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Abstract 

Achieving a 50 msec cognitive cycle in any sufficiently 
sophisticated cognitive architecture can be a significant 
challenge.  Here an investigation is begun into how to do this 
within a recently developed graphical architecture that is 
based on factor graphs (with the summary product algorithm) 
and piecewise continuous functions.  Results are presented 
from three optimizations that leverage the structure of factor 
graphs to reduce the number of message cycles required per 
cognitive cycle. 
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A common assumption underlying many cognitive 
architectures is that there is a core cognitive cycle that runs 
at ~50 msec/cycle, the time scale of the quickest human 
responses (once peripheral processing, such as physical 
movement, is subtracted out).  This value is close to the 70 
msec mean originally given for the Model Human Processor 
(Card, Moran & Newell, 1983), and matches the value used 
in ACT-R (Anderson, 2007), EPIC (Kieras & Meyer, 1997) 
and Soar (Laird, 2012).  Hitting such a rate in reality is 
critical for architectures that are to model cognition in real 
time as well as for architectures that are to support 
construction of intelligent systems that operate on human 
time scales.  It is less critical when the focus is purely on the 
non-real-time modeling of human cognition; but even there 
it matters in principle whether the approach can reach this 
time scale within neurobiological implementation 
constraints, as well as in practice whether the model can run 
fast enough for serious experimentation on complex tasks. 

Driven by this constraint, there has been considerable 
recent work on improving the efficiency and scaling of 
architectural capabilities such as declarative (semantic) 
memory (Derbinsky, Laird & Smith, 2010; Douglass & 
Myers, 2010), as well as a longer history of such efforts that 
go back at least to work on the efficiency and scaling of 
procedural (rule) memory (Forgy, 1982; Doorenbos, 1993).  
The focus in this article is on improving the efficiency and 
scaling of a form of graphical model (Koller & Friedman, 
2009) that is being explored as an implementation level for 
a broad spectrum, tightly integrated and functionally elegant 
graphical cognitive architecture (Rosenbloom, 2011a&b). 

Graphical models were chosen as the basis for this 
architecture because of their potential for yielding a uniform 
approach to implementing and integrating together state-of-
the-art algorithms across symbol, probability and signal 
processing.  At their core, graphical models provide 
efficient computation over complex multivariate functions 

by decomposing them into the product of simpler 
subfunctions and then mapping the results onto networks of 
nodes and links.  In a factor graph – the most general form 
of graphical model and the one used in the architecture – 
variable nodes represent function variables, factor nodes 
represent subfunctions, and links connect subfunctions with 
their variables (Kschischang, Frey & Loeliger, 2001).  
Multiple inference algorithms exist for such graphs, both 
exact and approximate.  The graphical architecture uses a 
variant of the summary product algorithm (Kschischang et 
al., 2001), a message-passing scheme that is exact for non-
loopy graphs and approximate for loopy ones. 

Given this algorithm, a single cognitive cycle maps onto 
the architecture as a graph cycle (GC); a solution to the 
graph, given evidence concerning the values of some 
variables, generated by passing messages until quiescence 
and then updating working memory (Rosenbloom, 2011c).  
The graph roughly corresponds to long-term memory and 
the evidence to working memory.  A single graph cycle can 
include parallel waves of rule firings, access to declarative 
knowledge, perception, and simple forms of reasoning 
(including fixed chains of probabilistic reasoning, as are 
found for example in POMDPs).  Each graph cycle is itself 
composed of a sequence of message cycles (MCs), during 
each of which a single message is passed along one link. 

Given this core capability, the graphical architecture has 
already been shown to support procedural and declarative 
memories (Rosenbloom, 2010), plus forms of perception 
(Chen et al., 2011), imagery (Rosenbloom, 2011d) and 
problem solving (Chen et al., 2011; Rosenbloom, 2011c).  
However, it still operates at a time scale that is too often far 
above the critical 50 msec/GC threshold.  Prior to the work 
described in this article, the average time per GC – in 
LispWorks 6.0.1 on a 3.4 GHz Intel Core i7 iMac with 8GB 
of 1333 MHz DDR3 RAM – was close to the desired value 
for simple tasks, such as 55 msec for the one GC involved 
in accessing a small semantic memory.  However, the Eight 
Puzzle averaged 872 msec/GC when run to completion on a 
problem that needed 9 GCs; and a more complex virtual 
navigation task (Chen et al., 2011) – which combined 
perception (via a three-stage CRF), localization (via part of 
SLAM), and decision-theoretic choice (via a three-stage 
POMDP) – was even more problematic.  Although this last 
task wasn’t implemented until after some of the new 
optimizations described in this article were already in place, 
it still required 2288 msec/GC when run for 20 GCs, a 
factor of 46 too slow. 

The obvious strategy for reducing these numbers is to 
decompose the problem into (1) reducing the number of 



 

message cycles per graph cycle (MC/GC), and (2) reducing 
the time per message cycle (msec/MC); and then to tackle 
both of these subproblems individually.  Across the three 
tasks just mentioned, the range of 55-2288 msec/GC 
decomposes into 564-3635 MC/GC and .1-.6 msec/MC.  
This article focuses on the first subproblem, exploring how 
to leverage the structure of the architecture’s factor graphs – 
and the dependencies that these implicitly define – to 
dramatically reduce MC/GC. Work on the second 
subproblem – which is exploring new representations for the 
functions and messages at the heart of the architecture (as 
proposed in Rosenbloom, 2011b) – is not as far along, and 
is thus left as future work.  We begin here with additional 
relevant background on the architecture’s use of factor 
graphs and summary product, and on a set of early 
optimizations that were implemented prior to this work, 
before examining three new MC/GC optimizations. 

Factor Graphs and Summary Product 
In its simplest form, a factor graph embodies a variable node 
for each variable in the function of interest, a factor node for 
each subfunction in the product decomposition, and 
bidirectional links that connect each factor node with the 
variables it uses.  Figure 1, for example, shows a factor 
graph for a polynomial function of three variables, with 
three variable nodes and two factor nodes.  In more complex 
graphs, variable nodes may represent combinations of 
function variables, as in Figure 2, to exploit composite 
variables in the graph that are cross products of the function 
variables involved.  Maintaining such cross products is 
crucial, for example, to solving the binding confusion 
problem (Tambe & Rosenbloom, 1994) by tracking which 
values of one variable are consistent with which values of 
another variable (Rosenbloom, 2011a). 

By definition, factor graphs are bidirectional, so wherever 
there is a link between two nodes, messages pass in both 
directions along the link.  However, in creating the graphical 
architecture it became clear that introducing a form of 
unidirectional link would enable subgraphs corresponding to 
the kinds of conditions and actions that occur in standard 
rule-based procedural memories (as in Figure 2).  
Conditions match to information in working memory, 
combining their results so that actions can then propose 
changes to working memory.  Declarative knowledge is 
encoded in terms of condacts – which combine the effects 

of conditions and actions to pass messages both to and from 
working memory – plus functions, such as those associated 
with the two factor nodes in Figure 1.  Condacts yield 
standard bidirectional subgraphs, while conditions and 
actions yield subgraphs with a single active direction for 
message passing.  This notion of link directionality is not 
the same as that found in Bayesian networks; the former 
concerns the direction of message passing, while the latter 
concerns how variables functionally depend on each other in 
factor nodes (such as in defining conditional probabilities). 

Conditions, actions and condacts define variablized 
patterns that are combined, along with functions, into 
conditionals, a generalized form of rule that forms the basic 
long-term-memory element in the graphical architecture.  
Figure 2, for example, shows a rule-like conditional for 
transitivity that is composed of two conditions and one 
action, and for which the links only pass messages towards 
the right.  A bit of declarative memory might instead use 
two condacts and a function to specify the conditional 
probability of the first given the second, such as 
Concept(x), Color(y): [(Table: Brown=.95, 
Silver=.05) (Dog: Brown=.7, White=.25, 
Silver=.05) ...] for the classification of an object 
given its color.  Table 1 lists basic statistics on the 
conditionals and their patterns for the three tasks that have 
been introduced.  It can be seen that the Eight Puzzle is 
largely procedural, navigation is largely declarative, and 
semantic memory is more of a blend.  This not surprisingly 
leads to a skewed distribution of link directions for the latter 
two, and a more balanced distribution for the first (Table 2). 

Figure 2: Factor graph for rule  
After(x,y) ∧ After(y,z) ⇒ After(x,z). 

Figure 1: Factor graph for f(x,y,z) = y2+yz+2yx+2xz = 
(2x+y)(y+z) = fi(x,y)f2(y,z) 

 Nodes Links 
 Factor Variable Uni- Bi- 

S 83 82 114 55 
E 341 402 824 1 
N 161 132 75 214 

 

Table 2: Graph statistics for the Semantic Memory, 
Eight Puzzle and Navigation tasks. 

 Conditionals Conditions Condacts Actions 
S 9 12 11 3 
E 19 62 0 32 
N 25 4 47 1 
 

Table 1: Conditional and pattern statistics for the Semantic 
Memory, Eight Puzzle and Navigation tasks. 



 

Each message along a link specifies a function over the 
variables in the link’s variable node that constrains the 
variables’ values.  These functions are represented in the 
graphical architecture as piecewise continuous; in particular 
as doubly linked arrays of nD rectilinear (i.e., orthotopic) 
regions, where each variable maps onto a dimension, and 
the value function for each region is linear over its variables, 
as in Figure 3 (Rosenbloom, 2011b).  If the function is 
Boolean, regions with a value of 1 are valid while regions 
with a value of 0 are not.  If it is probabilistic, the function 
specifies the density over that region of variable values.  
However, functions can also mix these two, as in Figure 3, 
as well as approximate arbitrary continuous functions. 

Given a new 
input message at 
a variable node, 
new output 
messages are 
computed for 
each of its links 
via a pointwise 
product of the 
new message 
with the 
incoming 
messages along 
all of the other links (except for the one along the output 
link). A pointwise product is like an inner product, where 
the value at corresponding points is multiplied; but there is 
no final summation over the result, so the output and input 
have the same rank.  At a factor node, the input messages 
are likewise multiplied in this manner, but the factor 
function is also included in the product, and then all 
variables not in the output message are summarized out, by 
either integrating over them to yield marginals or 
maximizing over them to yield the MAP estimate. Figure 4 
shows for example how evidence values of 3 for variable x 
and 2 for variable z propagate through the factor and 
variable nodes in the factor graph from Figure 1, to 
ultimately yield the marginal on variable y. 

Both product and summarization are computed in the 
architecture by systematically stepping through the nD 
function(s) – following the links between adjacent regions – 
and at each step either multiplying the corresponding 
regions from two functions or summarizing out a dimension 
of a region within one function.  Summarization involves 
either adding the integral of the region along the dimension 
to the current total or computing the maximum of the 
current region’s max and the cumulative max so far. 

At the beginning of each cognitive cycle, all messages are 
initialized before message passing begins.  If a factor node 
has no inputs – as is true for working memory nodes 
(because changes to working memory occur at decision time 
rather than directly via message passing) and nodes that 
represent functions in conditionals (which actually appear in 
the architectural graph in a different manner than is shown 
in Figures 1 and 4) – the factor node’s function (once 
unneeded variables are summarized out), becomes the initial 
outgoing message.  Messages from all other nodes are 
initialized with a value of 1, yielding no initial constraint 
since such messages are identities for pointwise product. 

All initial messages are placed into a global message 
queue, which is then continuously updated as existing 
messages are sequentially popped and processed, and new 
messages are generated. The cognitive/graph cycle reaches 
quiescence when there are no more messages in the queue. 

Preexisting Optimizations 
Several optimizations that reduce MC/GC were 
implemented early in the development of the graphical 
architecture.  A form of dynamic programming was 
incorporated that caches and reuses the last message 
generated along each active direction of each link.  In 
addition, to facilitate reaching quiescence with real 
functions, the cached message along each link direction was 
updated, and a new message added to the queue, only when 
the difference between the old and new messages exceeded 
ε = 10-7.  To further reduce the number of messages to be 
processed, not all messages were inserted at the back of the 
queue.  More constraining messages – ones that are 0 
everywhere and thus halt all processing downstream from 
them, or ones that at least provide some information via 
values that vary over the variable’s domain – were placed at 
the front of the queue, leaving only constant non-zero 
messages, which provide little discrimination, to be inserted 
at the back (see Figure 7a).  The hope was for uninformative 
messages to be updated by new values along their link 
before being popped off the queue for processing.  

Given these early optimizations, MC/GC ranged from 564 
for semantic memory to 1459 for the Eight Puzzle.  With a 
slightly enhanced queuing scheme that will be described 
later, the navigation task required 3635 MC/GC.  For 
comparison purposes, this enhanced form of queuing 
reduced the number of messages for semantic memory by 
34% (to 371) and for the Eight Puzzle by 27% (to 1062).  
Without these early optimizations a usable system would 
have been infeasible from the start, and approaching 50 

Figure 3: Piecewise continuous 
function as array of linear regions. 

Figure 4: Computation via the summary product 
algorithm of the marginal on y from evidence on x and z. 



 

msec/GC would have been impracticable.  But, even with 
them, reaching this threshold still requires either: (1) 
reducing the worst-case MC/GC by 98% (from 3635 to 83), 
(2) reducing the worst-case msec/MC by 98% (from .6 to 
.014), or (3) some lesser combination of these reductions.  
The remainder of this article focuses on the first option. 

Message Reuse Across Graphical Cycles 
The early optimizations included caching of messages to 
enable their reuse across message cycles, but reinitialization 
of all messages was still required across graph cycles 
because there was otherwise no guarantee that modifying 
one message would result in all of the other messages in the 
graph being updated appropriately.  Consider, for example, 
the loopy graph in Figure 5.  If A is set to 0, D is set to 1, 
and there is no evidence concerning B and C, the graph 
converges to where all of the messages except the one from 
D are 0.  If, on the next graph cycle, A becomes 1, all of the 
messages should settle to 1. However, without 
reinitialization the loop remains locked at 0.  The new 
message to B, computed as the product of the new message 
from A (1) with the existing message from C (0), remains at 
0, as does the new message to C.  This contrasts sharply 
with, for example, the Rete algorithm for rule match, where 
messages (tokens) corresponding to unmodified regions of 
working memory can all be maintained and reused across 
cycles (Forgy, 1982).   

It does turn out, however, to be possible to identify 
segments within the overall factor graph where such 
reinitialization can be avoided, and where messages from 
the previous graph cycle can thus be reused.  To do this 
requires preanalyzing the graph to determine which 
messages can possibly depend on factor node functions that 
may be modified between graph cycles; in particular, 
functions in working-memory factor nodes that are 
modifiable by decisions, and factor node functions specified 
in conditionals that are modifiable by learning.  For each of 
these factor nodes a list of its descendants is first 
precomputed, where each descendant comprises: (1) a 
descendant node whose outgoing messages may be affected 
by messages originating at the modifiable node; and (2) a 
list of the descendant node’s neighbors via which this 
influence may reach the descendant node. A message out of 
a node in the graph is then only reinitialized when: (1) the 
node is a descendent of a modifiable node that has actually 
been changed, and (2) the listed neighbors may pass this 
influence to the node so as to affect the output message. 

Figure 6 shows a variant of the graph from Figure 5, but 
with some of the links now unidirectional, and both A and D 
modifiable (although shown as variable nodes, there would 
be a working-memory factor node feeding each).  The 
descendants of A here are (AF; AV), (B; AF, B^C^D), (C; 
AF), (B^C^D; B, C), (D; B^C^D).  The descendants of D are 
(B^C^D; D) and (B; B^C^D).  If the value of A (i.e., AV) 
changes, all of the messages in the graph, except for the one 
from D, would need to be reinitialized; but if D changes, 
only two messages – from D to B^C^D and from B^C^D to 
B – would need reinitialization. All messages not 
reinitialized in this fashion are retained, allowing reuse of 
messages that are guaranteed to remain unchanged.  This 
optimization cannot lower the number of message cycles 
during the first graph cycle, but it can in all later cycles. 

The semantic memory test case is normally only run for a 
single graph cycle, but if a second GC is run without the 
evidence being changed, this optimization reduces the 
number of message cycles during the second graph cycle 
from 564 to 0 (saving 100%), yielding a total drop over the 
two graph cycles from 564 to 282 MC/GC (saving 50%). 
For the Eight Puzzle the number of message cycles during 
the second graph cycle drops from 1553 to 595 (saving 
62%).  Over the 9 GCs required to solve this particular 
problem, the average MC/GC dropped from 1459 to 1050 
(saving 28%).  With the navigation graph, the MC/GC drop 
(over 20 GCs) was from 3594 to 1359 (saving 62%). 

Improved Message Ordering 
The early optimizations included a heuristic for message 
insertion in the queue.  The new approach to queuing retains 
the notion of constraint used there, while providing a more 
direct way of ensuring that messages that should be held 
until they contain appropriate content remain in the queue.  
Here we again preanalyze the graph structure, but this time 
to determine the depth of each link (in each direction).  
Links from nodes with no inputs – which again turn out to 
be working memory factor nodes plus factor nodes derived 
from functions in conditionals – have a depth of 0.  For all 
other nodes not involved in loops – for which there is no 
unique depth – their depth is calculated as one plus the 
maximum of the depths of all neighbors from which they 
receive messages.  The depth of a link in a particular 
direction is then simply the depth of its source node. 

Message depth can then be used as a queuing heuristic 
that delays the processing of a message when there are 

Figure 5: Loopy factor graph. 

Figure 6: Variant of the loopy factor graph with a mix of 
bidirectional and unidirectional links. 



 

shallower ones – which thus could conceivably influence its 
content – also available in the queue.  To implement this, 
the single original queue is split into a sequence of smaller 
queues. The first one is for empty messages (constant at 0) 
and the last one is for full messages (constant at 1).  The 
former block all processing downstream from them, and 
can’t be constrained any further.  The latter are completely 
unconstrained, and thus not particularly useful.  In between 
these two, a single queue was initially used for all other 
messages (Figure 7b), yielding the baseline results already 
presented for the navigation task.  However, this has since 
been extended further, stratifying these other messages into 
a sequence of intermediate queues based on their depth. 

As shown in Figure 7c, one intermediate queue is created 
for each possible node depth – ordered from smallest to 
largest – for a total number equal to one plus the depth of 
the graph; i.e., the maximum of the depths of all of the 
nodes in the graph (D): 29 for semantic memory, 45 for the 
Eight Puzzle, and 76 for navigation.  The last intermediate 
queue also handles links affected by loops.  By stratifying 
messages in this manner, messages deeper in the graph that 
can be affected by shallower processing are delayed until all 
shallower messages are processed. 

When all of the queues are included, empty messages are 
always sent before any other messages are considered.  If 
there are no empty messages, then the intermediate queues 
are tried according to increasing depth.  If there are no 
messages in any of these queues, the full-message queue is 
drained.  When there are no messages in any of the queues, 
quiescence has been reached. 

This optimization can help even during the first graph 
cycle, and can handle links along which messages are 
passed bidirectionally, as long as there are no loops.  For 
messages affected by loops, ordering is essentially reduced 
to the previous baseline, with just one intermediate queue.  
This optimization, when enabled by itself, reduces MC/GC 
from the original single queue version by 60% (to 224) in 
semantic memory and by 43% (to 826) in the Eight Puzzle.  
In comparison to the three-queue baseline this is a savings 
of 40% for semantic memory and 22% for the Eight Puzzle.  
Improvement from this baseline in the navigation task 
lowers MC/GC by 86% (to 503). 

When both this optimization and the previous one are 
combined, MC/GC drops by 61% (to 224) over one GC of 
semantic memory and by 90% (to 112) over two GCs.  For 

the Eight Puzzle, MC/GC drops by 59% (to 602) over the 9 
GCs.  The gains from the three-queue baseline are 40% over 
one GC of semantic memory and 70% over two GCs, 43% 
for the Eight Puzzle, and 89% for navigation (reducing it to 
391 MC/GC).  Total speedup factors are thus seen that range 
from 2.5 to 10 across these three tasks.  Concurrently, 
msec/MC has stayed roughly the same for semantic 
memory, at .1, while for the other two tasks it has dropped 
from .6 to .5, providing an additional speedup factor of 1.2 
for these harder problems.  With a new maximum of 602 
MC/GC over these three tasks (for the Eight Puzzle), 
msec/GC would now need to be .08 – a factor of 6.25, rather 
than the original 46, from the current maximum of .5 – to 
enable all three tasks to proceed within 50 msec/GC. 

(Simulated) Parallelism 
Instead of reducing the number of message cycles by 
reducing the number of messages that need to be sent, 
parallelism enables multiple messages to be sent within each 
message cycle.  One simple form of this is to send messages 
out in parallel along each active direction of each link of the 
graph, as long as there is a new message there to be sent.  
With such an approach, msec/GC becomes the product of 
msec/MC and the number of parallel message cycles (MC).  
In the absence of loops, MC should be bounded by the depth 
of the graph, again implying that the structure of the graph – 
in particular, how messages on deeper links depend on those 
on shallower links – is critical.  With loops, there is no 
obvious a priori bound. 

Although the architecture has not yet been ported to 
parallel hardware, a message-passing discipline has been 
implemented that is based on a sequence of (simulated) 
parallel message cycles.  The first optimization introduced 
above, of reusing messages across graph cycles, may still be 
relevant with parallel message cycles; however, the second 
is not, given that all queued messages are effectively sent 
during each parallel message cycle.  Although this form of 
parallelization implies that more total messages may be sent, 
sending them in parallel may radically reduce MC/GC while 
keeping msec/MC nearly the same.   

With parallel message passing turned on and no message 
reuse across graph cycles, the average number of messages 
per cycle rises to 658 for semantic memory, 2758 for the 
Eight Puzzle, and 3747 for navigation; yet, the average 
MC/GC is only 26, 33, and 76 for the three tasks. MC/GC 
turns out to be relatively stable within each of these tasks, 
with navigation running a constant 76 and the Eight Puzzle 
ranging from a low of 29 to a high of 36.  Given a 
maximum of 76 MC/GC across these three tasks, 50 
msec/GC becomes feasible with an msec/MC of .7.  If the 
communication overhead on parallel hardware is a small 
fraction of this, the existing maximum of .5 msec/MC 
should be sufficient to yield a real-time graph cycle.  Such 
an approach also has the advantage of removing the need for 
a global queue, enabling message passing to be truly local. 

When (simulated) parallelism is combined with message 
reuse across graph cycles, the average number of messages 

Figure 7: Three queue disciplines explored. 



 

per GC remains at 658 for semantic memory, but drops to 
1962 for the Eight Puzzle and 3637 for navigation, yielding 
reductions of 29% and 3% for these latter two. The average 
MC/GC becomes 26, 28, and 76 for the three tasks, a 15% 
gain for the Eight Puzzle but no change for the other two. 

Conclusion 
With serial message passing, the first two optimizations 
introduced here reduce MC/GC across semantic memory, 
the Eight Puzzle and a navigation task by a factor of 2.5-10.  
Given that the optimizations also reduced the time per 
message cycle for the harder problems by a factor of 1.2, the 
total gain in time per cognitive cycle is a factor of 3-12.  
When considering the worst case over these three tasks, an 
additional factor of 6.25 is now needed to achieve 50 msec 
per cognitive cycle, a significant improvement over the 
factor of 46 that was needed at the start. 

Parallelization provides a somewhat different approach to 
reducing MC/GC, by sending messages in parallel within 
message cycles.  If close to the full amount of potential 
parallelism can be achieved on parallel hardware, it provides 
a path, albeit a more costly one in terms of hardware, for 
immediately reaching the 50 msec threshold.  Even on a 
workstation with 2-8 cores, it may be able to help 
significantly in reaching this threshold, particularly if some 
form of the message ordering optimization were able to 
eliminate messages that don’t really need to be sent within 
early message cycles (which tend to be the most 
computationally intensive). 

For the future, it will be important to explore whether 
message reuse across graph cycles can be extended to a 
larger fraction of the graph, whether there is an analogue of 
the node-depth optimization that works for loopy graphs, 
and what would happen with a deployment on true parallel 
hardware.  It is also important to investigate what additional 
gains may be had in terms of msec/MC, where a sparse 
function representation is currently being explored, but 
where other possibilities also exist.  It may also ultimately 
prove worthwhile to consider switching from summary 
product to algorithms that are more approximate, based on 
sampling, particle filters, or variational methods.  This may 
become particularly critical as the task complexity continues 
to scale up in various ways. 
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