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ABSTRACT    In this paper, we present a decision-theoretic approach to plan inference. Based on the assumption that 

a rational agent will adopt a plan that maximizes its expected utility, we view plan inference as reasoning about the 

decision-making strategy of the observed agent. Different from the previous related work, our approach explicitly 

takes the observed agent’s preferences into consideration, and computes the expected utilities of plans to disambigu-

ate competing hypotheses. We use online group data to construct the domain plan library and empirically evaluate 

our approach in group behavior prediction. The experimental results show the effectiveness of our approach in infer-

ring intentions and goals of entities. 
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1 INTRODUCTION 

A growing number of applications have sought to incorporate automatic reasoning techniques into intelli-

gent agents. The reasoning ability is critical for an intelligent agent to make sense of the world it situates 

and the behavior of others. With the advance of multi-agent interactive environments, user-aware adap-

tive interfaces and social computing systems that involve people, organizations and rich social interac-

tions, it is increasingly important to model and reason about the behavior of other entities. In general, by 

inferring the behavior of other entities, causal reasoning helps understand and explain the behavior of oth-

ers and thus can facilitate various forms of social interactions. It can also facilitate behavior representation 

and modeling, simulating agent society, and predicting future behavior. 

In constructing the inferential mechanism for intelligent agents, we adopt a plan-based approach. Plan 

representations are typically used by many intelligent systems, especially agent-based systems. Plans pro-

vide a concise description of the causal relationship between goals, events and states. They also provide a 

clear structure for exploring alternative courses of actions, and interactions between future activities. Such 

representations have several key advantages: recognizing the relevance of events to agents’ goals and 

plans – key for intention recognition; assessing agents’ freedom and choice in acting – key for the as-

sessment of power and control; and detecting how an agent’s plan facilitates or prevents the plan execu-

tion of other agents – key for the detection of plan interventions. 
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Using plan representations, in this paper, we present a probabilistic reasoning approach to intention 

recognition (or plan recognition). Plan recognition is the process of inferring the plans and goals of the 

observed agent based on a sequence of observations, usually with the help of a set of predefined recipes 

(called plan library), which comprises the knowledge and action steps that could be performed by the 

agent. Previous research on plan recognition has largely ignored the influence of world states (especially 

the observed agents’ preferences over states) on the recognition task, and the proposed models were rarely 

tested in real scenarios. In our approach, we view plan recognition as inferring the decision-making strat-

egy of the observed agent (or a group of agents) and explicitly take the observed agents’ preferences into 

consideration in the recognition process. 

To test the effectiveness of our approach, we apply our approach to the prediction of group behavior. 

Group behavior prediction is an emergent research and application field, which studies computational 

methods for the automated prediction of what a group might do. As many applications could benefit from 

forecasting an entity’s behavior for decision making, assessment and training, it is gaining increasing at-

tention in recent years.  Its applications range from homeland and national security to government policy 

evaluation and market analysis to pandemic and disaster response planning. Research on group behavior 

prediction has focused on building predictive models for socio-cultural-political modeling, which in-

cludes three key issues: data collection, model construction and forecasting using the model [1]. 

In group behavior prediction, the predictive models were typically constructed using machine learn-

ing methods. Martinez et al. [1] propose a new algorithm for model construction, CONVEX, which is 

more computationally efficient than the previous algorithms. CONVEX is essentially a variant of kNN 

method. Although machine learning can automate the construction of predictive models, the structured 

data used by the learning algorithms need to be manually coded by humans. For example, CONVEX is 

based on the MAROB datasets, a collection of historical behavioral records of ethnopolitical groups as 

well as environmental factors associated with the group behavior. The datasets were handcrafted by do-

main experts through examining large volumes of trusted news reports [1]. This process is not only pains-

taking but prohibitive for massive data collection. 

Group behavior prediction provides an ideal testbed for practicing and evaluating plan inference ap-

proaches. There are huge amounts of group data available online. Recent progress has made it possible to 

automatically extract plan knowledge (i.e., actions, their preconditions and effects) from online raw textu-

al data and construct group plans by means of planning algorithm, albeit in the restrictive security infor-

matics domain [2]. Compared with machine learning-based methods, plan-based inference provides addi-

tional advantages for representing, analyzing and explaining behavior prediction results. With the struc-

tural plan representation, plan-based inference can not only come up with prediction results, it can also 
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inform the goals and intentions behind the predicted behavior. Plans are more expressive in representing 

behavioral patterns, group strategies and alternative courses of actions, which provide important infor-

mation for behavior analysis. Thus in contrast to data-driven approaches, plan inference can better explain 

the prediction models and results, and improve interpretability. 

In addition to proposing a model, we conduct experiment to evaluate our work in group behavior pre-

diction. Based on the realistic group data, we construct plan library and compare our model predictions 

with the results generated by the alternative probabilistic approach with respect to human results. Previ-

ous empirical studies on plan recognition have relied on artificially generated plans or simulated data 

(typically from simulation or gaming environments). Instead of testing the effectiveness of recognition 

algorithms in real scenarios, they mainly focus on reducing algorithms’ runtime. Our work is among the 

first to validate plan recognition algorithm using real scenarios and by comparing with human data. 

The rest of the paper is organized as follows. Section 2 reviews related work on probabilistic plan in-

ference. Section 3 introduces probabilistic plan representation. Section 4 presents our probabilistic reason-

ing approach, with an illustrative example from our previous training system. We then further discuss and 

compare our approach with the related probabilistic models in Section 5. Section 6 conducts experimental 

study in group behavior prediction, including constructing plan library and test set based on the real group 

data and comparing prediction results of different approaches against human data. Finally, we conclude in 

Section 7. 

2 RELATED WORK 

Utility and rationality issues have been explored in AI and agent research, as means for specifying, de-

signing and controlling rational behavior as well as descriptive means for understanding behavior. In our 

approach, we use utilities to represent the presumed preferences of the observed agents. State preferences 

are used in recognizing agents’ intentions and for disambiguation. Previous research also identifies the 

properties of intention in practical reasoning, and states intentions as elements in agents’ stable partial 

plans of action structuring present and future conduct. Plans thus provide context in inferring intentions, 

pertaining to the goals and reasons of an agent’s behavior. This justifies plan inference as a means to rec-

ognize intentions and goals of agents. 

In AI literature, there is a wealth of computational work on plan/intention recognition. Here we only 

list the most relevant work. To deal with uncertainty inherent in plan inference, Charniak and Goldman 

[3] build the first probabilistic model of plan recognition based on Bayesian reasoning. Huber et al. [4] 

use PRS as a general specification language, and construct the dynamic mapping from PRS to belief net-
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works. Because of the similarity between plan recognition and natural language parsing, Panadath and 

Wellman [5] propose a probabilistic reasoning method based on the probabilistic state-dependent gram-

mars (PSDGs). Bui et al. [6] propose an online probabilistic policy recognition method based on the ab-

stract hidden Markov model (AHMM). More recently, Avrahami-Zilberbrand and Kaminka [7] present a 

hybrid approach that combines a symbolic plan recognizer with a decision-theoretic inference mechanism 

to capture the observer’s own biases and preferences. Geib and Goldman [8] present a probabilistic plan 

recognition algorithm based on a plan execution model. 

Though the approaches differ, most plan recognition systems infer a hypothesized plan from observa-

tion of actions. World states and in particular, the observed agents’ preferences over outcomes are rarely 

considered in the recognition process. On the other hand, in many real-world applications, utilities of dif-

ferent outcomes are already known. A planning agent usually takes into account that actions may have 

different outcomes, and some outcomes are more desirable than the others. Therefore, when an entity 

makes decisions and acts on the world, it needs to balance between different possible outcomes. In this 

paper, we propose a decision-theoretic approach to plan recognition and explicitly model the observed 

agents’ state preferences in the recognition process. We also conduct experimental study to validate our 

approach based on agents’ plans and preferences in real-world scenarios. 

3 PROBABILISTIC REPRESENTATION 

Plan representations are used by many intelligent systems. In a traditional plan representation, an action A 

has preconditions and effects. Action precondition is the state that must be made true before action execu-

tion. Action effect (including conditional effect) is the state achieved after action execution. Antecedents 

and consequents of conditional effects are also world states. If the antecedents of a conditional effect hold 

before action execution, its consequents will likely hold after action execution. Actions can be either 

primitive (i.e., directly executable by agents) or abstract. 

In a probabilistic plan representation, the likelihood of states is represented by probability values. To 

represent the success and failure of action execution, an action has an execution probability Pexecution (i.e., 

the likelihood of successful action execution given the preconditions are true). An action effect can be 

nondeterministic (i.e., effect probability Peffect, the likelihood of the occurrence of an action effect given 

the corresponding action is successfully executed) and/or conditional nondeterministic (i.e., conditional 

probability Pconditional, the likelihood of the occurrence of its consequent given a conditional effect and its 

antecedents are true). The desirability of action effects (i.e., their positive/negative significance to an 

agent) is represented by utility values. Outcomes are those action effects with non-zero utility values. 
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A plan P is an action sequence to achieve certain intended goal(s). Representation of plans is similar 

to that in the probabilistic plan representation, except that we use expected utilities (EU) of plans to repre-

sent the overall benefit or disadvantage of a plan. 

4 PROBABILISTIC REASONING APPROACH 

Our approach is based on the fundamental MEU (“maximum expected utility”) principle underlying deci-

sion theory, which assumes that a rational agent will adopt a plan maximizing the expected utility. The 

computation of expected plan utility captures two important factors. One is the desirability of plan out-

comes. The other is the likelihood of outcome occurrence, represented as outcome probability. The calcu-

lation of outcome probability considers three sources of uncertainty: uncertainty in action preconditions 

(i.e., state probabilities), uncertainty in action execution (i.e., execution probabilities), and nondeterminis-

tic and/or conditional action effects (i.e., effect probabilities). Before presenting our computational ap-

proach, we first introduce the notations we adopt. 

4.1 NOTATIONS 

Let E be the evidence. Let A, e, c, o and P be an action, an action effect, a consequent of a conditional 

effect, an outcome and a plan, respectively. The following notations are adopted in our approach. 

•  precondition(A): precondition set of action A. 

•  effect(A): effect set of action A. 

•  conditional-effect(A): conditional effect set of action A. 

•  antecedent(e): antecedent set of conditional effect e. 

•  consequent(e): consequent set of conditional effect e. 

•  Peffect(e | A): probability of the occurrence of its effect e given action A is successfully executed. 

•  Pconditional(c | antecedent(e), e): probability of the occurrence of its consequent c given conditional 

effect e and its antecedents are true. 

•  Pexecution(A | precondition(A)): probability of successful execution of action A given its preconditions 

are true. 

•  Paction(o|E): probability of action outcome o given evidence E. 

•  Pplan(o|E): probability of plan outcome o given evidence E. 

•  utility(e): utility value of effect e (ranging between !100 and +100 in the model). 

•  EU(A|E): expected utility of action A given evidence E. 

•  EU(P|E): expected utility of plan P given evidence E. 
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4.2 COMPUTATION 

The computation of expected plan utility is similar to that in decision-theoretic planning, using the 

utilities of outcomes and the probabilities with which different outcomes occur. In our approach, howev-

er, we use the observed evidence to incrementally update state probabilities and the probabilities of action 

execution, and compute an exact utility value rather than a range of utility values as in decision-theoretic 

planning. This is done through recursively using plan knowledge. 

4.2.1  PROBABILITY OF STATES 

Let E be the evidence. If state x is observed, the probability of x given E is 1.0. Observations of actions 

change the probabilities of states. If action A is observed executing, the probability of each precondition 

of A should be 1.0, and the probability of each effect of A is the multiplication of its execution probability 

and effect probability. If A has conditional effects, the probability of a consequent of a conditional effect 

of A is the product of its execution probability, conditional probability and the probabilities of each ante-

cedent of the conditional effect. 

! IF x"precondition(A),   P(x | E) = 1.0 

! IF x"effect(A),   P(x | E) = Pexecution(A | precondition(A)) # Peffect(x | A) 

! IF x"consequent(e) $ e"conditional-effect(A), 

!
"

##=
)('

)|'()),(|())(|()|(
eantecedente

lconditionaexecution EePeeantecedentxPAonpreconditiAPExP  

If an action A is observed executed, the probability of successful execution of A given E is 1.0. In this 

case, the computation above can be simplified: 

! IF x"precondition(A),   P(x | E) = 1.0 

! IF x"effect(A),   P(x | E) = Peffect(x | A) 

! IF x"consequent(e) $ e"conditional-effect(A), 

!
"

#=
)('

)|'()),(|()|(
eantecedente

lconditiona EePeeantecedentxPExP  

Otherwise, the probability of x given E is equal to the prior probability of x. 

4.2.2  PROBABILITY OF ACTION EXECUTION 

If an action A is observed executed, the probability of successful execution of A given E is 1.0, that is, 

P(A|E)=1.0. If A is observed executing, P(A|E) equals to its execution probability. Otherwise, the proba-

bility of successful execution of A given E is computed by multiplying the execution probability of A and 

the probabilities of each action precondition. 
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So the changes of state probabilities affect the probability calculation of action preconditions, and the 

probabilities of action execution are changed accordingly. 

4.2.3  OUTCOME PROBABILITY AND EXPECTED UTILITY OF ACTIONS 

The probability changes of action execution impact the calculation of outcome probabilities and expected 

utilities of actions. Let OA be the outcome set of action A, and outcome oi"OA. The probability of oi given 

E is computed by multiplying the probability of A and the effect probability of oi. 

)|()|()|( AoPEAPEoP ieffectiaction !=  

If oi is the consequent of conditional effect e of A, the formula above should also include the probabil-

ities of each antecedent of the conditional effect. 

!
"

##=
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)|'()),(|()|()|(
eantecedente

ilconditionaiaction EePeeantecedentoPEAPEoP  

The expected utility of A given E is computed using the utilities of each action outcome in A and the 

probabilities with which each outcome occurs. 

!
"
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4.2.4  OUTCOME PROBABILITY OF PLANS AND EXPECTED PLAN UTILITY 

Similarly, the probability changes of action execution impact the calculation of outcome probabilities and 

expected plan utilities. Let OP be the outcome set of plan P, and outcome oj"OP. Let {A1, …, Ak} be the 

partially ordered action set in P leading to oj, where oj is an action effect of Ak. The probability of oj given 

E is computed by multiplying the probabilities of each action leading to oj and the effect probability of oj 

(Note that P(Ai|E) is computed according to the partial order of Ai in P). 

)|())|(()|(
,...,1

kjeffect

ki

ijplan AoPEAPEoP != "
=

 

If oj is the consequent of conditional effect e of Ak, the formula above should also include the proba-

bilities of each antecedent of the conditional effect. 
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The expected utility of P given E is computed using the utilities of each plan outcome in P and the 

probabilities with which each outcome occurs. 

!
"

#=
pj Oo

jjplan oUtilityEoPEPEU ))()|(()|(  

The intention recognition algorithm works on a possible plan set that is a subset of the plan library. 

Each plan in the possible plan set includes some or all of the observed actions/states. The algorithm calcu-

lates the expected utilities of each possible plan; the one with the highest expected utility is inferred as the 

current hypothesized plan. 

4.3 ILLUSTRATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To illustrate how our approach works, we use an example from the Mission Rehearsal Exercise (MRE) 

leadership training system. A troop led by the lieutenant has the mission of supporting a sister unit (i.e. 

unit 1-6). Three agents, the lieutenant, the sergeant and the squad leader act as a group in this example. 

The sergeant acts as an assistant of the lieutenant, and the squad leaders act as subordinates of the ser-

geant. Figure 1 illustrates two complete plans of the group. 

 

Figure 1.  Two Complete Group Plans 
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In the example, the troop’s mission is to support unit 1-6. This (i.e., unit 1-6 supported) is a desirable 

goal of the group. Two plan alternatives in the plan library are available to achieve this goal, namely Plan 

1 and Plan 2. Plan 1 is composed of three primitive actions, assemble, one squad forward and remaining 

(squads) forward, performed by different agents. Remaining (squads) forward in Plan 1 achieves (unit) 1-

6 supported (with effect probability 0.75). Plan 2 consists of primitive actions assemble, two squads for-

ward and remaining (squads) forward. Two squads forward in Plan 2 achieves (unit) 1-6 supported (with 

effect probability 0.8), but also brings about undesirable outcome unit fractured. The corresponding effect 

probabilities (that are less than 1.0) and non-zero utilities are shown in the figure. The execution probabil-

ity of each action is set to 0.95. 

Two actions of the group are observed executed, assemble and 1st-and-4th-squads-forward (an in-

stance of two-squads-forward). Based on the observations 

P(Assemble|E) = P(Two-squads-forward|E) = 1.0 

We have 

P(Troop-at-aa|E) = P(One-squad-at-aa|E) = P(Remaining-at-aa|E) = 0.95 

P(Troop-in-transit|E)=P(Two-squads-at-aa|E) = 1.0 

Now compute the probabilities of executing One-squad-forward and Remaining-forward given the 

evidence. We have 

P(One-squad-forward|E) = P(Remaining-forward|E) = 0.95×0.95 = 0.9025 

From Figure 1, we know 

Peffect(1-6-supported|Remaining-forward) = 0.75 

Peffect(1-6-supported|Two-squads-forward) = 0.8 

Now compute the probabilities of plan outcomes (Note that in Plan 2, outcome unit-fractured is de-

leted in the third plan step) 

Pplan(1-6-supported|E) = 0.9025×0.9025×0.75 = 0.61 (Plan 1) 

Pplan(1-6-supported|E) = 0.8 (Plan 2) 

Pplan(unit-fractured|E) = 1.0 

Pplan(not-fractured|E) = 0.95 

Now compute the expected utilities of Plan 1 and Plan 2 using utility functions 

EU(Plan1|E) = 0.61×25 = 15.25 

EU(Plan2|E) = 0.8×25+1×(-50)+0.95×50 = 17.5 
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The results support Plan 2, so Plan 2 is recognized as the current hypothesized plan. For the more 

complex cases including conditional probabilities and/or abstract actions, the plan inference mechanism 

can be applied the same way. 

5 DISCUSSIONS 

Plan recognition can be characterized according to the role of the observed agent(s). The observed agent 

does not attempt to impact the recognition process, as if the recognizer observes the agent through a 

“keyhole” (i.e., keyhole recognition), or the observed agent deliberately performs actions to help or thwart 

the recognition (intended or adversarial recognition). The latter is typical in cooperative or competitive 

environments. Among the three kinds of plan recognition, keyhole recognition is the most common, with-

out any assumption of the recognized agent’s role in the recognition process. Our focus in this paper is 

keyhole recognition. Below we restrict our discussions to the probabilistic approaches in keyhole plan 

recognition. 

Some probabilistic approaches have considered the influence of world states on plan recognition, 

when actions themselves are unobservable. For example, Bui et al. [6] use a variant of hidden Markov 

model for online policy recognition. We did not adopt a Markov model in our work for several considera-

tions. A Markov-based approach generates relatively large state space, and assumes fixed goals. The core 

technologies of our application domain center on a common representation of plan knowledge, which is 

shared and reused among different system components. Besides, in modeling the dynamics of behavior 

evolvement in intelligent entities, we would like our system to give agents the flexibility of varying their 

interpretation of outcome desirability under different socio-cultural context. 

Some work has implicitly considered an entity’s utility functions. For example, Pynadath and Well-

man [5] capture the likelihood that an agent will expand a plan in a particular way (i.e., the expansion 

probabilities of PSDGs). Avrahami-Zilberbrand and Kaminka [7] explicitly take the observer’s prefer-

ences into consideration. Since their work is concerned with how to bias hypotheses that are more im-

portant or costly to the recognizing agent, they take the perspective of the observer (rather than the ob-

served agents) and the utility functions are those of the observer. To address the observer’s preferences, 

they build another decision-theoretic layer on top of the symbolic plan recognizer. In contrast, our ap-

proach takes the observed agents’ state preferences and lets them participate in the recognition process. 

As plan recognition involves abduction, most existing plan recognition work has employed Bayesian 

reasoning as a computational means to reasoning to a best explanation [3, 4, 5, 8]. This is generally real-

ized via Bayesian (belief) networks. Although Bayesian reasoning is advantageous in accounting for how 

well the observed actions support a hypothesized plan and it also provides a convenient way to compute 
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and rank different hypotheses by their probability values, the inference itself requires large numbers of 

prior and conditional probabilities. In many real world situations, these probabilities are hard to obtain, 

and there is no good answer for where the numbers come from. 

Knowledge about actions, their preconditions and effects is typically available as plan representation 

in intelligent systems. Compared with other related work, our approach makes better use of this 

knowledge. Our approach also needs prior probabilities, that is, prior probabilities of states, (successful) 

action execution and action effects. Effect probabilities, including non-deterministic and/or conditional 

effects are already available in many systems with a planning component. The implications of prior state 

probability and probability of action execution are more intuitive, thus they are relatively easier to obtain 

compared to the CPTs required in Bayesian networks. Our approach incrementally uses knowledge and 

observations to change state probabilities and impact action/plan execution and outcome achievement. 

Geib and Goldman [8] points out some limitations in current plan recognition systems. In our ap-

proach, plan library is composed of multiple partial-order plans with temporal constraints. There is no 

strong assumption about the observability of actions or states in our approach. Online recognition can be 

processed by our system in the same fashion. However, currently our system does not support interleaved 

goal/plan recognition (which allows agents to pursue multiple plans at a time). In addition, similar to most 

other recognizers, our approach treats goals as propositional and so our system does not support instanti-

ated goal recognition. Nonetheless, we feel our approach is sufficient for the practical applications and 

compatible with human intuitions in recognizing intentions and goals of other entities. 

Since Bayesian reasoning is the representative computational approach used by most plan recognition 

systems, in the next section, we empirically compare our approach with Bayesian networks in predicting 

group behavior using real scenarios. We report the experimental results to show the capability of our ap-

proach in modeling human intention inference in such context. 

6 EXPERIMENTAL STUDY 

We take three steps to evaluate the effectiveness of our approach. First, as intention recognition relies on 

a plan library indicating plan knowledge and recipes of plans, we construct a domain plan library using 

online group data. Second, based on the randomly generated evidence set and the plan library, human 

raters help build the test set by providing predictions associated with each line of evidence. At last, to val-

idate our approach, we compare our model predictions with the prediction results by Bayesian reasoning 

against human predictions. 



 12 

6.1 CONSTRUCTION OF PLAN LIBRARY 

We conduct our experiment in security informatics domain and choose Al-Qaeda as a representative radi-

cal group for our study. Group plans can be written out manually by domain experts. However, due to the 

workload of hand-made plans, inconsistency between different experts and complexity of group behavior, 

this method is impractical and error-prone in practice. As huge volume of reports about this group and its 

historical events are available online, we employ computational methods to automatically generate group 

attack plans from relevant open source textual data [2]. 

The textual data we use are the news about Al-Qaeda reported from 2000 to 2009 in Times Online 

and USATODAY, with totally 10419 Web pages. Group actions are acquired by extracting verb-object 

pairs in each sentence where the subject is the name of the group. We design a number of linguistic pat-

terns and use syntax parsing to extract knowledge of action preconditions and action effects for the auto-

matic construction of domain theory [2]. The extracted group actions are then refined by unifying syntac-

tic forms, combining semantically similar pairs and eliminating static verbs and low frequency ones, all 

referencing the WordNet. The refinements of action preconditions and effects are performed similarly. 

We finally collect 503 group actions, 110 action preconditions and 60 action effects with quality [2]. 

One major difficulty of domain knowledge extraction is that some of the commonsense knowledge is 

seldom mentioned explicitly in online news. For example, action get visa has the effect have visa, but this 

piece of knowledge is hard to obtain online. We compensate for missing preconditions and effects associ-

ated with group actions by adding commonsense knowledge of the verbs in action description. With the 

complete domain theory, we then employ planning algorithm to automatically generate attack plans of the 

group [2]. 

Among the official investigation reports, 13 real attacks perpetrated by Al-Qaeda have relatively 

complete descriptions. Based on our automatically generated plans, intelligence analyst helped choose 13 

plans that match the reported real attacks. These plans form the plan library for our experimental study. 

Another consideration is that although using large numbers of plans is computationally feasible by our 

approach, we would prefer a relatively small and realistic plan library so that it is tractable by human 

raters in the experiment. 

Figure 2 shows the example of a real attack plan claimed by Al-Qaeda. The corresponding action 

knowledge, action execution probabilities, effect probabilities and utilities are also given below. Outcome 

utilities in these plans are the normalized values calculated based on the GTD (Global Terrorism Data-

base) data of the reported real or estimated damage (in the cases of success or failed attempt) of the actual 
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attacks by this group in history (The assumption here is that causing loss or damage is desirable to this 

group). The average length of the plans in the plan library is 9.8 (including start and end actions). 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2 THE TEST SET 

We randomly generate a set of evidence using the combination of actions and initial world states in the 

plan library. We classify these actions and states into eight groups, in which similar action/state pairs or 

mutually exclusive actions are grouped together. For example, {Action: raise fund, State: have money} 

and {Action: buy vehicle, State: have vehicle} are similar action/state pairs, belonging to Group 1 and 

Group 4 respectively; {Action: buy bomb, Action: build bomb} and {Action: take plane, Action: take 

train} are mutually exclusive action sets, belonging to Group 5 and Group 7, respectively. Group 8 con-

tains those last actions in each plan, such as plane attack, plane bombing, train bombing, car bombing, 

suicide bombing, bomb attack, and shoot attack. In order to obtain meaningful evidence set, the random 

generation process only selects actions and/or states from different groups. 

However, we did not use Group 8 in generating the evidence set. These last actions in plans are much 

more indicative (which associate with the goals of each plan), therefore our approach always yields very 

good results given them. We also delete the generated evidence with conflict actions or action/state pairs, 

      

Figure 2.  A Group Attack Plan in the Plan Library 
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e.g. train hijack and take train. We finally collect 95 lines of evidence. Each line contains either two ob-

servations (49% of the evidence set) or three observations (51% of the evidence set). 

Four human raters experienced in security informatics participate in the experiment. Based on the 

plan library we construct, each rater examined the evidence set line by line and predicted the most likely 

plans associated with each line of evidence. The test set is composed of their predictions based on the ev-

idence, with inter-rater agreement (Kappa) 0.764. The prior state probabilities, action execution probabili-

ties and effect probabilities used by our approach (less than 100 items in total) were assigned by intelli-

gence analyst. The intelligence analyst also assigned prior and conditional probabilities for Bayesian rea-

soning. Mapping plans to Bayesian networks is based on the generic method provided in [4]. 

6.3 RESULTS 

Table 1 shows the experimental results using our approach and Bayesian reasoning. We measure the 

agreement of our approach and each rater using the Kappa statistic. The Kappa coefficient is the de facto 

standard to evaluate the agreement between raters, which factors out expected agreement due to chance. 

The average agreement between our approach and human raters is 0.664 (for two observations) and 0.773 

(for three observations), which significantly outperform the average agreement between Bayesian reason-

ing and the raters. As 0.6<k<0.8 indicates substantial agreement, the empirical results show good con-

sistency between the predictions generated by our approach and those of human raters. 

The results also show that compared to Bayesian reasoning, the performance of our approach im-

proves rapidly with the increase of the number of evidence. As our approach makes use of action 

knowledge in the inference process, actions and states are closely connected and the change in one action 

or state will quickly propagated to the other interrelated actions and/or states. Thus our approach is more 

sensitive to the number of observations. For four observations, there is unanimous agreement between 

human raters, and our approach shows excellent agreement with the raters (i.e., convergence point). As 

our algorithm only considers a subset of plans in the plan library that are consistent with current observa-

tions (that is, each possible plan being considered includes at least one observed action or state), to be fair 

in comparison, we apply Bayesian reasoning in the same way (This has increased the average agreement 

of Bayesian reasoning and human raters from average 0.25 to the values in Table 1). 

 Table 1  Kappa Agreements between Algorithms and Human Raters 
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In addition, we compare the answers of human raters and 1-best and 2-best results of the algorithms. 

We find that high percentage of the 2-best results generated by our algorithm falls into the raters’ answers 

(see Table 2). Bayesian reasoning also improves considerably in the 2-best case. The average percentages 

of the total match of our approach are 75% for 1-best and 90.26% for 2-best. 

 

 

7 CONCLUSION 

This paper presents a decision-theoretic approach to plan inference based on the principle of maximizing 

expected plan utility. Our approach considers both actions and states in the recognition process, and ex-

plicitly takes the observed agent’s preferences into consideration. Online plan recognition is realized by 

incrementally using plan knowledge and observations to change state probabilities and impact action/plan 

execution and outcome achievement. 

Group behavior prediction as an emergent research and application field is gaining increasing atten-

tion in recent years. It provides an ideal testbed for practicing and evaluating plan inference approaches. 

Based on the realistic online group data, we construct plan library and conduct experiment to evaluate our 

approach in group behavior prediction. We empirically compare our work with the alternative probabilis-

Rater 
Plan Inference Bayesian Reasoning 

Two Observations Three Observations Two Observations Three Observations 
P(A) P(E) K P(A) P(E) K P(A) P(E) K P(A) P(E) K 

1 0.826 0.108 0.805 0.878 0.106 0.861 0.436 0.078 0.388 0.469 0.106 0.406 
2 0.696 0.090 0.666 0.837 0.105 0.818 0.435 0.086 0.382 0.469 0.107 0.405 
3 0.609 0.096 0.567 0.776 0.097 0.752 0.435 0.098 0.374 0.490 0.102 0.432 
4 0.652 0.088 0.618 0.694 0.101 0.660 0.370 0.089 0.308 0.388 0.092 0.326 

AVG  0.664  0.773  0.363  0.392 

Rater 

Plan Inference Bayesian Reasoning 
1-Best 2-Best 1-Best 2-Best 

#Match #Error #Match #Error #Match #Error #Match #Error 
1 81 14 91 4 43 52 58 37 
2 73 22 85 10 43 52 56 39 
3 66 29 84 11 44 51 64 31 
4 65 30 83 12 36 59 57 38 

Percent-
age 75% 25% 90.26% 9.74% 43.68% 56.32% 61.84% 38.16% 

Table 2  Comparison of Algorithms’ 1-Best and 2-Best Results and Rater Answers 
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tic approach. The experimental results show that our approach is compatible with human intuitions in in-

tention/goal recognition and effective in practice. 

In addition to group behavior prediction, we believe our approach is applicable to a wide range of 

fields. Our future research will exploit this work in several ways, including extracting and analyzing 

group behavior patterns from online social media, modeling organization behavior in artificial society [9], 

and extending intention recognition of entities for social inference and social computing [10]. 
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