
To appear in Proceedings of the 11th International Conference on Cognitive Modeling, 2012.

Towards a 50 msec Cognitive Cycle in a Graphical Architecture

Paul S. Rosenbloom (Rosenbloom@USC.Edu)
Department of Computer Science and Institute for Creative Technologies

12015 Waterfront Dr., Playa Vista, CA 90094 USA

Abstract

Achieving a 50 msec cognitive cycle in any sufficiently
sophisticated cognitive architecture can be a significant
challenge. Here an investigation is begun into how to do this
within a recently developed graphical architecture that is
based on factor graphs (with the summary product algorithm)
and piecewise continuous functions. Results are presented
from three optimizations that leverage the structure of factor
graphs to reduce the number of message cycles required per
cognitive cycle.

Keywords: Cognitive architecture, cognitive cycle time,
graphical models, optimization.

A common assumption underlying many cognitive
architectures is that there is a core cognitive cycle that runs
at ~50 msec/cycle, the time scale of the quickest human
responses (once peripheral processing, such as physical
movement, is subtracted out). This value is close to the 70
msec mean originally given for the Model Human Processor
(Card, Moran & Newell, 1983), and matches the value used
in ACT-R (Anderson, 2007), EPIC (Kieras & Meyer, 1997)
and Soar (Laird, 2012). Hitting such a rate in reality is
critical for architectures that are to model cognition in real
time as well as for architectures that are to support
construction of intelligent systems that operate on human
time scales. It is less critical when the focus is purely on the
non-real-time modeling of human cognition; but even there
it matters in principle whether the approach can reach this
time scale within neurobiological implementation
constraints, as well as in practice whether the model can run
fast enough for serious experimentation on complex tasks.

Driven by this constraint, there has been considerable
recent work on improving the efficiency and scaling of
architectural capabilities such as declarative (semantic)
memory (Derbinsky, Laird & Smith, 2010; Douglass &
Myers, 2010), as well as a longer history of such efforts that
go back at least to work on the efficiency and scaling of
procedural (rule) memory (Forgy, 1982; Doorenbos, 1993).
The focus in this article is on improving the efficiency and
scaling of a form of graphical model (Koller & Friedman,
2009) that is being explored as an implementation level for
a broad spectrum, tightly integrated and functionally elegant
graphical cognitive architecture (Rosenbloom, 2011a&b).

Graphical models were chosen as the basis for this
architecture because of their potential for yielding a uniform
approach to implementing and integrating together state-of-
the-art algorithms across symbol, probability and signal
processing. At their core, graphical models provide
efficient computation over complex multivariate functions

by decomposing them into the product of simpler
subfunctions and then mapping the results onto networks of
nodes and links. In a factor graph – the most general form
of graphical model and the one used in the architecture –
variable nodes represent function variables, factor nodes
represent subfunctions, and links connect subfunctions with
their variables (Kschischang, Frey & Loeliger, 2001).
Multiple inference algorithms exist for such graphs, both
exact and approximate. The graphical architecture uses a
variant of the summary product algorithm (Kschischang et
al., 2001), a message-passing scheme that is exact for non-
loopy graphs and approximate for loopy ones.

Given this algorithm, a single cognitive cycle maps onto
the architecture as a graph cycle (GC); a solution to the
graph, given evidence concerning the values of some
variables, generated by passing messages until quiescence
and then updating working memory (Rosenbloom, 2011c).
The graph roughly corresponds to long-term memory and
the evidence to working memory. A single graph cycle can
include parallel waves of rule firings, access to declarative
knowledge, perception, and simple forms of reasoning
(including fixed chains of probabilistic reasoning, as are
found for example in POMDPs). Each graph cycle is itself
composed of a sequence of message cycles (MCs), during
each of which a single message is passed along one link.

Given this core capability, the graphical architecture has
already been shown to support procedural and declarative
memories (Rosenbloom, 2010), plus forms of perception
(Chen et al., 2011), imagery (Rosenbloom, 2011d) and
problem solving (Chen et al., 2011; Rosenbloom, 2011c).
However, it still operates at a time scale that is too often far
above the critical 50 msec/GC threshold. Prior to the work
described in this article, the average time per GC – in
LispWorks 6.0.1 on a 3.4 GHz Intel Core i7 iMac with 8GB
of 1333 MHz DDR3 RAM – was close to the desired value
for simple tasks, such as 55 msec for the one GC involved
in accessing a small semantic memory. However, the Eight
Puzzle averaged 872 msec/GC when run to completion on a
problem that needed 9 GCs; and a more complex virtual
navigation task (Chen et al., 2011) – which combined
perception (via a three-stage CRF), localization (via part of
SLAM), and decision-theoretic choice (via a three-stage
POMDP) – was even more problematic. Although this last
task wasn’t implemented until after some of the new
optimizations described in this article were already in place,
it still required 2288 msec/GC when run for 20 GCs, a
factor of 46 too slow.

The obvious strategy for reducing these numbers is to
decompose the problem into (1) reducing the number of

message cycles per graph cycle (MC/GC), and (2) reducing
the time per message cycle (msec/MC); and then to tackle
both of these subproblems individually. Across the three
tasks just mentioned, the range of 55-2288 msec/GC
decomposes into 564-3635 MC/GC and .1-.6 msec/MC.
This article focuses on the first subproblem, exploring how
to leverage the structure of the architecture’s factor graphs –
and the dependencies that these implicitly define – to
dramatically reduce MC/GC. Work on the second
subproblem – which is exploring new representations for the
functions and messages at the heart of the architecture (as
proposed in Rosenbloom, 2011b) – is not as far along, and
is thus left as future work. We begin here with additional
relevant background on the architecture’s use of factor
graphs and summary product, and on a set of early
optimizations that were implemented prior to this work,
before examining three new MC/GC optimizations.

Factor Graphs and Summary Product
In its simplest form, a factor graph embodies a variable node
for each variable in the function of interest, a factor node for
each subfunction in the product decomposition, and
bidirectional links that connect each factor node with the
variables it uses. Figure 1, for example, shows a factor
graph for a polynomial function of three variables, with
three variable nodes and two factor nodes. In more complex
graphs, variable nodes may represent combinations of
function variables, as in Figure 2, to exploit composite
variables in the graph that are cross products of the function
variables involved. Maintaining such cross products is
crucial, for example, to solving the binding confusion
problem (Tambe & Rosenbloom, 1994) by tracking which
values of one variable are consistent with which values of
another variable (Rosenbloom, 2011a).

By definition, factor graphs are bidirectional, so wherever
there is a link between two nodes, messages pass in both
directions along the link. However, in creating the graphical
architecture it became clear that introducing a form of
unidirectional link would enable subgraphs corresponding to
the kinds of conditions and actions that occur in standard
rule-based procedural memories (as in Figure 2).
Conditions match to information in working memory,
combining their results so that actions can then propose
changes to working memory. Declarative knowledge is
encoded in terms of condacts – which combine the effects

of conditions and actions to pass messages both to and from
working memory – plus functions, such as those associated
with the two factor nodes in Figure 1. Condacts yield
standard bidirectional subgraphs, while conditions and
actions yield subgraphs with a single active direction for
message passing. This notion of link directionality is not
the same as that found in Bayesian networks; the former
concerns the direction of message passing, while the latter
concerns how variables functionally depend on each other in
factor nodes (such as in defining conditional probabilities).

Conditions, actions and condacts define variablized
patterns that are combined, along with functions, into
conditionals, a generalized form of rule that forms the basic
long-term-memory element in the graphical architecture.
Figure 2, for example, shows a rule-like conditional for
transitivity that is composed of two conditions and one
action, and for which the links only pass messages towards
the right. A bit of declarative memory might instead use
two condacts and a function to specify the conditional
probability of the first given the second, such as
Concept(x), Color(y): [(Table: Brown=.95,
Silver=.05) (Dog: Brown=.7, White=.25,
Silver=.05) ...] for the classification of an object
given its color. Table 1 lists basic statistics on the
conditionals and their patterns for the three tasks that have
been introduced. It can be seen that the Eight Puzzle is
largely procedural, navigation is largely declarative, and
semantic memory is more of a blend. This not surprisingly
leads to a skewed distribution of link directions for the latter
two, and a more balanced distribution for the first (Table 2).

Figure 2: Factor graph for rule
After(x,y) ∧ After(y,z) ⇒ After(x,z).

Figure 1: Factor graph for f(x,y,z) = y2+yz+2yx+2xz =
(2x+y)(y+z) = fi(x,y)f2(y,z)

 Nodes Links
 Factor Variable Uni- Bi-

S 83 82 114 55
E 341 402 824 1
N 161 132 75 214

Table 2: Graph statistics for the Semantic Memory,
Eight Puzzle and Navigation tasks.

 Conditionals Conditions Condacts Actions
S 9 12 11 3
E 19 62 0 32
N 25 4 47 1

Table 1: Conditional and pattern statistics for the Semantic
Memory, Eight Puzzle and Navigation tasks.

Each message along a link specifies a function over the
variables in the link’s variable node that constrains the
variables’ values. These functions are represented in the
graphical architecture as piecewise continuous; in particular
as doubly linked arrays of nD rectilinear (i.e., orthotopic)
regions, where each variable maps onto a dimension, and
the value function for each region is linear over its variables,
as in Figure 3 (Rosenbloom, 2011b). If the function is
Boolean, regions with a value of 1 are valid while regions
with a value of 0 are not. If it is probabilistic, the function
specifies the density over that region of variable values.
However, functions can also mix these two, as in Figure 3,
as well as approximate arbitrary continuous functions.

Given a new
input message at
a variable node,
new output
messages are
computed for
each of its links
via a pointwise
product of the
new message
with the
incoming
messages along
all of the other links (except for the one along the output
link). A pointwise product is like an inner product, where
the value at corresponding points is multiplied; but there is
no final summation over the result, so the output and input
have the same rank. At a factor node, the input messages
are likewise multiplied in this manner, but the factor
function is also included in the product, and then all
variables not in the output message are summarized out, by
either integrating over them to yield marginals or
maximizing over them to yield the MAP estimate. Figure 4
shows for example how evidence values of 3 for variable x
and 2 for variable z propagate through the factor and
variable nodes in the factor graph from Figure 1, to
ultimately yield the marginal on variable y.

Both product and summarization are computed in the
architecture by systematically stepping through the nD
function(s) – following the links between adjacent regions –
and at each step either multiplying the corresponding
regions from two functions or summarizing out a dimension
of a region within one function. Summarization involves
either adding the integral of the region along the dimension
to the current total or computing the maximum of the
current region’s max and the cumulative max so far.

At the beginning of each cognitive cycle, all messages are
initialized before message passing begins. If a factor node
has no inputs – as is true for working memory nodes
(because changes to working memory occur at decision time
rather than directly via message passing) and nodes that
represent functions in conditionals (which actually appear in
the architectural graph in a different manner than is shown
in Figures 1 and 4) – the factor node’s function (once
unneeded variables are summarized out), becomes the initial
outgoing message. Messages from all other nodes are
initialized with a value of 1, yielding no initial constraint
since such messages are identities for pointwise product.

All initial messages are placed into a global message
queue, which is then continuously updated as existing
messages are sequentially popped and processed, and new
messages are generated. The cognitive/graph cycle reaches
quiescence when there are no more messages in the queue.

Preexisting Optimizations
Several optimizations that reduce MC/GC were
implemented early in the development of the graphical
architecture. A form of dynamic programming was
incorporated that caches and reuses the last message
generated along each active direction of each link. In
addition, to facilitate reaching quiescence with real
functions, the cached message along each link direction was
updated, and a new message added to the queue, only when
the difference between the old and new messages exceeded
ε = 10-7. To further reduce the number of messages to be
processed, not all messages were inserted at the back of the
queue. More constraining messages – ones that are 0
everywhere and thus halt all processing downstream from
them, or ones that at least provide some information via
values that vary over the variable’s domain – were placed at
the front of the queue, leaving only constant non-zero
messages, which provide little discrimination, to be inserted
at the back (see Figure 7a). The hope was for uninformative
messages to be updated by new values along their link
before being popped off the queue for processing.

Given these early optimizations, MC/GC ranged from 564
for semantic memory to 1459 for the Eight Puzzle. With a
slightly enhanced queuing scheme that will be described
later, the navigation task required 3635 MC/GC. For
comparison purposes, this enhanced form of queuing
reduced the number of messages for semantic memory by
34% (to 371) and for the Eight Puzzle by 27% (to 1062).
Without these early optimizations a usable system would
have been infeasible from the start, and approaching 50

Figure 3: Piecewise continuous
function as array of linear regions.

Figure 4: Computation via the summary product
algorithm of the marginal on y from evidence on x and z.

msec/GC would have been impracticable. But, even with
them, reaching this threshold still requires either: (1)
reducing the worst-case MC/GC by 98% (from 3635 to 83),
(2) reducing the worst-case msec/MC by 98% (from .6 to
.014), or (3) some lesser combination of these reductions.
The remainder of this article focuses on the first option.

Message Reuse Across Graphical Cycles
The early optimizations included caching of messages to
enable their reuse across message cycles, but reinitialization
of all messages was still required across graph cycles
because there was otherwise no guarantee that modifying
one message would result in all of the other messages in the
graph being updated appropriately. Consider, for example,
the loopy graph in Figure 5. If A is set to 0, D is set to 1,
and there is no evidence concerning B and C, the graph
converges to where all of the messages except the one from
D are 0. If, on the next graph cycle, A becomes 1, all of the
messages should settle to 1. However, without
reinitialization the loop remains locked at 0. The new
message to B, computed as the product of the new message
from A (1) with the existing message from C (0), remains at
0, as does the new message to C. This contrasts sharply
with, for example, the Rete algorithm for rule match, where
messages (tokens) corresponding to unmodified regions of
working memory can all be maintained and reused across
cycles (Forgy, 1982).

It does turn out, however, to be possible to identify
segments within the overall factor graph where such
reinitialization can be avoided, and where messages from
the previous graph cycle can thus be reused. To do this
requires preanalyzing the graph to determine which
messages can possibly depend on factor node functions that
may be modified between graph cycles; in particular,
functions in working-memory factor nodes that are
modifiable by decisions, and factor node functions specified
in conditionals that are modifiable by learning. For each of
these factor nodes a list of its descendants is first
precomputed, where each descendant comprises: (1) a
descendant node whose outgoing messages may be affected
by messages originating at the modifiable node; and (2) a
list of the descendant node’s neighbors via which this
influence may reach the descendant node. A message out of
a node in the graph is then only reinitialized when: (1) the
node is a descendent of a modifiable node that has actually
been changed, and (2) the listed neighbors may pass this
influence to the node so as to affect the output message.

Figure 6 shows a variant of the graph from Figure 5, but
with some of the links now unidirectional, and both A and D
modifiable (although shown as variable nodes, there would
be a working-memory factor node feeding each). The
descendants of A here are (AF; AV), (B; AF, B^C^D), (C;
AF), (B^C^D; B, C), (D; B^C^D). The descendants of D are
(B^C^D; D) and (B; B^C^D). If the value of A (i.e., AV)
changes, all of the messages in the graph, except for the one
from D, would need to be reinitialized; but if D changes,
only two messages – from D to B^C^D and from B^C^D to
B – would need reinitialization. All messages not
reinitialized in this fashion are retained, allowing reuse of
messages that are guaranteed to remain unchanged. This
optimization cannot lower the number of message cycles
during the first graph cycle, but it can in all later cycles.

The semantic memory test case is normally only run for a
single graph cycle, but if a second GC is run without the
evidence being changed, this optimization reduces the
number of message cycles during the second graph cycle
from 564 to 0 (saving 100%), yielding a total drop over the
two graph cycles from 564 to 282 MC/GC (saving 50%).
For the Eight Puzzle the number of message cycles during
the second graph cycle drops from 1553 to 595 (saving
62%). Over the 9 GCs required to solve this particular
problem, the average MC/GC dropped from 1459 to 1050
(saving 28%). With the navigation graph, the MC/GC drop
(over 20 GCs) was from 3594 to 1359 (saving 62%).

Improved Message Ordering
The early optimizations included a heuristic for message
insertion in the queue. The new approach to queuing retains
the notion of constraint used there, while providing a more
direct way of ensuring that messages that should be held
until they contain appropriate content remain in the queue.
Here we again preanalyze the graph structure, but this time
to determine the depth of each link (in each direction).
Links from nodes with no inputs – which again turn out to
be working memory factor nodes plus factor nodes derived
from functions in conditionals – have a depth of 0. For all
other nodes not involved in loops – for which there is no
unique depth – their depth is calculated as one plus the
maximum of the depths of all neighbors from which they
receive messages. The depth of a link in a particular
direction is then simply the depth of its source node.

Message depth can then be used as a queuing heuristic
that delays the processing of a message when there are

Figure 5: Loopy factor graph.

Figure 6: Variant of the loopy factor graph with a mix of
bidirectional and unidirectional links.

shallower ones – which thus could conceivably influence its
content – also available in the queue. To implement this,
the single original queue is split into a sequence of smaller
queues. The first one is for empty messages (constant at 0)
and the last one is for full messages (constant at 1). The
former block all processing downstream from them, and
can’t be constrained any further. The latter are completely
unconstrained, and thus not particularly useful. In between
these two, a single queue was initially used for all other
messages (Figure 7b), yielding the baseline results already
presented for the navigation task. However, this has since
been extended further, stratifying these other messages into
a sequence of intermediate queues based on their depth.

As shown in Figure 7c, one intermediate queue is created
for each possible node depth – ordered from smallest to
largest – for a total number equal to one plus the depth of
the graph; i.e., the maximum of the depths of all of the
nodes in the graph (D): 29 for semantic memory, 45 for the
Eight Puzzle, and 76 for navigation. The last intermediate
queue also handles links affected by loops. By stratifying
messages in this manner, messages deeper in the graph that
can be affected by shallower processing are delayed until all
shallower messages are processed.

When all of the queues are included, empty messages are
always sent before any other messages are considered. If
there are no empty messages, then the intermediate queues
are tried according to increasing depth. If there are no
messages in any of these queues, the full-message queue is
drained. When there are no messages in any of the queues,
quiescence has been reached.

This optimization can help even during the first graph
cycle, and can handle links along which messages are
passed bidirectionally, as long as there are no loops. For
messages affected by loops, ordering is essentially reduced
to the previous baseline, with just one intermediate queue.
This optimization, when enabled by itself, reduces MC/GC
from the original single queue version by 60% (to 224) in
semantic memory and by 43% (to 826) in the Eight Puzzle.
In comparison to the three-queue baseline this is a savings
of 40% for semantic memory and 22% for the Eight Puzzle.
Improvement from this baseline in the navigation task
lowers MC/GC by 86% (to 503).

When both this optimization and the previous one are
combined, MC/GC drops by 61% (to 224) over one GC of
semantic memory and by 90% (to 112) over two GCs. For

the Eight Puzzle, MC/GC drops by 59% (to 602) over the 9
GCs. The gains from the three-queue baseline are 40% over
one GC of semantic memory and 70% over two GCs, 43%
for the Eight Puzzle, and 89% for navigation (reducing it to
391 MC/GC). Total speedup factors are thus seen that range
from 2.5 to 10 across these three tasks. Concurrently,
msec/MC has stayed roughly the same for semantic
memory, at .1, while for the other two tasks it has dropped
from .6 to .5, providing an additional speedup factor of 1.2
for these harder problems. With a new maximum of 602
MC/GC over these three tasks (for the Eight Puzzle),
msec/GC would now need to be .08 – a factor of 6.25, rather
than the original 46, from the current maximum of .5 – to
enable all three tasks to proceed within 50 msec/GC.

(Simulated) Parallelism
Instead of reducing the number of message cycles by
reducing the number of messages that need to be sent,
parallelism enables multiple messages to be sent within each
message cycle. One simple form of this is to send messages
out in parallel along each active direction of each link of the
graph, as long as there is a new message there to be sent.
With such an approach, msec/GC becomes the product of
msec/MC and the number of parallel message cycles (MC).
In the absence of loops, MC should be bounded by the depth
of the graph, again implying that the structure of the graph –
in particular, how messages on deeper links depend on those
on shallower links – is critical. With loops, there is no
obvious a priori bound.

Although the architecture has not yet been ported to
parallel hardware, a message-passing discipline has been
implemented that is based on a sequence of (simulated)
parallel message cycles. The first optimization introduced
above, of reusing messages across graph cycles, may still be
relevant with parallel message cycles; however, the second
is not, given that all queued messages are effectively sent
during each parallel message cycle. Although this form of
parallelization implies that more total messages may be sent,
sending them in parallel may radically reduce MC/GC while
keeping msec/MC nearly the same.

With parallel message passing turned on and no message
reuse across graph cycles, the average number of messages
per cycle rises to 658 for semantic memory, 2758 for the
Eight Puzzle, and 3747 for navigation; yet, the average
MC/GC is only 26, 33, and 76 for the three tasks. MC/GC
turns out to be relatively stable within each of these tasks,
with navigation running a constant 76 and the Eight Puzzle
ranging from a low of 29 to a high of 36. Given a
maximum of 76 MC/GC across these three tasks, 50
msec/GC becomes feasible with an msec/MC of .7. If the
communication overhead on parallel hardware is a small
fraction of this, the existing maximum of .5 msec/MC
should be sufficient to yield a real-time graph cycle. Such
an approach also has the advantage of removing the need for
a global queue, enabling message passing to be truly local.

When (simulated) parallelism is combined with message
reuse across graph cycles, the average number of messages

Figure 7: Three queue disciplines explored.

per GC remains at 658 for semantic memory, but drops to
1962 for the Eight Puzzle and 3637 for navigation, yielding
reductions of 29% and 3% for these latter two. The average
MC/GC becomes 26, 28, and 76 for the three tasks, a 15%
gain for the Eight Puzzle but no change for the other two.

Conclusion
With serial message passing, the first two optimizations
introduced here reduce MC/GC across semantic memory,
the Eight Puzzle and a navigation task by a factor of 2.5-10.
Given that the optimizations also reduced the time per
message cycle for the harder problems by a factor of 1.2, the
total gain in time per cognitive cycle is a factor of 3-12.
When considering the worst case over these three tasks, an
additional factor of 6.25 is now needed to achieve 50 msec
per cognitive cycle, a significant improvement over the
factor of 46 that was needed at the start.

Parallelization provides a somewhat different approach to
reducing MC/GC, by sending messages in parallel within
message cycles. If close to the full amount of potential
parallelism can be achieved on parallel hardware, it provides
a path, albeit a more costly one in terms of hardware, for
immediately reaching the 50 msec threshold. Even on a
workstation with 2-8 cores, it may be able to help
significantly in reaching this threshold, particularly if some
form of the message ordering optimization were able to
eliminate messages that don’t really need to be sent within
early message cycles (which tend to be the most
computationally intensive).

For the future, it will be important to explore whether
message reuse across graph cycles can be extended to a
larger fraction of the graph, whether there is an analogue of
the node-depth optimization that works for loopy graphs,
and what would happen with a deployment on true parallel
hardware. It is also important to investigate what additional
gains may be had in terms of msec/MC, where a sparse
function representation is currently being explored, but
where other possibilities also exist. It may also ultimately
prove worthwhile to consider switching from summary
product to algorithms that are more approximate, based on
sampling, particle filters, or variational methods. This may
become particularly critical as the task complexity continues
to scale up in various ways.

Acknowledgements
This work has been sponsored by the U.S. Army.
Statements and opinions expressed do not necessarily reflect
the position or the policy of the United States Government,
and no official endorsement should be inferred.

References
Anderson, J. R. (2007). How Can the Human Mind Occur in

the Physical Universe? Oxford: Oxford University Press.
Card, S. K., Moran, T.P. & Newell, A. (1983), The

Psychology of Human-Computer Interaction. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Chen, J., Demski, A., Han, T., Morency, L-P., Pynadath, P.,
Rafidi, N. & Rosenbloom, P. S. (2011). Fusing symbolic
and decision-theoretic problem solving + perception in a
graphical cognitive architecture. Proceedings of the 2nd
International Conference on Biologically Inspired
Cognitive Architectures.

Derbinsky, N., Laird, J. E. & Smith, B. (2010). Towards
efficiently supporting large symbolic declarative
memories. Proceedings of the 10th International
Conference on Cognitive Modeling.

Doorenbos, R. B. (1993). Matching 100,000 rules.
Proceedings of the 11th National Conference on Artificial
Intelligence.

Douglass, S. A. & Myers, C. W. (2010). Concurrent
knowledge activation calculation in large declarative
memories. Proceedings of the 10th International
Conference on Cognitive Modeling.

Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence, 19, 17-37.

Kieras, D. E. & Meyer, D. E. (1997). An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction, 12, 391-438.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques. Cambridge, MA:
MIT Press.

Kschischang, F. R., Frey, B. J. & Loeliger, H. (2001).
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47, 498-519.

Laird, J. E. (2012). The Soar Cognitive Architecture.
Cambridge, MA: MIT Press. In press.

Rosenbloom, P. S. (2010). Combining procedural and
declarative knowledge in a graphical architecture. In
Proceedings of the 10th International Conference on
Cognitive Modeling.

Rosenbloom, P. S. (2011a). Rethinking cognitive
architecture via graphical models. Cognitive Systems
Research, 12, 198-209.

Rosenbloom, P. S. (2011b). Bridging dichotomies in
cognitive architectures for virtual humans. Proceedings
of the AAAI Fall Symposium on Advances in Cognitive
Systems.

Rosenbloom, P. S. (2011c). From memory to problem
solving: Mechanism reuse in a graphical cognitive
architecture. Proceedings of the Fourth Conference on
Artificial General Intelligence.

Rosenbloom, P. S. (2011d). Mental imagery in a graphical
cognitive architecture. Proceedings of the Second
International Conference on Biologically Inspired
Cognitive Architectures.

Tambe, M. & Rosenbloom, P. S. (1994). Investigating
production system representations for non-combinatorial
match. Artificial Intelligence, 68, 155-199.

