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Abstract. An important characteristic of a virtual human is the ability to direct 
its perceptual attention to entities and areas in a virtual environment in a 
manner that appears believable and serves a functional purpose. In this paper, 
we describe a perceptual attention model that integrates perceptual attention 
that mediates top-down and bottom-up attention processes of virtual humans 
within complex virtual environments. 

1   Introduction 

In a landscape of ever increasing rendering and animation capabilities there has been 
an accompanying drive for realistic interaction with intelligent virtual humans. An 
important characteristic of a virtual human is the ability to direct its perceptual 
attention to objects and locations in a virtual environment in a manner that appears 
plausible as an overt behavior and also serves a functional purpose. Not only must 
virtual humans pay attention to objects related to the tasks they are performing, but 
they must also be able to cope with sudden events that demand attention. It is often 
the case that the amount of information in the virtual environment far exceeds the 
processing abilities of the virtual human. In fact, only a small fraction of sensory 
information can be fully processed and assimilated into the cognitive model.  This 
situation has been exacerbated as the fidelity of the graphical information in virtual 
scenes has increased�—there is a growing lag in the ability of virtual humans to cope 
with the amount of environmental data presented to them. Fully simulated virtual 
humans experience similar cognitive loads as humanss, especially in complex, shared 
virtual environments. One might even expect our digital counterparts to make the 
same mistakes as we do and might reject incorrect behavior however logical it is 
considering the circumstances. A large amount of interaction is negotiated through a 
common experience and understanding of our physical environment. If artificial 
intelligence progresses to the point where an agent can make human-like decisions, it 
will still need to make these decisions based on what it perceives to be its 
environment. Greater power in rendering capabilities expressed in polygons per 
second can enhance our own visual experience but might not be beneficial to an agent 
and can even downgrade its performance. A solution to this dilemma can be found in 
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the human realm. Spatial cognition and especially spatial attention has allowed 
humans to make sense of the sensory storm that greets us when wake up in the 
morning.  

Computational models of perceptual attention generally fall into one of two camps:  
top-down and bottom-up.  Biologically inspired computational models [4,9] typically 
focus on the bottom-up aspects of attention, while most virtual humans [1,2,3,5,13,15] 
implement a top-down form of attention. Bottom-up attention models only consider 
the image information (e.g, color, intensity, orientation, and motion) without taking 
into consideration saliency based on tasks or goals.  As a result, the outcome of a 
purely bottom-up model will not consistently match the behavior of real humans in 
certain situations.  Models like Itti�’s [9] can predict the bottom-up salience of features 
in an image at any point in time, but such a model is not sufficient to predict where to 
actually look.  Humans are generally task-oriented, and it is safe to say that a great 
deal of one�’s time is spent looking at objects related to the current task. 

Modeling perceptual attention as a purely top-down process, however, is also not 
sufficient for implementing a virtual human. A purely top-down model does not take 
into account the fact that virtual humans need to react to perceptual stimuli vying for 
attention. For instance, Chopra-Khullar and Badler [2] built one of the most extensive 
models to date, a psychologically motivated framework for generating the visual 
attending behaviors of an animated human figure. Their implementation generates 
believable animation behaviors for a virtual human performing a fairly scripted set of 
tasks, but it is not clear how the model would fare in a much more dynamic 
environment where the need to react to events in the world is much higher than the 
virtual world they describe. Top-down systems typically handle reaction to perceptual 
stimuli in an ad hoc manner by encoding special rules to catch certain conditions in 
the environment.  The problem with this approach is that it does not provide a 
principled way of integrating the ever-present bottom-up perceptual stimuli with top-
down control of attention. 

In this paper, we present a computational model of perceptual attention for virtual 
humans. This model extends a prior model of perceptual resolution [6,7] based on 
psychological theories of human perception. This model allows virtual humans to 
dynamically interact with objects and other individuals, balancing the demands of 
goal-directed behavior with those of attending to novel stimuli. This model has been 
implemented and tested with the MRE Project [8]. Based on the findings with spatial 
cognition in the MRE environment a self-contained software representation was 
designed termed ASCE (Agent Spatial Cognition Environment) that serves as a 
rapidly configurable sandbox for experimentation and testing with models of 
perceptual attention and spatial cognition. 

2   Modeling Perception in Virtual Humans 

Our virtual humans are implemented in the immersive environment called the Mission 
Rehearsal Exercise (MRE) [8] and in the Agent Special Cognition Environment 
(ASCE).  The virtual humans�’ behavior in MRE is not scripted; rather, it is driven by 
a set of general, domain-independent capabilities. The virtual humans perceive events 
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in the scenario, by interacting with the simulator, reason about the tasks they are 
performing, and they control the bodies and faces of the PeopleShop�™ animated 
bodies to which they have been assigned.  

ASCE allows virtual humans to dynamically interact with objects and other 
individuals, balancing the demands of goal-directed behavior with those of attending 
to novel stimuli. Using ASCE we can extend the semi 3-dimensional representation 
into a full spatial model by taking the inverse of our entity model that represents the 
available space for navigation. 

We have developed a model of perceptual resolution based on psychological 
theories of human perception [6,7] for virtual humans in MRE and ASCE. Hill�’s 
model predicts the level of details at which an agent will perceive objects and their 
properties in the virtual world. He applied his model to synthetic helicopter pilots in 
simulated military exercise. We extended the model to simulate many of the 
limitations of human perception, both visual and auditory.  

2.1   Visual Perception 

As a human has a visual field that extends to around 95 degrees from the center, we 
limited the virtual human�’s visual field of view to 190 horizontal degrees and 90 
vertical degrees so that the virtual human only gets updates that he is currently 
sensing through the field of view (FOV). When the virtual human senses the objects 
in the FOV, it first processes how salient each object is in the respect of size, distance, 
and color. We consider the computational model [11] to compute the visual salience 
of each object that is measured by observing individual visual attributes (e.g., size, 
shape, and color). After computing the visual saliencies of the perceived objects, we 
applied a sigmoid function as a utility function that reduces the degree of salience of 
an object in the respect of angle disparities between the virtual human and the object.  

2.2   Auditory Perception 

Human behavior is very often influenced by auditory inputs that appear to have 
automatic access to the eye control system via the lower levels.  To model auditory 
perception, we estimate the sound pressure levels of objects in the environment and 
compute their individual and cumulative effects on each listener based on the 
distances and directions of the sources. This enables the virtual humans to perceive 
auditory events involving objects not in the visual field of view. For example, when a 
virtual human hears a vehicle is approaching from behind, he can choose to look over 
his shoulder to see who is coming. Another effect of modeling aural perception is that 
some sound events can mask others. A helicopter flying overhead can make it 
impossible to hear someone speaking in normal tones a few feet away. The noise 
could then prompt the virtual human to shout and could also prompt the addressee to 
cup his ear to indicate that he cannot hear. 

Given a set of visually or aurally perceived objects, the agent�’s perceptual model 
updates the attributes of objects that fall in the limited sensory range. At any point in 
time, the virtual human must recognize which object is the most salient among those 
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objects and draw his focus of attention on the object.  The next section describes our 
approach to computing the salience of the objects in the field of view and the 
subsequent behaviors associated with shifting the agent�’s gaze. 

3   Computational Model of Perceptual Attention 

To compute object salience and to control gaze behaviors, we have developed a 
model called Dynamic Perceptual Attention (DPA). Internally, DPA combines entities 
selected by bottom-up and top-down perceptual processes with a decision-theoretic 
perspective and then selects the most salient entity. Remember that this entity can be 
an area in the case of olfactory stimuli. Externally, DPA controls an embodied agent�’s 
gaze not only to exhibit its current focus of attention but also to update beliefs (e.g., 
position) of the selected object. That is, the embodied agent dynamically decides 
where to look, which entity to look for, and how long to attend to the entity. 

3.1   Decision Theoretic Control 

One of the consequences of modeling perception with limited sensory inputs is that it 
creates uncertainty on each perceived object. For instance, if an object that is being 
tracked moves out of an agent�’s field of view, the perceptual attention model 
increases the uncertainty level of the target information of the object that a virtual 
human tries to observe. 

 
Fig. 1. The Information flow of the DPA module 

The information flow of the DPA module is shown in figure 1. Top-down and 
bottom-up processes give provide information to the DPA module in the form of 
tuples that are composed of the following components composed as follows:  
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The priority attribute, objP, is used to indicate the absolute importance of an object, 

whereas the concern attribute, objC, is used to indicate a conflict between the desired 
goal information (objDGI) and the current certainty of information (objCGI). For 
instance, even if a person is given a high priority task, he may not be concerned about 
monitoring objects associated with the task if the task is going well, resulting in less 
frequent observations. If the task goes differently what is predicted, he will increase 
his concern for the task, resulting in more frequent observations. 

By considering both attributes (i.e., priority and concern), our virtual humans 
compute the benefits of attending to objects. Information certainty is one of factors 
that help the virtual human decide which object it has to focus on. To deal with 
certainties of the perceived objects, we have chosen to take a decision theoretic 
approach to computing the perceptual costs and benefits of shifting the focus of 
perceptual attention of the perceived objects. In the next two sections, we will 
describe how to compute the perceptual costs and benefits of shifting the focus of 
perceptual attention. The expected cost is computed by calculating the perceptual cost 
of shifting the gaze to the selected object. The expected benefit is computed by 
considering the value of having acquiring accurate information about the selected 
object. Once a decision has been made, DPA shifts the virtual human�’s gaze to focus 
his perceptual attention on the object that has the highest reward. 

3.2   Computing the Benefit 

To compute the benefit of focusing perceptual attention on an object requires the 
estimated values of object-based information certainty. We consider object-based 
information certainty as a key factor in computing the benefit of shifting the focus of 
attention to the object. The term, object-based information certainty, is used here to 
describe the level of information certainty of an object rendered in the agent�’s mental 
image of a virtual world. Humans determine the desired goal information certainty of 
perceived objects (objDGI) based on their subjective preferences or prediction and 
then make efforts to maintain the current certainty of information (objCGI) within a 
certain specific range of objDGIs,  that is defined as the information certainty 
tolerance boundary (ICTB) in our model). 

Information certainty is dynamic both in space and time and requires stochastic 
functions of time and space to describe its dynamics. If the current certainty of 
information (objCGI) is out of ICTB, we activate one of two kinds of NEEDs: the 
NEED for observation or the NEED for inhibition. The NEED for observation is 
activated if objCGI goes below ICTBlower. The NEED of inhibition is activated as 
objCGI goes over ICTBupper. According to Klein�’s account of the behavior of 
inhibition and observation comes from the concept, the inhibition of return [12], too 
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much information can be a bad thing. , which is the process by which the currently 
attended location or information is prevented from being attended to again and is a 
crucial element of attentional deployment of humans. By modeling the inhibition of 
return, perceptual attention will not permanently focus on the most active salient 
information but will increase the chances of diverting perceptual attention to less 
salient information. 

The orthogonal process model between information certainty and the NEEDs of 
observation and inhibition is shown in figure 2. 

 

 
Fig. 2. The interrelation of Information Certainty and Need 

 
The desired goal information certainty (objDGI) is determined by the priority 

attribute (objP). The information certainty tolerance boundary is set by the concern 
attribute (objC). The higher the concern attribute is, the narrower the length of the 
boundary is. The current goal information certainty of the target object (objCGI) is set 
by top-down and bottom-up processes. If a virtual human cannot retrieve any 
information certainty of the target from top-down and bottom-up processes, it sets 
objCGI as 0. After the values for objCGI and information certainty tolerance 
boundary are set, the virtual human computes the NEED for observation or for 
inhibition on each tuple as follows: 

exp0.1
i

objP

exp
i

objP

 
The NEED tuplei is used as a force that produces a benefit of diverting perceptual 

attention into tuplei. The benefit is computed as follows: 
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Once BENEFIT(tuplei) is computed, it will used with COST(tuplei) as the factor to 
compute REWARD(tuplei) with COST(tuplei). 

3.3   Computing the Cost 

Even if the benefit of drawing attention to one object is higher than the benefits of 
attending to others, the virtual human should not automatically select that object as 
the best one since the cost of shifting the focus of attention must also be considered. 

To compute the cost of shifting perceptual attention from one object to another, we 
consider two sets of factors: physical and social factors. Physical factors include the 
degrees of head and eye movements and distance efficiency. Social factors indicate 
the relative costs of perceptual gaze shifts in social interaction. For instance, it may be 
rude to look away when someone is speaking (high cost of shift), yet it may be very 
important to attend to an unexpected or potentially dangerous event (high cost not to 
shift). 

3.4   Shifting Perceptual Attention 

With the benefit and two sets of cost factors of each tuple, we compute 
REWARD(tuplei) as follows: 

)()()( itupleCOSTitupleBENEFITitupleREWARD . 

After calculating REWARD(tuple) of all tuples, the virtual human selects a tuple 
that has the highest REWARD. If the selected tuple is holding the current focus of 
perceptual attention, the virtual human will keep focus on it. If not, it will divert its 
perceptual attention into the tuple having the highest REWARD. 

The duration of a gaze at an object affects the information certainty level. While a 
virtual human gazes at an object (i.e., overt monitoring), the objCGI increases. 
Likewise, while the object is monitored only in the virtual human�’s memory and 
projection (i.e., covert monitoring), objCGI decreases. Covert monitoring will cause 
the certainty of information to decay over time. 

4   Perceptual Attention within the MRE Scenario 

We implemented dynamic perceptual attention with virtual humans in the immersive 
environment called the Mission Rehearsal Exercise (MRE) [8].  

In MRE, there are three embodied conversational virtual humans �– the sergeant 
(SGT), the mother, and the medic �– and a human participant (lieutenant) in an 
accident site where an Army vehicle has crashed into a civilian car, injuring a boy. 
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The participant then takes on the task of directing the troops to rescue the boy by 
interacting with virtual humans. While the rescue task is proceeding, the mom 
perceives that the troops are moving out of the accident site.  In despair, she stands up 
and cries out for help. Unfortunately, our virtual humans �– the sergeant and the medic 
�– are not aware of the mom�’s outcry, but the human participant is. The system may 
handle this bottom-up form of attention capture in an ad hoc manner by encoding 
special rules to catch certain condition in the environment. However, this approach 
does not provide a principled way of integrating the ever-present bottom-up 
perceptual stimuli with top-down control of attention. 

Traum and Rickel [15] presented an attention layer in a state-of-art model of multi-
party dialogue in MRE, which is organized as a set of dialogue management layers. 
Their attention model is not fully implemented and only (visual) give attention is 
currently fully modeled. Our aim in this section is to extend their attention layer by 
addressing the issue of dynamic perceptual attention (DPA). We controlled the 
sergeant�’s gaze movements with DPA. 

Let�’s assume that the mom cries out for help while the sergeant is interacting with 
the medic to talk about the boy�’s health status. The sergeant�’s auditory perception 
computes how loud the mom�’s outcry is. If the outcry is audible, auditory perception 
assigns the priority in proportion to the loudness of the sound. Since the sergeant has 
never expected the auditory input, he will get the certain level of NEED of the 
auditory input. The auditory perception generates a tuple for the mom�’s outcry as 
follows: 

)_( outcrymom =<objP=0.7,objC=0.0,objDGI=0.8,objCGI=0.0> 
 The task reasoner gives a tuple for the task of interacting with the medic as 

follows: 
(get_info_boy_health_status)=<objP=0.9,objC=0.0,objDGI=0.7,objCGI=0.5> 

The figures for this situation are shown in the figure 3.  
 

)_( ushealthstatboy  )_( outcrymom  
Fig. 3. Information Certainties and NEEDs of (boy_health_status) and )_( outcrymom  

When DPA computes the REWARD of each tuple, the bottom-up auditory stimuli, 
the mom�’s outcry, gets the highest REWARD and then the sergeant diverts his 
attention from the medic to the auditory stimuli. This shift of attention will make the 
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sergeant to recognize that the mom is crying out for help and update the tuple for the 
auditory stimuli as follows: 

)_( outcrymom =<objP=0.7,objC=0.0,objDGI=0.1,objCGI=0.0> 
The recognition of the mom�’s outcry for help makes the sergeant to interact with the 
mom so that the sergeant gets what makes her upset. As the result of this recognition, 
a new tuple is given as follows:  

(get_information_from_mom)=<objP=0.7,objC=0.0,objDGI=0.7,objCGI=0.0> 
The figures for this situation are shown in the figure 4. 

)_( outcrymom  

Fig. 4. Information Certainties and NEEDs of )_( outcrymom  and (get_info_from_mom) 

The tuple for (get_information_from_mom) now gets the sergeant�’s focus of 
attention. While getting information from mom, the sergeant gets certain level of 
information certainty on (get_info_from_mom). 

)_( ushealthstatboy  
Fig. 5. Information Certainties and NEEDs of )_( outcrymom  and (get_info_from_mom) 

If the sergeant understands what she wants, he should think of what he should do to 
soothe the mom. While thinking, the sergeant updates the tuple, 
(get_info_from_mom) and gets the tuple, (boy_health_status), as the next focus of 
attention. The figures for this situation are shown in the figure 5. The sergeant will 
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divert his attention to the medic to update the current state of the medic. As the result 
of thinking, the sergeant decides to say something to the mom such as �“it�’s ok, we are 
staying right now with you. See, we�’ve got the medevac coming right now.�” This 
speech event will make the sergeant to divert the sergeant�’s focus of attention to the 
mom and then the sergeant speaks the utterance as mentioned above. After getting the 
mom�’s proper reaction, the sergeant then shifts his focus of attention back to the 
medic. 

This example illustrates the importance of gaze in acquiring perceptual information 
and monitoring task performance while embedded in the social context of 
conversation. Our aim is to have the sergeant�’s behavior seem appropriate within this 
context, both in terms of behaving human-like and using perceptual gaze to mediate 
between costs and benefits of information updating actions. 

5  Modeling a Virtual Environment with ASCE 

Any artificial environment where synthetic human-like characters represent digital 
life should also contain an artificial form of the complete range of sensory stimuli. 

Within ASCE, where the environment is represented in a discrete fashion, all 
sensory sensations from the agent's perspective are experienced through interacting 
with volumetric sensory entities with varying complexity. In order to facilitate spatial 
perception, we developed a unified sensory oriented environment representation. 
ASCE�’s runtime simulation component analyzes the world geometry and extracts a 
volumetric representation. In essence, every object is fitted with a bounding volume 
with associated salience information, creating a stimulus entity. Doing so transforms 
the geometric model into an existence model, rich with sensory data. This new model 
can also be seen as a 3-dimensional representation of a saliency map [9]. Only cubic 
shapes are used for bounding volumes, much like the approached used by Noser et al 
[10] and Zhang et al [17]. Human perception spans the full spectrum of sensory 
experiences, from tactile sensations to olfactory stimulations. A volumetric approach 
provides a computational model that is faster to analyze and maintain than working 
with the original geometry [17]. Another rationale for this approach is that humans, 
unlike most robotic and agent implementations, do not consider all details of an entity 
relevant for interaction. When entering a room filled with objects with the purpose of 
sitting down at a desk for instance, it is not important what the logo in a trashcan is, it 
is only important to know its general dimensions and relative placement to avoid 
colliding with it. ASCE can represent and process any kind of stimuli provided that 
they are represented as a volume with cubic dimensions [14], out of the entire range 
of stimuli we will focus here on two of them to show how they are represented and 
used. One of the improvements over previous approaches [16,7] of data models for 
artificial sensors is that the inverse of our entity model represents the available space 
for navigation, which we termed the opportunity space. This allows for higher 
navigation fidelity than implementations within MRE. A further enhancement is 
obtained by using spatial attention to only refine those entities that were specifically 
paid attention to. Doing so removes the limitation of having to use a maximum 
observation radius [10] in which to calculate volumetric information. 
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6   Discussion and Future Work  

One of the distinctions between the work described in this paper and other models of 
perceptual attention is the purpose of the model.  In many of the systems we 
reviewed, the purpose of perceptual attention was to make the virtual human behave 
as though it was attending to the surroundings and tasks in a natural way.   In contrast, 
our goal is also to develop virtual humans that can perform tasks, react to 
contingencies, interact with other agents, both virtual and human, plan, and make 
decisions about what to do next or at some future time [6,7]. To accomplish this, we 
have found that perceptual attention is a critically important mechanism for restricting 
the sensory information being processed by the perception module and controlling 
virtual humans to exhibit goal-directed and reactive behaviors.  While the model of 
perceptual attention presented in this paper handles many aspects of behavior 
generation (e.g., gaze movement), there is another factor in the broader scope of 
attention: social attention. In a social situation, perceptual attention may interact with 
social attention since social factors may also change the relative costs of perceptual 
attention shifts. For instance, it may be very rude to look away when someone is 
speaking (high cost of shift), yet it may be very important to attend to an unexpected 
or potentially dangerous event (high benefit to shift). With high utility on either end, 
the choice may be difficult and moreover potentially very costly either way. By 
integrating an efficient social attention model with this model, we believe that the 
model will provide a large potential for generating more socialized behaviors. 
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