately 2 hours the first day
and had a 30 minute review on the second day. After training, the
subjects authored two machine maintenance procedures (procl and



Edits Errors Total Effort
Mean | std | mean | std | Mean | Std
Gl:procl 10 2 11 1 20 | 4
G2:procl 35| 13 35| 14 70 | 1
G3:procl 38 8 53 1 9 | 9
G1:proc2 9 2 15 6 24 | 6
G2:proc2 17 6 16 1 32|17
G3:proc2 26 4 18 | 10 44 | 13

Table 1: Comparison of the means and standard deviations for
the three groups (G1,G2,G3) for both procedures (procl and
proc2).

proc2) of differing complexity, proc1 the more complex of the two.”
Both procedures were authored with an initially empty knowledge
base. While a subject was authoring, the system collected data
about his activities. Afterwards, the resulting task models were
manually compared against the desired task models. When author-
ing each procedure, subjects were given a time limit, which many
subjects reached. Reaching the time limit was likely to reduce the
edits and increase the number of errors.

The authoring was an iterative, multistage process. Subjects
were given functional descriptions of the procedures that gave them
enough information to reconstruct the formal details (e.g., steps,
ordering constraints, and causal links) without specifying them di-
rectly. After studying the functional descriptions to understand the
procedures, they used Diligent to specify the steps through either
demonstrations (G1 and G2) or direct specification (G3). After
demonstrating, G1 subjects could refine the initial task model by
asking Diligent to experiment with the demonstration. All subjects
could then edit the task models and test them with the STEVE tu-
tor. The process was iterative because subjects could add more
steps, experiment again, perform additional editing, and retest the
task models.

The results are shown in Tables 1 and 2. Because of the limited
number of subjects, the statistics are less important than the trends
they suggest. First, consider the effect on edits. For proc2, the
groups were significantly different (ANOVA) and group G2 (only
demonstrations) is significantly better than G3 (only direct specifi-
cation). Next, consider errors. For procl, the groups have a signif-
icant difference (ANOVA) for both errors of omission (.001 prob-
ability)* and total errors. For errors of omission on procl, group
G2 is significantly better than G3. Finally, consider total effort.
Both procedures have significant ANOVA for total effort, and for
procl, group G1 (experiments) is significantly better than G2 (only
demonstrations). Overall, though, the effects with the complex pro-
cedure, procl, are much greater than they were for proc2, suggest-
ing that Diligent’s assistance is most beneficial with complex pro-
cedures that have significant opportunities for error.

The results suggest that demonstration and experimentation both
played a role in improving the quality of the task models and re-
ducing the work required to create them. Task models acquired
through demonstrations typically contained spurious elements that
the instructors then needed to delete; however it was easier for them
to recognize spurious elements than to notice when elements were
missing, as group G3 was required to do. Experimentation elim-

2The procedures involve restarting a motor after it was shut down
by either high levels of condensation or high air pressure, respec-
tively. See [1] for full details.

3Errors of omission are not directly shown in tables 1 and 2, which
show an error metric that includes both errors of omission and com-
mission.

Procl Proc2
Edits | Errors | Total | Edits | Errors | Total
effort effort
ANOVA 08 03 | .003 001 81 .02
G1,G2 1 .1 | .008 08 99| 4
G2,G3 96 2| .08 03 812
G1,G3 1 03 | .003 001 81 .02

Table 2: Comparison of the variance between the three groups
(G1,G2,G3). ANOVA indicates the probability that the vari-
ance is random. G1,G2 and G2,G3 indicate the probability that
the difference between the two groups is random (Scheffé’s si-
multaneous confidence intervals). G1,G3 is shown for compar-
ison but was not part of the experimental design.

inated many of the spurious elements, further reducing the effort
involved. These effects were most prominent in the more complex
procedure containing many elements.

5. CONCLUSIONS AND FUTURE WORK

This paper has described a method to enable automated agents to
acquire procedural skills through interaction with human instruc-
tors. The method exploits the structure and behavior of the simu-
lation environment, by observing the effects of procedures on the
state of the simulation. It thus takes advantage of infrastructure that
must be created in any case, since agent-enhanced simulation en-
vironments require interactive simulations that the agents are able
to observe and interact with. Demonstration and experimentation
provide opportunities to employ machine learning techniques to re-
duce the effort required to author procedural knowledge. The agent
is able to acquire a significant amount of knowledge from a small
number of demonstrations, and the human instructor can further
refine the agent’s knowledge through interactive testing and direct
specification.

This method is best suited for authoring procedural skills where
the primary focus of the procedure is to achieve some desired effect
in the virtual world, and where the consequences of actions are
readily observed. Not all procedural skills fit this description. For
example, we have chosen not to apply the Diligent method to the
acquisition of clinical procedures for the Adele pedagogical agent
[26]. Although diagnostic procedures in medicine have sequences
of steps, the rationales for the steps are often the conclusions that
they permit about the patient’s condition rather than the effects they
have on the patient. Furthermore, any effects on the patient are
likely to be indirect and not immediately discernible. Diligent’s
experimental method is of more limited value in domains such as
this, although demonstrations might still perform a useful role in
describing procedures.

Although Diligent’s method is influenced by human instructional
dialog, the structure of interactions with Diligent is still very differ-
ent from interactions between human tutors and students. Human
tutors do not simply demonstrate procedures; they combine their
demonstrations with explanations of what they are doing and why.
Learners are able to ask questions, and decide what is an appro-
priate time to ask such questions. We believe that a fruitful area of
future research would be to find ways of patterning interaction with
Diligent so that it is closer to human tutorial interaction. Diligent’s
current capabilities provide a foundation to support such interac-
tions.
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