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Modeling Human Communication Dynamics

Face-to-face communication is 
a highly interactive process 
where participants mutually 
exchange and interpret verbal 
and nonverbal messages. Com-

munication dynamics represent the 
temporal relationship between these 
communicative messages. Even when 
only one person speaks at a time, other 
participants exchange information con-
tinuously among themselves and with 
the speaker through gesture, gaze, pos-
ture, and facial expressions. The trans-
actional view of human communication 
shows an important dynamic between 
communicative behaviors where each 
person serves simultaneously as speaker 
and listener [9]. At the same time you 
send a message, you also receive mes-
sages from your own communications 
(individual dynamics) as well as from 
the reactions of the other person(s) (in-
terpersonal dynamics) [2]. 

Individual and interpersonal dynamics 
play a key role when a teacher automati-
cally adjusts his/her explanations based 
on the student nonverbal behaviors, when 
a doctor diagnoses a social disorder such 
as autism, or when a negotiator detects 
deception in the opposite team. An 
important challenge for artificial intelli-
gence researchers in the 21st century is 
in creating socially intelligent robots and 
computers that are able to recognize, 
predict, and analyze verbal and nonverbal 
dynamics during face-to-face communi-
cation. This will not only open up new 
avenues for human-computer interac-
tions but create new computational tools 
for social and behavior researchers—soft-
ware able to automatically analyze human 
social and nonverbal behaviors and 
extract important interaction patterns.

CHALLENGES WITH INDIVIDUAL 
AND INTERPERSONAL DYNAMICS
Human face-to-face communication is 
a little like a dance in that participants 
continuously adjust their behaviors 
based on verbal and nonverbal displays 
and signals. Even when observing par-
ticipants individually, the interpreta-
tion of their behaviors is a multimodal 
problem in that both verbal and non-
verbal messages are necessary to a 
complete understanding of human 
behaviors. Individual dynamics repre-
sents this influence and relationship 
between the different channels of infor-
mation such as speech and gestures. 

Modeling the individual dynamics is 
challenging since gestures may not 
always be synchronized with speech [3] 
and the communicative signals may 
have different granularity (e.g., linguis-
tic signals are interpreted at the word 
level while prosodic information varies 
much faster).

The verbal and nonverbal messages 
from one participant are better inter-
preted when put into context with the 
concurrent and previous messages from 
other participants. For example, a smile 
may be interpreted as an acknowledg-
ment if the speaker just looked back at 
the listener and paused while it could be 
interpreted as a signal of empathy if the 
speaker just confessed something per-
sonal. Another example is illustrated in 

Figure 1. Interpersonal dynamics repre-
sent this influence and relationship 
between multiple sources (e.g., partici-
pants). Modeling the individual and 
interpersonal dynamics becomes a mul-
tisignals, multichannels, and multi-
sources problem. Both individual and 
interpersonal dynamics need to be taken 
into account when modeling human 
communication. 

EXAMPLE: BACKCHANNEL 
FEEDBACK
A great example of individual and inter-
personal dynamics is backchannel feed-
back, the nods and para-verbals such as 
“uh-huh” and “mm-hmm” that listen-
ers produce as someone is speaking 
[10]. They can express a certain degree 
of connection between listener and 
speaker (e.g., rapport), a way to show 
acknowledgment (e.g., grounding), or 
they can also be used for signifying 
agreement. Backchannel feedback is an 
essential and predictable aspect of nat-
ural conversation and its absence can 
significantly disrupt participants’ abili-
ty to communicate [1]. Accurately rec-
ognizing the backchannel feedback 
from one individual is challenging 
since these conversational cues are 
subtle and vary between people. 
Learning how to predict backchannel 
feedback is a key research problem for 
building immersive virtual humans 
and robots. Finally, there are still some 
unanswered questions in linguistic, 
psychology, and sociology on what trig-
gers backchannel feedback and how it 
varies from different cultures. In this 
article, we show the importance of 
modeling both the individual and 
interpersonal dynamics of backchannel 
feedback for recognition, prediction, 
and analysis.
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MODELING LATENT DYNAMIC
One of the key challenges with modeling 
the individual and interpersonal dynam-
ics is to automatically learn the synchro-
ny and complementarities in a person’s 
verbal and nonverbal behaviors and be-
tween people. We developed a new com-
putational model called latent-dynamic 
conditional random field (LDCRF) that 
incorporates hidden state variables that 
model the substructure of a class se-
quence and learn dynamics between class 
labels [4]. It is a significant change from 
previous approaches that only examined 
individual modalities, ignoring the syn-
ergy between speech and gestures. 

The task of the LDCRF model is to 
learn a map ping between a sequence 
of observations x5 5x1, x2, c, xm6 and 
a sequence of labels y5 5y1, y2, c, ym6.
Each yj is a class label for the j th frame 
of a video sequence and is a member of 
a set Y of possible class labels, for 
example, Y 5 {backchannel, other-ges-
ture}. Each observation xj is represent-
ed by a feature vector w 1xj 2  in Rd, for 
example, the head velocities at each 
frame. For each sequence, we also 
assume a vector of “substructure’’ vari-
ables h5 5h1, h2, c, hm6. These vari-
ables are not observed in the training 
examples and will therefore form a set 
of hidden variables in the model.

Given the above definitions, we 
define our latent conditional model

 P 1 y | x, u25a
h

 P 1 y | h, x, u2P 1h| x, u2 ,
where u are the parameters of the 
LDCRF model. These are learned 
automatically during training 
using a gradient ascent approach 
to search for the optimal parameter 
values. Inference can be easily 
computed in O(m) using belief 
propagation [pearl-belief-book], 
where m is the length of the 
sequence.

We first applied the LDCRF model 
to the problem of learning individual 
dynamics of backchannel feedback. 
Figure 2 shows our LDCRF model 
compared previous approaches for 
probabilistic sequence labeling (e.g., 
hidden Markov model and support 

vector machine). By modeling the hidden 
dynamic, the latent-dynamic model out-
performs previous approaches. The soft-
ware was made available online on an 
open-source Web site (sourceforge.net/
projects/hcrf).

SIGNAL PUNCTUATION AND 
ENCODING DICTIONARY
While human communication is a con-
tinuous process, people naturally seg-
ment these continuous streams in small 
pieces when describing a social interac-
tion. This tendency to divide communi-
cation sequences of stimuli and 
responses is referred to as punctuation 

[9]. This punctuation process implies 
that human communication should not 
only be represented by signals but also 
with communicative acts that repre-
sents the intuitive segmentation of 
human communication. Communicative 
acts can range from a spoken word to a 
segmented gesture (e.g., start and end 
time of pointing) or a prosodic act (e.g., 
region of low pitch).

To improve the expressiveness of 
these communicative acts we propose 
the idea of encoding dictionary. Since 
communicative acts are not always syn-
chronous, we allow them to be repre-
sented with various delay and length. In 

our experiments with backchannel 
feedback, we identified 13 encoding 
templates that represent a wide 
range of ways that speaker actions 
can influence the listener backchan-
nel feedback. These encoding tem-
plates will help to represent 
long-range dependencies that are 
otherwise hard to learn using direct-
ly a sequential probabilistic model 
(e.g., when the influence of an input 
feature decay slowly over time, pos-
sibly with a delay). An example of a 
long-range dependency will be the 
effect of low-pitch regions on back-
channel feedback with an average 
delay of 0.7 s (observed by Ward and 
Tsukahara [8]). In our framework, 
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[FIG1] Example of individual and interpersonal dynamics: Context-based gesture 
recognition using prediction model. In this scenario, contextual information from the 
robot’s spoken utterance (interpersonal dynamic) helps disambiguating the listener’s 
visual gesture (individual dynamic). 
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[FIG2] Recognition of backchannel feedback based on 
individual dynamics only. Comparison of our LDCRF 
model with previous approaches for probabilistic 
sequential modeling.
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the prediction model will pick an encod-
ing template with a 0.5-s delay and the 
exact alignment will be learned by the 
sequential probabilistic model (e.g., 
LDCRF) that will also take into account 
the influence of other input features. The 
three main types of encoding templates 
are the following:

  ! Binary encoding: This encoding 
is designed for speaker features which 
influence on listener backchannel is 
constraint to the duration of the 
speaker feature.

Step function: !  This encoding is a 
generalization of binary encoding by 
adding two parameters: width of the 
encoded feature and delay between 
the start of the feature and its encoded 
version. This encoding is useful if the 
feature influence on backchannel is 
constant but with a certain delay and 
duration.

Ramp function: !  This encoding lin-
early decreases for a set period of time 
(i.e., width parameter). This encoding 
is useful if the feature influence on 
backchannel is changing over time.

It is important to note that a feature can 
have an individual influence on back-
channel and/or a joint influence. An 
individual influence means the input 
feature directly influences listener back-
channel. For example, a long pause can, 
by itself, trigger backchannel feedback 
from the listener. A joint influence 
means that more than one feature is 

involved in triggering the feedback. For 
example, saying the word “and’’ followed 
by a look back at the listener can trigger 
listener feedback. This also means that a 
feature may need to be encoded more 
than one way since it may have an indi-
vidual influence as well as one or more 
joint influences.

PREDICTION MODEL OF 
INTERPERSONAL DYNAMICS
In our contextual prediction framework, 
the prediction model automatically 
learns which subset of a speaker’s verbal 
and nonverbal actions influences the lis-
tener’s nonverbal behaviors, finds the 
optimal way to dynamically integrate 
the relevant speaker actions, and  outputs 
probabilistic measurements describing 
the likelihood of a listener nonverbal 
behavior. Figure 3 presents an example 
of contextual prediction for the listener’s 
backchannel. 

The goal of a prediction model is to 
create online predictions of human 
nonverbal behaviors based on external 
contextual information. The prediction 
model learns automatically which con-
textual feature is important and how it 
affects the timing of nonverbal behav-
iors. This goal is achieved by using a 
machine learning approach wherein a 
sequential probabilistic model is 
trained using a database of human 
interactions. 

Our contextual prediction frame-
work can learn to predict and generate 
dyadic conversational behavior from 
multimodal conversational data, and 
applied it to listener backchannel feed-
back [6]. Generating appropriate back-
channels is a notoriously difficult 
problem because they happen rapidly, in 
the midst of speech, and seem elicited 
by a variety of speaker verbal, prosodic, 
and nonverbal cues. Unlike prior 
approaches that use a single modality 
(e.g., speech), we incorporated multi-
modal features (e.g., speech and ges-
ture) and devised a machine-learning 
method that automatically selects 
appropriate features from multimodal 
data and produces sequential probabilis-
tic models with greater predictive accu-
racy (see Figure 4). 
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[FIG3] Prediction model of interpersonal dynamics: online prediction of the listener’s 
backchannel based on the speaker’s contextual features. In our contextual prediction 
framework, the prediction model automatically 1) learns which subset of the speaker’s 
verbal and nonverbal actions influences the listener’s nonverbal behaviors, 2) finds the 
optimal way to dynamically integrate the relevant speaker actions, and 3) outputs  
probabilistic measurements describing how likely listener nonverbal behavior are.

F1 Precision Recall Random Rules
Our Prediction Model 0.2236 0.1862 0.4106 <0.0001 0.0020
Rule-Based Approach 0.1457 0.1381 0.2195 0.0571 –
Random 0.1018 0.1042 0.1250 – –

Results T-Test (p-Value)

[FIG4] Comparison of our prediction model with a previously published rule-based 
system [8]. By integrating the strengths of a machine learning approach with 
multimodal speaker features and automatic feature selection, our prediction model 
shows a statistically significant improvement over the unimodal rule-based and 
random approaches.

BOTH INDIVIDUAL AND 
INTERPERSONAL DYNAMICS 

NEED TO BE TAKEN INTO 
ACCOUNT WHEN MODELING 
HUMAN COMMUNICATION.
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CONTEXT-BASED 
RECOGNITION: COMBINING 
INDIVIDUAL AND 
INTERPERSONAL DYNAMICS
Modeling human communication 
dynamics implies being able to 
model both the individual multi-
modal dynamics and the interper-
sonal dynamics. A concrete 
example where both types of 
dynamics are taken into account 
is context-based recognition (see 
Figure 1). When recognizing and 
interpreting human behaviors, 
people use more than their visual 
perception; knowledge about the 
current topic and expectations 
from previous utterances help 
guide recognition of nonverbal 
cues. In this framework, the inter-
personal dynamic is interpreted as con-
textual prediction since an individual can 
be influenced by the conversational con-
text, but at the end he or she is the one 
deciding to give feedback or not.

Figure 1 shows an example of con-
text-based recognition where the dia-
logue information from the robot is used 
to disambiguate the individual behavior 
of the human participant. When a ges-
ture occurs, the recognition and mean-
ing of the gesture is enhanced due to 
this dialogue context prediction. Thus 
recognition is enabled by the meaning-
fulness of a gesture in dialogue. However, 
because the contextual dialogue infor-
mation is subject to variability when 
modeled by a computational entity, it 
cannot be taken as ground truth. Instead 
features from the dialogue that predict a 
certain meaning (e.g., acknowledgment) 
are also subject to recognition predic-
tion. Hence in the work reported here, 
recognition of dialogue features (inter-
personal dynamic) and recognition of 
feedback features (individual dynamic) 
are interdependent processes.

We showed that our contextual predic-
tion framework can significantly improve 
performance of individual-only recogni-
tion when interacting with a robot, a vir-
tual character, or another human [5]. 
Figure 5 shows the statistically significant 
improvement (p , 0.0183) when inte-
grating the interpersonal dynamic (con-

textual prediction) with individual 
dynamic (vision-based recognition).

BEHAVIOR ANALYSIS TOOL
As we have already shown in this article, 
modeling human communication 
dynamics is important for both recogni-
tion and prediction. One other impor-
tant advantage of these computational 
models is the automatic analysis of 
human behaviors. Studying interactions 
is grueling and time-consuming work. 

The rule of thumb in the field is that 
each recorded minute of interaction 
takes an hour or more to analyze. 
Moreover, many social cues are subtle 
and not easily noticed by even the most 
attentive psychologists.

By being able to automatically and 
efficiently analyze a large quantity of 
human interactions and detect relevant 
patterns, this software enables psycholo-
gists and linguists to find hidden behav-
ioral patterns that may be too subtle for 
the human eye to detect, or may be just 
too rare during human interactions. The 

goal of feature selection is to find 
the most relevant subset of con-
textual features for predicting a 
specific nonverbal behavior. By 
reducing the dimensionality of 
the data, we allow a probabilistic 
model to operate faster and more 
effectively. The outcome of feature 
selection is two-fold: improved 
accuracy of our prediction model; 
and a more compact, easily inter-
preted representation of the rele-
vant contextual features. 

A concrete example is our re-
cent work that studied engage-
ment and rapport between 
speakers and listeners, specifically 
examining a person’s backchannel 
feedback during conversation [6]. 
This research revealed new predic-

tive cues related to gaze shifts and specific 
spoken words that were not identified by 
previous psycho-linguistic studies. These 
results not only give an inspiration for fu-
ture behavioral studies but also make 
possible a new generation of robots and 
virtual humans able to convey gestures 
and expressions at the appropriate times.

CONVERSATIONAL, EMOTIONAL, 
AND SOCIAL SIGNALS
Modeling human communication 
dynamics enables the computational 
study of different aspect of human 
behaviors. While a backchannel feed-
back such as head nod may at first look 
like a conversational signal (“I acknowl-
edge what you said”), it can also be 
interpreted as an emotional signal 
where the person is trying to show 
empathy or a social signal where the 
person is trying to show dominance by 
expressing a strong head nod. The com-
plete study of human face-to-face com-
munication needs to take into account 
these different types of signals: linguis-
tic, conversational, emotional, and 
social. In all four cases, the individual 
and interpersonal dynamics are keys to 
a coherent interpretation.

MICRO, MESO, AND 
MACRO DYNAMICS
The individual and interpersonal 
dynamics discussed in this article are 
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[FIG5] Backchannel feedback recognition curves when 
varying the detection threshold. For a fixed false positive 
rate of 0.0409 (operating point), the context-based 
approach improves head nod recognition from 72.5% 
(vision only) to 90.4%.
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categorized by sociologist as micrody-
namics, in contrast to the mesodynam-
ics represents the organizational or 
institutional factors and the macrody-
namics that drives our society and cul-
ture. The computational study of 
microdynamics enables a bottom-up 
approach to sociological research, where 
microbehaviors are used to define large-
scale behaviors (e.g., organizational 
behavior analysis based on audio micro-
dynamics [7]). As important is the top-
down influence of society and culture 
on individual and interpersonal dynam-
ics. The joint analysis of micro-, meso-, 
and macrodynamics will enable a better 
understanding of cultural differences in 
human communicative behaviors.
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