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Abstract: We propose a dynamic programming (DP) based piecewise polynomial approx-

imation of discrete data such that the L2 norm of the approximation error is minimized. We

apply this technique for the stylization of speech pitch contour. Objective evaluation verifies

that the DP based technique indeed yields minimum mean square error (MSE) compared to

other approximation methods. Subjective evaluation reveals that the quality of the synthesized

speech using stylized pitch contour obtained by the DP method is almost identical to that of

the original speech.
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1 Introduction

Piecewise approximation of data using polynomial functions of finite order is a problem of interest

in many fields of science and engineering, such as compression of ECG signals [1], environment

compensation in automatic speech recognition [2], design of embedded systems without floating

point capabilities [3], and stylization of pitch contour [4]. Let {xn}
N
n=1 be N data points. The

piecewise polynomial approximation problem requires that K piecewise polynomial functions of

order P have to be used to approximate {xn}
N
n=1. In this paper, we derive an O(KN 2) algorithm

1Copyright (c) 2008 IEEE. Personal use of this material is permitted. However, permission to use this material
for any other purposes must be obtained from the IEEE by sending a request to pubs-permissioons@ieee.org
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based on dynamic programming (DP) which minimizes the L2 norm of the approximation error.

This algorithm finds the boundaries of piecewise segments and also the polynomial coefficients

in each segment. We apply the proposed algorithm for pitch contour stylization, a key potential

ingredient for many speech processing applications such as synthesis and speech understanding.

There have been many works in the literature on piecewise polynomial (in particular, linear)

approximation of a function or data. Cantoni [9] proposed an optimal curve fitting technique

with piecewise linear functions, but the solution requires explicit prespecified end points of

segments. Tomek [10] proposed two heuristic algorithms for piecewise linear continuous approx-

imation of functions of one variable but these were not formulated as an explicit optimization.

More recently, Miroslav et al. [11] proposed a recursive formula for piecewise polynomial ap-

proximation of discrete functions. The proposed recursion finds the best polynomial fit to a set

of local data points, which have to be specified explicitly. Thus this recursion does not provide

optimal piecewise segment boundaries given a set of data points. Obata et al. [12] used fluency

theory to obtain piecewise polynomial approximation of given data. However, for better ap-

proximation, adaptation of the class of fluency vector is required depending on the input data,

although the authors in [12] do not address specific adaptation solutions.

A number of approximation algorithms have been proposed in the literature [4, 5, 6, 7, 8] for

pitch stylization, but most are predominantly heuristic and are not formulated to directly opti-

mize any specific objective metric. Optimality in terms of some objective function is necessary

to understand the effect of parameterization of the pitch contour in a systematic way. In this re-

gard, our proposed algorithm provides the flexibility of obtaining an optimal approximation for

given choices of K and P . This offers the advantage of studying and comparing various possible

piecewise parameterizations of the pitch contour in both objective and subjective manner.

It should be noted that Ranveig et al. [1] also proposed an O(KN 2) algorithm using a

directed graph (DG) approach, but we will show that the proposed algorithm gives a lower L2

norm of the approximation error compared to that in [1]. The main difference between our
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approach and that of [1] is that our approach does not assume the boundary points of the

piecewise approximation to be some of the given data points while Ranveig et al [1] do have

such constraints. This leads to a lower L2 norm of the approximation error in our approach.

2 Problem Definition

Let {xn}
N
n=1 be N pitch values (in general, any set of discrete data points), where n is the index

variable of the data. The problem is to approximate {xn}
N
n=1 using K piecewise polynomial

functions of order P . This means we have to find out K − 1 boundary indices {ηk}
K−1
k=1 for K

piecewise segments and the polynomial coefficients
{

ak
l

}P

l=0
, k = 1, ...,K for all K piecewise

segments. However, we need to first define a criterion with respect to which the {ηk} and
{

ak
l

}

will be optimal.

Let the data {xn}
N
n=1 be modeled as realizations of the random variables:

Xn =
P
∑

l=0

ak
l n

l + εn , ηk−1 ≤ n ≤ ηk, k = 1, ...,K (1)

where η0 = 1 and ηK = N and εn is independent identically distributed (i.i.d.) random variables,

having normal distribution with mean 0 and variance σ2 with corresponding probability density

function (pdf) of εn being fεn(y) = N
(

0, σ2
)

= 1√
2πσ

e
− 1

2

y2

σ2 , −∞ ≤ y ≤ ∞.

Thus, Xn (ηk−1 ≤ n ≤ ηk) are independent random variables with the pdf fXn(x) =

N
(

∑P
l=0 ak

l n
l, σ2

)

. {ηk} and
{

ak
l

}

are determined by maximizing the likelihood of the obser-

vation sequence given by fX1,...,XN
(x1, ..., xN ) =

∏N
n=1 fXn(xn) (because Xn are independent).

It’s easy to show that maximizing fX1,...,XN
(x1, ..., xN ) is equivalent to minimizing

[

∑K
k=1

∑ηk−sign(K−k)
n=ηk−1

(

xn −
∑P

l=0 ak
l n

l
)2
]

, which is the L2 norm square of the residual εn. sign(K−

k) = 1, when k < K. This is done to avoid counting boundary points twice. Thus, the opti-
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mization problem becomes

{η̃k} ,
{

ãk
l

}

= arg min
{ηk}, {ak

l }





K
∑

k=1

ηk−sign(K−k)
∑

n=ηk−1

(

xn −
P
∑

l=0

ak
l n

l

)2


 , k = 1, ...,K, l = 0, ..., P (2)

subject to
P
∑

l=0

ak−1
l ηl

k =
P
∑

l=0

ak
l η

l
k, k = 1, ...,K − 1

The constraints ensure continuity at the boundaries of piecewise segments. This cost function

is not differentiable w.r.t. ηk although it is differentiable w.r.t. ak
l . A full search for optimal

{ηk} has an order complexity O(NK−1). Instead, we derive a dynamic programming (DP) based

solution which has an order complexity O(N 2K).

Also note that for K = 1 and P = 1, this problem becomes a simple least square problem

[13]. Thus, the problem addressed here is a generalization of the least square approximation.

3 Dynamic programming (DP) based solution

DP works on the principle of doing locally best to achieve a globally best solution. Hence

we first need to derive a solution of the following problem, which provides a best polynomial

approximation (of known order P ) of local data points {xm}M2

m=M1
such that the following L2

norm of the approximation error is minimized subject to an initial constraint
∑P

p=0 αpM
p
1 = β.

{α̃p} = arg min
{αp}

M2
∑

m=M1

1

2



xm −
P
∑

p=0

αpm
p





2

, p = 0, ..., P (3)

where P and β are known. This can be easily solved by the Lagrange multiplier method:

Let J({αp} , λ) =
1

2

M2
∑

m=M1



xm −
P
∑

p=0

αpm
p





2

+ λ



β −
P
∑

p=0

αpM
p
1



 (4)
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where λ is the Lagrange multiplier. Eqn. (4) has P + 2 unknowns {αp}
P
p=0 and λ, which can be

solved from the P + 2 linear equations:
{

∂J
∂αq

= 0
}P

q=0
and

{

∂J
∂λ

= 0
}

. This can be written as

Aθ = b (5)

where

A =





































∑M2

m=M1
m0 ...

∑M2

m=M1
mP M0

1

. ... . .

. ... . .

∑M2
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mP ...

∑M2
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m2P MP

1
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1 ... MP
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


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and b =


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
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When the number of data points is at least greater than the order of the polynomial, i.e.,

when M2 − M1 ≥ P , θ (and hence {α̃p}) can be obtained as follows:

θ = A−1b (6)

Therefore, if two index points M1 and M2(≥ P + M1) and a constraint value β are provided for

the optimization problem in eqn. (3), eqn. (6) provides {α̃p}
P
p=0. Let δ(M1,M2, β) denote the

corresponding Sum of Squared approximation Error (SSE), i.e.,

δ(M1,M2, β) =
M2
∑

m=M1



xm −
P
∑

p=0

α̃pm
p





2

(7)

where
∑P

p=0 α̃pM
p
1 = β. Let us now define the necessary terminologies for deriving the optimal

solution of eqn. (2) using DP. Let Dk(r) be the SSE of the approximation error for fitting k

optimum polynomial functions of order P between x1 and xr (kP + 1 ≤ r ≤ N)2. Let ξk(r) be

2The minimum value of r for fitting k polynomials of order P between x1 and xr is kP + 1. For example,
considering k = 1, at minimum r should be P + 1 because we need a minimum of P + 1 data points between x1
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the backtracking pointer, that stores the starting index point for the kth polynomial function

for fitting k optimum polynomial functions of order P between x1 and xr (kP +1 ≤ r ≤ N). Let

βk(r) be the value of the approximation at index r for fitting k optimal polynomial functions of

order P between x1 and xr, given by

βk(r) =
P
∑

l=0

ak
l r

l (8)

where
{

ak
l

}P

l=0
are the optimal polynomial coefficients of the kth polynomial function for fitting

k optimum polynomial functions of order P between x1 and xr (kP + 1 ≤ r ≤ N).

Note that D1(r), (P + 1 ≤ r ≤ N) can be obtained by minimizing a cost function similar

to eqn. (3) without any constraint and setting M1 = 1 and M2 = r. Therefore, eqn. (6) can be

used with proper modification3 in this context. Dk(r) is computed in a recursive manner and

ξk(r) and βk(r) are stored in each recursion of dynamic programming as described below.

Dynamic programming algorithm

1. Initialization:

Compute D1(r) and β1(r), r = P +1, ..., N . For each r, use eqn. (6) without any constraint and

obtain
{

a1
l

}P

l=0, which will be used in eqn. (8) to obtain β1(r). Also ξ1(r) = 1, r = P + 1, ..., N .

2. Iteration:

For 2 ≤ k ≤ K and kP + 1 ≤ r ≤ N compute the following:

Dk(r) = min
1≤s≤r−P

{Dk−1(s) + δ(s, r, βk−1(s))}

ξk(r) = arg min
1≤s≤r−P

{Dk−1(s) + δ(s, r, βk−1(s))} (9)

where δ(s, r, βk−1(s)) is computed using eqn. (6) and (7) and βk(r) is also computed using eqn.

and xr to fit a polynomial of order P . For r < kP + 1, Dk(r) is set to ∞.
3Without the constraint

∑P

p=0
αpM

p
1

= β, matrix A in eqn. (6) is modified to the top left (P + 1) × (P + 1)

submatrix of A given in eqn. (5). θ and b are modified by taking first P + 1 elements of those in eqn. (5).
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(6) and (8). The maximum range of s in δ(s, r, βk−1(s)) can be r − P because the number of

data points between xr−P and xr is P +1, which is the minimum number of data points required

to fit a polynomial of order P .

3. Termination and Backtracking:

After Dk(r) and ξk(r) are computed, we backtrack to obtain optimal piecewise segment bound-

aries from ξk(r). DK(N) is the SSE of the approximation error for fitting K optimal polynomial

functions of order P between x1 and xN . So ξK(N) is the starting point of the Kth piecewise

polynomial. Thus, ηK−1 = ξK(N). It means the (K − 1)th piecewise polynomial functions

should end at ηK−1 and should start at ξK−1(ηK−1); so, we can recursively compute

ηk = ξk+1(ηk+1) k = K − 2,K − 3, ..., 2, 1 (10)

Since in eqn. (1) we defined η0 = 1 and ηK = N , (10) gives {η̃k} , k = 0, ...,K of the optimization

problem of eqn. (2). The optimum values
{

ãk
l

}

of eqn. (2) are now obtained as follows:

{

ã1
l

}P

l=0 are obtained following the solution of eqn. (3) without any constraint and setting

M1 = η̃0 = 1 and M2 = η̃1.
{

ãk
l

}P

l=0
, k = 2, ...,K are obtained using eqn. (6) with M1 = η̃k−1,

M2 = η̃k and β = βk−1(ηk−1).

4 Experiment and Results

Six hundred sentences were randomly chosen from the TIMIT database [15] for our experiment,

and the Robust Algorithm for Pitch Tracking (RAPT) based on the autocorrelation method

[16] was used to extract pitch values over every 10 msec frame. Pitch values obtained by RAPT

were used as references for objective evaluation of the proposed scheme. The DP based optimum

pitch stylization was applied to the pitch contour of each voiced segment of all 600 utterances (a

total of 4231 voiced segments). Mean square error between the reference pitch and the stylized

pitch in each voiced segment was used as the metric for objective evaluation. As a baseline
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method, the boundaries of the K piecewise segments were blindly placed uniformly over the

duration of the voiced segments. We also obtained the stylized pitch using the directed graph

(DG) approach [1] to compare against the proposed DP based stylization.
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Figure 1: Original and Stylized pitch contour (K=4 and P=1) using (a) baseline, (b) Dynamic
Programming and (c) Directed Graph (DG) [1] approach.

To obtain the stylized pitch values using piecewise polynomial functions, the number of

piecewise segments K and the polynomial order P have to be provided. To determine the value

of K for each voiced segment, we followed an approach similar to [5]. Wavelet decomposition of

the pitch contour was performed using Daubechies wavelet (Db10), and the number of extrema

in level 3 of the decomposition is used as K−1. Three different polynomial orders P were chosen

- 1, 2, 3. For illustration, a sample pitch contour of a voiced segment and its stylization using

baseline, DP, and DG approaches (K=4, P=1) are shown in Fig. 1 (a), (b) and (c) respectively.

The MSEs are mentioned on the figures for comparison. It is clear that the stylization using DP
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based approach achieves the best performance in terms of MSE.

For a comprehensive objective evaluation, average MSE over all the voiced segments of all

the sentences are shown in Table. 1. It can be observed that DP based approach obtains the

least MSE for all choices of P .

Stylization Polynomial Order
Schemes P=1 P=2 P=3

Baseline 36.5145 13.2099 6.8429

DP 5.1330 1.8967 0.7754

DG 7.2706 2.1086 0.8167

Table 1: Average MSE of pitch stylization using baseline, DP, and DG methods.

For subjective evaluation, 6 sentences (3 male + 3 female) were randomly picked from the

TIMIT database and their pitch contours were stylized using four different combinations of P and

K in the DP based approach - Combination 1: P1=1 and K1 is obtained by Db10 decomposition,

Combination 2: P2=2 and K2 is obtained by Db10 decomposition, Combination 3: P3=2 and

K3=
⌈

(P1+1)K1
P3+1

⌉

(dxe is the smallest integer greater than x), and Combination 4: P4=3 and

K4=
⌈

(P1+1)K1
P4+1

⌉

.

Total number of polynomial coefficients in Combinations 3 and 4 is the same as that of

Combination1. Combinations 3 and 4 were intentionally chosen to check how the perception is

affected by altering polynomial order but keeping the total number of parameters the same. All

these stylized pitch contours were used to synthesize the utterances using PSOLA technique [17]

and were compared against the original utterances through listening tests. In the listening test,

the listeners were allowed to listen to an utterance as many times as they wanted and were asked

to make a binary decision - whether the two utterances (original and synthesized) are perceived

identical or not. Every pair of utterances was presented to the listener in a random order for

different sentences. All the listeners were students 20-30 years old. Based on the decisions taken

by 15 listeners, the percentages of listeners who thought two respective utterances are identical

are shown in Table 2. It can be seen that most of the listeners found the original and synthesized

utterances to be identical. The listening test results in combination 2 do not differ much from
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Utterance Combination of K and P

No. Comb.1 Comb.2 Comb.3 Comb.4

M1 93.33 93.33 86.67 100

M2 86.67 73.33 80.00 93.33

M3 93.33 93.33 80.00 86.67

F1 100 100 93.33 93.33

F2 100 80.00 100 93.33

F3 86.67 93.33 93.33 80.00

Table 2: Result of Listening Test - percentage of people who perceived original and synthesized
utterances are identical; M1, M2, M3 are three male speakers’ utterances with durations 4.2,
2.7, 5.1 sec respectively; F1, F2, F3 are three female speakers’ utterances with durations 3, 1.7,
2.7 sec respectively.

those of combination 1. This is consistent with the observations made by Hart et al. [14]. It can

also be noted that the listening test results for combinations 3 and 4 are not drastically different

from those of combinations 1 and 2. The listening test results indicate listerners’ tolerance to

the quantization of the pitch contour representation by polynomial approximation. It should be

noted that the result of the listening test using stylization obtained by DG approach turned out

to be similar to that of DP approach, although DP achieves the minimum MSE.

5 Conclusions

The evaluation of the proposed DP based piecewise polynomial approximation of pitch contour

shows that a stylized pitch contour which has minimum MSE for a given K and P also maintains

perceptual closeness to the actual pitch contour. The DP based approximation technique makes

it possible to change K and P and obtain different stylized versions of a pitch contour with the

minimum MSE. This provides the flexibility to study, and potentially use, various parametric

pitch stylizations within synthesis and speech modeling applications.
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