World Scientific

International Journal of Semantic Computing \\’
www.worldscientific.com

Vol. 4, No. 2 (2010) 155-179
© World Scientific Publishing Company
DOI: 10.1142/51793351X10000985

ROBUST MULTIMODAL PERSON RECOGNITION
USING LOW-COMPLEXITY AUDIO-VISUAL
FEATURE FUSION APPROACHES

DHAVAL SHAH*, KYU J. HANT and SHRIKANTH S. NARAYANAN?

Signal Analysis and Interpretation Laboratory (SAIL)
Ming Hsieh Department of Electrical Engineering
Viterbi School of Engineering
University of Southern California
Los Angeles, CA 90089, USA
*dhavalysQusc. edu
T kyuhan@usc. edu
Ishri@sipi.usc. edu
hitp://sail.usc.edu

In this paper,® we first show the importance of face-voice correlation for audio-visual
person recognition. We propose a simple multimodal fusion technique which preserves the
correlation between audio-visual features during speech and evaluate the performance
of such a system against audio-only, video-only, and audio-visual systems which use
audio and visual features neglecting the interdependency of a person’s spoken utterance
and the associated facial movements. Experiments performed on the VidTIMIT dataset
show that the proposed multimodal fusion scheme has a lower error rate than all other
comparison conditions and is more robust against replay attacks. The simplicity of the
fusion technique allows for low-complexity designs for a simple low-cost real-time DSP
implementation. We then discuss some problems associated with the previously proposed
design and, as a solution to those problems, propose two novel classifier designs which
provide more flexibility and a convenient way to represent multimodal data where each
modality has different characteristics. We also show that these novel classifier designs
offer superior performance in terms of both accuracy and robustness.

Keywords: Audio-visual biometrics; feature-level fusion; nested GMM.

1. Introduction

Biometric recognition holds tremendous promise for security applications. Biomet-
rics can cover a wide range of modalities, including fingerprint, face, hand geome-
try, iris, retina, signature, voice, keystroke dynamics, gait, ear, physiological signals
such as electrocardiograms (ECGs), and so on [2-6]. Each modality has its own
advantages and limitations in terms of accuracy, robustness, and usability/user

2The work reported here is an expanded version of the paper [1] presented at ISM 2009 by the
authors. (Specifically, Chapter 4 is newly added compared to the previous work.)
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acceptance. For instance, using iris information offers very high accuracy and robust-
ness but it requires cooperative subjects and expensive equipment. On the other
hand, modalities such as the human voice and face (of interest in this paper) that can
be accessed in an unobtrusive way and have higher user acceptance have restricted
use due to accuracy and robustness issues. These performance challenges need to
be addressed if real-life systems incorporating these modalities are to become more
prevalent. Availability of robust solutions, however, promises practical applications
such as personal computer login and location access.

One of the promising venues for improving biometric technology performance
is to consider combining individual modalities [7—11] under the premise that both
redundancy and complementarity in information can be advantageously utilized.
Among a variety of possible combinations, the voice and face modalities have been
broadly used for person verification applications in the past decade [12-19]. Beyond
their obvious advantages in terms of usability /user acceptance, these two modalities
are considered important cues for personal identity because human communication
patterns embody unique personal characteristics. Furthermore, both the spoken and
visual modalities are tied tightly to one another when people communicate.

Speaker recognition research using voice and face modalities started with the
assumption that these modalities are independent of each other and resulted in
simple techniques like score-level fusion which allow each modality to be processed
independently. However, this assumption does not hold true as a person’s face
dynamically and systematically changes as he speaks and there is a strong cor-
relation between these facial changes and the spoken utterance. Consequently, the
resulting research tends to ignore the correlation between face and voice and miss
out on the benefits offered by this correlation. A strong proof of the existence and
benefits of this correlation comes from the field of speech recognition. The studies
in [20-22] show that integrating voice and lipreading enhances speech intelligibility
in humans and improves automatic speech recognition (ASR) accuracy. Speaker
recognition research drew inspiration from speech recognition research, and hence
most of the work has focussed on exploiting the correlation between the voice and
lip region of the face. This not only results in extra computations for detecting the
lip region but also tends to ignore the additional information that can be extracted
from other parts of the face (like cheek movements or eye blinks).

In this paper, we present low-complexity approaches® that try to capture
enhanced talking dynamics from the entire face (instead of just the lip area). For
better overall performance, in terms of both accuracy and speed, we use simple mod-
ifications on a widely used face detection technique to detect face regions from each
frame of the talking face video. We use feature-level fusion as a tool to model the
correlated information between voice and face features. Although score-level fusion
is widely utilized in practice due to its convenience in terms of handling multiple

PThe proposed design has been implemented on a DSP processor (TMS320C6713) to work in
real-time and it gives online performance comparable to offline evaluations.



Robust Multimodal Person Recognition 157

information sources compared to feature-level fusion® [2, 5, 7, 8], it could possibly
miss synchronized characteristics between facial changes and uttered speech, which
are important for robust person recognition. To obtain potential benefits from score-
level fusion, we also propose two novel approaches (hybrid feature-score level fusion
and nested GMMs).

The rest of this paper is organized as follows. In Sec. 2, we propose a simple
technique to exploit face-voice correlation. In Sec. 3, we present the experimental
results and show that the system proposed in Sec. 2 gives better accuracy in normal
use situations compared to audio-only, video-only, and audio-visual systems that
use audio and video in no synchronism (i.e. in no correlation) and is very robust
to replay attacks.? We also show that the proposed technique inherently uses audio
and static video features for recognition and dynamic video features for liveness
detection (a sub-application domain in person recognition) without adding any extra
complexity. In Sec. 4, we investigate possible causes for performance degradation of a
feature-level fusion system as compared to a score-level fusion system. As a solution,
we propose two novel techniques to improve recognition performance additionally
benefitting from score-level fusion. For this, we first introduce a hybrid feature-score
level fusion approach that combines the advantages of both feature- and score-
level fusion approaches. Then we compare this with a nested GMM approach (also
newly proposed in this paper) that uses a two-level nested GMM for classification
purposes. We also modify the EM algorithm (originally derived in [23])for the nested
GMDMs in this section. We conclude the paper in Sec. 5 with a summary of the
proposed approaches to low-complexity audio-visual person recognition, aimed at
exploiting face-voice correlation, and comments on future research directions in
devising reliable multimodal biometrics.

2. Proposed System Description

We first describe the VidTIMIT database used in this research. We then present an
overview of feature extraction stages for voice and face recognition and justify the
choice of features used. Then we present the proposed multimodal fusion technique.
We present several possible ways of fusing the modalities, noting the advantages
and disadvantages of each, and then describe the proposed fusion technique and
its advantages over the other techniques. Finally, we review some of the possible
choices for classifiers and justify the selection of GMMs.

“In general, it is believed that feature level-fusion is a better implementation than score-level
fusion because feature representation conveys the richest information while scores from multiple
classifiers have the least information about decision making [5]. But the ideal feature-level fusion
approach would require proper understanding of relationship between information sources being
handled, which lacks currently in most application scenarios and score-level fusion systems provide
us better performance than feature-level fusion implementations.

dReplay attacks refer to impostor attacks where the impostor records client data (audio or video
or both) and uses the recorded information to breach security.
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2.1. VidTIMIT database

The VidTIMIT database [18] is an audio-visual database comprised of audio-visual
recordings of 43 people reciting sentences from the test section of the TIMIT corpus
[24]. This database has been utilized popularly for audio-visual person recognition
research and referred to in the literature, including [15, 16, 25-28]. It was recorded in
3 sessions with a mean delay of 7 days between sessions 1 and 2 and 6 days between
sessions 2 and 3. Due to the delay between sessions, the possibility of mood and
appearance changes is expected that introduces some real-life aspects in the dataset.
There are 10 sentences per person, 6 of them belonging to session 1 and two each to
sessions 2 and 3. T'wo sentences are common to all speakers while the other eight sen-
tences are generally different for each speaker, facilitating text-independent speaker
recognition research. The availability of just 10 sentences per person underscores
the issue of training data sparsity (although reflective of what is typically feasible
in creating practical systems). The recordings were done in an office environment
using a broadcast-quality digital video camera. The audio has some background
noise (mostly AC and computer fan noise). Thus we expect that any audio-only
recognition system would suffer from some performance degradation on this data.
The video is relatively clean. Though it is captured using a broadcast-quality cam-
era and compressed (lossy compression) into JPEG images with a quality factor of
90%, the background is fairly plain and constant with only the frontal face of each
speaker in the picture. This relieves us of complicated tasks such as face detection
from a clustered image or view-angle normalization. This situation is indeed realis-
tic under certain application scenarios, such as personal security systems, where we
expect a co-operative user and a fairly controlled data acquisition set up. Neverthe-
less, the zoom factor of the camera is randomly perturbed while collecting the video,
and the face in the video is not at constant positions. Thus some pre-processing is
still needed to extract the face from the image and compensate for different zoom
factors, but this task is relatively simpler. The audio and video capture rates are
also different and some processing needs to be done to compensate for this.

2.2. Feature extraction

Feature extraction is the first and the most important stage of any classification
system. The quality of the extracted features greatly affects the performance of
the complete system. Audio and visual data, though correlated, are in completely
different forms and are sensed differently by humans. Thus the features used for
both are also different. The fields of voice and face recognition are highly devel-
oped and many different ways of capturing features are available in the literature.
Our approaches to feature extraction are based on such developed strategies and
described in the subsequent sub-sections.

2.2.1. Voice feature extraction

As a pre-processing step on the audio data, we perform pre-emphasis to compensate
for the high frequency fall-off in the data. We then use the well-known short-term
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analysis technique using a 50 ms window with 50% overlap between adjacent win-
dows. We apply the Hamming window to each segment to minimize spectral leakage.
The above-mentioned steps are the most widely used and form a part of most (if
not all) speech and speaker feature extraction systems. We select mel-frequency
cepstral coefficient (MFCC) features for our research due to their demonstrated
superior performance [29]. We use the first 36 MFCC features (35 + energy) as the
36-dimensional audio feature vector for each frame.

2.2.2. Face feature extraction

Each frame of video in the VidTIMIT database has just the person of interest in it
with a frontal view of the face. We first detect the face and discard the background
information (box the face) using the Viola-Jones face detection algorithm described
in [30]. For speed up and improved accuracy in this face detection stage, we add
two modifications to the original algorithm. Specifically we use a minimum size of
window for the Haar detector (so that it does not expend time looking for faces
which are smaller than a specific size). For the first frame in a video, we set this
parameter like a threshold (which is small so it does not give much speedup), but
for subsequent frames, we use the past frame’s detected face size multiplied by some
constant (usually around 0.8-0.9 which specifies the maximum expected decrease in
face size as compared to the previous frame) as the minimum window size. This gives
a considerable amount of speedup while keeping the face detection performance the
same. When multiple faces are detected, if it is the first frame, we use the largest
face; otherwise, we use the face which has the size closest to the previous frame’s
face size. The implicit assumption is that the speaker does not move his face back
and forth with very high speed (if it is moved with a low speed, the 0.8-0.9 factor
tackles it well). In Figs. 1(a) and 1(b), we show two sets of face detector outputs for
consecutive image frames, one generated by the original face detection algorithm
and the other by the modified approach, for better understanding of the benefits
of this modification. We see that in addition to the speed up in face detection,
we get boxed face images with a consistent amount of background. This reduces
mismatch in the face modality of the data and consequently leads to an improved
classification rate. We then resize this image to a standardized boxed image size
of 32 x 32 pixels.® We then consider cropping face images since this face detector
generally gives a square image while tightly boxed face images, in general, have
greater height than width. So we crop the left and right parts of the downsampled
image to give the standard face image. In our case, we use a 32 x 32 boxed image
and then crop it to 24 x 32, which is shown in Fig. 1(c).

Many different kinds of features can be used for face recognition. The most
widely used ones include eigenfaces, discrete cosine transform (DCT), and Gabor
wavelets. Eigenfaces are well suited for face recognition. In this technique, the

¢For this normalization we use OpenCV, which also provides various convenient image processing
tools such as bilinear interpolation.
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(a) Original (b) Modified

L

(c¢) Cropped (d) Reconstructed

Fig. 1. Two consecutive frame images after face detection. (a) By the original face detection
algorithm (32 x 32 pixels). (b) By the modified version considering the face size of the previous
image frame (32 x 32 pixels). (¢) By the more refined version considering the cropped faces with
a general ratio of width and height (24 x 32 pixels). (d) By the reconstructed procedures from the
face features (24 x 32 pixels). Note that we have zoomed all the images by 2x for better display.

features independent of the person’s facial expression (principal components) are
preserved while dynamically changing features are discarded. Also, the technique
needs a group of images to extract features. Our application requires that we extract
static as well as dynamically changing features of a person’s face per frame instead
of averaging out the information contained in neighboring frames. Gabor wavelets
and DCT better suit our requirement in this regard as they can be used to extract
information based on a single image, and static as well as dynamic features can
be captured and preserved. Gabor wavelets are, however, computationally expen-
sive which challenges their use in real-life applications. DCT gives a performance
comparable to Gabor wavelets but is simpler to implement and computationally
less expensive (desirable for real-time implementation). For these reasons, we use
DCT to extract visual features in this research. To extract features, we segment the
cropped face images into blocks of size 4 x 4 pixels and calculate the DCT coefficients
of each block separately. From video compression theory, we know that lower-order
DCT coefficients contain most of the structural information of given data, and even
after throwing away higher-order coefficients, a reasonable re-construction of the
original image can be achieved. Thus we use information of the first AC coefficient
in either direction as well as the DC coefficient and end up with a 144-dimensional
feature vector for each face image (3 features per block for 48 blocks).

The choice of the standardized face image size, block size, and number of fea-
tures per block was made empirically. A small image size is desired to minimize
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redundant information and reduce calculations to facilitate real-time implementa-
tion. A smaller block size reduces computations for DCT calculation and ensures
that the short-term stationarity assumption is satisfied. On the other hand, a larger
block size is desired to reduce the number of blocks and hence the number of fea-
ture vectors per image. Also, the block size dictates the sampling resolution in
the frequency domain. Oversampling leads to larger number of redundant (or even
potentially detrimental) features while undersampling may lead to loss of useful
information. Considering these, a block size of 4 x 4! seemed reasonable for our
experiments. The choice of just 3 features per block can be seen to be reasonable in
Fig. 1(d), which shows the two consecutive frame images re-constructed from the
facial features we consider as visual features in this paper. As shown in the figure, a
reconstructed 24 x 32 image still contains enough information for a human to recog-
nize a person and thus is deemed to contain enough person-dependent information
in it. It should be noted that this may not be an ideal choice of parameters for opti-
mal face recognition (which is, of course, data dependent). Our aim here is not to
build an ideal face recognizer; rather it is to show the importance of voice-face cor-
relation for person recognition and thus we work with these parameters as they are
primarily designed to reduce computational complexity and memory requirement
while giving a reasonably good performance (as will be seen in Sec. 3).

2.3. Multimodal fusion

Multimodal fusion is at the heart of any system which uses more than one modality.
The choice of a fusion strategy is highly dependent on the modalities being used. In
this section, we review some of the possible audio-visual fusion strategies, discuss
their advantages and disadvantages, and justify our choice of the feature-level fusion
strategy in terms of audio-visual feature correlation.

Fusion techniques can be broadly divided into 3 categories: early integration,
intermediate integration and late integration [10, 16]. Late integration techniques
use different classifiers for both modalities and combine their decisions. This com-
bination can be decision level fusion (AND, OR, etc.) or opinion (score-level) fusion
(weighted summation, weighted product, etc.). The inherent assumption in using
such techniques is that the modalities used are independent of each other. This
is not the case when audio-visual modalities of speech communication are used.
A person’s face deforms differently depending on what is being spoken and the
underlying speaking style variations. Intermediate integration techniques use multi-
stream HMMs. The inherent drawback in this technique is that it again assumes
independence between the modalities used. This assumption enables it to handle
audio and video streams asynchronously but some useful information correlating
the two modalities is lost.

fBesides, 4 is a power of 2 and can possibly give some computational or memory advantages.
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Early integration offers a natural way of integration for our problem. Feature
level fusion is a type of early integration technique. Here, we process the different
modalities separately and extract appropriate features and merge them by either
concatenating or weighted summation, etc. This enables the use of a single classifier
which simplifies system design. It also takes into account correlation between the
two modalities inherently. A drawback of this technique is that it needs data in
time synchronism. In our application, we desire the data to be in time synchronism
irrespective of fusion techniques and thus this drawback is not pertinent. We cal-
culate features for the individual modalities separately and just concatenate them.
This effectively ties a spoken utterance and the corresponding face appearance.
This correlation is preserved by the classification stage. We will show that this cor-
relation acts as a hidden liveness detector to differentiate between true claims and
replay attacks and increases robustness. It should be noted that audio and video are
captured at different rates. This poses a problem to synchronism and needs to be
addressed. This can be done in two ways. We can either upsample video data or use
a hybrid scheme in which we use only audio data when video data is not available
and use both when video data is available. The first scheme just adds redundant
data, which may not be of use for the classification task while it helps smooth out
discontinuities between adjacent frames. It also adds extra amount of processing.
On the other hand, the hybrid technique is more suitable for the recognition tasks
which have to be done in real-time and all possible redundancies need to be removed.
In our work, the first technique has been used for offline training as well as testing
while the hybrid technique has been used for online DSP implementation.

Audio and video modalities have complementary as well as redundant infor-
mation. The complementary information in these modalities (for example, static
features of a person’s face) is usually independent and provides extra information
which helps to increase the accuracy of the system. The complementary informa-
tion also helps to increase the robustness of the system to some extent (only against
simple replay attacks like RP1 described in Sec. 3). The redundant information in
these modalities (for example, dynamically-changing utterance-dependent features
of the face like lips) is usually correlated and does not provide any extra information
for recognition. Thus this information cannot be used to increase the accuracy of
the system. However, this redundancy can be advantageously utilized to give a high
degree of robustness against many different kinds of replay attacks (as will be seen
in Sec. 3). We show in Sec. 3 that the proposed fusion technique preserves both
the complementary and redundant information and uses them effectively to provide
increased accuracy and robustness.

2.4. Classification

Many different classifiers have been used for audio and visual recognition over the
years, including dynamic time warping (DTW), Gaussian mixture model (GMM),
hidden Markov model (HMM), support vector machine (SVM), and neural network
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(NN). HMMs are widely used for speech recognition and they give high accuracy,
flexibility, and robustness. They can be used for speaker recognition with the same
efficacy. Since our task is text-independent, we do not need to capture/retain phone
specific information. GMMs (single state HMMs) exploit this. They give a similar
performance as compared to HMMs and are computationally more efficient than
HMMs. Other advantages in GMMs include low memory requirement (only means
and variances need to be stored), flexibility (well suited for text-dependent as well as
text-independent applications), high accuracy, and robustness. Due to these reasons,
we use GMMs for our classification task.

3. Experiments and Outcomes

In this section, we first describe the different experiments performed on the Vid-
TIMIT database using the technique proposed in Sec. 2. We then show the results of
the experiments followed by a discussion of the results which highlights the impor-
tance of exploiting the correlation between audio and video in terms of accuracy
and robustness. Finally, we show that the proposed system is capable of operating
in real-time with similar performance.

3.1. Experimental details

As described in Sec. 2.1, the VidTIMIT database consists of 43 speakers with audio-
visual recordings of 10 sentences per speaker. We conduct verification experiments
using this data. We use 8 of the 10 sentences (sessions 1 and 2) for training the model
for the speaker and the remaining 2 sentences (session 3) for testing. For training
the impostor model, we use the universal background model (UBM) technique [31].
The impostor model is supposed to represent as many speakers as possible (ideally
other than the clients) and thus should be trained using all possible data collected
from people other than the clients. However, due to lack of data, we train the UBM
using all the data in the database (including all the training/testing utterances). A
test utterance is deemed to be of a speaker if the probability of the speaker model
given the utterance is greater than the probability of the UBM given the utterance,
otherwise it is deemed to be of an impostor.

We first perform experiments to demonstrate that the proposed system is more
accurate than audio-only, video-only, and the audio-visual system® in which audio
and video are considered uncorrelated to each other. For this purpose, we use the
2 testing utterances for each speaker on the same speaker’s model as a true claim
and on each of the remaining 42 speaker’s models as an impostor attack (or a false
claim). This gives us 86 true claims and 3612 (= 2 x 43 x 42) impostor trials (or
false claims).

We then move on to demonstrate the robustness of the proposed design to replay
attacks. We design three types of replay attacks. The first and the simplest replay

&We simulate this by randomizing video frames.
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attack (RP1) consists of just the audio from the speaker’s test utterance combined
with video from another speaker’s test utterance. Care has been taken that the
gender of the other speaker (whose video is used) is the same as the gender of the
original speaker (whose audio is used). It represents an attack where client audio
is recorded by an impostor and used to breach security. These kinds of attacks
are fairly easy to detect and most audio-visual systems should be able to detect
these. The second replay attack (RP2) is more difficult to detect than the first. It
consists of pure audio from the client trials and a single still image from the same
client trial. It represents a replay attack where along with the recorded audio of the
client, his photo is used to breach security. Not all audio-visual systems would be
able to detect these. Only those which employ liveness detection would be robust
against such attacks. The third replay attack (RP3) is the most difficult to detect.
For this replay attack, we just swap the videos of the two client trials from the
same client. It represents the video of the client speaking something and the audio
of the same client speaking something else. Even audio-visual systems employing
liveness detection can be easily fooled by such attacks. Most systems employing
liveness detection just concentrate on the lip region of the face to conclude whether
a person is actually speaking something or not. They do not take into account
what the person is speaking. The only way to be robust against such attacks is
to capture and exploit correlation between audio and video. For all three kinds
of replay attacks, we have 86 impostor trials and use the same 86 true claims as
described above (for the normal situation case) to assess performance.

3.2. Results and observations

Figure 2 shows a performance comparison of audio-only, video-only, audio-visual
system (with fusion of audio and video features in an uncorrelated fashion), and
audio-visual system with the proposed feature-level fusion. In this experiment, we
set the number of gaussians in each speaker model (GMM) for the video-only system
to 8 and for the audio-only and the two audio-visual systems to 32, with which each
system achieves its best performance.

From the figure, we see that the audio-visual system with the feature-level fusion
approach in an uncorrelated fashion (i.e., in no time synchronism) has the worst
(highest) equal error rate (EER) value. This demonstrates that the assumption
that audio and video are uncorrelated does not hold and such assumptions can prove
detrimental to performance. One thing that needs to be mentioned is that the audio
data in this VidTIMIT database is noisy, which caused the audio-only system to
perform poorly as well. The video-only system gives the second best EER. This is
because the video data in the database is comparatively clean. The best EER value
is given by the proposed system. This indicates that exploiting correlation between
audio and visual data can lead to significant improvement in accuracy.

From Fig. 3, we can see that the proposed design is robust against replay attacks.
The robustness against RP1 is due to the mere fact that this is a multimodal system.
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Fig. 2. Performance comparison of audio-only, video-only, audio-visual system (with fusion of
audio and video features in an uncorrelated fashion), and audio-visual system with the proposed
feature-level fusion.

The video data in RP1 is of an impostor and thus the video modality is responsible
for this robustness.” RP2 has both audio and video (still image) of the client and still
the system is robust. This shows that the system has an inherent liveness detector!
(though we have not explicitly designed one). The correlation between audio and
visual data, which we preserved during training, acts as a hidden liveness detector in
our design, which provides robustness against RP2. RP3 has both audio and video of
the client speaking different sentences. Most audio-visual systems would fail against
such attacks. Even those employing liveness detection are vulnerable to such attacks
as they detect liveness using lip movement information and RP3 has a live video.
The only way to be robust against such attacks is to make sure that a person is
speaking the same sentence in audio as well as video. One possible way would be
to perform speech recognition on both audio and visual data. This technique has
two problems. One is that speech recognition using visual data only is inherently
limited and not reliable. Secondly this adds complexity to the system design which

hFor RP1, audio-only systems are not secure at all while video-only systems are. To understand
difference between the three replay attacks handled in this paper, please review Sec. 3.1 again.
iLike [28], one can try to devise a liveness detector for the purpose of making video-only systems
robust to this kind of replay attack. Our proposed system provides such a detector inherently as
a by-product.
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Fig. 3. Performance of the proposed system against the three replay attacks considered in this
paper.

makes this technique less desirable for real-time applications. The proposed design
inherently does this task without adding any complexity into the system design. It
does this at the frame level. For every frame, it implicitly checks if audio and video
correspond to the same sound and assigns probabilities accordingly. This figure
shows that for RP3, EER as low as around 10% is possible using the proposed
technique where other audio-visual systems would break down. To conclude, we see
that the proposed technique is robust to a variety of replay attacks and can assure
reasonable reliability for high security applications.

A simpler version of the proposed technique has been implemented on a DSP
processor (TMS320C6713) using 5 gaussians for client models.) The system demands
about 100kb of program memory and 512kb of data memory (excluding memory
required for storing interface messages). The system is able to achieve an average
latency of less than 1.5 seconds (ranging from less than a second for fast speakers to
about 3 seconds for slow speakers). An additional latency of 2 seconds is introduced

It should be noted that the number of gaussians used for the DSP implementation is far lesser than
the number of gaussians used for offline evaluations on the VidTIMIT dataset. The major reason
for this discrepancy is that we had around 20-25 seconds of training data for the offline evaluations
and only 3-5 seconds of training data for the DSP implementation. Under such circumstances,
5 gaussians for the DSP implementation gave a near-optimal performance while using the same

number of gaussians as for the offline evaluations would overfit the models due to lack of training
data.
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by the voice activity detector (2 seconds of silence is required to conclude the end
of speech). The system is able to achieve an online accuracy close to 90% under
semi-controlled testing conditions (distance of the person from the microphone,
view angle for the person’s face, etc are controlled but background noise, lighting
conditions, etc. are not controlled).

4. New Approaches to Improving Classification for
Feature-Level Fusion

In audio-visual processing, score-level fusion is generally known to perform better
than feature-level fusion in terms of classification rate. (For example, refer to [22].)
In this section, we try to identify the reason for this discrepancy in performance and
propose solutions which aim at mitigating such effects and boost the performance
of the feature-level fusion system additionally benefitting from score-level fusion.

In the previous section, we saw that the video-only system achieves its best per-
formance when the number of gaussians in the GMM is set to 8 while the audio-only
system achieves its best performance when this number is set to 32. These numbers
do make sense as the number of visemes is less than the number of phonemes (and
there is a many to one mapping from phonemes to visemes). So, now when we use
traditional feature level fusion with the GMM classifier, how many gaussians do
we use? We know that a small number of gaussians in a GMM means that data
is not well represented and leads to degraded performance. On the other hand, a
large number of gaussians may lead to overfitting which again leads to degraded
performance. For optimal performance, there is an optimal number of gaussians but
this optimal number is different for video-only and audio-only systems (this number
is around 8 for the video-only system and around 32 for the audio-only system).
Figure 4 shows that the performance of the audio-only system degrades when the
number of gaussians is set to 8 (which is an optimal number for the video-only sys-
tem) because the audio data is now under represented. On the other hand, Fig. 5
shows that the performance of the video-only system degrades when the number
of gaussians is set to 32 (which is an optimal number for the audio-only system)
because the video data is now severely overfitted. So for the system proposed in
Sec. 2, if we use 8 gaussians in the GMM, voice features will cause performance
degradation as they are under represented, and if we set this number to 32, the face
recognizer will be severely overfitted, again causing performance degradation. We
may use a number between 8 and 32 which will balance the degradation in the two
modalities; however, the degradation still exists and causes an overall performance
decrease. (Empirical results indicate that a better performance is obtained when the
number of gaussians is set to 32 as compared to 8 or any other number in between
8 and 32.)

The inherent cause of the above problem is the lack of flexibility that the tradi-
tional GMMs can offer. We need a more flexible classifier that can account for data
with different characteristics by allowing a different number of gaussians for optimal
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Fig. 4. Performance comparison of the audio-only systems using the different numbers of mixture
components (in GMMs) which are optimized for the audio- and video-only systems, respectively.
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Fig. 5. Performance comparison of the video-only systems using the different numbers of mixture
components (in GMMs) which are optimized for the video- and audio-only systems, respectively.
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representation. To mitigate this problem, we now propose two novel and powerful,
though completely different, classifier designs that give us the flexibility needed to
represent different modalities which have different characteristics and which require
different numbers of gaussians.

4.1. Hybrid GMM classifier

A brute force but powerful solution to the problem described above is a hybrid
GMM classifier. This classifier uses dual-trained models with hybrid feature-score
level fusion. The primary aim here is to exploit the benefits of both feature-level
fusion and score-level fusion. The idea is simple. We try to do justice to both the
modalities by having one model each with an optimum number of gaussians for
each modality. This ensures that each modality has a model which can represent
that modality in an optimal sense (so, in our case, we have two models with 8
and 32 gaussians, respectively, based on previous experimental results). To make
sure that the presence of features of the other modality does not adversely affect
the training of the model optimal for a particular modality, for training, we use
just the features of the modality for which that model is intended. To preserve
the correlation between the modalities, we also append the means and variances of
the other modality. In other words, while using the EM algorithm, in the E-step,
we only use the features of the modality for which that model is optimum, and in
the M-step, we calculate means and variances for features of both modalities. Thus
training the part of the model which represents the modality for which it is supposed
to be optimal is exactly the same as training a model completely using only that
modality and, as an add-on, we append trained features for the other modality. This
is possible with an assumption (which we proved in the previous section) that the
two modalities are strongly correlated. We hypothesize that, because of this strong
correlation, the probabilities calculated using features of only one modality also hold
for features of the other modality and thus training models in this way is justified.

In our work, we have two models, one with 8 gaussians and another with 32.
The model with 8 gaussians is trained using the probabilities calculated on only
face features (in the E-step), and the means and variances for voice features are
just appended (in the M-step) using these probabilities. Similarly, the model with
32 gaussians is trained using the probabilities calculated on only voice features, and
the means and variances for face features are just appended using these probabilities.

During testing, we first calculate probabilities for each of the two models. This
step resembles two separate feature-level fusion systems. We then combine the prob-
abilities for the two models at the score-level by weighted summation of the log
probabilities. Thus we see that the design has two feature-level fusion systems fol-
lowed by a score-level fusion system. Each feature-level fusion system is optimized
for one modality, and the score-level fusion system can be used to reflect the rela-
tive reliability of the two feature-level fusion systems. This solution works and gives
better accuracy, which is partly shown in Figs. 6-9, and we will discuss it in more
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detail in Sec. 4.3 along with the performance of the nested GMM approach that
will be presented in the next sub-section.

4.2. Nested GMM classifier

A brute force technique like the one mentioned in the previous sub-section might
not be suitable for low-cost, real-time applications due to the redundancies that
are inherent in the design. In this sub-section we present a nested GMM classifier
which is a natural and elegant alternative to addressing the flexibility problem
we mentioned earlier. This approach does not introduce any redundancy into the
design and might prove to be a better choice for low-cost, real-time applications.
Because this design provides a natural way of representing the data, as will be seen
in Sec. 4.3, this design outperforms the previous two designs (in Secs. 2 and 4.1,
respectively).

First, consider a conventional GMM classifier. The probability of a feature vec-
tor x given a GMM whose probability density function (PDF) consists of 7y, ti, ik,
i.e., weight, mean vector, and covariance matrix for the k&th Gaussian mixture com-
ponent, respectively, is given by:

K
p(a) = > m - plalu, Sr), (1)
k=1
where K is the number of gaussians in the GMM. Assuming diagonal covariance
matrices, we can split the multivariate gaussian into a product of univariate gaus-
sians, as follows:

K
pla) =Y m [ [ p(iliri, Shi), (2)

k=1 =1
where ¥p; = Y and Xy = 0 for @ # j. D is the dimension of the feature
vector. For the feature-level concatenation where the first M dimensions are for
face and the remaining D—M dimensions for voice,

K M D
p(@) =Y m [ [ ol She) [ plwilinis Sha)- (3)
k=1 i=1

i=M+1
For face, K = 8 gives a near optimal performance but voice is under represented.
In the above expression, we replace the single multivariate gaussian for voice by a
GMM with P Gaussian components (where P = 4), so that the total number of
Gaussian components for voice now becomes K x P (=8 x 4 = 32). Then,

K M P D
p(e) =Y m [ [ ol Sra) {Z arp [ @il Ekm’)} ; (4)
k=1 =1 =1

i=M+1

where

P
Z Qkp = 1a (5)
p=1
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for K = 1,..., K. Note that since covariance matrices are assumed diagonal we
represent them as scalars for each dimension rather than as matrices, e.g., ¥g;
means the ith diagonal element of the kth mixture component while Xj,; means
the ith diagonal element of the pth nested (2nd-level) gaussian in the kth mixture
component.

For given data X = {z,}2_;,

D
= H [Z Tk Hp xn1|ﬂku2k1) {Z H p(xn1|ﬂkp1azkp1)}] . (6)
n= =1 i=M+1

Taking the logarithm,

10gp Zloglzﬂk Hp xnz|ﬂk1azk1 {Zakp H pxn1|ﬂkpuzk;m)} .
n=1

1=M++1
(7)

In order to find the optimal parameters for this nested GMM, we need to set partial
derivatives of log p(X) with respect to each of the parameters to zero:

dlogp(X)
aulj

=0, (8)

forj=1,...,M,and [ =1,..., K. Solving the above equation gives

N
;= Yon=17Y(2n)Tny
j= N
where
Ly Hz 1 P(Tni| s, Eu){Z —1 Qp H1 M41 P(@nil pipis Zipi) }

Zk:l Tk Hizl p(xni|ﬂki; Eki){zpzl Qkp Hi:M+1 p(xni|ﬂkpia Ek;m’)}
(10)

’Y(an) =

Forj=M+1,....,D,l=1,...,K,and ¢ = 1,..., P, we then need to solve the
following equation, in order to get fiq;:

ol X
OlospX) _ . (11)
Opug;
Solving the above equation gives
Eg: ﬂ(znl )xn
Higj = J\} - - ) (12)
>n—18(zniq)
where
- ™ Hz 1 p(xnz|/~1/ll7 2ll){alq Hz M+1 p(xnz|/14lqza Elqz)}
ﬂ(znlq) —

i .
Zk:l Tk Hi:l P(Tni | ki Zki){zp:1 Qkp Hi:M+1 p(wmlukpm Ekm‘)}
(13)
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From Egs. (10) and (13), we get

P
Y(zat) = Y Blznig) (14)
qg=1
and
K
> () = 1. (15)
k=1

Forj=1,...,M,andl=1,..., K, we can also obtain X;; by solving the following
equation:

dlogp(X)
—==0. 16
= (16)
Solving the above equation gives
N )2
S = Don=1 '7(;nl)(xnj taj) ' (17)
> =17 (2n1)

For j = M+1,....D, 1l =1,....,K, and ¢ = 1,..., P, we have the following
equation:

dlogp(X)

=0. 18
0%14j (18)

Solving the above equation gives

- 25:1 B(zniq) (@nj — pug;)”
lgj

= . (19)
St B(zniq)
Note that
K
> me=1. (20)
k=1
Using the Lagrange optimization to maximize log p(X) with respect to 7, and oy,
N
_1 (2
i = Zamten o)
and
N
g = Zn:l ﬂ(Zqu) . (22)

27]2[:1 ¥(2n1)

Now that we have derived the EM algorithm to train a nested GMM, let us try
to delve into intuitive insights and see how this approach can provide the flexibility
needed to improve performance of feature-level fusion systems. We can see from
Eq. (3) that a conventional GMM classifier needs the audio and video modalities
to have the same number of gaussians (= K). This leads to degraded performance
as discussed above in Sec. 4. From Eq. (4), we can see that while using a nested
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GMM, audio and video modalities can have different number of gaussians (though
one should be an integer multiple of the other). In this research, we have used
8 (= K) gaussians for the video modality and 32 (= K x P) gaussians for the
audio modality, where the number of gaussians for the audio modality is an integer
multiple (P = 4) of the number of gaussians for the video modality. Thus, we see
that using this approach, we can have different number of gaussians for the two
modalities and the design provides the required flexibility to optimally represent
the two modalities together. Equation (4) also shows that P (= 4) gaussians for
audio are mapped to one gaussian of video. Thus, there is a many-to-one mapping
from audio gaussians to video gaussians. We discussed in Sec. 4 that there is a
many-to-one mapping from phonemes to visemes in real-life data. We see that the
nested GMM allows us to capture this many-to-one mapping and thus, represents
a very natural way of representing the audio-visual data.

The conventional GMM classifier is a special case of the nested GMM classi-
fier. By setting P = 1 in the nested GMM classifier, we obtain the conventional
GMM classifier. The nested GMM classifier, thus, has all the good properties of the
conventional GMM classifier with added flexibility which makes it more powerful
as compared to the conventional GMM classifier. The nested GMM classifier is a
superset of the conventional GMM classifier and removes the restriction that the
two modalities should have the same number of gaussians. Instead, now the restric-
tion is that the number of gaussians for one modality should be an integer multiple
of the number of gaussians for the other modality. For our application, the effect of
the restriction is negligible as the exact number of gaussians required is varying and
data-dependent and thus, adjusting the number a little to make it an integer mul-
tiple does not result in a big difference in performance. It should also be noted that
the nested GMM classifier can never perform worse than the conventional GMM
classifier (provided the parameters are set for optimal performance). In the worst
case, we can set P = 1 in the nested GMM classifier and revert to a conventional
GMM classifier.

4.3. Results and observations

Figure 6 shows the performance comparison (under normal conditions) for the three
systems proposed in this paper: raw feature-level fusion system, hybrid feature-
score level fusion system, and nested GMM approach presented in Sec. 2, Sec. 4.1,
and Sec. 4.2, respectively. We can see that the increased flexibility offered by the
hybrid GMM classifier in the hybrid feature-score level fusion system results in an
improvement in performance of about 0.5% EER compared to the raw feature-level
fusion system with a conventional GMM classifier. This improvement is mainly due
to the incorporation of general score-level fusion approaches which enable weighing
the probabilities (scores) flexibly, taking into account the reliability of its inputs (in
this case, scores obtained from the two feature-level fusion systems which are fed
into the score-level fusion system). The improvement in performance can also be
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Fig. 6. Performance comparison under normal conditions for the three systems proposed in this
paper.

attributed to the modified E-step in the EM algorithm (in which the probabilities
are calculated using features from only one of the two modalities). However, the
problems discussed in Sec. 4, namely the overfitting of the face features and the
under-representation of the voice features, do exist in this system. We mentioned in
Sec. 4.1 that this system consists of two feature-level fusion systems followed by a
score-level fusion system. In one of the feature-level fusion systems, the face features
are overfitted (though voice features are optimally represented) and, in the other
feature-level fusion system, the voice features are under-represented (though face
features are optimally represented). As a result, the improvement in performance
is not substantial.

On the other hand, we can see that the nested GMM approach results in a
performance improvement of about 3.5% as compared to the raw feature-level fusion
approach with a conventional GMM classifier and about 3% as compared to the
hybrid feature-score level fusion approach. The reason for the improvement is that
this approach is a natural way to handle the multimodal data which is of interest in
our research. It has a single model which represents both the modalities with just
the right number of gaussians. So both the modalities are represented in a near-
optimal fashion (unlike the other two approaches in which at least one modality is
under represented or overfitted).

Figures 7-9 show the performance comparison against the three kinds of replay
attacks (described in Sec. 3.1) for the three systems proposed in this paper. We
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Fig. 7. Performance comparison against RP1 for the three systems proposed in the paper.
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Fig. 9. Performance comparison against RP3 for the three systems proposed in the paper.

can see that the hybrid feature-score level fusion approach and the nested GMM
approach both perform better than the raw feature-level fusion approach. The per-
formance improvements reach up to about 4% EER, particularly for RP1 and RP2.
Also note that the difference in the performances of the hybrid GMM classifier and
the nested GMM classifier is not significant.

The better performance of the hybrid feature-score level fusion approach (as
compared to the raw feature-level fusion approach) can be attributed to the multi-
scale nature of the approach. Such a design consists of two feature level fusion
systems at different scales (different number of gaussians) and thus can better cap-
ture the correlation between voice and face to give better robustness against replay
attacks. The better performance of the nested GMM approach (as compared to the
raw feature-level fusion approach) is attributed to the natural way of representing
data which provides a convenient way to represent the many to one mapping from
phonemes to visemes, thus allowing efficient representation and better preservation
of the correlation between face and voice to give better robustness against replay
attacks.

It should also be noted that, among the three systems proposed in the paper, the
hybrid feature-score level fusion system has the highest computational complexity
while the nested GMM approach has the lowest computational expenses (under the
assumption that the feature extraction stage is the same for all three systems and the
number of gaussians used is such that it gives the best performance for that system).
For example, in this research, the raw feature-level fusion system has 32 gaussians for



Robust Multimodal Person Recognition 177

both modalities while the hybrid feature-score level fusion system has two models,
one with 32 gaussians and another with 8 gaussians for both modalities (overall
40 gaussians). This indicates that the hybrid feature-score level fusion approach
has higher computational complexity as compared to the raw feature-level fusion
approach. On the other hand, the nested GMM approach has just one model with
32 gaussians for voice and 8 gaussians for face. Clearly, computational complexity
of this approach is lower than that of the raw feature-level fusion approach.

5. Conclusions

In this paper we have shown that correlation between audio and visual data during
spoken utterances offers useful information for person recognition. Assuming these
modalities to be uncorrelated can result in degraded performance. Better accuracy
in recognition (compared to audio-only, video-only and audio-visual systems which
assume the two modalities to be uncorrelated) and a high degree of robustness
against a variety of replay attacks can be obtained by exploiting this correlation
between audio and visual data. In fact, robustness against certain kinds of replay
attacks (RP3) can only be provided by considering this correlation.

We first proposed a simple system design which uses a conventional GMM clas-
sifier and feature-level concatenation as a means to exploit the correlation between
audio and visual data. This design offers superior performance as compared to audio-
only, video-only, and audio-visual systems which assume audio and video data to be
uncorrelated. It was shown that the proposed fusion technique effectively captures
the correlation between audio and visual data and uses it to give better perfor-
mance. We demonstrated that this design demands a low amount of memory and
fewer computations which makes it suitable for a low-cost real-time DSP implemen-
tation. We also showed that this design is capable of operating in real-time, and it
gives a reasonably good performance in real-time as well.

We then identified the lack of flexibility offered by the conventional GMM
classifier as the main reason for performance degradation of a feature-level fusion
technique (as compared to a score-level fusion technique). We proposed two novel
classifier designs which provide more flexibility and a better way to represent multi-
modal data where each modality has different characteristics. We showed that both
of the classifier designs offer superior performance as compared to a conventional
GMM classifier and thus help in boosting the performance of a feature-level fusion
system additionally while also improving the robustness against replay attacks (as
compared to a raw feature-level fusion system with a conventional GMM classifier).
We also showed that the nested GMM approach, being a natural and elegant way
to represent the multimodal audio-visual data, offers better performance as com-
pared to the hybrid feature-score level fusion approach which tends to be more of
a brute force technique. We also showed that the hybrid feature-score level fusion
approach requires more computations as compared to a raw feature-level fusion
approach, indicating redundancies inherent in the design, while the nested GMM
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approach requires the least computations. Overall, we showed that the nested GMM
approach outperforms the other two approaches in terms of accuracy, robustness,
and computational complexity.
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