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Abstract

Systems capable of highly-interactive dialog have re-
cently been developed in several domains. This paper
considers how to build on these successes to make sys-
tems more robust, easier to develop, more adaptable,
and more scientifically significant.

Introduction
Beginning about twenty years ago, dialog system re-
searchers started building systems that go beyond rigid turn-
taking and robotic interactions to exhibit human-like sensi-
tivity to the user’s behavior and state, swift and natural tim-
ing, and appropriately tailored behaviors (Ward and Tsuka-
hara 1999; Gratch et al. 2007; Ward and Escalante-Ruiz
2009; DeVault, Sagae, and Traum 2009; Bohus and Horvitz
2011; Forbes-Riley and Litman 2011; Acosta and Ward
2011; Raux and Eskenazi 2012; Andrist, Mutlu, and Gle-
icher 2013; Meena, Skantze, and Gustafson 2014; Skantze,
Hjalmarsson, and Oertel 2014; Ghigi et al. 2014). These sys-
tems can give users the impression of naturalness, engender
rapport and improve task-related outcomes.

There are however ample opportunities for improve-
ment. Beyond component-level performance and architec-
tural challenges (e.g. (Buss and Schlangen 2010; Baumann
2013; DeVault and Traum 2013)), there are cross-cutting and
methodological challenges in advancing this research. This
position paper identifies some important issues in the con-
struction of highly interactive systems and some possible
strategies, based on our analysis of recent advances and on
our own experiences in this area.

Towards More Power and Robustness
Challenge 1. Improving on Human Performance
Much research on highly-interactive dialog systems is mo-
tivated by a desire to achieve more natural and human-like
system behavior. This is an important goal, but as a field we
needn’t stop at human-like interactive skills. Today it is easy
to imagine dialog systems that are more knowledgeable, bet-
ter reasoners, and use better diction than any human. Such
systems are indeed a staple of science fiction movies. We can
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similarly imagine advanced systems that are “interactionally
superior”: better than any human in these respects also.

This possibility can be appreciated by listening to record-
ings of people in live conversation (especially yourself) and
noting how inefficient and sometimes ineffective they are.
While some disfluencies and awkwardnesses can be func-
tional, to convey nuances or adjust the pace for the sake of
the interlocutor, many are just regrettable. This is obvious in
retrospect, when one can replay the recording to glean every
detail of the interlocutors’ behavior and can take the time
to think about what should have been said and how, at each
point in time. Future dialog systems, not subject to human
cognitive limitations, might be able to do this in real time: to
sense better, consider more factors, plan dialog steps further
ahead, and so on, to attain superhuman charm and produce
superhuman dialog.

While this is a very long-term goal, it raises a question
relevant today: if corpus mining is our main resource for
designing interactive behaviors, how can one produce sys-
tems that do better than the human speakers in the corpus?
This issue has been, so far, only tentatively addressed. One
approach is to look for consensus, to avoid modeling the
“noise” inevitably seen in the behavior of any single individ-
ual (Huang, Morency, and Gratch 2010). A second approach
is to selectively identify the very best interaction patterns in
a corpus, and to base interaction models on these examples.
A reinforcement learning framework could also prove use-
ful, although making this work at the timescale of interactive
behavior will clearly be difficult (Kim et al. 2014).

Challenge 2. Modeling Variation
Every dialog system today is carefully designed to work
well with some target population of users. Recently there
has also been significant work on certain topics in adap-
tation: how to adjust the fine details of some behavior to
better suit individual users. But there is a larger question,
that of how to design a family of systems, with the same
basic functionality but with different personalities or be-
havior styles, that can be used for users of different types
or preferences. We see the need for more research in in-
teraction styles (Grothendieck, Gorin, and Borges 2011;
Ranganath, Jurafsky, and McFarland 2013), so that system
behavior can be better parameterized and adjusted at a high
level.



Challenge 3. Using Multifunctional Behavior
Specifications
Today most interactive systems require tightly constrained
user behavior. While the constraints are often not explicit, a
great deal of attention is paid to defining a genre that sets
up expectations that lead the user to perform only a very
limited set of behaviors: to follow the intended track. Under
such constraints a system can behave strictly according to
a role, which simplifies design and reduces the likelihood
of failures due to unplanned-for inputs. However, designing
around narrow tracks of interaction can lead system builders
to adopt relatively impoverished models of the interactive
behaviors for their systems.

Consider for example backchanneling behavior. This is
a prototypical interactive behavior, probably the best stud-
ied one, and one already used successfully in several sys-
tems which backchannel at appropriate times in response to
user speech (Ward and Tsukahara 1999; Fujie, Fukushima,
and Kobayashi 2005; Schröder et al. 2012). Backchanneling
demonstrations today work if the user has been guided to
perform a specific type of dialog, such as retelling a story,
answering personal-history questions, solving a puzzle, or
engaging in smalltalk. Within one such activity type, good
backchanneling for a specific function such as expressing
agreement is possible. However, any single backchanneling
policy does not generalize well to other activity types, and
fails to incorporate many functions of backchannels. This
can be seen from the result of a bottom-up study of where
back-channels occur in unconstrained human-human dialog
(Ward, Novick, and Vega 2012). This revealed 12 different
activity types whose local presence strongly affects the prob-
ability of a back-channel, including rambling, expressing
sympathy, negotiating the delivery of an upcoming impor-
tant piece of information, deploring something, and being
unsure, in addition to the obvious factors of being in a lis-
tener role and expressing empathy or agreement. Moreover,
all 12 activity types had independent surface manifestations.

In general, there is a lot more going on in human inter-
action than we are modeling today. These aspects are not
always hard to detect, and there have been good demon-
strations of how to recognize user uncertainty (Forbes-Riley
and Litman 2011) and various emotion-related user states
(Schuller et al. 2013). Productively using such information
in dialog systems, however, remains a challenge, and no
work has yet demonstrated in practice how to track and deal
with more than one such function at a time.

Challenge 4. Synthesizing Multifunctional
Behaviors
Synthesizing multifunctional behaviors in current dialog
system architectures is challenging. Today most behavior-
related decisions are made in isolation. For example, a sys-
tem might decide whether to produce a backchannel, and
if so which word, and then for that word which prosodic
form to use. While such individual decisions simplify de-
sign, making decisions jointly, optimized together, could
help produce better outputs that serve multiple functions.

This need is clearest perhaps for speech synthesis. In

human-human dialog, prosody is generally multifunctional.
For example, in a single utterance like “okay, well,” prosody
may serve to accept that the interlocutor’s proposal is a valid
one, flag that it was unexpected, indicate that there are coun-
tervailing factors that he’s probably not aware of, convey
that the speaker needs a second to marshal his thoughts, and
project that he momentarily will propose an alternative.

Current speech synthesis techniques support concatena-
tion but not the overlay of multiple prosodic patterns to ex-
press multiple functions simultaneously. Systems whose ex-
pressive needs are limited can make do with such synthesis
(or, more commonly, rely on prerecorded speech), but not
systems that have to satisfy combinations of expressive goals
that are not statically-predetermined. Superpositional mod-
els of prosody do exist (van Santen, Mishra, and Klabbers
2004; Tilsen 2013; Ward 2014), but so far these are only de-
scriptive. More generally, there is a need for the synthesis of
multifunctional behaviors, including speech and animation,
good enough for use directly without touch-up.

Challenge 5. Integrating Learned and Designed
Behaviors
Today even the most interactive systems have a fixed skele-
ton specifying the overall dialog flow. Within this a few
decision points may be left underspecified, for subsequent
filling in with more data-driven decision rules. While ulti-
mately dialog system behaviors might be entirely learned
from data, for the foreseeable future interactive systems will
include both learned and designed behaviors. Such hybrid
systems involve not only technical challenges but also mar-
keting challenges, since customers for dialog systems may
not trust those that rely too much on machine learning for
dialog flow (Paek and Pieraccini 2008).

We see an opportunity to explore new ways of integrating
learned and designed behaviors, and in particular to develop
architectures which give a larger role to behaviors learned
from corpora. Perhaps the knowledge from corpora need not
be distilled and shoehorned into discrete decision points. In-
stead behaviors in the corpus can perhaps be replayed and
active at runtime, perhaps slightly abstracted and adjusted.
Then the more task-oriented aspects of the system might
take the form of independent constraints that, while main-
taining local coherence, move the system, choice by choice,
towards accomplishment of the overall dialog goals. Thus
we might combine two styles of modeling, one metaphori-
cally the kinematics, modeling motion as it follows observed
patterns, and one metaphorically the dynamics, modeling
motion as directed by external forces (Lee et al. 2014).

Challenge 6. Continuous State Tracking
Today’s dialog systems have a lot of inertia in interac-
tion. After making a decision (which usually happens infre-
quently, such as once per user turn-end), they stick with it,
usually until they have delivered the full utterance and heard
the user’s response. Innovations in incremental processing
can overcome this limitation, but in practice these are used
just to add a few more decision points, for example when the
user barges in, when a user’s key words are recognized, or
when some prosodic, gestural, or external event is detected.



Human-human interaction is different. People continu-
ously track the current state of the dialog, not only when the
other is speaking, but when speaking themselves. This in-
volves not only fine attention to the interlocutor’s gaze, ges-
ture, and backchannels, but also self-monitoring: speakers
monitor what words they say, what they sounded like after
they said them, and what things are in the output buffer. For
this they use their own recognition/understanding circuits to
simultaneously emulate the listener’s uptake and to compare
their own actual performance with their intended message.

While implementing continuous state tracking won’t be
easy, the potential value is significant. Among other things,
systems will be relieved of the pressure to make perfect de-
cisions. If a system can track appropriateness and make mid-
course corrections, then the risk associated with any individ-
ual decision is less, and initial choices of how to start turns
can be more approximate.

Towards Reduced Development Costs
Challenge 7. Compositional Behavior Specification
As noted above, today most dialog systems have a fairly
fixed dialog-flow skeleton, with some interactiveness around
specific decision points. Such nodules of interactivity are
limited in applicability to the exact context in which they
appear. We would instead like to build interactive systems
from more general conversational skills, as reusable com-
ponents. For example, imagining that we have developed a
general policy for choosing the next interview question, a
general policy for showing empathy, and a general policy
for supportive turn taking, we could imagine that these could
be composed to produce a system capable of effective, nat-
ural, and warm first-encounter dialogs. That is, dialog sys-
tems might be built from communications skills that are de-
coupled from the overall dialog policy. Ultimately we would
like to be able to compose behaviors learned from different
corpora, to increase reuse and reduce development costs.

Challenge 8. More Unsupervised Learning
Today to develop a highly-interactive system, even one ex-
hibiting only one or two forms of responsiveness, requires
a major engineering effort. Machine learning can of course
decrease the need for analysis by hand, but it brings its own
costs and limitations, usually including the need to label or
preprocess the data, to split it into turns or otherwise iden-
tify the decision points to which machine learning will be
applied. We see the need for fully automatic discovery meth-
ods, completely unsupervised. One approach is to automat-
ically detect recurring behavior patterns (Ward 2014). We
think at run time these might be relatively easy to track and
to superimpose, addressing Challenges 4, 6 and 7.

Towards Deeper Understanding
Challenge 9. Making Evaluation more Informative
Today, evaluating highly-interactive systems usually in-
volves user studies with a final questionnaire. This is costly
and not as informative as we would like (Ward 2012). In par-
ticular, it is difficult to relate user perceptions of system style

— such as attentive, polite, considerate, supportive — to the
details of the actual behaviors and the design choices under-
lying them — such as whether a certain state has a timeout of
1.2 or 1.8 seconds. We think this could be addressed in part
by elaborating causal models of the relations between sys-
tem properties and user perceptions (Möller and Ward 2008;
Möller, Engelbrecht, and Schleicher 2008) to cover the more
interactive aspects of dialog.

We also see a need to better map out the connections be-
tween interactive performance and overall system perfor-
mance in highly responsive systems. For example, the vir-
tual interviewer in the SimSensei Kiosk system (DeVault
et al. 2014) is deliberately slow to take the floor after user
speech ends, in support of the design goal of encouraging
users to talk as much as possible. If this system’s turn-taking
were made lower latency and more natural, it could work
against system design goals. A deeper understanding of the
advantages and potential disadvantages of highly-interactive
dialog behaviors across domains is needed.

Challenge 10. Engaging Social Scientists
The behaviors in today’s dialog systems are seldom based on
the findings of social scientists, and conversely, the results of
dialog systems research are rarely noticed by them.

One reason is that the most interactive aspects of dialog
systems are often not fully understandable: they may work,
but it is hard to know why. There is a need for more compre-
hensible models. Ways to achieve this might include deeper
analysis of what a learned model really has learned, more
use of modeling techniques which are intrinsically more un-
derstandable, and more use of declarative representations of
behaviors rather than decision algorithms. The latter may
also lead to knowledge representations shareable across syn-
thesis and recognition, addressing Challenges 3 and 4.

Regarding the other problem, the lack of social-science
research contributing descriptions of interactive behaviors
specific enough to use for dialog systems, we feel that com-
putationalists could create more tools to support interaction
analysis and modeling by non-technical people.

General Discussion
A mainstay of highly-interactive dialog research has been
the production of “one-hit wonder” systems, and there re-
main many interesting issues that can explored with “just-
get-it-working” methods. However, the field is maturing
rapidly. As we strive to build systems that are more robust,
more capable, and more understandable, the challenges and
approaches discussed here will become more relevant.
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