

Learning via Gradient Descent in Sigma

Paul S. Rosenblooma,b (rosenbloom@usc.edu), Abram Demskia,b (ademski@ict.usc.edu),
Teawon Hanc (teawon.han@gmail.com) & Volkan Ustunb (ustun@ict.usc.edu)

aDepartment of Computer Science and bInstitute for Creative Technologies
12015 Waterfront Dr., Playa Vista, CA 90094 USA

cDongil-highvill apt 309-1503, suji-gu, shinbong-dong, yongin-si, gyeonggi-do, South Korea

Abstract

Integrating a gradient-descent learning mechanism at the core
of the graphical models upon which the Sigma cognitive
architecture/system is built yields learning behaviors that span
important forms of both procedural learning (e.g., action and
reinforcement learning) and declarative learning (e.g.,
supervised and unsupervised concept formation), plus several
additional forms of learning (e.g., distribution tracking and
map learning) relevant to cognitive systems/modeling. The
core result presented here is this breadth of cognitive learning
behaviors that is producible in this uniform manner.

Keywords: Cognitive architecture, graphical models,
learning, gradient descent.

One of the key hypotheses investigated during Soar’s early
years was that a simple learning mechanism – chunking –
when integrated into an appropriate architecture could yield
a general learning mechanism capable of acquiring the
diversity of knowledge required by a cognitive system
(Laird, Rosenbloom & Newell 1986). Although this proved
to be a bridge too far – with Soar later to incorporate
additional reinforcement, episodic and semantic learning
mechanisms (Laird, 2012) – much was learned in exploring
this hypothesis over the years (Rosenbloom, 2006).

Despite the limitations eventually evident in Soar, the
drive towards general learning mechanisms in cognitive
architectures/systems remains appealing. To the extent it is
feasible, it yields deeper and more elegant theories of
intelligent behavior with broader scientific reach (Deutsch,
2012). Here we report results from a somewhat more
modest such effort that, like Soar, is based on integrating a
simple learning mechanism into an appropriate architecture;
however, the particular mechanism here – a local, online
variant of gradient descent – is quite different from
chunking, and is integrated into a hybrid mixed architecture
called Sigma (Σ). The results are interestingly different
from those obtained with chunking in Soar.

Sigma is a nascent cognitive system – an integrated
computational model of natural and/or artificial intelligent
behavior – that is based on a novel cognitive architecture.
Its development is driven by three general desiderata: grand
unification (uniting the requisite cognitive and non-
cognitive aspects of embodied intelligent behavior);
functional elegance (exhibiting a broad set of capabilities
while remaining fundamentally simple and theoretically
elegant); and sufficient efficiency (behaving rapidly enough
for anticipated applications). The results presented here
predominantly concern functional elegance.

Past work on Sigma, although mostly under the more
generic name of a graphical cognitive architecture, has
spanned memory, problem solving, decisions, mental
imagery, perception, localization, and natural language.
Learning is a more recent focus, with the first published
work covering reinforcement learning (RL) (Rosenbloom,
2012). In compliance with functional elegance, the core
results demonstrated RL in a 1D grid task without requiring
the addition to the architecture of an explicit RL
mechanism. The results instead arose from gradient-descent
learning, as investigated further here, plus Sigma’s overall
generality in representation and processing.

Even at this relatively early stage in the development of
learning in Sigma, the RL work showed the acquisition, via
a single simple learning mechanism, of reward functions,
discounted future utilities, Q values and action models
(although to learn action models an additional architectural
change was needed to enable simultaneous representation of
successive states in working memory). RL and action
modeling are both classical forms of procedural learning,
but the work also demonstrated forms of distribution
tracking, of rewards and utilities. Further investigation has
shown that the same mechanism can also yield forms of
declarative learning, including supervised and unsupervised
concept formation, over both standard datasets and natural-
language subtasks such as word sense disambiguation
(WSD) and part of speech (POS) tagging. It can also yield
other important learning behaviors, such as the intertwining
of map learning with localization that is at the heart of
simultaneous localization and mapping (SLAM).

The primary claim in this article is not of a general
learning mechanism in the sense originally sought with
Soar, but that much can be learned about what is possible
when a simple learning mechanism – in this case one based
on local, online, gradient descent – is integrated deeply into
an appropriate architecture (Sigma). The focus is not on the
details of the learning mechanism itself, nor on its accuracy
– so we have largely eschewed traditional machine learning
evaluations in this article – but on the breadth of learning
this combination enables in a functionally elegant manner.

After introducing Sigma and its gradient-descent learning
mechanism, results will be presented for distribution
tracking, including parts of what will ultimately form
semantic (declarative) learning, plus action (procedural)
learning and map learning. Concept formation (declarative
learning) will then be explored in more detail, and finally
earlier results on RL (procedural learning) will briefly be

reprised. Although not new, the RL (and action learning)
results provide key pieces of the overall breadth of learning.

Sigma
The Sigma cognitive system is constructed in layers, with
the two most critical being: (1) a cognitive architecture that
provides a language of predicates and conditionals; and (2)
a graphical architecture beneath it that is based on graphical
models (Koller & Friedman, 2009). A predicate in the
cognitive architecture is defined via a name and a set of
typed arguments – as in Location(state:state
x:location), where the Location predicate has a
state argument whose type is state and an x argument
whose type is location – with working memory (WM)
containing predicate instantiations that embody the state of
the system. Long-term memory (LTM) is comprised of
conditionals, each of which is defined via a set of predicate
patterns and an optional function over pattern variables.

Conditionals provide a deep combination of rule systems
and probabilistic networks. Conditions and actions are
patterns that behave like the respective parts of rules,
providing the forward momentum characteristic of
procedural memory. Condacts are patterns that support the
bidirectional processing that is key to probabilistic
reasoning, partial matching, constraint satisfaction and
signal processing. Functions specify relationships over
conditional variables that may be hybrid (discrete and/or
continuous) and mixed (probabilistic and/or symbolic).

Figure 1, for example, defines a probabilistic transition
function for how a robot’s actions affect its location in a 1D
grid. It comprises: a condition over Location (as defined
above) that matches to the distribution in WM over the
current location via (italicized) variables for the state and
the current location; a condition over Selected that
matches to the selected operator; a condact over the next
location; and a uniform (pre-learning) function over the 8
possible next locations (nx) that defines their probabilities
given the current location (x) and operator (o). The stars
(*) denote that the constant .125 applies to the entire domain
spanned by the three variables.

Sigma’s core cognitive cycle consists of accessing LTM
until quiescence and then: (1) deciding on changes to WM;
and (2) learning changes to LTM. Learning at present is
limited to modifying the functions in conditionals, with no
mechanisms yet incorporated for structure learning.
Episodic learning extends temporally organized functions
based on changes to WM. Gradient-descent learning
improves the alignment of functions to the system’s
experience. The focus in this article is on gradient descent.

Beneath the cognitive architecture is the graphical
architecture, which is built in particular from factor graphs
– undirected bipartite graphs of factor and variable nodes –
and the summary product message-passing algorithm
(Kschischang, Frey & Loeliger, 2001). At this layer the
cognitive cycle maps to a graph-solution phase that
supports LTM access, followed by a graph-modification
phase that yields
decisions and learning.
Predicates and
conditionals in the
cognitive architecture
compile down into
factor (square) and
variable (circle) nodes,
plus links, at this layer
(Figure 2). Conditional
compilation is based on
a generalization of the
Rete algorithm (Forgy,
1982) that can handle
conditions, actions and
condacts – with
unidirectional message
passing implicated for
the former two and
bidirectional message
passing for the latter –
plus additional nodes
for functions. The
alpha (discrimination)
and beta (join) networks
in Sigma are generalizations of those in Rete, with the
gamma network added for functions.

The contents of the WM and function nodes, plus all of
the messages passed around in the graph, are themselves
generalizations of Rete’s symbolic tokens. In particular,
they are piecewise-linear functions – rectilinear arrays of
multidimensional regions each of which has its own linear
function (Figure 3) – that can approximate arbitrary
continuous functions and be restricted appropriately to yield
both discrete and symbolic functions (Rosenbloom, 2011).
Rete’s standard notions of constant tests and variables have
also been generalized in Sigma. Filters are piecewise-linear
generalizations of constant tests. Affines enable transforms

over variables.
Sigma’s gradient-

descent mechanism
is implemented at
this graphical layer.
Based on ideas in
(Russell, Binder,
Koller & Kanazawa,
1995) for Bayesian
networks, a message
into a factor node for
a conditional

CONDITIONAL Transition
Conditions: Location(state:s x:x)
 Selected(state:s operator:o)
Condacts: Location*Next(state:s x:nx)
 Function(x,o,nx): .125<* * *>

Figure 1: Conditional for a 1D transition function.

Figure 2: Factor graph for
conditional with (left to right) 2

conditions, 1 condact, and 2
actions; plus a function (top).

Figure 3: Bivariate function as a
2D array of linear regions.

function can be seen as providing feedback to that node
from the rest of the graph that induces a local gradient for
learning. Although Sigma uses undirected rather than
directed graphs, the directionality found in Bayesian
networks can be found at factor nodes when one of the
variables is distinguished as the child – indicated by the
underscoring of nx in Figure 1 – that is conditionally
dependent on the other parent variables. We have also
modified the original batch algorithm to learn incrementally
(online) from each message as it arrives.

Consider the abstracted factor graph in Figure 4, which
shows just the key factor nodes for a (naïve Bayes) concept-
based semantic memory comprised of six predicates – for
the concept and the five features (two of which are Boolean,
and one each that is symbolic, discrete and continuous) –
plus one conditional for the prior distribution on the concept
and five conditionals for the conditional probabilities of the
features given the concept (Rosenbloom, 2010). Each
predicate yields a WM node (lightly shaded) and each
conditional yields a function node (dark). These are
connected via join nodes (medium) in the beta network.

Memory access occurs in this graph by message passing.
Suppose evidence is provided, by specifying initial values in
the corresponding WM nodes, that an object is alive and has
four legs. Messages from these two nodes are combined
(via product) with the conditional probability distributions
sent from the associated function nodes, and the feature
variables are then summarized out (via integration) to yield
messages concerning the concept. At the concept’s join
node, these messages are multiplied, along with the
concept’s prior distribution (from its function node), to yield
a posterior distribution over the concept. In the case at
hand, given the distributions provided, this yields a certainty
(probability of 1) that the object is a dog. This result
bounces back along the bidirectional links, combining with
the conditional probability distributions for the features at
the join nodes to yield predicted distributions at the WM
nodes for the unspecified features; in this case that the
object weighs 67 lb. and is mobile and brown.

Gradient-descent learning occurs after memory access has
completed, based on the messages arriving at the function
nodes rather than the WM nodes. Consider a fully specified
supervised training trial, in which values are provided for
the concept and all five of the features. Memory access
yields the same kinds of messages just described, albeit with
different contents; and the message that ultimately arrives
back at a feature’s (or the concept’s) function node reflects a
posterior distribution that is determined by the evidence in
its WM node and the combined effect of what is in all of the
other WM and function nodes.

How this combined effect is computed depends on the
conditionals that define the graph structures that connect the
WM and function nodes. The result is similar to that
achieved via backpropagation in neural networks – where
the structure of LTM both produces behavior and defines a
set of dependencies for use in learning – but without a
separate backpropagation phase, because the necessary
messages are already provided by the bidirectionality of the
summary product algorithm. There is also an analogy to
chunking in Soar, where the structure of LTM both drives
performance and yields dependencies for use in learning,
but again without a separate dependency analysis.

Given the incoming message, Sigma first normalizes and
smooths it before multiplying it by a learning rate parameter
and adding the result to the existing function.

Distribution Tracking
The simplest form of learning supported in this manner is
tracking the frequency with which different variable values
are experienced over time. Figure 5, for example, shows a
conditional defined via one condact and a function
(initialized to uniform) that enables learning a distribution
over four categories, here drawn from {walker, table, dog,
human}. Given evidence, such as that the current category
is table, messages proceed from WM to the function’s factor
node that yield a bump in the function’s value for table.
Without evidence, a uniform message occurs that leaves the
function unchanged. After sufficient evidence, the
conditional function should approximate the external
distribution. For example, in a sample run with 10K
examples, where the desired distribution over the four types
was <.1, .2, .3, .4> and the actual distribution was <.1005,
.1989, .2972, .4034>, the learned distribution was <.1091
.1985 .3027 .3897>.

The astute reader may have guessed that this conditional
is the same as the one already implicitly mentioned in the
semantic memory example, and would be right. Similar
conditionals produce tracking of conditional probabilities,
such as for alive given concept (Figure 6). When applied to
NL POS tagging for 425 words, such conditional-
probability learning predicts the most common tag for each

Figure 4: Abstraction of semantic memory graph.

CONDITIONAL Concept-Prior
 Condacts: Concept(value:c)
 Function(c): .25<*>

Figure 5: Conditional for uniform category prior.

word. With a training set of 25,332 instances, this yields
90.3% correct on a test set of 5,138 instances; the same
correct percentage as achieved when the baseline
conditional probabilities are computed outside of Sigma.

As demonstrated in (Rosenbloom, 2012), this same form
of learning is also capable of acquiring action models for a
simulated mobile robot in a 1D grid task, given the more
complex conditional in Figure 1. Figure 7 shows another
example from RL, for tracking projected future utilities of
states. What differs here of interest is that the evidence for
learning, rather than coming directly from outside
experience, is computed internally from learned functions;
in particular, the reward and future utility predicted for the
next state, with this all ultimately grounding out in evidence
for rewards. This ability to internally compute evidence for
variables, and to use one learned function in computing the
evidence for another, is one of the benefits of learning
within a cognitive system/architecture.

If the evidence is uncertain, learning must cope with
distributions. Because Sigma’s function representation is
hybrid and mixed it is able to represent both discrete and
continuous distributions. The learning algorithm itself is
based on the relationship between a factor function and a
message, both of which are represented in this manner, so
the generality needed for learning from distributions already
exists. Sigma can potentially handle anything from a single
correct value to a uniform distribution that reflects a
complete lack of knowledge, to arbitrary points in between.

This generality is leveraged via the conditional in Figure
7 to learn projected utilities, but it also enables, for example,
learning a map that relates perceived objects to their
locations in an uncertain world. In earlier work, Sigma was
shown capable of localizing a simulated robot in a discrete
1D corridor (Chen et al., 2011). But in that work the map
was fixed and known ahead of time by the system. In
SLAM – where location evidence for map learning is
computed from the perceived object and the map while the
map is being learned – the map is initially set to a uniform
distribution over the four perceptible objects {wall, door1,
door2, none}, as in Figure 8, and then refined via
experience. In an example run in a 1D corridor with objects
assigned to six discrete locations as [wall door1 none none
door2 wall] and noise in both object perception and the
transition function – so that the simulated robot can neither

be sure of where it is or what it is seeing – it first predicts
the correct object in each location after 138 moves (Figure
9, top). However, performance is fragile at this point, with
some of the decisions being close calls that may be
(incorrectly) reversed by later learning. After 1000 moves,
the map is much crisper (Figure 9, bottom).

Concept Formation
Concept formation may occur in either a supervised or an
unsupervised manner. In supervised concept formation
evidence is provided during training for both the features
from which prediction is to occur and the result that is to be
predicted. The distribution tracking in the previous section
demonstrates one form of supervised learning, where
learned conditional probabilities enable the child to be
predicted when the parent is known. The focus of this
section is instead on more general generative learning –
where a full joint distribution is learned over the data – in
the context of a naïve Bayes classifier; followed by an
extension to unsupervised learning.

CONDITIONAL Alive-Concept
 Condacts: Concept(value:c)
 Alive(value:a)
 Function(c,a): .5<* *>

Figure 6: Semantic memory conditional for uniform
conditional probability of alive given category.

CONDITIONAL Object-Location-Map
 Conditions: Object(value:o)
 Condacts: Location(x:x)
 Function(x,o): .25<* *>

Figure 8: Map conditional for uniform probability of
object given location in discrete 1D corridor.

CONDITIONAL Future-Utility
Condacts: Projected(x:x value:u)
Function(x,u): .1<* *>

Figure 7: Grid conditional for uniform future utility.

Figure 9: Map learned based on noisy perception and
action models after 138 and 1000 moves.

The supervised classifier learns a prior distribution for the
object category plus conditional distributions for object
features given the category. These are all learned in concert
by distribution tracking; however, together they yield a
classifier that is much more than just a tracked distribution.
It can, for example, predict an object’s category from
evidence for any subset of its features, and flip this back
around to predict values for unspecified features. Given that
Sigma’s semantic memory was earlier defined in terms of
just such a naïve Bayes classifier, this work effectively
demonstrates how gradient descent yields a mechanism for
learning (the nonstructural aspects of) semantic memory.

Learning such naïve Bayes classifiers has so far proven
adequate for sample datasets from the UCI ML repository
and for basic conjunctive and disjunctive concepts. It has
also yielded a classifier for word sense disambiguation. In
preliminary experiments over the 30 most common words
from the Senseval-3 database, with the same 449 examples
used in both training and testing,1 the baseline classifier –
for the most frequent word sense – achieves 71.9% correct.
A learned naïve Bayes classifier that includes for each word
to be disambiguated features for 50 commonly co-occurring
words, and which receives evidence about those that do co-
occur in the example sentences, yields 76.8% correct. An
extended classifier with an added feature for the correct part
of speech achieves 78.0%. Over 746 examples for 6 words
from the larger Semcor database, the baseline is 35%
correct, a co-occurrence classifier yields 65.5% correct, and
an extended classifier yields 70.4% correct.

Less impressively, a learned naïve Bayes classifier for
part of speech (POS) tagging, where features correspond to
the word to be tagged and the words just before and after it,
was no better than the baseline accuracy – 90.3% – of
predicting the most common tag. One simple alternative
that did show improvement with respect to the baseline
eliminated the prior on the tag and reversed the direction of
the conditional distributions to be learned, yielding a direct
tri-feature approach, and 92.8% correct over the test set.

A bigger issue with the naïve Bayes approach is that, as
with one-layer neural networks, it fails on exclusive or
(XOR). Gradient descent does support learning over hidden
layers, since it applies to arbitrary Bayesian networks. But,
rather than explicitly introducing a hidden layer into
supervised learning, we’ll shift instead to unsupervised
learning, which implicitly introduces a hidden layer in the
process of removing the overall focus on concept learning.

Unsupervised learning uncovers regularities in data, often
via similarity-based clustering of examples. It can yield
concept learning if the concept is added as a feature, even
when it is not distinguished from the other features. In
Sigma, this does not require a different learning algorithm,
or even learning a non-naïve-Bayes structure (except that
there is no prior is eliminated). What is different is that the
category becomes a feature, while a dummy variable, whose

1 Because the results here focus on the breadth of learning

behaviors rather than on learning accuracy per se, reusing training
data during testing is not the problem it would be otherwise.

domain size determines how many clusters are used, is
added in the category position (Figure 10). Neither a prior
nor evidence is provided for this dummy variable. The
conditional probabilities are initialized with random rather
than uniform distributions, so that the symmetry otherwise
inherent across clusters can be broken during learning.

This form of unsupervised learning falls within the same
class of mechanisms as expectation maximization, but is not
quite identical to it. Evidence for feature values engenders
distributions over the available clusters, which bounce back
to yield expectations for the feature values. Learning occurs
for the conditional probabilities of features given clusters, in
service of aligning expected and actual feature values.
Although such unsupervised learning requires more training
on problems for which supervised learning works, it has the
benefit of being able to learn more complex data sets, such
as ones that embody XOR. In neural network terms, the
dummy variable provides a hidden layer between the
features and the category, with one hidden unit per cluster,
making it possible to learn these more difficult functions.
For XOR, after 30 passes over the four training examples, a
correct unsupervised classifier is learned (Figure 11).

Figure 10: Semantic memory graph for unsupervised
learning.

Figure 11: Learned conditional probabilities of x, y and z
being true given the cluster C (in 0-4) for z = XOR(x, y).

Reinforcement Learning
Reinforcement learning in Sigma is covered in more depth
in (Rosenbloom, 2012), but is worth revisiting briefly here
because of how it exhibits more complex learning behaviors
from gradient-descent over ten conditionals with four
learned functions (including action models). The reward is
learned from external evidence via distribution tracking.
Action model learning is based on the conditional in figure
1. The projected (discounted) future utility and the Q values
are also learned in a direct manner, but based on internally
computed evidence. The conditional that is key to this
consults the current location and operator, plus distributions
over the reward and projected utilities for the (predicted)
next state – all of which distributions are learned – in
providing evidence for the Q values and the projected utility
in the current state (Figure 12). Affine transforms are used
to add the projected utility to the actual reward (via
translation) and to discount the result by .95 (via scaling).

Conclusion and Future Work
What makes this approach to learning particularly attractive
architecturally is that it is: (1) local, depending only on the
message back into a factor node to determine how to update
the node’s function; (2) incremental – i.e., online – as is
appropriate in a cognitive architecture/system; and (3)
applicable to any function in the graph with a child variable.
A simple learning mechanism can thus be integrated deeply,
simply and pervasively into Sigma to yield a range of useful
learning behaviors; including forms of procedural
(reinforcement and action) and declarative (supervised and
unsupervised concept) learning, and map learning (in the
context of SLAM). The approach works for both symbolic
and numeric data, and for both discrete and continuous
distributions; and it works across a range of application
domains, from standard toy problems, to larger scale NL
classifications, to (simulated) mobile robot problems.

Still, much remains to be done. First, a more
sophisticated approach to learning continuous functions is
required. Such functions are currently learned in the same
manner as discrete functions, without using summary
parameters that would enable generalizing across domain
elements. Second, learning here involves two parameters –
learning rate and smoothing threshold – but an architecture
either must not have parameters, or it needs values that are
usable everywhere or that can automatically be tuned to new
problems. Third, the algorithm needs to handle undirected

factor functions; i.e., those without child variables. Fourth,
true structure learning is required. Fifth, and finally, follow
up is needed on how much further this approach can extend.

Acknowledgements
This work has been sponsored by the U.S. Army, the Air
Force Office of Scientific Research, and the Office of Naval
Research. Statements and opinions expressed do not
necessarily reflect the position or the policy of the United
States Government, and no official endorsement should be
inferred.

References
Chen, J., Demski, A., Han, T., Morency, L-P., Pynadath, P.,

Rafidi, N. & Rosenbloom, P. S. (2011). Fusing symbolic
and decision-theoretic problem solving + perception in a
graphical cognitive architecture. Proceedings of the 2nd
International Conference on Biologically Inspired
Cognitive Architectures (pp. 64-72). Amsterdam: IOS
Press.

Deutsch, D. (2011). The Beginning of Infinity: Explanations
that Transform the World. London, UK: Penguin Books.

Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence, 19, 17-37.

Koller, D. & Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques. Cambridge, MA:
MIT Press.

Kschischang, F. R., Frey, B. J. & Loeliger, H.-A. (2001).
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47, 498-519.

Laird, J. E. (2012). The Soar Cognitive Architecture.
Cambridge, MA: MIT Press.

Laird, J. E., Rosenbloom, P. S. & Newell, A. 1986.
Chunking in Soar: The anatomy of a general learning
mechanism. Machine Learning, 1, 11-46.

Rosenbloom, P. S. (2006). A cognitive odyssey: From the
power law of practice to a general learning mechanism
and beyond. Tutorials in Quantitative Methods for
Psychology, 2, 43-51.

Rosenbloom, P. S. (2010). Combining procedural and
declarative knowledge in a graphical architecture.
Proceedings of the 10th International Conference on
Cognitive Modeling (pp. 205-210).

Rosenbloom, P. S. (2011). Bridging dichotomies in
cognitive architectures for virtual humans. Proceedings of
the AAAI Fall Symposium on Advances in Cognitive
Systems. Menlo Park, CA: AAAI Press.

Rosenbloom, P. S. (2012). Deconstructing reinforcement
learning in Sigma. Proceedings of the 5th Conference on
Artificial General Intelligence (pp. 262-271). Berlin:
Springer.

Russell, S., Binder, J., Koller, D. & Kanazawa, K. (1995).
Local learning in probabilistic networks with hidden
variables. Proceedings of the 14th International Joint
Conference on AI (pp. 1146-1152). San Mateo, CA:
Morgan Kaufmann.

CONDITIONAL Backup
 Conditions: Location(state:s x:x)
 Selected(state:s operator:o)
 Location*Next(state:s x:nx)
 Reward(x:nx value:r)
 Projected(x:nx value:p)
 Actions: Q(x:x operator:o value:.95*(p+r))
 Projected(x:x value:.95*(p+r))

Fig. 12: Conditional for backing up rewards/utilities.

