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Non-Product Data-Dependent Partitions for Mutual
Information Estimation: Strong Consistency and

Applications
Jorge Silva, Member, IEEE, and Shrikanth S. Narayanan, Fellow, IEEE

Abstract— A new framework for histogram-based mutual in-
formation estimation of probability distributions equipped with
density functions in ( d,B( d)) is presented in this work. A
general histogram-based estimate is proposed, considering non-
product data-dependent partitions, and sufficient conditions are
stipulated to guarantee a strongly consistent estimate for mutual
information. Two emblematic families of density-free strongly
consistent estimates are derived from this result, one based on
statistically equivalent blocks (the Gessaman’s partition) and the
other, on a tree-structured vector quantization scheme.

Index Terms— Mutual information, histogram-based estima-
tion, data-dependent partitions, asymptotically sufficient par-
titions, Vapnik-Chervonenkis inequality, tree-structured vector
quantization.

I. INTRODUCTION

MUTUAL information (MI) specifies the level of statis-
tical dependency between a pair of random variables

[1], [2]. This quantity is fundamental to characterizing some
of the most remarkable results in information theory: the per-
formance limit for the rate of reliable communication through
a noisy channel, and the achievable rate-distortion curve in
lossy compression, among others [1], [2]. Mutual information
has been also adopted in statistical learning-decision contexts.
It has been used as a fidelity indicator, primarily because of
Fano’s inequality [2], finding important applications as a tool
for statistical analysis [3], [4], in feature extraction [5]–[7], in
detection problems [8], in image registration and segmentation
[9]–[11], and recently in the characterization of performance
limits on pattern recognition [12].

Typically these learning-decision applications rely on em-
pirical data as the distributions are unknown. Hence, the prob-
lem of distribution-free MI estimation based on independent
and identically distributed (i.i.d.) realizations of the involved
probability measure becomes crucial, as pointed out in many
of the mentioned works. The MI estimation scenario relates
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fundamentally with the well understood problem of distribu-
tion (density) estimation, as MI is a functional of a probability
distribution. In this context strong consistency in classical L1

sense is well known [13]. In particular for classical histogram-
based estimates necessary and sufficient conditions are known
for density-free estimation [13], [14]. Some extensions have
been studied considering data-dependent partitions [15] and
the family of histogram-based estimator proposed by Barron
et al. [16], where sufficient conditions for L1-consistency
were stipulated. More recent work on the Barron-type of
histogram-based estimator has considered consistency under
topologically stronger notions, such as consistency in direct
information divergence by Barron et al. [16] and Györfi et
al. [17], χ2-divergence and expected χ2-divergence by Györfi
et al. [18] and Vajda et al. [19] and the general family of
Csiszár’s φ-divergence by Beirlant et al. [20]. These results not
only provide strong consistency for density estimation, with
respect to the choice of dissimilarity measure between dis-
tributions (total variations, information divergence, Csiszár’s
φ-divergence), but also provide results characterizing rate
of consistency [18]–[20] and the asymptotic distributions of
normalized errors (asymptotic normality) [21].

In the context of estimating functionals of probability dis-
tributions, there is also an extensive literature dealing with the
differential entropy estimation for distributions defined on a
finite dimensional Euclidean space ( d,B( d)), (see Beirlant
et al. [22] and references therein for an excellent review). As
the MI of continuous random variables can be expressed as the
summation of differential entropies [2], the constructions and
results derived from this estimation problem [22] extend to the
MI estimation scenario. In particular, consistency results are
well known for histogram-based and kernel plug-in estimates
[22], [23]. Focusing on the important case of histogram-based
estimation, the conventional approach requires the use of a
product partition of the space, i.e., every coordinate of the
space is partitioned independently to form the full partition of
d, and where in addition the partition is made only a function

of the amount of data and not depending on how the data is
distributed in the space. However, it is known that non-product
data-driven partitions can approximate better the nature of the
empirical data with few quantization bins and provide the
flexibility to improve the approximation quality of histogram-
based estimates [15], [24]. This has been shown theoretically
in three emblematic non-parametric learning problems: density
estimation, regression and classification [15], [25].

This fact was first observed by Darbellay and Vajda [24],
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who, consequently, proposed an MI estimate based on a non-
product tree-structured data-dependent partition. This scheme
partitions the space in statistically equivalent bins and uses
a local stopping rule based on thresholding the conditional
empirical MI gain obtained during an iterative bin-splitting
process [24]. While this work showed promising empirical
evidence of the goodness of non-product partition for MI esti-
mation, as the authors mentioned in [24], strong consistency is
a challenging and open problem for this type of construction.
In fact, this lack of consistency reduces in practice to the fact
that the stopping criterion has to be set empirically.

A. Contribution and Organization
The present paper provides an alternative approach for

the problem of non-product data-dependent partition for MI
estimation. In terms of methodology, we first study the prob-
lem of strong consistency in general terms, and we then
apply these findings to the construction of specific histogram-
based estimates based on non-product statistically equivalent
partitions of the space. With regard to the first objective of this
work, a non-product data-dependent construction is presented
and a set of sufficient conditions are derived to make its
induced histogram-based MI estimate strongly consistent. To
achieve this, we adopt the celebrated Vapnik-Chervonenkis
inequality [26], [27] and results concerning asymptotically
sufficient partitions to control estimation and approximation
errors, respectively, which are part of this learning problem
[28]. For the second goal, we consider two important ap-
plications of the aforementioned consistency result, the first
for the statistically equivalent block proposed by Gessaman
[29], and the second for a tree-structured vector quantization
(TSVQ) induced by binary statistically equivalent splits of
the data [28]. In both contexts, our main result implies a
range of design values where the induced estimates show
the desired consistent behavior for the family of distributions
in ( d,B( d)) absolutely continuous with respect to the
Lebesgue measure. Finally, some simulation scenarios are used
to illustrate the advantage of proposed data-driven schemes
when compared to conventional product histogram-based and
kernel plug-in estimates.

This research continues our previous effort on Kullback-
Leibler (KL) divergence estimation [30], [31]. However the
setting and formulation of the problem here are different and
address hitherto unexplored technical and practical challenges.

The paper is organized as follows. Section II provides
preliminaries on some important statistical learning results that
will be used in the rest of the paper. Section III introduces
the problem and presents the non-product histogram-based
estimator. Section IV formulates the main consistency result.
Section V provides details about the two data-driven partition
schemes used to estimate the MI. Finally, Section VI reports
the experiments and Section VII, the final remarks.

II. PRELIMINARIES

This work makes systematic use of the Vapnik and Chervo-
nenkis theory [15], [27], [28], [32], which is briefly introduced
in this section. We also introduce the notion of partition
scheme and some standard notations for sequences.

A. Combinatorial Notions
Let us focus on the finite dimensional Euclidean space

( d,B( d)) where B( d) denotes the Borel sigma field. Let
C ⊂ B( d) be a collection of measurable events, and xn

1 =
(x1, .., xn) be a sequence of n points in d. Then we define
by S(C, xn

1 ) the number of different sets in

{{x1, x2, .., xn} ∩B : B ∈ C} , (1)

and the shatter coefficient of C by Sn(C) =
supxn

1 ∈ d·n S(C, xn
1 ) [27], [28]. The shatter coefficient

is an indicator of the richness of C to dichotomize a
finite sequence of points in the space, where by definition
Sn(C) ≤ 2n. The largest integer where Sn(C) is strictly
less than 2n is called the Vapnik and Chervonenkis (VC)
dimension of C [28]. If Sn(C) = 2n for all n, then the
class is set to have infinite VC-dimension. If C has a finite
VC-dimension V , then the shatter coefficient is bounded by
the following polynomial growth [28], [32], ∀n > V ,

Sn(C) ≤ (1 + n)V . (2)

Similarly, these notions can be extended to a collection of
partitions [15]. Let us denote by π a finite measurable partition
of d and by |π|, its cardinality. Let A be a collection of finite
measurable partitions for d, then the maximum cell count of
A is given by [15]

M(A) = sup
π∈A

|π| . (3)

In addition, let us consider xn
1 = (x1, .., xn) ∈ dn,

then ∆(A, xn
1 ) denotes the number of different partitions of

{x1, x2, .., xn} induced by the elements of A (partitions of the
form {{x1, x2, .., xn} ∩B : B ∈ π} with π ∈ A), where it is
clear that ∆(A, xn

1 ) ≤ M(A)n [15]. Analogous to the shatter
coefficient, the growth function of A is given by

∆∗
n(A) = sup

xn
1 ∈ d·n

∆(A, xn
1 ). (4)

B. Vapnik-Chervonenkis Inequalities
Let X1, X2, .., Xn be i.i.d. realizations of a random vector

with values in d, with X ∼ P and P a probability measure
in ( d,B( d)). Then for any measurable set B ∈ B( d) the
empirical distribution is given by,

Pn(B) =
1

n

n�

i=1

B(Xi), (5)

where B(x) is the indicator function of B1.
A fundamental problem in statistical learning is being able

to bound the deviation of the empirical distribution Pn with
respect to P restricted to a collection of measurable events.

THEOREM 1: (Vapnik and Chervonenkis [32]) Let
X1, X2, .. be i.i.d realizations of a random variable in d, with
Xi ∼ P for all i and P a probability measure in ( d,B( d)).
Let C be a collection of measurable events of d, then ∀n ∈ ,
∀� > 0,

�
sup
B∈C

|Pn(B)− P (B)| > �

�
≤ Sn(C) · exp−

n�2

8 , (6)

1
B(x) is one if x ∈ B and zero otherwise.
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where denotes the distribution of the process {X1, X2, · · · }.
This is the celebrated Vapnik and Chervonenkis inequality, a
distribution free inequality that uniformly bounds the deviation
of Pn with respect to P in the events of C. Notably the right
hand side (RHS) of (6) is distribution-free and, furthermore,
a function of the shatter coefficient of C. Lugosi et al. [15]
extended this concentration inequality for a collection of
measurable partitions. In this case the empirical measure is
restricted to a partition π ⊂ B( d) where the total variational
distance [28] is used to quantify the deviation between P
and Pn restricted to the measurable space ( d, σ(π))) 2. The
following lemma states this result formally.

LEMMA 1: (Lugosi and Nobel [15]) Under the learning
setting of Theorem 1, let A be a collection of finite measurable
partitions for d. Then ∀n ∈ , ∀� > 0,

�
sup
π∈A

�

B∈π

|Pn(B)− P (B)| > �

�
≤

4∆∗
2n(A)2M(A) exp−

n�2

32 , (7)

with the process distribution of {X1, X2, · · · }.

C. Data-Dependent Partitions
A n-sample partition rule πn(·) is a mapping from dn to

the space of finite-measurable partitions for d, that we denote
by A( d), where a partition scheme for d is a countable
collection of n-sample partition rules Π = {π1(·), π2(·), ...}.
Let Π be an arbitrary partition scheme for d, then for every
partition rule πn(·) ∈ Π with n ∈ , we can define its
associated collection of measurable partitions by [15]

An =
�
πn(x1, .., xn) : (x1, .., xn) ∈ dn

�
⊂ A( d). (8)

Here, for a given n-sample partition rule πn(·) and a sequence
(x1, .., xn) ∈ dn, πn(x|x1, .., xn) denotes the mapping from
any point x in d to its unique cell in πn(x1, .., xn), such that
x ∈ πn(x|x1, .., xn), ∀x ∈ d.

D. Asymptotic Relationships for Sequences
Let (an)n∈ and (bn)n∈ be two sequences of non-negative

real numbers, we say that (an)n∈ dominates (bn)n∈ , de-
noted by (bn) � (an) (or alternatively, (bn) is O(an)), if
there exists C > 0 and k ∈ such that bn ≤ C · an for all
n ≥ k. We say that (bn)n∈ and (an)n∈ are asymptotically
equivalent, denoted by (bn) ≈ (an), if there exists C > 0
such that limn→∞

an
bn

= C. A nonnegative sequence (an)n∈
is o(f(n)), for some non-negative increasing function f(·) :
→ , if limn→∞

an
f(n) = 0.

III. THE MUTUAL INFORMATION ESTIMATE

Let X and Y be two random variables taking values on
X and Y , respectively, with a joint distribution denoted by
PX,Y . We focus on the finite dimensional Euclidean space,
i.e., X = p and Y = q and consequently PX,Y is defined

2σ(π) denotes the smallest sigma-field that contains π, which for the case
of a partition π is the collection of sets that can be written as unions of events
in π.

on the Borel sigma field B( d) for d = p+ q. In this case the
MI between X and Y can be expressed by [2]

I(X;Y ) = D(PX,Y ||PX × PY ), (9)

where PX×PY is the probability distribution on d induced by
multiplication of the marginals of X and Y (joint probability
where X and Y are independent) and D(P ||Q) denotes the
Kullback-Leibler (KL) divergence given by [1], [33]

D(P ||Q) = sup
π∈A( d)

�

B∈π

P (B) · log P (B)

Q(B)
, (10)

with A( d) being the collection of finite measurable partitions
of d.

We are interested in the problem of estimating I(X;Y )
based on (X1, Y1), · · · (Xn, Yn), i.i.d. realizations of the joint
distribution PX,Y . To simplify the notation we denote by Zi

the joint vector (Xi, Yi) on d and by Zk
1 the sequence of

realizations (Z1, .., Zk) on dk. In particular, in this work we
focus on the histogram-based approach [15], [28] based on a
partition scheme, Section II-C.

A. The Histogram-Based Estimator
Let Π = {π1(·), π2(·), · · · } be a partition scheme, where

we impose the condition that every bin induced by this family
of partition rules has a product form, i.e., ∀zn1 = (z1, .., zn) ∈
dn, every measurable set B ∈ πn(zn1 ) can be expressed in

the following Cartesian product form,

B = B1 ×B2, (11)

where B1 ∈ B( p) and B2 ∈ B( q).
Let Z1, .., Zn be i.i.d. realizations with probability distri-

bution PX,Y . To simplify notation, we denote by P , the joint
distribution and by Pn, its empirical version given in (5). Then,
the proposed MI estimate is given by

În(X;Y ) =
�

B∈πn(Zn
1 )

Pn(B) · log Pn(B)

Pn(B1 × q) · Pn( p ×B2)
, (12)

where B1 × B2 denotes the product form of the event B ∈
πn(Zn

1 ). Note that this construction involves three steps: first,
obtain a random partition from the data πn(Zn

1 ), second,
estimate the empirical distributions restricted to the events in
σ(πn(Zn

1 )), and third, plug the empirical distributions in the
finite alphabet version of the KL divergence in (12).

Remark 1: The condition in (11) does not imply that the
partition πn(zn1 ) has a product structure, i.e., it can be written
by Q1 × Q2, with Q1 and Q2 being individual measurable
partitions of p and q , respectively.

Remark 2: The product bin condition in (11) is strictly
necessary for being able to estimate PX,Y as well as the
reference measure PX×PY only based on the i.i.d. realizations
of PX,Y .

As pointed out in [24], this kind of estimate is not formally
a MI quantity, in other words it is not the MI between
quantized versions of the two random variables X and Y (this
requires a product structure of the partition πn(Zn

1 )). Instead,



4 IN PRESS, IEEE TRANSACTIONS ON SIGNAL PROCESSING

as considered by Darbellay et al. [24], the proposed empirical
construction În(X;Y ) is the KL divergence between the em-
pirical joint distribution and its empirical product counterpart
(multiplication of marginals empirical distributions), restricted
to the sub-sigma field σ(πn(Zn

1 )) [1]. This is motivated by (9)
and (10).

The main challenge is to find distribution-free conditions on
the partition scheme Π that guarantee the MI estimate in (12)
to be strongly consistent with respect to , the distribution
of the empirical process {Z1, Z2, . . .}. The answer to this
question is formally addressed in the next section.

IV. STRONG CONSISTENCY

The difference between our estimator in (12) and I(X;Y )
can be bounded by the following two terms,
���În(X;Y )− I(X;Y )

��� ≤
������

�

B∈πn(Zn
1 )

PX,Y (B) · log PX,Y (B)

PX × PY (B)
− I(X;Y )

������
+

������
În(X;Y )−

�

B∈πn(Zn
1 )

PX,Y (B) · log PX,Y (B)

PX × PY (B)

������
. (13)

The first term in the upper bound is the approximation error
(or bias of the estimate), which only considers the effect of
quantizing the space — it is well known that quantization
reduces the magnitude of information theoretic quantities [1],
[24], [34]. The second term in (13) is the estimation error
(or the variance term) that quantifies the deviation between
the empirical and true distribution in the finite alphabet MI
functional. A natural direction is to find a good compromise
between these sources of error as a function of the structural
properties of the data-dependent partition scheme. Specifically,
the objective is to make the two errors vanish asymptotically
with probability one with respect to . We first deal with the
approximation error to later integrate this analysis with the
estimation error in the main theorem of this work.

A. Controlling the Approximation Error
For a measurable event B ∈ B( d), the diameter of the set

is given by,
diam(B) = sup

x,y∈B
||x− y|| , (14)

where ||·|| denotes the Euclidian norm in d.
THEOREM 2: Let PX,Y be a probability measure abso-

lutely continuous with respect to the Lebesgue measure λ in
d and let Π = {π1(·), π2(·), ...} be a partition scheme driven

by Z1, Z2, · · · , i.i.d. realizations with Zi ∼ PX,Y for all i. If
∀δ > 0,

lim
n→∞

PX,Y

��
z ∈ d : diam(πn(z|Zn

1 )) > δ
��

→ 0, (15)

(the process distribution of {Z1, Z2, · · · }) almost surely
(a.s.), then,

lim
n→∞

�

B∈πn(Zn
1 )

PX,Y (B) · log PX,Y (B)

PX × PY (B)
= I(X;Y ),

(16)

-a.s. (The proof of this result is presented in Appendix I.)
The result says that if the diameter of the random partition

πn(Zn
1 ) vanishes in a probabilistic sense as the number of

samples tends to infinity, as given by (15), we can approximate
with arbitrary precision the distributions for the purpose of
estimating the MI (or equivalently to say that Π is -almost
surely asymptotically sufficient for I(X;Y )). This approxi-
mation property in (15) is called a shrinking cell condition.
Different flavors of this notion have been introduced for
controlling approximation error in histogram-based regression,
classification and density estimation problems [15], [25], [28],
[35]. A similar shrinking cell condition was presented in [30]
for the problem of KL divergence approximation. In fact as
part of the proof of Theorem 2, a stronger result for the
KL divergence scenario is presented (we refer the reader to
Theorem 7 in Appendix I for details).

B. The Result
Before stating the result, we introduce some defini-

tions. For any partition rule πn(·) ∈ Π and zn1 ∈
dn, we consider its product bin structure in (11) to de-

fine the following collections of coordinated-projected sets,
C[1,p](zn1 ) ≡

�
ξ[1,p](B) : B ∈ πn(zn1 )

�
, C[p+1,d](z

n
1 ) ≡�

ξ[p+1,d](B) : B ∈ πn(zn1 )
�

, with 1 ≤ p < d and ξ[1,p](B)
denoting the set operator that returns the collection of pro-
jected elements of B in the range of coordinate dimensions
{1, .., p} 3. Then in addition to An =

�
πn(zn1 ) : z

n
1 ∈ d·n� ⊂

A( d), the following collections of measurable sets will be
associated with the partition rule πn(·):

C[1,p],n ≡
�

zn
1 ∈ d·n

C[1,p](zn1 ) ⊂ A( p) (17)

C[p+1,d],n ≡
�

zn
1 ∈ d·n

C[p+1,d](z
n
1 ) ⊂ A( q). (18)

Finally we have all the elements to state the main consistency
result.

THEOREM 3: Let X and Y be random variables in
p and q , respectively, with joint distribution PX,Y abso-

lutely continuous with respect to the Lebesgue measure λ in
( d,B( d)). In addition, let us consider a partition scheme
Π = {π1(·), . . .} with the product bin structure and driven by
i.i.d. realizations Z1, Z2, . . . with Zi ∼ PX,Y for all i. If there
exists τ ∈ (0, 1) for which the following set of conditions are
satisfied:

c.1: limn→∞
1
nτ logSn(C[1,p],n) = 0,

limn→∞
1
nτ logSn(C[p+1,d],n) = 0,

c.2: limn→∞
1
nτ log∆∗

n(An) = 0,
c.3: limn→∞

1
nτ M(An) = 0,

c.4: ∃ (kn)n∈ a sequence of non-negative numbers,
with (kn) ≈ (n0.5+τ/2), such that, ∀n > 0 and
∀(z1, .., zn) ∈ dn,

inf
B∈π(zn

1 )
Pn(B) ≥ kn

n
,

3By construction any set B ∈ πn(zn1 ) can be expressed by B = B1 ×
B2, with B1 ∈ p and B2 ∈ q , and consequently ξ[1,p](B) = B1 and
ξ[p+1,d](B) = B2.
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c.5: and ∀δ > 0,

lim
n→∞

PX,Y

��
z ∈ d : diam(πn(z|Zn

1 )) > δ
��

→ 0,

-a.s.,
then,

lim
n→∞

În(X;Y ) = I(X;Y ), − a.s. (19)

(The proof is presented in Appendix II.)
Interpreting the result, the first four conditions are stipulated
to asymptotically control the estimation error quantity in
(13). They impose asymptotic bounds on the combinatorial
complexity of the family of sets induced by πn(·) (c.1, c.2
and c.3), as well as in the number of sample points that every
bin of the resulting data-driven partition πn(Zn

1 ) should have
(c.4). The argument used to make this error vanish is based
on the Vapnik-Chervonekis (VC) inequalities and the Borel-
Cantelli lemma [36]. Concerning the approximation error, c.5
just invokes the sufficient condition presented in Theorem 2.

Remark 3: From the domain of values stipulated for τ ,
these conditions are stronger than the one obtained for the
problem of density estimation consistent in the L1 sense
[15]. These stronger conditions are necessary to handle the
unbounded behavior of the log(·) function in the neighbor-
hood of zero — the function is not absolutely continuous in
(0,∞), which is the most critical part to guarantee a strongly
consistent result for the MI estimation problem.

Considering the condition c.1 of Theorem 3, if a collection
of measurable events C has a finite VC dimension, let us
say V > 0, then ∀n > V , Sn(C) ≤ (n + 1)V [28], [37],
and consequently ∀τ ∈ (0, 1), lim→∞

1
nτ logSn(C) = 0.

It is interesting, however, to extend this idea to a sequence
of measurable events. The following proposition guarantees
c.1 of Theorem 3 when a collections of sets have finite VC-
dimensions.

PROPOSITION 1: Let {Cn : n ∈ } be a collection of
measurable events with finite VC dimension sequence
(Vn)n∈ . If (Vn)n∈ is o

�
nτo

log(n+1)

�
for some τo ∈ (0, 1),

then

lim
n→∞

1

nτo
logSn(Cn) = 0. (20)

Proof: From the fact that (Vn)n∈ is o
�

nτo

log(n+1)

�
, there

exists N such that ∀n > N , n > Vn. Then from the definition
of the VC dimension [28], ∀n > N , Sn(Cn) ≤ (n + 1)Vn .
Then lim supn→∞

1
nτo logSn(Cn) ≤ limn→∞

Vn log(n+1)
nτo = 0

by the hypothesis.
In conclusion, Theorem 3 provides a set of sufficient condi-

tions for strong consistency of the histogram-based estimator
in (12). However at this point a valid question to ask is
how this result translates into specific design conditions when
working with some specific data-dependent partition schemes.
In other words, is it possible to find a class of strongly
consistent MI estimates based on Theorem 3? This will be
the focus for the rest of the paper, where we show how
these general conditions provide specific design setting in the
implementation of two widely adopted non-product partition
schemes.

V. APPLICATIONS

A. Statistical Equivalent Data-Dependent Partitions

Here we consider a data-dependent partition scheme based
on the notion of statistically equivalent blocks [28], and more
precisely the axis-parallel scheme proposed by Gessaman [29].
The idea is to use the data Z1, .., Zn to partition the space
in such a way to create cells with equal empirical mass. In
Gessaman’s approach, this is done by sequentially splitting
every coordinate of d using axis-parallel hyperplanes. More
precisely, let ln > 0 denote the number of samples points that
we ideally want to have in every bin of πn(Zn

1 ), and let us
choose a particular sequential order for the axis-coordinates,
such as the standard (1, .., d). With that, Tn = �(n/ln)1/d� is
the number of partitions to create in every coordinate. Then
the inductive construction goes as follows: first, project the
i.i.d. samples Z1, .., Zn into the first coordinate, which for
simplicity we denote by Y1, .., Yn. Compute the order statistics
Y (1), Y (2), .., Y (n) or the permutation of Y1, .., Yn such that
Y (1) < Y (2) < · · · < Y (n) — this permutation exists with
probability one if PX,Y is absolutely continuous with respect
to the Lebesgue measure [28]. Based on this, the following
set of intervals to partition the real line is induced,

{Ii : i = 1, .., Tn} =
�
(−∞, Y (sn)], (Y (sn), Y (2·sn)], .., (Y ((Tn−1)·sm),∞)

�
,

(21)

where sn = �n/Tn�. Then assigning the samples of Z1, .., Zn

to the different resulting bins, i.e.,
�
Ii × d−1 : i = 1, .., Tn

�
,

we can conduct the same process in each of those bins by
projecting its data into the second coordinate. Iterating this
approach until the last coordinate we get the Gessaman data-
dependent partition πn(Zn

1 ). Note that by construction if n =
(ln)d, then we are in the ideal scenario where every bin has
been assigned with ln empirical points of Z1, .., Zn. Impor-
tantly for our consistency result, Pn(A) ≥ ln

n , ∀A ∈ πn(Zn
1 ).

Consequently, we can use this product-bin construction for
estimating the MI based on (12). The following result applies
Theorem 3 to this scenario.

THEOREM 4: Under the general hypothesis presented
in Theorem 3, the Gessaman’s partition scheme provides a
strongly consistent estimate for I(X,Y ), if (ln) ≈ (n0.5+τ/2)
for some τ ∈ (1/3, 1).
The proof of this result reduces to checking the sufficient
condition stated in Theorem 3. Note that the result does
not impose any condition on the joint distribution PX,Y

and provides a family of density-free strongly consistent MI
estimates.

Proof: Let us consider an arbitrary τ ∈ (1/3, 1). The
trivial case to check is c.4), because by construction we can
consider kn = ln, ∀n ∈ , where the hypothesis of the
theorem gives the result. For c.1), from the construction of
πn(·), it is noted that C[1,p],n and C[p+1,d],n are contained
in the collection of rectangles of p and q , respectively,
which are well known to have finite VC dimensions [37].
Hence from Proposition 1 we get the result. Concerning c.3),
again by construction we have that M(An) ≤ n/ln + 1, then
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n−lM(An) ≤ n1−τ/ln + n−τ . Given that (ln) ≈ (n0.5+τ/2)
and τ ∈ (1/3, 1) it follows that, limn→∞ n−τM(An) = 0.
For c.2), Lugosi et al. [15] showed that ∆∗

n(An) ≤
�
Tn+n

n

�d,
where using that log

�
s
t

�
≤ s · h(t/s) [28], with h(x) =

−x log(x)−(1−x) log(1−x) for x ∈ [0, 1] the binary entropy
function [2], and defining T̄n ≡ �n/ln� ≥ Tn , it follows that,

n−τ log (∆∗
n(An)) ≤ n−τd · log

�
T̄n+n

n

�

≤ 2dn1−τ · h
�

1

n/T̄n + 1

�
≤ 2dn1−τ · h

�
1

ln

�
.

Consequently we have that, ∀n ∈ ,

n−τ log(∆∗
n(An)) ≤ −2dn1−τ

ln
log(1/ln)

− 2dn1−τ (1− 1/ln) log(1− 1/ln). (22)

The first term on the right hand side (RHS) of (22) behaves
like n0.5−3/2·τ · log(ln), where as long as the exponent of the
first term is negative (equivalent to τ > 1/3) this sequence
tends to zero as n tends to infinity — considering that by
construction (ln) � (n). The second term on the RHS of (22)
behaves asymptotically like −n1−τ · log(1 − 1/ln) which is
upper bounded by the sequence n1−τ

ln
· 1
1−1/ln

— using that
log(x) ≤ x − 1, ∀x > 0. This upper bound tends to zero
because (ln) ≈ (n0.5+τ/2) and τ > 1/3. Consequently from
(22), limn→∞ n−τ log(∆∗

n(An)) = 0. Finally concerning c.5),
Lugosi et al. [15] (Theorem 4) proved that to get this shrinking
cell condition is sufficient to show that (ln) is o(n), which is
the case considering that τ < 1.

Remark 4: The condition of Theorem 4 implies that
limn→∞ ln = ∞ and (ln) is o(n), which are the necessary
and sufficient conditions for the Gessaman histogram based
density estimate to be strongly consistent in L1, by Abou-
Jaoude [38]. The fact that stronger conditions are needed
to get consistency in the MI functional agrees with findings
on density-free estimation of differential entropy [23] (using
classical product partition), and with the new results on the
convergence analysis of the differential entropy by Piera and
Parada [39].

B. Tree-Structured Partition Schemes
In this section we consider a version of what is known

as balanced search tree [28](Chapter 20.3), in particular the
binary case. More precisely, given Z1, Z2, .., Zn i.i.d. real-
izations of the joint distribution, this data-dependent partition
chooses a dimension of the space in a sequential order, say
the dimension i for the first step, and then the i axis-parallel
halfspace by

Hi(Z
n
1 ) =

�
x ∈ d : x(i) ≤ Z(�n/2�)(i)

�
, (23)

where Z(1)(i) < Z(2)(i) <, .., < Z(n)(i) denotes the order
statistics of the sampling points {Z1, .., Zn} projected in the
target dimension i. Using this hyper-plane, d is divided
into two statistically equivalent rectangles with respect to
the coordinate dimension i, denoted by U(1,0) and U(1,1).
Reallocating the sampling points in the respective intermediate
cells, U(1,0) and U(1,1), we can choose a new dimension in

the mentioned sequential order and continue in an inductive
fashion with this splitting process. In particular in the iter-
ation k of the algorithm (assuming that the stopping rule
is not violated) the intermediate rectangles U(k−1,l) for l ∈�
0, .., 2k−1 − 1

�
are partitioned in terms of their respective

statistically equivalent k-axis parallel hyper-planes to create�
U(k,2l), U(k,2l+1) : l = 0, .., 2k−1 − 1

�
. The termination cri-

terion is based on a stopping rule that guarantees a minimum
number of sample points per cell, denoted by kn > 0. This
stopping rule is fundamental to obtaining our consistency
result. After the first iteration, the resulting cells have at most
n/2 + 1 and at least n/2 − 1 sampling points. The second
iteration implies the creation of 4 cells with at most n/4+2 and
at least n/4− 2 sampled points, and consequently inductively
the k-th iteration — if the stopping criterion is not violated
— creates a balanced tree of 2k cells with at least n/2k − k
and at most n/2k+k sampling points. Note that at the end of
the process it is not guaranteed that πn(Zn

1 ) has either perfect
statistically equivalent cells (rectangles with equal empirical
mass) or a balanced tree structure.

THEOREM 5: Let us consider the tree-structure partition
(TSP) with binary axis-parallel statistically equivalent splits
and a stopping rule governed by a sequence of non-negative
numbers (kn)n∈ . Under the general hypothesis of Theorem 3,
if (kn) ≈ (n0.5+τ/2) for some τ ∈ (1/3, 1) the MI estimator
În(X;Y ) induced by (12) is strongly consistent.

Proof: We check the sufficient conditions of Theorem
3. First c.1) is guaranteed by the same reasons stated for the
Gessaman’s partition scheme in Section V-A, where c.4) is
obtained by the hypotheses of the theorem. Considering c.3),
|πn(Zn

1 )| is uniformly upper bounded by n/kn. Then it fol-
lows that M(An) ≤ n/kn and consequently n−τM(An) ≤
n1−τ

kn
≈ n0.5− 3

2 τ . This upper bound tends to zero as n → ∞
given that τ > 1/3. For c.2), we use the upper bound proposed
by Lugosi et al. [15], specifying that every polytope (or cell)
of πn(Zn

1 ) is induced by at most M(An) hyperplane splits.
Each binary split can dichotomize n ≥ 2 points in d in at
most nd ways [40]. Consequently we have that ∆∗

n(An) ≤
(nd)n/kn , and then n−τ log∆∗

n(An) ≤ n1−τ

kn
d log n. Again

this bound tends to zero as n → ∞ because τ > 1/3. The
final condition c.5) is the most technically challenging. To
prove this shrinking cell condition we need to introduce some
notations, definitions and a preliminary result.

We represent πn(Zn
1 ) by the collection of pairs (k, l), or

nodes, obtained during the iterative construction of πn(Zn
1 )

(the hyper-plane splitting process). Adopting Breiman et al.
conventions [35], this collection of nodes represents a rooted
binary-tree4, denoted by Tn, where the direct decedents of
a non-terminal node (k, l) are (k + 1, 2l) and (k + 1, 2l +
1). The set of terminal nodes (the pairs (k, l) with no direct
decedents), denoted by L(Tn), indexes the partition by the
following relationship, πn(Zn

1 ) =
�
U(k,l) : (k, l) ∈ L(Tn)

�
.

Then, the TSP scheme Π can be indexed and represented by
{T1, T2, · · · }. In general, (0, 0) denotes the root of any of our

4A binary tree T is a collection of nodes with only one with degree 2
(the root node), and the remaining nodes with degree 3 (internal nodes) or
degree 1 (leaf or terminal nodes) [35]. Note that the arcs are implicit in this
convention.
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binary trees {T1, T2, · · · }.
If T̄ ⊂ T and T̄ is a binary tree by itself, we say that T̄

is a subtree of T and moreover if both have the same root
we say that T̄ is a pruned version of T , denoted by T̄ �
T . In particular in our construction, if we consider T̄n �
Tn, then it is simple to show that πn(Zn

1 ) is a refinement of
πT̄n

(Zn
1 ) ≡

�
Ut : t ∈ L(T̄n)

�
. Let T be a binary tree. For all

t ∈ T let depth(t) denote the depth of t — the number of
arcs that connect t with the root of T . In this context, let T r

denote the truncated version of T , formally given by T r =
{t ∈ T : depth(t) ≤ r}, where by construction T r � T .

Definition 1: Let T be a binary tree, we say that T is a
balanced tree of height r if ∀t ∈ L(T ), depth(t) = r.

Definition 2: A TSP scheme Π = {T1, T2, · · · } is a
uniform balanced tree-structured scheme (UBTSS), if each
partition rule, represented by Tn, forms a balanced tree of
height dn (only function of n).

In the context of UBTSS we have the following result.
THEOREM 6: Let Π = {T1, T2, · · · } be a UBTSS in-

duced by the statistically equivalent splitting process presented
in Section V-B. Let (dn)n∈ denote its height sequence, then
Π satisfies the shrinking cell condition of Theorem 2, if there
exists a non-negative real sequence (qn) ≈ (nθ), for some
θ > 0, such that

n

dn2dn
− qn

dn
→ ∞ and dn → ∞, as n tends to infinity.

Theorem 6 derives from the ideas presented by Devroye
et al. (Theorem 20.2) [28], where a weak version of our
shrinking cell condition was proved for a similar balanced tree-
structured partition. The proof was first derived in the context
of KLD estimation in [41] (Chapter 4, Lemma 4.3). For sake
of completeness the argument is presented in Appendix III.

Returning to the proof of Theorem 5, by the binary tree
structure of Π and the stopping rule, it is simple to show that,
∀zn1 ∈ d·n,

r(n) ≡ �log2(n)�−�log2(kn)� ≤ min
t∈L(Tn(zn

1 ))
depth(t), (24)

and consequently T r(n)
n is a balanced tree. Defining Π̄ =�

T r(1)
1 , T r(2)

2 , · · ·
�

, it suffices to check the shrinking cell
condition on Π̄ 5. Given that Π̄ is a UBTSS, we can check
the sufficient condition of Theorem 6. Let d̄n(= r(n)) denote
the height of T r(n)

n . By construction d̄n ≥ log2(n/kn)−2 and
consequently tends to infinity ((kn) ≈ (n0.5+τ/2) with τ < 1).
On the other hand, if we consider an arbitrary non-negative
sequence (qn) ≈ (nθ) with θ ∈

�
0, 2

3

�
, then

n

d̄n2d̄n
− qn

d̄n
≥ n

dn · 2log2(n/kn)
− qn

dn
=

kn − qn
dn

→ ∞

(25)

as n → ∞, because (dn) � (log2(n)), (kn) ≈ (n0.5+τ/2) and
by hypothesis τ > 1/3, which proves the result.

5Π is a refinement of Π̄ in the sense that ∀n ∈ , ∀zn1 ∈ d·n,
T r(n)
n (zn1 ) � Tn(zn1 ), then by definition (15) the shrinking cell condition

of Π̄ implies the property for Π.

VI. SIMULATIONS

A classical product histogram-based estimate [23] and a
kernel plug-in estimate are evaluated and contrasted with the
histogram-based constructions presented in Section V. These
two techniques are strongly consistent for the differential en-
tropy estimation [22], [23] and, consequently, for the MI under
the absolutely continuous assumption studied in this work.
Following the experimental setting in [24], we consider X
and Y to be scalar Gaussian random variables with correlation
coefficient denoted by r. We simulate 1000 i.i.d. realizations
of the joint Gaussian distribution with different correlation
coefficients, {0, 0.3, 0.8}. Before performing comparisons, we
evaluate all the methods with respect to their respective design
variables (τ for the asymptotic sub-linear rate of (ln) and
(kn), the window of the kernel and the length of the rectangle
intervals generated by the product histogram, respectively),
restricted to the range of those variables that makes these
techniques strongly consistent. Then, for each technique we
have chosen a design value that demonstrates good empirical
performance among all the correlation scenarios explored in
our experiments. In particular for our data-driven techniques
we chose τ in (0.4, 0.6).

Tables I provides the performance comparison among the
different techniques by evaluating performances across the
sampling lengths, n ∈ {33, 179, 564, 3164, 5626} (uniformly
spaced in log domain) for all the correlation scenarios. These
results show that under different levels of statistical depen-
dency between X and Y our non-product histogram-based
constructions (Gessaman and TSVQ) present performance
improvements compared to the two classical techniques. In
particular, there is a clear bias difference in the sample
regime [1 − 104], with respect to classical product histogram
approaches, supporting our conjecture that data-dependent
partitions can improve the performance of classical product
histogram based constructions in the small sample regime.
These techniques also perform better than the kernel plug-
in estimate, particularly clear in the sampling range [1− 200]
and across all correlation scenarios.

Finally, similar performance trends were observed simulat-
ing Gaussian vectors in higher dimensions in a number of
settings (in terms of the structure of the covariance matrix and
the parameter of the techniques). Just to illustrate, two specific
cases are presented in Table II. For these, the covariance
matrixes were chosen with a pairwise coordinate dependency
of the form [1.04 0 0.4 0; 0 1.04 0 0.4; 0.4 0 1.04 0; 0
0.4 0 1.04] for the dimension d = 4 and similar pairwise
dependency for d = 6. Performances are reported under the
parameter choice of the four estimation techniques adopted
previously. These results show the advantage of the two data-
driven techniques with respect to the competitive methods,
which is congruent with what has been observed in the scalar
scenario, in Table I.

A. Computational Complexity
We conclude this study with a comparison of the compu-

tational complexity of the four aforementioned methods. We
start with the tree-structured partition scheme of Section V-B,
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33 179 564 3164 5626

TSVQ: 1.3e-02 (1.7e-03) 3.0e-03 (2.1e-04) 1.7e-03 (6.0e-05) 2.7e-04 (4.2e-06) 8.5e-05 (1.5e-06)
GESS: 2.5e-02 (2.5e-03) 7.7e-03 (3.8e-04) 2.8e-03 (6.0e-05) 2.4e-04 (4.3e-06) 1.6e-04 (2.0e-06)
KERN: 3.5e-02 (1.2e-02) 9.7e-03 (2.3e-03) 3.2e-03 (6.0e-05) 3.1e-04 (9.4e-05) 9.0e-05 (4.9e-05)
PROD: 4.5e-01 (2.4e-02) 3.9e-02 (2.0e-03) 1.1e-02 (6.0e-05) 5.3e-03 (8.6e-05) 5.7e-03 (6.2e-05)

TSVQ: 8.6e-03 (2.6e-03) 1.8e-03 (5.3e-04) 1.2e-03 (1.9e-04) 1.4e-04 (3.0e-05) 2.4e-05 (1.4e-05)
GESS: 1.9e-02 (3.4e-03) 5.5e-03 (6.6e-04) 2.0e-03 (1.9e-04) 1.3e-04 (3.0e-05) 8.2e-05 (1.6e-05)
KERN: 4.5e-02 (1.2e-02) 1.4e-02 (2.5e-03) 5.3e-03 (1.9e-04) 9.1e-04 (1.1e-04) 4.4e-04 (6.4e-05)
PROD: 4.8e-01 (2.3e-02) 4.4e-02 ( 2.5e-03) 1.2e-02 (1.9e-04) 6.2e-03 (1.2e-04) 6.7e-03 (7.7e-05)

TSVQ: 3.2e-02 (3.6e-03) 2.1e-02 (1.3e-03) 7.3e-03 (6.6e-04) 5.8e-03 (1.4e-04) 6.7e-03 (7.7e-05)
GESS: 1.8e-02 (4.9e-03) 1.4e-02 (1.5e-03) 1.0e-02 (6.6e-0 4) 5.9e-03 (1.4e-04) 4.4e-03 (8.4e-05)
KERN: 2.0e-01 (1.5e-02) 8.6e-02 (3.4e-03) 4.6e-02 (6.6e-04) 1.8e-02 (2.3e-04) 1.4e-02 (1.2e-04)
PROD: 8.0e-01 (2.8e-02) 1.3e-01 (4.8e-03) 4.6e-02 (6.6e-04) 3.0e-02 (4.6e-04) 3.3e-02 (3.3e-04)

TABLE I
BIAS (AND VARIANCE) FOR THE MUTUAL INFORMATION ESTIMATES (HISTOGRAM-BASED USING GESSAMAN PARTITION SCHEME (GESS),

TREE-STRUCTURED VECTOR QUANTIZATION (TSVQ), CLASSICAL PRODUCT PARTITION (PROD) AND A KERNEL PLUG-IN ESTIMATE (KERN))
OBTAINED FROM 1000 I.I.D. REALIZATIONS OF THE EMPIRICAL PROCESS. SIMULATED DATA CONSIDERS X AND Y TO BE SCALAR GAUSSIAN RANDOM

VARIABLES, RESPECTIVELY. PERFORMANCE VALUES ARE REPORTED WITH RESPECT TO SAMPLING LENGTHS {33, 179, 564, 3164, 5626} (COLUMNS)
AND FOR THE CROSS CORRELATION COEFFICIENTS r = 0, 0.3, 0.8 (ROWS)

33 179 564 3164 5626

TSVQ: 4.4e-03 (2.2e-03) 1.2e-03 (5.5e-04) 1.1e-03 (2.1e-04) 9.5e-04 (4.9e-05) 6.0e-04 ( 2.6e-05)
GESS: 4.4e-03 (2.2e-03) 2.1e-05 (4.1e-04) 3.3e-03 (2.1e-04) 4.5e-04 (4.8e-05) 3.0e-04 (2.7e-05)
KERN: 2.1e-02 (1.2e-02) 3.2e-04 (2.8e-03) 2.6e-03 (2.1e-04) 1.5e-02 (1.6e-04) 1.9e-02 (9.2e-05)
PROD: 6.9e-01 (4.0e-02) 1.1e+00 (2.1e-02) 2.3e-03 (2.1e-04) 4.1e+00 (1.2e-02) 4.8e+00 (9.8e-03)

TSVQ: 4.4e-04 (1.6e-03) 3.5e-04 (4.9e-04) 1.6e-06 (2.2e-04) 6.3e-05 (4.3e-05) 2.0e-04 (2.5e-05)
GESS: 1.8e-02 (2.7e-03) 4.0e-03 (7.3e-04) 1.6e-06 (2.2e-04) 7.6e-04 (3.7e-05) 9.2e-04 (2.1e-05)
KERN: 1.3e-04 (1.2e-02) 1.2e-02 (2.8e-03) 3.4e-02 (2.2e-04) 7.4e-02 (2.0e-04) 8.7e-02 (1.2e-04)
PROD: 1.1e-01 (4.5e-02) 1.0e+00 (3.0e-02) 2.4e-00 (2.2e-04) 6.3e+00 (1.2e-02) 7.2e+00 (9.5e-03)

TABLE II
BIAS (AND VARIANCE) FOR THE NON-PARAMETRIC MUTUAL INFORMATION ESTIMATES (GESSAMAN PARTITION SCHEME (GESS), TREE-STRUCTURED

VECTOR QUANTIZATION (TSVQ), CLASSICAL PRODUCT PARTITION (PROD) AND A KERNEL PLUG-IN ESTIMATE (KERN)) OBTAINED FROM EMPIRICAL

DATA OF A MULTIVARIATE GAUSSIAN VECTOR (X,Y ) OF DIMENSIONS 4 AND 6, RESPECTIVELY. PERFORMANCE VALUES ARE REPORTED FOR THE

SAMPLING LENGTHS {33, 179, 564, 3164, 5626} AND FROM 1000 I.I.D. REALIZATIONS OF THE EMPIRICAL PROCESS.

which is a function of the number of sample points n and
the design variable kn = O(n0.5+τ/2) with τ ∈ (1/3, 1). We
recognize three phases: the constructions of the partition, the
estimation of the empirical distributions and the computation
of the MI functional. For the first, the number of operations
is proportional to the number of binary splits on the space,
which is O(n/kn). For the second, the estimation of PX,Y

on the elements of πn(zn1 ) is O(n), however the estimation
of PX × PY is proportional to n · |πn(zn1 )| that is O(n2/kn).
The last phase is a linear proportion of |πn(zn1 )| by (12). At
the end, O(n2/kn) is the complexity of the algorithm, and
considering τ > 1

3 the worst case scenario is O(n5/4). For
the Gessaman’s partition scheme, we obtain the same results,
i.e., it is O(n2/ln) with ln = O(n0.5+τ/2) and τ ∈ (1/3, 1).

The classical product partition scheme (under the same
number of quantization bins n/kn with kn = O(n0.5+τ/2)
and τ ∈ (1/3, 1)) offers the same complexity O(n2/kn).
Consequently, there is no penalization in the algorithmic
cost of histogram-based methods by incorporating data-driven
partitions. On the other hand, kernel-based methods have

higher complexity, O(n2), as they require the computation of
pairwise differences between the element of the data [22].

VII. DISCUSSION AND FUTURE WORK

This paper provides theoretical results to show how non-
product data-dependent partitions can be incorporated as in-
ference tools for mutual information estimation in the fi-
nite dimensional continuous setting. We stipulated a strong
consistency result that was applied in two emblematic non-
product constructions — statistically equivalent blocks and
tree-structured vector quantization. In both scenarios, specific
ranges of design values were obtained where density-free
strong consistency is guaranteed.

One inherent limitation of this work is that we only stipulate
sufficient conditions for consistency. It is a topic of further re-
search to find either necessary and sufficient conditions for our
histogram-based estimate to be strongly consistent (resulting
in an optimal range for (kn) and (ln)) or, alternatively, tighter
inequalities for the estimation and approximation errors that
could result in a refined consistent range for (kn) and (ln).
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In particular for the Gessaman partition, it is unknown if one
could match the weaker conditions obtained for L1-strongly
consistent density estimate presented in [15], [38], which are
optimal for this problem. More generally, the conjecture that
always extra conditions are needed to make L1-consistent
histogram-based density estimates consistent for the estimation
of information theoretic quantities remains open, a question
originally underscored by Györfi and van der Meulen in [23].

Another line of future research is to choose the design
variable of the family of consistent estimates optimally (the
parameter τ in our problem) with respect to some criterion
in order to guarantee not only consistency, but, for instance, a
nearly optimal rate of convergence. Results along this direction
have been presented for histogram-based density estimation
and classification [19], [20], [42]. The idea would be to shrink
the gap with respect to the ideal oracle result where, in the
domain of consistent design values (τ ∈ (1/3, 1)), we choose
the one with the best small sample performance (the one
with the optimal tradeoff between the estimation and the ap-
proximation error) for a given joint distribution and sampling
length. Improvement can be obtained from the inductive nature
of tree-structured partitions, as explored by Darbellay et al.
[24], and in theory motivated from results in the context of
complexity regularized regression and classification trees [35],
[42], [43]. We are currently working on this problem, and we
hope to present result on it in the near future.
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APPENDIX I
PROOF OF THEOREM 2

A. Preliminary Result for the KL Divergence

The next result addressees the approximation error for the
KL divergence estimation problem. As the MI is a particular
instance of the KL divergence, this result proves Theorem 2.

THEOREM 7: Let P and Q be two probability measures
in ( d,B( d)), absolutely continuous with respect to the
Lebesgue measure, such that the divergence D(P ||Q) is finite.
Let us consider a partition scheme Π = {π1(·), π2(·), · · · }
driven by a random sequence Z1, Z2, · · · with Zi ∼ P for all
i, and process distribution denoted by . If ∀δ > 0,

lim
n→∞

P
��

z ∈ d : diam(πn(z|Zn
1 )) > δ

��
→ 0, -a.s.,

(26)
then,

lim
n→∞

�

B∈πn(Zn
1 )

P (B) · log P (B)

Q(B)
= D(P ||Q), -a.s.. (27)

Proof of Theorem 7: First, we use that

D(P ||Q) = sup
π∈A( d)

Dπ(P ||Q) (28)

with A( d) being the collection of finite measurable partitions
of d and Dπ(P ||Q) ≡

�
B∈π log

P (B)
Q(B) · P (B) the KL

divergence restricted to σ(π) ⊂ B( d) [1]. Then, for any
sequence zn1 ∈ d·n, Dπn(zn

1 )(P ||Q) ≤ D(P ||Q), and then,

lim sup
n→∞

Dπn(Zn
1 )(P ||Q) ≤ D(P ||Q), -a.s. (29)

Consequently, it is sufficient to show that, ∀� > 0,

D(P ||Q) < lim inf
n→∞

Dπn(Zn
1 )(P ||Q) + �, -a.s. (30)

We first introduce some definitions.
• Definition 3: We define the set Bn(δ) ≡

�
A∈πn(z

n
1 )

diam(A)>δ

A,

as the support of the partition πn(zn1 ) with bins of
diameter strictly greater than δ.

• Definition 4: ∀B ∈ B( d), we denote by πn[B|zn1 ] ≡�
A∈πn(z

n
1 )

s.t.A∩B �=∅
A, the smallest measurable support of

πn(zn1 ) that fully contains B.
• Definition 5: For any partition π, we define the

following measurable function: fπ(P ||Q)(x) ≡�
B∈π log

P (B)
Q(B) · B(x), ∀x ∈ d, with B(·) denoting

the indicator function6.
• Definition 6: For a partition π = {A1, · · · , AL} and an

event B, let π̄/B ≡ {A1 ∩B, .., AL ∩B} denote the
partition of B induced by π.

Continuing with the proof, let us consider an arbitrary � > 0.
Then from (28) there exists a partition π̄ = {A1, .., AL} such
that,

D(P ||Q) < Dπ̄(P ||Q) + �/2. (31)

By the continuity of x log x function, the fact that P � Q
and that |π| < ∞, it is simple to show that there exists
δ(�/2) > 0 such that for any partition π̂ =

�
Â1, .., ÂL

�

that satisfies both supi=1,..,L

���P (Ai)− P (Âi)
��� < δ(�/2) and

supi=1,..,L

���Q(Ai)−Q(Âi)
��� < δ(�/2), then,

|Dπ̄(P ||Q)−Dπ̂(P ||Q)| < �

2
. (32)

We will use this result to approximate the events of
π̄ by set operations of our data-dependent collection�
π1(z1), π2(z21), · · ·

�
. More precisely, note that P � λ

and Q � λ, with λ representing the Lebesgue measure in
( d,B( d)). Consequently there exists a bounded set Bo such
that P (Bc

o) < 0.5 ·δ(�/2) and Q(Bc
o) < 0.5 ·δ(�/2) [36], with

Bc
o the complement of Bo. We will find a good approximation

for the bounded set of events π̄/Bo = {A1 ∩Bo, .., AL ∩Bo}.
For that we need to introduce the following oracle data
dependent partition.

Definition 7: For the bounded set Bo, ∀δ > 0 and for any
n ∈ , we denote by πδ

n(z
n
1 ) a refined version of πn(zn1 )

constructed from, ∀A ∈ πn(zn1 ):
if A ∩Bo = ∅, then A ∈ πδ

n(z
n
1 ).

if A ∩Bo �= ∅, and diam(A) < δ, then A ∈ πδ
n(z

n
1 ).

6Note that fπ(P ||Q)(·) is P -integrable (∈ L1(P )), in fact from its
definition,

�
fπ(P ||Q)∂P (x) = Dπ(P ||Q) ≤ D(P ||Q) < ∞.
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else, Partition A into a finite collection of events, with the
condition that every resulting event intersecting Bo

has diameter strictly smaller than δ, and assign those
sets to πδ

n(z
n
1 ). 7

By definition πδ
n(z

n
1 ) is a refinement of πn(zn1 ), constructed

in such a way that all the bins on πδ
n[Bo|zn1 ] have a diameter

strictly less than δ. We use the following construction to
approximate π̄/Bo from πδ

n(z
n
1 ),

Cδ
1,n =

�

A∈πδ
n(z

n
1 )

A∩(Bo∩A1) �=∅

A,

Cδ
2,n =

�

A∈πδ
n(z

n
1 )

A∩(Bo∩A2) �=∅

A \ Cδ
1,n, · · · ,

Cδ
L,n =

�

A∈πδ
n(z

n
1 )

A∩(Bo∩AL) �=∅

A \
L−1�

k=1

Cδ
k,n,

and we denote the approximation by π̄δ
n ≡

�
Cδ

1,n, .., C
δ
L,n

�

(without loss of generality we assume that ∀i ∈ {1, .., L},
Bo ∩ Ai �= ∅). By the continuity of a measure under
monotone set sequence [36], [44], it can be shown that ∀�̄ >
0 ∃δ̄ > 0 sufficiently small such that supi=1,..,L λ((Ai ∩
Bo)�C δ̄

i,n) < �̄, uniformly ∀n ∈ . Then in particular,
using that P � λ and Q � λ, we can choose δ̄ such
that supi=1,..,L

���P (Ai ∩Bo)− P (C δ̄
i,n)

��� < 0.5 · δ(�/2) and

supi=1,..,L

���Q(Ai ∩Bo)−Q(C δ̄
i,n)

��� < 0.5 · δ(�/2), ∀n ∈ .
Using this result and (32), then for this δ̄(�/2) we have that,
�����Dπ̄(P ||Q)−

L�

i=1

log
P (C δ̄

i,n)

Q(C δ̄
i,n)

· P (C δ̄
i,n)

����� < �/2, ∀n ∈ .

(33)
On the other hand, by the hypothesis in (26),

lim
n→∞

P (Bn(δ̄)) = 0 (34)

for -almost every sequence z1, z2, · · · ∈ d· . Let us concen-
trate on one of those typical sequences and show that for any
of them, (30) is satisfied. Let z1, z2, . . . be a typical sequence
with respect to δ̄ (i.e., a realization of the process where (34)
is satisfied). Then,

Dπ̄(P ||Q)−Dπn(zn
1 )(P ||Q)

<
�

2
+

L�

i=1

log
P (C δ̄

i,n)

Q(C δ̄
i,n)

· P (C δ̄
i,n)−Dπn(zn

1 )(P ||Q)

≤ �

2
+Dπδ̄

n(z
n
1 )(P ||Q)−Dπn(zn

1 )(P ||Q) =
�

2
+

�

Bn(δ̄)
fπδ̄

n(z
n
1 )(P ||Q)∂P (x)−

�

Bn(δ̄)
fπn(zn

1 )(P ||Q)∂P (x),

(35)

the first inequality because of (33), the second due to the
monotonic behavior of Dπ(P ||Q) under refined partitions [1],

7Note that this oracle partition is possible (not unique) as Bo is a bounded
set (referring to the refinement step on the bins intersecting Bo with diameter
greater or equal to δ).

[34] and the fact that by construction π̄δ̄
n � πδ̄

n(z
n
1 ), and the

last equality because by construction πδ̄
n(z

n
1 ) and πn(zn1 ) are

equivalent in the support Bc
n(δ̄). Again using the monotonicity

of the KL divergence under sequence of refined partitions, we
have that,

log
P (Bn(δ̄))

Q(Bn(δ̄))
· P (Bn(δ̄)) ≤

�

Bn(δ̄)
fπδ̄

n(z
n
1 )(P ||Q)∂P (x)

≤
�

Bn(δ̄)
f(P ||Q)∂P (x). (36)

Given that D(P ||Q) < ∞ and that limn P (Bn(δ)) = 0, by
the dominated convergence theorem [36]

lim
n→∞

�

Bn(δ)
f(P ||Q)∂P (x) = 0,

then from (36) lim supn→∞
�
Bn(δ̄)

fπδ̄
n(z

n
1 )(P ||Q)∂P (x) ≤ 0.

On the other hand,

P (Bn(δ̄)) · log
P (Bn(δ̄))

Q(Bn(δ̄))
≥ P (Bn(δ̄)) · logP (Bn(δ̄))

and the fact that limx→0 x · log x = 0 implies that
lim infn→∞

�
Bn(δ̄)

fπδ̄
n(z

n
1 )(P ||Q)∂P (x) ≥ 0. Consequently,

lim
n→∞

�

Bn(δ̄)
fπδ̄

n(z
n
1 )(P ||Q)∂P (x) = 0.

By the same argument,

lim
n→∞

�

Bn(δ̄)
fπn(zn

1 )(P ||Q)∂P (x) = 0.

Finally taking limits in the previous set of inequalities (35),
Dπ̄(P ||Q) < lim infn→∞ Dπn(zn

1 )(P ||Q)+ �
2 , and from (31),

D(P ||Q) < lim inf
n→∞

Dπn(zn
1 )(D||P ) + �,

for any typical sequence (or −a.s.).

B. Proof of Theorem 2:

It is just a direct consequence of Theorem 7, considering
the measures P=PX,Y and Q = PX × PY .

APPENDIX II
PROOF OF THEOREM 3

We know that I(X;Y ) = D(P ||Q) with P denoting the
joint distribution PX,Y and Q = PX × PY . We denote
by Pn and Qn the empirical versions of P and Q induced
by Z1, .., Zn and the product bin structure of πn(·). Then
the empirical MI estimate in (12) can be expressed by
Dπn(Zn

1 )(Pn||Qn). To prove the result we use the following
inequality,

��Dπn(Zn
1 )(Pn||Qn)−D(P ||Q)

�� ≤
��Dπn(Zn

1 )(Pn||Qn)−Dπn(Zn
1 )(P ||Q)

��

+
��Dπn(Zn

1 )(P ||Q)−D(P ||Q)
�� . (37)

The last term in the right hand side of (37) is the approxima-
tion error, which from Theorem 2 converges to zero -a.s. as n
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tends to infinity. Then we just need to focus on the estimation
error term. From triangular inequality

��Dπn(Zn
1 )(Pn||Qn)−Dπn(Zn

1 )(P ||Q)
��

≤

������

�

A∈πn(Zn
1 )

[Pn(A) logPn(A)− P (A) logP (A)]

������
(38)

+

������

�

A∈πn(Zn
1 )

[Pn(A) logQn(A)− P (A) logQ(A)]

������
. (39)

Concerning the term in (38), it is upper bounded by
������

�

A∈πn(Zn
1 )

[Pn(A)− P (A)] logPn(A)

������

+

������

�

A∈πn(Zn
1 )

[logPn(A)− logP (A)]P (A)

������
≤

�

A∈πn(Zn
1 )

|Pn(A)− P (A)| log n

kn
+

sup
A∈πn(Zn

1 )
|logP (A)− logPn(A)| , (40)

where we use that Pn(A) ≥ kn
n ∀A ∈ πn(Zn

1 ). The first term
in the RHS of (40), from left to right, is bounded by,




�

A∈πn(Zn
1 )

|Pn(A)− P (A)| · log n

kn
> �





≤ 4∆∗
2n(An)2

M(An) · exp
�
− n�2

(log n/kn)2 · 32

�
, (41)

where the inequality follows from πn(Zn
1 ) ⊂ An

and Lemma 1. Note that the exponential term
exp

�
− n�2

(logn/kn)2·32

�
≤ exp

�
− n�2

(logn)2·32

�
, where this

last sequence is (uniformly in �) dominated by the sequence
(exp {−mτ̄})n∈ , ∀τ̄ ∈ (0, 1). Consequently from c.2, c.3
and c.4, it is simple to show that ∀� > 0, lim supn→∞

1
mτ ·

log
��

A∈πn(Zn
1 ) |Pn(A)− P (A)| > �

logn/kn

�
≤

Co, being Co < 0. Finally from the fact that�
n≥0 exp {Co ·mτ} < ∞ and the Borel-Cantelli lemma

[36], limn→∞
�

A∈πn(Zn
1 ) |Pn(A)− P (A)| log n

kn
= 0, -a.s.

Concerning the second term in the RHS of (40), we use the
following result.

PROPOSITION 2: (Silva et al. [30]) Under the conditions
c.2, c.3 and c.4 of the Theorem 3,

lim
n→∞

sup
A∈πn(Zn

1 )

����
P (A)

Pn(A)
− 1

���� = 0, − a.s. (42)

(Proof presented at the end of this section).
Then from (42), it is simple to show

that limn→∞ supA∈πn(Zn
1 )

P (A)
Pn(A) = 1 and

limn→∞ supA∈πn(Zn
1 )

Pn(A)
P (A) = 1 -a.s. On the other

hand, ∀A ∈ πn(Zn
1 ),

����
Pn(A)

P (A)
− 1

���� ≤
| P (A)− Pn(A)|

Pn(A)
· Pn(A)

P (A)
,

then limn→∞ supA∈πn(Zn
1 )

���Pn(A)
P (A) − 1

��� = 0 -a.s. Finally
noting that ∀n,

sup
A∈πn(Zn

1 )

����log
P (A)

Pn(A)

���� ≤

max

�
sup

A∈πn(Zn
1 )

����
P (A)

Pn(A)
− 1

���� , sup
A∈πn(Zn

1 )

����
Pn(A)

P (A)
− 1

����

�
,

this last inequality shows the result. Concerning the term in
(39), we bounded it by the expression in (43) (see figure
at the top of the next page), where considering the pro-
duct bin structure of πn(·), we have that ∀A ∈ πn(Zn

1 ),
Qn(A) = Pn(A[1,p] × q)Pn( p ×A[p+1,d]), with A[1,p] and
A[p+1,d] a short-hand notation for ξ[1,p](A) and ξ[p+1,d](A),
respectively. We focus attention on just one of the terms in
(43), since by symmetry the derivation for the other is equiv-
alent. We have that

���
�

A∈πn(Zn
1 )

�
P (A) logP (A[1,p] × q)−

Pn(A) logPn(A[1,p] × q)
��� ≤

�

A∈πn(Zn
1 )

|Pn(A)− P (A)| log n

kn
+

sup
A∈πn(Zn

1 )

��logP (A[1,p] × q)− logPn(A[1,p] × q)
�� , (44)

where it has been proved that the first term of the bound tends
to zero -a.s as n tends to infinity. Concerning the second term
in (44), from one of the previous arguments it is sufficient to
show that limn→∞ supA∈πn(Zn

1 )

��� P (A[1,p]× q)
Pn(A[1,p]× q) − 1

��� = 0 -
a.s. Analyzing this expression, we have that, ∀� > 0,

�
sup

A∈πn(Zn
1 )

����
P (A[1,p] × q)

Pn(A[1,p] × q)
− 1

���� > �

�
≤

�
sup

A∈πn(Zn
1 )

��P (A[1,p] × q)− Pn(A[1,p] × q)
�� > kn · �

n

�

≤ Sn(C[1,p],n) · exp
�
−k2n · �2

n · 8

�
, (45)

the first inequality results from the fact that Pn(A[1,p] ×
d) ≥ Pn(A) ≥ kn

n , ∀A ∈ πn(Zn
1 ), and the second from

C[1,p](Zn
1 ) ⊂ C[1,p],n and the Vapnik-Chervonenkis inequality

in Theorem 1. Finally considering that (kn) ≈ (n0.5+τ/2) and
c.1,

lim sup
n→∞

1

nτ
log

�
sup

A∈πn(Zn
1 )

����
P (A[1,p] × q)

Pn(A[1,p] × q)
− 1

���� > �

�

< C(�) a constant function of � that is strictly
negative. Then again from the Borel-Cantelli lemma,
limn→∞ supA∈πn(Zn

1 )

��� P (A[1,p]× q)
Pn(A[1,p]× q) − 1

��� = 0 -a.s, which is
the last piece of result needed to prove the theorem.
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������

�

A∈πn(Zn
1 )

[Pn(A) logQn(A)− P (A) logQ(A)]

������
≤

������

�

A∈πn(Zn
1 )

�
P (A) logP (A[1,p] × q)− Pn(A) logPn(A[1,p] × q)

�
������

+

������

�

A∈πn(Zn
1 )

�
P (A) logP ( p ×A[p+1,d])− Pn(A) logPn(

p ×A[p+1,d])
�
������

(43)

A. Proof of Proposition 2
We have that

�
sup

A∈πn(Zn
1 )

����
P (A)

Pn(A)
− 1

���� > �

�

≤
�

sup
A∈πn(Zn

1 )
|P (A)− Pn(A)| > � · kn/n

�

≤
�

sup
π∈An

sup
A∈π

|P (A)− Pn(A)| > � · kn/n
�

≤ 4∆∗
2n(An)2

M(An) exp−
(�·kn)2

n·32 ,

where the last inequality is from Lemma 1.
Using c.2, c.3 and c.4 from Theorem 3, there
exits a τ ∈ (0, 1) such that limm→∞

1
nτ ·

log
�
supA∈πm(Zm

1 ) |Pn(A)− P (A)| > � · kn/n
�

≤ − limn→∞ �2 · k2
n

n1+l = −� · C, for some C > 0.
Then Borel-Cantelli proves the result.

APPENDIX III
PROOF OF THEOREM 6

Proof: As considered in Appendix I and II, we address
this result for the more general scenario of the KLD. For the
rest, let πn(Zn

1 ) = πTn(Z
n
1 ) denote the n-sample partition rule

of the UBTSS Π.

A. Reducing the Problem to the Bounded Measurable Space
([0, 1]d,B([0, 1]d))

Note that Π is monotone transformation invariant [28], in
the sense that ∀πn ∈ Π, ∀z ∈ d, ∀zn1 ∈ d·n,

πn(z|z1, ..zn) = πn(F (z)|F (z1), ..F (zn)),

where F : d → d is an arbitrary function that can be ex-
pressed by F (x) = (f1(x(1)), · · · , fd(x(d))), for some collec-
tion of strictly increasing real functions {fi(·) : i = 1, .., d}. In
particular, we can consider fi(·) to be the distribution function
of the probability Q restricted to events on the i-coordinate
∀i ∈ {1, .., d}. Without loss of generality we can restrict
to the case when {fi(·) : i = 1, .., d} are strictly increasing.
Consequently, the induced distributions of the transform space,
denoted by Q̄ and P̄ respectively, have support on [0, 1]d and
satisfies that [1]

D(P ||Q) = D(P̄ ||Q̄), (46)

because F (·) is one-to-one measurable mapping from d to
[0, 1]d (more precisely

�
F−1(A) : A ∈ B([0, 1]d)

�
= B( d)).

Moreover, if we apply Π in the transform domain, it is simple
to check that

Dπ(Zn
1 )(P ||Q) = Dπ(F (Z1),..,F (Zn)))(P̄ ||Q̄), (47)

and from (46) and (47) without loss of generality we can
assume that Q and P are defined on ([0, 1]d,B([0, 1]d).

B. Formulation of a Sufficient Condition
Given that πn(Zn

1 ) is induced by axis-parallel hyperplanes,
every cell U ∈ πn(Zn

1 ) can be represented by a finite dimen-
sional rectangle of the form ⊗d

i=1[li, ui) (with the possible
open and closed interval variations). In this scenario, ∀U ∈
πn(Zn

1 ),

diam(U) ≤
d�

i=1

lengthi(U), (48)

with lengthi(U) denoting the Lebesgue measure of the projec-
tion of U on the i-coordinate. Then from Markov’s inequality,
for proving the shrinking cell condition it suffices to show that
[28],

lim
n→∞

EP

�
d�

i=1

lengthi(πn(Z|Zn
1 ))

�
=

lim
n→∞

�

[0,1]d

d�

i=1

lengthi(πn(z|Zn
1 ))∂P (z) = 0, (49)

almost surely with respect to the process distribution of
Z1, Z2 · · · .

C. A Preliminary Definition
Let U = ⊗d

i=1[li, ui] be a rectangle in B([0, 1]d) and
let

�
H0

0 , H
1
0 , H

1
1 , · · · , Hd−1

0 , .., Hd−1
2d−1−1

�
be a sequence of

axis-parallel hyperplanes used to recursively split U in every
coordinate. This partitions U in 2d cells. More precisely, H0

0

parallel to the 1-coordinate splits U0
0 = U into two rectangles

U1
0 , U1

1 , then H1
0 and H1

1 parallel to the 2-coordinate split
U1
0 and U1

1 into U2
0 , U2

1 , and U2
2 , U2

3 respectively, and
inductively at the end of the process a TSP for U is created�
Ud
j : j = 0, .., 2d − 1

�
.

Definition 8: Let P be a probability measure in
([0, 1]d,B([0, 1]d)), and for the aforementioned construction
let plj = P (U l

j) denote the probability of every induced
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rectangle. We say that
�
H0

0 , H
1
0 , H

1
1 , · · · , Hd−1

0 , .., Hd−1
2d−1−1

�

is a sequence of �-good median cuts for U with respect to P
if: ∀l ∈ {0, .., d− 1} and j ∈

�
0, .., 2l − 1

�
,

max(pl+1
2j , pl+1

2j+1) ≤
1

2
(1 + �)1/d · plj . (50)

PROPOSITION 3: Let U be a finite dimensional rect-
angle in B([0, 1]d) with probability P (U) = p > 0, and�
Ud
j : j = 0, .., 2d − 1

�
a partition of U induced by sequence

of �-good median cuts. Then,

2d−1�

j=0

pdj ·
d�

i=1

lengthi(U
d
j ) ≤

1 + �

2
· p ·

d�

i=1

lengthi(U).

(51)
The proof is a simple consequence of (50).

D. Final Argument
Let Π = {T1, T2, · · · } be the UBTSS of height (dn), i.e.

|πn(zn1 )| = 2dn , ∀n > 0 and ∀zn1 ∈ dn. In addition, let
us consider the pruned UBTSS Π̄ =

�
T̄1, T̄2, · · ·

�
, where

T̄n ≡ T d̄n
n and d̄n = d · �dn/d� ≤ dn. It is sufficient to

prove the shrinking cell condition for Π̄. The reason for this
reduction is that by construction the height of T̄n is a power of
d, and then we can recursively apply Proposition 3 to bound
EP

��d
i=1 lengthi(π̄n(Z|Zn

1 ))
�

, where π̄n(Zn
1 ) ≡ πT̄n

(Zn
1 ).

More precisely, let Bn(�) ∈ B( d·n) be the collection of
sequences where all the axis-parallel hyperplanes that induce
π̄n(zn1 ) are �-good median cuts with respect to P . Then from
(51), for all zn1 ∈ Bn(�) we have that,

EP

�
d�

i=1

lengthi(π̄n(Z|zn1 ))
�

≤
�
1 + �

2

�rn
· d, (52)

with rn = �dn/d�. Let us choose �0 > 0 suffi-
ciently small in order that 1 + �0 < 2. Then from
(52) as rn → ∞ (when n → ∞), the event
An(�) =

�
zn1 ∈ d·n : EP

��d
i=1 lengthi(π̄n(Z|zn1 ))

�
> �

�

∈ B( d·n) is eventually contained in Bn(�0)c, ∀� > 0.
Consequently, let us focus on the analysis of (Bn(�0)c). By
definition Bn(�0)c is the event that one of the cuts of T̄n is not
�0-median good. By construction the number of hyperplanes
splitting T̄n is given by (1 + 2 + · · ·+ 2d̄n−1), then

(Bn(�0)
c) ≤ 2d̄n · (Bo

n(�0)) (53)

with Bo
n(�0) denoting the event that a cut is not �0-median

good. Devroye et al. [28] (Theorem 20.2) showed for this case
of balanced trees that,

(Bo
n(�0)) ≤ 2 · exp

�
− n

2d̄n+2
· ((1 + �0)

1/d − 1)2
�
, (54)

for n sufficiently large. Consequently, from (53) and (54), there
exists K > 0 such, (Bn(�0)c) ≤

K · exp
�
log(2) · d̄n − n

2d̄n+2
· ((1 + �0)

1/d − 1)2
�
, (55)

∀n ∈ . From the definition of d̄n, we have that dn − d <
d̄n ≤ dn, and consequently from the hypothesis, there exists

(an) ≈ (nθ) for some θ > 0, such that
n

d̄n2d̄n
− an

d̄n
→ ∞, (56)

which from (55) is sufficient to show that,

lim
n→∞

(Bn(�0)c)

exp (−nθ)
= 0. (57)

Finally, lim supn An(�) ⊂ lim supn Bn(�0)c, ∀� > 0, then
given that

�
n (Bn(�0)c) < ∞ from (57), and the Borel-

Cantelli lemma, EP

��d
i=1 lengthi(π̄n(Z|Zn

1 ))
�

tends to
zero with probability one with respect to , which concludes
the proof.
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