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Abstract

This paper addresses modeling user behavior in interactions between two people who do not share a common spoken
language and communicate with the aid of an automated bidirectional speech translation system. These interaction settings
are complex. The translation machine attempts to bridge the language gap by mediating the verbal communication, noting
however that the technology may not be always perfect. In a step toward understanding user behavior in this mediated
communication scenario, usability data from doctor–patient dialogs involving a two way English–Persian speech transla-
tion system are analyzed. We specifically consider user behavior in light of potential uncertainty in the communication
between the interlocutors. We analyze the Retry (Repeat and Rephrase) versus Accept behaviors in the mediated verbal
channel and as a result identify three user types – Accommodating, Normal and Picky, and propose a dynamic Bayesian
network model of user behavior. To validate the model, we performed offline and online experiments. The experimental
results using offline data show that correct user type is clearly identified as a user keeps his/her consistent behavior in a
given interaction condition. In the online experiment, agent feedback was presented to users according to the user types.
We show high user satisfaction and interaction efficiency in the analysis of user interview, video data, questionnaire and log
data.
� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Spoken conversations have been recognized as the primary communication mechanism between humans.
With increasing globalization, the need for cross-lingual interactions has become a necessity for a variety
of domains including business and travel. As speech and language technologies evolve, we can envision intel-
ligent speech-enabled systems mediating dialogs between people who do not share a language, through auto-
mated speech to speech translation. Significant progress is being made in this direction by several research
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institutions (Narayanan et al., 2003; Zhou et al., 2003; Precoda and Podesva, 2003; Black et al., 2002). The
goal of such systems is to be truly cognizant of the interaction, intelligent and performing as a communication
aide, beyond serving as a mere message conduit.

Drawing parallels with advances in human–machine spoken dialog systems, we can see that incorporating
intelligence into a spoken language based communication mediation system requires, among other things,
careful user modeling in conjunction with an effective dialog management. In general, user modeling in sys-
tems design has been attempted at different levels and using a variety of approaches. Rich (1999) has proposed
a 3-dimensional space of models: individual user versus generic; explicitly defined versus learned; and long-
term user characteristics based versus short-term user behavior based models. In Table 1 the three axes of
these descriptors relate to the size of the population the model describes, the fashion in which the model is
created and also the temporal scale the model is attempting to characterize.

While there has been a fair amount of excellent user modeling work in the context of human–machine spo-
ken dialogs including user simulation (Eckert et al., 1997; Georgila et al., 2005), reasoning about a user’s goal
or intention (Horvitz et al., 1998), user expertise modeling (Komatani et al., 2003), and evaluation techniques
(Litman and Pan, 1999), relatively little effort has been devoted in this regard on machine mediated human–
human cross-lingual dialogs, the topic of this paper. The motivation stems from the need for informing designs
of speech translation systems for their increased effectiveness and usability as communication aids.

Construction of a user model based on the desired user features, however, can be a daunting task. Gener-
ally, two approaches – ‘‘Profiling modeling” and ‘‘Statistical modeling” – are widely used in this regards. The
profile acquired from a user can be used for generating an appropriate system response, such as personalized
search (Pitkow et al., 2002), or in providing appropriate help to the user when needed (Horvitz et al., 1998;
Bauer, 1999; Yan and Selker, 2000). In this present work, we adopt the second approach, where predictive
statistical user models are derived from usage data. It is considered a powerful approach to model user behav-
ior (Zukerman and Albrech, 2001), and its effectiveness has been demonstrated by previous research (Koma-
tani et al., 2003; Kuenzer et al., 2001). We specifically propose a Bayesian network user model for our analysis
to exploit its effective reasoning capabilities under uncertain situations.

In order to study user modeling issues in speech-to-speech translation systems, we consider two separate
but mutually dependent channels – the human–machine–human (machine mediated) and the direct human-
to-human (interpersonal) channels. The verbal communication is handled through the machine, and effects
of uncertainty and errors in the machine processing can be expected to be predominantly manifested in the
verbal behavior of the user. On the other hand, the interpersonal channel is characterized by direct gestural
non-verbal exchanges (such as head nods) as well as indirect verbal means (such as through adaptation to each
others speaking styles). Our analysis in this paper is restricted to aspects of the verbal behavior in these chan-
nels. The rest of the paper is organized as follows. After a description of the speech-to-speech system used in
this study for doctor–patient interactions and the corresponding data in Section 2, in Section 3 we analyze and
model user behavior in the mediated channel under potential uncertainty by focusing on the ‘‘Retry”(Repeat/
Rephrase) behavior. We describe a dynamic Bayesian model to predict such behavior and evaluate its perfor-
mance in offline data. In Section 4, we present an online experiment with agent feedback and report the results.
Finally, conclusions and a description of future work plans are given in Section 5.

2. System and dataset

2.1. A two-way speech translation system with a push-to-talk interface

The system used for the study of this paper is a speech-to-speech translation device that facilitates two way
spoken interactions between an English speaking doctor and a Persian (Farsi) speaking patient (Narayanan
Table 1
User model dimensions based on the knowledge about people according to Rich (1999).

Dim. 1 A single, canonical user A group, collection of users
Dim. 2 Specified by the system designer Inferred by the system
Dim. 3 Long term Short term
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et al., 2003). An excerpt from a transcribed conversation is presented in Table 2. This version of the system
uses a push-to-talk modality to initiate a speaking turn which has its advantages and limitations. The
push-to-talk interface minimizes recognition and translation errors since users can verify concepts before exe-
cuting the final decision for ‘‘speaking out” the translation but has the disadvantage of creating less sponta-
neous and less natural interactions.

Furthermore, the goal of the system is to facilitate a task oriented rather than a free-form social interaction
between the two participants. Specifically, the domain of usage of the system under study is task-specific (or
goal-oriented) interaction between a doctor and a patient. Within this context, the system design strives to
achieve not only optimal technology performance, such as of automatic speech recognition and translation,
but also maximal user satisfaction. Prior work has clearly shown that user satisfaction is one of the most
important efficacy metrics of medical domain interactions (Hall et al., 1988; Roter and Hall, 1989).

A functional block diagram of the system used in the present study and its data flow are shown in Fig. 1.
The user’s spoken utterance is converted into textual form by an automatic speech recognizer (ASR) in the
appropriate language of the speaker (English for the doctor and Farsi for the patient in this case) and further
processed by two parallel mechanisms: one by a phrase-based statistical Machine Translation (MT) module
that translates the text from one language to another and the other by a statistical classifier which attempts
to categorize the utterance into one of several predetermined ‘‘concept” categories. The Dialog Management
(DM) module interacts with the MT/classifier and the GUI and TTS modules to deliver the data to the user.
In the system of this study, the visual output provided by the GUI is made available only to the (English-
speaking) doctor, who is assumed to have the primary control of the interaction.
Table 2
Excerpt from a conversation between a doctor-role participant and a patient-role participant who used Transonics.

(1) Doctor said: WHAT BRINGS YOU TO THE CLINIC?
Patient said: dAStm kh dl drd myknm (I HAD THE ABDOMINAL PAIN)

(2) Doctor said: DOES YOUR CHEST HURT?
Patient said: bly (YES)

(3) Doctor said: DOES YOUR ARM HURT?
Patient said: VyA drd fqT AynJAst (DOES THE PAIN STAY RIGHT HERE)

English
ASR

Machine
Translation

Dialog
Management

Farsi
ASR

Farsi
TTS

English
TTS

Doctor

Patient

input

input output

output

GUI

Fig. 1. Simplified data flow diagram of our two way speech translation system for doctor–patient interactions. English and Farsi
Automatic Speech Recognition (ASR) models get the input from users (doctor and patient, respectively) while the Machine Translation
(MT) module is responsible for automatic translation and classification of the input. The Dialog Manager (DM) manages the interaction
and communicates the translated results to a graphical user interface (GUI) and a text to speech (TTS) synthesizer (in English and Farsi as
appropriate).
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To better understand the translation device operation and the associated issues, we can identify three
distinct operations in the process that can introduce uncertainty into the communication chain. The first
inherently lossy operation is the conversion from speech into a textual transcription of the spoken utterance
through statistical pattern recognition (ASR) i.e., often the transcript may not accurately represent what
the user spoke, characterized by deletion/insertion/substitution of words. The second one is the translation.
We have two concurrent statistical approaches to this step (statistical machine translation and an utterance
concept classifier) that represent a lossy text mapping. The third stage is the conversion of the target
language transcript from text to audio by synthesizing the speech through text-to-speech (TTS) synthesis,
which can be lossy due to several reasons including due to operating on the noisy output from the ASR
and translators. All these potential information losses can impact the communication between the
participants.

By design, the interface control of our experimental system was asymmetric in the sense that the (English-
speaking) doctor had exclusive control over the interface, and access to the GUI, while the (Farsi-speaking)
patient did not. This was to allow even untrained and non-educated patients access to the system. The system
allows for the doctor to decide whether to transmit one of the several alternate hypotheses offered by the sys-
tem to the patient or reject all of them (repeat or rephrase). Some of the options provided to the doctor can be
seen in Fig. 3 and the hypotheses belong to one of two classes:

1. The first is the English transcription of what the machine thinks the user said. The machine does not pro-
vide a translation on the screen (presumably it would not be useful for the doctor who does not know Per-
sian) but a statistical phrase based translation would be provided to the patient if the doctor chooses this
option. However, such statistical machine translation cannot guarantee accurate translation of the displayed
text. This option mainly allows the user to detect errors from the ASR stage of the translation process, and
thereby reduce the risk of error during the translation.

2. The second category of options takes the recognized transcript (output of ASR stage) and maps it into one
of several pre-determined concept categories. These categories were manually specified and for this domain
there were about 1200 concepts. This mapping operation from text to concept is also lossy, but unlike the
first hypothesis, since these concept categories are pre-programmed in the system, a back-translation
(canonical form) in the language the doctor understands can be displayed for the doctor’s choosing. This
means that what the doctor sees on the screen already includes any errors likely made by both the ASR and
Fig. 2. The internal procedure of generating speech translation hypotheses in our system. Two parallel mechanisms are implemented. In
the first one, the topmost recognition candidate i.e., the first-best choice of the ASR – that has already gone through a lossy speech to text
mapping process – will go through another lossy operation – the statistical translation. In the second one, that utilizes an utterance
classifier, the top four recognized candidates from the ASR (the so called four-best results) are mapped into conceptual classes, also a lossy
operation, but the canonical form result – after both lossy operations – is the one displayed on the screen for the doctor’s choosing.



Fig. 3. Transonics system screen GUI. After speaking, the user (doctor) can choose one of several hypotheses presented on the GUI.

Table 3
DARPA evaluation on medical domain for the speech translation system of this paper. Component and Concept measures are: ASR word
error rate (lower is better), SMT BLEU score (higher is better) with the clean text transcript input or with the ASR output as an input.

DARPA evaluation results

English Persian
ASR WER 11.5% 13.4%

English to Persian Persian to English
IBM BLEU (text) 0.31 0.29
IBM BLEU (ASR) 0.27 0.24

Overall concept transfer 78%
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translation steps, and that the translation the patient will hear will be lexically identical to the hypothesis
displayed on the screen. Fig. 2 depicts these procedures conceptually. It is clear that if one of the canonical
sentences is satisfactory from a concept transfer perspective, it should be the best choice for the user since
these guarantee accurate translation.

Users of the device were encouraged to employ the second category of options (labeled on the GUI: ‘‘I
can definitely translate these”) if these options were deemed valid representations of their utterances, rather
than the first option (labeled on the GUI: ‘‘I can try to translate this”). For example, in Fig. 3 when the
doctor says ‘‘You have fever?” the device can try to translate the ASR text output ‘‘You have fever” or
it can definitely say ‘‘Do you have a fever?”, the surface form for a concept category related to ‘‘fever-
inquiry”.

The monolingual patients on the other hand are assumed to be untrained in using the system – and to
ensure uniform results in the experiments described in this paper – are not allowed to see the screen. The sys-
tem decides, based on confidence scores of automatic utterance to concept classification, whether their utter-
ance is close enough to a particular concept class. The cluster-normalized form concept will be transferred to
the doctor if deemed a good translation, or instead a direct potentially noisy statistical translation of the text
will be provided. Most of the time an incorrect transfer can be detected by the doctor due to the lack of coher-
ence with the discourse of the interaction. The Persian patient can also choose to request, verbally or through
gestures, repetitions or repairs if they so chose. Note that an experienced doctor, in the case of receiving infor-
mation that does not match the discourse can assume that he needs to do error control by rejecting the solu-
tion provided by the system (and repeat/rephrase).

In terms of component level performance of the system used in the present study, the ASR word error rate,
the concept transfer rate and the IBM BLEU translation score are given in Table 3. These results stem from



Table 4
Table shows a simplified portion of the data log acquired automatically by running the Transonics speech translation system. There are
system routing tags (FADT, FDMT, FMDT, FDGT, FDGC, FGDT – F: flow, A: audio server, D: dialog management, M: machine
translation, G: graphical user interface, T: text, and C: control) indicating the data flow from/to on the left side and the data being
processed on the right side. Actual data are in the content column. Additional information logged, not shown for simplicity, include time
stamps, utterance sequence, confidence and class numbers.

System routing tag Content

FADT YOU HAVE OTHER MEDICAL PROBLEMS j
DO YOU HAVE OTHER MEDICAL PROBLEMS

FDMT YOU HAVE OTHER MEDICAL PROBLEMS
FMDT SmA mSkl pzSky dygry dAryd j

YOU HAVE OTHER MEDICAL PROBLEMS
FDGT YOU HAVE OTHER MEDICAL PROBLEMS
FDMT DO YOU HAVE OTHER MEDICAL PROBLEMS
FMDT VyA hyC mSkl pzSky dAryd j

DO YOU HAVE ANY MEDICAL PROBLEMS
FDGT DO YOU HAVE ANY MEDICAL PROBLEMS
FDGC Shown All Options
FGDT Choice � 1
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the evaluation done under the DARPA Babylon program. The overall concept transfer rate of the system is
78% – this denotes how many of the key concepts (such as symptom descriptions) were correctly transferred
overall in both languages according to human observers for the 15 sessions examined in this paper. Also, in
Table 3 the word error rate (WER1) and the IBM BLEU2 scores are provided.
2.2. Data-set

The data analyzed for the user modeling purpose are from 15 interactions between doctors and standard-
ized patient actors (details in Narayanan et al. (2003)). Both the doctors and patients are monolingual and, in
addition, acoustic masking was in place to ensure translations are only being transferred through the device.
The spoken interactions were logged by the system and also transcribed manually. Automatic logs contain
recognized utterances (hypotheses) of the ASR, all translated hypothesis from the translation component
(both SMT and classified concepts). These come with the confidence levels and the system level information.
A simplified portion of a data log is presented in Table 4.

Automatic tagging of the retry behavior was made possible through system logs, and the speech recogni-
tion WER scores were acquired by comparing automatically recognized utterances and their human
generated transcriptions. It may be interesting to note some relevant information regarding the data charac-
teristics. The average number of turns (each turn is assumed to be a doctor or a patient utterance) in a
conversational dialog is 30.13, with a slightly higher number (33.46) for the doctor than for the patient
(26.8) with standard deviation of 8.7 and 10.6 respectively. The longest utterance was 13 words long for both
the doctor and patient side, while on average utterance length was 4.45 and 2.42 words for the doctor
and patient, respectively. The shorter average utterance length of the patient reflects the fact that a signifi-
cantly large number of their answers were short, such as yes/no answers. The total time for the whole data
set is 4 h.

Because of the dynamics created by the push-to-talk interface (managed by only the doctor), the doctor-
side data contains abundant information we can utilize to model user behavior in the mediated (verbal)
channel.
1 Word Error Rate is the sum of the number of words in error (substitution, deletion and insertion) divided by the number of words in
the reference transcription.

2 In simple terms, the more ways a certain utterance can be translated, the lower will be the maximum possible score, since one
translation will be compared with many possibilities. So although the score is on a theoretical scale of 0 6 IBMBLEU 6 1, even the best
human expert translators can only achieve average ranges of near a half of that.



238 J. Shin et al. / Computer Speech and Language 24 (2010) 232–256
3. The mediated channel

We refer to the information path between the two participants through the machine as the Mediated Chan-

nel. In this channel, a user is cognizant of the machine and acts by considering both the response of the system
and his own prior actions. Also, the system can detect how a user behaves or what information is going
through the channel. In this sense, it can be regarded as similar to a human–machine interaction scenario.

The methods of identifying the user’s model from interactions with a device include investigating behavior
patterns (Pitschke, 1994; Manavoglu et al., 2003) and stereotypes (Rich, 1979). Following these generally clas-
sified assumptions, considerable research efforts have been undertaken covering various topics and systems:
Komatani et al. (2003) introduced a general user model with skill level, knowledge level, and degree of urgency
in a spoken dialog system, Carberry et al. (1999) modeled user preferences in a natural language consultation
system; Conati et al. (2002) proposed how to manage uncertainty in a student model by performing assess-
ments and recognizing plans for a tutoring system; and Prendinger et al. (2005) utilized physiological data
for determining affective states for an emotion recognition system. Furthermore, some frameworks have been
suggested for rapid and efficient implementation of user models such as in Kobsa and Pohl (1995), Pakucs
(2003), and Tsiriga and Virvou (2004).

Error handling mechanism is an important aspect in the design and optimization of a spoken dialog system.
As mentioned, earlier the spoken communication channel between a human and a machine is inherently noisy,
which can further be exacerbated by user-dependent uncertainty such as due to limited vocabulary or task
knowledge. The significance of considering user behavior under problematic conditions in human–machine
interaction is demonstrated, for example, by our prior work (Shin et al., 2002) where we highlighted the
importance of repeating and rephrasing cues. Similarly, the work of Batliner et al. (2003) utilized the features
such as prosody and linguistic behaviors to model and recognize trouble in communications. Detection and
modeling of problematic communication conditions helps to prevent and recover from errors effectively.

Specific user behavior patterns can be attributed to specific user types. Similar to the notion of expert/nov-
ice users, in this work, we consider the idea of identifying accommodating and non-accommodating (‘‘Picky”)
user types under problematic interaction situations. The motivation being that distinct interface strategies can
be developed for each user type case, furthering the overall performance. Our experimental analysis indicates
that for the same average speech recognition WER, one user retried 95% of the time while another user only
65%. For example, we have observed that certain users are more accepting of minor errors in translation and
recognition (e.g., function word insertion such as in ‘‘And do you have fever?” when they actually spoke ‘‘Do
you have fever?”) while others completely reject such a hypothesis from the machine as not their intended
utterance, despite the fact that it conveys for all practical purposes the identical meaning.

We therefore propose modeling users in one of three categories (Accommodating, Normal and Picky) based
on the analysis of the active participant, the doctor: for example, Accommodating users tend to accept more
system errors than the other user types. Following which, we train a system that can detect in which category
the user belongs based on the user behavior through the interaction history and current utterance features.
While devising specific interventions based on the model outcome is not the goal of this paper, we hope that
this approach will, however, enable future research in building agents that can appropriately adapt the system
according to detected user behaviors similar to what previous studies have demonstrated (Jokinen and Kanto,
2004; Kamm et al., 1998; Komatani et al., 2003).

3.1. Analysis of repeat/rephrase(‘‘Retry”) behavior

Repeat or rephrase (Retry) was the primary user behavior observed under problematic conditions caused by
non-optimal or poor system performance in the Transonics system. In addition to the user type being an
important factor in determining the degree of retry actions, the level of speech recognition error was found
be an important factor. However, in our standardized subject3 experiments, the difference range of the speech
recognition error among users is small; therefore we assume that the user type has a stronger effect on the
3 The subjects were all native US English speakers, medical professionals and trained equally before using the system.
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observed retry behavior. In addition to the small variance in the speech recognition error, we observed that
most errors stem from insertions of function words and that keywords are mostly correctly recognized. Typ-
ical examples of errors with erroneously inserted words underlined are ‘‘A how are you” or ‘‘tell me THE
about your pain”. Other potential contributing factors such as user’s emotion, knowledge, gender, physical
condition, hastiness, etc. are not considered at this stage but are of interest and will be included in the analysis
once larger data sets become available.

3.1.1. Categorizing user types: Accommodating, Normal and Picky

User type is a casting of a user along several categories; it can be based on demographic information, such
as Gender or Age or a heuristic category such as Expertise or Knowledge level. We consider, in this paper, the
degree of user accommodation to spoken language processing errors as the criterion to decide a user type. The
use of such heuristic domain-specific criteria has been prevalent in user modeling research. For instance, in
Komatani et al. (2003), user skill level is defined by the maximum number of slots filled by utterances and
in Kobsa (1990) and Conati et al. (2002), knowledge level is decided based on correct answers to the domain
questions. In most cases, heuristic methods are used for user type classification even though those may not
always be too accurate. For example, if we assume that knowledge level is judged by the number of correct
answers to system questions, this is usually a good metric, but it is not a perfect one since the user may give
wrong answers on purpose to trick the system, may be tired and not pay enough attention, or may not be
motivated enough to devote the necessary attention.

For our off-line model, we cluster user types based on the total number of retries of each user. We assume
that accepting different ranges in WER depends significantly on the user type, as conceptualized in Fig. 4, and
hence we define

� Accommodating: users tend to accept highly erroneous transcriptions compared to other users.
� Normal: users accept some degree of errors.
� Picky: users tend to reject all but the most exact transcriptions, thus being very strict in what they accepted

for translation.

Based on data from the 15 sessions analyzed in this work, we clustered the users with the k-means algorithm
into the three classes as shown in Fig. 5. Note that one could argue in favor of fewer or more quantization
steps along the accommodation axis. Such decisions depend more on the action to be taken upon classification
and the available data for the analysis.

From the clustering results, 7 (47%) users present themselves as Accommodating, 5 (33%) as Normal and 3
(20%) as Picky. The users tend to retry at different degrees: Accommodating 19.3%, Normal 31.3%, and Picky:
40.7%. The average WER rate across all the utterances, however, does not vary significantly and stands at
35.9, 43.8 and 38.7 for Accommodating, Normal and Picky, respectively. Hence we did not employ WER as
a feature for the clustering of user types. Note that although the average WER is relatively constant from user
to user, the error that users consider acceptable is not, as demonstrated by the variable degree of retries.
WER 
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Fig. 4. The Accommodating user tends to ‘‘Retry” significantly less than the other users while the Picky user tries significantly more. A user
in between these extremes is defined to be a Normal user. WER is the speech recognition Word Error Rate and the above graph
conceptually demonstrates the ranges of WER for which each user type tends to ‘‘Retry.”
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Assuming a certain threshold separating the high-quality (HQ) speech recognition performance from a low-
quality (LQ) performance (a detailed discussion of how the two regions of performance can be decided is pro-
vided in the next section, Section 3.1.3), we empirically acquired the Conditional Probability Table (CPT) over
all the 15 interactions as shown in Fig. 6. We can clearly see the difference in user accommodation when oper-
ating in the LQ region.

When the condition represents relatively high system performance (HQ performance), ‘‘Accept” behavior
dominates covering over 90% in most cases, and allowing us very small amounts of data for observing the
‘‘Retry” behavior. With this data in HQ performance, we cannot tell differences in the user ‘‘Retry” behavior
statistically.

3.1.2. User behavior model with the Transonics system

Since in our analysis we observed that the system error alone cannot account for the large variability in user
actions, we hypothesize that the user type combined with the system error under problematic conditions affects
the retry behavior. The following conditions are assumed: (1) The system is stationary and the performance is
shown in Table 3; (2) The subjects are native speakers (US English) and user performance is consistent in
terms of machine recognition (no acoustic/lexical mismatch issues in speech recognition); (3) Domain knowl-
edge of subjects is the same (all medical professionals); (4) Skill differences and adaptation levels of subjects
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are minimized based on the given environment (trained with equal time and materials and provided the same
experimental environment for equal time).

3.1.3. Threshold of high/low quality system performance
Another important issue we need to deal with is the threshold of average acceptable WER for each user.

This is a complex issue that is related to each user’s personal preferences and traits. We empirically
approached this problem with the relative WER average based on retry and accept behaviors across all other
users. We assume that a user retries if the system performance falls below a threshold, thus we clustered the
per-utterance WER into two groups: the group of accepted utterances and the group of the utterances that are
rejected. The low quality (LQ)/high quality (HQ) performance threshold is the separating point of the two
clusters at a WER of 56% for the data of these 15 interactions. This implies that there is a high probability
of a retry if the WER increases above 56%. For training and testing purposes, the threshold is acquired in
a n-fold cross-validation from 14 interactions and tested on the remaining 1 interaction. Note that although
the threshold WER may seem to imply a very low accuracy for allowing a concept transfer, the classifier fre-
quently may allow accurate concept transfer with WER much higher than that if a keyword has been recog-
nized correctly and the classification gave at least one option which is valid. For example: ‘‘Are you having a
headache now?” will have a classifier top choice of ‘‘Do you have a headache?” even if only the word ‘‘head-
ache” has been correctly recognized by the ASR.

3.2. A dynamic Bayesian network user behavior model

A dynamic Bayesian network is a promising representation for modeling the inter-causal relationships of
‘‘Retry” behavior with temporal information. The promise of this model has been highlighted in the user mod-
eling field across various applications. The Lumiere project (Horvitz et al., 1998) utilized Bayesian models for
capturing the uncertain relationships between the goals and needs of a user. Conati et al. (2002) used Bayesian
network to model a student for an automated tutoring system which assesses the knowledge, recognizes plans
and predicts actions of each student. Recently, Grawemeyer and Cox, 2005 modeled users’ information dis-
play preferences by using Bayesian reasoning. Also, the theoretical benefits in its performance and extensibility
as a classifier have been thoroughly described in Friedman et al. (1997).

In spite of their remarkable power and potential to address inferential processes, there are some inherent
limitations and liabilities to Bayesian networks. First, a Bayesian network cannot represent every possible sit-
uation (uncertainties and dependencies) and it takes a long time to choose necessary nodes for the network.
Second, the prior knowledge (probability) of each node of the network may be biased, depending on the mea-
surement approach, and this may distort the network and can generate unreliable response to a user. For
example, in Horvitz et al. (1998), experts constructed Bayesian models for several applications, tasks and
sub-tasks by doing user studies; however, that assumes sufficient and representative coverage of user activities
in the observed data.

The details of the proposed DBN implementation are presented in the following sections and general user
type prediction algorithm is given in the Table 5.
Table 5
User type inference algorithm computes the probability of user types, Accommodating, Normal and Picky respectively. Each user type is
predicted by Bayesian reasoning and updated until one of them becomes believable.

Input: User behavior(‘‘Retry” or ‘‘Accept”) and HQ/LQ recognition information
Output: The most believable user type
Initial: User types with the same probability

Step 1: The probability of each user type is given by the Bayesian reasoning
Step 2: Update the prior of each user type
Step 3: Check whether the belief of the highest user type probability is enough
Step 4: If it is not enough to be believed, go to the Step 1

Return A user type with the highest probability
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In this analysis the variables of user behavior (retry/accept) and the system feature, the utterance confidence
score (or for off-line processing WER), are the observed variables and the user type is the unknown variable.
In the design phase, the network is built by learning parameter values and interrelations of user type and
observed variables.

The user type is assumed to be constant, despite the fact that some user characteristics may vary during the
course of an interaction. For example, talkative people may be more reserved in communicating when
depressed, tired or under stress. A person who is in general sensitive to any kind of system errors can ignore
those when he/she is busy. In addition, we often observe that users take time to exhibit their steady state
behavior due to an initial adaptation to the other entity, be that a human or a system. It is assumed that
the executed behavior and observed feature value are the best representatives for the user type at each time,
and the model with these variables is extended dynamically with the temporal information.

We are operating under the assumption that information about the user type could help in altering the sys-
tem strategy. In addition, this strategy enhances the experience of the user–machine interaction similar to the
use of expertise model developed in previous efforts and employed in efficient system strategy design (Kamm
et al., 1998; Komatani et al., 2003).

3.2.1. A model of user behavior over a single iteration

We quantize the variables of user type (UT ), behavior (B), and system accuracy (F ) and these satisfy:
Fig. 7.
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where we chose n ¼ 3 discrete levels for the user type, m ¼ 2 for behavior and k ¼ 2 for the WER. Note that
we represent variables by an upper-case letters (e.g., UT ;B; F ) and its values by that same letter in lower case
(e.g., ut; b; f ).

The Bayesian network in Fig. 7 shows the complete directed graphical model (static) with the relations
among a specific behavior, user type, and features (including unknown features).

Multiple features can exist, and each can have a different effect on the user behavior. Prior work has dem-
onstrated that fewer features are better for improved accuracy/performance (Dash and Liu, xxxx), particularly
in small data-sets. Also, unimportant features can be eliminated by utilizing probabilistic measures related to
the features (Sheinvald et al., 1990). In the design of the suggested Bayesian model, we chose to incorporate
only one feature due to the small amount of data: the quantized (HQ/LQ) WER variable is incorporated with
an independent user type variable.
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A generic directed graphical model; the Bayesian network represents the relation in which a user behavior (B) is influenced by a
pe (UT ) and a feature (F1). There may be unknown features such as emotions and skill level but only one feature is considered for
gested model.
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Based on this general procedure, an actual sequence of stepwise conditional probabilities is formed as in
Eq. (2) with the random variables of parents (UT and F ) and a child(B). In the user behavior model, we assume
that there is no relationship between user type and feature
Fig. 8.
strengt
P ðB;UT ; F Þ ¼ PðBjUT ÞP ðUT ÞP ðBjF ÞPðF Þ=P ðBÞ ð2Þ

where B ¼ user behavior;UT ¼ user type; F ¼ feature.

Once the network structure is defined and the conditional probability is decomposed, the quantization of
the data in the chosen levels needs to take place. In the suggested model, we have 2 discrete levels for user
behavior (retry/accept) and system performance (HQ/LQ) and three user types (Accommodating, Normal

and Picky). To give a value for each discrete level, we can utilize a domain expert’s knowledge or learn it from
the data-set. The second method is adopted in this experiment and the values are learned in a n-fold cross-val-
idation from the training data-set (using 14 out of 15 interactions) for testing on 1 interaction allowing for
presenting averaged results over a total of 15 experiments for the 15 interactions in the corpus.

3.2.2. A dynamic model – temporal belief reinforcement

In reality, it takes time to grasp an accurate user type by observing user behaviors and factors (features).
For example, observing a one-time accommodating behavior of a user is not enough to decide a definite user
type while the observation of consistent behavior over time strengthens the belief of the user’s type. This idea
is formulated as a dynamic Bayesian network (DBN) shown in Fig. 8. The user type transition mechanism
from time t � 1 to t is supported by the Markovian property that the conditional probability of the current
user type(t) depends on the previous user type(t � 1) and it includes the history implicitly by this assumption.

During training, we employ the complete interaction to reason on the user type by using the Maximum
Likelihood Estimate (MLE) as in Eq. (3):
P ðBjF ;UT Þ ¼ P ðF ;UT ;BÞ
P ðF ;UT Þ ð3Þ
where UT ¼ fut1 . . . utng;B ¼ fb1 . . . bmg; F ¼ ff1 . . . fkg.
The prior for the feature, Word Error Rate (WER), is also acquired from the training data, and the prior of

the user type is initially set equally distributed and updated dynamically.
In the absence of large amounts of training data, unconstrained identification of the priors of transition

probabilities in a data-driven fashion is not feasible. We instead place parametric constraints on the transition
probabilities and identify these parameters in a data-driven fashion. The parameters are the probability of:

� Staying in the same type. This probability is expected to be the highest ðP SameTypeÞ.
� Transitioning across adjacent types (Normal to/from Accommodating and Picky) ðP WithNormalÞ.
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A dynamic Bayesian network is used to infer a user type over time in the mediated channel. The belief of a user type becomes
hened as the interaction progresses.
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� Transitioning across opposite types (Accommodating to/from Picky). Expected to be the lowest probability
ðP OppositeÞ.

In addition we define a parameter that reinforces beliefs over time by modifying each of the above prob-
abilities and is defined in terms of the ratio:
Table
Values
limited

UT t�1
Acc

UT t�1
Nor

UT t�1
Pic

k

l ¼ k
ðTurn numberÞ

ðTotal number of turnsÞ ð4Þ
where k is expected to be a very small number because we want smoothly increase the same-user type transi-
tion probabilities over time. Resulting in:
P SameTypeðnÞ ¼ P SameTypeðn� 1Þ � ð1þ lÞ

P WithNormalðnÞ ¼ P WithNormalðn� 1Þ � 1� 1

3
l

� �

P OppositeðnÞ ¼ P Oppositeðn� 1Þ � 1� 2

3
l

� �
ð5Þ
Note that the probabilities are normalized in each turn.
Table 6 presents the values of the parameters. We can also observe that over time the probability of tran-

sitioning across opposite types will decay faster than the probability of transitioning across adjacent types.
To infer a user type, the posterior probability of user type conditioned on behavior and feature is computed

as in Eq. (6) by applying Bayes’ rule:
P ðUT jB; F Þ ¼ gP ðBjUT ; F ÞP ðUT Þ ð6Þ

The user type is independent of the observed feature therefore P ðUT Þ ¼ PðUT jF Þ, while g ¼ P ðBjF Þ plays

the role of a normalizing factor, ensuring that probabilities of user types sum to one.
At each turn, by maximizing the probability of each user type(uti) as in Eq. (7), we obtain an estimate of the

most probable user type; however the decision is not made until confidence in the belief of user type is
significant:
argmaxi PðutijB ¼ b1; F ¼ f1Þ ¼ argmaxi PðB ¼ b1juti; F ¼ f1ÞP ðutiÞ ð7Þ

where b1 ¼ an evidence of the user behavior; f1 ¼ an evidence of the feature.

In identifying when a decision on the user’s type can be made, we need to consider an acceptable confidence
‘‘Threshold”. This includes two dimensional conditions, when and how to draw a conclusion from the infer-
ence. One approach is to decide the final user type when all the available data has been processed (the last state
of the DBN) and the evaluation in Section 3.3 is based on this method. An alternative approach is maximum
entropy, a good measure that has been utilized in previous work to classify user behaviors (Manavoglu et al.,
2003). This may be a more objective and concrete measure of convergence and more appropriate for real-time
implementations. As in Fig. 9, we can see the tendency of decreasing entropy for the user type probabilities
over all 15 interactions. The entropy decreases as the DBN converges and a lower entropy means that the
intra-speaker probabilities of user type are more discriminating. To utilize this mechanism, we could set a cer-
tain threshold below which a decision would be made. Otherwise, a user type would be labeled as still unpre-
dictable or not inferable.
6
of transition priors. The parametrization allows four variables to represent nine time-varying priors, thus allowing estimation from
data.
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Fig. 9. Entropy of three user types becomes lower as the dialog turn increases. The threshold of deciding the final user type can be set
based on this tendency under a dynamic Bayesian reasoning.
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3.3. Model validation

We evaluated the automatic identification of the user type by employing the n-fold validation, thus using 14
interactions for training and one for testing, and performing a total of 15 experiments. The goal was to iden-
tify user type through the interaction data. Priors were set to be equal (0.33) for the three user types. The clas-
sification was successful in 13 out of the 15 dialogs examined by assuming a convergence of the DBN at the
end of the available data (method 1, described above). Both errors occurred in identifying the Normal user
type, and in both cases it was clear that convergence had not been reached. The DBN was fluctuating between
Normal and Picky in one case and Normal and Accommodating in the other case. We believe that this may
reflect a switching user behavior where users may behave as Picky (if the error is, for example, in a keyword)
or as Accommodating (if all the errors are in function words), or it may reflect users who exhibit behavior very
close to the user type quantization boundaries.

In the following sections, two representative results of Picky and Normal user type inference by the sug-
gested DBN model are presented.

3.3.1. Analysis of the Picky user type inference result

Dynamic inference results on an interaction (labeled as Picky type) that lasted over 44 turns is depicted in
Fig. 10. We can observe that the belief of the Picky user type is strengthened over time and is detected early on
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Fig. 10. The belief that the user type is ‘‘Picky” is strengthened over time in this example data set.
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Fig. 11. The belief that the user type is ‘‘Normal” is strengthened slowly over time.
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in the interaction. This implies that a user strongly follows a pattern: Retrying on most device errors and
Accepting less when the system operates with high quality.

By observing the data of this interaction, we can also note that this user (Fig. 10) suspended the flow of
conversation in many more cases – compared to other users – by being very selective, rejecting utterances very
close conceptually.

3.3.2. Analysis of the Normal user type inference result
Fig. 11 shows one of the most challenging users to classify in our corpus. The system in this case takes over

24 turns to eliminate the Accommodating type, although it eliminated the Picky type from the 12th turn. Man-
ual analysis of the data revealed that this user, despite being Normal in his average behavior, often exhibits
Accommodating and sometimes Picky behaviors – crossing the boundaries of two types, thus causing the
DBN to take longer to converge.

3.3.3. Analysis of successful user type inferences

In this subsection, we present the analysis of successful user type classifications suggested by the model (13
out of 15 interactions in our dataset were successful). Figs. 12 and 13b represent the identification of the
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Fig. 12. Inference on the data of various ‘‘Accommodating” user types in the corpus. X-axis indicates the dialog interaction turn. Y-axis
indicates three levels of prediction results – wrong, accommodating, and converged to Accommodating user types.
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Accommodating and Picky user types. The correct user type is determined early in most cases (less than 10
interaction turns) even though some ‘‘Accommodating” users show different user types briefly in the middle
of the whole interactions. The results imply that users in these two extreme types behave in their own style,
especially when the system performance is low. And we can classify these two types early on by observing user
behaviors and the system performance.

Different from the previous two extreme user types, the belief of ‘‘Normal” user type is gradually strength-
ened over turns by a tailing off of the other user types (Fig. 13a). This implies that it took comparatively more
time to be at the midpoint, in terms of the number of retry/accept under low/high system performance,
between the two extremes.

4. Online evaluation of user model

In the following sections, we report the results of online evaluation of the user model using agent feedback.
For this purpose, our new speech-to-speech communication system (called SpeechLinks) was used, and the
English speakers’ user behaviors were analyzed. The design considered the following: Picky users tend to reject
even small recognition errors which do not affect the overall meaning transfer from user-spoken utterance in
the source language to machine-generated utterance in the target language. In the opposite situation, Accom-
modating type users tend to accept even critical recognition errors, which breaks natural conversations
between users by causing incorrect meaning transfers through the device.

By providing agent feedback to users according to the user types, we could acquire better interaction effi-
ciency (which will be defined in the result section) by encouraging users to change their behaviors in better
direction.

4.1. Experimental setup

4.1.1. Participants and experimental domain

We recruited eight native speakers of English, four males and four females of ages between 20 and 28. All of
them were undergraduate and graduate students at University of Southern California (USC). We also
employed two Farsi speakers who are familiar with the SpeechLinks project. Farsi speakers were one male
and one female, ages of 21 and 24 respectively, and also undergraduate students of USC. The choice of only
two Farsi speakers familiar with SpeechLinks was made to reduce the variability space of the experiment.

In total, 32 interaction sessions were collected from eight native Speakers of English interacting with two
native speakers of Farsi. For each interaction session, one native speaker of English and one native speaker of
Farsi performed a diagnosis based on the provided scenario. The experimental time of each interaction session
was approximately 30 min.

The domain of the experiment was medical diagnosis: Native speakers of English played the role of doc-
tor and native Farsi speakers played the role of patient. Before the actual experiment, we gave a 1-h training



Fig. 14. Simplified example material: a part of doctor’s diagnosis manual table for common cold (left). In the full size table, there are 12
diseases (column) and 30 symptoms (rows). A patient card for common cold presented to Farsi speakers (center), and its translation
(right).
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session to English speakers that included how to perform a diagnosis of the disease with the supplied mate-
rials: the doctor’s diagnosis manual table (a simplified example is shown in Fig. 14 on the left) and the
instruction of the experiment. The Farsi speakers were trained to use the system and to play the role of
patient with the disease symptom card (simplified example in Fig. 14 on the center). The purpose of this
experiment was to study the English speaker behaviors reacting to agent feedback (driven by the proposed
model) rather than to study Farsi speaker behaviors. The goal of the English speakers (in the doctor’s role)
was to find out a disease of a patient in each interaction session. (The disease varies in each interaction ses-
sion.) Four diseases (flu, SARS, depression and hypertension) were used equally for the eight English speak-
ers during the experiment.

4.1.2. Scenario

The four scenarios were used in the same order during the experiment by each team (English–Farsi speaker
pair). For each scenario, we provided a doctor’s diagnosis manual table consisting of 12 diseases in the column
and related symptoms in the rows. The diseases in the column were: common cold, flu, food poisoning, lactose
intolerance, depression, insomnia, hypertension, high cholesterol, liver cancer, lung cancer, SARS, and diabe-
tes. The symptoms in the rows were, for example: ‘chills’ and ‘fatigue,’ and the number of the symptoms was
30, in which the actual symptoms were varied depending on the disease. We built this table to be as realistic as
possible using the medical diagnosis information from http://www.medicinenet.com.

Farsi speakers (patients) were given a symptom card which provided only a few symptoms of the disease.
On the center image in Fig. 14, a symptom card for common cold is presented. We intentionally provided a
few symptoms in each patient card to elicit more expressions from both speakers; English speakers needed to
go through many combinations of diseases and symptoms in the look-up table to reasonably diagnosea disease
on the symptom card of a Farsi speaker.
Without With 
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Fig. 15. All 8 English speakers performed both ‘‘Task A” and ‘‘Task B” with two Farsi speakers in different ways: four of English speakers
performed ‘‘Task A” first and ‘‘Task B” later, and the other four performed in the reverse direction. Each English speaker met different
Farsi speaker in the different Task.
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Neither the English speaker in the doctor role or the Farsi speaker in the patient role knew the disease name
during each interaction session. We informed them of the disease names at the end of all four interaction
sessions.

4.1.3. Experimental procedure

The experiment was designed with two tasks, borrowing the idea of the evaluation method in the user mod-
eling work by Komatani et al. (2003). Fig. 15 depicts this experimental procedure. In ‘‘Task A”, native speak-
ers of English performed the interaction session ‘‘without feedback” first and the session ‘‘with feedback”

later. In ‘‘Task B”, native speakers of English performed the interaction sessions in the reverse direction.
In each task, the English speakers interacted with different Farsi speakers – one male speaker for one task
and the other female speaker for the other task. For the tasks, each English speaker visited the experimental
room twice (two days). We assigned the Farsi speakers evenly to the two tasks: each Farsi speaker participated
in ‘‘Task A” 4 times, and the ‘‘Task B” four times. In total, we collected 32 interaction sessions from this
experiment.

For evaluation purpose, we collected five different survey questionnaires from each participant during the
experiment. One is the initial survey about demographic information of the participant and user perception on
many topics (Appendix A), such as user type and error tolerance level and past speech interface experience.
After each interaction session, a questionnaire was given to each participant for the evaluation of system per-
formance along multiple dimensions (Appendix B), such as user satisfaction and interaction efficiency. In
total, four evaluation questionnaires were collected from each participant. Detailed analysis of questionnaires
is provided in Section 4.2.3.

Each session lasted for approximately 30 min — we gave a 5-min warning when the session was still contin-
uing after 30 min. After finishing two sessions (with feedback and without feedback), participants gave us their
opinions about the experiment.

All the interaction sessions were video taped. We analyzed the 32 interaction sessions in the video data in
terms of identifying user types with their behaviors and user behavior changes and system performance.

4.1.4. Agent feedback for Accommodating and Picky user types
Two different wordings of agent feedback were prepared for two user types: Accommodating and Picky.

When the system detected one of the two user types with high probability, it triggered the corresponding word-
ing of agent feedback as in Table 7. The threshold of triggering an agent feedback was set as 0.65 which was
acquired systematically from user training sessions. When the system detects either an Accommodating or
Picky user type the first time, the wording (1) was presented to the users. After consecutive same user type
identifications (e.g., three times), the system changed the wording, in this case, the wording (2) was presented
to the users. The agent feedback was presented to users in this fashion throughout the whole interaction
session.

User type identification was conducted by dynamic Bayesian reasoning as introduced in the Section 3.2. At
each turn in the interaction, previous user behavior and ASR confidence level of the previous turn were uti-
lized for computing the posterior probabilities of three user types. These probabilities were updated dynam-
ically as the interaction proceeded.
Table 7
Actual wordings of agent feedback for two user types. Two different wordings were used alternately for the same user type in case of
triggering the same agent feedback over and over.

For Accommodating user type For Picky user type

(1) ‘‘Consider rejecting bad options and rephrasing” ‘‘Accepting system errors, if those have little impact on
meaning, may improve system performance”

(2) ‘‘The system is not always right. Some errors can cause
significant degradation in your communication. When
presented with bad options consider rejecting them and re-
trying”

‘‘The system often inserts some additional words in its
recognition results. Consider accepting some errors if those
affect little the concept of the recognized sentence”
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The underlying assumption of the online experiment was that the ASR confidence level can be used to mea-
sure the ASR performance, which was measured offline by Word Error Rate (WER) as introduced in the sec-
tion 3.2.1. The correlation between ASR confidence level and WER was mentioned and studied in Georgila
et al. (2005) and Zechner and Waibel (2000). ASR confidence level was computed using features at multiple
levels, such as weighted acoustic model and language model scores.

4.2. Experimental results

We present the results of our online experiment using subjective and objective measures from various
sources: user interview, questionnaire, video analysis and log data analysis. Statistical analyses were performed
with SPSS 15.0.

4.2.1. Subjective measure 1: user interview

The interview with participants gave us insightful information about user opinions about agent feedback
and its relation to system performance. Participants told us that the agent feedback provided hints when
the interactions went wrong and it helped for smoother conversation flows and information delivery. In par-
ticular, the participants commented that agent feedback helped in mitigating frustration caused by repetitive
errors. One of the Picky type users said:

‘‘Agent feedback expedites conversation since users will not be repeating themselves in attempts to find an
EXACT replication of their phrase.”

4.2.2. Subjective measure 2: video analysis

By analyzing the video data of 32 interaction sessions, we subjectively identified user types of 8 English par-
ticipants: seven participants were Picky and one was Accommodating. For this identification, we specifically
investigated the behaviors of users when the machine-recognized utterances have functional words which do
not affect on the whole meaning of the utterances.

The analysis of video data suggests a trend of user accommodation to system functionalities and errors. We
observed that the participants became accustomed to agent feedback in the early turns of the interaction ses-
sion, and in the later turns, they did not pay attention to the agent feedback. We conjecture that they already
knew what the agent feedbacks were and when the agent feedbacks would be triggered. From this viewpoint,
the users of ‘‘Task A” (interaction session from ‘with feedback’ to ‘without feedback’) seemed to cope with
system errors better than the users of ‘‘Task B.” More analysis in this regard is presented in the following
section.

4.2.3. Subjective measure 3: questionnaire analysis

We collected five questionnaires from each participant, and the Likert-scale questions were given to the
participants.
Table 8
The statistics collected from the Likert-scale questions of the initial survey given to the participants. We measured users’ own perceptions
about their ability to deal with general technology and speech interface, utterance length, and error tolerance levels.

Likert-scale questions Mean Std. dev.

Speech interface experience (0: none–10: more than 10 times) 5.94 4.23
Inclination for the general technology (0: never comfortable–10: comfortable) 6.81 1.51
Error tolerance level in the interactions with computers (0: not at all–10: completely) 4.88 1.96
Error tolerance level in the communications with humans (0: not at all–10: completely) 6.25 2.74
Utterance length (0: terse - 10: lengthy) 5.88 1.82
Hasty level when using computers (0: not at all–10: completely) 6.44 1.41
Ability to work with computers (0: worst–10: best) 5.63 1.31
Today’s feeling (0: bad–10: good) 7.63 1.20
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The initial questionnaire was intended to measure users’ own perceptions about their ability to deal with
general technology and speech interface, utterance length, and error tolerance level (Table 8). One finding
from the initial questionnaire is that some users did not have speech interface experience at all, while others
had some experience. To reduce this gap, we gave a one-hour training session to all the participants, which
included how to use the system. Another interesting finding was that the error tolerance level of the partici-
pants was higher in the communication with humans than in that with computers.

Participants were given the evaluation questionnaire after each interaction session, and we collected four
evaluation questionnaires from each participant who performed four interaction sessions in total. We mea-
sured user opinions in multiple levels, such as the system performance, user satisfaction and usefulness of
agent feedback.

General user feeling (1: not at all–10: very much, standard deviation) about the interface of SpeechLinks
indicates that the interface is intuitive (8.7(1.3)) and easy to learn (8.18(1.1)) but not foolproof (3.5(1.0)).

To measure the effect of agent feedback we present the comparison of user satisfaction (Table 9) between
the interaction session with agent feedback, and the interaction session without agent feedback. This compar-
ison was conducted between the two interaction sessions of each task (Task A and Task B) as described in
Fig. 15. Higher user satisfaction was observed in the interaction session with agent feedback across the two
tasks. More specifically, to find out statistical significance, a Paired Sample T-test was performed on each
Task, and we acquired p values, 0.264 from ‘‘Task A”, and 0.041 from ‘‘Task B”. The observed significance
level of ‘‘Task B” confirms the statistical difference between two interaction sessions ðp < 0:05Þ.

Basic statistics collected from the questionnaires which support the results of Table 9 are the following.
Overall, user feeling about the usefulness (1: not at all–10: completely) of agent feedback was 6.5 (2.4) in ‘‘Task
A” and 7.4 (1.7) in ‘‘Task B”. The average number of triggered agent feedback per session was 7.1 (5.0) in
‘‘Task A” and 7.9 (3.6) in ‘‘Task B”. The distraction levels (1: not at all–10: completely) of agent feedback
in the two tasks (see Fig. 15) were 1.4 (1.3) and 1.7 (1.1) respectively. The topic difficulties (1: difficult–10: easy)
in ‘‘Task A” and ‘‘Task B” were 5.7 (1.8) and 5.3 (1.4) respectively. User retry tendency (1: not at all–10: com-
pletely) in ‘‘Task A” was 6.8 (1.5) and that in ‘‘Task B” was 6.2 (2.1).

4.2.4. Objective measure: log data analysis
In this section, we investigated user behaviors accommodating to errors, and effects of agent feedback on

the interaction efficiency.
Before presenting the results, it may be interesting to note some statistics collected from the two types of

interaction sessions – with/without agent feedback. Averages (with standard deviation in the parenthesis) of
session dialogue time were 33 min and 36 s (3 min and 2 s) with agent feedback, and 32 min and 27 s (4 min
and 13 s) without agent feedback. Averages of the number of utterances in both sessions were 77.2 (26.6), and
70.0 (19.0), respectively. Averages of utterance length (in words) were 5.3 (1.5) and 4.6 (1.2), and averages of
lasting time of each utterance (in seconds) were 4.2 (0.59), and 4.1 (0.37), respectively. Finally, overall number
of agent feedback events in an interaction session was 10.7 (7.87) – excluding the interaction sessions without
agent feedback.

In the video analysis results, we observed that on average only one participant was overall of the Accom-
modating type who endured relatively more recognition errors compared to the other seven participants. In
the log data analysis, we investigated retry rates of the participants under low system performance, and seven
Table 9
Overall user satisfaction (Likert scale, 1: worst–10: best) after interaction session in each of the two tasks (with standard deviation). In
‘‘Task A”, participants conducted an interaction session with agent feedback first and that without agent feedback later. In ‘‘Task B,”
participants conducted the interaction in the reverse order (without agent feedback first, with agent feedback later). Paired-Samples T Test
shows that there is a significant difference in user satisfactions of two interaction sessions in ‘‘Task B” (5% level).

Task A Task B

First session with: 7.0 (1.1) without: 5.25 (1.7)
Second session without: 6.0 (1.93) with: 7.25 (1.3)
Statistical significance p = 0.264 p = 0.041



Fig. 16. User retry rates over the interaction sessions when the ASR performance is low. Interaction sessions without agent feedback were
investigated. Seven users were observed as Picky and one as Accommodating.
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users were observed as the Picky type, and one user was the Accommodating type (same as in the video anal-
ysis). The low quality (LQ) system performance is the region of low ASR confidence level. We investigated the
interaction sessions without agent feedback for this analysis. The user retry rates over the interaction sessions
are presented in Fig. 16.

One of the hypotheses in using agent feedback was whether we could increase the smoothness of the
interaction. This interaction efficiency is highly correlated with the time the users behave in the Normal
rather than Picky or Accommodating type regions. Normal type users are deemed not to be in the extreme
to accept/reject system errors, so we expect to avoid extreme cases (such as severe repetitions or translation
of large system errors) in their interactions. Intuitively, we assume smooth conversations when the partic-
ipants are behaving more ‘‘normal”. In our analysis of the data, the Normal user type was exhibited more
during interaction sessions with agent feedback than during interaction sessions without agent feedback as
shown in Table 10.

Another interesting aspect is to investigate the effect of agent feedback in improving user behaviors and
in contributing to the efficiency of interactions. The agent feedback can be presented to users before the
users catch the chain of same error situations. In this way, users can escape from the chain of possible error
situations easily. Note that it is dependent on users to accept agent feedback and to use alternative strategies
to recover from error situations. To illustrate the effect of agent feedback in this regard, we compared the
percentages of user behavioral change from the previous turn during the interaction session without agent
feedback and during the interaction session with agent feedback (Table 11). In this result, the user behav-
ioral changes were counted only when the dynamic Bayesian reasoning identified two extreme user types
(Picky and Accommodating) during the interaction session. In the interaction session without agent feed-
back, we triggered the agent feedback internally and observed whether user behavior changed from the pre-
vious turn or not. Note that there is a possible chain of errors when the two extreme user types are triggered
by the dynamic Bayesian reasoning. As shown in Table 11, users changed their behaviors more with the help
of agent feedback onscreen, indicating that the users had more chances to escape from a chain of error
situations.
Table 10
Percentage (with standard deviation in parenthesis) of Normal user type that appeared during the two interaction sessions: with/without
agent feedback. More Normal user type during the interaction sessions indicates more efficient interactions.

Without agent feedback With agent feedback

0.37 (0.14) 0.44 (0.14)



Table 11
Percentages of user behavioral change from the previous turn under possible chain of errors during the interaction sessions without/with
agent feedback. The changes of user behavior (accept/retry) were counted only when the dynamic Bayesian reasoning identified two
extreme user types (Picky and Accommodating) during the interaction session. Note that two extreme user types were identified internally
during the interaction session without agent feedback, and user behaviors were observed at this point.

Without agent feedback With agent feedback

0.31 (0.21) 0.40 (0.16)
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5. Discussion and conclusions

This paper addressed user behavior modeling approaches in a machine-mediated setting involving bidirec-
tional speech translation. Specifically, usability data from doctor–patient dialogs involving a two-way Eng-
lish–Persian speech translation system was analyzed to understand two specific user behaviors. In addition
to offline modeling results, data from an online experiment with agent feedback was performed and subjective
and objective performance measures were reported.

We modeled user behavior with three user types, Accommodating, Normal and Picky. The granularity of
user type can be adjusted according to the desired application. For example, classifying users in two catego-
ries, such as Picky and Normal, may work better when we do not want to take any steps for the case where the
users are extremely tolerant of errors. In the offline data, we showed that one of the three types becomes obvi-
ous as a user maintains behavior consistent under the same conditions. This model can be utilized for the
design of an efficient error-handling mechanism; in previous research (Prodanov and Drygajlo, 2005), a cor-
rect interpretation of the user’s goal (intention) was helpful in dealing with errors in human robot dialogs.
Ultimately, we believe that we can improve dialog efficiency and quality, task success, and user satisfaction
that are important measures of success similar to past work on the PARADISE framework (Walker et al.,
1997). In the online experiment, we addressed some of these issues with agent feedback being presented to
users according to the model. High user satisfaction and interaction efficiency were reported in the interaction
sessions with agent feedback.

There are several challenges that still need to be considered. One of the major challenges in empirically-
based user modeling study is the availability of appropriate data. It is especially important to note that it
requires a huge effort to collect, process and interpret the complex data from bilingual spoken interactions
such as those considered in this study. It is well known that real human dialog data are complex to analyze
and, due to the high degree of variance in the data, a large volume is required to create sufficiently accurate
models. In terms of data size, more training data increase the accuracy of the test set (Tian et al., 2005). In
addition, it is often unclear how much data is needed for optimal performance and what the appropriate fea-
tures are to build a user model. These issues are of critical importance, especially when we attempt to model a
user in a data-driven way.

In designing a mediated device, it is important to have a good understanding of the user model; thus to be
able to appropriately modify the communication strategies, for example, by taking specific system initiatives.
These system initiatives must be well founded on robust user models to ensure minimal user disruption. We
designed triggering agent feedback in this fashion (to be not disruptive). However, some participants in the
online experiment using agent feedback commented that they needed the feedback mostly in the early inter-
action sessions and repetitive feedbacks might turn out to be disruptive. How best to exploit the user model is
still not a fully explored area, especially in light of partial observations (both temporally and qualitatively) of
the user actions.

In the online experiment, we assumed that word error rate (WER) of the offline experiment can be substi-
tuted by ASR confidence level. This assumption is widely considered acceptable in the speech technology com-
munity. However, it is still debatable whether, under what conditions and with what features, we can accept
this assumption.

We believe this work provides a first look and motivates future investigation of the benefits of user mod-
eling in mediated, cross-lingual interactions. The advantages of this additional model in the system are becom-
ing apparent, even at the infancy of speech to speech translation technologies. We believe that, as the devices
mature, user awareness and mixed initiative will become even more critical.
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Appendix

A. Initial questionnaire

The questionnaire included the following questions from a scale of 0–10 as well as an ‘‘Identification num-
ber”, ‘‘System number”, ‘‘Age,” and ‘‘Gender”. The scale was graphical with the axis labeled and numbered,
but for simplicity here we denote the two ends of the axis in brackets:

� A speech input interface is a computer program that recognizes your spoken words and responds to them.
How many times have you used a speech input device before? (‘‘None” to ‘‘More than 10/specify”).
� How would you define your inclination for the (general) technology? (‘‘Never comfortable” to

‘‘Comfortable”).
� How much could you tolerate errors generated by machine while interacting with it? (‘‘Not at all” to

‘‘Completely”).
� How much could you tolerate spoken errors by human while communicating with him/her? (‘‘Not at all” to

‘‘Completely”).
� Some people are hasty to achieve a goal when use computers. Are you hasty in using computers? (‘‘Not at

all” to ‘‘Completely”).
� How do you define your speaking style in terms of the length of sentence? (‘‘Terse” to ‘‘Lengthy”).
� Compared to other people I know my ability to work with computers is: (‘‘Worse than most” to ‘‘better

than most”).
� How do you feel today? (‘‘Bad” to ‘‘Good”).

B. Evaluation questionnaire

The questionnaire included the following questions from a scale of 0–10 as well as an ‘‘Identification num-
ber”, ‘‘System number”, ‘‘Age,” and ‘‘Gender”. The scale was graphical with the axis labeled and numbered,
but for simplicity here we denote the two ends of the axis in brackets:

� Overall, how satisfied were you in using the system? (‘‘Worst” to ‘‘Best”).
� How would you describe the interface of the system?(‘‘Difficult to use” to ‘‘Easy to use”).
� The interface was: (‘‘Rigid” to ‘‘Flexible”).
� The topic of this interaction session was (‘‘Difficult” to ‘‘Easy”).
� Overall, did you find that the system perform well? (‘‘Not at all” to ‘‘Very much”).
� Was the interface easy to learn? (‘‘Not at all” to ‘‘Very much”).
� Was the interface intuitive to use? (‘‘Not at all” to ‘‘Very much”).
� How good was the system at delivering what you wanted to express? (‘‘Not good at all” to ‘‘Extremely

good”).
� How often did you tend to retry? (‘‘Not at all” to ‘‘all the time”).
� Was the system foolproof? (‘‘Not at all” to ‘‘Completely”).
� The audio was: (‘‘Choppy” to ‘‘Smooth”).
� How many times have you seen feedback messages (please write or select one)? (choice of 0, 3, 6, 9, 12, 18,

specify).
� Did feedback messages (if any) distract your interactions? (‘‘Not at all” to ‘‘Completely”).
� The time of showing a feedback message (if any) was (‘‘Too long” to ‘‘Too short”).
� Were feedback messages (if any) useful? (‘‘Not at all” to ‘‘Completely”).



J. Shin et al. / Computer Speech and Language 24 (2010) 232–256 255
� Did feedback messages (if any) help to expedite natural interactions? (‘‘Not at all” to ‘‘Completely”).
� Did feedback messages (if any) help to induce accurate system performance? (‘‘Not at all” to

‘‘Completely”).
� How do you think the system changed (Please answer if you have used this system more than once) (‘‘Ter-

rible” to ‘‘Wonderful”).
� Please describe how feedback messages were useful/unuseful.
� Do you have any suggestions for improving the system?
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