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Abstract: Traditionally, room response equalization is
performed to improve sound quality at a given listener.
However, room responses vary with source and listener po-
sitions. Hence, in a multiple listener environment, equaliza-
tion may be performed through spatial averaging of room
responses. However, the performance of averaging based
equalization, at the listeners, may be affected when listener
positions change. In this paper, we present a statistical
approach to map variations in listener positions to perfor-
mance of spatial averaging based equalization. The results
indicate that, for the analyzed listener configurations, the
zone of equalization depends on distance of microphones
from a source and the frequencies in the sound.

I. INTRODUCTION
A typical room is an acoustic enclosure that can be modeled

as a linear system whose behavior at a particular listening po-
sition is characterized by an impulse response. The impulse
response yields a complete description of the changes a sound
signal undergoes when it travels from a source to a receiver (mi-
crophone/listener). The signal at the receiver consists of direct
path components, discrete reflections that arrive a few millisec-
onds after the direct sound, as well as a reverberant field com-
ponent. In addition, it is well established that room responses
change with source and receiver locations in a room [1], [2].
In other words, a room response can be uniquely defined by a
set of spatial co-ordinates li

∆= (xi, yi, zi). This assumes that
the source is at origin and the receiver i is at the spatial co-
ordinates, xi, yi and zi, relative to a source in the room.
Due to variations in room responses with listener positions

relative to a source, in a multiple listener environment, room
equalization should be performed for all listeners present in the
room. With a good multiple listener equalization technique, all
listeners in a given environment will experience high quality
sound. Furthermore, the equalization technique should be ro-
bust to variations in listener head movements. Specifically, the
equalized response should not vary significantly in the vicinity
of the listeners.
One method for providing simultaneous multiple listener

equalization is by measuring the room responses with micro-
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phones at all possible listener positions, averaging the measure-
ments, and inverting the stable component of the result. The
microphones are generally positioned, during measurements, at
the expected center of a listener head. Although this equaliza-
tion is aimed at achieving uniform frequency response coverage
for all listeners, its performance is often limited due to, (i) mis-
match between microphone measurement location and actual
location for the center of the listener head, or (ii) variations in
listener locations (e.g., head movements).
In this paper, we propose a statistical approach for evaluat-

ing the robustness of spatial averaging based equalization, due
to the introduction of variations in room responses (generated
either through (i) or (ii)), for different listener arrangements
relative to a fixed sound source. The proposed approach uses
a statistical description for the reverberant components in the
responses (viz., normalized correlation functions). A similar
approach is followed in [3] for determining variations in per-
formance for single listener equalization. In Section 2, we in-
troduce necessary background used in the development of the
proposed robustness analysis. Section 3 is dedicated to the de-
velopment of the robustness analysis for spatial average based
equalization. In Section 4, we present results based on sim-
ulations for different listener arrangements relative to a fixed
source. Section 5 concludes the paper.

II. ROOM ACOUSTICS FOR SIMPLE SOURCES
A. Sound Pressure at a Position in a Room
The sound pressure pf,i at location i and frequency f can

be expressed as a sum of direct field component, pf,d,i, and a
reverberant field component, pf,r,i, as given by

pf,i = pf,d,i + pf,r,i (1)

B. Free-field Pressure due to a Periodic Source
The direct field component for sound pressure, pf,d,i, at lo-

cation i, due to a sound source having frequency f located at i0
can be expressed as [4]

pf,d,i = pf,d(i|i0)eıωt

= −jkρcSfgf (i|i0)e−jωt

gf (i|i0) =
1

4πR
ejkR

R2 = |i − i0|2 (2)

where pf,d(i|i0) is the direct component sound pressure ampli-
tude, Sf is the source strength, k = 2π/λ is the wavenumber,
c = λf is the speed of sound (343 m/s) and ρ is the density of
the medium (1.4 for air).
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C. Reverberation Statistics due to a Periodic Source
The normalized correlation function [5] which expresses

a statistical relation between sound pressures, of reverberant
components, at separate locations i and j, is given by

E{pf,r,ip∗f,r,i}√
E{pf,r,ip∗f,r,i}

√
E{pf,r,jp∗f,r,j}

=
sin kRij

kRij
(3)

where Rij is the separation between the two locations i and j
relative to an origin, and E{.} is the expectation operator.
The reverberant-field mean square pressure is defined as,

E{pf,r,ip
∗
f,r,i} =

4cρΠa(1 − ᾱ)
Sᾱ

(4)

where, Πa is the power of the acoustic source, ᾱ is the average
absorption co-efficient of the walls, and S is the wall area of the
room.
The assumption of a statistical description (as given in (3),

(4)) for reverberant fields in rooms is justified if certain condi-
tions are fulfilled [6]. These conditions are typically fulfilled
in rectangular rooms at frequencies above the Schroeder fre-
quency, fs = 2000

√
T60/V Hz (T60 is the reverberation time

in seconds, and V is the volume in m3). Furthermore, under
the conditions in [6], the direct and reverberant sound pressure
are uncorrelated.

III. ROBUSTNESS ANALYSIS OF SPATIAL AVERAGING
EQUALIZATION

A performance function, Jf , that is used for analyzing the
robustness, of spatial average equalization, to room response
variations is given as

W̄f =
1
N

N∑

i=1

εf,i(r)

εf,i(r) = E{|p̃f p̄f − pf,ip̄f |2} (5)

In (4), εf,i(r) represents the equalization error in the r-
neighborhood of the equalized location i (having response pf,i)
(r-neighourhood is defined as all points at a distance of r from
location i). The neighboring response at distance r from lo-
cation i is denoted by p̃f , the spatial average equalization re-
sponse is denoted by p̄f . The expectation is performed over
all neighboring locations at a distance r from the spatial aver-
age equalized location i. The performance function W̄f is the
average of all the equalization errors in the vicinity of the N
equalized locations.
For simplicity, in our analysis, we assume variations in re-

sponses due to displacements (or mismatch) in a horizontal
plane (x-y plane). The analysis can be easily extended to in-
clude the vertical plane. Thus, (4) can be expanded to give,

εf,i(r) = E{| p̃fN
∑N

j=1 pf,j

− pf,iN∑N
j=1 pf,j

|2}

= N2E{ 1∑
j

∑
k pf,jp∗f,k

[p̃f p̃∗f − p̃fp∗f,i (6)

−p̃∗fpf,i + pf,ip
∗
f,i]}

An approximate simplification for (5) can be done by using
the Taylor series expansion [7]. Accordingly, if g is a func-
tion of random variables,xi, with average values E{xi} = x̄i,
then g(x1, x2, ..., xn) = g(x) can be expressed as g(x) =
g(x̄)+

∑n
i=1 g′i(x̄)(xi− x̄i)+g(x̂), where g(x̂) is a function of

order 2 (i.e., all its partial derivatives up to the first order van-
ish at (x̄1, x̄2, ..., x̄n). Thus, to a zeroth order of approximation
E{g(x)} ≈ g(x̄).
Hence, an approximation for (5) is given as,

εf,i(r) = N2
E{p̃f p̃∗f − p̃fp∗f,i − p̃∗fpf,i + pf,ip∗f,i}∑

j

∑
k E{pf,jp∗f,k}

(7)

We use the following identities for determining the denomi-
nator of (7) ,

E{pf,jp
∗
f,k} = E{pf,d,jp

∗
f,d,k + pf,r,jp

∗
f,r,k} (8)

|kcρSf |2 = 4πΠacρ (9)

E{pf,d,jp
∗
f,d,k} =

Πacρ

4πRjRk
ejk(Rj−Rk) (10)

E{pf,r,jp
∗
f,r,k} =

4cρΠa(1 − ᾱ)
Sᾱ

sin kRjk

kRjk
(11)

Rjk =
√

R2
j + R2

k − 2RjRk cos θjk (12)

In summary (8) is obtained by using (1) and knowing that the
reverberant and direct field components of sound pressure are
uncorrelated, (9) is derived in [4] (pp. 311), (10) is determined
by using (2) and (9), and (11) is determined from (3) and (4).
In (12), which is the cosine law, θjk is the angle, subtended at
the source at i0, between locations j and k.
Thus, the denominator term in (7) is

∑

j

∑

k

E{pf,jp
∗
f,k} =

∑

j

∑

k

(
Πacρ

4πRjRk
ejk(Rj−Rk)

+
4cρΠa(1 − ᾱ)

Sᾱ

sin kRjk

kRjk
) (13)

Now, the first numerator term in (7) is,

E{p̃f p̃∗f} = E{p̃f,dp̃
∗
f,d + p̃f,rp̃

∗
f,r}

E{p̃f,dp̃
∗
f,d} = |kρcSf |2E{gf (̃i|i0)g∗f (̃i|i0)}

= |kρcSf |2E{ 1
(4π)2|R̃|2

} (14)

where, R̃ is the distance from a source at i0 relative to spatial
average equalized location i, and is determined by using cosine
law (viz., R̃ =

√
R2

i + r2 − 2Rir cos θi, where θi is the an-
gle subtended at the source between location i and the location
in the r-neighborhood of location i). The result from applying
the expectation can be found by averaging over all locations in
a circle in the r-neighborhood of location i (since for simplic-
ity we have assumed mismatch in the horizontal or x-y plane).
Thus,

E{ 1
|4πR̃|2

} =
1
2

1
(4π)2

∫ 1

−1

d(cos θi)
R2

i + r2 − 2Rir cos θi
(15)
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Simplifying (15) and substituting the result in (14) gives

E{p̃f,dp̃
∗
f,d} =

|kρcSf |2

2(4π)2Rir
log |Ri + r

Ri − r
|

=
Πaρc

8Rirπ
log |Ri + r

Ri − r
| (16)

E{p̃f,rp̃
∗
f,r} =

4cρΠa(1 − ᾱ)
Sᾱ

(17)

The result in (16) is obtained by using (9), whereas (17) is a
re-statement of (4). Thus,

E{p̃f p̃∗f} =
Πaρc

8Rirπ
log |Ri + r

Ri − r
|

+
4cρΠa(1 − ᾱ)

Sᾱ
(18)

The correlation, E{p̃f,dp∗f,d,i}, in the direct-field component
for the second term in the numerator of (7) is

|kρcSf |2
1

2(4π)2

∫ 1

−1

ejk(
√

R2
i +r2−2Rir cos θi−Ri)d cos θi

Ri

√
R2

i + r2 − 2Rir cos θi

=
Πaρc

4πR2
i

1
(4πRi)2

sin kr

kr
(19)

The reverberant field correlation for the second term in the nu-
merator of (7) can be found using (3), and is

E{p̃f,rp
∗
f,r,i} =

√
E{p̃f,rp̃∗f,r}

√
E{pf,r,ip∗f,r,i}

=
4cρΠa(1 − ᾱ)

Sᾱ

sin kr

kr
(20)

The third numerator term in (7) can be found in a similar man-
ner as compared to the derivation for (19), and (20).
The last term in the numerator of (7) is computed to yield,

E{pf,ip
∗
f,i} =

Πaρc

4πR2
i

+
4ρcΠa(1 − ᾱ)

Sᾱ
(21)

Substituting the computed results into (7), and simplifying
by cancelling certain common terms in the numerator and the
denominator, the resulting equalization error due to displace-
ments (viz., mismatch in responses) is,

εf,i(r) ≈ N2

ψ1
[

1
8Rirπ

log |Ri + r

Ri − r
| + 2ψ2

+
1

2ψ3
− (

1
ψ3

+ 2ψ2)
sin kr

kr
] (22)

ψ1 =
∑

j

∑

k

(
1

4πRjRk
ejk(Rj−Rk)

+ψ2
sin kRjk

kRjk
)

ψ2 =
4(1 − ᾱ)

Sᾱ
ψ3 = 2πR2

i

Rjk =
√

R2
j + R2

k − 2RjRk cos θjk

Finally, substituting (22) into (5) yields the necessary equa-
tion for W̄f .

IV. RESULTS
We simulated (5) for frequencies above the Schroeder fre-

quency fs = 102Hz (i.e., T60 = 1.342s, V = 512m3). The av-
erage absorption coefficient, ᾱ, was set at 0.16 Sabines. Specif-
ically, the frequencies of test were 500 Hz, 2 kHz, 4 kHz, and
10 kHz.
In the first setup, we simulated a circular arrangement rela-

tive to a source. Specifically, there were six microphones ar-
ranged symmetrically around a central source equidistant from
a central source. The three distances to the six microphones,
from a central source, used for evaluating (5) were (i) 1 m, (ii) 2
m, and (iii) 3 m. The results are plotted in Figs. 1-3. No signif-
icant dependencies on frequencies are seen for any given plot.
However, the zone of equalization, where more than 10 dB of
reverberation reduction is achieved, shrinks as the distance from
the source increases. Specifically, the zone of equalization is a
sphere of a radius 0.075λ for Ri = R = 1m, (i = 1, 2.., 6),
whereas it is 0.045λ for Ri = R = 3m, (i = 1, 2.., 6). This
is to be expected, since as the distance from a source increases
to beyond a threshold distance, the reverberation field, which is
characterized by a random model, has a larger impact than the
direct field. Thus, this result indicates the relative lower effi-
cacy of spatial average equalization for reverberation reduction
at larger distances. It would be interesting to see how different
multiple listener equalization algorithms perform by comparing
their spheres of reverberation reduction. This is one of the goals
for the future.
In the second setup, we simulated a rectangular arrangement

of six microphones, with a source in the front of the arrange-
ment. Specifically, microphones 1 and 3 were at a distance of 3
m from the source, microphone 2 was at 2.121 m, microphones
4 and 6 were at 4.743 m, and microphone 5 was at 4.242 m.
The result is depicted in Fig. 4. A clear frequency dependence
can be seen in this configuration. Higher frequencies have a
smaller zone of equalization (due to their shorter wavelengths)
as compared to lower frequencies.

V. CONCLUSIONS
In this paper, we proposed a performance function and a sta-

tistical formulation for determining robustness of spatial av-
erage equalization for simultaneous multiple listener room re-
sponse compensation. We found the influence of frequency and
distance on the size of equalization zones for different micro-
phone configurations. Future goals will be directed to using
the proposed method for comparing different multiple listener
equalization techniques in terms of their robustness to response
mismatch.

VI. ACKNOWLEDGEMENTS
This research has been funded in part by the IntegratedMedia

Systems Center, a National Science Foundation Engineering
Research Center, Cooperative Agreement No. EEC-9529152.
This research was also funded in part by the United States

Department of the Army under contract number DAAD 19-99-
D-0046. Any opinions, findings and conclusions or recommen-
dations expressed in this paper are those of the authors and do
not necessarily reflect the views of the Department of the Army.



4

REFERENCES
[1] H. Kuttruff, Room Acoustics, Elseiver Applied Science, 3rd ed., New

York. 1991.
[2] J. Mourjopoulos, “On the variation and invertibility of room impulse

response functions,” Journal of Sound and Vibration, vol. 102(2), pp.
217–228, 1985.

[3] B. D. Radlovic, R. C. Williamson, and R. A. Kennedy, “Equalization
in acoustic reverberant environment:robustness results,” IEEE Trans. on
Speech and Audio Proc., 8(3), pp. 311–319, May 2000.

[4] P. M. Morse and K. Uno Ingard, Theoretical Acoustics, Princeton Univ.
Press, Princeton. 1986.

[5] R. K. Cook, R. V. Waterhouse, R. D. Berendt, S. Edelman, and M.
C. Thompson, “Measurement of correlation coefficients in reverberant
sound fields,” submitted J. Acoust. Soc. Amer., vol. 27(6), pp. 1072–
1077, 1955.

[6] M. R. Schroeder, “Frequency correlation of frequency responses in
rooms,” submitted J. Acoust. Soc. Amer., vol. 34(12), pp. 1819–1823,
1962.

[7] M. Kendall and A. Stuart, The Advancedd Theory of Statistics, 4th Ed.
Griffin Press, London, 1976, pp. 246

       


































Fig. 1. W̄ for six microphones equidistant at 1m from source.

       


































Fig. 2. W̄ for six microphones equidistant at 2m from source.

       


































Fig. 3. W̄ for six microphones equidistant at 3m from source.

       


































Fig. 4. W̄ for six microphones in a rectangular arrangement.


