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Abstract
This paper proposes Universal Background Model (UBM) fu-
sion in the framework of total variability or i-vector modeling
with the application to language identification (LID). The total
variability subspace which is typically exploited to discriminate
between the language classes of different speech recordings, is
trained by combining the normalized Baum-Welch statistics of
multiple UBMs. When the UBMs model a diverse set of fea-
ture representations, the method yields an i-vector representa-
tion which is more discriminant between the classes of inter-
est. This approach is particularly useful when applied to short-
duration utterances, and is a computationally less complex al-
ternative to performance boosting as compared to system level
fusion. We assess the performance of UBM fused total vari-
ability modeling on the task of robust language identification
on short-duration utterances, as part of Phase-III of the DARPA
RATS (Robust Automatic Transcription of Speech) program.
Index Terms: language identification, i-vector representation,
short-duration, noise robustness, RATS

1. Introduction
Language identification (LID) is defined as the task of iden-
tifying the spoken language from audio recordings. Over the
years, several machine learning approaches have been proposed
in the development of automatic language identification sys-
tems. Phonotactic systems perform LID by employing a phone
recognizer that converts speech signals into a sequence of phone
symbols or tokens, followed by a language model (PRLM) to
extract phonotactic information from the token strings statis-
tics [1–4]. Alternative approaches to LID attempt to classify
languages by using Gaussian mixture models (GMMs) which
capture the acoustic properties of speech. The potential of
GMM-based language identification was shown in [5, 6] and
significant progress in LID performance was made by employ-
ing supervector modeling [7] and the introduction of Joint Fac-
tor Analysis (JFA) [8, 9]. JFA attempts to reduce the variability
caused by different channels and sessions in order to retain a
subspace that captures the variability of the desired factor of in-
terest, e.g. the spoken language. Although originally applied to
the problem of speaker verification, the factor analysis formu-
lation can be generalized to other application domains such as
language identification [10].

The method of JFA has led to its successful variant, namely
total variability or i-vector modeling, which was introduced
in [11] and became popular due to its excellent performance,
reduced complexity and small model size. The success of
performing LID in the i-vector framework, has been shown
in [12–15]. In the work of [15, 16], the i-vector approach has
been extended towards the simplified and supervised i-vector
framework by allowing label-regularized i-vector training and

by pre-normalizing the first order Baum-Welch statistics during
the factor analysis.

This paper builds on top of the simplified i-vector frame-
work by the introduction of UBM-fused total variability mod-
eling, with the main goal to improve the systems’ performance.
We will show that, when the UBMs are trained on diverse fea-
ture representations, the extracted Baum-Welch statistics are
more equally distributed along the Gaussian components of the
UBM. Moreover, the UBM-fused statistics will exhibit less re-
dundancy compared to a single UBM of the same size trained
on a single representation. This leads to an improved i-vector
extraction, particularly in situations where the available data is
limited, such as is the case for short-duration sentences.

Although generally applicable, the proposed method will be
applied as part of the Phase-III LID Evaluation in the DARPA
Robust Automatic Transcription of Speech (RATS) program.
In the RATS program, the main goal is to accurately separate
the target speech from interfering background sources, to iden-
tify the language and the speaker, and to apply keyword detec-
tion on a data corpus that consists of highly degraded speech
recordings that were transmitted over noisy radio communica-
tion channels [17]. For the task of LID, the major challenge is
the development of a system that is robust under various noisy
conditions when applied on utterances of different length. In
this paper, we focus on the short-duration sentence task for
which the test set contains utterances with a duration of 3 and
10 seconds. The challenging task of accurate i-vector based
classification on short-duration sentences has also been studied
in [13, 18–21] and in [22] where the problem was addressed
differently by modifying the prior distribution of the i-vectors.

The remainder of the paper is organized as follows: Sec-
tion 2 restates the framework of total variability modeling, the
simplified variant with prenormalized first order Baum-Welch
statistics and will introduce the UBM-fused total variability
modeling. The application of the latter on the RATS LID cor-
pus will be discussed in Section 3. Experimental results for the
short-duration test sets are given in Section 4. Finally, Section 5
concludes.

2. UBM-fused Total Variability Modeling
Total variability or i-vector modeling, originally proposed in
[11] is based on and motivated by the technique of Joint Factor
Analysis (JFA) [9] which was originally applied on the task of
speaker verification. JFA attempts to capture both the variabil-
ity of the desired factor of interest (e.g. speaker, language, etc.)
and the undesired channel or session variability in two distinct
eigenspaces of low dimensionality. For real life speech signals,
the assumption of zero mutual information between the two
subspaces does not hold and hence important information of the
desired factor could be lost in the session eigenspace. This type
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of information loss is prevented in the total variability frame-
work by estimating a single low dimensional subspace, i.e. the
identity or i-vector space, that models all variability together. To
compensate for the undesired variability due to the presence of
the undesired factors, variability compensation methods such as
Within-Class Covariance Normalization (WCCN) [23], Linear
Discriminative analysis (LDA) and Nuisance Attribute Projec-
tion (NAP) [7], are typically applied within the i-vector space.

2.1. Total Variability Modeling

The first step in training a class-specific i-vector system is to
train a prior model that represents general and relevant acous-
tic characteristics of speech. To this end, a Gaussian Mixture
Model (GMM) is trained independent of the classes using all
available training data and is commonly referred to as the Uni-
versal Background Model (UBM).

Let us now define a UBM with C Gaussian mixture com-
ponents as Λ = {λ1,λ2, . . . ,λC} where each mixture com-
ponent is characterized by λc = {ρc,µc,Σc} with mixture
weight ρc, Gaussian mean µc and (diagonal) covariance matrix
Σc. Applying the total variability approach to the problem of
language identification implies to write each utterance j as a
language- and session-dependent supervector Mj :

Mj = m + Twj (1)

where m is a language- and session-independent supervector
constructed from stacking the Gaussian mean vectors of all C
UBM components. The total variability matrix T spans a low-
dimensional total variability subspace of rank K. The i-vector
of the utterance is then given by a normally distributed vector
wj containing the corresponding K total factors. Note that the
probability function of supervectors (1) given wj is Gaussian
distributed with mean m + Twj and covariance matrix denoted
by Σ which explains the residual variability not captured in the
eigenspace defined by the column vectors of T.

Let yj,t denote the D-dimensional feature vector at a time
frame t of utterance j. The zeroth order Baum-Welch statistics
of the utterance for a UBM mixture component λc are given by

Nc
j =

T∑
t=1

P (c|yj,t,λc) (2)

where the sum of the occupancy probabilities is taken over all
T frames that are present in the utterance. Similarly, the cen-
tralized first order Baum-Welch statistics are computed as

Fc
j =

1

Nc
j

K∑
t=1

P (c|yj,t,λc)(yj,t − µc). (3)

Rearranging the statistics (2)-(3) over allC mixture compo-
nents, we stack the vectors Fc

j into the supervector Fj , and we
define theCD×CD diagonal matrices Nj which are composed
of C diagonal blocks of respectively Nc

j I. The total variability
framework (1) can now be restated as

Fj = Twj (4)

where
P (wj |Λ) = N(0, I)

P (Fj |wj ,Λ) = N(Twj ,N−1
j Σ)

(5)

Note that the distribution of Fj is conditioned on wj and the
UBM Λ.

The total variability matrix T is then iteratively trained by
the EM-algorithm described in [24] for only one factor in the
JFA and by considering each training utterance as being pro-
duced by a new speaker. The Expectation-step involves the
computation of the posterior probability P (wj |Fj ,Λ) using
Bayes’ rule and (5). The estimated i-vectors are then explained
as the expected values of the probability function and given as

wj = β−1
j T′Σ−1NjFj (6)

with
βj = I + T′Σ−1NjT. (7)

The Maximization-step of the EM algorithm updates matri-
ces T and Σ such that the global likelihood defined over all
training utterances is maximized. The updated matrices are
found by linear regression using the estimated i-vectors (6) as
explanatory variables [8]. The total variability matrix T is ran-
domly initialized, while Σ is initialized by the covariance ma-
trices of the UBM.

Experimental evidence of the benefit of total variability
modeling as compared to JFA was given in [11] for the task of
speaker verification, while [14] presents its benefits when ap-
plied in language identification. The iterative EM procedure of
the training stage and the i-vector extraction are dominated by
the computationally expensive matrix products of (6) and (7).
This yields a complexity of O(K3 + CK2 + CDK) for each
utterance that is evaluated.

2.2. Simplified i-Vector training

The framework of total variability modeling has been extended
in [15, 16] to a computationally more attractive version, named
simplified i-vector modeling, by exploiting a pre-normalization
step during the factor analysis. This pre-normalization was done
by re-weighting the first order Baum-Welch statistics (3) as fol-
lows:

Fc
j ←

√
Nc

j

nj
Fc
j (8)

with nj =
∑C

c=1N
c
j . This way, the occupancy probabilities

Nc
j are factored out from the covariance matrix of Fj , now com-

puted as njΣ, which results to all supervector dimensions being
equally treated in the i-vector modeling. Thanks to this approx-
imation, the matrix multiplications that involve Nj in (6) and
(7) are replaced by the scaling factor nj . This reduces the total
complexity to O(K3 + CDK).

To avoid the costly matrix inversion of βj during training,
the use of a precomputed cache table was also proposed in [16].
The table is updated at each iteration after the M-step and de-
codes the matrix product β−1

j T′Σ−1 into a set of table entries
that are selected based on their value for nj . It was shown that
a limited quantization error can be assured for a table size of
the order of a few hundred entries, which is typically much
smaller than the number of utterances in the training set. The
table lookup strategy further reduces the complexity in training
mode to O(CDK).

As shown in [15], the simplification of the i-vector systems
slightly reduces the performance of the conventional i-vector
baseline. However, the sacrifice in performance is often neglible
and tolerated given the measured speed increase of more than
100 times compared to the baseline.

2.3. UBM-fused i-Vector training

The prenormalization strategy of Section 2.2 allows a straight-
forward implementation of the UBM fused Total Variability
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modeling. Let L denote the total number of UBMs to be jointly
exploited in the i-vector training, then the supervector Fj of (4)
is redefined as:

Fj ←
[
F>1 ,F

>
2 , . . . ,F

>
L

]>
(9)

by combined stacking of the UBMs first order Baum-Welch
statistics. Secondly, all UBM-specific components of super-
vector (9) are re-weighted by applying formula (8), with nj

summed over all Cl UBM components, hence

nj =

L∑
l=1

Cl∑
cl=1

N
cl
j . (10)

Finally, the system is trained by the EM-procedure of 2.1, but
with Σ initialized from the covariance matrices of all Gaussian
components in (9). Note that when all UBMs have a number
of Cl = C/L components, the computational complexity dur-
ing training remains O(CDK), while the total complexity is
reduced by a factor L when compared to conventional system
level fusion of the same number of systems.

UBM fusion significantly improves the LID accuracy, as
will be experimentally shown in Section 4. The explanation for
this effect lies in the estimation of a better, more discriminant
i-vector space, which is now derived from the BW-stats of a
fused UBM. The fusion allows to exploit the diversity of mul-
tiple features, while jointly increasing the number of dominant
(and non-redundant) UBM components in the utterance.

3. Language Identification Experiments
3.1. Data Corpus

The performance of the proposed LID system was evaluated on
the DARPA Robust Automatic Transcription of Speech (RATS)
data corpus [17]. The Linguistic Data Consortium (LDC) col-
lected audio recordings of five target languages (Arabic, Dari,
Farsi, Pashto, and Urdu) and 10 non-target languages. The
recordings were about 2 minutes long and were retransmitted
through 8 different radio communication channels, introducing
various aspects of speech degradation. A training and develop-
ment set of these retransmitted data was distributed by the LDC
to all participants of the DARPA RATS program. The official
development set, denoted by DEV-2, was split into four test sets
where each utterance corresponds to a speech segment of dura-
tion 120, 30, 10 or 3 seconds. In this work, we will only focus
on the short durations of DEV-2, i.e. 10 and 3 seconds, while
parameter tuning is applied on a distinct validation set, i.e. the
TEST set of [13, 25].

3.2. Front-end processing and Background Modeling

Prior to the front-end feature extraction, all audio files are
denoised by standard Wiener Filtering [26] and trimmed to
speech-only audio segments by applying Voice Activity Detec-
tion (VAD) [27].

We will use three standard features, i.e. Mel-Frequency
Cepstral Coefficients (MFCC) [28], Perceptual Linear Predic-
tion (PLP) coefficients [29], Gammatone Frequency Cepstral
Coefficients (GFCC) [30]. Each representation yields a 44-
dimensional feature vector by adding first order derivatives to
22 static components. A fourth feature representation is con-
structed by combining the speech streams of [27] into a single
feature vector, that combines a Gammatone filtered power spec-
trum with acoustic modulations extracted by Gabor filters [31],
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Figure 1: EER versus Cavg for the UBM-fused i-vector system
evaluated on the 3 seconds TEST set. The system was trained on
training utterances of 3, 10 and 30 seconds duration. Different
i-vector dimensions of 200, 400 and 600 were used to tune this
value for reporting on the DEV-2 set.

and measure streams of voicing and long-term spectral vari-
ability. For better UBM modeling, these features are subse-
quently decorrelated and dimensionality reduced to 88 feature
dimensions by the application of Principal Component Analysis
(PCA). We will refer to this representation as the Fused Speech
Stream (FuSS) feature. All features are mean variance normal-
ized. For each feature representation, UBMs of 2048 and 512
components are trained which are respectively used for the sin-
gle UBM and the UBM-fused systems.

3.3. LID System Details

The UBM-fused i-vector system of Section 2 is trained using
the strategy of label-regularized supervision [16]. We apply
WCCN on the i-vector space to suppress undesired variability.
A duration-specific Support Vector Machine (SVM) is finally
trained on the normalized i-vectors to obtain the language out-
put probabilities for each utterance of TEST and DEV-2. The
SVM uses a 5th order polynomial kernel.

4. Evaluation
The performance of the systems is evaluated in terms of equal
error rate (EER), minimum average cost (Cavg) and minimum
detection cost function (DCF) as proposed by NIST [32].

The presented UBM-fused system was trained on respec-
tively 3, 10 and 30 sec duration utterances. The EER against
Cavg was first evaluated on the 3 sec TEST utterances and is
given by Figure 1. The figure clearly shows that the best perfor-
mance is obtained in the case of longer duration training. The
dimension of the extracted i-vectors, i.e. the rank K of the total
variability matrix, was tuned on the TEST set and its constel-
lation was also shown in Figure 1. The plot suggests that a
near-optimal system performance is obtained for K = 400.

Table 1 shows the evaluation metrics on DEV-2 for both the
3 sec and 10 sec duration task. Rows 1-4 corresponds to systems
using a single UBM model trained on either MFCCs, GFCCs,
PLPs of FuSS features as mentioned in Section 3.2. All systems
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DEV-2 - 3 sec DEV-2 - 10 sec

System Feature(s) UBM 3 sec training 10 sec training 30 sec training 10 sec training 30 sec training
EER Cavg DCF EER Cavg DCF EER Cavg DCF EER Cavg DCF EER Cavg DCF

1 PLP 1×2048 19.58 20.29 19.41 17.36 17.65 16.76 16.58 17.74 16.30 13.62 15.43 13.23 12.80 14.98 12.53
2 MFCC 1×2048 17.89 18.90 17.81 17.10 17.94 16.64 16.45 17.51 16.15 12.43 14.26 11.94 11.97 13.93 11.63
3 GFCC 1×2048 17.75 18.52 17.31 16.58 17.39 16.06 16.19 17.27 15.84 11.97 14.45 11.75 11.52 13.39 11.17
4 FuSS 1×2048 16.84 17.38 16.55 15.40 15.73 14.72 15.01 15.76 14.41 10.97 13.29 10.81 10.60 12.90 10.33

5 system fusion 1-4 14.36 14.90 13.71 13.45 13.74 12.43 13.05 14.27 12.58 10.15 12.25 9.80 9.23 13.39 11.17

6 UBM-fusion 4×512 14.49 15.08 13.72 13.19 14.21 12.75 12.01 13.80 11.89 9.69 11.96 9.58 9.14 11.61 8.99

Table 1: EER, Cavg and DCF metrics (all in %) for different LID systems evaluated on the DEV-2 test. The performance of system level fusion of the
individual systems is compared to the proposed UBM-fused system. Numbers are shown for different durations of training utterances and tested on the
DEV-2 short-duration utterances of 3 and 10seconds.

that use standard features have comparable results, while the
FuSS features clearly stands out and indicate the potential of
this representation for robust speech processing purposes.

Linear combination of the SVM output probabilities of
these four systems results in the system fusion scores, that are
given by row 5. Row 6 presents the performance of the proposed
UBM-fused system which jointly exploits 4 UBMs of 512 com-
ponents each. Hence, the derived UBM statistics for all systems
are computed on the same number of Gaussian components. For
the case of long-duration (30 sec) training, UBM-fusion shows
a consistent improvement over system level fusion, showing the
potential of the method. The results are promising given the fact
that only one i-vector space, hence also one SVM training, is
required as opposed to system level fusion. However not exper-
imentally derived, additional improvements could be expected
when the systems are trained on even longer duration such as
120 seconds of the RATS training corpus.

The reported EER of 12.01% on the 3 sec DEV-2 set rela-
tively improves our previous RATS Phase-II system [15] with
22.3%, and shows to be very competitive to the state-of-the-
art LID performance obtained by score fusion of multiple sys-
tems [13, 21].

5. Conclusions
We introduced UBM-fused total variability modeling and ap-
plied it to the task of language identification. The method ex-
tends the simplified i-vector approach and achieves a high per-
formance with low complexity. We showed that fusing UBMs,
each trained on a different feature representation, results in the
estimation of an i-vector space that is more discriminant be-
tween the classes of interest. The approach is most success-
ful when the feature representations are more diverse and ap-
pears be very effective when the duration of the test utterances
is short. Results were given as part of the Phase-III RATS LID
Evaluation of DARPA and illustrate the potential of the pro-
posed method on the short-duration test sets as compared to
system level fusion.
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language identification using high quality phoneme recognition,”
in Proc. Interspeech, 2005, pp. 2237–2240.

[5] P. A. Torres-Carrasquillo, D. A. Reynolds, and J. Deller Jr, “Lan-
guage identification using gaussian mixture model tokenization,”
in Proc. ICASSP, vol. 1. IEEE, 2002, pp. I–757.

[6] E. Wong and S. Sridharan, “Methods to improve gaussian mix-
ture model based language identification system,” in Proc. Inter-
speech, 2002.

[7] W. M. Campbell, D. E. Sturim, D. A. Reynolds, and
A. Solomonoff, “SVM based speaker verification using a GMM
supervector kernel and NAP variability compensation,” in Proc.
ICASSP, vol. 1, 2006.

[8] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling
with sparse training data,” Speech and Audio Processing, IEEE
Transactions on, vol. 13, no. 3, pp. 345–354, 2005.

[9] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint fac-
tor analysis versus eigenchannels in speaker recognition,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 15,
no. 4, pp. 1435–1447, 2007.

[10] F. Verdet, D. Matrouf, J.-F. Bonastre, and J. Hennebert, “Factor
analysis and svm for language recognition.” in Proc. Interspeech,
2009, pp. 164–167.

[11] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouel-
let, “Front-end factor analysis for speaker verification,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 19,
no. 4, pp. 788–798, 2011.

[12] D. Martınez, O. Plchot, L. Burget, O. Glembek, and P. Matejka,
“Language recognition in ivectors space,” Proceedings of Inter-
speech, Firenze, Italy, pp. 861–864, 2011.

[13] K. J. Han, S. Ganapathy, M. Li, M. K. Omar, and S. Narayanan,
“TRAP language identification system for RATS phase II evalua-
tion,” in Proc. Interspeech, 2013.

[14] N. Dehak, P. A. Torres-Carrasquillo, D. A. Reynolds, and R. De-
hak, “Language recognition via i-vectors and dimensionality re-
duction,” in Proc. Interspeech, 2011, pp. 857–860.

3030



[15] M. Li and S. Narayanan, “Simplified supervised i-vector modeling
with application to robust and efficient language identification and
speaker verification,” Computer Speech & Language, 2014.

[16] M. Li, A. Tsiartas, M. Segbroeck, and S. Narayanan, “Speaker
verification using simplified and supervised i-vector modeling,”
in Proc. ICASSP, 2013.

[17] K. Walker and S. Strassel, “The RATS Radio Traffic Collection
System,” in Odyssey 2012-The Speaker and Language Recogni-
tion Workshop, 2012.

[18] A. Kanagasundaram, R. Vogt, D. B. Dean, S. Sridharan, and
M. W. Mason, “I-vector based speaker recognition on short ut-
terances,” in Proceedings of the 12th Annual Conference of the
International Speech Communication Association. International
Speech Communication Association (ISCA), 2011, pp. 2341–
2344.

[19] A. Larcher, P. Bousquet, K. A. Lee, D. Matrouf, H. Li, and J.-
F. Bonastre, “I-vectors in the context of phonetically-constrained
short utterances for speaker verification,” in Proc. ICASSP.
IEEE, 2012, pp. 4773–4776.

[20] A. Lawson, M. McLaren, Y. Lei, V. Mitra, N. Scheffer, L. Ferrer,
and M. Graciarena, “Improving language identification robustness
to highly channel-degraded speech through multiple system fu-
sion,” in Proc. Interspeech, 2013.

[21] J. Ma, B. Zhang, S. Matsoukas, S. H. Mallidi, F. Li, and H. Her-
mansky, “Improvements in language identification on the RATS
noisy speech corpus,” in Proc. Interspeech, 2013.

[22] R. Travadi, M. Van Segbroeck, and S. S. Narayanan, “Modified-
prior i-vector estimation for language identification of short dura-
tion utterances,” in Proc. Interspeech, 2014, submitted.

[23] A. O. Hatch, S. S. Kajarekar, and A. Stolcke, “Within-class co-
variance normalization for SVM-based speaker recognition,” in
Proc. Interspeech, 2006.

[24] P. Kenny, “Joint factor analysis of speaker and session variability:
Theory and algorithms,” CRIM, Montreal,(Report) CRIM-06/08-
13, 2005.

[25] K. J. Han and J. Pelecanos, “Frame-based phonotactic language
identification,” in Spoken Language Technology Workshop (SLT).
IEEE, 2012, pp. 303–306.

[26] A. G. Adami, L. Burget, S. Dupont, H. Garudadri, F. Grezl,
H. Hermansky, P. Jain, S. S. Kajarekar, N. Morgan, and S. Sivadas,
“Qualcomm-ICSI-OGI features for ASR.” in Proc. Interspeech,
2002.

[27] M. Van Segbroeck, A. Tsiartas, and S. Narayanan, “A robust fron-
tend for VAD: Exploiting contextual, discriminative and spectral
cues of human voice,” in Proc. Interspeech, 2013.

[28] S. Davis and P. Mermelstein, “Comparison of parametric rep-
resentations for monosyllabic word recognitions in continuously
spoken sentences,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 28, no. 4, pp. 357–366, Aug. 1980.

[29] H. Hermansky, “Perceptual linear predictive (PLP) analysis of
speech,” Journal of the Acoustical Society of America, vol. 87,
no. 4, pp. 1738–1752, Apr. 1990.

[30] Y. Shao, S. Srinivasan, and D. Wang, “Incorporating auditory
feature uncertainties in robust speaker identification,” in Proc.
ICASSP, 2002, pp. 277–280.

[31] M. Kleinschmidt, “Spectro-temporal gabor features as a front end
for ASR,” in Proc. Forum Acusticum Sevilla, 2002.

[32] A. F. Martin and C. S. Greenberg, “The NIST 2010 speaker recog-
nition evaluation,” in Proc. Interspeech, 2010, pp. 2726–2729.

3031


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Maarten Van Segbroeck
	Also by Ruchir Travadi
	Also by Shrikanth S. Narayanan
	----------

