
To appear in Proceedings of the 15th Int’l Conference on Intelligent Virtual Agents, 2015

Towards Adaptive, Interactive Virtual Humans in Sigma

Volkan Ustun1 and Paul S. Rosenbloom1,2

1 Institute for Creative Technologies, 2 Department of Computer Science
University of Southern California, Los Angeles, CA USA

Abstract. Sigma is a nascent cognitive architecture/system that combines con-
cepts from graphical models with traditional symbolic architectures. Here an in-
itial Sigma-based virtual human (VH) is introduced that combines probabilistic
reasoning, rule-based decision-making, Theory of Mind, Simultaneous Locali-
zation and Mapping and reinforcement learning in a unified manner. This non-
modular unification of diverse cognitive, robotic and VH capabilities provides
an important first step towards fully adaptive and interactive VHs in Sigma.

1 Introduction

Virtual humans (VHs) are synthetic characters that can take the part of humans in a
variety of contexts. The main goal for VHs is to look and behave as real people to the
extent possible [17], including: (1) using their perceptual capabilities to observe their
environment and other virtual/real humans in it; (2) acting autonomously in their en-
vironment based on what they know and perceive, e.g. reacting and appropriately
responding to external events; (3) interacting in a natural way with both real people
and other VHs using verbal and non-verbal communication; (4) possessing a Theory
of Mind (ToM) to model their own mind and the minds of others; (5) understanding
and exhibiting appropriate emotions and associated behaviors; and (6) adapting their
behavior through experience. Most critically, this broad range of capabilities must be
integrated together and work coherently. This integration can be quite hard, but if it
can yield more than the sum of its parts, it can simplify a variety of other aspects.

Sigma [13] is being built as a computational model of general intelligence that is
based on combining what has been learned from over three decades worth of inde-
pendent work in cognitive architectures [7] and graphical models [3]. The long-term
goal is to understand and replicate the architecture of the mind; i.e., the fixed structure
underlying intelligent behavior in both natural and artificial systems. This ambitious
goal strives for the complete control of VHs (and robots in the future) that behave as
closely as possible to humans, primarily by achieving and integrating the list above in
a manner that should ultimately yield plug compatibility between humans and artifi-
cial systems. Such compatibility potentially creates very flexible VHs and simulation
environments.

Sigma’s development is guided by a trio of desiderata: (1) grand unification, unit-
ing the requisite cognitive and non-cognitive aspects of embodied intelligent behavior
in complex real worlds; (2) functional elegance, yielding broad cognitive (and sub-

cognitive) functionality from the interactions among a small general set of mecha-
nisms; and (3) sufficient efficiency, executing rapidly enough for anticipated applica-
tions. The first and last desiderata are directly relevant to the construction of broadly
capable, real-time, VHs, while the middle one implies a rather unique path towards
them, where instead of a disparate assembly of modules, all of the required capabili-
ties are constructed and integrated together on a simple elegant base. Most of the
work to date on Sigma has individually explored particular capabilities for learning,
memory and knowledge, decision making and problem solving, perception, speech,
Theory of Mind, and emotions. These individual capabilities are important in building
human-like intelligence but getting them to work together is also quite challenging
[17]. Sigma’s non-modular, hybrid (discrete + continuous) mixed (symbolic + proba-
bilistic) character supports attempting a deep integration across these required VH
capabilities, straddling the traditional boundary between symbolic cognitive pro-
cessing and numeric sub-cognitive processing.

The work here combines a subset of these capabilities within Sigma to construct
an adaptive, interactive VH in a virtual environment. The VH is adaptive not only in
terms of dynamically deciding what to do, but also in terms of embodying two distinct
forms of relevant learning: (1) the automated acquisition of maps of the environment
from experience with it, in the context of the classic robotic capability of Simultane-
ous Localization and Mapping (SLAM); and (2) reinforcement learning (RL), to im-
prove decision making based on experience with the outcomes of earlier decisions.
The VH is interactive both in terms of its (virtual) physical environment – through
high-level perception and action – and other participants, although the latter is still
quite limited. Although speech and language are being investigated in Sigma, neither
is deployed in this VH, so social interaction is limited to constructing – actually,
learning, with the help of RL – models of the self and others.1 These forms of adaptiv-
ity and interaction are combined together within Sigma and, for this initial VH, with a
basic rule-based decision framework.

Sigma provides the ability to exhibit this combination of capabilities in a unified
manner because of its grounding in a graphical architecture that is built from graph-
ical models [3] (in particular, factor graphs and the summary product algorithm [5]),
n-dimensional piecewise linear functions [10], and gradient descent learning [14].
The required VH capabilities emerge in a functionally elegant manner from the inter-
actions among this small but general set of mechanisms, plus knowledge. For exam-
ple, RL arises from the interactions between gradient descent learning and particular
forms of both domain-specific and domain-independent knowledge [11].

Chen et al. [1] discussed the fusion of symbolic and probabilistic reasoning at an
earlier stage of the development of Sigma. In that study initial steps towards grand
unification were demonstrated when perception, localization and decision-making
were implemented within a single graphical model, with interaction among these
capabilities modulated through shared variables. The work here greatly expands on
this approach to yield a more significant combination of capabilities, plus a deploy-
ment in a VH that is embodied in the SmartBody character animation system [15] and

1 As explained later, what the VH actually does is to model itself as if it were a different VH.

that operates within a 3D virtual environment rather than a toy one-dimensional
space. In the work here, SmartBody’s internal movement, path-finding and collision
detection algorithms are used in animating the VH’s actions, although eventually
much of this is to be moved within Sigma. Sigma has no direct access to the virtual
environment, but can perceive and act on it through a (deliberately) noisy interface.

In addition to the contributions of this work to the creation of adaptive, interactive
VHs, it is also thus an important step in the maturation of Sigma. The hope is that this
will serve as a foundation towards developing even more complete and functional
VHs. It also should help better understand how to handle the interactions between
VHs and their environments in a robust manner that is similar to, but still somewhat
simpler than, interactions between robots and the real world.

The conceptual model(s) for the VHs, and their interactions with the virtual envi-
ronment, are described in Section 2. A basic introduction to Sigma is provided in
Section 3. Section 4 provides a discussion of the Sigma models that control the
VH(s). Conclusions and possible extensions to this work are discussed in Section 5.

2 Conceptual Model and Environment

Physical security systems are comprised of structures, sensors, protocols, and policies
that aim to protect fixed-site facilities against intrusions by external threats, as well as
unauthorized acts by insiders. Physical security systems are generally easy to under-
stand but they also allow complex interactions to emerge among the agents. These
properties make physical-security-systems simulation a natural candidate as a testbed
for developing cognitive models of synthetic characters [18]. Similar to the discussion
in [18], a physical-security-system scenario in a retail store has been selected as a
platform to develop and test Sigma VH models.

In a typical retail-store shoplifting plot, offenders first pick up merchandise in a re-
tail store and then try to leave without getting caught by any of the store’s security
measures. A simple grab-and-run scenario is considered in this paper, but a large
number of different scenarios are possible. In this scenario, the intruder needs to lo-
cate the desired item in the store, grab it, and then leave the store. The role of security
is to detain the intruder before s/he leaves the store. A basic assumption is that it is
not possible to tell what the intruder will do until s/he picks up an item and starts run-
ning. The security can immediately detect the activity and start pursuing the intruder
once the item is picked up (assuming CCTV). If the intruder makes it to the door, it is
considered a success for the intruder.

For the basic setup, it is assumed that the intruder does not know the layout of the
store and hence it has to learn a map and be able to use it to localize itself in the store.
When the intruder locates the item of interest, it grabs the item and leaves the store
via one of the exits. In the hypothetical retail store used here (Fig. 1), there are shelves
(gray rectangles), the item of interest (the blue circle) and two entry/exit doors (red
rectangles). The intruder leaves the store via either (1) the door it used to enter or (2)
the door closest to the item of interest. The main task for security is to learn about the
exit strategies of intruders and use this to effectively detain them.

Fig. 1. Layout of the store and its SmartBody representation
SmartBody [15], a Behavior Markup Language (BML) [4] realization engine, is

used as the character animation platform for this study, with communication between
the Sigma VH model and SmartBody handled via BML messages. In the current set-
up, locomotion and path finding are delegated to the SmartBody engine. Sigma sends
commands and queries to SmartBody to perform these tasks and to return perceptual
information. Two basic types of perception are utilized by the Sigma VH model: (1)
information about the current location of the agent, mimicking the combination of
direction, speed and odometry measurements for a robot; and (2) objects that are in
the visual field of the agent and their relative distances, mimicking the perception of
the environment for a robot (currently the agents have x-ray vision, but a more realis-
tic visual system is in the works). Location information is conveyed to the Sigma VH
model with noise added; perfect location information is not available to the model.

3 Sigma

The Sigma cognitive architecture is built on factor graphs [5] – undirected graphical
models [3] with variable and factor nodes, and functions that are stored in the factor
nodes. Graphical models provide a general computational technique for efficient
computation with complex multivariate functions – implemented via hybrid mixed
piecewise-linear functions [10] in Sigma – by leveraging forms of independence to:
decompose them into products of simpler functions; map these products onto graphs;
and solve the graphs via message passing or sampling methods. The summary product
algorithm [5] is the general inference algorithm in Sigma (Fig. 2). Graphical models
are particularly attractive as a basis for broadly functional, yet simple and theoretical-
ly elegant, cognitive architectures because they provide a single general representa-
tion and inference algorithm for processing symbols, probabilities and signals.

The Sigma architecture defines a high-level language of predicates and condition-
als that compiles down into factor graphs. Predicates specify relations over continu-
ous, discrete and/or symbolic arguments. They are defined via a name and a set of
typed arguments, with working memory (WM) containing predicate instantiations as

functions within a WM sub-
graph. Predicates may also
have perception and/or long-
term memory (LTM) functions.
For perceptual predicates, fac-
tor nodes for perceptual buffers
are connected to the corre-
sponding WM subgraphs. For
example, Observed (ob-
ject:object visi-
ble:boolean) is a percep-
tual predicate with two argu-
ments: (1) object of type
object; and (2) visible of
type boolean. This predicate
specifies which objects are
visible to the agent at any par-

ticular time. For memorial predicates, function factor nodes (FFNs) are likewise con-
nected to the corresponding WM subgraphs. Messages into FFNs provide the gradi-
ent for learning the nodes’ functions.

Conditionals structure LTM and basic reasoning, compiling into more extended
subgraphs that also connect to the appropriate WM subgraphs. Conditionals are de-
fined via a set of predicate patterns – in which type specifications are replaced by
constants and variables – and an optional function over pattern variables. Conditions
and actions are predicate patterns that behave like the respective parts of rules, push-
ing information in one direction from the conditions to the actions. The example con-
ditional in Fig. 3 updates the information about which objects have been seen so far,
based on the information in the Observed predicate. Condacts are predicate patterns
that support the bidirectional processing that is key to probabilistic reasoning, partial
matching, constraint satisfaction and signal processing. Overall, conditionals provide
a deep combination of rule systems and probabilistic networks.

Processing in Sigma is driven by a cognitive cycle that comprises input, graph so-
lution, decisions (selection of best elements from distributions), learning, and output.
Graph solution occurs via the summary product algorithm. Most of perception and
action is to occur within graph solution in Sigma, rather than within external modules
[3]. Decisions in Sigma, in the classical sense of choosing one among the best opera-
tors to execute next, are based on an architecturally distinguished selection predicate:
Selected(state:state operator:operator). Typically the operator
associated with the highest value, or utility, in the distribution is selected. Once an
operator is selected, it can be applied by conditionals with actions that modify the

CONDITIONAL Seen
Conditions: Observed(object:o visible:true)
Actions: Seen-Objects(object:o)

Fig. 3. Conditional for context information.

Fig. 2. Summary product computation over the fac-
tor graph for f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) =
fi(x,y)f2(y,z) of the marginal on y given evidence con-
cerning x and z.

state in working memory. As in Soar [6], a single cognitive cycle yields reactive pro-
cessing; a sequence of cognitive cycles yields deliberative processing; and if no oper-
ator can be selected, or a selected operator can’t be applied, a Soar-like impasse [6]
occurs, leading to reflective processing.

4 The Sigma Virtual Human (VH) Model

In a typical physical security system setting there are intruders (shoplifters) and secu-
rity personnel. There may also be neutrals, but they are not modeled in this work. In
this initial implementation, only an intruder is modeled as a VH, although part of the
capability of a security agent – of learning a model of the intruder based on witness-
ing the intruder’s actions – has been grafted onto the implementation of the intruder,
as if it were observing itself from the outside (although the intent is eventually to
move this into a distinct VH). In the current scenario, the intruder does not know the
layout of the store in advance, and so it must learn a map of the store while simulta-
neously localizing itself in the learned map (Section 4.1). The intruder also needs a
decision framework to dynamically decide what to do based on its immediate circum-
stances (Section 4.2). Learning the strategy of the intruder – i.e., whether it exits
through the entry door or the closest door – occurs by learning a policy for the agent
via RL and then using this policy and the agent’s actions to determine on each trial
the relative likelihoods of the two strategies being used (Section 4.3).

4.1 Simultaneous Localization and Mapping (SLAM)

The intruder has no a priori knowledge about the layout of the retail store (which is as
shown in Fig. 1). Therefore, it has to learn a map of the store while simultaneously
using the map to localize itself within the store. A 31×31 grid is imposed on the store
for map learning. A VH only occupies a single grid cell, whereas objects in the envi-
ronment – such as shelves – may span multiple cells.

The Sigma VH model defines two perceptual predicates – Location-
X(x:location) and Location-Z(z:location) – to represent the loca-
tion of the VH on the grid (the location type is discrete numeric, with a span of
31). Together these two predicates span the space of 2D cells in the grid, with percep-
tion of x and z involving a noise model that assumes any neighboring cell of the cor-
rect cell may be perceived as the agent’s current location. The objects in the visual
field are also perceived, along with the relative distances of the center of these objects
to the agent’s location.

To perform SLAM, a Dynamic Bayesian Network (DBN) [2] is defined via two
almost identical conditionals, one for x (Fig. 4) and a similar one for z. These condi-
tionals convert relative locations of objects given the agent to absolute locations in the
map, using the affine transform translation to offset the agent’s current location by
the distance to the object. In Fig. 4, Object-Location-X is a memorial predicate
that has a function that represents the map that is learned via gradient descent. Since
both the Location-X and Object-Location-X patterns are condacts, pro-

cessing is bidirectional between them; both perception of the VH’s location and per-
ception of the objects’ locations have an impact on the posterior for the VH’s loca-
tion. This bidirectional processing forms the basis for SLAM, where the map is
learned while it is simultaneously used for localization.

4.2 Behavior Rules

The objective of the intruder is to grab the item of interest (Fig. 1) and then to leave
the store through one of the exits without being detained. In the current implementa-
tion, four basic behaviors, with corresponding Sigma operators, are available to the
intruder: (1) walk towards target object; (2) run towards target object; (3) pick up
target object; and (4) walk towards random object. Target objects play a role in the
intruder achieving its goals, while random objects drive exploration of the store.

The intruder is initialized with a sequence of target objects that it needs either to
walk towards or to pick-up. Given that the intruder does not have a priori knowledge
of the store, it may need to explore the store, mapping it in the process, to locate the
target objects. The basic operator used for exploration is walk towards random object.
The intent is that doing this will help the agent eventually discover the target object.

This exploratory operator is always available; however, if other more task-relevant
behaviors are available, they take precedence. For example, Fig. 5 shows a condition-
al in which the operator walk towards target object is suggested for selection with a
utility of 0.5 when the VH has seen the target object (and hence, there is an estimate
of its location). Exploration has a lower utility, so walking to a target object takes
precedence if both operators are available. When the VH is within a threshold dis-
tance of the target object, a new operator – pick up target object – is then selected.
The model terminates when the intruder reaches its preferred exit door, which acts as
the target object for the run towards target object operator.

CONDITIONAL SLAM-X
Conditions: Observed(object:o visible:true)

Object-Distance-X(dist-x:dx object:o)
Condacts: Location-X(x:lx)
 Object-Location-X(object:o x:(lx-dx))

Fig.4. SLAM conditional for the x coordinate

CONDITIONAL WALK-TOWARDS-TARGET
Conditions: Target-Object(object:o)

Seen-Objects(object:o visible:true)
Actions: Selected(operator:walk-target)
Function: 0.5

Fig.5. Conditional suggesting the walk towards target object operator

4.3 Leveraging Reinforcement Learning (RL) to Model Others

One basic assumption made in this paper is that it is easy to recognize that a grab-and-
go scenario has been initiated, by observing the pick-up behavior of the intruder.2
However, even though security can easily recognize when such a scenario has been
initiated, it still needs to intercept the intruder before it leaves the retail store. As there
are two exit doors, early anticipation of the intruder’s choice increases the chances of
a successful detention.

Theory of Mind (ToM) involves formation of models of others and generation of
expectations about their behavior based on these models to enable effective decisions
in social settings [19]. In decision-theoretic approaches to ToM, such models can be
represented as reward functions. For the intruder in our scenario there are two possi-
ble models, distinguished by whether a reward is received when the agent returns to
its door of entry or when it reaches the nearest door from the item of interest. This
corresponds to Bayesian approaches to multi-agent modeling that use a distribution
over a set of policies to specify the beliefs that one agent has about another [8].

In general, RL enables agents to learn effective policies for task performance
based on rewards received over a sequence of trials [16]. In Sigma, RL is not a sepa-
rate architectural learning algorithm, but occurs through a combination of gradient-
descent learning and the appropriate knowledge expressed in predicates and condi-
tionals. Here, as in [9], RL is leveraged in selecting among models of other agents; in
particular it is used to emulate the process by which a separate security agent would
learn a model of the intruder. First a form of multiagent RL is used to learn a distinct
policy, or Q function, for the intruder under each possible model, and then these poli-
cies are used in combination with the perception of the intruder’s actions to yield a
gradient over the two models that is proportional to the models’ Q values for the per-
formed actions. In particular, the model for which the observed action has higher Q
values will have an increased likelihood in the posterior distribution.

The conditional that compares the Q values and generates a posterior distribution
for the models is shown in Fig. 6. It multiplies the Q values for the observed action –
specified by the location of the intruder and the direction of movement from that loca-
tion – in each policy by 0.1, to scale down utilities in [0,10] to values for selection in
[0,1], and then projects these values onto the model predicate to generate a posterior
distribution on the model of the intruder.

2 The details of this recognition process are beyond the scope of this paper but there are a varie-

ty of behavioral cues (e.g. posture changes while concealing an item, gait changes under stress
etc.) that could be revealing. Exhibiting and detecting such cues is one of a number of intri-
guing future directions for this work.

CONDITIONAL PREDICT-MODEL
Conditions: Previous-RL-Loc(location:loc)

RL-Direction(direction:d)
Q(model:m location:loc direction:d
 value:[0.1*q])

Actions: Model(model:m)

Fig.6. Model prediction conditional

Ultimately, this approach to model learning needs to be evaluated in terms of how
well it helps security catch the intruder, but for now we will only consider how quick-
ly it helps determine through which door the intruder is attempting to escape. Here
the VH was first run for 20 trials for each exit-door scenario to learn the policies on a
low fidelity 4×4 grid, which was reduced for efficiency purposes, but with the VH
still actually moving on the full 31×31 grid.. Then each model was run for 5 trials for
testing. The average number of cognitive cycles required to complete the scenario
after picking up the item of interest is 31.2 for door 1 and 17.2 for door 2. The Sigma
model correctly selects the exit strategy – P(Correct Exit Strategy) > 0.65 – after 12.4
cognitive cycles for door 1 (39.7% of the time to needed to reach the door) and 11.8
cognitive cycles for door 2 (68.6% of the time needed to reach the door). Thus, at
least in a preliminary form, this demonstrates how model learning can help identify
the correct door considerably before it is reached.

5 Conclusion

A first adaptive, interactive VH based on Sigma has been created that combines short-
term rule-based adaptivity in decision making with two forms of long-term adaptivity
(i.e., learning) – mapping in the context of SLAM, and modeling of others via RL –
plus both interaction with a virtual environment and social interaction (in terms of
ToM reasoning and learning). This VH, even as initial and limited as it is, provides
an initial indicator of the potential for grand unification. To expand further on this
potential, we are prioritizing the development of multiple VHs, plus the ability for
them to interact via speech and language.

There are different types of participants – intruders, security, and neutrals – in a
typical physical security system. Such variety makes the physical-security-system
setting very flexible for the generation of scenarios that encompass many different
interactions among VHs, and between VHs and humans. Consequently, an extended
version of the current retail store security setting should yield a useful testbed for
further exploration of this potential. As the scenarios get more complex, we expect
the forms of cognition exhibited to become comparably sophisticated, going beyond
simple rule-based reasoning to more involved combinations of reactive, deliberative
and reflective processing.

In addition to grand unification, the VH here leverages Sigma’s functionally ele-
gant approach to providing and combining capabilities such as rule-based reasoning,
SLAM, ToM, and RL. It also stretches, but does not quite break the desideratum of
sufficient efficiency. Although the decision cycles were longer than the desired 50 ms
[12] – around 250 ms – the impact on the performance of the VH was minimal be-
cause those activities requiring faster decisions were delegated to SmartBody’s inner
algorithms. Further analysis and optimizations are clearly required, but this should not
detract significantly from how the VH here exhibits simple interactive, adaptive be-
havior by combining different types of reasoning and learning mechanisms under a
unified model in a functionally elegant manner.

Acknowledgments. This effort has been sponsored by the Office of Naval Research
and the U.S. Army. Statements and opinions expressed do not necessarily reflect the
position or the policy of the United States Government, and no official endorsement
should be inferred. We would also like to thank Ari Shapiro for his overall support
with SmartBody.

References

1. Chen, J., Demski, A., Han, T., Morency, L. P., Pynadath, D. V., Rafidi, N., & Rosen-
bloom, P. S. Fusing Symbolic and Decision-Theoretic Problem Solving+ Perception in a
Graphical Cognitive Architecture. In Biologically Inspired Cognitive Architectures (2011).

2. Grisetti, G., Kummerle, R., Stachniss, C., & Burgard, W. A tutorial on graph-based
SLAM. Intelligent Transportation Systems Magazine, IEEE, 2(4), 31-43. (2010).

3. Koller, D., & Friedman, N. Probabilistic Graphical Models: Principles and Techniques.
MIT press. (2009).

4. Kopp, S., Krenn, B., Marsella, S., Marshall, A. N., Pelachaud, C., Pirker, H., & Vilhjálms-
son, H. Towards a common framework for multimodal generation: The behavior markup
language. In Intelligent virtual agents. (2006).

5. Kschischang, F. R., Frey, B. J., & Loeliger, H. A. Factor graphs and the sum-product algo-
rithm. IEEE Transactions on Information Theory, 47(2), 498-519. (2001).

6. Laird, J. E.: The Soar Cognitive Architecture. MIT Press, Cambridge, MA (2012)
7. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challeng-

es. Cognitive Systems Research 10, 141-160. (2009).
8. Pynadath, D. V., & Marsella, S. C. PsychSim: Modeling theory of mind with decision-

theoretic agents. In IJCAI. (2005).
9. Pynadath, D. V., Rosenbloom, P. S., & Marsella, S. C. Reinforcement Learning for Adap-

tive Theory of Mind in the Sigma Cognitive Architecture. In Artificial General Intelli-
gence. (2014).

10. Rosenbloom, P. S. Bridging dichotomies in cognitive architectures for virtual humans. In
Proceedings of the AAAI Fall Symposium on Advances in Cognitive Systems. (2011).

11. Rosenbloom, P. S. Deconstructing reinforcement learning in Sigma. In Artificial General
Intelligence. (2012).

12. Rosenbloom, P. S. Towards a 50 msec cognitive cycle in a graphical architecture.
In Proceedings of the 11th international conference on cognitive modeling. (2012).

13. Rosenbloom, P. S. The Sigma cognitive architecture and system. AISB Quarterly, 136.
(2013).

14. Rosenbloom, P. S., Demski, A., Han, T., & Ustun, V. Learning via gradient descent in
Sigma. In Proceedings of the 12th International Conference on Cognitive Modeling.
(2013).

15. Shapiro, A. Building a character animation system. In Motion in Games. (2011).
16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press. (1998)
17. Swartout, W. Lessons learned from virtual humans. AI Magazine, 31(1), 9-20. (2010)
18. Ustun, V., Yilmaz, L., & Smith, J. S. A conceptual model for agent-based simulation of

physical security systems. In Proceedings of the 44th annual Southeast regional confer-
ence, ACM. (2006).

19. Whiten, A., ed.: Natural Theories of Mind. Basil Blackwell, Oxford, UK. (1991)

