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ABSTRACT

There are a multitude of annotated behavior corpora (man-
ual and automatic annotations) available as research ex-
pands in multimodal analysis of human behavior. Despite
the rich representations within these datasets, search strate-
gies are limited with respect to the advanced representa-
tions and complex structures describing human interaction
sequences. The relationships amongst human interactions
are structural in nature. Hence, we present Structural and
Temporal Inference Search (STIS) to support search for rel-
evant patterns within a multimodal corpus based on the
structural and temporal nature of human interactions. The
user defines the structure of a behavior of interest driving a
search focused on the characteristics of the structure. Oc-
currences of the structure are returned. We compare against
two pattern mining algorithms purposed for pattern identi-
fication amongst sequences of symbolic data (e.g., sequence
of events such as behavior interactions). The results are
promising as STIS performs well with several datasets.

Categories and Subject Descriptors

I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—relation systems, temporal logic

General Terms

Algorithms

Keywords

Structural Search, Multimodal Data, Event Data, Temporal
Behavior Models

1. INTRODUCTION
There is a multitude of annotated behavior corpora (man-

ual and automatic annotations) available as research ex-
pands in multimodal analysis of human behavior. Many
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of these corpora and supporting visualization tools store,
organize, and display multimodal data based on the struc-
tural nature of behavior. By structure we mean discrete
events that hold ordered relations in time that may vary
between occurrences. For example, the visualization tools
MacVisSTA [30], ANVIL [11], and EXMarALDa [34] dis-
play multimodal data as interval events with support for
continuous signal data. The input formats of these tools
are based on discrete interval events (multivariate symbolic
data). This organization strategy is also seen in domains
where frequent episode mining [25, 26, 31] is applied (e.g.,
medical records, neural spike data,...). Frequent episode
mining is normally based on identifying a sequence of atoms
(e.g., symbols or descriptions) and identification of “rele-
vant”patterns is based on frequency and/or statistical mod-
eling. However, for analysis of multimodal data, a pattern’s
value to an expert may not be based on frequency or statisti-
cal significance but on subjective relevance. Hence, a search
strategy designed for an expert’s interest in multimodal be-
havior data is motivated.

We present Structural and Temporal Inference Search (STI-
S), a pattern search strategy for multimodal data built upon
the structural nature of human behavior. A pattern de-
fines a sequence of behaviors. Behaviors are encoded as
annotated event intervals with temporal order being implic-
itly or explicitly defined. An example is a greeting among
two individuals with the possible formulation: <A walks up
to B>[within 1 second]<A shakes B’s hand> and <A says
“Hello”>. We base STIS upon this representation using con-
textualized information. This is done through viewing a pat-
tern that is of interest to an expert (i.e., a relevant pattern)
as not only the focus point of analysis but also defining the
search criteria. A pattern is deemed relevant by an expert
dependent on the expert’s interest in the behavior described
by the pattern. Identification of a relevant pattern within a
dataset (i.e., search) results in occurrences of the pattern.

The expert’s definition of a relevant pattern incorporates
his or her knowledge into the search criteria as opposed to
relying on statistical modeling to bring to the surface a pat-
tern that may or may not be of interest. Statistical models
used to extract frequent and/or statistically significant pat-
terns (episodes) [14, 26] do not address cases where a pattern
may only occur a handful of times. As discussed in [21], an
algorithm’s results based on some automated metric (such
as frequent episode mining) would require some form of ex-
plicit pattern search anyway. This motivates our interest in
identifying pattern occurrences of interest to the expert.
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The rest of our paper is organized as followed. In section
§2 we present related work of multimodal corpora, analy-
sis tools, visualizations, and temporal pattern mining ap-
proaches. The details of STIS are discussed in §3. §4 dis-
cusses our experiment methodology, implementation details,
the datasets used, the baseline algorithms, the patterns tested,
our results, and discussion. Conclusions and future work
close our paper in §5.

2. RELATED WORK
Our data domain is multimodal. There has been a strong

trend toward creation and analysis of multimodal corpora.
This is no surprise as the authors of [29] argue the value and
deeper understanding multi-modality adds to analysis of hu-
man behavior. Many multimodal corpora have been created
in response to this observation which predominantly consist
of sequences of descriptive events (behavior patterns). The
VACE/AFIT [5] multimodal meeting corpus is a detailed
recording of multiple sessions of Airforce officers partaking
in war gaming scenarios in a meeting setting. The Semaine
corpus [16] is a collection of emotionally colored conversa-
tions. The Rapport and Face-to-Face corpora [8, 24] are sets
of speaker-listener interactions. One of the largest to date
is the AMI corpus [3] which contains 100 hours of recorded
meetings. Mörchen created a series of datasets of varying
degrees of modalities [23]. These mentioned corpora and
datasets are highlights of a growing community of such data.

With the increasing number of multimodal datasets, tools
are needed to visualize the data for analysis. These tools
have been developed to visualize multi-channel annotation
information coupled with varying degrees of multi-channel
support of audio and video. Well known examples of these
tools are MacVisSTA [30], ANVIL [11], Theme [35], EX-
MARaLDA [32, 6], ELAN [38], C-BAS1, Transformer, and
VCode [9]. The AMI corpus uses a different approach through
use of the Nite XML toolkit which provides extensive sup-
port for complex annotation representation and supportive
interface. Nite XML toolkit visualization is centered around
transcription text (e.g., dialogue) of a corpus being anno-
tated and is linked to supportive media, e.g., audio or video.

It is common for behavior interactions to be described as a
sequential sequence of observed events. Many experts in the
field of behavior analysis express behaviors of interest in this
fashion [3, 5, 11, 12, 16, 17, 19, 33, 36]. This is no surprise as
such descriptions capture the sequence of events that define
the behavior. Many large corpora have been produced to
identify and understand behavior among humans interacting
within a small group setting (e.g., [3, 5, 16]) One focus of
the analysis of these corpora is identifying the structure of
behavior patterns. However, there is limited support for
searching based on the structure.

Currently, there are a few search strategies in this data
domain. Some visualization tools such as Nite XML toolkit
has a supportive query language for searching the annota-
tions. Such an approach can be powerful but construction
of queries can be complex and cumbersome. ANVIL sup-
ports searching amongst the text of annotated event labels.
This can be useful when looking for a specific event. How-
ever, identifying a sequence of labels does not seem to be
supported. Some tools, such as VCode, can export anno-

1Developed at Arizona State, http://www.cmi.arizona.
edu/, but the url for C-BAS is broken.

tated events to a text file where search outside of the ap-
plication can be performed. MacVisSTA has the ability to
save an observation (notebook) and play it back but not
find other occurrences of the observation. EXMARaLDA
performs search using a tool created by the EXMARaLDA
authors called EXAKT. Their search is modeled after KWIC
(keyword in context) and has powerful support for regular
expressions in text search (search transcription text, anno-
tations, and descriptions). ELAN has similar search support
to EXMARaLDA but has the added ability to add temporal
relation constraints (Allen’s constraints between two inter-
vals [1]). Transformer is purposed for transforming data files
for use in one tool to another. They do support text search
in which different corpus files can be specified to search.

The search we are interested in is symbolic temporal pat-
tern mining where the focus is discovering “interesting” pat-
terns among symbolic time series data (not numerical) [13,
22]. There are a few approaches related to this aspect of
STIS. The first is T-patterns developed by Magnusson [15]
where a sequence of events will occur within certain time

windows, e.g., A1

T1−→ A2

T2−→ A3 for time intervals T1 and
T2. T-patterns are used as the basis of pattern represen-
tation in Theme [35] where each T is set through various
statistical methods. Time interval windows are used in the
second related approach, Frequent Episode Mining (FEM)
algorithms of [26, 31]. The FEM algorithms use one of two
approaches: conditional probability or a frequency thresh-
old, both on defined timing windows.

3. STIS METHOD
Structural and Temporal Inference Search (STIS) is found-

ed on creating a formalism of a pattern based on structure,
timing, and ordered relationships. We operate on a pattern
at the semi-interval level (start or end of an interval). This
representation was first introduced by Freksa in [7] and later
revisited by Mörchen and Fradkin in [23]. Semi-intervals al-
lows a flexible representation where partial or incomplete
knowledge can be handled since operation is on parts of an
interval and not the whole. In this section we discuss how we
use semi-intervals to describe a pattern and build a struc-
tured search based on the pattern to identify occurrences
within a dataset. An overview of our method can be seen in
Figure 1. Given a set of event annotations (e.g., from ELAN
or MacVisSTA), create a semi-interval set which is organized
in a database of definitions and instances. This is done of-
fline. Then the expert provides an event sequence that is
converted into a pattern which contains implicit search cri-
teria. This is given to STIS which performs structural anal-
ysis on the pattern, uses the results of the analysis to form
search criteria, searches to identify occurrences based on the
criteria and returns a set of occurrences. We will discuss the
details of what occurs offline and online in turn.

Offline: Event annotations from a multimodal dataset
are transformed into a set of semi-interval annotations. We
define an event as:

Definition 1. An event is an interval [ri, rj ] with semi-
intervals ri and rj , i, j > 0, representing the start and end
points of the event, respectively.

Our representation of an event does not associate with
a particular occurrence time of the event, i.e., ri and rj
are not the times of the start and end points. This is nec-
essary as many occurrences of the same event can occur.
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Figure 1: STIS overview: Offline, from a multimodal dataset create a semi-interval set organized as definition

and instance tables. Online, an expert provides an event sequence that is converted into a pattern containing
implicit search criteria. STIS performs structural analysis on the pattern, uses the results of the analysis to
form search criteria, searches to identify occurrences based on the criteria and returns a set of occurrences.

Identification with a particular occurrence time is discussed
later. For organizing events, two look-up tables are used.
The first, a definition table, stores semi-interval definitions.
A definition stores characteristics of the event from which
it originated. These characteristics consist of a textual de-
scription, the actor involved (or source of the event), the
type of event, e.g. modality, and whether it is a start or end
semi-interval. These descriptive characteristics are a subset
of event aspects in [37], except for start/end. Such charac-
teristics have been used as focal aspects during analysis of
event-based multimodal data [5, 17, 23]. The definitions are
used to store descriptive information for each semi-interval
without repetition (i.e., look-up table of unique definitions).
The second look-up table, an instance table, stores of all
semi-intervals in the dataset organized by temporal order.
Each semi-interval in this table links to its definition in the
first table. The definitions in the first table allows query-
ing semi-intervals based on characteristics while the second
table allows querying of events based on temporal criteria.
Currently, our organization of event information is purposed
to store and represent interval and semi-interval data. Point
data can also be stored in which case a single semi-interval
with no matching semi-interval is stored.

Online: An expert provides an event sequence to identify.
The sequence is mapped to a pattern representation:

Definition 2. A pattern is a sequence S of semi-intervals
ri, i ∈ {1, ..., |S|}, such that for each ri ∈ S, ∃ rj such that
ri occurs before or is equal to rj ∀ i ≤ j; i, j ∈ {1, ..., |S|}.
Each ri and rj has an associated temporal constraint t̂i which
is a time window between ri and rj such that rj occurs
within t̂i time of ri where ri’s time (ti) ≤ rj ’s time (tj), i.e.,
ti ≤ tj ≤ ti + t̂i.

An example pattern can be seen in Figure 2A which repre-
sents one rendition of the greeting between two individuals
from Section 1. The temporal constraint T expresses r3 and
r4 to occur within T time units of r2. This is useful as
one may only be interested when A shakes B’s hand and
says “Hello” within a certain time to A approaching B. If
no constraint is given, then matches that are not temporally
close will be found but do not represent the desired greeting
occurrence, i.e., ten minutes passes after A approaching B,

A walks up to B

T

A shakes B's hand

A says, "Hello"r1
r2

r3
r4 r5 r6

r1 < r2 < (r3 = r4) < r5 < r6

A)

... ......... ......
...

... ..
...
...

...

...

B)
...

T

Figure 2: A) Example structure of a pattern. Note
the temporal constraint between r2, r3, and r4. B)
Segmentation into pockets of equality.
then A shakes B’s hand, etc., which does not represent the
desired greeting structure.

Following from this, a pattern can be viewed in one of two
ways: a complete pattern or key-parts of the pattern. A com-
plete pattern contains complete intervals (i.e., matched semi-
intervals). The key-parts represent relevant semi-intervals
of the pattern that are key to identification of occurrences
of the pattern, which could include complete intervals. For
example, the pattern in Figure 2A is a complete pattern
whereas r2, r3, and r4 within time T represent the key-parts
of the pattern. Note that the key-parts and the complete
pattern could be the same and the key-parts need not be
unique but their temporal constraints and relational order
are relevant to identifying the pattern.

The expert’s pattern is given to STIS as input. STIS then
performs two steps: structural analysis and search. The
structural analysis step consists of “dissecting” the pattern
and extract ordered and temporal information. In this step,
temporal constraints are stored and the pattern is segmented
into pockets of equality. We define a pocket as

Definition 3. A pocket p of pattern R is a set of semi-
intervals ri ∈ p such that ∀i, j ∈ indices(p), 0 ≤ |ti − tj | ≤ ε
where indices(p) is the set of semi-interval indices within p,
e.g., i and j.

This use of pockets follows from the observation that at
the semi-interval level, semi-intervals in a sequence are either
equal (within a certain small time window) or not (outside
the time window). Hence, semi-intervals can be grouped
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Figure 3: A) Example of search criteria and B)
search within the semi-interval instances.
accordingly into pockets of equality. All semi-intervals that
are within an ε of each other are deemed equal and grouped
in a pocket. These groups are separated by temporal order
(inequality). The segmentation into pockets allows a sim-
ple method with which to implicitly store ordered relational
information, i.e., using the structure to provide relational
information. As can be seen in Figure 2, we can see the im-
plicit (ordered) relationships amongst the ri’s. For example,
there is no need to explicitly store (remember) that r3 and
r4 are equal or that r2 occurs before r6.

After structural analysis, STIS creates a set of search cri-
teria applied to the instance table in which instances are
identified. The search criteria contain ordered relationships
among the semi-intervals and any defined temporal con-
straints. An example of search criteria can be seen in Figure
3A, where the greeting pattern from Section 1 is revisited.
Here, the ordered relational information and a temporal con-
straint are extracted from the pattern and a set of search cri-
teria are created. Then in Figure 3B, these criteria are used
to identify occurrences within the semi-interval instances
(instance table). As can be seen, the search criteria col-
lected from the pattern reflect the pattern’s structure. STIS
uses this criteria to scan all semi-interval instances finding
occurrence matches and returning a set of matches. The
situated context of each occurrence is preserved as is impor-
tant for multimodal analysis. This is accomplished through
storing the occurrences’ times and the semi-intervals within
a certain defined time window for each occurrence. This
process is based on the work of [20].

4. EXPERIMENTS
For multimodal data organized as multi-channel temporal

events, we pose the following question: Can search based
on a defined pattern structure identify occurrences of the
pattern with greater accuracy than search based on condi-
tional probability thresholds? We first outline our method-
ology for experimentation followed by a description of the
implementations of the search strategies used. After which
we describe the datasets used and the behavior categories
our experimentation focuses on. The baselines are then dis-
cussed. Then we present our results and provide discussion.

4.1 Methodology
Since behavior analysis has many variables to consider,

testing our search strategy must be done in a controlled en-
vironment. To accomplish this, we introduce occurrences of
patterns with variation into several datasets at known loca-
tions, apply the search techniques, then see if the patterns
can be identified. This is also necessary as exact known
ground truth instances for the datasets used is limited. The

techniques used are STIS, FEM frequency, and FEM con-
ditional probability. We chose 5 categories of patterns in
a meeting room setting deemed important by experts, i.e.,
relevant patterns. These categories come from analysis re-
ported in [5, 17]. We then apply the same search techniques
to unaltered real datasets with known ground truth.

We experiment with three datasets from the domain of
behavior analysis in a meeting room setting. The first is a
generated (synthetic) dataset that is created based on the
parameters of real datasets similar to bootstrap aggregat-
ing (bagging) [2]. The other two datasets are real datasets
consisting of two sessions within a corpora (details in §4.3).

We introduce into each dataset occurrences of relevant
patterns with variation based on the 5 behavior categories.
Each pattern is based on relational structures observed by
experts. For each pattern, we introduce 10 instances into
its own copy of each dataset, i.e., there is no interference
between the patterns of different behavior categories. We
also ensure that none of the 10 overlap. Then we search
each dataset copy for its respectively inserted patterns. The
results are compared to the known inserted locations for
accuracy. Power/penalty analysis is used as a metric (de-
scribed in §4.6). We then take the two real datasets unal-
tered and search for occurrences of known ground truth. We
conduct these searches using two versions of each pattern:
the complete pattern and key-parts. This allows a compari-
son between using complete knowledge of a pattern and the
relevant pieces according to the expert (sometimes complete
knowledge is not needed or unattainable).

Since one of our datasets is generated, there is some con-
cern that the pattern instances introduced already exist due
to random generation. However, the probability that the
generated dataset has many relevant pattern instances prese-
nt is very low. This probability was explored in [21].

4.2 Implementation
STIS is implemented in C++ using Qt 4.7 [27] for the user

interface and a SQLite database for the datasets. The cur-
rent interface of our system is not shown as it is not the fo-
cus of this paper. The FEM frequency algorithm (FEM1 ) is
implemented in C++ and the FEM conditional probability
algorithm (FEM2 ) is implemented in Java. Both FEM al-
gorithms are part of TDMiner (http://people.cs.vt.edu/pat
naik/software). In deciding the appropriate temporal con-
straints, the choice depends on the events involved, what
events mean to an expert, and the kind of data. Ultimately,
it is up to the one performing the search. For our experi-
ments we chose to use a global 3 second window as a tempo-
ral constraint between each consecutive semi-interval being
matched. The timeframe of behavior patterns is normally
temporally tight (on the order of milliseconds up to sec-
onds). Using a 3 second window allows the identification of
instances that are temporally tight and those a little longer
without a flood of results with many potentially being irrel-
evant. However, this window can be user set.

4.3 Datasets
Here we describe the datasets used for our experiments.

Our experiments were conducted using the VACE/AFIT
multimodal meeting room corpus [5, 17].

VACE/AFIT: This dataset consists of several meeting
sessions of Airforce Officers from the Airforce Insitute of
Technology (AFIT) partaking in war-gaming scenarios. We
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Table 1: Datasets’ Contents.

Ave Min Max Ave Min Max Ave Min Max

AFIT 1 ~45 7802 342 1.59 0.1 64.46 2.16 0.1 158.86 0.99, 0.84 0.23, 0.3 10.71, 11.68 4704 1414

AFIT 2 ~42 13362 226 2.28 0.03 124.62 1.09 0.07 58.22 0.89, 1.0 0.27, 0.27 13.78, 9.21 11456 1126

~45 7438
7526

Nodding, Phrase Nodding, Phrase

Gesture Length (secs)

1018, 666

610, 170

0.1 5
1.29 0.1 5

10626

Length 

(min)
# Gaze # Speech # Gesture

Generated 25590 240 1.3 0.06 5 1.27

Data-set
# Semi-

interval

# Unique 

Semi-intervals

 Speech Length (secs) Gaze Length (secs)

focus on two sessions (AFIT 1 and AFIT 2 ). Each ses-
sion is a scenario in which five officers (C, D, E, F, and
G) are given a problem to discuss and resolve. The room
where the sessions took place was instrumented for multi-
channel audio and video along with motion capture of the
officers (details of instrumentation in [5]). The officers in
AFIT 1 are discussing potential candidates for a scholar-
ship. The scenario is that C, D, F, and G are department
heads meeting with the institute commandant E to select
three scholarship award recipients. The officers in AFIT 2
are discussing options for exploiting an enemy missile that
has been discovered. Each session is approximately 45 min-
utes with manual and automated annotations for speech,
gaze fixations, F-formations, and several gestural forms (in-
cluding gesture phrases) for each officer. F-Formations, or
focus formations, were first identified by Adam Kendon to
be units of topical cohesion marked by gaze cohesion of par-
ticipants to common objects or spaces [10]. Gesture phrases
are atomic gestural motions marking a single motion trajec-
tory that typically coincide with atomic speech phrases [18].
These annotations are events that were extracted from the
audio, video, and motion capture data and describe the of-
ficers’ interactions. The sum of the annotations is a dataset
consisting of multiple channels (21 for AFIT 1, 19 for AFIT
2 ) of overlapping event data extracted from various synched
media streams. The sequences of behavior described by the
annotations are rich and descriptive. Each dataset is sum-
marized in Table 1. For our experiments, A1 and A2 are
altered versions (i.e., patterns introduced) of AFIT 1 and
AFIT 2, respectively, and A3 and A4 are unaltered versions
(i.e., original) of AFIT 1 and AFIT 2, respectively.

Generated: We generated a dataset based on the pa-
rameters of the VACE data. For five fictitious people, we
randomly generate 45 minutes of annotations for parallel
channels of speech, gaze fixations, and gesture phrases. For
each person and each channel, we generate a timeline of
events with varying lengths and gaps between them total-
ing 15 parallel channels. This is fewer channels but much
denser as can be seen in Table 1 with significantly more
semi-intervals. We label this dataset as G.

4.4 Relevant Patterns
Here we describe the general patterns that were deemed

interesting by experts and introduced into G, A1, and A2,
plus the ground truth patterns. The pattern structures used
can be seen in Figure 4. The outlined semi-intervals repre-
sent the key-parts of the pattern. The actors used for the
patterns introduced into A1 and A2 were chosen so that
they did not match the original actors reported by experts
in [4, 17]. For example, if a pattern we want to introduce
was reported involving C gazing at F, then we did not use
C and F but instead G and D. This was done to prevent in-
terference from the actual patterns observed by the experts.

Mutual Gaze (MG): In the AFIT sessions, different
participants controlled the floor at different times (i.e., lead-
ing the discussion for the moment). When the control passed
from one participant to the next, there was a mutual gaze
exchange between the current holder of the floor to the next.

Gaze Coalition (GC): It was discovered in AFIT 1 that
the social interaction amongst the participants had as much

to do with the outcome of the meeting as the specific merits
of the scholarship candidates being discussed. The partici-
pants dynamically formed coalitions to support each-other’s
candidates through a process of mutual gaze fixations and
back-channel expressions of support during discussions [19].

A coalition to support a proposed idea is initialized when
the proposer seeks to make eye-contact with other partici-
pants while he is presenting the idea. Participants who sup-
ported the idea would return the eye-contact, while those
who disagreed would avert gaze. When a return gaze was
attained, the presenter’s gaze moved to another member.

Floor Control (FC): During a session, a participant
would gain floor control through a hand movement (gesture)
and start speaking. This was deemed ‘floor capturing’ in [4].

Turn Taking (TT): As detailed above, each session had
a meeting manager who normally was the dominant par-
ticipant and facilitated the meeting. When a participant
sought to take a turn speaking, the participant might look
at the meeting manager while the current floor controller
spoke. Once the current floor controller finished speaking,
the participant seeking a turn would then begin speaking.

F-formation (Ff): F-formations were observed through-
out the sessions. The defining behavior for F-formations ob-
served were concurrent focus on the same person (or object).

Ground Truth: In A3 a GC model was known to exist
from unpublished analysis. In A4, a TT and Ff model were
reported in [17]. These represent the only occurrences of
a known ground truth pattern in which the exact timing
within the datasets can be verified (3 in total). The ground
truth patterns consisted entirely of semi-interval key-parts.

4.5 Baselines
We compare STIS against two Frequent Episode Mining

(FEM) algorithms [26, 31]. The motivation behind the par-
ticular kind of FEM algorithms (FEM1 and FEM2 ) we use
is the discovery of pattern sequences within temporal event
data. The authors of FEM1 and FEM2 applied their algo-
rithms to neural spike data (i.e., firing patterns of neurons in
the brain). The patterns represented by this data have many
similarities to our data domain: a sequence of firing times
of neurons in sequence, i.e., a sequence of discrete events
governed by temporal constraints.

Since FEM algorithms are meant for mining and not search-
ing, we compromise by tuning them similarly to STIS’s pa-
rameters, and then search their results for relevant patterns.
This is necessary as there are no other approach like STIS
for comparison. The closest is FEM1 (discussed shortly).
In a FEM algorithm, there are several methods for specify-
ing whether a pattern occurrence is deemed important. The
two approaches most pertinent to our problem is frequency
(FEM1 ) and statistical significance (FEM2 ). FEM1 sets a
frequency threshold reporting a pattern if seen at least as
many times as the threshold. FEM2 is based on the condi-
tional probability of one event given another within a time
window. In other words, if interested in A following B within
2 seconds, we would look for Pr(B|A) ≥ α where B is within
2 seconds of A and α is a significance (connection strength)
threshold. For more details see [31].

Interestingly enough, FEM1 supports search by pattern
definition where occurrences of a specified pattern are counted
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Figure 4: (left) Relevant patterns used for G, A1, and A2. (right) Ground truth patterns of A3 and A4.

Table 2: Overall Power/Penalty Analysis
Complete Key-Part Ground Truth

STIS 1 0 0

FEM1 9 17 2

FEM2 22 2* 3

STIS 99.33 100 100

FEM1 94 88.67 33.33

FEM2 85.33 76* 0

STIS 18.67 36.3 75.56

FEM1 19.68 39.87 91.67

FEM2 40.22 23* 100

Mean Power

Mean Penalty

Misses

without using a frequency threshold. This is analogous to
an expert defining a pattern to search. The results of this
kind of search in FEM1 would be the same if using FEM1 to
search by pattern frequency. The main difference is that us-
ing frequency results in a long list of patterns to sift through
for an exact pattern (plus choosing an appropriate thresh-
old) whereas defining a pattern to count is focused on the
exact pattern of interest. Definition of a pattern in FEM1
for counting is closely related to how STIS operates, hence,
this approach of FEM1 is used for comparison.

For FEM2 , the conditional probability threshold ranged
from 0.03 to 0.1 depending on the size of the dataset and the
pattern. We noticed for smaller datasets, in general, a larger
threshold could be used. We use the same 3 second window
between semi-intervals for FEM1 and FEM2. FEM1 func-
tioned on all the datasets in semi-interval form. However,
FEM2 had some limitations requiring the use of interval
datasets in most cases. With an interval dataset, FEM2
performs operations with respect to an interval’s start.

4.6 Results
The performance of STIS is tested through power/penatly

analysis of [28]. This is done for datasets G, A1, and A2. We
then look at the results for the three ground truth patterns
also with power/penalty analysis. In total, STIS was run
on 33 patterns, FEM1 on 33, and FEM2 on 30; in total 96
pattern searches were performed. For simplicity, we use the
naming scheme X Y to reference each pattern where X is
the dataset and Y is the pattern abbreviation. For example,
A1 MG is mutual gaze pattern from A1.

For describing the results, we use power/penalty analysis
which reports a power and penalty percentage. The idea
behind power/penalty analysis is that if there are x known
instances of a phenomenon in a dataset, y instances identi-
fied by a method or algorithm, and z number of instances
common amongst the known and identified, z ≤ x, then the
power percentage is z/x∗100. For example, if x = 10, y = 18
and z = 7, then the power is 7/10 ∗ 100 = 70%, i.e., the
method’s power is 70% in identifying the relevant instances.
The other 11 identified instances are part of the penalty.
These are extra instances the expert must go through and,

in turn, are an extra cost. The penalty = (y− z)/y ∗ 100, in
our example, penalty = (18− 7)/18 ∗ 100 = 61.11%.

A precision/recall approach is not applied as such ap-
proach provides how accurate your model is in identifying
an instance. However, in our case, we not only want to
accurately identify an instance, but whether that instance
represents a specific behavior of interest. For example, one
can create a detection system for hand waving. However,
an expert may not only be interested in hand waving, but
when A waves at B. What is detected will either be related
to the behavior of interest (power) or not (penalty).

Table 2 presents the overall power/penalty analysis re-
sults. STIS was able to identify nearly all the occurrences
(99.33% - only 1 missed). FEM1 and FEM2 missed a num-
ber more (94% and 85.33%, respectively). STIS had a higher
mean power and a lower mean penalty for the complete pat-
tern case. STIS also performed better than FEM1 for the
key-part case. The ‘*’ for FEM2 ’s key-part results signify
that these are only partial results. We were only able to run
FEM2 on key-part patterns for A1 due to some limitations
of FEM2 (discussed later). Hence, the results presented in
Table 2 are for this case. The corresponding sub-set of re-
sults for STIS and FEM1 are 0, 100, 26.46 and 5, 90, 27.61
for misses, mean power, and mean penalty, respectively. For
this case, FEM2 had a lower mean penalty.

For the ground truth, STIS was the only approach that
was able to identify all 3 known ground truth occurrences.
We would like to emphasize for the ground truth identifi-
cation STIS’s ability to search for a pattern and one of the
results be a ground truth occurrence. The high penalty is
due to verifying the identification of only one occurrence for
each pattern. STIS returned at max 5 occurrences for the
ground truth patterns whereas FEM1 and FEM2 returned
up to 22 occurrences and for some, did not return any.

In Figure 5 we can see the details of the penalty for the
complete pattern, key-part pattern, and ground truth pattern
cases. As can be seen, STIS and FEM1 have competing re-
sults. The limitations of FEM2 caused it to struggle with
the ground truth case. Not surprisingly, all approaches had
their worst performance for the generated data. There is
a noticeable difference between the complete and key-part
pattern cases. The penalty increased for key-part. The rea-
son for this is most likely because the key-part patterns con-
tain mostly semi-intervals (not intervals) leading to a greater
chance of having more matching occurrences. This is one
of the characteristics of the semi-interval representation as
a pattern defined using semi-intervals can match a greater
number of patterns than an interval representation [23].

Comparing the penalty trends across datasets and pattern
types, we see that STIS has a similar penalty trend between
complete and key-part cases for each dataset. STIS seems to
be least affected between the datasets but suffers from the
same errors between them also. STIS and FEM1 display
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Figure 5: Penalty for G, A1, A2, and ground truth.

similar trends for G, A1 key-part, and A2 key-part. This
suggests that they may have similar strengths and weak-
nesses. FEM1 and FEM2 had strongly correlated trends
for G and A2 complete but not for the other cases. Over-
all, the penalty trends suggest that there are commonalities
in the algorithms that aid in identification but also shared
pitfalls that hinder. Potential pitfall causes are the neces-
sity to tune the temporal constraints and pocket size based
on characteristics of the dataset and/or the kind of pat-
tern, and making sure semi-intervals that are matched to
an occurrence actually make sense, e.g., a start and end are
matched to the same event occurrence and not two different
occurrences of the same kind of event. Current measures
in STIS to minimize this is to verify through the instance
table that the semi-interval occurrences are matched appro-
priately. Further work in this area is needed to provide more
robust matching. For ground truth, there was no trend seen
other than STIS had the lowest penalty overall.

4.7 Discussion
In answer to the question posed previously, the results of

STIS and FEM1 confirmed that search based on event struc-
ture can identify patterns with high-accuracy, and search for
patterns in multimodal data organized as multi-channel tem-
poral events can benefit from expert input and specification
as opposed to a conditional probability method (FEM2 ).

During our experimentation, we observed some limitations
in the different algorithms. For FEM1, the ground truth pat-
terns GC and FF could not be found as some semi-intervals
of the patterns occur at the exact same time. FEM1 does
not handle this case, which was also observed in [21]. For
FEM2, significant effort was required to obtains results as
we had to continually try different conditional probability
thresholds (some as low as 3%). This challenge came from
the frequency of the patterns being searched for. Compared
to the size of the data set, 10 occurrences (or 1 for each
ground truth pattern) is very small. Hence, why search
based on event structure with expert input and specification
performed well. The FEM2 implementation had an inher-
ent limit in the number of reported patterns that could be

outputted for verification (∼50K). When this limit was ex-
ceeded, verification could not be performed as results could
not be outputted. The larger the dataset, the greater the
number of reported patterns, hence, the use of the interval
versions of the datasets as they were half the size of their
semi-interval counterparts. However, FEM2 using intervals
suffered since the algorithm would only match according to
start times and not (seemingly) use the end times. This left
FEM2 operating as if only start semi-intervals were specified
leaving a greater possibility for more matches.

For STIS, we encountered an initial identification error
with ground truth Ff. Our default size of a pocket was tem-
porally very tight as the original analysis of the behavior
within A3 and A4 was focused at a small time scale (mil-
liseconds). One of the gaze events of the Ff pattern was
outside of our pocket size. Hence, we had to slightly change
the structure of the pattern used to search in order to iden-
tify the ground truth pattern. This highlights the necessity
for greater flexibility when searching using a structural ap-
proach, which is an observation we were aware of and this
situation confirms such. Another observation is that FEM1
had less identified patterns than STIS but still high power.
We believe this is because FEM1 returns non-overlapping
patterns, i.e., patterns that do not overlap each other. STIS
does not filter for non-overlapping patterns as such patterns
may contain variations of potential interest to the expert.

FEM2’s search strategy is based on identifying patterns
using defined parameters. We are interested in identifying
patterns that match parameters and also match specific con-
tent. By content we mean what the events involved in the
pattern mean. For example, the structure of the ground
truth models (Figure 4) can match any number of patterns
in the data. It is the provided content along with the struc-
ture that allows an expert to pinpoint occurrences of inter-
est. This kind of search is supported by STIS and FEM1
and despite the limitations observed, they performed well.
Overall, STIS outperformed FEM1 and FEM2 and poses to
be a beneficial search approach in multimodal analysis tools.

The pattern structures investigated in this paper are the
beginning of our research into creation of a set of tempo-
ral relationship principles for describing interaction patterns
in multimodal corpora. A subset was used in this paper
but expansion is underway into representing more complex
patterns. This expansion includes negation, pre- and post-
conditions, interrupts, and many renditions of repetition of
specific events. However, the creation of more complex pat-
terns may result in very few matches, which may or may
not aid the current analysis (flexible vs. rigid pattern defi-
nition). Another potential venue of pursuit is using STIS to
search partially annotated corpora. Some events are easier
to annotate than others (e.g., when someone is speaking, or
a person’s position in the scene), hence, searching partial an-
notations can provide likely probable occurrences of events
not yet annotated. This would identify focal areas where
efforts can be applied for more detailed annotation creation.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented a search strategy for multi-

modal data based on the structural and temporal aspects of
human behavior. We were able to show that a search strat-
egy based on these principles performs well. STIS demon-
strated the ability to accurately identify occurrences of pat-
terns with an expert defined structure with some (or all) the
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occurrences identified being ones sought after. FEM1 was
a tough competitor which motivates future investigations of
potential incorporation of FEM1 aspects into STIS. An ex-
ample being support for non-overlapping events if desired by
the expert. Another focus of future work is supporting flex-
ible timing windows (for pockets and temporal constraints).
Support for such is merely a question of implementation.
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